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Abstract

This thesis reports measurements of the intensity and spectrum of

light scattered from sulfur hexafluoride, SF6, near its liquid-vapor

critical point. These measurements were carried out along the critical

isochore over the temperature range 0.0480K < (T - T C) < 2.40K, and
along the coexistence curve over the temperature range 0.021

0K < (TC - T)

1.0270K.

Using the techniques of optical mixing spectroscopy, measurements
were made of the photocurrent power spectrum and the photocurrent cor-

relation function arising from the light scattered quasielastically
from thermally excited entropy fluctuations in SF6. These measurements
are analyzed in order to determine the magnitude and temperature de-

pendence of the critical part of the thermal diffusivity, D . The

results are discussed in terms of the Kadanoff-Swift-Kawasaki mode-mode

coupling theory.

Measurements of the intensity of the scattered light are analyzed
in order to determine the magnitude and temperature dependence of the

isothermal compressibility, KT. It is found that along the critical

isochore, KT = 1.26 x 10 9 (T/TC - 1 ) l.230.015 cm2/dyne and that along

the liquid side of the coexistence curve, the reduced compressibility is

given by ( ) 1.67 x 10 (1 - T/TC) g erg cm . These

results are discussed in terms of the predictions of the scaling law

equations of state.



Finally, from measurements of the pressure, accurate values have
been obtained for the slope of the vapor pressure curve, (6P/6T),v'
close to TC and for the slope of the extension of the vapor pressure
curve above T , (6P/)T) V. These quantities play an important role in
the analysis eading to the determination of DC from the experimental
data.
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Chapter I

INTRODUCTION

This thesis reports measurements of the intensity and spectrum of

light scattered from sulfur hexafluoride near its liquid-vapor critical

point. In this introduction we shall present the highlights of the

historical development of the experimental and theoretical studies out

of which grew the motivation for the study undertaken in this thesis.

The study of critical point phenomena began in 1869 when Andrews(1)

experimentally discovered the existence of the critical point in carbon

dioxide. Shortly afterward, Van der Waals(2) published a theoretical

description of the critical region of a liquid-gas system, based on his

now famous equation of state, which to this day provides good qualitative

predictions for the behavior of some of the properties of a fluid near

its critical point.

In the course of his studies of the critical point behavior of CO2

Andrews observed an anomalous increase in the scattering of light, the

phenomenon now known as critical opalescence. Andrews explained this

phenomenon qualitatively by arguing that the density inhomogeneities

that cause light scattering increase tremendously as the critical point

is approached.

The first quantitative treatment of light scattering was presented

by Lord Rayleigh 3 who solved the problem of light scattered by a gas

of particles of sufficiently low density such that the interparticle

spacing was larger than the wavelength of the light. He did not include

the interactions between the particles of the gas in his calculations.
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With his famous result that the time average intensity of the scattered

light is inversely proportional to the fourth power of the incident

radiation, he was able to explain a variety of basic phenomena, in-

cluding the blue color of the sky. Rayleigh's theory failed, however,

to account for the scattering from media whose particles interacted and

whose interparticle separation is of the order of the wavelength of

light. In particular, it could not account for critical opalescence.

Four decades later von Smoluchowski and Einstein presented a

quantitative treatment of critical opalescence. In particular, Einstein

was able to show that light which has been scattered through an angle

o has in fact been scattered by one particular spatial Fourier component

of the density fluctuations, namely that component whose wavevector 2

is related to the wavevectors of the scattered and incident light, k"5

and k by =k - k

The Einstein-Smoluchowski theory of critical opalescence assumed

that density fluctuations in neighboring volume elements are uncorrelated.

This led to the prediction that the scattered light intensity is in-

dependent of angle and approaches infinity as the critical point is ap-

proached. Later, Ornstein and Zernike considered the effect of cor-

relations between neighboring volume elements. They predicted that the

scattered intensity exhibits an angular dependence and that the intensity

approaches a finite value (except for forward scattering) as the critical

point is approached. Aside from minor modifications, the Ornstein-

Zernike theory still stands as the means by which measurements of the

time average intensity of the scattered light are related to the behavior

of the time-independent properties of a fluid near its critical point.

11 - - -MN
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Since the Ornstein-Zernike theory was concerned only with the mean

squared amplitude and the spatial extent of the density fluctuations,

it could not predict the spectral distribution of the light scattered

by the medium which depends upon the manner in which the density fluc-

tuations evolve in time. Debye argued that the thermal content of

a fluid could be considered to consist of adiabatically propagating

pressure fluctuations; that is, sound waves. Brillouin and, inde-

pendently, Mandel'shtam~g) realized that the frequency of the light

scattered from these fluctuations should differ from that of the in-

cident light by an amount equal to the frequency of a sound wave whose

wave vector is equal to the difference in wave vectors of the incident

and scattered light.

The first experimental observation of the Brillouin-Mandel'shtam

doublet was made by Gross (10) who was able to resolve the doublet lines

at 6 = 90 in seven liquids and show that the results agreed with the

predicted splittings.

Gross also found that, in addition to the doublet, there was light

scattered without a noticeable frequency shift in all seven liquids.

This central, unshifted line was explained soon afterward by Landau

and Placzek(11) who proposed that the density fluctuations producing

the scattering can be described in terms of adiabatic pressure fluctua-

tions and isobaric entropy fluctuations. The pressure fluctuations

propagate giving rise to the Brillouin-Mandel'shtam doublet; the entropy

fluctuations, however, obey the heat flow equation and decay away by

diffusion thus giving rise to the unshifted, central component. Accord-

ing to Landau and Placzek the central component of the scattered light
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should be a Lorentzian whose half-width at half maximum, P, is given

by P = Dq2 where q is the scattering vector and D is the thermal dif-

fusivity; D = A/pCp, where A is the thermal conductivity of the scatter-

ing medium, p is the density, and C is the specific heat per unit mass

at constant pressure.

The experimental situation regarding measurements of the spectrum

of light scattered from fluids remained essentially stagnant until 1964

when the dual problem of the lack of intense monochromatic light sources

and the lack of sufficiently high resolution spectrometers was overcome

with the availability of helium-neon lasers which could be used in con-

junction with the technique of optical mixing spectroscopy.

The first measurements of the central component of the light scat-

tered by a pure fluid near its liquid-vapor critical point were obtained

by Ford and Benedek(12) in 1965. They were able to determine the thermal

diffusivity for several temperatures along the critical isochore of SF 6

and interpreted their results in terms of the landau-Placzek theory.

Shortly afterward, an extensive systematic study of the behavior of the

width of the central component of the light scattered from SF 6 at a

number of temperatures above TC along the critical isochore and along

six near-critical isochores, and at temperatures below T along the gas
C

and liquid sides of the coexistence curve, was undertaken by Saxman and

Benedek. They found(13) a marked asymmetry in the temperature dependence

of the thermal diffusivity above and below T . In particular, their

results seemed to indicate that while the thermal conductivity diverged

as T - TC from below, A did not diverge as T -9 TC from above. Their

results were unusual and puzzling.
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Shortly afterward, Swinney and Cummins(14) obtained measurements

of the thermal diffusivity of CO2 along the critical isochore and along

the coexistence curve. Their results indicated that the thermal con-

ductivity diverges with approximately the same temperature dependence

above and below TC'

Motivated by the fundamental differences between the results obtained

for SF6 and those obtained for CO2, Lastovka and Benedek initiated an

ambitious study whose goal was not only to re-measure the thermal dif-

fusivity of SF6 along various paths in the region of the critical point,

but also to measure the behavior of the isothermal compressibility as

deduced from measurements of the intensity of the scattered light. These

measurements were to be supplemented with direct measurements of the

density and the pressure as a function of temperature in the critical

region. The initial results of this study, in which the author par-

ticipated, have been reported.(15)

As the experimental investigations of the behavior of the thermal

diffusivity of pure fluids in the critical region intensified, dramatic

progress was made as well in a number of theoretical studies. Following

a concept introduced by Fixman, (16) Kadanoff and Swift (17) developed

what has become known as the mode-mode coupling theory. Their's is a

general dynamical theory, not restricted to regions where hydrodynamics

applies, which predicts the temperature dependences of the critical points

of the transport coefficients of a pure fluid near its critical point.

Their more general theory supplants the Landau-Placzek expression for

the decay rate of entropy fluctuations which retains its validity only
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when hydrodynamics applies. Subsequently, Kawasaki(18),(19) extended

the mode-mode coupling concept and derived a general expression which

provides an explicit prediction for the magnitude and temperature de-

pendence of the critical part of the thermal diffusivity of a fluid near

its critical point. The theory has been further extended by Kawasaki

and Lo (20) with the resulting prediction that in the hydrodynamic re-

gion (defined as the case when q << 1, where is the spatial range

over which density fluctuations are correlated) the critical part of the

thermal diffusivity is given by ( ) 6 (1.055), where kB is

Boltzmann's constant and rj is the shear viscosity.

This result may be interpreted physically if one considers that

the diffusion of heat takes place by the spatial diffusion of regions

of size . If this is the case, then from the Stokes-Einstein rela-

tion it is known that the diffusion constant of spheres of radius i

is given by D = kBT/6 Tha.

It was in the wake of these theoretical advances and as an out-

growth of the experimental study initiated by Lastovka and Benedek that

the work described in this thesis originated. The results described in

this thesis have been previously reported. (21),(22) These results to-

gether with the study of Lim et al.(2) have satisfactorily resolved

the experimental question regarding the behavior of SF near its critical

point. Excellent agreement is obtained between the results of the ex-

periments and the predictions of the mode-mode coupling theories along

the critical isochore where independent data exist allowing proper

analysis. Independent measurements of the correlation range, g , and
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the shear viscosity, TI, are required along the gas and liquid sides of

the SF6 coexistence curve before accurate comparisons between the ex-

perimental results and the predictions of the theory can be made.
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Chapter II

I[QUID-VAPOR CRITICAL POINT PHENOMENA AND THE
USE OF LIGHT SCATTERING TO MEASURE

PROPERTIES OF THE SYSTEM

A. Introduction to Critical Point Phenomena

We may begin our discussion of liquid-vapor critical point phenomena

by identifying the critical point and the surrounding critical region in

terms of elementary phase diagrams. We begin by recalling that every

pure substance can be described by an equation of state which is a func-

tional relationship of the form f(P,p,T) = 0. The equation of state

defines a surface in a three-dimensional space whose coordinates are the

pressure, P, the density, p, and the temperature, T, of the system.

Each of the points on the surface corresponds to an equilibrium state

of the system. In order to visualize the PpT surface it is useful to

consider its projections upon the PT, Pp, and pT planes. In Figure 2.1

we show a schematic PT phase diagram. From this diagram we see that the

liquid and vapor phases coexist in equilibrium at pressures and temperatures

which define the vapor pressure curve. The critical point is seen to be

the end point of the vapor pressure curve. At temperatures greater than

TC there is no longer any distinction between the gaseous and liquid

phases of the substance. In this region it is possible for the substance

to exist in only one phase. At temperatures less than TC compressing a

gas sufficiently results in the formation of dropets of condensed liquid

in the sample and so one has a physical separation into two phases. At

temperatures greater than TC the gas may be compressed without limit and

yet there will be no physical separation of the substance into phases.

-----------
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The critical temperature itself is seen to be the line of demarcation be-

tween the one phase and two phase states of the substance. It is to in-

vestigate the behavior of the physical properties of a substance when it

is brought arbitrarily close to the critical temperature on an approach

from the one phase region and on an approach from the two phase region that

constitutes the motivation for studies of critical phenomena.

In Figure 2.2 we show a schematic Pp phase diagram on which are drawn

supercritical and subcritical isotherms as well as the critical isotherm,

T C. We may consider an isothermal compression of a gaseous sample held

at T < TC and beginning at low density. We will assume that the sample is

held in a chamber at fixed volume and that the pressure is increased by

introducing gas into the chamber. As gas is introduced both the pressure

and the density of the sample increase until the density corresponding to

the gas side of the coexistence curve is reached. As additional gas is

introduced the pressure no longer increases. Instead, droplets of liquid

at a density corresponding to the liquid side of the coexistence curve be-

gin to condense in the chamber. As additional gas is introduced the pres-

sure remains constant as the liquid volume (all at the liquid coexistence

curve density) increases and the gas volume (all at the gas coexistence

curve density) decreases. Finally, liquid fills the entire chamber.and

the average density of the sample is just the liquid coexistence curve den-

sity. As additional gas is introduced the pressure again increases and

the liquid density also increases.

When the same procedure is carried out on a gaseous sample held at

T > TC, what is observed, as gas is continually added to the chamber, is
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a continuous increase in the sample pressure as the sample density con-

tinuously increases from gas-like to liquid-like densities.

We next consider what occurs when the same procedure is carried out

on a sample held very close to T . If the temperature is slightly below

TC phase separation will occur when the gas coexistence curve density is

reached. -However, the density of the condensed liquid will be nearly equal

to the gas density. We see then that as the critical point is approached

from below TC, the difference between the liquid and gas densities approaches

zero.

We now consider the case where the sample is held at a temperature

slightly above T . As gas is added to the chamber the pressure rises as

the density increases. As the critical density pC is approached, however,

increases in the sample density result in continually smaller increases in

the sample pressure. At pC the isotherms for T > TC but approaching TC

beccme increasingly "flatter". As seen from Figure 2.2, the critical

isotherm exhibits zero slope at critical density. What is implied physically

is that changing the sample density produces a negligible change in the

sample pressure. Conversely, a small change in the sample pressure produces

a very large change in the sample density. The fluid becomes extremely

compressible in the critical region and since ( is zero at the critical

point, the isothermal compressibility, ( )T, diverges to infinity as the

critical point is approached.

In Figure 2.3 we show .a schematic pT phase diagram for the critical

region. This diagram may be considered as a map of the principal paths of

approach to the critical point. Theories predicting the behavior of the
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physical properties of a fluid in the critical region are concerned with

the behavior of the property in question as a function of the temperature

and density of the fluid as the critical point is approached. The most

direct means of checking the validity of the theories is to experimentally

measure the property in question as a function of the temperature along the

critical isochore, as a function of the temperature along the gas and liquid

sides of the coexistence curve, or as a function of the density along the

critical isotherm.

Thus far from an examination of phase diagrams we have seen that the

two essential features of a fluid near its critical point are (a) that the

difference between liquid and gas densities approaches zero as the critical

point is approached and (b) that the isothermal compressibility diverges

to infinity as the critical point is approached. A phenomenon related to

the diverging isothermal compressibility is that near the critical point

the random thermal density fluctuations in a fluid become large both in

amplitude and in spatial extent.

We can qualitatively understand that the diverging isothermal compres-

sibility is related to large density fluctuationsby noting that an infinite

value of )T implies that the response of the density to a small pres-

sure fluctuation is infinite. The existence of large density fluctuations

is responsible for the phenomenon of critical opalescence.

As the critical point of a fluid is approached along the critical

isochore microscopic regions of higher and lower density randomly appear

and decay throughout the volume of the fluid. The process may be thought

of as the formation and decay of molecular clusters or as the formation

and decay of microscopic liquid droplets. As the temperature is continually

I III I ION ON""



lowered toward TC the density fluctuations become greater in amplitude

and in spatial extent. Near TC the regions of correlated dbnsity fluc-

tuations acquire dimensions on the order of the wavelength of light so

that a beam of light directed toward the fluid is scattered very strongly

resulting in the opacity of the fluid.

We may conclude our brief introduction by remarking that it is the

static and dynamic behavior of the density fluctuations in a fluid near

its critical point that determine, on the microscopic level, the behavior

of the macroscopically measured properties of a fluid near its critical

point.

B. Theoretical Predictions for the Behavior of the Static Properties

of a Fluid near its Critical Point

1. Relationship between the Magnitude of the Density Fluctuations

and the Isothermal Compressibility

We begin our discussion of the theoretical predictions for the

behavior of the static properties of a fluid near its critical point by

presenting quantitatively the relation between density fluctuations and

the isothermal compressibility. From statistical mechanics(1) the prob-

ability p of fluctuations in the thermodynamic quantities of a system
-W./T

away from their mean values is proportional to e where W is

the minimum work required to carry out reversibly the given changes in

the fluctuating quantities, kB is Boltzmann's constant, and T is the
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equilibrium temperature. The value of the minimum work is given by the

expression

W =AE - TAS + PAV, (2.1)
min

where AE, AS and AV are the changes in the energy, entropy, and volume and

P is the equilibrium pressure. Expanding AE in a Taylor series, we ob-

tain to second order that

6E =E (1 ( 2] + ( aS2 + 2 6E zASAV + LEAV2). (2.2)

lOE 2E
+2 asa

But (g), = T and ( ) = -P so that

, E - TLS + PAV = S ( S) + 2 ;-S -ASAV + (V2 .(2.3)

(2) b2E2 3 E 22 2
(2) E E 2 2 E AV2

It can be shown ()that (6A E= ( (AS) 2+ ( 6 E)AMAS and that

E 2 E
-APAV = 2E(AV) + ( 6 E)ASAV. So that

W . = I(ATAR - APAV) . (2.4)
min 2

We thus obtain for the probability of fluctuations that

p a e-(ATA-APAv)/2kBT 
(2.)

We may now calculate the probability of fluctuations in each of the vari-

ables. Taking V and T as the independent variables we have

6P 6P6P = (T)- + (7)gV and

AS = (g)T + (6)V



so that

6S 2 6P) 2
ATAS - APAV = ()V(AT) - (7 T(AV)

+ (( T V)AVAT (2.6)

But ( ) V so' the cross term vanishes. Thus AV and AT are statistically

independent fluctuations. The probability distribution for temperature and

volume fluctuations becomes

)T 2_ 6S2)

p(AVAT) a, eL V/ (2.7)

The distribution is Gaussian so that the mean square fluctuation in the

volume becomes:

< (AV)2 > = -k T(6)T (2.8)

This relation determines the mean square fluctuation in the volume of a

part of a system containing a fixed number of particles, N. In order to

obtain the mean square fluctuation in the number of particles in a fixed

volume within a system we first divide both sides of the equation by N
2

to find the mean square fluctuation in the volume per particle:

< (I Y)2 (2.9)

V 1: V
We can write A N = VA N= - AN Substituting, we find

NkT N

< (AN) 2 ( 6) (2.10)

We can now explicitly relate the mean square fluctuation in density to

the isothermal compressibility, KT. Recalling that KT = - I(6)T and



N
letting n = N we have

V

< (AN)2 > = kBTnNK T (2.11)

Recalling that the compressibility of an ideal gas, Ki, is given by

K3: we obtain
I1  nkBT

T _< (AN)2 > (2.12)
K N

or, more explicitly,

T < (N - < N > ) > (2.13)
K I< N > (.5

where < N > is the mean value of the number of particles and N - < N > is

the fluctuation away from the mean value. We see then that the divergence

of the isothermal compressibility is directly related to the large am-

plitude density fluctuations that occur near the critical point of a fluid.

Also we see that while the fluctuations in N are Poissonian far from

TC, they become much larger than Poissonian as T -&TC'

2. Relationship betieen the Spatial Range of the Density Fluctuations

and the Isothermal Compressibility

We have remarked earlier that the spatial extent of regions of

correlated density fluctuations as well as the amplitude of the fluctua-

tions become large near the critical point of a fluid. We will now proceed

to relate the spatial range of density fluctuations to the isothermal

compressibility of the fluid. We begin by introducing the function(3)



G(r r' ) = < [n(r) - < n(r) >][n(r' ) - < n(r' ) >] > (2.14)

In this expression n(r) is the particle density given by

N

n(r) - ri) (2.15)

i=1

th
where is the spatial coordinate of the i- particle. Also, < n(r) >

is the average particle density given by

< n(r) > = < N> n (2.16)
V

We see than that G(r,j') is a measure of the correlation of fluctuations

in the density away from the average value.

We may expand Eq. (2.14) to obtain

G(ra,r') = < n(r)n(r') > - < n(r) < n(r') >>

- << n(r) > n(r') > + << n(r) >< n(r')>> (2.17)

We note, however, that < n(r) > = < n(r,') > = n so that

G(r,r' ) = < n(r)n(r') > - n2  (2.18)

We may also assume that our system is spatially uniform so that G(,rr')

G(r - r'). We may rewrite Eq. (2.17) to obtain

N N

G(r - r') =< 8(r - rq) -(r' > - n2 (2.19)

i=1 j=1

We note that terms with i = j are not excluded from the summation so that

G(r - r') includes not only correlation between different particles but

also the correlation of a particle with itself. To show this explicitly

we may write



G(r - r') = nb(r - r') + n2P r - r') (2.20)

In this expression r(r - r') is the dimensionless net pair density-density

correlation function. It represents the contribution to G(r - r') due to

the correlation between different particles.

We may now proceed to relate P(r - r') to the isothermal compressibility

of the fluid. We begin by noting that

< (N- < N >)2 > = < fdr[n(r) - < n(r) >]fd'[n(r') -< n(r') >] (2.21)

Using Eq. (2.14) we obtain

< (N - < N >2 > = fdrrdr'G(r- r') (2.22)

Simplifying,

< (N - < N >)2 > = vfad"G(r") (2.23)

Using Eq. (2.13) we obtain

KT 1
T fdrG(r) (2.24)

Using Eq. (2.20) we obtain

T = 1 fdx[nS(r) + n2 2.25)

So that

= 1 + nfr(r)dr (2.26)

The deviation of P(r) from zero is a direct measure of the influence of

one molecule upon another in a fluid. In an ideal gas the molecules do not

interact so that r(r) = 0 and from Eq. (2.26), - 1 as expected.
K,



For a real fluid the divergence of K. at the critical point means

that fr(r)dr also diverges. This can occur only if P(r) decays to zero

*3 (4i)more slowly than 1/r . Near the critical point, then, the net pair

density-density correlation function becomes long range.

Summarizing, we see that

K 2
T (N - < N >) > = 1 + nfP(r)dr (2.27)

so that the divergence of the isothermal compressibility near the critical

point of a fluid is related both to the increase in the mean square am-

plitude of the density fluctuations and to the increase in the spatial

range over which fluctuations in the density are correlated.

3. Ornstein-Zernike Relation between the Isothermal Compressibility,

and the Long Range Correlation Length, g

What we have shown thus far is that an understanding of the

static properties of a fluid near its critical point requires that we in-

vestigate the behavior of the isothermal compressibility as well as the

behavior of the range over which fluctuations in the density are correlated.

In order to explicitly relate the divergence of K to the increase

in the range of P(r) it is desirable to obtain an explicit expression for

r(r). Such an expression has been obtained by Ornstein and Zernike, (5

and a review of that original work is presented by Fisher. Ornstein

and Zernike argue that the correlation r(;r - 2 between molecules 1

and 2 in a fluid can be regarded as being caused by two means. First,



there is the direct influence of 1 on 2 which is described by a direct

correlation function, C(zi - 2.' This function is considered to have

a range similar to that of the molecular interaction potential and is

thus short-ranged. Second, there is the indirect influence of 1 on 2,

which is propagated directly from 1 to a third molecule at which, in turn,

influences the molecule at r .

Expressing this theory mathematically, one has

r(r, - r2) = C(r, - r2) + nfc(r1 - Z5 )r(Z3 - r2)d (2.26)

Taking the Fourier transform of this expansion, one obtains

r(.) = c(a) + ac(Z)r(a)

or, C(a) = 1 + nP(q) (2.29)

where

r(a) = f e1'EPr(r)dr

and C(a) = f e l'(r)dr (2.30)

In these expressions a is the wavevector associated with the density

fluctuations in the fluid.

Now,

lim N) = f r(r)dr (2.31)
g --*0

So that from Eq. (2.26) we have

= lim [1 + nr(a)] (2.32)
K 1 2 0
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In order to relate KT to the range of P(r) we must investigate the expres-

sion 1 + nr(g). From Eq. (2.29) we have

1 + nr(a) = 1 - nC(g) (2.33)

Ornstein and Zernike assume that C(a) can be expanded in a Taylor series

about q = 0. Specifically,

0o

C(q) = C(O) + r C (n)qY (2.34)

1=0

It can be shown (3 that the coefficients C vanish for odd I and that

0o

C(n) a r9+2C(r)dr (2.33)
0

Therefore,

1=1- nC() = 1 - n[C(0) + C2(n)q
2  4 (2.36)

This expression may be re-written as

1+ n() = C ( -(0nC0) nq2 + O(g )] (2.37)

or,

1+ np(() = - nC2 (n)[ nCO) + q2 + O(qN) (2.38)

2 2 2
We now define R - nC2 (n). We note that R cf r C(r)dr so that R

has beccme known as the direct correlation range. Therefore,

1 + nr() = R2[l -nC(0) + q + (q) . (2.39)



We next define 2 = 1 - nC(0) so that
R 2

l + n2() = R 2 + q2 + q)] . (2.40)

If we neglect all terms of order q and higher we obtain

1 + nr(g) = 2 R 2 (2.41)
K + q

Taking the Fourier transform and using Eq. (2.20) we obtain

-Kr

rG(r) m r . (2.42)

We now define i = 1/K so that the pair correlation function has the

form

-r/g
G(r) e(2.43)r

The parameter t is known as the Ornstein-Zernike long range correlation

length. From Eqs. (2.32) and (2.41) we see that

lim 1 + n(q)= lim 22 2=K (2.44)
q-0 q-y0l1/ + q I

Therefore

K . (2.45)
I R

We have thus obtained an explicit relation between the isothermal compres-

sibility and the correlation range of density fluctuations for a fluid

near its critical point. Since KT diverges at the critical point, E also

diverges so that near the critical point G(r).- allowing the range of

correlation to become large.
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4. Explicit Predictions for the Behavior of the Static Properties

of a Fluid near its Critical Point

Thus far we have indicated that both KT and g do, in fact, diverge

as the critical point of a fluid is approached. We have not yet, however,

indicated the explicit manner in which these quantities are expected to

diverge. We shall, then, present a brief review of the theoretical pre-

dictions for the explicit behavior of KT and E as well as the other re-

lated static properties of a fluid near its critical point.

We may begin by introducing the idea of critical point exponents. It

is a common feature of critical phenomena that when the critical point is

approached along the critical isochore, along the coexistence curve, or

along the critical isotherm that several properties of the fluid either

diverge toward infinity or approach zero in a manner that is characterized

by a power law behavior. We have already seen that the difference between

liquid and gas densities approaches zero as the critical point is approached

from below TC. Quantitatively, this relation may be expressed as:

= B( C (2.46)
2p C TC

The exponent P thus determines the shape of the coexistence curve in the

pT plane.

For a liquid-vapor critical point the density, or, more precisely, the

quantity |p - pCI is known as the order parameter. Order parameters for

all critical point systems have the common properties that (a) they vanish

at temperatures above TC and (b) they approach zero continuously as T.-* TC

from below. All systems exhibiting critical point phenomena undergo large

NOMMMMM"M rsmw_



thermal fluctuations in the order parameter. Order parameter fluctua-

tions are directly related to the divergences of the susceptibilities for

all critical point systems. In general, the susceptibility is the deriva-

tive of the thermodynamic variable representing the order parameter with

respect to its thermodynamic conjugate field. For a liquid-vapor critical

point the thermodynamic conjugate to the density, p, is the chemical poten-

tial per unit mass, P. (6) So the susceptibility is ( )T. As the critical

point is approached from below TC along the coexistence curve the diver-

gence of the susceptibility is given by

tT -
(2.T 

-)
( T=C'( CT

CC
Similarly, as the critical point is approached from above T C along the

critical isochore the divergence is given by

C(T -
TC -7

()T = T C) (2.48)

We may easily relate t a more familiar quantity, the isothermal

compressibility, KT, by noting that dP = pdp so that (

Since KT T we have ( p2 KT. We see then that the exponents

7 and y' determine the explicit temperature dependence of the divergence

of KT as the critical point is approached along the critical isochore and

along the coexistence curve.

Another quantity of interest is the variation of pressure with density

as the critical point is approached along the critical isotherm. In order
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to obtain this relation one must begin with a more fundamental relation

between the order parameter, p, and its conjugate, i. As the critical

point is approached along the critical isotherm one has (7

- pC CPC (2.49)

The exponent 6 thus determines the shape of the critical isotherm in the

pLp plane. In order to relate the pressure to the density along TC we

begin by differentiating Eq. (2.49) so that

L 6(p ) . (2.50)
dp C

Since dP = pdpi we have

dP m p (p pC) 1dp . (2.51)

We may formally write

P - PC Cf - PC) 1 dp (2.52)

Integrating by parts,

P - PC C( - PC) dp (2.53)

or,

P a MP(P )' - (P -P C C 6 + 1 ~ C '

Simplifying,

P - PC C -(P P) p + PC]. (2.54)

The shape of the critical isotherm in the Pp plane is thus determined by

the relation



P - PjC (2.55)

- p + PC 0 C

We have seen that the correlation length, g, is expected to diverge

as the critical point is approached. The divergence of g along the

critical isochore is given by

= ( T C (2.56)
C

and the divergence of E along the coexistence curve is given by

T C- T -v'

E = (CE T) . (2.57)
C

The exponents v and v' thus determine the explicit temperature dependences

of the divergence of E as the critical point is approached from above and

from below.

The final static property that is expected to diverge with a simple

power law behavior as the critical point is approached is the specific

heat per unit mass at constant volume, C . The divergence of C along

the critical isochore is given by

Cv = A( T C (2.58)

and the divergence of C along the coexistence curve is given by

TC
Cv = A'( T (2.59)

We may introduce one final critical point exponent associated with

the static properties. Fisher(4) has analyzed on theoretical grounds
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the validity of the Ornstein-Zernike theory for the behavior of the pair

correlation function for density fluctuations. He finds that the theory

is inadequate very close to the critical point and proposes a modified

form for the pair correlation function given by

G(r) c er //rl . (2.60)

We note that when = 0 the expression for G(r) becomes the Ornstein-

Zernike expression given in Eq. (2.43). The magnitude of the critical

exponent -r thus becomes a measure of the departure of the behavior of the

pair correlation function from the prediction of the Ornstein-Zernike

theory.

We have introduced a number of critical point exponents which char-

acterize the power law behavior of several of the static properties of a

fluid near its critical point. We must note, however, that not all of the

static properties exhibit power law behavior as the critical point is

approached. Both the specific heat per unit mass at constant pressure, C ,

and the adiabatic compressibility, Ks, diverge toward infinity as the

critical point is approached. Neither of these quantities, however,

exhibits a power law behavior. From thermodynamics the specific heat

at constant pressure is given by

C =C + ) T (2.61)

As the critical point is approached along the critical isochore both

Cv and (j) diverge with a power law behavior, while the quantity (L )

remains nearly constant. Therefore, the divergence of C is approximately

given by



T -TC-(1T -T) -7

C T) + C (2.62)
p TC T

Since the critical exponents a and y do not have the same magnitudes, we

see that C does not diverge with a power law behavior as the critical

point is approached along the critical isochore.

As the critical point is approached along the coexistence curve again

both Cv and ( ) diverge with power law behavior. In this case, however,

6P
the density, p, varies and the quantity (5)v is no longer nearly constant.

6PIn fact, (R)v changes markedly as the critical point is approached along

()P
the coexistence curve. To explicitly examine the behavior of (5)V along

the coexistence curve we begin by writing in general

6P C)P) p(.3dP = (%)vdT + ( )Tdp (2.63)

Indicating a change in temperature along the coexistence curve by (R)Iv'

we have

()v 6)v + ( T v '

so that

( ) ()PAv T v . (2.64)

Using dP = pdp, the explicit expression for C along the coexistence curve

becomes

C + [6P2 6 (6~v 2 (2.63)CP = Cv + Iv -PipT (g v 2 T

6P
Along the coexistence curve near the critical point ( )V, which is the

slope of the vapor pressure curve in the PT plane, remains nearly constant.



However, the quantity p( )T 1v approaches zero as the critical point

is approached so that (5fv indeed changes markedly along the coexistence

curve.

From Eqs. (2.61) and (2.65) it is clear that C does not diverge with

a power law behavior as the critical point is approached along either the

critical isochore or along the coexistence curve.

The final diverging static property we will discuss is the adiabatic

compressibility, Ks. From thermodynamics one obtains the relation

C= _ KT 
(2.66)C K

v s

Re-writing, we obtain

p2 K = ( (2.67)

P
We see directly, then, that since C P does not diverge with a power law

behavior K also does not.
S

Thus far, we have indicated that the behavior of several of the static

properties of a fluid near its critical point may be characterized by

critical point exponents. In order to obtain explicit theoretical pre-

dictions for the behavior of the static properties it is necessary to predict

values for the various critical exponents. In order to make such predictions

it is necessary to begin with an equation of state that is valid for a fluid

in the region of its critical point. Equations of state for a fluid near

its critical point have been proposed by Van der Waals and by Landau (1) but

they are based on assumptions that are known to be invalid. Further, the

values of the critical exponents predicted by these theories disagree with
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experimental measurements. More recently, Widom and Kadanoff(6) have

proposed an equation of state that does appear to be valid for a fluid in

the neighborhood of its critical point. Their theory has become known as

the scaling law equation of state. Although the theory does not predict

explicit values for each of the critical exponents, it does predict a set

of relations between the exponents. We thus have the following scaling law

predictions:

y = 7 (2.69)

a = CG: (2.70)

a + 2P + 7 = 2 (2.71)

a + P(8 + 1) = 2 (2.72)

y(b + 1) = (2 - a.)(5 - 1) (2.73)

y = P(- 1) (2.74)

v = v1 (2.75)

3v = 2 - a (2.76)

(2 - TF)v = 7 (2.77)

+ 6 6p 2 (2.78)
T F 6 + 1 =2 - m v

37 = 2 - (2.79)2p + 7 F

An inspection of these relations reveals that if any two of the critical

exponents are known then all the rest may be determined.

A further development of the scaling law theory is given by the

parametric linear model equation of state developed by Schofield, Litster

and Ho. (8) In their formulation, if any two of the critical exponents are
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known then the entire equation of state is determined. Thus, not only

does one obtain a prediction for the temperature dependence of the static

properties as the critical point is approached but also a prediction for

the magnitude of those properties.

We have seen from Eqs. (2.47) and (2.48) that as the critical point

is approached along the critical isochore that ( -)T T ) , and as

the critical point is approached along the coexistence curve that
T - T -7'

= C'( C T) . The linear model equation of state predicts thatT T C

C- = 1- 2p _ y(2.80)

We thus have a prediction for the ratio of the magnitudes of (T>T and

6C
()T<T '

We may conclude our discussion of the theoretical predictions for the

behavior of the static properties of a fluid near its critical point by

remarking that a test of the theories requires that the quantities we have

discussed be experimentally measured along the appropriate paths approaching

the critical point and that their temperature and density dependence be

examined. In the next section we show how a measurement of the intensity

of light scattered from a fluid near its critical point provides a measure-

ment of both the isothermal compressibility and the long range correlation

length.

C. Derivation of the Einstein-Ornstein-Zernike Equation Relating the

Intensity of Light Scattered from a Fluid near its Critical Point

to K9 and to

We shall begin our calculation of the intensity of light scattered from

a fluid near its critical point by considering the situation shown in
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Fig. 2.4a. A plane, monochromatic light wave with electric field given by

E.(rt) = Ee -t (2.81)

is incident upon a volume V of a medium whose polarizability per unit volume

is a(r,t). We wish to calculate the electric field which will be observed

at a point P in the medium. We will let P be far enough away from the

scattering volume, V, so that IR - r f = jg = R for all points in V.

Due to the polarizability of the medium, the incident electric field

will induce a polarization in each volume element, d r, given by

P(r,t) = g(rt) (r,t)d3r (2.82)

In general, c(r.,t) is a tensor so that P and E need not be in the

same direction, However, for a simple fluid, there is no anisotropy so

that c(r,t) may be considered to be a scalar, a(rt). Since the fluid

exhibits random thermal fluctuations we may write

M(rt) = < a > + Sa(.rt) (2.83)

where < a > is the average polarizability for the entire scattering volume

and Sa(r,t) represents the random fluctuations away from the average.

The oscillating polarization given in Eq. (2.82) will radiate in a

manner similar to an oscillating dipole. Using the far field approximation

for the field produced by an oscillating dipole one obtains(2)

E ( )= 1 2 X[R X P(;r,t )]d r (2.84)~s R <G>c2 s s ~ r
V m

where 2 = , a unit vector in the direction of the scattered field,
s | - ;r



Fig. 2.4a Experimental Situation for Light Scattering

SCATTERING
ANGLE 6

Fig. 2.4b Geometric Representation of the Scattering Process
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|R - r|

cm is the velocity of light in the medium, tr = t - the retarded
m

time, < e > is the average dielectric constant of the medium, and

2 2
< E > c = c .

m

In order to calculate (rt) we note that the time variation of

a(rt) is very slow compared with that of E (rt) so from Eq. (2.82) we

obtain

2ik -r -iwt+iwO(JR-;r|/c)
P(r,t) 0 2()e =0 _e m (2.85)

Now, since R >> r we may write

IR - rj R - 2 - (2.86)

We may also define k 0 c kO s, which is a wave vector of the same
m

length as the incident wave vector but pointing in the direction of

observation. Equation (2.85) thus becomes

ik -R-iwt ik -r-ik -r
P(rt) = s(rt)EO(-{o)e - e (2.87)

Using this result in Eq. (2.84) along with Eq. (2.83) we obtain the fol-

lowing expression for the scattered field:

1 ~1 i(k -R- 0.
E (Rt) = X(k X Eq) 1 e~ R w

i(k -k)-
[< a > + ba(r ,t)]e - d5 r (2.88)

V

We see that Eq. (2.88) contains two terms: one with < a > and one with

Sa(rt). Upon carrying out the integration over V on the first of these

terms we obtain



i(k -k )
< a > e (-s d3 r = (2A)3 < a > S(j - k) (2.89)

V I

so that this term corresponds solely to radiation in which the direction

of scattering, :S, is equal to the direction of the incident radiation,

20. The physical interpretation is that in a perfectly uniform, non-

fluctuating medium, incident light will not be scattered but will continue

in the direction of its initial propagation. Thus scattering is produced

entirely by the fluctuating term. Therefore, we shall consider only the

term with Sa(g,t).

Equation (2.88) can be placed in a much more revealing form if we

decompose the fluctuations in the polarizibility into their Fourier com-

ponents. We may write

Co

M(r, t) = 1 a/ (a,t)e d5q (2.90)

Here, a is the wavevector associated with the fluctuations. Recalling

that a is related to the dielectric constant through e = 1 + ena, we have

= e (r.,t). Using these relations, Eq. (2.88) becomes

O k- -wt)
E (R,t) = 5 x (k x E ) e

s < C > (21c)3/ s -s 2-

f S E (gt) fed r dQ (2.91)

-0 V

The term in square brackets in Eq. (2.91) is just the three dimensional

delta function; that is,

e O s d3r = (2)385(k - k + g) (2.92)
V



Thus we can express the scattered field as

32i(k -R-o t)
E (E k x (k XE (2.9)

where q k - k . The scattered field is thus a function only of the
-'.5 t0

Fourier component of the fluctuations with wavevector g. The wavevector

a is thus known as the scattering vector. In Fig. 2.4b we see a geo-

metrical representation of the scattering process which is valid for non-

propagating fluctuations. Since j I = Ik we have

q = 2kO sin(2) (2.94)

20
or, since kO = , where % is the wavelength of light in the medium,

m
we have

4q= sin( ) , (2.95)
0

where X is the vacuum wavelength of light and n is the refractive index

of the medium. We see that we may observe scattering from fluctuations

with varying q simply by varying the scattering angle 0.

Finally, by using k k we have, for the electric field scat-
m

tered a distance R away from the scattering volume in a simple fluid,

"o 2 0-wot)
(_q, t) = - 0 (c4xcR sin 0(21)c/ S E Qt) (2.96)

where @ is the angle between the direction of polarization of the incident

light and the direction of k .
~s

Now, the power or intensity of light scattered into a solid angle

2 and observed a distance R away from the scattering volume is given by(2)



P = S < IE (q,t) 1 > R 2 a (2.97)

that is, the intensity is proportional to the time average of the square

of the scattered field. We obtain directly from Eq. (2.96) that

(c E 2)(w)4 (sin2 p 3 2 > 9 (2.98)
(4A)

Using c = 0, assuming p = 90 which is the usual experimental

c 2 I
situation, and noting that E0 is the power/unit area, ,T of the light

incident on the scattering volume, we obtain

P 2
(2'1  <|6 (0 t >t (2.99)

Next, we may express the fluctuations in the dielectric constant of the

medium in terms of the fluctuations in the thermodynamic variables of the

medium. Choosing the temperature and the density as the independent

variables we may write

8 e (rt) = () p(r,t) + ( ) ST(r,t) (2.100)

In terms of the Fourier transforms of these quantities we may also write

8 e (St) = ( 8p(Q,t) + ( T(Q,t) (2.101)

where

6p(gt) = j d. e Sp(r.t)

and

(T(/,t) = d. deIT(rt) (2.102)
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Now, using Eq. (2.101) and the ergodic theorem of statistical mechanics

which states the equivalence between the time average and the ensemble

average of fluctuating thermodynamics quantities, we may write Eq. (2.99)

as

S (2) [ ) < |6p(qIt) 2 > + ()e)2 < T(t) >
P pqt,, TP 5~qt1

I %A

+ 2( )T pC < p (q, t)5T(q~t ) > (2.103)

We recall from Eq. (2.6) that fluctuations in the volume (or density) and

fluctuations in the temperature are statistically independent. Therefore,

< Sp(q,t)8T(q,t) > = 0. We recall from Eq. (2.7) that the probability

distribution for temperature and volume fluctuations is given by:

4 CvA L+ - (AV)j 2kBT

p (AV,,LT) a e-C T 2 I +IA) (2.104)

We may write the probability distribution for temperature and density

fluctuations by noting that (!.Y)2 = 2 We thus have

C_(AT(_ 2 ( 2p(r))

-fdr 2 + 2A~~

p (Ap,AT) a e -2kBTP 2 (2.105)

Now, Sp(r) =dg e iq-r Sp(q) (2.106)

Also,

S5p(r) 2 dr ff dqdq'p(q)bp(q') e i(q-q')- dr (2.107)

The last integral is just (2A)35(q-q') so that



fjSp(r) 2 dr = < Sp(q) 2> dq . (2.108)

We may express the last integral as a sum of the Sp(q) over the volumes

of unit cells in q-space. These volumes have a size given by jdgI = (

We thus have:

< Sp() dg = |p( )|2 (2,) . (2.109)

q

Therefore,

p(;r)2 d = p(g)12 ) 2.110)

q

Similarly,

f T(r)2 d = Z IST(g)12 ( (2.111)

Our expression for the probability of temperature and density fluctuations

thus becomes

-Z(2) V T(q) 2 +|p(g)12

p(Ap,AT) ae q V 2 BPK (2.112)

We see that we have a Gaussian distribution for each value of q so that

for the mean square fluctuations we obtain

< )12p(q) > = kBTp KT 3
(2c)3

and (2.113)
2

< 1ST(q)2 > =
V (2t)3

Now, for a simple fluid near its critical point

-------------



()< |Sp(g) I'> >> (7 ) T < (g) >(2.114)

so we shall write Se(q) = ( p(q). Using Eq. (2.113) in our expres-

sion for the intensity of scattered light given in Eq. (2.103) we have

S A2L2 2 2
= - kBT ( )T p "T (2115)

I A

where L is the length of the illuminated region in the medium.

We may observe that according to Eq. (2.115) the intensity of scat-

tered light is independent of the scattering angle. We may also observe

that in the derivation of Eq. (2.115) we assumed that the fluctuations

in the density were uncorrelated. We have already seen, however, that

perhaps the most fundamental phenomenon which occurs near the critical

point of a fluid is that the spatial range over which density fluctua-

tions are correlated becomes very large. When the spatial extent of the

regions of correlated density fluctuations are no longer negligibly

small compared to the wavelength of light what results is an angular

anisotropy in the intensity of the scattered light. Therefore, in order

to adequately calculate the intensity of light scattered from a fluid

near its critical point we must account for the correlation of density

fluctuations.

We may begin with a general result of scattering theory which re-

lates the molecular structure factor of a medium to the Fourier transform

of the net pair density-density correlation function.



We may write

(P S/I) +(2.116)

O= 1 + nr(g)(216

where r(a) is the Fourier transform of r(r) introduced in Eq. (2.29). In

this expression (PS/P )O is the intensity of scattered light predicted if

the density fluctuations were uncorrelated. The proper expression for

the intensity of scattered light is then given by (P8/P1 ). We observe

that Eq. (2.115) does yield the proper expression for the intensity of

scattered light when density fluctuations are uncorrelated. From Eq. (2.26),

however, we see that when density fluctuations are uncorrelated we have an

ideal gas so that KT K We thus have the result that

PS) it 2e 6c2 2() O T K . (2.117)

Therefore

S x2L2 OE 2 2
S = kBT ( ) 2% [1 + nP(g)] . (2.118)

We may use the Ornstein-Zernike result for [1 + n-(g)] given in Eq. (2.41)

so that

P3  2S b 2 2 (2
P - kBT ()T 2 2 . (2.119)
I (O 1+ g 2

From Eq. (2.45), however, we have that 2/R = KT/KI so that our final

expression for the intensity of light scatterd from a fluid near its critical

point becomes

P Q 2 1S kBT (c )T 2 2 2 2 (2.120)
I 7 (1+ g 2 )



We may observe that for q << 1, Eq. (2.120) becomes equivalent to

Eq. (2.115). We see then that the effects of correlated fluctuations upon

the intensity of scattered light become important when q becomes large;

that is, at large scattering angles, or when i becomes large; that is,

when the fluid is very close to its critical point.

We see then that measurements of the angular dependence of the inten-

sity of light scattered from a fluid along paths approaching the critical

point are able to provide measurements of the magnitude and the temperature

dependence of the isothermal compressibility, KT, and the long range cor-

relation length, .

Thus far in our discussion of critical point phenomena we have con-

sidered only the behavior of time-independent, static properties. In the

next section we turn our attention to the behavior of the dynamic properties

of a fluid near its critical point.

D. Relationship between the Time Dependence of the Light Scattered from

a Fluid near its Critical Point and the Time Dependence of the

Isobaric Entropy Fluctuations in the Fluid

We shall begin our discussion of the behavior of the dynamic proper-

ties of a fluid near its critical point by relating the time dependence

of the light scattered from the fluid to the dynamic properties we wish

to consider.

From Eq. (2.96) which is our expression for the electric field scat-

tered from a fluid we see that the time dependence of the scattered light

exactly mirrors the time dependence of the fluctuations in the dielectric



constant of the fluid. We have seen that the fluctuations in the dielec-

tric constant are due to the random thermal fluctuations in the thermo-

dynamic variables of the medium. We may choose the entropy and the pres-

sure as the independent variables and write

Se(ait) = (66) SS(11t) + (6g)SPgt .(21)

We see then that the time dependence of the scattered light depends

separately upon the time dependences of the isobaric entropy fluctua-

tions and the adiabatic pressure fluctuations. The relation between

the time dependence of the scattered light and the time dependence of

the adiabatic pressure fluctuations was first studied by Brillouin. 9)

In our discussion we will not be concerned with the scattering of light

from the fluctuations in pressure. Instead, we will be concerned solely

with the relation between the time dependence of the scattered light and

the time dependence of the isobaric entropy fluctuations. This relation

was first studied by Landau and Placzek. (10)

In order to study the time dependence of the fluctuations in entropy

we first note that the fluctuations are random variables. The most con-

venient way to consider the time dependence of a random variable is to

consider the amount of correlation such a variable has over a given

period of time. We may define the time correlation function of a random

variable x by writing



T

R (T) = lim 1 f x(t + T)x(t)dt . (2.122)
T oo -T

We may use the ergodic theorem stating the equivalence of the time aver-

age and the ensemble average of fluctuating quantities so that we may

equivalently define the time correlation function of a random variable

x by writing

R (T) = < x(t + T)x(t) > . (2.123)

Therefore in order to study the time dependence of the entropy fluctua-

tions in a fluid we must determine the correlation function for those

fluctuations. We begin by noting that fluctuations in entropy are pro-

portional to fluctuations in temperature; that is,

T6S(Q,t) = C5T(It) (2.124)

or TbS(rt) = CTGrt) .

Next, we use the Onsager regression hypothesis, which states that

the random, spontaneous thermal fluctuations in a fluid regress in time,

on the average, in the same manner as would a macroscopically induced

fluctuation. Thus we may argue that the time dependence of temperature

fluctuations is governed by the Fourier heat diffusion equation; that is,

ST(r.t) = .,T(r t) . (2.125)

The quantity Ais the thermal diffusivity and A is the thermal con-
pC

ductivity. Taking the Fourier transform,



T(g,t) = - q2 T(gt) . (2.126)
dtP

Solving,

ST(q,t) = ST(c,0)e (2.127)

where 0).. 2 217

where r A- g . (2.128)PC

Explicitly for entropy fluctuations we have

1,t

SS(g,t) = 6S(q,0)e-t . (2.129)

We see then that entropy fluctuations decay in time exponentially. The

correlation function for entropy fluctuations is given by

R (T) = < 5S(q,t + T)5S(qt) > . (2.130)

We may assume that the fluctuations are a stationary random process so

that the correlation function depends only on the time difference, T. We

thus have

R (T) = < |6S(.)2 -PT (2.131)

We see that the time correlation function for entropy fluctuations decays

exponentially.

Next, we shall relate the correlation function for entropy fluctua-

tions to the correlation function of the scattered electric field. From

Eq. 2.96 we have for the field scattered due to entropy fluctuations that

E(qt) = Je 0s(g,t) (2.132)

where

J = -E0 e sin 3(21c) 3/2 ( 6C) (2.133)



So the correlation function for the scattered field is

-ilo T
RE( ) = J < SS(qT)6S(q,0) > e O . (2.134)

Using Eq. (2.131) we thus have

RE = 2 < 15S(q,0)j2 >-T e . (2.135)

We see then that we may obtain a measurement of the decay rate, P, of

entropy fluctuations by measuring the correlation function of the scat-

tered electric field. Such a measurement will thus provide a measurement

of the thermal diffusivity of the fluid.

The question arises as to how one obtains the correlation function

of the scattered electric field. According to the Wiener-Khintchine

theorem (12) the time Fourier transform of the correlation function of the

scattered field is the spectral power density of the scattered field; that is,

00SE(W) = fET)ewdT . (2.136)

Thus, we may obtain a measurement of P by measuring the spectrum of the

scattered field. We can easily show that the spectrum is a Lorentzian.

We have

> f-PT i(o-o )T

S.E M)= J < |5S(q,0)| 2 fe e dr . (2.137)

00

Now, since the correlation function has the property that RE(T) = RE(- )

we essentially are taking the real part of the Fourier transform of the

correlation function. Therefore



SE(w) = J2 < 16S(q,O)j 2  je- cos(w-w0)d (2.138)

or,

SE(w) = 2J2 < 16S(qo)2 > e-PT cos(W-W0)TdT . (2.139)

0
00

The integral is of the form f e-ax cos bxdx. Its value is 2 2
o a + b

Therefore

SE( ) = J < |6S(qo)2 > 2 2 2 (2.140)
r + (o - W0)

We see then that the spectrum of light which is scattered due to entropy

fluctuations is a Lorentzian centered at the frequency of the incident

light. The half-width at half-maximum of this spectrum in Hz. is .

The experimental problem arises that since the spectrum is centered

about the incident light frequency, 1O, it is difficult to resolve by con-

ventional spectroscopic methods. We will show that the method of self-

beating spectroscopy solves the problem by translating the spectrum down

in frequency so that it is centered about zero frequency rather than the

incident light frequency. We will also show that, most importantly,

information on the decay rate, P, is retained in this process.

If the scattered light is allowed to fall on the surface of a photo-

multiplier tube then what is observed at the output of the tube is not

the fluctuations in the scattered field which exactly mirror the entropy

fluctuations, but rather the fluctuations in the photocurrent which are

proportional to the intensity; that is, the square of the field. Specifically,

the photocurrent averaged over times short compared to the decay time of

fluctuations in the square of the field, yet long compared to the reciprocal



of the incident light frequency, is given by:(13)

i(t) = C E(rt )1 dA . (2.141)

A

We see that the photocurrent is proportional to the integral of the power

per unit area of the scattered field over the illuminated area in the

scattering medium which is projected onto the phototube surface. In our

expression G is the gain of the photomultiplier, e is the charge on the

electron, is the quantum efficiency and hv is the energy of the light

quantum. The photocurrent varies in time due to the fluctuations in the

scattered field which may be considered continuous. However, the photo-

current actually consists of a succession of pulses so in examining its

time dependence we must account for the effects of shot noise.

We may re-write Eq. (2.141) by arguing(15) that the spatial integral

may be expressed as a sum of the contributions from each of the separate

coherence areas in the scattering medium which are projected onto the

phototube surface. If the phototube accepts scattered light from N

coherence areas, each of size A, we may write

N

i(t) = < i i(t) > + Si (t) (2.142)

j=l

where

< i .(t) > = Gec 1 2
> 8 3thv

and (2.143)

Si (t) = AA(< IE(t) 12> - |E(rt1 )2 .



The correlation function for the photocurrent is given by

R.(T) = < i(t)i(t + r) > (2.144)

so that

N N

R ( < = < (< i (t) > + Si (t))(< ik t) > + Si k (t+ 1)>

j=l k=l

N

+ Ge < i (t) >)M(T) . (2.145)

j=l

The last term represents the shot noise contribution to the photocurrent

correlation function and is expressed as a delta function. We may simplify

Eq. (2.145) by noting that fluctuations in the photocurrent arising from

the field scattered from two different coherence areas are uncorrelated;

that is,

< Si.(t)8i.(t) > = 0 for j / k . (2.146)

We may also define the time average photocurrent, i0, as

10  <(t) > . (2.147)

With these simplifications the photocurrent correlation function becomes

Ri )=i 1 + 'l i2 + GeiOS() . (2.148)
< i.(t) >2

Using Eq. (2.143) we may write

2 2 2 2
< Si.(t)Si.(t + T) > < IE(t)I IE(t + r)j > - < (E(t)f >2

< 2 (2.149)
< .t3 2<|~)25
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Thus far we have related the correlation function for the photocurrent to

the correlation function for the square of the field. But the information

we desire is contained in the correlation function for the field rather

than in the correlation function for the square of the field. We may re-

late the two, however, by assuming that the amplitudes of the fluctuations

in the electric field are distributed in a Gaussian manner about an average

of zero; that is, we assume that E(t) is a Gaussian random variable. We

make use of the following theorem: (14) If x x 3 and x are real random

variables with a Gaussian joint probability density function and if all have

zero mean, then the ensemble average may be factored according to the rule:

< x1x2 3 4 1 2 3 4 1+ < x > < x2x4

+ < x 1 x4 > < x2x3 > . (2.150)

We thus have:

< |E(t)f 2 E(t+ ) 2

< fE(t) 2 2 + 1< E(t)E(t + T) >1 (2.151)

Using this result along with Eq. (2.149) our expression for the photo-

current correlation function becomes

R (T) = i2 1 + < E(t)E(t 2 +6( . (2.152)
S0 N < JE(t)j2>2 0

Now, using Eq. (2.135) which is our expression for the correlation

function for the scattered field we obtain



2 4 2 2 -2r-

R ( 2 + < js(q.o) >e + Gei5(,r) (2.153)
N < JE(q,O)2 >

or

R (T) = i + J e~ + Gei 5(r) (2.154)

where

. 4 0)12 2

Js= (2.155)
N N< |E(q.,0)| >2

From Eq. (2.154) we see that the correlation function for the photocurrent

contains three terms: a constant baseline, a delta function at the origin,

and a decaying exponential with decay rate 21. A direct measurement of the

photocurrent correlation function thus yields a measurement of r and hence

a measurement of the thermal diffusivity.

We may also consider the photocurrent spectrum, S ( ). Using the

Wiener-Khintchine theorem, we have

00

S.(w) fR (T)e) dT- (2.156)

-00

Therefore, taking the real part of the Fourier transform of R (T) we have

00

S (w) = 2ti 25(w) + J0  e -2r cos wTdt + GeiO. (2.157)
00

In analogy with Eq. (2.140) we obtain

S. (w) = 21ti 2(w) + O 2] + GeO . (2.158)
1 0 (2r) 2+ W

We see then that the spectrum of the photocurrent also contains three terms:

a baseline due to the shot noise, a delta function at the origin due to the



average photocurrent, and a Lorentzian centered at zero frequency. The

2P
half-width at half maximum of the Lorentzian in Hz is -2,A

Thus far we have shown that by using the method of self-beating

spectroscopy we may measure the spectrum or, equivalently, the correla-

tion function of light scattered from the random thermal isobaric entropy

fluctuations in a fluid near its critical point. We have shown that such

measurements are able to provide us with the magnitude and temperature

dependence of the thermal diffusivity, -- , of a fluid near its critical
PC

point. In the next section we will discuss the theoretical predictions

for the behavior of the thermal diffusivity of a fluid near its critical

point.

E. Theoretical Predictions for the Behavior of the Dynamic Properties

of a Fluid near its Critical Point by Application of the Physical

Ideas Embodied in the Mode-Mode Coupling Theory

In this section we shall present a review of the most recent theo-

retical predictions for the behavior of the dynamic properties of a fluid

near its liquid-vapor critical point. In particular, we shall discuss

the predictions for the behavior of the thermal conductivity, the shear

viscosity, and the thermal diffusivity. Precise predictions for the be-

havior of these quantities have been made by the application of the physical

ideas embodied in what has become known as the mode-mode coupling theory.

1. The Basic Physical Idea of Fixman

The basic physical idea of the mode-mode coupling approach was

first set forth by Fixman(15) who presented a theory which qualitatively
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explained the anomalous increase in the macroscopically measured shear

viscosity of a binary liquid mixture near the critical mixing point.

Fixman notes that near the critical mixing point a binary mixture is highly

susceptible to concentration fluctuations that are large in amplitude and

in spatial extent. When an attempt is made to measure the shear viscosity

of the mixture by conventional methods viscous shear forces arising from

the application of a viscosimeter are exerted at the fluid boundary. These

forces produce a velocity gradient within the mixture which in turn in-

duces large inhomogeneities in concentration. These concentration fluc-

tuations decay away through diffusion. The return to uniform composition

through diffusion dissipates energy, however, and the energy loss is in-

terpreted as being due to an excess shear viscosity. We see then that an

anomalous increase in the macroscopically measured shear viscosity may be

understood, on the microscopic level, as being caused by a coupling between

two modes of energy dissipation; namely, a coupling between viscous and

diffusive energy dissipation.

2. The First Quantitative Expression of the Mode-Mode Coupling

Theory due to Kawasaki

The next advance in the development of the mode-mode coupling

(16)
approach was due to Kawasaki who, retaining Fixman's fundamental

idea, attempted to develop a general and systematic way to determine the

anomalies in the transport coefficients of systems near a critical point.

Kawasaki begins by noting that transport coefficients such as the

shear and bulk viscosities and the thermal conductivity may be expressed

as the time integral of a time correlation function. In general we may

write:



00

8 = < J(t)J(o) > dt . (2.159)

In this expression J is the flux corresponding to the transport coefficient

e. For example, if the transport coefficient, e, is the thermal conductivity

then the flux, J, is the heat flux. Also, w is some known function of the

temperature and V is the total volume of the system. The brackets denote

an equilibrium ensemble average.

Kawasaki next seeks to express the flux in terms of an expansion in

powers of the macroscopic variables of the system. In particular, he seeks

to express the flux in terms of the spatial Fourier components of the

macroscopic variables. If we define a as the k Fourier component of

th
the a macroscopic variable then we may write:

J= S A kA -k + ... (2.160)

a k

where the S's are coefficients. In this treatment Kawasaki considers only

the terms written explicitly in the expansion, ignoring the terms with

higher powers of A. He also proves that terms linear in A are absent from

the expansion. Kawasaki makes a further very important assumption; that

is, he assumes that the part of the flux, J, which does not contain Fourier

components of the macroscopic variables, A's, does not give rise to anomalies

in the transport coefficients since it does not involve the critical fluc-

tuations in the macroscropic variables. The underlying assumption is that

the cause of the anomalies in transport coefficients is the anomalous in-

crease in the long-wavelength Fourier components of the fluctuations. The

upshot of these assumptions is that the magnitude of the transport coefficient

10 IM 1 1.1
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that is eventually determined is the magnitude of only the "critical part"

of the transport coefficient; that is, the part due to the fluctuations.

Kawasaki notes that expansions analogous to that given in Eq. (2.160)

are often used in plasma physics where the right-hand side of Eq. (2.160)

represents what is known as "mode-mode coupling". Thus it is through an

analogy with phenomena in plasma physics that the theory which predicts

the behavior of the dynamic properties of a fluid near its criticalpoint

derives its name.

Substituting Eq. (2.160) into Eq. (2.159) we obtain a general expres-

sion for the anomalous part of the transport coefficient, Ae:

00S k f< (t)A13k(t)J(o) > dt .(2.161)

c43k 0

Kawasaki evaluates Eq. (2.161) by making use of the fact that the A's

are macroscopic variables and so their time development may be assumed to

be governed by macroscopic equations of motion such as the hydrodynamic

equations. In general, the hydrodynamic equations are of the form:

7 A (t) = -Z A(t) (2.162)

where the Mk contains the specific form of the equation. In matrix.

notation we may write this relation as:

dA k(t) = -Mk - A (t) .(2.163)

In order to evaluate the general expression for Ae, however, we need the

equations of motion for the bilinear terms A k A k. Using the form of

Eq. (2.162) the equations of motion are:



A (t)A k(t) = - Z(NA(t)A k(t) + 1 A (t)Ak(t)} (2.164)

Again, in matrix notation we may re-write this relation as:

SQk(t) = -k - (t) (2.165)

where the matrix Q(t) has the following a4 element:

c(t) = Ac(t)APk(t) . (2.166)

With this notation the integral in the general expression for LSe, (Eq. (2.164)),

is written as: f < a3(t)J(O) > dt. Now, if we formally solve Eq. (2.165)
0

we obtain

at) = [~ 1 ] - (t) . (2.167)

Using this formal solution allows us to express the integral as

Z [Ol < J > . Therefore, the anomalous part of the transport

coefficient becomes:

= < A A > . (2.168)V ZE a3ai : 5 kj
ap y k

After accounting for the coefficients, S , Kawasaki shows that

= wZZZ[l] < JAk A >
a4 76 k

-< JA Ak > < Aj 2>- < A kI 2>-1 (2.169)

Thus, in order to calculate AG, one must evaluate ciuantities of the form

< JAA- > . Kawasaki notes that, unfortunately, there is no general way
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to evaluate these quantities. He points out, however, that when B is

the anomalous shear viscosity of a binary liquid mixture, Ar, then the

quantities < JAMA k> may be evaluated. Using local concentration and

local temperature as the fluctuating macroscopic variables, and using

the continuity equations for mass and concentration, the Navier-Stokes

equation, and the energy transport equation as the macroscopic equations

of motion, Kawasaki applies his formalism to the calculation of An. He

finds that An is proportional to ( , the Ornstein-Zernike long range cor-

relation length for concentration fluctuations. Thus, Kawasaki predicts

that near the-critical mixing point the shear viscosity of a binary liquid

mixture, a dynamic property, diverges with the same temperature dependence

as the long range correlation length, a static property.

In Kawasaki's formalism the divergence of the viscosity can be at-

tributed to two effects: (1) the increase of the long-wavelength Fourier

components of the fluctuations in concentration and temperature which

enter the expression for the flux and (2) the increase in the lifetimes

of these components of the fluctuations, a result obtained from the

macroscopic equations of motion.

3. The Specific Predictions of Kadanoff and Swift for the Temperature

Dependences of Transport Coefficients of a Fluid near its Critical

Point

The next advance in the development of the mode-mode coupling ap-

proach was due to Kadanoff and Swift(17) who constructed a perturbation
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theory for the determination of transport coefficients near the critical

point which, they show, is equivalent to the expansion procedure of Kawasaki.

However, whereas Kawasaki was unable to evaluate his expressions for transport

coefficients, Kadanoff and Swift were able to obtain specific preductions

for the temperature dependences of transport coefficients near the liquid-

vapor critical point.

Kadanoff and Swift begin by noting that, in general, any time de-

pendent problem in classical statistical mechanics may be formulated in

terms of the Liouville equation. In state vector notation the Liouville

equation is

( + L) It> = 0 (2.170)

where the state vector It> describes the state of the system at time t.

The state vector is defined so that its components are the probabilities

for finding N particles in the system with one particle having position r1

and momentum gl, another with position r: and momentum p2 and so forth.

Formally, one writes:

< Z1'P2' ' 'M'N'l' 2'. ' N' t > = < p,r,tf > = fN(p,r,t) . (2.171)

The Liouville operator has the matrix element:

N

< p',Ir',N' IL~p,r,N >=-or p
5p-_ T r j

< p', r','t~ , > (2.172)

where 4 is the Hamiltonian for the system. In the Kadanoff and Swift

formalism the equilibrium state vector is denoted as 1> and its components,
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as one expects, are given by the grand canonical ensemble equilibrium

distribution with chemical potential p and temperature T; that is,

< p,r,N I > = exp{l- [r L(p,r) - pN] hNN!Z(T,)] . (2.173)

We note that L1> = 0 as expected since the equilibrium state does not

evolve in time. Also, we may express the average of any physical quantity

X in the state It> as:

< x > = < (xft > , (2.174)

while the average of X in the grand canonical ensemble is expressed as:

< x >= < IXOPI > . (2.175)

In the last two expressions X is a diagonal matrix in the p's and r's.

Kadanoff and Swift indicate that the important physical quantities

or operators are the densities and the currents of conserved quantities.

They write the number density operator as n OP(r), the momentum density

operator as P(4) and the energy density operator as Eop(r). The currents

corresponding to these densities are Q(r), the number current; T . (r), the

stress tensor; and QE(r), the energy current. These currents are defined

by the following relations:

- V - 4,(r) = [L,nop(r)] (2.l'6)

- V - T(r) = [L,Z(r)] (2.177)

- V - 6(r) = [Le (r)] ( 1(2.178)



where we have used standard Poisson bracket notation. Kadanoff and Swift

also define an entropy density operator:

S (r) = 1 (r) - < C + P > n (r) , (2.179)

and an entropy current operator:

(r ) = (r) - E + < r) . (2.180)

In these expressions the brackets denote a grand canonical ensemble average

and p is the pressure.

Having defined the important operators, Kadanoff and Swift point out

that the states important for transport phenomena are those which describe

situations in which the equilibrium parameters, such as temperature or

velocity, vary slowly from point to point. They form these "local equilibrium"

states by using linear combinations of the densities of the conserved quan-

tities. Five combinations are defined: a.(r) with i = 1...5. These com-

binations are used in the form of Fourier transforms:

a f(d) = d r e-iq.r a (r) . (2.181)

The expressions for the five states are:

S (g.)
a = 1/2 (2.182)

a2(g) (p/kBT n + ) ~ ((2.183)

a = g (a)( )l/2 (2.184)
3 x k BTp



= g (g)(k- )1/2 (2.185)

a (a) = gz(a 1 1/2 (2.186)

In these expressions the q-dependent thermodynamic quantities reduce to their

static values at q = 0. Thus, C p (q), C (q), and c(q) reduce to the specific

heat at constant pressure, the specific heat a constant volume, and the

adiabatic sound velocity at q = 0.

In state vector notation we may write:

a (g)1 >= ji,q >

and < ja (-g) = < i,qj . (2.187)

Having defined the important operators and states, Kadanoff and Swift

next consider transport processes. They point out that the transport modes

of a system appear as slowly decaying solutions to the Liouville equation

(Eq. (2.170)). An eigenstate of L with eigenvalue s will decay in time

as e -st. Therefore, for the slowly decaying modes, the eigenvalue s has a

small real part.

Classifying the eigenvalues of L according to wavenumber q, one may

write:

sv iv,g > = Lfv,a > , (2.188)

which is the equation for the vth eigenstate corresponding to the eigen-

value s . Now, if the eigenstate jv,2 > is important for transport phenomena

then it is mostly composed of the local equilibrium states |i,a >. We may

apply < i,g| to Eq. (2.188) to obtain:



s i, v, > = < i,ZJL~v,2 >

= < i,Z|L j,a >-< j,gv,g > + < i,|LPJv,g > (2.189)

j=l

where P is a projection operator which rejects the states fi,q >; that is,

P = - j~q > < jlqj (2.190)

j=l

Kadanoff and Swift show that

PIv,a > = PLJj, > < j-vg > (2.191)

j=l

so that Eq. (2.189) may be written as:

5

v ij - L 1 ( u) - U s(,s v)] < jJ2Jvg = 0 (2.192)

where L (g) = < i 4g L j,g > (2.193)

and U .(a,s) = < i, LP - 1 PL jj, > . (2.194 )

We see then that the eigenvalues of the Liouville operator are determined

by the condition that the matrix (sE.6 - L. - u..) has zero determinant.

The next task is to find the significant terms in this 5 x 5 matrix.

Kadanoff and Swift show that the only nonvanishing elements of L

are L23 and L 32. They show that

L23 = L32 = c(g) 
(29
(2.195)



where they assume a is in the x-direction. We see that if all the elements

of U.. were equal to zero then we would have only two non-zero eigenvalues:
la

s + icq . (2.196)

Since the eigenstates have a time dependence given by e-st, we see that the

purely imaginary eigenvalues, s +, describe the oscillatory behavior of

undamped sound waves. Therefore, all dissipative processes must be described

by the elements of U. .. And so, all the transport coefficients arise from

the elements of U... In Table 2.1 we show the Kadanoff and Swift result
1J

for the significant terms in the matrix (i. .s - L. . - U. ). In the matrix
10J lJ 1J

X is the thermal conductivity, Tj is the shear viscosity and t is the bulk

viscosity. We see that the first row describes dissipation by heat flow;

the second and third rows describe dissipation by sound waves; and the

fourth and fifth rows describe dissipation by viscous flow.

The eigenvalues determined from the matrix are the decay rates for

heat flow, sound waves, and viscous flow. Thus, the heat flow mode has a

decay rate given by:

sT (2.197)

For sound waves one obtains:

s +(q) = + iqxc(g) + q g Ds(g,s) (2.198)

where D(gs) is the damping term given by:

4/3 (,s) + (2,s) X(g,,s)
D (U, s) = + ( - i ) (2.199)



Table 2.1 The Matrix (. . - L. . - U. .)la 1J3

Sound waves Viscous flow

2
s - %-

PC p
Heat flow

2

- ( - )1/2
p C VC P C 2

P

- ( 1 -1 )1/2

p C CP C2
P

p 2

p CV C1

(C + 4/3n) 2
p

Heat flow

Sound
waves

- ic qx

Viscous
flow

2
s - 2p

p

0

0

2
s -

p



Finally, the viscous flow mode has a decay rate given by:

s (a) = (2.200)

Having obtained expressions for the decay rates for the three types

of transport processes in a fluid system Kadanoff and Swift proceed to

calculate these decay rates, thereby obtaining expressions for the transport

coefficients.

They begin by noting that in the general expression for the transport

coefficients given in Eq. (2.194)., there appear structures of the form

X = . In particular, the expression for the thermal conductivity is:

-q .(2 ,s) = < ISOP(-S) OLPxPLS (a)I >/IT (2.201)

and the expression for the shear viscosity is:

-q 2q(g,s) = < lg (-Z)LPXP (a) I >/k1T . (2.202)

To gain a convenient representation for X, Kadanoff and Swift note that

since the projection operator P in X rejects the local equilibrium states,

it almost entirely removes the lowest eigenstates of the Liouville operator

L (which are the transport states) and leaves the remaining states almost

untouched. Thus, they show that

X(q) = 1 = _______<_ (2.203)
LiP-,s - Z s -

V'=6 V

where the transport states, v' = 1... 5, have been omitted.

Now what is of interest is the calculation of divergences of the transport

coefficients near the critical point. We have seen that, near the critical
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point, a fluid is characterized by the presence of long wavelength fluctua-

tions which decay away very slowly. Kadanoff and Swift thus argue that

divergences in the transport coefficients can be expected to arise from

states v' which decay away very slowly. These slowly decaying states will

give small values of sv'(q). Now, the smallest values of sv ,(q) are those

associated with the transport states. However, if one wishes to calculate

the thermal conductivity or the shear viscosity using Eq. (2.201) or

Eq. (2.202), we see that according to Eq. (2.203) the transport states

are excluded. Kadanoff and Swift thus seek the next set of available

states which will still yield small values of sv' (q). These are the so-

called intermediate states which involve multiple transport processes. As

an example we can consider a state which involves two independent transport

processes with wave vectors 2' and g - g'. Kadanoff and Swift show that

this state can be written as:

Z IV .'a > < VI' 1 = 1 =l 1 ~t
v' v =1 v271

-Vl )a (a - 2')| > < a v (-q')a v(a' - ) (2.204)

where the a terms are linear combinations of the a. terms which are asso-
V C)

ciated with the simple transport processes. The eigenvalue for this state

is given by

sv' (a) = s (a') + sv(a' - . (2.205)

We see that the decay rate for the multiple process is given by the sum of

the decay rates for the simple processes.
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At this point we may note the analogy between Eq. (2.204) and Kawasaki's

expression (Eq. (2.161)) for the divergent part of a transport coefficient.

We see that both expressions involve bilinear combinations of terms representing

simple processes. Such expressions are, as we have seen, indicative of what

is meant by "mode-mode coupling". We see that the modes that are coupled

in the Kadanoff and Swift formulation are the transport modes. The state

represented by Eq. (2.204) decays away through some combination of heat

flow, sound waves, and viscous flow with a decay rate given by the sum of

the decay rates for each of the constituent processes.

A given intermediate state might, however, involve more than just two

processes. With this in mind Kadanoff and Swift present a general perturba-

tion expression for the quantity X which may be used in Eqs. (2.201) and

(2.202) to calculate the divergent parts of the thermal conductivity and

the shear viscosity. They write:

±5 f q' av(q')a ,(q - q')I > < a (-q')a')
~ 2! v, v =1 (2 ) Vv+ sX (qZ_ 210)3 s (q') + s (q -q') -s

+ rld q' d~g"
3!(2:) (21)3

a, (q')av,(q")av v ,q' - q"") > < Ja, (.ql)a ,(-q")av (q. + q" - q)

v (q - q' - q") + s ,(q' ) + sv11(q") -

1++... . (2.206)

Having obtained general expressions for the divergent parts of transport

coefficients, Kadanoff and Swift proceed with explicit calculations of these
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quantities. They begin by considering the general expression for the shear

viscosity given in Eq. (2.202). They wish to calculate the contribution to

the divergent part of the shear viscosity from the multiple process which

involves two heat-flow modes. Using the expression for X(q), as it relates

to two heat-flow modes, in Eq. (2.202), and noting from Eq. (2.190) that

the projection operators P may be replaced by unity, Kadanoff and Swift

obtain:

2 1 d5q' g y l(q')a 6 -]I)a >

-q TT (2sT (2)3 ST(a'.) + sT(q - q1) - s

< Ja 1 (q - q)a1(-q')Lgy(q)j > . (2.207)

In this expression the quantity !g T(q,s) is the divergent part of the shear

viscosity due to decay by two heat flow modes. They re-write this result

as

2 1 d5 q; '+M, q

g _g,)=24T f (2g) 3 * [pCp(q' )PC P(q-q')][s T(q') + sT(q-q') -s]

(2.208)

where the matrix element is given by:

M qq, = < -gq(-q)LSOP OP . (2.209)

Kadanoff and Swift evaluate this matrix element and obtain:

Mqq = p [iq'C (q - q) + i(q' - q)C(q')] . (2.210)

Substituting into Eq. (2.208) we find:
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q2 nl1 dq' ,2 [C (-q + q') C (q ')
g ri(T s 2kB y C (-q' + g)C (q')

* sT (q') + sT (q - q') - s (2.211)

Now, in the static, long-wavelength limit q -- s 0 and s -- p 0, Kadanoff and

Swift show that:

2
1 ~ ~ 2 C' (q' )

A1(0,0) = "' )2 _ . (2.212)
f(21t) 3 s T (q' )[C P(q' )]

Now, the decay rate for heat-flow, sT(q'), becomes small for long wave-

lengths. Therefore, the integral in Eq. (2.212) may be expected to contain

large contributions from small values of q. Kadanoff and Swift hypothesize

that the main contributions to the integral arise from g' < l/t , where E

is the Ornstein-Zernike long range correlation length. They also make the

approximation that:

6C (W' ) 2 C (') . (2.213)
6cj P (qIt)2

They also define the quantity:

s T / ( (2.214)

Thus, s is the heat-flow decay rate at q' = 1/t and X is the thermal

conductivity at this decay rate and at q' = l/g . Using Eqs. (2.213) and

(2,214) in Eq. (2.212), the expression for the divergent part of the shear

viscosity due to two heat modes, for q:< 1/t and s < E , becomes:



A1(g,s) ~B P - (2.215)

We note that if the restrictions on q and s are not satisfied then the

contributions to AnTT are considerably reduced.

Examination of Eq. (2.215) reveals that the product of the transport

coefficients ArTT(0,0) and X must indeed diverge as the critical point

is approached. Recalling Eq. (2.57) for the divergence of and Eq. (2.62)

for the approximate divergence of Cy, we obtain the result:

AgTT(0,0)A ~ ( T C) .-v (2.216)
C)

*
Since 7> v, we have the prediction that either AlTT(0,0) or X. , or both,

diverge as the critical point is approached.

Kadanoff and Swift go on to show that the contribution to the divergent

part of the shear viscosity from a multiple process which involves three or

more heat flow modes is of the same order of magnitude as the contribution

from the two heat flow mode process. Thus the prediction of Eq. (2.216)

remains intact.

Having considered the contributions to the divergent part of the shear

viscosity from heat flow modes, Kadanoff and Swift next consider the con-

tributions to the divergent part of the thermal conductivity from the

multiple process which involves decay by one heat flow mode and one viscous

flow mode. They begin by considering the general expression for the thermal

conductivity given in Eq. (2.201). Using the expression for X(q) (given in

Eq. (2.206)), as it relates to one heat flow mode and one viscous flow mode,

in Eq. (2.201), they obtain:



2 _ = q'q, ' 2 (2.217)
T (2) pC (q')[sT(q') +s

where the matrix element is given by:

Nq, = < JsOP(-a)LPn - - ')sP(')I > (2.218)

where the unit vector i is in the direction of the momentum. Noting that

the projection operator may be replaced by unity, Kadanoff and Swift

evaluate this matrix element and obtain:

N , = ig - nk pCp(g') . (2.219)

Substituting into Eq. (2.217) they find:

16% (qks) = q f , C (q') (2.220)
TIT (q 3 -( 2 r)3 sT(q') + s (q - q) -s

Again, they assume that the main contributions to the integral arise

from q' < l/ . They also note that, since the heat flow decay rate is

very slow near the critical point, the viscous flow decay rate, s (%'),

dominates the heat flow decay rate, sT(q'), in the denominator. They also

define the quantity:

* (~)*
spI (q') (2.221)

I q =1/t p 2

* *
Thus, s is the viscous flow decay rate at q' = 1/g and Tj is the

shear viscosity at this decay rate and at q' = 1/ - Using Eq. (2.221)

together with the two preceding assumptions in Eq. (2.220), the expression

for the divergent part of the thermal conductivity due to a heat flow mode

*
and a viscous flow mode, for q < 1/g and s < sn, becomes:



A kBTPC P (2.222)

We note that if the restrictions on q and s are not satisfied then the

denominator in Eq. (2.220) becomes large enough to considerably reduce

the contributions to A% .

Kadanoff and Swift also argue that contributions to the divergent part

of the thermal conductivity from a multiple process which involves two or

more heat flow modes together with a viscous flow mode is of the same order

of magnitude as the contribution from the process involving one heat flow

mode and one viscous flow mode. Thus, the expression, Eq. (2.222), remains

intact.

Assuming for the moment that there are no contributions to An or LA

from processes other than those considered thus far, Kadanoff and Swift

are now able to use Eqs. (2.215) and (2.222) to obtain specific predictions

for the temperature dependence of both Aq and A, near the critical point.

They first note that from Eqs. (2.214) and (2.221) one observes that

* *
T s due to the presence of the large factor CF in the denominator of

* *
S . Therefore, n is the shear viscosity evaluated at frequencies much

*
higher than sT. However, there are no contributions to Ar from frequencies

* *
higher than sT. Therefore, T cannot have a divergent part near the critical

point and must remain finite. With T shown to be finite, Eq. (2.222) pro-

vides an explicit prediction for the temperature dependence of the divergent

part of the thermal conductivity of a fluid near the liquid vapor critical

point. Using Eq. (2.57) for the divergence of t and Eq. (2.62) for the

approximate divergence of C , we obtain the result:

T - T -7-y+v
AX(0,0) ~( TC) . (2.2235)

C
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This prediction remains valid for frequencies up to s . Therefore, the

prediction of Eq. (2.223) may be used in Eq. (2.216) to evaluate X . We

see that we obtain the prediction:

T-T 
0

C

that is, the shear viscosity does not diverge as a power of (T - TC )/TC

Kadanoff and Swift point out, however, that their prediction does not

preclude a logarithmic divergence or a cusp in the low frequency shear

viscosity of a fluid near the critical point.

The predictions for the temperature dependences of the divergent

parts of the thermal conductivity, Eq. (2.223), and the shear viscosity,

Eq. (2.224), are valid only if there are no contributions to these quan-

tities from processes which have not been considered. Thus far processes

which involve the production of sound waves have not been considered.

Since the characteristic frequency for sound waves is c/ , which is much

* *
higher than sT or s 7, contributions to oX or Ag from processes involving

sound waves must be considered. Kadanoff and Swift do consider the con-

tributions to zlA from multiple processes which involve the production of

sound waves. They find that the process which involves decay by two sound

waves does not produce an appreciable contribution to Ak(g,,s). However,

they find that the process which involves decay by three sound waves does

produce a contribution. They find that for q _ l/ and s < c/A:

A (',s) ~kBP (2.225)
ppp 2

Using Eq. (2.57) for the divergence of i, Eq. (2.62) for the approximate

divergence of C , noting that the low frequency adiabatic sound velocity, c,

is proportional to (K )l,/2 and using Eq. (2.67) to relate the approximate

divergence of K to the divergence of CV, we obtain the result:



T - TC -7+2v-a/2
AA (0,0) ~( ) . (2.226)

ppp T

From Eq. (2.77) we see that 7 - 2v = 0; so that the contribution to the

divergent part of the thermal conductivity from processes involving sound

waves is, at most, weakly divergent.

Kadanoff and Swift also consider the contributions to the divergent

part of the shear viscosity, A, from processes involving sound waves.

For the process which involves decay by three sound waves they find that

for q < l/E and s < c/ :

A (g,s) kBTC P (2.227)
ci CE

By comparingthis expression with Eq. (2.225) and using Eq. (2.58) for the

divergence of C we obtain the result:

T - TC -7+2v+a/2
A (0,0) ~ ( T (2.228)

ppp TC

We see however, from Eq. (2.77), that since 2v > 7, that Ai (0,0) does

not diverge. In other words, there is no contribution to the divergent

part of the shear viscosity from processes involving sound waves. We have
*

shown, therefore, that, indeed, a does not have a divergent part. The

prediction for the temperature dependence of the contribution to the diver-

gent part of the thermal conductivity from the process involving heat flow

and viscous flow given in Eqs. (2.222) and (2.223) thus remains intact.

Furthermore, by comparing Eqs. (2.223) and (2.226) we see that the temperature

dependence of the divergent part of the thermal conductivity is essentially

that given by Eq. (2.223).



89

We may now summarize the predictions of Kadanoff and Swift for the

divergent parts of the thermal conductivity and the shear viscosity.

Their predictions apply to three different frequency regions: Low Fre-

* *
* A 1 **1

quency: s < T = ; Intermediate Frequency: s < s < S p 2'
T pC 2 T - p 2

* c
High Frequency: s < s < - . In the low and intermediate frequency

1 -

k.BTpCP k.BTCP k.BTCP
regions, A ~ + 2 . In the high frequency region, &x ~ P

k. TPC kBTCP
In the low frequency region, A - * + 2 In the intermediate

kBTC
and high frequency regions, Ag ~ 2 We see then that at low fre-

quencies the thermal conductivity of a fluid near the critical point con-

tains a divergent part which has a temperature dependence which is essen-

kBTpCP
tially governed by the expression AX ~ B where both CF and i are

*
divergent quantities and p, T, and i are slowly varying quantities. We

kBT
see that Kadanoff and Swift predict that - *- . So we have the pre-

PCP
P T)i

diction that the temperature dependence of the "critical part" of the ther-

mal diffusivity, DC, is given by:

.1 T-TC vDC TTDC E (Tc C) (2.229)

4. Explicit Predictions for the Magnitude and Temperature Dependence

of the Critical Part of the Thermal Diffusivity of a Fluid near

its Critical Point

The next advance in the development of the mode-mode coupling ap-

proach was again due to Kawasaki(18)'(19) who, using microscopic kinetic



equations, explicitly calculated the time correlation function for entropy

fluctuations and obtained an explicit expression for the decay rate of the

entropy fluctuations and hence an explicit expression for the "critical

part" of the thermal diffusivity of a pure fluidnear the critical point.

Kawasaki points out that his theory is a two-step theory where rapid

random motions irrelevant to critical phenomena are incorporated into

coefficients in the kinetic equations so that only the dynamical problem

which is associated exclusively with the critical fluctuations is left in

solving the kinetic equations. It is for this reason that the theory

predicts only the "critical part" of any calculated quantity.

Kawasaki begins by introducing the generalized Langevin equation for

Brownian motion. For a set of dynamical variables A. the equation is:

d A(t) = i9 - A(t) - O(s) - A(t - s)ds + F(t) (2.230)

0

where A is a column matrix. In this expression 2 is a matrix having real

eigenvalues which give frequencies of collective oscillations such as

adiabatic sound waves. The quantity F(t) represents the random force

acting upon the collective motions. The matrix P(s) represents a memory

function which contains dissipation. Equation (2.230) was originally

derived primarily for the purpose of a statistical-mechanical study of

ordinary transport phenomena where the set A corresponds to a complete set

of ordinary macroscopic variables such as mass density, local velocity, and

local temperature, and where A(s) has a very short memory. Kawasaki

adapts Eq. (2.230) to the study of critical point dynamics. He begins

by considering a set of Fourier transformed macroscopic variables, a ,



where q denotes the wavenumber and a denotes a particular variable. In-

cluded in a( are all the slowly varying variables including those which
q

exhibit critical point fluctuations. Citing his own previous work(16 )

and the work of Kadanoff and Swift, (7) Kawasaki points out that in any

sensible theory of critical dynamics one must consider products of the

a as well as individual a since the modes represented by these variablesq g

are strongly coupled near the critical point. Thus, in adapting Eq. (2.230)

to critical dynamics, the column matrix A becomes:

A= (2.231)
A q

where A , consists of products of at least two a . With this new set of

variables Kawasaki shows that Eq. (2.230) becomes:

a 4(t) = (iW - Y) a (t) + (i, - P ) - A ,(t) + f (t) (2.232)
q q g g gg

where

7 q(t)dt (2.233)

0

and

00

r , f q ,(t)dt . (2.234)
0

Equation (2.232) is a closed set of kinetic equations governing the

slow time evaluation of critical functuations aa(t). The rapid random
q

motions have been separated into the damping matrices y and P , In order

to render the equation useful for applications Kawasaki introduces simplify-

ing assumptions. Noting that the elements of P' represent nonlinear transport
q
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coefficients that arise from the rapid random molecular motions of f,

Kawasaki assumes that r' can be ignored in Eq. (2.232) since such transport
q

coefficients are not expected to be important near the critical point.

Therefore we obtain:

da (t) = (iw - y )a (t) + iS2 - A'(t) (2.235)dt q g q g g g

as the final general kinetic equation for critical fluctuations which may

be applied to specific cases.

We are interested in the dynamics of entropy fluctuations near the

liquid-vapor critical point. Applying his general kinetic equation to the

case of entropy fluctuations Kawasaki obtains:
2

(t(t)= - iqa-l/2 5S Ms (t)va (t) + f5  (2.236)dt q CP q k q q-k q

for the kinetic equation for entropy fluctuations, 5S .

In this expression X is the non-anamolous part of the thermal

conductivity, C is the q-dependent heat capacity per unit volume at
g

constant pressure, V is the volume of the system, f5 is the random force
g

acting upon S , and va(t) are the transverse components of the localq q
velocity, where a = x,y,z. The kinetic equation for va(t) is:

q

Sva (t) = - 2va(t) - 2Zk i(ka_) - a

(c - C1k) 6Sk(t)6Sq-k(t) + f . (2.237)
CPk g -k k -q
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In this expression, r0 is the non-anamolous part of the shear viscosity,

p is the mass density, and fv is the random force acting upon v .
q q

Having obtained the relevant kinetic equations for entropy fluctua-

tions, Kawasaki next seeks to obtain the time correlation function for

entropy fluctuations. He finds that

< bs q(t)bS q(0) > -r qt
=e (2.238)

<|5sq 2 >

where

kBT2 g - ]k2 P
P - df ) - (k2 2 (2.239)

q 1 (21c)3 k 2CP

so that entropy fluctuations of wavevector 2 decay exponentially in time

*
with a decay rate given by P . In the expression for P the quantity rj

has the same significance as in the Kadanoff and Swift theory, (Eq. (2.221).

Kawasaki evaluates the integral in the expression for r by assuming an

Ornstein-Zernike form for the k-dependent heat capacity. Specifically,

he assumes:

CP (+ - k2 -1 (2.240)

where t is the Ornstein-Zernike long range correlation length. After

performing the integration Kawasaki finds that

P = A C 5 K(q ) (2.241)

where

A = kBT (2.242)



and

K(q + )' = 1 ' + (q' E )tan~16q E .223

Kawasaki thus presents us with an explicit expression for the wavevector

dependence of the decay rate of thermally excited entropy fluctuations

in a pure fluid near its liquid vapor critical point. The expression

contains all slowly varying quantities, save one, the long range correla-

tion length, E. We see then that the behavior of the decay rate of entropy

fluctuati ns is governed by the behavior of t.

We may examine the expression for P for large and small values of q.

For q >> 1 the function K(q E ) becomes

K(q E ) , = 3 E35 + .. ,(2.244)

so that for q E >> 1,

r = (2.245)

161tr*

This expression is expected to hold very close to the critical point where E

becomes very large. Now, for q E << 1, the function K(qE ) becomes:

2 2 3 4 246
K(q )q g ) = + - q + ... (2.246)5

so that for q << ,

r = 2 E2( + g q 2) . (2.247)
q 6% [qI(l+3q1)5

This expression is a prediction for the decay rate of critical entropy

fluctuations in the hydrodynamic region; that is, for q E << 1. Previously,
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(Eq. (2.128)) we have shown that in the hydrodynamic region the thermal

diffusivity, A is given by . Therefore, Eq. (2.247) provides us

P q

with a prediction for the critical part of the thermal diffusivity,

DC . From Eq. (2.247) we obtain

-- D =k (l + q (2.248)
q2 = C n 5

Since q << 1, we can further simplify the expression so that:

D A ) = (2.249)
C pCP C*

We see that this prediction is in agreement with the predictions of Kadanoff

and Swift, Eqs. (2.222) and (2.229). We thus have a prediction for the

magnitude and temperature dependence of the critical part of the thermal

diffusivity of a fluid near its critical point. The validity of this

prediction may be checked by using the method of self-beating spectroscopy

to measure the correlation function of light scattered from the random

thermal isobaric entropy fluctuations in a fluid near its critical point.

Equation (2.249) has an appealing physical interpretation. The quantity

D is the diffusion coefficient for the transfer of heat from one regionC

of space to another. If one regards the flow of heat as taking place by

the diffusion of spheres of radius E., then, from the Stokes-Einstein

relation, we know that the diffusion coefficient of spheres of radius i

kBT
is given by D = . We may thus regard the diffusion of heat as oc-

curring by means of the spatial diffusion of regions of radius .

We may remark that Swift(20) has shown that the calculation of the
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decay rate of entropy fluctuations in a pure fluid near its liquid-vapor

critical point is analogous to the calculation of the decay rate of con-

centration fluctuations in a binary liquid mixture near its critical mixing

point. Therefore, in analogy with Eq. (2.249), we may write:

(D )C = * (2.250)

where D is the solute particle diffusion coefficient in the binary mixture.
m

Kawasaki thus predicts that particle diffusion in a binary mixture occurs

by means of the diffusion of regions of spatial extent t . Ferrell, (21)

using the general expression given in Eq. (2.159) for transport coeffici-

ents as his starting point, has also calculated the solute particle dif-

fusion coefficient in a binary liquid mixture near its critical mixing

point. He obtains a result identical to that given in Eq. (2.250).

Most recently, the mode-mode coupling approach has been further re-

fined by Kawasaki and Lo. With this refinement, the decay rate for

critical entropy fluctuations in a pure fluid near its liquid-vapor

critical point is:

1~' = A' 3 K(q )C(q ) (2.251)

where

kT
A' = kB (2.252)

and K(q g) is given in Eq. (2.243). Comparing Eqs. (2.251) and (2.252)

with Eqs. (2.241) and (2.242), we see that



C(q E) = .(2.253)

In these expressions r(T) is the temperature dependent, macroscopically

measured, hydrodynamic shear viscosity. Kawasaki and Lo show that, in

the hydrodynamic region, = 1.055. With this refinement, the mode-mode

coupling prediction for the magnitude and temperature dependence of the

critical part of the thermal diffusivity in the hydrodynamic region for

a pure fluid near its critical point becomes:

D = A = (2.2%)63 (TI CT)
1.055

Each of the quantities appearing in Eq. (2.2%) may be determined from

experimental measurements. Once they have been determined one is able

to check the validity of this essential prediction of the mode-mode coupling

approach for the behavior of the dynamic properties of a fluid near its

liquid-vapor critical point.
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Chapter III

EXPERIMEINTAL APPARATUS AND METHODS

A. Introduction

In this chapter we shall discuss the apparatus and methods used to

obtain measurements of quantities which were relevant to the particular

experimental study of liquid-vapor critical point phenomena described

in this thesis. In particular we shall discuss the apparatus and methods

used to obtain measurements of the following quantities:

(1) the sample temperature (T).

(2) the sample pressure (P).

(3) the sample density (p).

(4) the scattering vector (q).

(5) the ratio of scattered power to incident power, P /P .

(6) the frequency spectrum and the time correlation function

of the light scattered quasielastically from the thermally

excited entropy fluctuations in the sample.

B. The Sample

We shall begin our discussion by focussing on the sample itself.

All measurements described in this thesis were carried out on a single

sample of sulfur hexafluoride, SF6, contained in a sealed chamber. The

sample was obtained from a cylinder of Air Products and Chemicals in-

strument-grade SF6 with an estimated impurity content of less than 20ppm.

SF6 was used in this study of liquid-vapor critical point phenomena fo:c

two reasons: (1) SF6 molecules are non-polar and spherically symmetrie,



101

thus satisfying the criterion that the study involve a simple, inert

sample and (2) SF6 has convenient critical properties: TC = 45.5570C

PC = 37.11 atm.; PC = 0.732 gm/cm5 ; thus easing the experimental dif-

ficulties involved in leak prevention and temperature control.

C. The Sample Chamber

In Fig. 3.1 is shown a schematic, cross-sectional top view of the

sample chamber. In Fig. 3.2 is shown a view of the sample chamber that

is observed when one looks head-on through the entrance window.

The main body of the sample chamber as well as the two end flanges

were constructed from berylium copper which was chosen because of its

strength and high thermal conductivity. The main body of the sample

chamber was drilled out to a diameter of 1.0". A cylindrical spacer,

2" in length, also constructed of berylium copper, fills the hole. A

cross-sectional view of this spacer is shown in Fig. 3.2. The height

of the oblong-shaped open region in the spacer is 0.233", while the width

of this region is 0.750". The main function of the spacer in the sample

chamber is to decrease the volume of SF6 needed to fill the chamber and

especially to decrease the height of the column of SF6 that is observed

during experimentation. It is advantageous to decrease the height so

that the gravitationally induced density gradient in the sample becomes

less severe near the critical point.

The hole, containing the spacer, through the main body of the sample

chamber is terminated at each end by a highly polished optical quartz

window (Schott BK7). The absolute refractive index of the windows at
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45 C and at a wavelength of 6328A is 1.5155. The windows were sealed

to the chamber using pure indium as a packing material. The design was

such that the pressure exerted by the SF6 sealed the windows securely

against the chamber. Indium was also used to seal all the other joints

between the main body of the chamber and its appendages.

Another hole, 1.75" deep and 0.25" in diameter, was drilled into the

body of the sample chamber from the top. This hole was used as a well

to accommodate the platinum resistance thermometer used to measure the

sample chamber temperature.

SF6 was admitted into the sample chamber through a Whitey valve which

was tapped into the top of the chamber. The valve was constructed of

stainless steel and contained teflon packing which was in contact with

the SF6 while the chamber was being filled but which was isolated from

the SF6 when the valve was closed.

One side of the sample chamber was machined out to accommodate a

Baldwin-Lima-Hamilton strain-gauge pressure transducer. The voltage across

the output terminals of this device is related to the strain impressed on

its sensing element which arises from the pressure exerted by the SF6

sample.

The other side of the sample chamber was machined out to accommodate

a bellows assembly. The bellows itself was constructed of stainless steel

and was purchased from the Robertshaw Bellows Company. The bellows has a

mean radius of 0.375" and a mean length of 0.875". A stainless steel end

cap of diameter 0.75" was silver soldered to the bellows. The bellows

is able to be compressed by means of a .75" diameter screw with 40 turns/inch.

The assembly is surrounded by a berylium copper housing.
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The bellows was used to adjust the sample density by adjusting the

total volume available for a given mass of SF6. From the mean length

and mean radius of the bellows we obtain that the volume available for

5the SF6 in the bellows is 0.39 in . From the dimensions of the open

region of the spacer; i.e., 2.0" x 0.75" x 0.233", we obtain that the

volume available for the SF6 in the main body of the sample chamber is

3
.35 in . Since the remainder of the volume available for the SF6 in the

sample chamber is very small, we see that the total volume of SF6 is ap-

proximately 0.75 in

From the dimensions of the bellows and the pitch of the adjusting

screw we see that one turn of the screw changes the volume by 0.011 in

Therefore one turn of the bellows adjusting screw changes the density

of the SF6 by approximately 1.5%.

D. Control and Measurement of the Sample Temperature

Having described the sample and the sample chamber, we shall next

discuss the control and measurement of the sample temperature.

1. Temperature Control

In Fig. 3.3 is shown a schematic diagram of the temperature con-

trol system. The sample chamber was mounted inside a rectangular copper

box. Plexiglass was used between the flanges of the sample chamber and

the box in order to thermally isolate the chamber from the box. The

box was mounted on top of a multi-layered plexiglass base plate in order

to thermally isolate the box from its surroundings. The box was fitted

with a plexiglass top.
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Silicone oil was pumped into the box through the inlet port shown

in the figure, and returned to the pump through the outlet port. A

series of baffles was placed in the box to insure effective circulation

of the oil around the sample chamber. The silicone oil was prevented

from seeping into the portsleading to the entrance and exit windows of

the sample chamber by means of epoxy seals at the joints between the

flange, the plexiglass, and the box.

The primary control of the sample temperature was accomplished by

controlling the temperature of the circulating silicone oil. A bank of

thermistors, connected in parallel, was mounted at the inlet port of the

box. In general, the resistance of a thermistor decreases as its tem-

perature increases. Specifically, the resistance-temperature relation

for a thermistor is given by:

1 1
P(T)(- - -- )R(T) e T TO(31

R(T

For the thermistor bank the quantity P(T) was a slowly varying function

of temperature increasing in value from 39100K at 317.7 K, about 10K

below the critical temperature, TC, to 39180K at 321.10K, about 2.40K

above TC, which was the temperature range covered in the experiments.

A typical resistance value for the thermistor bank is R(3l0.50K) = 618.2S.

The thermistor bank formed one arm of a simple four-arm resistance

bridge. In Fig. 3.4 is shown a block diagram of this feedback circuit.

The thermistor bank is labelled R2 in Figs. 3.3 and 3.4. The other arms

of the bridge were formed by two fixed value resistors, labelled R and

R 4 in Figs. 3.3 and 3.4 and by a General Radio decade resistance box,
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labelled R in Figs. 3.3 and 3.4. The resistance box could be pre-set

to a 0.012 precision. The fixed resistors as well as most of the resist-

ance of the decade box were immersed in the box housing the circulating

oil to eliminate changes in their resistances due to fluctuations in room

temperature.

Temperature control of the circulating oil was achieved in the fol-

lowing way. From Fig. 3.4 we see that if the resistances (R1 + R2) and

(R3 + R ) are not equal, then a current will flow between points B and D

through the servo amplifier. This current is amplified and delivered to

the main heater which is located inside the tubing leading from the pump.

The heated oil is cooled somewhat by coming in contact with a water

jacket through which tap water is circulated. The thermistor bank re-

sistance responds to the new oil temperature. At a given setting of the

decade box a steady state condition is reached (R1 + R2 ) > (R3 + R ) so

that just enough heat is continuously supplied to the oil to maintain

it at the desired temperature. Fluctuations in the oil temperature are

sensed by the thermistor bank. The fluctuations are compensated for by

an appropriate increase or decrease of heat supplied to the oil.

The temperature of the oil was changed by merely setting a new value

on the decade box. The decade box settings ranged from 4102 at 2.40K

above TC to 468S at 1 K below T . In this temperature range the varia-

tion of decade box resistance with sample temperature was approximately

1792/ 0K. With this sensitivity and with the 0.012 precision of the decade

box we see that the sample temperature could easily be pre-set to +0.001K.

now
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In order to decrease heat loss to the surroundings, the box housing

the circulating oil was covered on all four sides and on top with thick

styrofoam insulation. Slots were cut in the styrofoam to allow the pas-

sage of light into and out of the sample chamber. To further decrease

heat loss to the surroundings, heating pads were inserted into the styro-

foam at the top and at the bellows side of the sample chamber. An addi-

tional heating pad was sandwiched between two layers of the plexiglass

base plate. It was desired that the temperature in the vicinity of the

heating pads be brought close to the temperature of the circulating oil.

This was accomplished to an accuracy of + 10K by means of an auxiliary

temperature controller which used a thermistor as its sensing element.

In the course of the experiments it was found that not only could

the sample temperature be preset to + 0.0010 K, but also the sample tem-

perature could be maintained for several days to + 0.0010 K. Also, visual

observation of the sample very close to the critical point yielded no

evidence that temperature gradients might be present. If temperature

gradients were present then convective motion possibly accompanied by

boiling in the liquid phase or condensation of droplets in the vapor

phase would have been observed.

2. Temperature Measurement

The temperature of the sample chamber was measured using a Leeds

and Northrup platinum resistance thermometer which was inserted into the

well shown in Fig. 3.1. The thermometer was calibrated by the Leeds and

Northrup Standardizing Laboratory against secondary standards furnished
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by the National Bureau of Standards in accordance with the 1948 Inter-

national Practical Temperature Scale. The resistance-temperature rela-

tion for a platinum resistance thermometer is given by the Callender-

van Dusen equation:

) = 1 + At + Bt (3.2)

In this relation, t is the temperature in 
0C, R(0) is the resistance of

the thermometer at 00C and R(T) is the resistance at T
0C. For the

thermometer used in the experiments, A = 3.985017 x 10 and

B = -5.856693 X 10-

The quantity R(O) was determined and periodically checked by in-

serting the thermometer into a standard triple point of water cell,

T = 0.010C. R(o) was found to be 25.545S.

The thermometer was equipped with four leads; two of the leads al-

lowed current to pass through the thermometer, and the other two allowed

measurement of the voltage across the thermometer. The resistance of

the thermometer was determined by comparing its resistance to that of

a standard resistor. The value of the standard resistor at T = 250 C

was 9.99994S2. The comparison was achieved by connecting the thermometer

and the standard resistor in series, thus insuring that the same current,

2 ma, was passing through each. The voltage appearing across the ther-

mometer was then compared to that appearing across the standard resistor

using a Leeds and Northrup model K-5 potentiometer. The variation of re-

sistance with temperature for the standard resistor was also determined

and, during each measurement of the sample chamber temperature, the tem-

perature of the standard resistor was also measured and the appropriate

standard resistance was used.



112

With the K-5 potentiometer voltages could be measured with a preci-

sion of + 0.1 pV. In the temperature range covered in the experiments,

the voltage across the thermometer changed with temperature by 0.2 V/0.0010K.

Thus the temperature of the sample chamber could be easily measured with

an absolute accuracy of + 0.0010K.

E. Measurement of the Sample Pressure

The pressure exerted by the SF6 sample was measured by means of

the Baldwin-Lima-Hamilton strain-gauge pressure transducer shown in

Fig. 3.1. The voltage appearing across the output terminals of this

device is related to the pressure exerted on its sensing element by:

V- A(P ) + B( ) (3.3)
0 max max

The values of the coefficients were A = 2.968 x 10~ and B = 3 x 10~5.

The voltage reference value was V0 = 0.9V and the maximum pressure tol-

erated by the device was P = 750 psi.max

The sample pressure was determined by comparing the voltage appear-

ing across the pressure transducer to the reference voltage using a

Leeds and Northrup model K-5 potentiometer. In the pressure range cov-

ered in the experiments, the voltage across the transducer changed.with

pressure by about 4 V/psi. Since voltages could be measured with the

K-5 potentiometer with a precision of + 0.1 iV, the sample pressure

could be determined with a precision of + 0.025 psi.

Although a given measurement of the sample pressure could be per-

formed with a high degree of precision it was observed that measurements
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of the sample pressure were not reproducible over times as short as one

day. Instead, when the sample pressure was held constant by maintain-

ing a constant sample temperature and density, the measured sample pres-

sure was observed to rise linearly with time. Hence, at any time, the

measured sample pressure was always greater than the actual sample pres-

sure. It was assumed that the time drift was attributable to mechanical

hysterisis in the strain gauge.

Because of the pressure transducer time drift no attempt was made

in the course of the experiments to perform absolute measurements of the

sample pressure. Indeed, at the conclusion of the experiments it was

estimated that the measured sample pressure was 24.3 psi greater than

the actual sample pressure.

Instead, as will be shown, what was determined were the relative

changes in the sample pressure as the temperature and density of the

sample were changed. These relative pressure measurements were accurately

obtained by determining and then applying appropriate corrections for the

time drift of the pressure transducer. Specifically, during measurements

along the critical isochore of SF6, it was found that the drift was

0.074 psi/day. During measurements along the coexistence curve of SF6,

it was found that the drift was 0.046 psi/day. With the application of

these corrections relative pressure measurements were made with an accura-

cy of + 1.5%.

F. Measurement of the Sample Density

Having described the apparatus and methods used to obtain measure-

ments of the sample temperature and pressure, we shall next discuss the

techniques used to obtain measurements of the sample density.
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1. Optical Measurement of the Absolute Density

We shall begin by describing a technique which may be used to

obtain absolute measurements of the sample density. In general, for

a dielectric medium, the refractive index, n, and the density, p, are

related by the Lorentz-Lorenz equation:(1)

2
n - 11 = L (3-4)
n2 + 2 '

where L is approximately constant for all densities ranging from dilute

gas densities to saturated liquid densities. The Lorentz-Lorenz constant,

L, was obtained for SF6 using the refractive index data of Francis(2)

and the density data of Otto and Thomas. At 20 C the density of

saturated liquid SF6 is 1.39 gm/cm while the refractive index is 1.170.

Using these values we obtain L = 0.0788 cm3/gm. We see then that a meas-

urement of the refractive index of the sample allows us to determine the

sample density.

In Fig. 3.5 is shown a schematic representation of the technique

used to measure the refractive index of the SF6 sample. The incident

beam of intensity P strikes the entrance window of the sample chamber

with an angle of incidence e . At the air-glass interface the beam

undergoes a reflection at an angle l as well as a refraction in the

glass medium at an angle e2. The incident beam is polarized perpen-

dicular to the plane of incidence so that according to the Fresnel re-

flection formula(4 ) the intensity of the beam reflected from the air-

glass interface is

P = R12 0 (3-5)
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where

sin 2 (6 - e2
R1 1 .2 (3.6 )

sin 2 (61 + 62)

Now, the intensity of the beam travelling through the glass at angle

62 is (1 - R1 2 )P0. This beam strokes the glass-SF6 interface and under-

goes a reflection at angle e2 as well as a refraction at an angle 65 in

the SF6 medium. Again applying the Fresnel reflection formula we see

that the intensity of the beam reflected from the glass-SF6 interface is

P' = R23(1 - R 12 )P 0 (57)

where

R~2 = sin2 ( 2 - 0 3 (.8)
sin 2 (62 + e )

This reflected beam strikes the air-glass interface and undergoes another

reflection back into the glass at angle 62 as well as a refraction at

angle e back out into the air. The intensity of the beam reflected

back into the glass is R 12' so that the intensity of the refracted beam

finally emerging into the air is

P 2 = 1 - R12)P' = R23(l - R 122P O39

From Eqs. (3.5) and (3.9) we see that the ratio of the intensities of

the two beams reflected from the front and back faces of the entrance

window is

P 2 (1 - R1 2)2
- R (3.10)
l 2 1 2
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We may relate R12 and P to the refractive indices of the air,

glass, and SF6 media by applying Snell's law. We have:

2 = sin~1 ( sin ) (3.11)
in2 1

and

5 = sin~l(n2 sin e2) (3.12)

where n1 = refractive index of air, n2 = refractive index of glass, and

3 = refractive index of SF6. Now, since e may be measured and n1 and

n2 are known, we are able to calculate R 12. Further, using Eqs. (3.8),

(3.10) and (3.12) we may relate n to P2p 1. Thus, a measurement of

the ratio P2 1 allows us to obtain the refractive index, n , of the

SF6 sample. The refractive index may then be used in Eq. (3.4) to ob-

tain the density of the sample.

In order to measure the ratio P2 l the reflected beams are focussed

by a lens onto two solar cells as shown in Fig. 3.5. Each solar cell

emits a current which is directly proportional to the intensity of light

incident on its surface. In Fig. 3.6 is shown a schematic diagram of

the current ratio bridge circuit used to measure the ratio P2/P1. A

Keithley microvoltmeter was used to measure the voltage across a General

Radio decade resistance box. The current i2 = AP2 passes through the

entire resistance, while the current i1 = A passes through some frac-

tion, P, of the entire resistance. The fraction, P, is adjusted until

one measures zero voltage. Under the zero voltage condition,

i2 (l - P)R + (i2 - i1 )PR = 0 (3.13)
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Fig. 3.6 Current Ratio Bridge Circuit
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so that

p - = -S (3.14)i pi
1 1

We see then that a measurement of the fraction P allows us to obtain the

ratio P2P 1 which ultimately allows us to obtain the density of the SF6

sample.

2. Measurement of the Density Relative to pC by Meniscus Height

Observations

Having described the technique which may be used in general to

obtain absolute measurements of the sample density, we shall next describe

a more precise technique which was used in the course of the experiments

to determine the density of the sample relative to the critical density,

pC. This technique involves the observation of the height of the liquid

level (the meniscus) in the SF6 sample as a function of temperature below

the critical temperature, TC'

In order to predict the variation of meniscus height with temperature

we may begin by considering that our sample is enclosed in a chamber of

total height, H, and cross-sectional area, A. We will assume that both

the liquid and gas phases are present. The liquid fills the chamber to

a height h. The gas fills the remainder of the chamber. Therefore,.we

may write:

P. hA + p (H - h)A = pHA (3.15)

where p is the liquid density, p is the gas density, and p is the aver-

age sample density. We may introduce the critical density, pC, into the

expression by writing:
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(Pg - PC)h + (pg - PC)(H - h) = (p - pC)H. (3.16)

Now, in Eq. (2.46) it was shown that the temperature-density rela-

tion for the coexisting phases near the critical point is:

P8 -P T C_- T @
(_ 2 T ) .(3.17)

2PC 2 TC

Further, because the coexistence curve is not symmetric about pC, but

is instead symmetric about the line of rectilinear diameters, one has the

relation

p + p T - T

2p_ CT C

The coefficients B and D and the critical exponent P have been meas-

ured for SF6 by Saxman who found:

Pg = 1.81 60.333 (3.19)
2p C

and

py + p
+Pg = 1 + 0.6o e (3.20)

2pC

where

T -T

C

To explicitly relate meniscus height to temperature we begin by

noting that from Eq. (3.17) we have

P, = PCBe + P . (3.21)

Inserting this result in Eq. (3.20) yields
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Pg = p[1 + .6 - Be] (3.22)

Similarly, from Eq. (3.17) we have

pg = P - PC BE (3.23)

Inserting this result in Eq. (3.20) yields

p = pC[l + .6c + Bp]. (3.24)

Inserting Eqs. (3.22) and (3.24) into Eq. (3.15) yields:

pC[1 + .6e + Bep]h + pC[l + .6E - Be ]H

- pC[l + .6c - Belh = pH . (3.25)

Subtracting the quantity pCH from each side yields

P [l + .6E + 1 BE - 1]h + p [1 + .6E - Bep - l]HC 26 +C 2

- pCil + .6c - 1 Bep - l1]h= (p - p )H - (3.26)

Simplifying, we obtain

H = Beh + .6eH- BeH . (3.27)
PC

Simplifying further we obtain

h (P - PC) 1 _ .6el-~

S~ P B- + - B ' (3.28)

From Eq. (3.28) we see that the relative height of the meniscus

depends upon the average density of the sample relative to pC and the

temperature of the sample relative to T . If we consider the change

in height, oh, with a change in temperature we may write
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__=P PC (J-.6 A(e1 ) . (3.29)

HPC B B

We may re-write Eq. (3.29) as

H( - C) 6H (.o= U(9~ "C _ a AE ,(3-30)
Ae) B pC B

or,

P ~ PC Ah B + .6 (6E) .(3-31)

PC A(C~P)H

(P - p
From Eq. (3.31) we see that the quantity ( ) may be determined by

PC
measuring the meniscus height at a number of temperatures and computing

the slope, Ah/A(e~P).

Measurements of the meniscus position in the SF6 sample were made

using a 30X telescope in a cathetometer. The relative position, h, was

determined with an accuracy of + 0.001". Using B = 3.62 and the meas-

ured height of the sample chamber, H = 0.233", in Eq. (3.31), we may
P -p

estimate that the quantity P can be determined to + 0.1%.
PC

In the course of the experiments the density of the SF6 sample was

brought to within 0.1% of pc by adjusting the bellows and measuring the

result using the technique of meniscus height observation.

3. The Question of Density Gradients

Having discussed the techniques used to obtain measurements

of the sample density, we shall next briefly discuss the problem of den-

sity gradients. We have seen that, near its critical point, the iso-

thermal compressibility, KT, of a simple fluid becomes very large. We

may easily show that, when KT is very large, a very large density gradient
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is produced in the fluid. We begin by assuming that the sample is con-

tained in a chamber of height H. The pressure at the bottom of the

chamber is greater than the pressure at the top of the chamber by the

amount AP = pgH, where p is the average density of the sample and g

is the acceleration due to gravity. Therefore, throughout the sample,

the pressure varies with height; that is, P = P(h). Now, since KT T

we see that a small change in pressure leads to a very large change in

density when KT is large. Therefore, p = p(h).

We next show how it is possible to predict the variation of density

with height, p(h), in a sample. For simplicity, we may assume that the

average density of the sample is the critical density, pC. Now, as the

critical point is approached along the critical isochore, the compres-

sibility increases so that the density gradient increases. If the height

of the sample chamber is H, then the fluid is at critical density only at

the mid-height, H/2. Above the mid-height the density is less than pC'

while below the mid-height the density is greater than pC. The quantity

p(h) may be obtained at each temperature by calculating the quantity

p(1 (h),T), where p(h) is the chemical potential per unit mass as a func-

tion of height. Now, when a fluid is in equilibrium in an external

field, i is a constant throughout its volume. In a gravitational field

the total chemical potential, M, is given by

M(h) = M + U(h) . (3.32)

In this expression, M_ is the chemical potential in the absence of the

field and U(h) is the gravitational potential energy, U(h) = mgh, of the

molecules in the field. Dividing by the mass we may write

pt(h) = 0L + gh . (3.33
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Now, the chemical potential, MO, or chemical potential per unit

mass, pO, exists only at the mid-height of the sample. Therefore, p(h)

varies linearly with h above and below the mid-height. Further,

1O - p(h)j varies symmetrically above and below the mid-height. We

might point out that while p(h) varies linearly and symmetrically about

the mid-height that the pressure, P(h), does not.

The quantity [0 C(PT) may be calculated by means of the parametric

representation of the equation of state. The quantity 1 (h) may then

be calculated using Eq. (3.33). Finally, the quantity p(h) = p( (h),T)

may be calculated by again using the parametric equation of state.

This technique was used to theoretically predict the variation of

density with height for SF6 at a number of temperatures above TC along

the critical isochore. (8) In Fig. 3.7 is shown this variation of the

relative density, p/pC, with height for SF6 at four of these temperatures.

The density versus height profiles are plotted for a sample chamber of

total height H = 6 mm. which is the approximate effective height of the

chamber used in the course of the experiments. Curve A represents the

variation of density with height for SF6 at the critical point. We see

that p/pC varies by 15.2% over the entire height of the chamber and

that p/pC varies by 6.4% over a total height of just 0.1 mm. about the

mid-height of the cell. Curves B, C, and D show that the severity of

the density gradient decreases rapidly as the relative temperature,

AT = T - TC, increases.

Having discussed the presence of density gradients in the SF6 sample

very near the critical point, we may next inquire into the effect of the

gradients upon the measurements carried out on the sample. From Fig. 3.7



1.00
P/pc

Fig. 3.7 SF,- Density-Height Profile: p = pC, T > TC0)

6.

5.

4.

E
E 3.

2.

I.

1.08



126

it is clear that in order to study the light scattered from the sample

at p = p0 and T > TC it was necessary that the incident beam be focussed

at the mid-height of the cell. The diameter of the focussed beam was

approximately 0.3 mm so that for AT = 0.032 C the beam sampled the

relative density range p/pC = + 0.1% when it was focussed at the mid-

height. Since the sample was brought to pC with a precision of 0.1%

it was estimated that measurements for i > 0.032 C could indeed be

considered as measurements along the critical isochore.

Density gradients affect measurements taken at temperatures below

TC to a much lesser degree. At a fixed temperature difference, TC - TO'

the density varies only slightly with height within each of the coexist-

ing phases, since the isothermal compressibility has a significantly

smaller value than at an equal temperature difference, T0 - TC, above

TC along the critical isochore. Therefore, if the incident beam is

focussed either slightly below the meniscus in the liquid phase, or

slightly above the meniscus in the vapor phase, then one can be assured

that the densities which the beam is sampling are very nearly equal to

the coexistence curve densities. In the experiments the incident beam

was focussed, in both the liquid and vapor phases, to within 1 mm of

the meniscus.

We next consider an unavoidable effect of density gradients upon

light scattering measurements. From the Lorentz-Lorenz equation, Eq. (3.4),

we see that a density gradient will produce a refractive index gradient

in the sample. When a beam enters a medium in which there exists a re-

fractive index gradient then the beam will curve in the direction of

the gradient. We may consider our sample to be made up of layers of
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increasing refractive index. Directly from Snell's law we may write

n0 cos j0 = (n0 + dn)cos j , (3.34)

where n0 is the refractive index of the sample layer where the beam

enters and (n0 + dn) is the refractive index of the layer immediately

below. The quantity j0 is just (900 - 6.), where e. is the angle of

incidence at the entering layer. Similarly, j is just (900 - Gr), where

0r is the angle of refraction in the lower layer. If the refractive

dn
index gradient is given by n, where z increases in the downward direc-

tion, then we may write

n cos j n 0 cos j + z, (3.35)

since j is a small angle. Now, expanding the cosine terms in a Taylor

series we obtain

.2
.2

~ ) = nO - + z .(3.36)

Simplifying, we have

.2 .2 dn z
0 =0+ dz n '

0

We thus see explicitly that the beam will indeed curve in the direction

of the refractive index gradient and, furtaer, that the curvature in-

creases with increasing gradient and with increasing path length.

Since the beam entering the sample curves, the scattering angle,

which is the angle between the direction of the incident beam and the

direction of the scattered light that is accepted by the collection

optics, differs from the scattering angle one has if the beam did not -

curve. For the optical arrangement used in the experiments (which is
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discussed in detail in Section III.G.2.) the change in the square of

2
the scattering vector, q , due to the curvature of the beam at tem-

peratures close to TC along the critical isochore has been estimated.

It was found that for T - TC > 0.0800K corrections to q2 were negli-

2.gible. However, the correction to q increased from 1% to 4% as T - T

decreased from 0.080 K to 0.0460K. The latter represents the lowest

temperature to which the sample was brought in the experiments as the

critical point was approached along the critical isochore. For the meas-

urements taken at temperatures below TC it was not necessary to apply

corrections to q2 since the density gradient and hence the curvature of

the beam in each of coexisting phases was small.

G. The Optical System

Having described the apparatus and methods used to control and

measure the temperature, pressure, and density of the SF6 sample, we

shall next discuss the optical system used to study the spectrum and

the intensity of light scattered from the sample.

1. Description of the Components

We shall begin with a description of the components of the op-

tical system. In Fig. 3.8 is shown a schematic representation of the

arrangement of the optical system. The light source is a Spectra-Physics

model 131 helium-neon laser with an output power of 1 mW. The wavelength

is 6328A. The spatial filter immediately in front of the laser serves

to block out any stray light emitted by the laser and to form a beam

with well defined diameter. The beam passes through a lens and, after
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passing through an 8% reflecting, 92% transmitting beam splitter, is

focussed at the center of the sample chamber. As will be shown in

Section III.G.2. the orientation of the sample chamber with respect to

the direction of the incident beam determines the angle between the di-

rection of the unscattered, transmitted light and the direction of the

scattered light that is accepted by the collection optics. Light that

is scattered by the sample is incident upon a beam splitter which is 1%

transmitting and 99% reflecting. The transmitted beam emerges from the

sample chamber and is deflected by a front surface mirror. This beam

then passes through a neutral density filter which attenuates it by a

factor of 10 . The attenuated beam then passes through the beam splitter

and follows the same path as does the scattered light.

The composite beam then passes through a circular aperture, labelled

S 1in Fig. 3.8, which serves to limit the angular acceptance, 6e, of the

scattered light about a mean scattering angle, 6. The beam then passes

through a lens with a focal length of 40 cm. In the focal plane of this

lens is a rectangular aperture, S2* We may note that all the light that

passes through the aperture S1 and which is incident upon the lens sur-

face at some angle, 0', is focussed at a particular point, P', in the

focal plane of the lens. Light incident at an angle 0" is focussed.at

another point, P". Therefore, light that is scattered from the entire

length of the sample chamber at some particular angle, 0', is focussed

at a particular point, P', in the focal plane of the collecting lens.

The position of the aperture S2 thus selects the scattering angle, 0,

of the light that is studied. The actual measurement of the scattering

angle is described in the next section. The width of the aperture S2
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determines the angular spread, te/&, of the light that is studied. The

area of the aperture determines the size of the solid angle, S2, associ-

ated with the scattered light that is accepted for study. It was es-

timated that, for the scattering angle used in the experiments, A6/6 = 0.1.

The rectangular aperture S is mounted in the image plane of the

lens. At its image plane the lens forms a real image of the scattering

region within the sample chamber. The width of aperture S thus deter-

mines the length of the scattering region within the sample chamber

from which light is accepted. The width of this aperture was always

small enough to block the well-defined images of the spots caused by

the beam passing through the entrance and exit windows of the sample

chamber. The image of the scattering region was able to be observed

by means of a moveable mirror and a telescope mounted immediately after

the aperture S .

Finally, light that has been scattered by the sample from a well-

defined region in the sample chamber at a particular scattering angle,

e, with a well-defined angular spread, AO/O, is allowed to fall on the

photocathode of the photomultiplier tube. An RCA 7265 photomultiplier

was used in the experiments.

Having discussed the optical system as such we shall next briefly

describe the methods used to stabilize the intensity of the incident

laser beam. It is known that the output optical power of the laser is

a function of the plasma discharge current. Thus a convenient way to

stabilize the laser power is through the stabilization of the plasma

current. This was accomplished in the following way. As is shown in

Fig. 3.8, 8% of the incident beam is reflected onto a silicon solar cell.

The solar cell emits a current which is directly proportional to the
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intensity of light incident on its surface. The output of the solar

cell is compared with an adjustable reference voltage, and the differ-

ence is fed into a servo amplifier. The amplifier controls a resistor

which sets the plasma current regulation point in the laser power supply.

The response time of the system was adequate to servo slow laser power

drifts and long-term stability of 1% was maintained during the experiments.

Besides the slow drift in the laser power, additional intermittent in-

stability in the laser output due to the spontaneous switching between

the various allowed modes of oscillation in the laser cavity was observed.

When the switching occurs coupling between the modes produces plasma

oscillations of varying frequencies which modulate the laser output in-

tensity. A 7 kilogauss magnet mounted next to the laser effectively

suppressed the oscillations thus aiding in the overall stability of the

laser output intensity.

2. Alignment of the Optics and the Determination of the Scattering

Vector

Having described the components of the optical system, we shall

next describe the procedures used to align the optical system so that

light scattered at a particular angle is allowed to fall on the photo-

multiplier tube. We shall also calculate the scattering vector, q, used

in the course of the experiments.

As was shown in Fig. 3.3 the sample chamber and its associated tem-

perature control apparatus were mounted atop a multi-layered plexiglass base

plate. This base plate was, in turn, mounted atop an aluminum base plate

which was able to be levelled by means of three variable legs, and which
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was able to be rotated to precisely known angles. The angles were deter-

mined by measuring the linear displacement of a portion of the base plate

by means of a vernier caliper attached to the base plate at a known dis-

tance from the center of rotation.

The alignment procedure begins by setting the base plate to an angle

of 00. The sample chamber is then positioned atop the base plate so that

(1) it is level with the ground as is the table upon which the components

of the optical system are mounted, (2) it is of the proper height so that

the focussed incident beam passes through the desired height in the sample

and (3) the entrance window lies in the plane perpendicular to the direc-

tion of the incident beam. The proper positioning of the sample chamber

is verified by noting that at 00 the beam reflected from the entrance

window travels back along the incident beam. The sample chamber and

associated apparatus is then fastened to the base plate.

Having determined the 00 position of the chamber one can rotate the

unit to an angle 6, defined as the angle between the direction of the

normal to the entrance window and the direction of the incident beam.

The magnitude of e1 may be determined from the vernier caliper reading.

With the sample chamber in its rotated position the beam reflected from

the entrance window travels back on an angle of reflection equal to the

angle of incidence, e . In Fig. 3.9 is shown how use is made of this

reflected beam in the alignment of the collection optics. The reflected

beam strikes a spherical retro mirror and is sent back upon itself.

Therefore, both the incident beam and the retro beam are incident upon

the entrance window at an angle of incidence, * Both beams are refracted
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at an angle of refraction, 62, in the glass window. Both beams then

enter the SF6 sample at an angle a with respect to the window normal.

We note that the angle between the incident beam and the retro beam in

the SF6 sample is 20 . The beams then enter the exit window and again

are refracted at angle G2* Finally, the two beams emerge from the exit

window at an angle 0 with respect to the window normal.

The retro beam is used to align the collection optics. Referring

to Fig. 3.8, the retro beam is reflected by the 99% reflecting beam

splitter, passes through the circular aperture Sl, and is focussed by

the collecting lens. The position of the rectangular aperture S2 in

the focal plane of the lens is adjusted so that the focussed retro beam

is centered on the aperture. Thus the position of aperture S2 allows

only that light which is incident upon the lens at the same angle as is

the retro beam to pass through aperture S and onto the photomultiplier.

We note from Fig. 3.9 that light which is scattered by the SF6 sample

at an angle of 20 with respect to the transmitted beam is allowed to

pass through aperture S2'

With the positioning of aperture S2 completed, the retro mirror is

blocked off and the reflected beam is dumped. The position and width

of aperture S, is then adjusted so that only the light originating from

the interior of the sample chamber is allowed to reach the photomultiplier.

We have shown that the alignment procedure is such that the scattered

rays accepted by the collection optics make the same angle with the window

normal as does the transmitted beam. This procedure ensures that the

ratio of the intensity of the scattered light collected to the intensity
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of the transmitted beam is independent of optical attenuation in the

sample since the path lengths in the sample are identical. We shall

next show that the alignment procedure ensures that the scattering vec-

tor, gi, is independent of the index of refraction of the SF6 sample.

The scattering vector is given by

q = sin , (3.38)

where n is the refractive index of the sample, and 6 is the scattering

angle in the sample. From Fig. 3.9 we have n = n and 6 = 26 . Therefore,

4htn
q = 4Tn3 sin e .(3.39)X0  3

However, from the laws of refraction,

n sin 1 = n2 sin 02  n 3 sin e, (3.4o)

so that

sin 0 5 sin . (3.41)

We note that n1 = nair 1.00, so that the scattering vector becomes

q = sin 0 (3.42)
0 1

We see that the scattering vector is indeed independent of the index

of refraction of the SF6 '

In the experiments, the sample chamber was rotated to an angle

6 1= 2.420. Using X = 6328A, we find that the scattering vector operative

throughout the course of the experiments was q = 8382 cm~1.
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H. The Electronic Detection System

In the final section of the present chapter we shall discuss the

electronic apparatus and the methods used to obtain measurements of the

following quantities: (1) the ratio of the intensity of light scattered

by the SF6 sample to the intensity of the light incident upon the sample,

P
S ; (2) the frequency spectrum, S.(v), and (3) the time correlation func-
P I

tion, R (T), of the fluctuating photocurrent arising from the light scat-

tered quasielastically from the thermally excited entropy fluctuations

in the SF6 sample. In Fig. 3.10 is shown a block diagram of the electronic

detection apparatus.

Light that has passed through the optical system, Fig. 3.8, is in-

cident on the photocathode of the ECA 7265 photomultiplier tube. Through-

out the experiments the photomultiplier was operated at 1700 volts de-

livered by a Fluke 415B high voltage power supply. We have seen (Eq. (2.141))

that the instantaneous photocurrent emerging from the photomultiplier is

proportional to the instantaneous power in the light beam incident upon

its photocathode. When light scattered from fluctuations in the sample

falls on the photocathode what emerges is a fluctuating photocurrent.

We shall describe the techniques used to obtain (1) the frequency spectrum

and (2) the time correlation function of the fluctuating photocurrent.

We have also seen (Eqs. (2.97) and (2.141)) that the time average of the

fluctuating photocurrent is proportional to the average power in the light

beam incident upon the photocathode. In the next section we shall describe

the technique used to obtain the quantity P /P from measurements of the

average photocurrent.
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1. Measurements of P PI

The average photocurrent was measured in the following way.

The output of the photomultiplier was fed into a Keithley microammeter

which provides a measurement of the time average photocurrent. The

output of the microammeter was further averaged by an RC filter. The

resulting averaged photocurrent was visually displayed on a digital volt-

meter. When measuring the average photocurrent corresponding to the

power in the scattered light, the transmitted light beam (see Fig. 3.8)

was blocked after emerging from the sample chamber. Similarly, when

measuring the average photocurrent corresponding to the power in the

transmitted beam, the scattered light was blocked after emerging from

the sample chamber.

As we have pointed out, the scattered light and the transmitted

light travel through equal path lengths in the SF6 sample. Therefore,

even though what is measured is the ratio of scattered power to trans-

mitted power, this measured ratio is identical to the ratio of scattered

power to incident power, P .

We have shown (Eq. (2.120)) that

PS Aj 6n 22 2 1
1kBT(; p) p2 KT% 22 (-43)

I (l+g )

We recall that L is the length of the scattering region accepted by the

collection optics, 2 is the solid angle of collection, X0 is the vacuum

wavelength of the incident light, kB is Boltzmann's constant, q is the

scattering vector, is the Ornstein-Zernike long range correlation

length, and KT is the isothermal compressibility. Throughout the course
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of the experiments, the product of the square of the scattering vector

and the square of the correlation length was always << 1. Therefore,

in the experiments, the ratio of measured scattered power to measured

2
transmitted power is proportional to p KT when corrections are made to

account for the small changes in L and in ( ) due to changes in the

refractive index, n, of the sample as the sample density changes.

We must point out that a measurement of the absolute ratio of scat-

tered power to transmitted power would have required a determination of

the attentuation of the transmitted beam due to its passage through the

neutral density filter and the 1% transmitting beam splitter shown in

Fig. 3.8. This was not attempted. Thus, in the experiments, what was

measured was the ratio of scattered power to attenuated transmitted power.

We may express the measured attenuated transmitted beam power as

(PT)meas. TA, where PT is the transmitted beam power that would be

measured if the transmitted beam were to follow the same path in the

optical collection system as does the scattered light, and A is the

factor by which the transmitted beam is attenuated. We may express

the coefficient in curly brackets in Eq. (3.43) as B(p,T). We may then

write

P P PS S S 2.'3.4
P = A(P) = B(p,T)p KT
I T T meas

Therefore the measured ratio of scattered power to transmitted power is

(PS) =A - B(p,T)p KT '(.45)
T meas
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In the experiments the magnitude of the quantity A - B(p,T) was

determined by measuring both (Pg /PTmeas and the pressure, P, at 23

points along a near critical isotherm of SF6 over the density range

_ p-PC (5) 21.15 < < 1.40. The quantity p KT was determined by measuring
PC -

the variation of P with density. We see that once the quantity A - B(p,T)

has been determined from measurements along an isotherm, then it is known

along the critical isochore and along the coexistence curve provided that

the length of the scattering region accepted by the collection optics, L,

and the solid angle of collection, S, remain unchanged.

We see then that from measurements of the ratio of scattered power

to attenuated transmitted power we are able to determine the magnitude

and temperature dependence of the quantity p KT as the critical point

of the SF6 sample is approached along either the critical isochore or

the coexistence curve. We present these results in Chapter IV.

2. Measurement of S.(v)

We shall next describe the techniques used to obtain the fre-

quency spectrum, S (v), of the fluctuating photocurrent. As is shown

in Fig. 3.10 the first step in obtaining the power spectrum of the fluc-

tuating photocurrent was to feed the output of the photomultiplier into

a preamplifier. For measurements of the photocurrent spectrum the pre-

amplifier used was aJow impedance device of the type discussed by

Lastovka. (10) The low input and output impedances of the preamplifier

allowed convenient cable lengths of several feet to be used at its input

and output without causing a rolloff at high frequencies due to cable
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capacitance. The preamplifier provided an extremely flat frequency

response over the entire tuning range of the General Radio 1900A wave

analyzer used in the experiments which was 0 < v < 60kHz. In the course

of the experiments the highest frequency examined was 15kHz so that es-

sentially no rolloff was introduced by the preamplifier.

The next step in obtaining the photocurrent spectrum was to feed

the output of the preamplifier into the GR 1900A wave analyzer. The

wave analyzer acts as a narrow band tuned filter whose center frequency

can be swept over the range of frequencies of interest in the photocur-

rent spectrum. The GR 1900A is equipped with selectable filter bandwidths

of 3, 10, and 50 Hz. The proper selection of bandwidth prevents any

measurable distortion of the spectral line shape by insuring that S (v)

is essentially constant over the bandwidth. Lastovka(10) has shown

that the measured half-width at half height of a Lorentzian spectrum,

AV Yis broadened due to a finite filter bandwidth, v . He finds that
Vf 2

the true half-width is broadened by an amount ( ) . We see then
Av1/2

that if the filter bandwidth is < of the half-width of the spectrum
-10

that the broadening is < l%.

In the experiments the 50 Hz bandwidth was used for half-widths

greater than 500 Hz. The 10 Hz bandwidth was used for half widths be-

tween 200 Hz and 500 Hz. When the experimental half-widths became less

than 200 Hz the wave analyzer was no longer employed. Instead, the time

correlation function of the scattered light was determined.

In the experiments the filter bandwidth was swept over the desired

frequency range by means of a variable speed stepping motor. An initial
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sweep rate of either 600 Hz/hour or 300 Hz/hour was used depending on the

half-width of the spectrum. Typically, the spectrum was measured out to

a frequency of 5vl/2. A typical time for obtaining such a spectrum was

5 hours.

The detector incorporated in the GE 1900A wave analyzer is a linear

full-wave rectifier. The rectifier produces a dc detector output voltage

that is proportional to the root-mean-square current at its input. As a

result the analyzer output is a dc voltage which is proportional to the

square root of the total power passed to the detector by the narrow band

filter. Thus as the filter frequency is swept over the desired range,

the output of the wave analyzer generates a line shape proportional to

the square root of the desired photocurrent spectrum.

In order to obtain a convenient plot of the photocurrent spectrum

directly, the wave analyzer output voltage was first averaged by passing

it through a double RC filter and then squared by a slow speed analog

squaring machine prior to recording. Therefore, what is recorded on the

Hewlett-Packard strip chart recorder using this technique is the power

spectrum, S (v), of the fluctuating photocurrent. The analog squarer used

in the experiments is described by Lastovka.(lO) Typically, the time

constant of the double RC filter was 10-15 seconds.

The complete system response (output amplitude versus frequency)

of the phototube-preamplifier-wave analyzer-time averager-squarer-chart

recorder units was calibrated by utilizing the fact that the shot noise

spectrum is flat over the frequency range accessible to the wave analyzer.

A shot noise spectrum was generated by illuminating the photomultiplier

with a light bulb driven by a well-regulated power supply. The slightly
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non-linear response of the system to the shot noise input was then recorded

and the experimental traces of the photocurrent spectra arising from the

light scattered by the entropy fluctuations in the SF6 sample were cor-

rected with the system calibration curve.

As we have shown (Eq. (2.158)), the photocurrent spectrum, S (v),

contains three terms: a baseline due to the shot noise, a delta function

due to the average photocurrent, and a Lorentzian centered at zero fre-

quency. The half-width at half height of the Lorentzian, Av1/2, is P/it Hz.

We recall that P, the decay rate of the entropy fluctuations, is, in the

hydrodynamic region, related to the thermal diffusivity, , by p = A 2

Therefore, from measurements of Avl/2 at a known scattering vector, q,

one is able to determine the magnitude and temperature dependence of the

thermal diffusivity of the SF6 sample as the critical point is approached

along either the critical isochore or the coexistence curve.

Each experimental spectrum was fit to a single Lorentzian using a

three parameter, non-linear, least-squares fitting program. The program

calculates the best fit for the amplitude at zero frequency, the base-

line, and the half-width at half-height, Avl/2. The program also cal-

culates the standard deviation associated with its best fit value for

AVl1/2'

We have seen that Av 1/2 was broadened by < 1% due to a finite wave

analyzer filter bandwidth. Similarly, Lastovka(10) has shown that if

light is collected from an acceptance angle An about the mean angle e

then Avl/2 is broadened by an amount ( )2. Since 8/e 0.1 the broad-

ening is 1%. Since the broadening due to these effects was small no
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attempt was made to correct the best fit values of Av 1/2. Typically,

values of avl/2 were obtained for each experimental spectrum with a

precision of ± 3%. Repeated measurements at the same temperature and

density of the sample allowed the determination of the magnitude of the

thermal diffusivity at each temperature studied to an overall precision

of 2%. We present these results in Chapter IV.

The fitting program was written in Fortran IV G and was executed

on an IBM 370 Computer. A listing of the program appears in Appendix A.

3. Measurement of R .il

We shall next describe the techniques used to obtain the time

correlation function, R ('r(), of the fluctuating photocurrent. As we have

stated, when the experimental Lorentzian half-widths became less than

200 Hz, the technique of measuring S. (v) in order to obtain the thermal

diffusivity of the SF6 sample was no longer employed. Instead, an even

more precise technique, the technique of measuring the time correlation

function of the photocurrent, was employed to obtain the thermal dif-

fusivity. As we have shown (Eq. (2.154)), the photocurrent correlation

function arising from light scattered from the entropy fluctuations in

the SF6 sample contains three terms: a constant baseline due to the

average photocurrent, a delta function at the origin due to the shot

noise, and a decaying exponential with a decay time of 1/2r. Now, since

the Lorentzian half-width, Avl/2, is P/rt Hz, we see that when Avl/2 = 200 Hz

we have 1/2r ~ 8 x 10 sec. Decay time > 8 x 104 sec could be measured

with extremely high accuracy with the digital autocorrelator used in the

experiments.
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As is shown in Fig. 3.10 the first step in obtaining the correlation

function of the fluctuating photocurrent was to feed the output of the

photomultiplier into a preamplifier. Now, the output of the photomul-

tiplier actually consists of discrete pulses. The number of pulses in

a given time interval is a fluctuating random variable. We have seen

that for measurements of the power spectrum, the pulses were fed into

a low impedance preamplifier which converted the discrete pulses into

a continuous fluctuating current. For measurements of the correlation

function, however, the discrete nature of the pulses was retained and

the preamplifier used was a Keithley pulse amplifier with a gain of 1000.

The amplified pulses were then fed into a digital autocorrelator

designed and constructed at M.I.T. by Dr. Joseph Lastovka and Dr. John

Zollweg. The autocorrelator operates in conjunction with a Computer

of Average Transients, CAT. When a pulse with an amplitude greater

than a pre-set level enters the correlator, the process of computing

the correlation function is initiated. The correlator determines the

amount of correlation between the initial pulse and the number of pulses

in succeeding discrete time intervals. When the computation is complete

the result is stored in the memory of the CAT and the process is auto-

matically re-initiated by another incoming pulse. The result of the

second computation is added to the first and as the process continues,

the correlation function, < i(t)i(t + T) >, which is the average of many

such computations, begins to "build up" in the memory of the CAT. The

"growth" of the correlation function is able to be visually observed

on the CRT output of the CAT. When it was decided that sufficient averaging
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had occurred, usually after 1 to 1 1/2 hours, the correlator was halted

and an output proportional to the content of each of the memory channels

of the CAT was read out onto a Hewlett-Packard strip chart recorder.

The CAT is equipped with a maximum of 1024 memory channels. During

the experiments, 256 memory channels were used. Typically, however,

only the data stored in the first 120 channels were used in the deter-

mination of the correlation function. The CAT is equipped with four

selectable values of the time interval per memory channel: 31.25 x 10-6 sec,

62.5 x 10-6 sec, 125 x 10-6 sec, and 250 x 10-6 sec. During the experi-

ments either the 31.25 p sec or the 62.5 ± sec interval was used depend-

ing on the value of the decay time. A single exponential decay decreases

to approximately 2% of its initial amplitude at a time equal to four

decay times. During the experiments, a sufficient number of memory

channels was always used so that the correlation function was determined

out to at least four decay times.

Each experimental correlation function was fit to a single exponential

decay using a three parameter, non-linear, least squares fitting program.

The program calculates the best fit for the amplitude at zero time, the

baseline, and the decay time. The fitting program was written in

Fortran IV G and was executed on an IBM 370 computer. A listing of

the program appears in Appendix B.

Usually, the correlation function was measured three times at each

temperature as the critical point of the SF6 sample was approached. The

decay time used to determine P was taken to be the average of the best
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fit decay times for each of the runs. Best fit decay times from succes-

sive runs at the same sample temperature usually varied by no more than

1.5/. In the course of the experiments the measured decay times ranged

from 7 x 10 sec to 7 x 10~ sec. From the measurement of the average

decay time, 1/2P, at each temperature, the magnitude of the thermal dif-

fusivity was determined. We present these results in Chapter IV.
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Chapter IV

EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSION

A. Introduction

In this chapter we shall present the results of the measurements

of the pressure, P, the ratio of scattered power to incident power,

P , the half-width at half height of the photocurrent power spectrum,

r/n, and the decay time of the photocurrent correlation function, 1/2r,

which were carried out on a sample of sulfur hexafluoride, SF6, along

the critical isochore and along the coexistence curve. We shall analyze

the results in order to determine the magnitude and temperature depend-

ence of the isothermal compressibility, KT, and the critical part of the

thermal diffusivity, DC, We shall discuss the results in terms of the

theoretical predictions of the scaling laws and of the mode-mode coupling

theory.

In our presentation we shall first consider the measurements which

were carried out along the critical isochore. These results have been

reported.(l) We shall then turn our attention to the measurements which

were carried out along the coexistence curve. These results have also

been reported. (2)

B. The Critical Isochore

In this section we shall present, analyze and discuss the results

of measurements carried out along the critical isochore of SF6 over the

temperature range 0.048 0K < (T - TC) < 2.40K. The SF6 sample was

brought to within 0.1% of critical density, pC, using the technique
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of meniscus height observation described in Section III.F.2. The critical

temperature, TC, was determined to be 318.707 + 0.0020K by direct visual

observation of the disappearance of the meniscus.

1. Measurements of Pressure

In Table 4.1 we present the results of the measurements of the

pressure, P, as a function of temperature along the critical isochore.

As was discussed in Section III.E. these measurements have been corrected

for the time drift of the pressure transducer. The absolute magnitude of

each of the measurements was adjusted so that when one extrapolates P(T)

to P(TC) one obtains P(TC) = 544.77 psi which is critical pressure re-

ported by MacCormack and Schneider. (3)

The P(T) data were computer fit to the form

P(T) = PC + A1 (T - TC) + A2 (T - TC)2  (4.1)

We see that

(7T) ) A, + 2A2 (- C) 42

Using the values of A and A2 determined by the computer fit, we found

that ( ) = [11.47 + 0.257(T - TC)] + 0.15 psi/0 K. Converting to cgs

units, we have

(6)= [7.91 + 0.18(T - TC)+ 0.1] x 105 dyne/cm2 K

along the critical isochore. As will be shown later, the magnitude of

6P
(7)v plays an important role in the analysis of the light scattering

measurement.
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Table 4.1 Variation of Pressure with
Temperature along the
Critical Isochore

T( K) P(psi)

321.092 573.0

320.818 569.8

320.609 567.15

320.420 564.95

320.232 562.7

320.120 561.4

319-955 559.5

319.833 558.05

319.728 556.75
319.630 555.65

319.533 554.5

319.451 555.5

319.377 552.65

319.317 551-95

319.250 551.2

319.185 550.55

319-110 549.55
319.051 548.85

319.003 548.3

318.960 547.83

318.923 547.45

318.894 547.1

318.868 546.8

318.845 546.5

318.827 546.3

318.812 546.15

318.798 545.95
318.788 545.85

318.779 545.75

318.766 545.65

318.755 545.5
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2. Measurements of K

As we have previously shown (Eqs. (2.120) and (3.43)), the

ratio of scattered power to incident power, P S/P, is given by

S 2 L 6n2 2 ]2 1
PkBT( p KT 2 2 (4.5)

I (1+ q )

2 2
Since q 2 << 1 over the temperature range of the measurements, we see

that, at constant density, the isothermal compressibility, KT, is pro-

portional to (W) -. We have also shown (Eq. (3.44)) that the ratio
PIT

P Iis proportional to the ratio of scattered power to attenuated

transmitted power, P S'/T meas. In Table 4.2 we present the results

of measurements of the ratio of the scattered power to the measured at-

tenuated transmitted power obtained by measurements of the average photo-

current arising from the light scattered by the SF6 sample along the

critical isochore. The measurements were obtained using a scattering

vector q = 8382 cm 1. Each measurement has been normalized by the factor

T( ) so that each measurement is directly proportional to the magnitude
T

of KT.

The proportionality constant between the experimental quantity

P T
(S) (T) and K was obtained by bringing the results into numerical

PT meas T T

agreement with the value of KT obtained from the PVT measurements of

MacCormack and Schneider at T - T = 1.453 K. The proportionality

constant obtained in this way is in agreement with the constant that

was obtained using the method described in Section III.H.l. In Table 4.2

we thus present our deduced values of the isothermal compressibility

along the critical isochore.
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KT along the Critical Isochore

T-T C

T C

321.092

320.818

320.609

320.420

320.232

320.120

319.955

319.833

319.728

319.630

319.533

319.451

319.377

319.317

319.250

319.185

319.110

319.051

319.003

318.960

318.923

318.894

318.868

318.845

318.827

318.812

KT(cm 2/dyne)
P T

2.385

2.111

1.902

1.713

1.525

1.413

1.248

1.726

1.021

0.923

o.826

0.744

0.670

o.610

0. 543

o.478

0.403

0.1344

0.296

0.253

0.216

0.187

0.161

0.138

0.120

0.105

7.483xio~3
6.624

5.968

5.375

4.785
4.434

3.916

3.533

3.204

2.896

2.592

2.1334

2.102

1.914

1.704

1.500

1.264

1.079

9. 288xio 4

7.938

6.777
5.867

5.052

4.330

3.765

3.295

Table 4.2

TTc (OK)

.7074

.8130

.9267

1.044

1.210

1.325

1.538

1.759

1.970

2.235

2.553

2-89

3.291

3.706

4.255

5.038

6.253

7.568

9.127

11-36

13.53

16.352

19.79

24.31

27.84

32.68

T(4K)

5.378xio-7

6.181

7.046

7.938

9.200

1. 007x10-6

1.169

1.337
1.498

1.699

1.941

2.200

2.502

2.818

3.235

3.830

4.754

5.754
6.939

8.637

1. 029x10 5

1.241

1.505

1.848

2.117

2.484
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In Fig. 4.1 is shown a log-log plot of KT as a function of the reduced

temperature, (T/TC - 1). We see that the isothermal compressibility ac-

curately obeys the power law KT = CO(T/Ta - 1)7 with C = 1.26 x l0~9 cm2/dyne

and 7 = 1.235 + 0.015.

Our measured value of y is in good agreement with the results of

Puglielli and Ford who obtained 7 = 1.225 + .02 from turbidity meas-

urements. It is interesting to note that the value of the critical ex-

ponent 7 obtained for SF6 is very close to the value of 7 obtained for

(5)other fluids. For example, Lunacek and Cannell found that for CO2

= 1.219 + 0.01. Also, Smith et al. (6  found that for xenon 7 = 1.21 + 0.03.

We may recall (Sec. II.D.) that the isothermal compressibility is

indeed expected to diverge with a power law behavior as the critical

point is approached along the critical isochore. We also recall that,

according to the scaling law equation of state, if any two of the critical

exponents are known then all the rest may be determined. In view of the

excellent agreement between the value of 7 obtained in this experiment

and those values of y obtained in other experiments we conclude that our

value of 7 is accurate and thus may be used in further analysis of the

critical point properties of SF6'

3. Measurements of r/q2

We next turn our attention to the measurements of the quantity

r/q , obtained from measurements of the half-width at half height of

the photocurrent power spectrum, r/c, and the decay time of the photo-

current correlation function, l/2r, arising from the light scattered quasi-

elastically from thermally excited entropy fluctuations in SF6 along the

critical isochore. These measurements were carried out over the temperature
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- KT = 1. 26 x 10~9 (T/ Tc-1)-.25±.015 cm 2/dyne

I I I I I I 1 1 1 I I I I I I I I

10~3
T/Tc- 1

Fig. 4.1 Isothermal Compressibility, KT, along the
Critical Isochore as a Function of the
Reduced Temperature (T/TC - 1)
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range 0.048 0K < T - TC < 2.40K, and with a scattering vector q = 8382 cm 1

In Table 4.3 we present our averaged experimental values of P/it and

2 -1
1/2P. We also present our results for r/q using q = 8382 cm~ . We re-

call that, since q 2 2 << 1 over the range of our measurements, the quan-

tity P/q = A/pC , the thermal diffusivity, where A is the thermal con-

ductivity and C is the specific heat per unit mass at constant pressure.

In the upper portion of Fig. 4.2 are plotted the averaged results

of the measurements of the thermal diffusivity as a function of T - TC'

The uncertainty of each point is approximately 27o. These results are

larger at all temperatures and are different in curvature than results

which were previously reported along the critical isochore of SF6 by

()-2 1.26 2
Saxman and Benedek, who found A/pC = l.26 x 10 (T/TC - 1) . cm /sec

for 0.0400 K < T - TC < 50 K. The data of Fig. 4.2 can be approximated by

the formula A/pC = 1.22 x 10 (T/TC - l)0'78 cm 2/sec in the temperature

range 0.048 0 K < T - TC < 0.30K. At temperatures higher than T - TC = 0.3K

the data can no longer be adequately represented by a simple power law.

To date there has been no convincing explanation for the discrepancy be-

tween the results presented here and those reported in Reference 7.

Braun et al. have also reported measurements of the thermal diffusivity

along the critical isochore of SF The results presented here are similar

in curvature to those reported in Reference 8 but over the range of meas-

urement are everywhere greater in magnitude by approximately 30O.

In Fig. 4.3 the data of Fig. 4.2 are re-plotted along with results

obtained by Lim and Swinney and by Langley and Kachnowski. The good

agreement between the results presented here and those reported in Refer-

ence 9 lends strong support to the belief that these results are indeed

correct.
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Table 4.3 P/q = A/pC along the Critical Isochore

T("K) T-T(OK) P/xT(Hz) 1/2r(msec) r/q2 (cm 2/sec)

321.092 2.385 753 33-51x10-6

320.818 2.111 669 29.66

320.609 1.902 615 27.58

320.420 1.713 530 24.60

320.232 1.525 501 22.09

320.120 1.413 461 20.68

319.955 1.248 411 18.38

319.833 1.126 368 16.48

319.728 1.021 338 15.12

319.630 0.923 320 14-35

319.533 o.826 288 12.88

319.451 0.744 264 11-77

319-377 o.670 243 10.87

319.317 o.610 226 10.07

319.250 0.543 203 8.98

319.185 0.478 181 8.1o

319-110 0.403 1.036 6.85

319-051 0.344 1.164 6.11

319.003 0.296 1.326 5.37

318.960 0.253 1.488 4.78

318.923 0.216 1.652 4.27

318.894 o.187 1.923 3.70

318.868 0.161 2.180 3.25

318.845 0.138 2.426 2.91

318.827 0.120 2.753 2.60

318.812 0.105 3.035 2.36

318.798 0.091 3.427 2.075

318.788 0.081 3.688 1.93

318.779 0.072 4.o56 1.73

318.766 0.059 4.480 1.49

318.755 0.048 5.116 1.30
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22Ii. Analysis of' P/q2 Measurements

In order to properly analyze the measurements of /q = A/PC

it is necessary to recall that the mode-mode coupling theories predict

the behavior of only the divergent or singular parts of the thermal con-

ductivity and the thermal diffusivity. Specifically, we saw in Section

II.E.3. that Kadanoff and Swift(10) predict that in the hydrodynamic re-

gion the thermal conductivity of a fluid near its critical point contains

a divergent component which has a temperature dependence which is essen-

tially governed by the expression

kBTpCP
As ~ B' . (4.4)

T~

Further, we saw in Section II.E.4. that Kawasaki (11), (12) predicts that

the magnitude and temperature dependence of the critical part of the

thermal diffusivity, DC A )C, in the hydrodynamic region is given by
P

DC * (4'5)

It becomes clear, then, that in order to analyze the data in terms

of the mode-mode coupling theory one must take into account the background

contribution to the thermal diffusivity which arises from the nondivergent

part, AB, of the thermal conductivity. Sengers and Keyes(15) indicate

that the thermal conductivity may be expressed as

A = AB (4.6)

where A is an ideal thermal conductivity in the absence of any critical
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point anomaly. Empirically, the background A can only be estimated by

extrapolating data away from the critical point into the critical region.

As Sengers and Keyes indicate this extrapolation is simplified by noting

that

AB(pT) = AB(p) + AB(p = 0,T) . (4.7)

We see then that an accurate estimate of AB in the critical region

may be obtained from measurements of AB(p = 0) at temperatures near TC

combined with measurements of AB(p) at densities near pC but at temperatures

away from T . While such data are readily available for CO2(14) and

xenon, (15) the determination of A for SF 6 required a more elaborate

procedure.

Lis and Kellard(16 ) have measured the thermal conductivity of SF6

as a function of pressure along five supercritical isotherms and one

subcritical isotherm. The densities corresponding to their measured

pressures and temperatures range from p = 0.030 gm/cm to p = 1.293

gm/cm . Further, Tauscher (17) has measured the thermal conductivity

of SF6 at four points along the liquid side of the coexistence curve.

The densities corresponding to these points range from p = 1.55 gm/cm5

to 1.83 gm/cm5. The densities corresponding to the measured temperatures

and pressures of Lis and Kellard and Tauscher were determined by applying

the SF6 PVT data reported by Mears et al., )Otto and Thomas(19) and

Ulybin and Zherdev. (20)

Having deduced A(p,T) at a number of points from the measurements

of Lis and Kellard and Tauscher, the next step was to obtain A(p,TC) from
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these data. From the low density data of Lis and Kellard it was found

that A(p -90,T) varied linearly with temperature at a rate of 0.007 x

10 erg/sec-cm0 K/0 K. This variation of A with temperature was applied

to each of the points, A(pT) in order to obtain a set of points,

A(p,TC). In Fig. 4.4 are plotted each of these deduced points, A(p,TC)*

The symbols indicate the actual temperatures at which the measurements

occurred but the plotted points have magnitudes which have been corrected

to TC'

The solid curve in Fig. 4.4 is an estimate of the background thermal

conductivity, AB(p,TC). This curve may be represented by a polynomial,

AB(pTC) = AO + Alp + A2p
2 + A p5 + A p (4.8)

where the coefficients have the following magnitudes:

A 0 = 1.34

A = 2.213

A2 = 1.097 (4.9)

A = - 1.047

A4 = 0.552 .

The coefficients have units of 103 erg/sec -cm K and p is in units of

gm/cm

Applying these results one finds that along the critical isochore

the background thermal conductivity may be obtained from the expression

AB(pCT) = (3.29 + 0.007(T - TC) + 0.1) x 103 erg/sec-cm K . (4.10)
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Having determined the background thermal conductivity, g, the next

step in determining the background contribution to the thermal diffusivity,

AB/pCP, is to calculate C . We recall from Eq. (2.61) that the specific

heat per unit mass at constant pressure is given by:

CF = C + T K( ) (4.11)

where C is the specific heat per unit mass at constant volume. We recall

from Eq. (2.66) that

C K

K = (4.12)C K

where K is the adiabatic compressibility. Now, KS is related to the low

frequency sound speed, u, by

K = 2 (4.13)
pu

Using Eqs. (4.11) - (4.13) we have the following expression for C :

C= KT(L) ] (4.14)
pu KT

Equation (4.14) was used to obtain the magnitude of C , at each

temperature along the critical isochore. In evaluating Eq. (4.14) the

6P
data presented in Se'tion IV.B.l. for (;) and in Section IV.B.2. for

KT were used. For the low frequency sound speed, u, the measurements

of Fritsch and Carome(21) were used.

The dashed curve in the lower portion of Fig. 4.2 shows the back-

ground contribution to the thermal diffusivity, AB/pCp, as calculated from

Eqs. (4.10) and (4.14). Due to uncertainties in the extrapolation of A
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into the critical region and experimental uncertainties in the quantities

entering into the expression for C , it is estimated that the uncertainty

in AB/PCP is approximately 10%.

We may thus obtain the critical part of the thermal diffusivity,

DC, from the light scattering data using the expression

D = S [-A -B ----. (4.15)
C PC PC pC C P Ip '

S S

Accodin toSeners(22)
According to Sengers the singular part of the specific heat, CP , may

S
be approximated by

C = C - C (4.16)

In Table 4.4 we present the averaged experimental values of A/pC , the

calculated quantity AB/pCP, and the critical part of the thermal dif-

fusivity obtained from Eqs. (4.15) and (4.16).

5. Discussion of the Results in Terms of the Mode-Mode Coupling Theory

Having obtained the critical part of the thermal diffusivity,

D = AS/pCp , from the data, we shall examine these results in terms of
U I S

the mode-mode coupling theory. The points comprising the upper solid

curve in the logarithmic plot shown in Fig. 4.5 are the averaged results

of the measurements of I/q = A/PCi. The open circles comprising the

lower solid curve represent the point by point experimental deduction

of the critical part of the thermal diffusivity, DC, obtained using

Eq. (4.15), which are listed in Table 4.4.



Table 4.4 DC A along
pCs

T-T (OK) A (cm2/sec)
C Pp

the Critical Isochore

" (cm2/sec)
Pp

321.092

320.818

320.609

320.420

320.232

320.120

319.955
319.833

319-728

319.630

319.533

319.451

319.377

319.317

319.250

319.185

319.110

319-051

319.003

318.960

318.923

318.894
318.868

318.845

318.827

318.812

318.798
318.788

318.779

318.766

318.755

2.385

2.111

1.902

1.713

1.525

1.413

1.248

1.126

1.021

0.923

0.826

0.744

0.670

o.610

0.543
o.478

0.403

0.344
0.296
0.253

0.216

0.187

o.161

0.138

0.120

0.105

0.091

0.081

0.072

0.059

0.048

T(0 K)
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S(cm2/sec)
PpS

33.51x10 -6

29.66

27.58

24.60

22.09

20.68

18.38

16.48

15.12

14-35

12.88

11.77

10.87

10.07
8.98

8.10

6.85

6.11

5.37

4.78
4.27

3.70

3.25

2.91

2.60

2.36

2.075

1.93

1.73
1.49

1.30

26.39x10-6

23-13

20.63

18.38

16.13

14.79

12.84

11.40

10.18

9.05

7.94

7.02

6.19

5.54

4.82

4.14

3.37
2.78

2.32

1.91

1.58

1.52

1.10

0.913

0.769

0.653
0. s48

0.475

0.411

0.321

0.249

7.51X40-6

6.84

7.23
6.46

6.16

6.07

5.69

5.20

5.05
5.40

5.02

4.82

4.73

4.58

4.20

4.oo
3.51

3.35

3.07
2.88
2.70

2.38

2.15

2.00

1.84

1.71

1.53

1.45

1.32

1.17

1.05
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We have seen that the mode-mode coupling theory predicts that

Dc = kBT/6 n*(. We have also seen in Section II.E.3. that the high fre-

*
quency shear viscosity, q , is expected to be a slowly varying quantity.

We see then that the temperature dependence of DC is governed by the

temperature dependence of the Ornstein-Zernike long range correlation

length, E. We have seen (Eq. (2.56)) that E is predicted to diverge ac-

cording to a simple power law with critical exponent v. As can be seen

in Fig. 4.5 the deduced values of DC do in fact obey a simple power law

behavior in the temperature range 0.048 0K < T - TC < 0.50K. The exponent

describing the temperature dependence of DC is estimated as 0.64 + o.04.

This value is consistent with the critical exponent v for the temperature

dependence of the correlation length, t, obtained by Puglielli and Ford(4 )

from measurements at temperatures below T - T = 0.50K (v = 0.67 + 0.07)

as would be expected for a constant value of rj

If we use ( = (1.5 ± 0.23)(T/TC - )-0.67+0.07 R as given in Refer-

ence 4, then the magnitude of q required to fit kBT/6 Aqi to the data

for DC is approximately 400 + 50.P. The extrapolated straight dashed

line in Fig. 4.5 thus represents kBT/6sgq* using these values of E and 'q

Wu and Webb have used the spectrum of light scattered from

thermally excited surface waves to deduce the effective kinematic vis-

cosity of the interface between the coexisting phases in SF . They find

that the average viscosity of the liquid and vapor phases is

= [425 + 14.5(TC - T) ± 15]p.P. Since the viscosities of the coexisting

phases approach each other as T -APTC, we may use their result to estimate
*
q along the critical isochore. In Section II.E.4. we saw that the ex-

tended mode-mode coupling theory of Kawasaki and Lo (24) predicts that *
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is 5.5% smaller than the measured hydrodynamic shear viscosity. We see

then that if we use the data of Puglielli and Ford for i and the data

of Wu and Webb to deduce r then indeed our deduced values of DC agree

extremely well with the calculated quantity kT/6x ~ in the temperature

range 0.0480K < T - T < 0.5K. As is seen in Fig. 4.5 there is aC

marked departure of the deduced values of DC from a simple power law

behavior at temperatures above T - TC = 0.5 K. This rapid departure is

not characteristic of the fluids CO2 and xenon(6 ),(25),(2 6 ) for which

deduced values of DC are observed to obey a simple power law behavior

with magnitudes in agreement with the mode-mode coupling theory predic-

tion at temperatures up to 3 K above TC for xenon and 4.40K above TC

for CO2'

It is important to note, however, that the measurements of E for

SF6 were carried out at temperatures below T - TC = 0.5*K. Thus there

is no direct evidence that E continues to obey a simple power law be-

havior at higher temperatures.

We may conclude this section by reiterating that the magnitude and

temperature dependence of the critical part of the thermal diffusivity,

deduced from measurements of the photocurrent power spectrum and the

photocurrent correlation function arising from light scattered quasi-

elastically from SF6 along the critical isochore, is in excellent agree-

ment with the predictions of the mode-mode coupling theory over the tem-

perature range where independent data exist allowing proper analysis.

In the next section we shall turn our attention to the measurements which

were carried out along the coexistence curve.

-----------
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C. The Coexistence Curve

In this section we shall present, analyze, and discuss the results

of measurements carried out along the liquid and vapor sides of the SF6

coexistence curve over the temperature range 0.021 0K < (TC - T) < 1.0270K.

The measurements were carried out on the same sample of SF6 that was

used during the measurements along the critical isochore. The average

density of the sample during these measurements was within 0.1% of PC

so that the meniscus remained near the mid height of the sample chamber

over the entire temperature range investigated.

1. Measurements of Pressure

In Table 4.5 we present the results of the measurements of the

pressure, P, as a function of the temperature below T . These data thus

represent measurements of the SF6 vapor pressure. Although pressure

measurements at temperatures greater than 318.3140K were made, they are

not presented since they could not be adequately corrected for the time

drift of the pressure transducer (Section III.E.). The absolute mag-

nitude of each of the presented measurements was adjusted so that when

one extrapolates P(T) to P(TC) one obtains P(TC) = 544.77 psi which is

the critical pressure reported by MacCormack and Schneider.

The P(T) data could be adequately represented by the form

P(T) = PC + A,(T - TC) (4.17)

6P
so that the slope of the vapor pressure curve, () v, is just A,. From

a computer fit it was found that

( ) 5 2 o
"R'= - (7.94 + 0.1) x 10 dyne/cm K
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Table 4.5 Variation of Pressure with
Temperature along the Vapor
Pressure Curve

T(0 K) P(psi)

317.682 533-95

317.781 534.1

317.875 535.2

317-959 536.2

318.036 53-05

318.103 537.8

318.166 538.5

318.222 539.2

318.268 539.7

318.314 540.2
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As will be shown, the magnitude of ()v plays an important role in the

analysis of the light scattering measurements.

2. Measurements of (6p/6p)

As we have shown (Eqs. (2.120), (3.43) and (4.3)), the ratio

of scattered power to incident power, PS/P1, is given by

S 2L, 02 2 21
= T p KT2 (4.18)

I 1 AO B - (1+ g )

Since q2 2 << 1 over the temperature range of the measurements, we see

that the reduced compressibility, p 2 KT T, is proportional to

when corrections are made to account for small changes in L, 2,

and (7 )_ due to changes in q as p varies along the coexistence curve.

We have also shown (Eq. (3.44)) that the ratio P /P is proportional

to the ratio of scattered power to attenuated transmitted power, P/(P T meas

We may account for the changes in L, 2, and ( in the following

way. Referring to Figs. 3.8 and 3.9 and the discussion of Section III.G.,

we see that the width of aperture S in Fig. 3.8 determines some length,

L(e), of the scattering region within the sample chamber from which

light is accepted at a particular scattering angle, G. For a fixed

aperture width we may write

L(e) = L( 6 (4.19)
sin 6

From Fig. 3.9 we see that the scattering angle is given by 6 = 2e -

According to Eq. (3.41),
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sin6 3 sine1  . (4.20)

35 n3 1

We see that since the scattering angle, 6, changes with the refractive

index of the SF6, n 3, then the effective length viewed by the collection

optics will also change. We may write

sin 2e = 2 sin 6 cos 6 3 2 sin 63 (4.21)

since cos = l. Using this result in Eqs. (4.19) and (4.20), we have

L(6) = L(e = 90') (4.22)

2 n'sin 0n 3 1

We see then that the change in L is directly proportional to the change

in n .

We now consider the change in a due to changes in n . We saw that

the area of aperture S2 in Fig. 3.8 determines the size of the solid

angle, 2, associated with the scattered light that is accepted for study.

In general we may write

d1= d 13 doh (4.23)

where d6 is the acceptance angle in the plane of Fig. 3.9 and d4 is

the acceptance angle in the plane normal to that of Fig. 3.9. From

Eq. (4.20) we have

cos e d6 = cos6 dO .3 3 31 l'l (4.24)1
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Since cos e 3 cos e 1 1, we have

n 
1de - de .(4.23)

3 n 3 1

Similarly,

n
d$ CI d$ .(4.26)

3 n 1

Therefore,

n12
na = () de1deo . (4.27)

We see then that the change in 2 is inversely proportional to the square

of the change of the SF6 refractive index, n .

Finally, the change in the quantity ( 6) as n and p vary along

the coexistence curve was calculated using the Lorenz-Lorentz equation

for SF6 (Eq. (3.4)).

In Table 4.6 we present the results of measurements of the ratio of

the scattered power to the measured attenuated transmitted power obtained

by measurements of the average photocurrent arising from the light scat-

tered by the SF6 sample along the liquid side of the coexistence curve.

The measurements were obtained using a scattering vector q = 8382 cm.

Each measurement has been normalized by the factor

)2 2
-. TC-

T=T C
INOBM - o2 2 T

(; )T - n )P= C
T=TC

Each measurement then is directly proportional to the magnitude of (6)T

---------- ......



along the Liquid Side of the Coexistence Curve

PT
(F )'NRM

T
(g erg~1 cm~)

317.683

317-781

317.875

317.959

318.035

318.103

318.166

318.222

318.268

318.314

318.353

318.390

318.423

318.453

318.478

318.502

318.523

318.542

318.561

318.574
318.5B8

318.599

318.611

318.622

1.024

0.926

0.832

0.748

o.672

.6o4

0.541

0.485

0.439

0.393

0.354

0.317
0.284

0.254

0.229

0.205

0.184

0.165

0.146

0.133
0.119

0.108

0.096

0.085

3.213x10-3
2.905

2.611

2.347

2.109

1.895

1.697

1.522

1.377
1.233

1.111

9.95Xi0
8.91

7.97

7.19
6.432

5.773

5.177
4.581

4.173

3.734
3.389

3.012
2.667

T( 0 K) T C-T( 0 K)
T -T

C

.453

.518

.587

.667

.758

.865

.984

1.113
1.278

1.447

1.663
1.910
2.174

2.498

2.849

3.253

3.750

4.330

4.891

5.678

6.486

7.534
8.621

1.903x10 7

2.149

2.458

2.785

3.165

3.597
4. 104

4.669

5.281

6.064

6.866

7.891

9.063

1.032X10
6

1.185

1.352

1.544

1.779
2.055

2.321

2.694

3.078

3.575
4.091

Table 4.6 ( T
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The proportionality constant between the experimental quantity
P

(P) - I and ( ) was obtained using the method described in
PT meas. NORM VT

Section III.H.l. We recall that the proportionality constant was deter-

mined by measuring both (PS/T meas. and the pressure, P, at 23 points

P - P
along a near critical isotherm over the density range 1.15 < C < 1.40.

2 - P
The quantity p KT was then determined by measuring the variation of P

with density. In Table 4.6 we thus present our deduced values of the

reduced compressibility, ( )T along the liquid side of the coexistence

curve.

In Fig. 4.6 is shown a log-log plot of-( ) as a function of the

reduced temperature, (1 - T/TC). We see that the reduced compressibility

accurately obeys the power law ( = CO(1 - T/TC )_7 with CO =

1.67 x ~10 g 2erg~1 cm , and 7' = 1.225 + 0.015.

We may recall that the measurements of the compressibility along

the critical isochore indicated that 7 = 1.235 + 0.015. Therefore the

static scaling law prediction 7y = y' (Eq. (2.69)), is indeed satisfied

for SF . We may note that the prediction 7 = 7' is also satisfied for

xenon. (6)

We may also recall (Eq. (2.80)) that the parametric linear model

equation of state(27) explicitly predicts the ratio of the magnitudes of

the reduced compressibilities at equal temperature differences IT - TCI

above TC along the critical isochore and below TC along the coexistence

curve. The prediction is

( ) CC = -[(l - 2p)7/2p(y - 1)]7l .
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In this expression P is the critical exponent that describes the shape

of the coexistence curve (Eq. (2.46)). The value P = 0.33 ± 0.01 has

been accurately determined. Using this value of P and using

7 = 1.23 ± 0.02 we find that the linear model predicts (g)

4.6 + 0.2. A direct calculation of the ratio of the magnitudes of the

reduced compressibilities from the experimental results yields

( ) C 6 C = 4.33 t 0.3. We see that there is fair agreement

with the predictions of the linear model.

Finally, we may recall from the discussion of Section II.D. that

the scaling law equations of state predict that if any two of the critical

exponents are known for a particular system then all the rest may be

determined. Using y = 1.23 + 0.02 and P = 0.33 ± 0.01 we may determine

the scaling law predictions for the other critical exponents for SF6'

From Eq. (2.71) we have, for the critical exponent associated with the

divergence of C, o, = 0.11 + 0.04. From Eq. (2.74) we have, for the

critical exponent associated with the shape of the critical isotherm,

6 = 4.73 + 0.18. From Eq. (2.79) we have, for the critical exponent as-

sociated with the departure of the behavior of the pair correlation func-

tion from the prediction of the Ornstein-Zernike theory, rF = 0.05 + 0.03.

Finally, from Eq. (2.77) we have, for the critical exponent associated

with the divergence of E, v = 0.63 + 0.02.

3. Measurements of P/
2

We next turn our attention to the measurements of the quantity

P/q , obtained from measurements of the half-width at half height of the

photocurrent power spectrum, P/n, and the decay time of the photocurrent
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correlation function, 1/2r, arising from the light scattered quasi-

elastically from thermally excited entropy fluctuations in SF6 along

the liquid and vapor sides of the coexistence curve. These measurements

were carried out over the temperature range 0.021 K < TC - T < 1.0240K,

-1
and with a scattering vector q = 8382 cm.

In Table 4.7 we present our averaged experimental values of P/t
21

and 1/2r. We also present our results for r/q using q = 8382 cm1 .

2 2
Since q 2 << 1 over the range of our measurements, the quantity

2/q = A/pCp, the thermal diffusivity.

In Fig. 4.7 are plotted the averaged results of the measurements

of the thermal diffusivity (open and closed circles) as a function of

TC - T. Also plotted in this figure are the results of Langley and

Elterman(2) open and closed squares) obtained at U. of Mass. The U. of

4 -1
Mass. data were obtained using a scattering vector q = 8.32 x 10 cm .

From Fig. 4.7 we see that there is excellent agreement between the re-

sults of the two experiments even though the values of q differ by two

orders of magnitude.

The M. I. T. data and the hydrodynamic U. of Mass. data can be ap-

proximately represented by the empirical formulas (r/q )liquid

9.02 x 103(l - T/Tc)0.9 2 cm2/sec. and (r/q2 )Vapor = 3.62 x 103(l - T/T 0.86

cm /sec. These formulas are shown as the dashed curves in Fig. 4.7.

The results presented in Fig. 4.7 are similar in curvature to those

reported by Braun et al. but over the range of measurement are every-

where greater in magnitude by approximately 20%. The present results

differ both in magnitude and in curvature from those previously reported



Table 4.7 = 2 - along the Coexistence Curve
PC p

LIQUID SIDE

1/2r(msec)r/t (liz)T(0 K)

317.683

317.781

317.875

317.959

318.035

318.103

318.166

318.222

318.268

318.314

318.353

318.390

318.423

318.453

318.478

318.502

318.523

318.542

318.561

318.574

318.588

T c-T(0 K)

1.024

0.926

0.832

0.748

o.672

o.6o4

0.541

o.485

0.439

0.393

0.354

0.317

o.284

0.254

0.229

0.205

0.184

0.165

0.146

0.133

0.119

985

943

799

743

648

615

573

498

459

415

368

346

312

267

245

.69B1

.7688

.8425

.9339

1.015

1.136

r2 e2P/c2 (cm 2/sec)

44.04x10-6

42.17

35.73

33.22

28.9B

27.50

25.62

22.28

20.52

18.03

16.45

15.47

13-95

11-94

10.98

10.19

9.26

8.45

7.62

7.00

6.26



Table 4.7 (continued)

1/2r(msec) r/g2 (cm 2/sec)

1.243

1.380

1.566

1.701

1.868

2.107

2.350

2.695

3.105

3.778

4.577

5.973

318.599

318.611

318.622

318.629

318.638

318.647

318.652

318.661

318.667

318.674

318.679

318.686

317.699

318.234

318.464

318.598

318.648

0.10B

0.096

0.085

0.078

0.069

0.060

0.055

0.046

0.040

0.033

0.028

0.021

1.008

0.473

0.243

0.109

0.059

5.72

5.15

4.55

4.18xio-6

3.81

3.39

3. oB

2.64

2.29

1.89

1.55

1.19

41. o5xio-6

19.94

11.29

5.76

3.30

T("K) T c-T("K)
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r/g (Hz)

VAPOR SIDE

918

446

253

1.235

2.156
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by Saxman and Benedek who found ( A ) = 1.75 x l0iuPC P liquid

0 63 2 A -3 )0.63 2
(1 - T/T ) c em /sec and ( = 1.79 x 10 (1 - T/TC) cm /sec.

C PC Pvapor

To date there has been no convincing explanation for the discrepancy be-

tween the results presented here and those reported in Reference 7.

However, in view of the excellent agreement between the results of the

two independent experiments shown in Fig. 4.7, it is believed that the

present results are indeed correct.

2
4. Analysis of P/q Measurements

As was discussed in Section IV.B.4., in order to properly analyze

the measurements of P/q2 = A/pC it is necessary to deduce from the data

the critical part of the thermal diffusivity. The critical part of the

thermal diffusivity may be deduced by accounting for the background con-

tribution to the measured thermal diffusivity which arises from the non-

divergent part, A , of the thermal conductivity.

The background thermal conductivity, A , was calculated at each

point along the coexistence curve where the thermal diffusivity was meas-

ured by using the formula

AB(pT) = [AO + A1 p + A 2p + A p + A 4 p + 0.007(T - TC) + 0.1]

x 103 erg/sec. cm K (4.28)

where the magnitudes of the coefficients are given in Eqs. (4.9). As

was discussed in Section IV.B.4., this formula was obtained from an inter-

polation of the thermal conductivity data of Lis and Kellard(16 ) and

Tauscher.(17) The liquid and vapor densities corresponding to temperatures
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along the coexistence curve were calculated from the expressions obtained

by Saxman:(7)

2p  Pg = 1.81 E (4.29)

p. - P

2p =C 1 + 0.60 C (4.30)

C3

where e = ( C ) and pC = 0.732 gm/cm5.
C

Having determined the background thermal conductivity, AB, the next

step in determining the background contribution to the thermal diffusivity,

AB/pCP, is to calculate C . We have seen that C may be obtained from

the thermodynamic relation

C, =Cy + T ( T(431)

We have also seen, however, (Eq. (2.64)), that along the coexistence

6P B
curve (6) is not the slope of the vapor pressure curve (L)v but

6P
is related to (5)Iv through the formula

v (V - PT ( (.32)(V ) = P T iav '

The final term in this formula changes markedly with temperature as

6PT -- PTC resulting in a marked temperature dependence in (T)V. The

explicit expression for C along the coexistence curve thus becomes

C C + [ v T 6 6P 2 6 (4

The quantity CP was calculated at each temperature along the coexistence

curve using Eq. (4.33). In evaluating Eq. (4.33) the data presented in

Section IV.C.l. for ( ),v and in Section IV.C.2. for ()T were used.
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The quantity ( ) was obtained using Saxman's expression (Eq. (4.29)).

The quantity C was obtained from the sound speed measurements of

Schneider(29) in the manner indicated in Section IV.B.4.

The solid curves in Fig. 4.7 show the background contribution to

the thermal diffusivity, A /PC , as calculated from Eqs. (4.28) and (4.33)

for both the liquid and vapor sides of the coexistence curve. Due to

uncertainties in the extrapolation of AB into the critical region and

experimental uncertainties in the quantities entering into the expression

for C%, it is estimated that AB/pC has been determined to + 8%. This

is indicated by the error bars in Fig. 4.7.

As was indicated in Section IV.B.4., we may obtain the critical

part of the thermal diffusivity, DC, from the light scattering data

using the expression

D - = - A- B (4.34)C ~pCP ~ pCP pC CP

where C =C - C.
P S P V,

In Table 4.8 we present the averaged experimental values of A/pC,

the calculated quantity AB/ PC , and the critical part of the thermal

diffusivity obtained from Eq. (4.34).

5. Discussion of the Results in Terms of the Mode-Mode Coupling

Theory

Having obtained the critical part of the thermal diffusivity,

DC = AS/pC S, from the data, we shall examine these results in terms of
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Table 4.8 DC - p along the Coexistence Curve
S C

LIQUID SIDE

T -T(*K) A (cm2/see) ,E(cem2/see)C P P

317.683

317.781

317.875

317-959

318.035

318.103

318.166

318.222

318.268

318.314

318.353

318.390

318.423

318.453

318.478

318.502

318.523

318.542

318.561

318.574

318.588

1.024

0.926

o.832

0.748

o.672

0.604

0.541

0.485

0.439

0.393

0.354

0.317

0.284

0.254

0.229

0.205

0.184

0.165

0.146

0.133

0.119

T(4K)

44. o4xio-6

42.17

35.73

33-22

28.98

27.50

25.62

22.28

20.52

18.03

16.45

15.47

13.95

11.94

10.98

10.19

9.26

8.45

7.62

7.00

6.26

41. 54xio.

37.67

33.84

30-33

27.12

24.23

21.52

19.11

17.13

15.19

13.47

11.89

10.48

9.20

8.16

7.17

6.31

5.55

4.78

4.28

3.75

PS

2.75x10-6

4.91

2.04

1.98

3.46

4.31

3-31

3.52

3.43

3.07

3.68

3.55

2.80

2.87

3.07

2.99

2.94

2.87

2.75

2.53
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Table 4.8 (continued)

A (Cm2/sec)
Pp

T( 0 K) B(cm 2/sec)
P

T C-T(0 K)

0.108

0.096

0.085

0.078

0.069

0.060

0.055

o.o46

0.040

0.033

0.028

0.021

-S(CM /sec)
PS

2.41

2.28

2.07

1.96

1.89

1.74

1.64

1.47

1.30

1.10

0.93

0.75

VAPOR SIDE

41.03xio-6

19.94

11.29

5.76

3.30

32.40xio-6

13.65

6.24

2.44

1.23

3.34

2.89

2.49

2.24

1.93

1.66

1.45

1.17

0.99

0.79

o.63

0.44

318.599

318.611

318.622

318.629

318.638

318.647

318.652

318.661

318.667

318.674

318.679

318.686

5.72

5.15

4.55

4.18

3.81

3.39

3.08

2.64

2.29

1.89

1.53

1.19

317.699

318.234

318.464

318.598

318.648

1.008

0.473

0.243

0.109

0.059

9. 1x10-6

6.45

5.13

3.34

2.07



189

the mode-mode coupling theory. The open circles in Fig. 4.8 are the

2
averaged results of the measurements of P/q A/pC along the liquid

side of the coexistence curve. The dashed line through these points

represents the approximate empirical formula discussed earlier. The

closed and open circles in Fig. 4.9 are the averaged results of the meas-

urements of r/q 2 = A/PC along the vapor side of the coexistence curve.

The open circles are the U. of Mass. measurements reported in Reference 2.

All of these results are again indicated by the solid symbols in the

logarithmic plots shown in Figs. 4.10 and 4.11. The triangles in Fig. 4.10

are measurements far from TC which were reported in Reference 7. Again,

we see that the results from the two independent experiments (and, in

the case of Fig. 4.10, from three experiments) are in excellent agree-

ment. We observe from Fig. 4.10, however, that near TC the U. of Mass.

data are greater in magnitude than the M. I. T. data. This is expected

since their data extend into the non-hydrodynamic region where the rela-

2 2
tion q << 1 no longer holds. In general, one may write

P _ _ _ _ _ C_ P ( q )

2 7pC gB pC ) (q) C ) (45)

It is when q 2 2 << 1 that C assumes its hydrodynamic value and P/q2 = A/PCP.

The open symbols in Figs. 4.10 and 4.11 represent the point by point

experimental deduction of the critical part of the thermal diffusivity,

DC, in the hydrodynamic region obtained using Eq. (4.34). We have seen

that the mode-mode coupling theory predicts that D = k.T/6nr1 . The

open symbols thus represent an experimental deduction of kBT/
6 n1q*E. Since,

as we see from Figs. 4.7 - 4.9, the quantity AB/PC P is a very substantial

---- ------ _'_ - - 11
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part of the total thermal diffusivity, errors in estimating this back-

ground term can result in substantial uncertainties (indicated by the

vertical bars in Figs. 4.10 and 4.11) in the deduced values of kBT/6It1g.

To determine the validity of the mode-mode coupling theory prediction

we must independently calculate k3T/6Ar * and compare the result with our

experimentally deduced values. In the absence of direct measurements of

the correlation range, ., along the coexistence curve, we may obtain an

estimate for E in the following way. We recall from Section IV.C.2. that

it was found that (6) CC/(-6PT<T = 4.33 + 0.3. We may also recall

(Eq. (2.45)) that according to the Ornstein-Zernike theory the isothermal

compressibility, KT, is related to the correlation range, E, by

2 K
L_ T (4.36)
R KI

where KI is the isothermal compressibility of an ideal gas at density p

and temperature T, and R is the direct correlation range. We thus have

the approximate prediction that

T>TC C C C 1/2

(4.33 + 0.3)1/2 (4-37)

We used this formula and the measurements of along the critical'isochore

(4)of SF6 by Puglielli and Ford, who found E =
C

(1.5 1 0.23)(T/T C - 1)-0.67±0.07 A, to determine E along the coexistence

curve. We may note that this procedure of estimating E C has been

checked by direct measurements in xenon and is verified to within the

precision of the measurements which is + 10%. (30)
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Experimental data for -q as a function of density and temperature

along each side of the coexistence curve is also unavailable. We have

(241)
seen that Kawasaki and Lo indicate that in the hydrodynamic region

differs from the macroscopically measured shear viscosity, , by 5.5o.

Therefore we estimated * by using the Lennert and Thodos(51) semi-

empirical formula for i(p,T) which has been verified for a number of

liquids and dense gases. Using parameters appropriate for SF6, the Lennert

and Thodos formula predicts r(p,T) - r(0,T) = 1.13 x 10- (3)1075 pP. We

used the measurements of Kestin (32) who found g(p+0,T = 250C) = 152.5 p-P

and ATj/AT = 0.45 pP/OC to determine -(0,T), and the expression for ( )

given in Eq. (4.32) in order to obtain r(p,T) along the liquid and vapor

sides of the coexistence curve. We find that as TC - T changes from

0.0200K to 1.000 K, Tvapor decreases from 400 to 350 PP and liquid

increases from 419 to 514 pP.

We may note that the Lennert and Thodos formula predicts that

= pCT = TC) = 408 pP. We recall from Section IV.B.5. that Wu and

Webb(23) estimate from their measurements of the average viscosity of

the liquid and vapor phases in SF6 that I(pCTC) = 425 + 15 pP. The

Lennert and Thodos prediction is thus in excellent agreement with their

estimate. We further recall that if we use g = 400 uP along the critical

isochore then the deduced values of DC presented in Section IV.B.4. are

in excellent agreement with the predictions of the mode-mode coupling

theory and was discussed in Section IV.3.5.

When applied to xenon the Lennert and Thodos formula agrees well

with measurements of the effective kinematic viscosity,
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v = (qivapor + liid)/(p + pl. .d ' in xenon by light scattering

from surface waves. The formula disagrees, however, with the recent

measurements of Strumpf and Pings(34 ) who found a weak logarithmic diver-

gence in the shear viscosity in xenon along the coexistence curve. They

obtained viscosities that were greater in magnitude by about 20% in the

liquid phase and by about 10% in the vapor phase than those predicted by

Lennert and Thodos.

Recently Moeller and Carome have also carried out studies which

determine the viscosity of SF6 near the critical point. Their results

indicate a strong divergence in the shear viscosity and hence are markedly

different from the results obtained in other experiments and from the

predicted viscosities of the Lennert and Thodos formula which were used

in our calculations.

The solid lines in Figs. 4.10 and 4.11 represent our calculation of

kBT/6 3xi t for the liquid and for the vapor using the means discussed

**
above for estimating t and L . Linear plots of kBT/6Tq* for the liquid

and for the vapor are shown in Figs. 4.8 and 4.9. In Figs. 4.8 and 4.9

are also shown plots of the background thermal diffusivity, AB/pCp. The

upper solid curves in Figs. 4.8 and 4.9 represent the predicted total

thermal diffusivities:

C
A A B + AS ASB T ( 8

PCP PCP PC - PCP (4.38)

From Figs. 4.8 and 4.9 we see that the comparison between the predicted

total thermal diffusivities and the experimentally measured thermal dif-

fusivities is not good. Similarly, from Figs. 4.10 and 4.11 we see that
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the comparison between the solid lines, kBT/ 61ri , and the experimentally

deduced values of the critical part of the thermal diffusivity is also

not good. In considering these differences one must keep in mind that
*

neither nor ri have been directly measured and that our estimates for

these quantities involve substantial uncertainties. Larger values of g
*

or 'q would bring the mode-mode coupling theory prediction into better

agreement with the experimental results.

Since the mode-mode coupling theory is in excellent agreement with

the results of the experiments carried out along the critical isochore

of SF6 over the temperature range where independent data exist allowing

proper analysis, we feel that direct independent measurements of the

correlation range, E, and the viscosity, , along the SF6 coexistence

curve will provide the information for the proper analysis of the results

of this study and, hopefully, will lead to agreement between our results

and the predictions of the mode-mode coupling theory.



198

References For Chapter IV

1. G. T. Feke, G. A. Hawkins, J. B. Lastovka, and G. B. Benedek,
Phys. Rev. Lett. 27, 1780 (1971).

2. G. T. Feke, J. B. Lastovka, and G. B. Benedek, and K. H. Langley
and P. B. Elterman, Optics Communications 7, 13 (1973).

3. K. E. MacCormack and W. G. Schneider, Can. J. Chem. 2, 699 (1951).

4. V. G. Puglielli and N. C. Ford, Jr., Phys. Rev. Lett. 2, 145 (1970).

5. J. H. Lunacek and D. S. Cannell, Phys. Rev. Lett. 27, 841 (1971).

6. I. W. Smith, M. Giglio, and G. B. Benedek, Phys. Rev. Lett. 2,

1556 (1971).

7. G. B. Benedek, J. B. Lastovka, M. Giglio, and D. Cannell, in
Critical Phenomena, edited by R. E. Mills and R. I. Jaffee (McGraw-
Hill, New York, 1971).

8. P. Braun, D. Hammer, W. Tscharnuter, and P. Weinzierl, Phys. Lett.

32A, 390 (1970).

9. T. K. Lim and H. L. Swinney and K. H. Langley and T. A. Kachnowski,
Phys. Rev. Lett. 27, 1776 (1971).

10. L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968).

11. K. Kawasaki, Ann. Phys. 61, 1 (1970).

12. K. Kawasaki, Phys. Rev. A 1, 1750 (1970).

13. J. V. Sengers and P. H. Keyes, Phys. Rev. Lett. 26, 70 (1971).

14. B. LeNeindre, P. Bury, R. Tufeu, P. Johannia, and B. Vodar, in
Proceedings of the Ninth Thermal Conductivity Conference, edited by
N. R. Shanks7TU. S. A. E. C., Division of Technical Information
Extension, Oak Ridge, Tenn., 1970).

15. R. Tufeu, B. LeNeindre and P. Bury, Compt. Rend. Acad. Sci. (Paris)
B273, 113 (1971).

16. J. Lis and P. 0. Kellard, Brit. J. Appl. Phys. 16, 1099 (1965).

17. W. Tauscher, Kltetechn. Klim. 20, 287 (1968).

18. W. H. Mears, E. Rosenthal, and J. V. Sinka, J. Phys. Chem. T, 2254
(1969).



199

19. J. Otto and W. Thomas, Z. Phys. Chem. 23, 84 (1960).

20. S. A. Ulybin and E. P. Zherdev, Soviet Physics-Doklady l2, 306 (1970).

21. K. Fritsch and E. F. Carome, NASA Report No. CR-1670, 1970 (unpublished).

22. J. V. Sengers, Ber. Bunsenges. Physik. Chem. 76, 234 (1972).

23. E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2077 (1973).

24. K. Kawasaki and S. Lo, Phys. Rev. Lett. .2, 48 (1972).

25. H. L. Swinney, D. L. Henry and H. Z. Cummins, J. Phys. (Paris) 13

Suppl. Cl, 81 (1972).

26. J. Zollweg, G. Hawkins, I. W. Smith, M. Giglio and G. B. Benedek,

J. Phys. (Paris) 3 Suppl. Cl, 135 (1972).

27. P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev. Lett. 23,

1098 (1969).

28. E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).

29. W. G. Schneider, Can. J. Chem. 2, 243 (1951); J. Chem. Phys. 20,
759 (1952).

30. I. W. Smith, private communication.

31. D. A. Lennert and G. Thodos, Am. Inst. Chem. Eng. J. 11, 155 (1965).

32. J. Kestin, private communication.

33. J. Zollweg, G. Hawkins, and G. B. Benedek, Phys. Rev. Lett. 2,
1182 (1971).

34. H. J. Strumpf and C. J. Pings, to be published.

35. R. P. Moeller and E. F. Carome, to be published.



Appendix A

3 PARAMETER SINGLE LORENTZIAN FITTING PROGRAM

IMPLICIT REAL*68(A-H,o-Z)
DIMENSION QZ(400),T(400),D(200),VALUE(200),ANORM(200),DATA(200),

CFREQ(20)
1000 FORMAT(Il0,2Fl0.1)
1010 FORMAT(6F11.1)
1020 FORMAT(6Fll.0)
91 FORMAT(IlO,F1O.1)
102 FORMAT(lH1,5X,12H HALF WIDTH ,15X,8H HEIGHT ,15X,12H SHOT L

C15X,12H DERIVATIVE ,15X,10H FUNCTION //)
103 FORMAT(lH ,7X,F8.2,16X,E10.4,15X,E1o.4,14X,E15.8,1OX,E15.8)
104 F0RMAT(lHO.43X,3H + ,F8.2)
105 FORMAT(lH ,20X,13H HALF WIDTH= ,F8.2)
106 FORMAT(lH ,43X,3H - ,F8.2)
107 FORMAT(lH1,15X,11H FREQUENCY ,15X,6H DATA ,15X,5H FIT ,15X,

C10H RESIDUAL //)

EVEL ,

0001
0002

0003
0004
0005
0006
0007

0008
0009
0010
0011
0012

0013
0014
0015
0016
0017
ooi8
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028

0029

108 FORMAT(lH ,15X,F11.0,13X,F11.2,9X,F11.2,12X,F11.2)
READ(5,l000) MNQQAQ
READ(5,1010) (QZ(J),J=1,MN)
READ(5,1020) (T(J),J=1,MN)
DO 9915 J=lMN
QZ(J)=(QQ+AQ)/(QZ(J)+AQ)

9915 CONTINUE
READ(5,91) N,A
READ(5,1010) (D(I),I=1,N)
READ(5,1020) (VALUE(I),I=1,N)
IF(T(l) 4GT. VALUE(l) .OR. T(MN) .LT. VALUE(N)) GO TO 325
DO 9990 I=1,N
DO 9960 J=i,N
IF(T(J) ,GT. VALUE(I)) GO TO 9970

9960 CONTINUE
9970 ANORM(I)=(QZ(J-1)*(T(J)-VALUE(I))+QZ(J)*(VALUE(I)-T(J-1)))/

C(T(J)-T(J-1))
DATA (I)= (D(I) +A) *ANORM(I)



0030 9990 CONTINUE
0031 HAFHT=(DATA(i)-DATA(N))/2.0+DATA(N)
0032 Do 40 I=1,N
0033 IF(DATA(I) .LT. HAFHT) GO TO 50
0034 40 CONTINUE
0035 50 FFREQ=VALUE(I)
0036 FREQl=FFREQ-0.l*FFREQ
0037 FREQ2=FFREQ+0. 1*FFREQ
0038 TAUl=1.0/FREQl
0039 TAU2=1.O/FREQ2
oo4o WRITE(6,102)
00241 J=1
0042 FREQ(1)=0.O
oo43 Dl=O.o
0044 D2=0.o
0045 D3=00.
0046 S=o.O
0047 Si=0.0
0048 S2=0.0
0049 DSQ=0.0
0050 DO 20 I=1,N
0051 BORC=1.0/(1.0+(VALUE(I)*TAUl)**2)
0052 D1=D1+BORC
0053 D2=D2+BORC**2
0054 D3=D3+BORC**3
0055 SO=SO+DATA(I)
0056 Sl=Sl+DATA(I)*BORC
0057 S2=S2+DATA(I)*(BORC**2)
0058 DSQ=DSQ+DATA(I )**2
0059 20 CONTINUE-
0060 EN=N
0061 ACDEF= (EN*Sl-D1l*SO)/ (EN*D2-D1**2)
0062 BCDEF=(D2*SO-D1*Sl)/(EN*D2-D1**2)
0063 DFDTC1=(ACDEF*(Sl-S2)-(ACDEF**2)*(D2-D3)-ACDEF*BCDEF*(D1-D2))/

CTAUl
0064 FUNC1=DSQ-ACDEF*Sl-BCDEF*S0
oo65 wRiTE(6,103) FREQlACDEFBCDEFDFDTClFUNC1



0066 D1=0. 0
0067 D2=0.0
0068 D3=0.0
0069 SO=0.0
0070 31=0.0
0071 S2=0.0
0072 DSQ=0.0
0073 DO 10 I=1,N
0074 BORC=l.0/(1.0+(VALUE(I)*TAU2)**2)
0075 Dl=D1+BORC
0076 D2=D2+BORC**2
0077 D3=D3+BORC**3
0078 SO=SO+DATA(I)
0079 SL=Sl+DATA(I )*BORC
0080 S2=S2+DATA(I)*(BORC**2)
0081 DSQ=DSQ+DATA(I )**2
0082 10 CONTINUE
0083 EN=N
0084 ACDEF=(EN*Sl-D1*SO)/ (EN*D2-D1**2)
0085 BCDEF= (D2*SO-D1*S1)/ (EN*D2-D1**2)
oo86 DFDTC2= (ACDEF*(Sl-S2)-(ACDEF**2)*(D2-D3)-ACIEF*BCDEF*(D1-D2))/

CTAU2
0087 FUNC2=DSQ-ACDEF*So-BCDEF*S0
0088 WRITE(6,103) FREQ2,ACDEFBCDEFDFDTC2,FUNC2
0089 11 SLOPE=(DFDTCl-DFDTC2)/(TAUl-TAU2)
0090 YCEPT=DFDTCl-SLOPE*TAUl
0091 TAUQ=YCEPT/SLOPE
0092 D1=0.0
0093 D2=0.0
0094 D3=0.0
0095 SC=0.0
0096 sa1o.o
0097 S2=0.0
0098 DSQ=0.0
0099 DO 30 I=1,N
0100 BORC=.0/(l.0+(VALUE(I)*TAU0)**2)
0101 D1=D1+BORC
0102 D2=D2+BORC**2



0103 D3=D3+BORC**3
0104 SO=SO+DATA(I)
0105 Sl=Sl+DATA(I)*BORC
0106 S2=S2+DATA(I)*(BORC**2)
0107 DSQ=DSQ+DATA(I)**2
0108 30 CONTINUE
0109 EN=N
0110 ACDEFO (EN*Sl-D1*SO )/ (EN*D2-D1**2)
0111 BCDEFO=(D2*SO-D1*Sl)/ (EN*D2-D1**2)
0112 DFDTCO=(ACDEFO*(Sl-S2)-(ACDEFO**2)*(D2-D3)-ACDEF0*BCDEFO*(D1-D2))/

CTAUO

0113 FUNCO=DSQ-ACDEF0*Sl-BCDEF0*SO
0114 FREQO=l. O/TAUO
0115 WRITE(6,103) FREQOACDEFOBCDEFO,DFDTCOFUNCO
0116 BLATZ1=DABS(DFDTCl-DEDTCO)

0117 BLATZ=DABS(DFDTC2-DFDTCO)
0118 IF(BLATZ2 .GT. BLATZ1) GO TO 280
0119 TAUl=TAUO
0120 DFDTC1=DFDTCO
0121 GO TO 97
0122 280 TAU2=TAUO
0123 DFDTC24DFDTC0
0124 97 J=J+1
0125 IF(J .GT. 20) GO TO 325
0126 FREQ(J)=FREQO
0127 RATIO=(DABS(FREQ(J)-FREQ(J-1)))/(FREQ(J)+FREQ(J-1))
0128 IF(RATIO .LT. 0.00001) GO TO 324
0129 GO TO 11

0130 324 CONTINUE
0131 Al=((FUNCl-FUNCo)*FREQO*FREQ1)/((FREQl-FREQO)**2)
0132 A2=((FUNC2-FUNCO)*FREQO*FREQ2)/((FREQ2-FREQO)**2)
0133 AV=(Al+A2)/2. 0

0134 B=- (2.O*AV*FREQ(FREQO*FUNCO)
0135 C=AV*(FREQO**2)
0136 FHI=(-B4((B**2)-4.*A*C)**0.51)/(2.0*AV)
0137 FLO=(-B-((B**2)-4.0*AV*C)**0.5)/(2.0*AV)



0138 PORK=FHI-FREQO
0139 DORK=FREQO-FLO
0140 WITE(6,104) PORK
0141 WRITE(6,1o5) FREQo
0142 WRITE(6,l06) DORK
0143 WRITE (6,107)
0144 Do 6o I=1,N
0145 SPEC=(ACDEFO*(FREQO**2)/VALUE (I )**2+FREQO**2) )+BCDEFO
o146 RESID=DATA(I)-SPEC
0147 WRITE(6,108) VALUE(I),DATA(I),SPEC,RESID
o148 6o COPINUE
0149 325 CONTINUE
0150 CALL EXIT
0151 END



Appendix B

3 PARAMETER SINGLE EXPONENTIAL DECAY FITTING PROGRAM

0001 DINENSION Y(256),G(3),DI(256),ERR(256)
0002 READ (5,1) NTC
0003 1 FORMAT(Il,Fl0.2)
0004 READ(5,20) (Y(I),I=1,N)
0005 20 FORAT(6F11.1)
0006 E=10.
0007 DO 2 J=1,3
0008 N45*J
0009 K=M+30
0010 LM+60
0011 2 G(J)=(Y(K)*Y(K)-Y(M)*Y(L))/(Y(M)+Y(L)-2*Y(K))
0012 C=-(G(1)+G(2)+G(3)) /3.
0013 EN=N
0014 B=-( ALOG(Y(N)-C)-ALOG(Y(1)-C))/(EN-l.0)
0015 102 F0RMAT(lHl,15X,6H DATA ,15X,5H FIT , 15X,10H RESIDUAL //)
0016 8 coNTINm
0017 IN=0
0018 IUT=0
0019 IF(.1-ABS(E)) 3,100,100
0020 3 UB=0.
0021 UA=0.
0022 UC=0.
0023 UN=0.
0024 RLA=o.
0025 DO 5 J=1,N
0026 UB=EXP(J*B)+UB
0027 UA=Y(J)*EXP(J*B)+ UA
oo2B UC=uc+y(J)
0029 UN=Y(J)*Y(J)+UNN
0030 5 RLA=EXP(2.*J*B)+RLA
0031 EN=N
0032 A=(EN*UA-UC*UB)/(EN*RIA-UB*UB)
0033 C=(UC-A*UB)/EN
0034 S=SQRT (UN-C*UC-A*UA )/EN
0035 IF(IN.EQ.1.OR.IUT.EQ.1) GO TO 15



0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
o046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076

SO=S
B0=B
AR=A
CR=C

15 CONTINUE
IF (IN.EQ.1) GO TO 6
B1+E/100)*BO
IN=1
GO TO 3

6 IF (IUT.EQ.1) GO TO 7
SU=S
B= (1-E/100)*BO
IUT*i
GO TO 3

7 SL=S
UW=(SU-SL)/(2.*(SU +SL-2.*SO))
B=BO*(l.-UM*E/100.
E=ABS(UM*E)
IF(E.GE.100) GO TO 10
GO TO 8

100 WRITE(6,102)
DO 10 J=l,N
FU=CR+AR*EXP(B*J)

DI (J)=Y(J)-FU
ERR(J)=DI(J)**2
WRITE(6,ll) Y(J),FUDI(J)

11 FORMAT(lH ,15X,F6,2,15X,F6,2,17X,F6.2)
10 CONTINUE

SUM=O.00
DO 40 J=1,N
SUMPERR (J)+SUM

40 CONTINUE
EN=N
RMS=(SUM/EN)**0.5
WRITE(6,106) RMs

106 FORMAT(lHO,20X,12H RMS EMRRR= ,F1O.4)
D=-TC/BO
wRITE(6,105) D

105 FORMAT(lHO,20X,13H DECAY TIME = ,F10.2,2X,14H MICROSECONDS //)
CALL EXIT
END
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