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ABSTRACT

Most of the available waste-heat sources have effective
temperatures less than 700 F. In order to utilize these heat
sources a low temperature and low temperature-ratio analysis
is required to investigate the best alternative for waste-
heat recovery among the present existing engines.

A low temperature-ratio preliminary, comparative analysis
of superheated Rankine, non-ideal Stirling, and ideal Brayton
engine is presented. This analysis shows the first two have
comparable efficiencies at low temperature-ratios and have
superiority over the ideal Brayton engine. Since the Rankine
engine has been well investigated for low temperature, and
low temperature-ratio duties,,then a need exists for 'similar
analysis on the Stirling engine because its open literature
deals largely with high temperature applications.

A new and complete model for a Stirling engine has been
established. This computerized model predicts the behavior of
existing engines reasonably accurately for-cases where a
quantitative comparison is available. Moreover, where the
information reported is incomplete, the model still offers at
least qualitative explanations for the observed effects.

In order to obtain a closed form solution suitable for
design optimization a simplified model for practical Stirling
engines has been derived. This new model has sufficient accu-
racy for prediction of the behavior of real engines and its
results are quite close to the complete model predictions.

A general method of Stirling design optimization is pre-
sented. This method, which is based on the simplified model,
separately optimizes each component of the engine. Correla-
tions are presented to determine optimum geometry for each
of the heat-exchangers, based on Mach number, Reynolds number,
operating temperature-ratio, and heat-exchanger dead volume.
This optimization method utilizes derived results for optimum
swept-volume ratio, phase angle difference between the cylin-
der displacements, bore-stroke ratio, and engine speed.

Results of the optimum designed Stirling engine have
been compared with available data on Rankine waste-heat en-

gines to determine which one performs more efficiently at low

temperatures and low temperature-ratios. This comparison
shows that in temperature-ratio range 1.25 to 1._6 a Rankine



engine operates more efficiently, while for higher temperature
ratios a Stirling engine is the better alternative. Also it is
indicated that a low power-level, waste-heat, Rankine engine
has vanishing efficiency at temperature-ratio of 1.2 or less;
whereas, an optimized Stirling engine would appear to be capable
of operation at temperature-ratios of 1.1 or more.In the latter
case, the optimum regenerator has vanishing length, i.e. the
Stirling engine has practically no regenerator.

Thesis Supervisors: Professor Henry M. Paynter
Professor Joseph L. Smith Jr.,

Thesis Committee Members:
Professor Thomas P. Bligh
Professor Borivoje Mikic
Professor David Gordon Wilson
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NOMENCLATURE

Ac heat transfer area of compression space

Ae heat transfer area of expansion space

AFRC cooler free flow area

AFRH heater free flow area

AFRR regenerator free flow area

AH heat transfer area

B bore of a cylinder

Cp specific heat of working fluid at constant pressure

Cv specific heat of working fluid at constant volume

d diameter of wire or sphere particles in the regenerator

D hydraulic diameter (section 4.1)

normalized dead volume D=(VDR+VDC+VDH)/VC (section 3.1.1)

DC I.D. of cooler tubes (section 4.1.2)

normalized dead volume for cooler VDC/VC (Section 4.1)

DH I.D. of heater tubes (section 4.1.3)

normalized dead volume for heater VDH/VC (section 4.1)

DRR diameter of regenerator cross-sectional area

f average friction factor (section 2.3.1)

correction factor (section 3.2)

F Correction factor

Fe enhancement factor for expansion space

Fc enhancement factor for compression space

fx friction factor at position x

Fcc mass flow rate correction factor in cooler

Fch mass flow rate correction factor in heater

Fcr mass flow rate correction factor in regenerator



H enthalpy (section 2.2)

coefficient of heat transfer (Appendix L)

hi inner coefficient of heat transfer

h outer coefficient of heat transfer

k ratio of constant pressure to constant volume specific
heat (Cp/Cv)

Kg thermal conductivity of gas

Km thermal conductivity of material

1 cylinder-piston gap size

L length of the component

Lp displacer length

M mass, Mach number

m average mass flow rate

rhx mass flow rate at position x

N engine speed

Nc number of tubes in cooler

NH number of tubes in heater

P pressure

P1 amplitude of pressure variation from its mean value

Pr Prandlt number

AP pressure drop

Qin input heat

R ideal gas constant (section (2.1.1))

cylinder radius (Appendix G)

Re Reynolds number

S stroke

t thickness

T temperature

TC cold temperature



TH hot temperature

Tr temperature ratio (TC/TH)

TR regenerator mean temperature

AT temperature drop

V volume

VD dead volume

VDC dead volume in cooler

VDH dead volume in heater

VDR dead volume in regenerator

Vr volume ratio (VC/VH)

X dead volume ratio

Xm amplitude of piston displacement

W work

Wout output work (power)

Greek letters:

a aspect-ratio

inverse of Mach number

y ratio of Re/M 2

6 temperature ratio

dead volume ratio

swept volume ratio

W (0t), rotational speed

p density

1- viscousity

phase angle difference between the two cylinder displace-
ments.

$p Phase angle difference between pressure wave and expan-
sion volume displacement.

t time constant

M



Subscripts:

am ambient

c compressor, cooler

C cooler, cold

for dead volume

e expansion space

EQ equivalent

h heater

H Heater, hot

in input

m mean value

min minimum

max maximum

out output

regenerator

T for temperature

for phase angle
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CHAPTER I

1.1- Introduction

Robert Stirling, a minister of the Church of Scotland and

originator of the regenerative heat exchanger, invented the

closed-cycle regenerative engine in 1816, and shortly thereaf-

ter a patent on the invention was issued in his name. The eng-

gine originally used hot air as a working fluid and was, there-

fore, called a hot-air engine. At the time, this engine satis-

fied a demand for a small power plant, since the steam engine

had become impractical in the low-power range because of ex-

cessive heat losses.

In modern usage, Stirling engine is a device which operat-

es on a closed regenerative thermodynamic cycle, with cyclic

compression and expansion of the working fluid at different

temperature levels, and where the flow is controlled by volume

changes, so that there is a net conversion of heat to work.

Engines exist which operate on an open regenerative cycle,

where the flow of working fluid is controlled by valves. For

convenience, these may be called Ericsoon-cycle machines , but,

in practice, the distinction is not widely established and the

name Stirling engine is frequently indiscriminately applied to

all types of regenerative machine. The generalized definition

covers machines capable of operating as prime movers, heat

pumps, refrigerating engines, or pressure generators.



Figures (1) and (2) show the original single-/and double-

cylinder Stirling engines. Although a number of modifications

were made to the original cycle, inadequate understanding of the

regeneration process and how practical regenerator design affec-

ted the performance of the cycle prevented the Stirling engine

from competing with first the steam engine and later with the

internal-combustion engine. Therefore, the hot-air engine, be-

cause of inferior efficiency, low mean effective pressure and

low specific power seemed destined for oblivion.

Yet throughout the nineteenth century thousands of hot-air

engines were made and used in a wide variety of sizes and shapes

in Britain, Europe, U.S.A., and other parts of the world. They were

reliable and reasonably efficient, readily permitting the use

of low grade fuels. More importantly, they were safe compared

with contemporary reciprocating steam engine installations and

their associated boilers, which exploded with depressing regu-

larity, due to high working stresses, poor materials and imper-

fect joining techniques.

About the middle of the nineteenth century, the invention

of the internal-combustion engine, in the form of the gas engine,

and its subsequent development as a gasoline-and oil-fuelled

engine, along with the invention of the electric motor, caused

the use of Stirling engines to fade rapidly until, by 1914,

they were no longer available commercially in any quantity.

In the late 1930s, rebirth of the Stirling engine was start-

ed at the Philips Research Laboratories in Holland. Initially



this work was directed to the development of small thermal-power

electric generators for radios and similar equipment, for use in

remote areas, where storage batteries were not readily available.

Studies by Philips and others embraced the experimental develop-

ment of engines of various sizes up to 450 h.p. as is discus-

sed in some detail in Appendix(B).

Over the past several years, interest in the application of

Stirling engines to serve a variety of power-producing needs has

increased considerably. As it is shown in Appendices(A)and(B),

this type of engine have been developed for serving as thermo-

electric generators, motor vehicles, heat pumps in cryogenic

industry, replace for electric motor in air conditioning systems)

blood pumps and many other services. Since most of these appli-

cations involve with high temperatures and/or high temperature

ratios, consequently in some cases such as automative applica-

tions they have ended up with two essential problems: finding

materials for high temperature components and sealing problems

due to the high pressure inside the system. Therefore, it has

generally been concluded that the Stirling engine is not

presently economical for high temperature applications.

The object of this thesis is an analysis and design of the

Stirling engine following a radically different concept from most

of the previous attempts. Basic concerns are: low temperatures

and low temperature ratios (TH/TC<2), waste heat as the heat

source, and low output power level design. As shown in next sec-

tion, there has not been adequate research along these li.nes;-

in fact it is hard to find any effort of this sort.



1.2- Applications of Stirling Engines Involving Low Temperatures
--------------------------------------------------------------

& Low Temperature Ratios

In the past, major industries have foregone the most effi-

cient use of excess process heat and instead purchased supple-

mental power and fuel which used to be the lower-cost alterna-

tive. Much process heat above 200.F was (and still is) rejected

to cooling streams. But as power and fuel costs rise, attitudes

are changing. Diminishing world supplies of fossil fuels have

focused attention on the development of more efficient energy-

conversion systems and on the concomitant search for alternative

energy sources. Efficient use of all energy resources is becom-

ing more important, on both sociological and economic grounds.

One approach to better energy utilization is embodied in

the available energy of a given system. For example, in parallel

with chemical-processing plants, or for diesel-engine coolants,

one might establish a sub-system for converting a fraction of

the waste heat to useful power. It is obvious that the tempera-

ture ratio (to ambient) of such a waste-heat source is lower

than the required temperature ratios for operation of present

liquid-fuel engines.

A common and feasible waste-heat source is the exhaust of

any type of internal combustion engine or open cycle gas tur-

bine which employs the chemical energy released at high tempera-

ture by fossil fuel combustion. A significant fraction of this

energy is rejected as the sensible heat of the exhaust gases, at

a temperature level at which it mnight still be utilized as the
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heat source for an appropriate thermal engine.

Therefore, it is important to find the most efficient and

reliable engine to utilize the available energy of such heat

sources. Since air-conditioners and refrigerators are heat pumps

working at low temperature ratios, then their reversed cycles

might be assumed as alternatives for low-temperature-ratio heat

engines. But these cycles can not be simply reversed to generate

positive power because the expansion valve must now be replaced

by a pump or compressor, and it is clear that the original isen-

thalpic throttling process is always easier to realize than re-

versed isentropic compression; therefore, in the practical re-

versed cycle there might not be enough expansion work to supply

the required compression work. The only cycle in this category

which might have some hope is the Rankine cycle; the following

sections (6-1-1) outlines efforts for using this cycle for waste-

heat recovery or for similar use at low temperature ratios.

Since the temperature-ratios (to ambient) of most of the

available waste-heat sources are substantially less than 2 and

the accumulated literature of the Stirling cycle furnishes no

indication of effort at low-temperature-ratio operation, then

it would appear to be valuable to perform a complete research

and analysis based on Stirling engines operating at tempera-

ture ratios less than 2, thus to determine how close to unity

this ratio might become before the engine could no longer gene-

rate net output power.

This thesis presents the analysis and design of Stirling
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engines for low-temperature-ratio applications,and compares

the performance of optimized Stirling engines with the perfor-

mance of Rankine engines operating under the same conditions.

A significant result is the determination of the lower-tempera-

ture-ratio boundary beyond which no practical engine could gene-

rate positive shaft power.

Since waste-heat recovery is a relatively new area, then

next section presents a summary of the few low-temperature-ratio

efforts which have been done recently.

M--



1.3- Review of Low Temperature & Low-Temperature-Ratio Efforts
-----------------------------------------------------------

The efficiency of both Stirling and Rankine engines increa-

ses with increasing heat source temperatures and with decreasing

heat sink temperatures. But high temperatures require the use of

heat resistant materials, which are relatively expensive. There

are other applications, however, where high efficiencies can be

traded off for lower cost, i.e. where the heat source itself is

at lower temperature, and thus use of conventional or less ex-

pensive "hot side" materials is possible. A typical application

in the later category is the conversion of solar energy which

has the effective temperature (temperature of collected energy

by flat plate or parabolic reflectors) in the 200C to 500C range

There have been some research efforts directed at using a

Rankine cycle at a low temperature-ratio, and there are also a

few indirect low temperature-ratio research investigations on

Stirling engines as outlined below.

a)- Rankine Cycle systems:

Early attempts to use a Rankine cycle for waste-heat re-

covery were the initial Ocean Thermal Energy Conversion (OTEC)

efforts. OTEC systems involve a process for producing energy

from the difference in temperature between surface and deep sea

water and such systems were first promulgated more than 150

years ago. Almost a century ago, the principle was related spe-

cifically to the use of sea water as a power source, and full-

scale demonstration power plants have been built within the

last 50 years [17]. Jacques d*Arsonvalin 1881, suggested opera-



ting a closed system in which a working fluid would be vaporiz-

ed by the warm water (30C) of the spring at Grenelle French, then

condensed by colder river water (15C), the resulting pressure

difference across the system provides a constant source of power.

The basic operating principles of OTEC power-plants have remain-

ed to this day basically unchanged since d*Arsonval initially

proposed them. -As it is shown in Fig. (3 ) the warm water(25 C)

is pumped through an evaporator containing a working fluid in a

closed Rankine-cycle system. The vaporized working fluid then

drives a gas turbine which provides the plant power. Then the

exhaust fluid is condensed by water drawn up from deep in the

ocean. Figure (4 ) shows an OTEC baseline system configuration.

The scale of this figure may be estimated from 24-meter diameter

of the evaporator and condenser faces.

The heat exchangers are probably the single most important

component of OTEC systems, especially their materials of cons-

truction. Choices for material range from titanium at perhaps

$150/m with an indefinitely long life-time to aluminum at $50/nm

bearing perhaps a five-year life and even down to a plastic at

$10/m with a completely unknown lifetime. An obvious solution

to reducing the exchanger capital cost is to increase the velo-

city of either or both working fluids, but this would quickly

increase the parasitic pumping losses, especially on the sea-

water side. Another problem is biological fouling of the heat

transfer surface on the sea-water side.

The basic requirements for the ideal working fluid for

M



OTEC are the pressure-temperature relation of the equilibrium

two-phase mixture, the latent heat of vaporization, the liquid

thermal conductivity, chemical stability, low corrosiveness

towards the materials of construction, safety, and cost [17).

Alternative working fluids are ammonia, propane, isobutane, and

several of the Freons. Most of the studies to date have strongly

favored ammonia as the working fluid of choice and indicate a

very severe economic disadvantage in using any of the other

candidate fluids.

Eventhough the OTEC environmental work schedule calls for

a demonstration of this system by 1981, this now appears to be

unrealistic. The important point about OTEC systems is that the

absolute temperature ratio is about 1.07, raising the essential

question: is it possible to get any net output power given a

1.07 temperature-ratio? During the course of this thesis we will

look at the capabilities of Stirling and Rankine engines opera-

ting at such low-temperature-ratios.

Allied Chemical Corporation and Ishikawajima-Harima Heavy

industries Company [12) have jointly pursued the installation

and operation of a nominal 500 KW sulfuric acid, waste-heat re-

covery, Rankine cycle power plant. Fig. ( 5) shows a schematic

of the cycle showing the waste heat source and the pertinent

cycle parameters. The waste heat stream is the sulfuric acid

leaving the strong acid absorber tower. The plan is to use a

portion of this hot acid for the heat recovery system. The

working fluid for the Rankine cycle was chosen to be Genetron
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133 A, a fluorocarbon with the formula C2H2ClF3.T.he vapor por-

tion of the saturation dome for G133A, in the temperature range

from 100 F to 200 F, is essentially parallel to the constant

entropy lines which permits very little superheating and no

need for an auxiliary regenerative heat exchanger before the

condenser.

Their system is under development regarding its performance.

Since their temperature ratio is high enough to overcome the pre-

sent losses, their system is capable of producing net power, but

it may not achieve a practical efficiency.

The Department of Energy (DOE) and Mechanical Technology

Incorporated (MTI) have developed a binary Rankine cycle waste-

heat recovery system for diesel generating systems [21]. The

demonstration site is located at a power plant in the village of

Rockville center, New York. Fig. ( 6) shows a schematic diagram

of this binary system. The system employs two common fluids,

steam and Freon, and is projected to recover 500 KW. The steam

topping cycle buffers the Freon bottoming cycle so that the

system can be applied overy a wide range of gas temperatures

and not be limited by the stability limits of organic coolants.

The temperature-ratio of this system is close to 2; therefore

this system is expected to have a reasonable efficiency.

There are other efforts for waste-heat recovery by apply-

ing Rankine cycles. In section (6.2),when the Stirling and

Rankine engines are compared, the results and a quantitative

summary of those efforts will be discussed.
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b)- Stirling Cycle Systems:

In spite the fact that there have been numerous develop-

ments, employing a Rankine-cycle at low-temperature ratio, there

are only a few research efforts in that area based on the Stir-

lirg cycle.

G. M. Benson 5 ] in his research on Thermal Oscillators,

which are resonant-free-piston, valveless, closed-cycle ther-

mal machines based on the Stirling and/or Ericson cycles, has

explored some low temperature engines. Fig. ( 7 ) shows his re-

sults for variation of efficiency as a function of heater tem-

perature. This figure indicates that when the hot temperature

goes below 300 F efficiency would be close to zero or, by con-

sidering his cold source temperature, if the temperature-ratio

is lower than 1.27 there would be no significant net power.

In 1976 Philips Laboratories started some studies on Stir-

ling engine to determine its efficiency as a function of opera-

ting temperatures [15]. The engine which has been used is the

1-98 Philips engine. For every combination of temperatures and

working fluids and at a number of speeds, the pressure and

dimensions were determined such that maximum efficiency was

obtained. Fig. ( 3) shows the results of their analysis and ex-

periments. These results indicate their minimum temperature-

ratio is about 1.27, and in almost all of the cases there is

about 5% reduction in efficiency of the engine when the shaft

friction is introduced. Although they have concluded that the

best working fluid for Stirling engines is hydrogen, yet if we
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look at the results of the low temperature-ratios (TH/TC<2.0)

we see there is not that much difference between heliun and

hydrogen results. This follows because flow losses no longer

play a large role and the gas density is no longer so signifi-

cant. Finally, at low heater temperatures, the use of a working

fluid with a high density relative to that of hydrogen, results

in low specific power outputs.

There have been, recently, some efforts on using Stirling

and Rankine cycles jointly. General Electric has developed a

Stirling-engine-powered heat-activated heat pump. This 3-ton

heat pump employs a natural gas-fired Stirling engine to drive

the vapor compressor. The concept of a heat-activated heat pump

has the potential of reducing the amount of gas required for

space heating. The Stirling engine/Rankine cycle refrigeration

loop concept being developed would consume about one-half the

gas required by conventional space heating equipment. Fig. ( 9)

shows computed characteristic for this system [1] .



1.4- Objectives and Outline of the Present Study
--------------------------------------------

Since all of the above confirms that there presently exists

no clear analysis of Stirling engines operating at low-tempera-

ture-ratio (close to unity), it is the purpose of this thesis

to present and evaluate an analysis which will be of more gene-

ral application to the Stirling engines operating at low tem-

perature ratios than are the existing analyses. An information

diagram for this study is shown as Fig. (10).

In order to justify the choice of a Stirling engine for

waste-heat-recovery applications, Chapter II begins with the

comparison of steady state performances of different engines

and continues with ideal cycle analyses (i.e, the Schmidt equa-

tions) which includes its predictions for optimum design charac-

ters. The last part of this chapter is involved with modelling

practical Stirling engines, evaluation of different types of

losses and comparison of the complete model with available data.

In order for the analysis to be useful for design purposes,

where a large number of alternatives must be compared, it must

not require extensive computations. All of the present, prac-

tical Stirling cycle models require a good portion of computer

time which make them expensive; therefore, Chapter III repre-

sents a simplified Stirling engine model and compares its eva-

luations with the complete model of Chapter II. Chapter IV deals

with the derivation of optimum speed and phase angle difference

between the hot and cold spaces. Chapter V shows the special

behavior of the engine at low temperatures and low temperature-
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ratios. Chapter VI compares low-temperature Stirling and Ran-

kine engines.
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CHAPTER II

2.1- Steady State Behavior of Different Engines

Utilization of waste-heat sources require the proper type

of engines. Following Martini [13] a first order (steady state)

analysis would be a simple and quick way of comparing different

engine performance. Since Rankine, Brayton and Stirling cycles

are present possible alternatives, in this section we will eva-

lutate and compare the performance of each, at low temperatures

and at low-temperature-ratios.

2.1.1- Rankine Engine:

In order to make this comparison closer to reality, the en-

gine should be more practical and not taken as the ideal case.

As is shown in the following figure, the ideal Rankine cycle,

having isentropic expansion and compression, is identical to

Carnot cycle in operation and efficiency. At two states, the

entrance to the pump and at exit from the expander, the flow

TI

H2

] Fig. (2-l)
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is a mixture of liquid and vapor and would create some design

problems. For example, great difficulties would be encountered

in building a punp that will handle the mixture of liquid and

vapor at 1 and deliver saturated liquid at 2. Therefore, this

cycle is not generally practical.

In a practical Rankine engine, the vapor is completely

condensed and liquid is delivered to the pump 1-1-2. In order

to increase the efficiency and have vapor phase in most parts

of expander, vapor is superheated at constant pressure 3-3

In the Carnot engine all the heat transfer is at constant tem-

perature, and therefore the vapor is superheated in process

3-3. During this process the pressure is dropping, which means

that heat must be tranferred to the vapor as it undergoes an

expansion process in which work is done. This also is very dif-

ficult to achieve in practice. Therefore the following cycle

which has a super heat-reheat process would represent a more

practical Rankine engine. Since this engine is used for low

temperatures then the expansion and compression processes are

assumed isentropic.

5Fig. (2-2)

MOMMMahmm



For the absolute temperature-ratio ranging from 1.0 to 2.0

with the maximn engine pressure less than 500 psia a proper

working fluid would be difluoro-monochloro-ethane (C2H3F2Cl) .

Following states are a sample for calculation of engine perfor-

mance at TH/TC = 1.4 . Appendix ( C ) has these states for vari-

ous temperature ratios.

TC = T = 55 F

Td = T3' = 260 F
TH/TC=l. 4

State 1:

T = 55 F
P = 33.23 Psia
H = 21.86 Btu/lb
S = .0477 Btu/lb R
V = 1/71.24 Ft /lb

State 2:

S = .0477
P = 413.8
H = 22.85

Btu/lb R
Psia
Btu/lb

S

S tate 3:

P = 413.8
T = 260 F
H = 133
S = .22

Ps ia

Btu/lb
Btu/lb R

State 4:

P = 120
H = 122.5
S = .22

Ps ia
Bt u/lb
Btu/lb R



State 5:

P = 120 Psia
H = 151 Btu/lb
S = .264 Btu/lb R

State 6:

P = 33.23 Psia
H = 135 Btu/lb
S = .264 Btu/lb R

The intermediate pressure, which is the 120 Psia the pres-

sure of reheat process, is calculated by P= P . * P

Thus the overall performance measures bocome:

Wout Wexp - Wcomp. = (H3- H&)+(H5 - Hg)-(Hl- H)=25.51 Btu/lb

Qin = (H3 - H2 ) + (H5- Hq) = 138.65 Btu/lb

Wout
Efficiency = 18.4%

Qin

Table ( 1 ) has the comparable results for Rankine engines

operating at different temperature-ratios.

2.1.2- Brayton Engine:

The air standard cycle or Brayton cycle is the normal clos-

ed cycle model for the gas turbine plant. It consist of two

adiabatic work transfer processes (in ideal case they are isen-

tropic) and two constant pressure heat transfer processes. The

performance of this engine is very sensitive to the compressor

and turbine efficiency. With compressor and turbine efficiencies

of 85%, the maximum power is only 49% of the power which could be

obtained with perfect components.
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T>

WonJ

4

Fig. (2-3)

10 4

Wnet = Wexp - Wcomp = CP(T - T4 ) - C,(T2- T,)

Qin = CP (Tj - T)

Wnet (T3 - T4 )-(T2- T4 ) T4 - T,
Efficiency = -- = 1 - - =

Qin T3 - T 2  T3 - TZ

T1 (T4 /T - 1)

T (TS /T - 1)

From isentropic expansion and compression:

-IM
> T/ T3 = (Pq /P 3 ) T / T1 = )

or Ti/ T3 = T, / T.

Therefore:

Ef f iciency = 1 - T, / T2 = 1 (P2 /Pl 1-k/k

For the following performance calculations the isentropic

assumption is used, as it was for Rankine engine. In order to

increase the engine efficiency a regenerative heat exchanger

can be used between compressor and heater.

"WOMOMMMOMMAMb



21

T11
C001.0 ItsG.

WT _ _S

Fig. (2-4)

It can be shown that for ideal regenerationG.T4 = T, TI= TY)

the efficiency is:

Efficiency = 1 -(T / T3)(P 2 ) = 1 - T2/ T3

Qin = Cp (T3 - TV) = Cp('t3- Tq) = CT,((T3 / Tj)-(T / T,))

= CpTI (T3 / T, - T3 / T2) = CpT 3 (1 - T / Tz)

WO ut = C,(T3 -T) - Cp(T% - T, ) = CpTI((T3 / T,)-(T / T, + T2/ T + 1)

Helium is used as working fluid, because it has high k = 1.66,

and pressure ratio is of order of 2.0. Table ( 2 ) shows the re-

sults for different temperature-ratios.

I1



2.1.3- Stirling Engine:

T1
T H TC

Win NOT cOLD WC' TH 2 3

T C 4

TH T

S
Fig. (2-5)

In the ideal case a Stirling engine consists of two isother-

mal expansion and compression processes and two constant volume

heating and cooling processes. This ideal cycle might be achiev-

ed if there would be no pressure drop in the components of the

engine and if an infinitesimal difference occured between the

two streams in the regenerator. In this case, by applying first

and second law of thermodynamics we obtain the following results

1st Law: QH- QC= Wout

2nd Law: QH/TH - QC/TC = 0

Efficiency = Wout/Qin = 1 - QC/QH = 1- TC/TH

Thus the Stirling engine again achieves the Carnot effi-

ciency in this ideal case.

However the piston motion is continuous, not step-wise,

and there are thermal resistances in every heat exchange process.
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As a result, the assumed constant volume heating and cooling

processes and instantaneous heat transfer, in isothermal pro-

cesses, are not practical. Therefore, a more practical Stir-

ling cycle consists of two adiabatic expansion and compression

processes having non-uniform temperature distribution inside

the hot and cold spaces. In order to make a more practical

Stirling engine comparable to the practical Rankine one, those

losses which seem most important and push the engine farther

from ideal case (Carnot efficiency) must be taken into account.

These include heat-transfer losses due to the imperfect regene-

rator, and work losses due to the non-uniform temperature dis-

tribution inside the cylinders.

If the regenerator effectiveness is defined as:

TR - TC

TH - TC

where TR = (TH - TC)/(ln TH/TC) , then it can be shown that

for isothermal expansion and compression:

L - TC/TH

Efficiency =
I + (1-E)(1-TC/TH)/((k-1)*(ln PgL/P ))

It is estimated that the work loss due to the non-uniform

temperature distribution is about 20% of the output work, then:

Wout R * (TH-TC) * ln P1 p* 0.80

Qin R * TH * ln P', P1 + Cy* (TH-TR)

Qin R * [TH * ln P / P, + (TH-TC)(1-E)/(k-1)]
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As is shown in the following sections, hydrogen generally

is the most efficient working fluid for Stirling engine. Based

on the use of hydrogen, the Stirling engine performance is cal-

culated. Table ( 3 ) shows the results.

2.1.4- Comparison of Engines:

Comparison of the results of these three engines shows

that Stirling and Rankine engines are more efficient than Bray-

ton engine (efficiency of ideal Brayton engine is less than the

practical Stirling and Rankine engines). Comparison of Stirling

and Rankine engines at low temperature-ratios shows that under

practical conditions comparable Stirling and Rankine engines

work almost at the same efficiency level and a more detailed

analysis is required to discriminate between them. On the other

hand, at temperature ratios close to unity a Stirling engine

with zero regenerator effectiveness has a comparable efficiency

to both the Rankine and highly regenerative Stirling engines.

Therefore, as is shown in chapter V it would be interesting to

determine at low temperature ratios the precise efficiency of

the Stirling engine is with and without a regenerator.

Fig. (11) shows the steady state performances of the above

three engines. Since Stirling engine shows a better result, then

it would be one more reason why this thesis has concentrated on

Stirling engine for waste-heat recovery.
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2.2- Ideal Stirling Engine Analysis
-----------------------------

Analysis of the Stirling cycle is complicated by the fact

that not all elements of the working fluid pursue the same ther-

modynainic cycle. Since the ideal cycle analyses have been pre-

sented in closed form solutions, then they are useful for pre-

liminary design and first order calculations. In this section

the first order analysis (Schmidt equations) are presented and

the optimum design characteristics are derived. In Chapter IV

the practical optimum results are compared with the optimum

predictions of this section.

2.2.1- Ideal Stirling Cycle, Schmidt Equations:

The ideal Stirling cycle, as discussed in the previous

section, consists of two isotherms connected by two isochores.

These processes may be produced by interconnecting two suitab-

ly varying volumes through a regenerator. The cycle starts with

isothermal compression in the cold space at cold temperature,TC,

process (4-1). Then the gas flows through the regenerator and

gains enough heat to reach the hot temperature, TH. This heat-

ing is such that the same volume of gas which enters to the re-

generator from cold space should discharge from regenerator to

hot space, i.e. the volume variations of hot and cold spaces

must be appropriately related. This constraint is necessary to

satisfy the isochoric heating process (1-2). Then, as gas ex-

pands isothermally in hot space (hot cylinder) at TH, requir-

ing heat to be added to gas to maintain it at TH, process (2-3).



Then the gas returns through the regenerator where heat is re-

moved from the working fluid and stored for its subsequent

return, process (3-4), see Fig. (2-5) of previous section.

As we see, so defined is very idealized and impractical

engine. A more realistic cycle and corresponding analysis was

devised by Gustav Schmidt in 1871. This analysis which has a

sinusoidal volume variation has now become the classical ana-

lysis of the cycle and is generally believed to give a more rea-

sonable approximation of actual engine performance. Nevertheless,

the analysis still remains very highly idealized, so that in

practice the indicated performance of an engine will likely be

no better than 60% of the predicted Schmidt cycle performance.

Principal assumptions of the Schmidt cycle are [25):

1- The regenerative process is perfect.

2- The instantaneous pressure is the same throughout the
system.

3- The working fluid obeys the charcteristic gas equation,
PV = RT.

4- There is no leakage, and the mass of working fluid re-
mains constant.

5- The volume variations in the working space occur sinu-
soidally;(this will be used throughout the thesis).

6- There are no temperature gradients in the heat exchan-
gers.

7- The cylinder-wall and piston temperatures are constant.

8- There is perfect mixing of the cylinder contents.

9- The temperature of the working fluid in the dead volumes
is constant.

10- The speed of the machine is constant.



11- Steady state flow conditions are established.

As it is shown in Appendix ( D ) by applying the above as-

surptions and using Vh = 1/2VH(l+COS wt) for volume of expan-

sion space and Vc = 1/2VC[l+COS( W t- f )] for volume of compres-

sion space, followings are resulted:

Instantaneous Pressure = Pmax(l-A)/[l+ACOS ( W-t- G )] (D-14)

pressure Ratio = Pmax/Pmin = (1+A)/(l-A)

Mean Pressure = Pm = Pmax * (1-A)/(1+A)

Where

X = (Dead Volume) /VH

A =\f" /[TC/TIH+VC/VH+4X*TC/(TC+TH)]

B = (TC/TH) +(VC/VH) + 2TC*VC*COSC7/(TH{*VH)

TAN(&) = (VC/VH*SIN C,)/(TC/TH+VC/VH*COSCP)

Since the expansion and compression processes take place

isothermally from the first law the heat transferred 0 is equal

to the work done W. As shown in Appendix ( D), followings are

resulted.

Expansion Work = IT Pm*VH*A*SIN 61(1+ \Ii7) (D-21)

Compression Work = 1T Pm*VC*A*SIN(C - )/(1+ 1T) (D-22)

Efficiency = (QE-QC)/QE = 1-QC/QE = 1-TC/TH = Carnot Efficiency

Wout = Tr *Pm*A*VH*S IN 0 *(1 -TC/TH) / (1+ (D-23)

Instantaneous mass:

Hot Space:

MH = 1/2VH*Pm*(l-A ) *(l+COSwt)/[R*TH*(l+ACOS(wt- 6 )]

Cold Space:

MC = 1/2VC*Pm*(l-A1 ) *(l+COS (t- )]/[R*TC*(1+ACOS(wt- 8)]



DEAD SPACE:

MD = X*VH*Pm(l-A 1 )/[R*TD(l+ACOS( w t- )]

Total Mass:

VH*Pm(l-A )
MT CO TC/TH+2X*TC/(TC+TH)+VC(1+COSq)/(2VH)]

R*TC(l+A*COSG)

The normalized output power is:

W A Wout/(Pm*VT) = IT/(1+VC/VH)*A*SIN G /(1+ )*(1-TC/TH)

This equation indicates that output power is a function of

temperature-ratio (TH/TC), volume ratios (VH/VC,VD/VH), and

phase angle difference between the two spaces (cf).

Appendix () ) shows the derivation of the optimum parame-

ters. To get the optimum dead volume ratio (X VD/VH) the deri-

vative results is:

-W 4TTA*Tr*SIN G *Tr* (1-Tr)
%WMMMW =(D-33)

bX (1+Tr) (1+Vr)* ( +:1i+Vl-AT ]*[Tr+Vr+4XTr/ (1+Tr)]

This means that output has a negative slope with respect to

X and it decreases continuously by increasing X. Therefore, there

is no optimum dead volume ratio and it should be made small as

much as possible in practice. Fig. (12) shows the same conclu-

sion which Walker [25] has come to by doing significant amount

of calculations.

In order to find the optimum swept-volume (Vr = VC/VH)

based on Schmidt analysis Appendix (D ) shows that derivative

of output respect to Vr yields following quadratic equation:

Vr (1-A -A Vl-A ) -Vr (A +A *Tr+4)J *Tr / (1+T r)+2A Vr *Tr+

8P \I-AX*Tr/(1+Tr) -1) (A *Tr+4xT rA /(1+Tr)+Aafl
7 *Tr +

16[AXTr / (l+Tr) ] V1-A'+8A X V 1 *Tr / (1+Tr)) = 0 (D--38)
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For Tr = .5 , X = 1 , q = 90 ==> Vr = 1.07

For Tr = .25 , X = 1 , q'= 90 ==> Vr = .84

By plotting output versus Vr Walker [25] has come to the

same results, Fig.( 13) shows his curves.

To get the optimum phase angle difference q, as it shown

in Appendix ( D), derivative of normalized output has taken

respect to Cf . The results are summarized in the following

quadratic equation:

Vr *T r[1 /-l/A ]COS g +[Tr +Vr +4X*Tr/ (1+Tr) COS c +

Vr*Tr[1/A -1/ 1-A] = 0
(D-42)

This equation shows how the optimum Cf is related to temper-

ature ratio and swept-volume ratio. Walker [ 25] has found the

optimum phase angle difference by plotting the output versus q.

Fig. (1-4) shows his results for two different temperature ratios,

The above equation would give the same results directly and

quickly.

As the temperature ratio (TH/TC) increases the output would

increase and the slope of output power with respect to tempera-

ture-ratio is always positive and non-zero.

The result of this section shows the basic equations for

design and optimization of Stirling engine for. an ideal case.

Chapter IV will show the validity of these results for practical

engines.
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2.2.2- Effect of Imperfect Regenerator and Dead Volume on Ideal
Engine:

Practical regenerators are not perfect which means the

amount of heat gained by the gas from regenerator material is

less than the heat which was extracted from the gas by the re-

generator during the first part of the cycle. Therefore, on the

way to the hot space, the gas leaves the regenerator with a

temperature less than the hot temperature of the cycle (TH) and

that is the reason for having the heater between regenerator

and hot space in real engines. Fig. (15) shows a schematic diag-

ram of a real engine, for this engine based on hot and cold tem-

peratures we can define a log-mean temperature for the regenera-

tor as follows.

TR = (TH-TC)/(ln TH/TC)

Regenerator Effectiveness = E = (TR-TC)/(TH-TC)

> TH - TR = (1-E) (TH-TC)

Qin Cv (TH-TR) + R TH ln Pi/P, = Cv (1-E)(TH-TC)+R TH in P P

Wout R TH In P /P1 - R TC In P, /P1

1 - TC/TH
Efficiency =

1+Cv/R*(1-E)(1-TC/TH)/(lnP, /P )

Efficiency
(E-16A)

Ideal Eff. l+(l-E)/(k-1)(l-TC/TH)/(lnP3

Fig. (16) and table (4 ) show how the efficiency varies

with regenerator effectiveness for different temperature ratios.

As the results show, at low temperature ratios (about 1.2) the

real engine (i.e, engine with imperfect regenerator) is close

to ideal cycle (Carnot efficiency), even at E = 0 the engine



efficiency is about 60% of the ideal engine.

Due to the introduction and addition of heater and cooler

to the system and because of imperfect regenerator, there are

some additional dead volumes (void volume) present in the sys-

ten. These dead volumes would push the engine farther fron ideal

case. An inefficient regenerator backed up by an adequate gas

heater and gas cooler will not change the work realized per

cycle but will definitely increase the heat required per cycle.

But addition of dead volume, which must be present in any real

engine, decreases the work available per cycle.

Appendix ( E ) shows the net output of the engine for case

of having dead volume as:

' t (E-16B)
Where: TR/TH = (1-TC/TH)/(ln TH/TC) ,

TR/TC = (TH/TC-l)/(ln TH/TC)

Fig. (17) and table (5 ) show the variation of output with

increasing dead volume of the system for case A=2 and different

temperature ratios. From the above equation we see if TH/TC gets

large Wout becomes very small. But in the temperature-ratio

range 1.0 to 2.0 the variation of output work with respect to

dead volume is almost independent of temperature-rato.

Although the above calculations regarding the imperfect re-

generator and the presence of dead volume are for steady state

cases and are only first order, nevertheless they show how the
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real engine trends farther and farther from ideal case. Also

they indicate that at low-temperature-ratios dissipation terms

and entropy generations are lower.

III-- - - -- M



2.3- Evaluation of Different Types of Losses

Analysis of the Stirling engine is complicated by the fact

that not all elements of the working fluid pass through the

same thermodynamic cycle. The first order analysis and some of

the conventional techniques of considering a fixed mass of wor-

king fluid passing through a unique cycle can not be used. It

is necessary instead to examine individual volume elements and

take into account the movement of working fluid into and out of

each one. Since the volume in the heat exchangers (dead volume)

is a significant portion of the total volume in an engine, an

important fraction of the working fluid is utilized to pres-

surize this space instead of being actually moved from one

variable volume to another to contribute effectively to the

net output work. In the ideal cycle, where pressurization and

depressurization of this volume takes place reversiblly, both

effects will cancel out so that no work is required.

However, in a practical engine the hot and cold spaces

(cylinders) are nearly adiabatic, and an irreversibility does

exist when gas moves from a cylinder into the adjacent heat ex-

changer at a temperature different from the heat-exchanger wall

temperature, and this can produce a significant loss.

In general, the losses due to imperfect components can be

divided into three types: those which are in the pressure-volume

flow domain, those in the force-velocity domain, and those which

are in the temperature-entropy domain. Pressure drop in the heat-

exchangers, which produces power loss, belongs to the first



group, while axial conduction and the effect of piston motion

are in the third group, and coulumb friction is in second group.

In this section different types of losses, which have been rea-

lized up to this time, are evaluated based on the most recent

analytical techniques.

2.3.1- Pressure-Volume Flow Domain Losses

Although there are some differences in design configura-

tions of Stirling engine, but for analysis all of them can be

simplified as shown in Fig. (15). There are five major compo-

nents: cold space, hot space, cooler, regenerator, and heater.

In the ideal cycle there are only three components, i.e. there

is no heater and cooler in the system. In fact, the hot and

cold spaces are surrounded by hot and cold temperature sources.

Considering the general configuration of a real engine,

free flow areas in the three heat-exchangers are relatively

small which result a significant pressure loss in the system.

Power loss due to the pressure drop has been evaluated in a

similar fashion in all of the previous analysis. References

[18], [22], [13] have shown the complete derivation. There

follows a summary of the basic principles and equations.

The existing pressure gradient is a function of time and

position. Since the free flow area inside the hot and cold

spaces (cylinders) are generally large relative to the other

components, then the pressure drop inside these spaces are neg-

ligible. Therefore, this gradient is calculated only for heat-

exchangers.
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Let x denote the distance along any heat-exchange compo-

nent and let L denote the length of this component. The pres-

sure drop at a point x may be expressed in terms of the fric-

tion factor fx as

d(&P) = 1/2*fx* (L/d)f x*Vx* jVxI *d(x/L)

where d is the hydraulic diameter, Vx is the velocity andfx

is the density at point x and time t. It will be assumed at

this point that the hydraulic diameter d and the free flow area

AFR of the components do not vary with x for each component. If

one of the heat-exchange components does have a change in these

variables, it may simply be treated as several components of

different hydraulic diameters and free flow areas.

mx = fx*AFR*Vx

= d(P) =1/2*fx*(L/d)*(mx)/(fx*AFR*AFR)*d(x/L)

x = Px/(R*Tx)

d(AP)I= 1/2*fx*(L/d)*(mx*R*Tx)/(AFR*AFR*Px)*d(x/L)

I I= 1/2 ffx(L/d)*(mx*R*Tx)/(AFR*AFR*Px)*d(x/L)

For Cooler:
2.

I&Pj= 1/2(L/d) *(R*TC)/(AFRC*AFRC) fx*mlx/Px*d(x/LC) (2-1)

For Heater:

JAPI= 1/2(L/d) *(R*TH)/(AFRH*AFRH) fx*mx/Px*d(x/LH) (2-2)

For Regenerator:

A&PI= 1/2(L/d) *(R*TR)/(AFRR*AFRR) fx*bx/Px*d(x/LR) (2-3)

Based on the given geometry, the free flow area (AFR) and other

dimensions are specified. As the above equations show, mass flow

rates are required to calculate pressure drops, fx which is -the
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coefficient of friction depends on Reynolds number which itself

depends on mass flow rate.

fx = a/(Re)**b

Rex = (fx*Vx*d)/ = (m'x*d) /(AFR*A )

Therefore, it is important to calculate mass flow rate of

each component. In order to simplify the whole calculation pro-

cess, a time averaged mass flow rate can be used for each heat-

exchanger. Therefore, equations (2-1) through (2-3) are rewrit-

ten as:

For Cooler:

jPI= 1/2(L/d)c*(R*TC)/(AFRC*AFRC)*fC*n C/PC (2-4)

For Heater:

IAP[= 1/2(L/d) *(R*TH)/(AFRH*AFRH)*fH*rmH/PH (2-5)

For Regenerator:

J&P = 1/2(L/d) *(R*TR)/(AFRR*AFRR)*fR*mR/PR (2-6)

Where PC, PH, and PR are the mean pressures inside the cooler,

the heater, and the regenerator, respectively.

Now, supposing the pressure drops have been calculated,

how they can be related to the power loss is important, yet not

quite clear. Proper allocation of the losses and determination

of where the entropy generation is occuring both significantly

affect the engine performance. Engines which have been presumed

to have high efficiencies often in practice do not perform as

well. This is most often due to the improper allocation of the

losses in the system.

In the design of a steady-flow cycle the inlet and discharge



conditions of the compressor are usually fixed first for the

design. Then the performance is calculated for the system assu-

ming perfect components. This first approximation yields infor-

mation which may then be used to calculate the performance with

real components, but maintaining the same compressor inlet and

outlet conditions.

This approach can be used here, i.e. the effect of the pres-

sure drop in the heat-exchangers may be ascertained by maintain-

ing the warm-end (hot cylinder) conditions at the same values

but the cold-end (cold cylinder) conditions would change. This

means that most entropy generations and system dissipations are

located at the cold-end of the engine. Therefore, at the hot

space pressure and mass variations are unchanged by introduction

of pressure drops. For the cold-end we get:

Cold Space Volume:

VC = VC+ A VC
with AP

Cold Space Pressure:

PC = PH+AP

Work at Cold Space:

WC PC*d(VC)= (PH+4dP)d(VC+AVC)

By neglecting the second order terms we get:

WC =fPH*d(VC)+ P*d*VC

2

The first term is the compression work for case of having no

pressure loss, and the second term is the power loss due to the

pressure gradient. Because the compression work has increased
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by the second term this extra work has to be subtracted from

the output work of the engine.

Wloss = AP*d(VC)

This integration can be done either by computer or by some ave-

raging process as shown in chapter I.

2.3.2- Temperature-Entropy Domain Losses

Events which decrease the effective hot temperature of the

hot space and increase the effective cold temperature in the

cold space would push the engine farther from the ideal case

and generate entropy inside the system. Those losses which are

in this category and which have been considered by investigators

up to this time are: temperature drop losses in heater and cool-

er, regenerator imperfection from heat transfer view point,

axial conduction heat transfer loss, piston-motion or shuttle

heat transfer loss, heat leakage from the system, transient heat

transfer loss due to the non-uniform temperature distribution,

and heat pumping loss inside the gap between cylinder and pis-

ton. In this section derivation of each of these losses is pre-

sented.

2.3.2.1- Temperature-Drop Losses in Heater and Cooler

A temperature difference is necessary in order to transfer

heat between the working fluid and the heat-exchanger walls.

This means that the temperature of the gas entering the hot and

cold spaces (cylinders) and the regenerator will not be the same

as heat exchanger wall temperature but a slightly different

temperature.
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In a Stirling engine, especially when the temperature ratio is

high (TH/TC>2.0), the heat transferred in moving the gas through

the regenerator is large compared to the heat transferred in

moving the gas from the cylinder to the regenerator. In other

words, the work transfer in the cylinders is smaller than the

heat which is transferred to the gas from the heat-exchangers.

That quantity which is of interest in order to evaluate the

effect of the imperfect heat exchange on the over-all perfor-

mance of the engine is the average temperature of the gas enter-

ing the hot or cold space (cylinder). A simple approach to find

the effective temperatures is to consider that a heat transfer

equal to the work done by the gas in the adjacent space (cylin-

der) must take place in every cycle.

Consider the following figure, the basic work delivered by

one piston = m*Cp*T*dt at the face of the heat exchanger.

CYLINDER HEAT-EXCHANGER REGENERATOR

T T

then m*C,*T q= Work or =TE work/m*Cp

The gas enters the heat-exchanger from the regenerator

with a temperature Ta; at the exit of the heat-exchanger, the

temperature is Tb. When the gas enters the heat-exchanger from

the cylinder side, its temperature is Tc; at the entrance of the
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regenerator the temperature is Td. For a perfect regenerator

Ta = Td, furthermore AT& = Tc - Tb. The temperature of the

heat-exchanger is assumed to remain constant at Tg throughout

the cycle. Then it follows from heat-exchanger theory [23]

that:

(Ts - Ta)*EXP(-NTU) = Ts - Tb

(Ts - Tc)*EXP(-NTU) = Ts - Ta

By combining the above equations:

&T Ts - Tb = ( AT Ec )/EEXP(2*NTU)-1 =

AT = Work/Em*Cp* (EXP(2*NTJ) -1)] (2-7)

Equation (2-7) shows the difference between temperatures of the

gas entering the cylinder and the heat-exchanger surface tem-

perature, or the source temperature.

Effective Temperature in Cold Space:

TC = TC * [l-Wc*(k-l)/(mc*R*TC*k)/[EXP(2*NTUc)-l]] (2-8)

Effective Temperature in Hot Space:

TH = TH * [l-Wh*(k-l)/(mh*R*T H*k)/[EXP(2*NT Uh)-ll] (2-9)

These effective temperature s which are different from the

source temperatures, TC & TH, would represent temperature drop

in heater and temperature increase in cooler. The consequent

entropy generation in these heat-exchangers results in a power

loss which is taken out in the compressor. This means that the

compression work would be increased by a factor (C/TC)*(TH/rE).

Then by using equations (2-8) and (2-9) the following are resul-

ted.

V it tA~kr"C-t if I e-1

0- M- __



Which means%

power loss due to the temperature drop in heater=

Wh*Wc*(k-1)/(mh*R*TH*k)/[EXP(2*NTUh)-l] (2-10)

power loss due to the temperature drop in cooler=
Wc*Wc* (k-1) / (mc*R*TC*k) /[EXP(2*NTUc)-l] (2-11)

2.3.2.2- Imperfect Heat Transfer in Regenerator

In the ideal (perfect) regenerator, when gas flows through

the regenerator, coming from the warm-end of the engine at hot

temperature TH, it releases heat such that by the time that the

flow leaves the regenerator it reaches the cold temperature TC

and the regenerator gains all of the heat. Then similarly, when

gas flows back from the cold-end at TC temperature and back

thr ough the regenerator it should be reheated by the regenera-

tor such that when the flow leaves the regenerator it should

have temperature TH. This happens only in ideal case,i.e.

having instantaneous heat transfer with no thermal resistances.

Therefore, we can define a regenerator effectiveness as the

ratio of the actual heat which is transferred to the gas, by

the regenerator, to that transferred ideally.

E = QR/[m*Cp(TH-TC)] (2-12)

If the effectiveness can be calculated then QR and consequently

Em*Cp(TH-TC)-QR] which the heat loss due to the imperfect rege-

nerator can be evaluated. Qvale and Smith [20] have derived on

approximate closed form solution for the enthalpy flow through

the regenerator. This solution was derived for sinusoidal pres-

sure and flow variations. Rios [22] derived a more general



solution for this enthalpy flow calculation but it requires com-

puter simulations. His derivation is in fact used for the analy-

sis in the next section. In Chapter III a closed form solution

is used which results in the same amount that the Rios [22]

computer method calculates. This solution is

QR = ft * m'* Cv(TH-TC)*[2/(NTUv+2)] (2-13)
I,---------------

Reg. Ineffectivenes3

Where NTUv = H*(AH)/(m**Cv)

2.3.2.3- Axial Conduction Heat Loss

All materials conduct heat to a greater or lesser extent.

Metals are generally good conductors. Since there is a tempera-

ture gradient between the two ends of the Stirling engine, then

one might expect a significant amount of heat conduction from

the warm side of the system (heater) to the cold side (cooler).

The intermedia which conduct this heat are regenerator internal

solid material and also the gas inside the void volume of the

regenerator. Therefore this conduction depends on the porosity

of the regenerator. Usually the regenerator of a Stirling engine

is made of many layers of fine screen lightly sintered together.

The degree of sintering would have a big bearing on the thermal

conductivity of the screen stack since the controlling resis-

tance is now the contact between adjacent wires. Since the wires

are somewhat like uniformly sized cylinders then the formula

which is given by Gorring [13 ] can be used for thermal conduc-

tivity of the combination of gas and material of the combination
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of gas and material of the regenerator.

Kmg =Kg f- + SIG(l1K + 1 - SIG)] (2-14)

Where SIG is the regenerator porosity, Kg is the gas conduc-

tivity and Km is the metal conductivity. Therefore, the conduc-

ted heat would be

Oc = Kmg * AR * (TH-TC)/LR (2-15)

Where LR is the regenerator length and AR is the cross-sectional

area of the regenerator.

2.3.2.4- Shuttle Heat Transfer Loss

Shuttle loss is one of the important thermal effects found

in Stirling engines. This effect comes from the reciprocating

action of the displacer (piston) in the cylinder. There is a

temperature difference along the walls of the cylinder and the

displacer (piston), from the hot end to the cold end.

At Top Dead Center:

j'fl Cylinder

Wall at TH

Piston or Displacer
at T<TH

At Bottom Dead Center:

Cylinder Wall at
T4-yn rTH

Piston or Displacer
at TH



When the displacer (piston) moves toward the top dead cen-

ter position its temperature is less than TH and it is entering

to a region with TH temperature; therefore there is a heat con-

duction from the cylinder walls to the displacer (piston). The

reverse conduction occurs when the displacer (piston) is at

bottom dead center. This conduction occurs through each recip-

rocation. Rios £22] has presented a nice derivation for this

heat conduction.

Q = TT/8*Kg*S*(TH-TC)*(B/t)*(S/L)*(BET) (2-16)

BET = (2C1 - C)/( 2C2- 1)

C Kp/ Kg * * W/(2*oc p)

Where B and S are the bore and stroke of the hot cylinder, Kp

and 'Up are thermal conductivity and thermal diffusivity of the

displacer (piston), ( is the gap between piston and cylinder, L

is the piston length and W is the frequency of the engine.

2.3.2.5- Heat Leakage

Since the warm-end of the system operates at a temperature

greater than the ambient temperature, then heat conduction and

radiation effects are present. Depending on the hot temiperature

if TH is high enough i.e. of the order of 1000 F then radiation

heat transfer would be significant otherwise, conduction would

be the primary mechanism for significant heat leakage from the

system. Because the present work deals with the temperature

ratios less than 2.0, then only conduction heat transfer is

assumed.



Appendix ( F ) shows the stress analysis for the calcula-

tion of the cylinder thickness. The result is:

t = (Pm*R)/5000 (2-17)

Where t is the cylinder thickness, Pin is the mean pressure, and

R is the cylinder radius.

Inside the cylinder, there is forced convection mechanism

and outside of it there is a free convection heat transfer.

2 J7(TH - Tam)
OL (2-18)

1/(L*R*hi)+ln ((R+t)/R)/(L*K )+l/EL*(R+t)*ho

For forced convection inside the cylinder we take hi*D/Kg = 6

=- hi = 3*Kg/R

For free convection outside, especially because the outside

fluid is air, we assume ho = 3.5 Btu/ft hr R. Also for length L

one-half of the stroke is chosen. This is due to the fact that

gas has almost a sinusoid motion the amplitude of that which is

half of the stroke would be a suitable characteristic of length.

Therefore, by substituting all of these in equation (2-18) we

get:

7T(TH - Tam)
QL (2-19)

1/(3S*Kg)+Ln ((R+t)/R)/(S*K)+l/(3.5S*(R+t))

Where Kg and K are thermal conductivities of the gas inside the

cylinder and the wall material, respectively, S is the stroke

and R is one-half of the bore.
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If the radiation heat transfer is significant then a simi-

lar analysis with radiation heat transfer equation can be used.

Although the temperature inside the cylinder has a sinusoidal

variation with a mean value, i.e. it is a combination of a

constant and an alternatory temperatures, but because of low

amplitude of the alternatory part, less than 10% of the cons-

tant value, the mean (or constant) vaue can be used in equa-

tion (2-19) for heat leakage calculation.

2.3.2.6- Transient Heat Transfer Loss in the Cylinders

One of the important characteristics of an ideal Stirling

engine is the assumed uniform temperature distribution of the

gas inside the cylinders. However, in a real engine the tempera-

ture is not uniformly distributed at any time inside the cylin-

ders. The resultant temperature gradient between the layers of

the gas in the center and near the wall of the cylinder produces

a neat flow from the wall to the center and vice-versa, which

Smith and co-writer have called the instantaneous or transient

heat transfer. Various formulae have been proposed to estimate

this heat rate inside the cylinder of internal combustion en-

gines [28] and compressors [30]. Although some of these formulae

can predict heat transfer rates reasonably close to test data

for particular applications, they can not be readily applied to

Stirling engines because of the unique pressure, temperature and

flow patterns in the latter case. Since there are no internal

valves, Stirling engines have nearly sinusoidal pressure and

local temperature variations. In 1980, for the first time
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Kangpil Lee, Joseph Smith, and Henry Faulkner [10] presented a

closed form solution for derivation of this heat transfer loss.

Their solution is used for the present work in the next section.

It can be summarized as

30 k-1/kT/TnN*P [TC/TH* VKghiTH*Fe*Ae+ 9gTC*Fc*Ac *B
Qloss=

Pm* M*VC (l+ A *TC/TH+V)
(2-20)

Where P, = Amplitude of pressure variation = (Pmax-Pmin) /2

8 = [ (SIN9,+coscf,) (A +COS cp)+S IN cp(SINp-COS P, )]

Pm = mean pressure

C0 p = Pressure wave phase angle with respect to expansion space
volume dlisplacement

Ce = Phase angle between the cold and hot spaces

Ae,Ac = Heat transfer areas of hot and cold spaces

N = Angular speed [RPM]

= VH/VC

V = VCD/VC + VHD/VC* TC/TH + VRD/VC * TC/TR

VCD, VHD, VRD = dead volumes of cooler, heater, and regene-

rator there are two unknown coefficients Fe and Fc which are

called "heat transfer enhancement factors". In the cited refe-

rence [10] it is said that these coefficients are functions of

Reynolds and Prandlt numbers, bore-stroke ratio, and relative

clearance volume. There now exist correlations for these co-

efficients based on the data from experiments as part of Foster-

Miller Associates proprietary information. However for some

cases used of the present work appropriate coefficients have

been obtained.



An alternative for calculating this loss would use experi-

mental data from internal combustion engine testing for deter-

mining non-uniform temperature distribution inside the cylinder;

this technique seems to give good estimates. Taylor [24] has

given the following correlation for calculation of heat transfer

coefficient between the gas inside the cylinder and the walls.

h*D/Rj =C* (GL/yp)n *()wt )m

Where h is the coefficient of heat transfer which a function of

Reynolds and Prandlt number. C, n, and m are dimensionless num-

bers which depend on the geometry of the flow system and on the

regime of the flow. For a good number of experiments Taylor has

obtained the following result.

h*D/RJ=.023*(Rey) 8 *(Pr) ' (2-21)

In order to avoid thg.use of the empirical correlation fac-

tors (enhancement factors) in equation (2-20) for non-uniform

temperature loss, the above correlation (2-21) can be used. To

do that, a form for temperature distribution inside the thermal

boundary layer is required. Appendix (G ) shows how the tempera-

ture distribution which is calculated in(10]is converted to the

following form.

AT/Tm= (k-1/k) *Pl/Pm*(l-e )SIN(ot-$p) (2-22)

Where Tm and Pm are mean values for the flow temperature and

pressure respectively, Pl is the amplitude of the pressure varia-

tion, and $p is the phase difference between pressure wave and

expansion space volume displacement.



Since convection heat transfer is the dominant mechanism

for heat transfer between the gas and the cylinder wall, then

by combining the general convection heat equation and equations

(2-21) and (2-22) the following solution is resulted, see Appen-

dix ( G ) .

Q(t)=.014547T*Kg*Tm*(Re) .8 (Pr) 4*(k-l)/k*Pl/Pm*Xm(l+SINwt)*

SIN (wt-$p) (2-23)

This equation can be integrated over a cycle to find the average

heat transfer between the gas and cylinder wall. The result be-

comes:

8 4
Q= .052 (Re) (Pr) *(k-1l)/k*Pl/Pm*COS(>1*Kg*Tm*Xm (2-24)

Where Xm is the amplitude of the piston displacement which equals

to one-half of the stroke.

A third approach to this problem involves a lumped element

modelling of the thermal diffusion problem. As discussed in the

next section for a practical engine the cylinder processes are

assumed adiabatic for each cylinder there is an enthalpy flow

from the system into it' Thu Ite gas inside behaves like infinite

number of thermal capacitances with thermal resistances in bet-

ween. Therefore, each cylinder can be modelled as parallel capa-

citances with resistances in series with them. Appendix (CG,)

shows circuit graph and bond graph of such a gas cylinder. The

simplest model is a two-lump model which assumes part of the gas

inside a sub-rayer close to wall is at temperature equal to

the cylinder wall temperature and the rest of the gas is at a

core temperature different from the wall temperature.
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Distributed To Lumped
Sub-layer Model Model

As derived in Appendix ( G), for this two-lump model the

governing transfer function is:

T 0/Tm= (l+T.. S) / (1+Ty S) ,

Tw/Tm=1/ (l+ S)

Substitution of io for S shows that TO/Tm=(l+1+T*iw)/(l+Tg*iw)

contains the first order approximation for ei. It is clear

that by increasing the number of lumps we get closer to the

exact solution. If we use N-lumps then it can be shown that the

governing transfer function would approximate well the form

TN/TO=((l+ TS)/(l+T0 S))N . Although the N-lump solution is more

accurate for higher values of N, yet if the time constants

(T. ,T,) are selected properly then the result of the N=l model

can follow a similar behavior as higher order models. Appendix

(G) shows a sample of ti, tvderivations and calculations.

Since the system can be either temperature or pressure

forcing, then a similar result can be derived for the ins-

tantaneous pressure. For a reversible adiabatic process we

have: P k/1-k=Const. (2-25)

By taking the logarithmic derivative of equation (2-25) respec-

tively we get:



AP/Pwk/ (k-1) *AT/T

This means that for instantaneous pressure we have the follow-

ing equation, based on the previous result for instantaneous

temperature.

AP/Pm=k/(k-l)*(l+Ti S)/(l+T,S) (2-26)

This lumped modelling which results in estimated transient

response of the pressure and temperature can be used as part of

the basic thermodynamic equations for the Stirling engine ana-

lysis. By using Euler's integration method, equation (2-26) can

be rewritten as

dP=l/T4 k/ (k-l) *PM-P3+T/T, *dPm (2-27)

Addition of this equation to each of the four sets of equations

given in the next section, equations (2-35) through (2-42) which

calculate the basic heat input and the output work, would intro-

duce the change in instantaneous pressure to the basic equations.

This means that in this way the transient heat transfer loss can

be automatically inserted into the Stirling engine analysis.

This formulatian has been treated as applied to heat trans---

fer in the radial direction, but it can be used for axial direc-

tion as well. The same r-egion i.e.; sub-layer which exists on the

cylinder wall is present on the piston face too. The longer stroke

produces a thicker boundary layer which results to a higher tem-

perature gradient and, consequently, additional heat transfer

losses in the axial direction. The same thing happens with a

larger bore but now in the radial direction. Therefore, there

would appear to be an optimum bore-stroke ratio based on

M- - - M ____ - M -



minimization of this loss.

In order to include the axial direction heat transient

loss, we must increase the total heat transfer area of the

first two methods, or else add a new set of thermal capaci-

tances and resistances following the third approach.

2.3.2.7- Heat Pumping Loss Inside the Piston and Cylinder Gap:

Gap eV

There is a radial gap between the inner diameter (ID) of

the engine cylinder and the outer diameter (OD) of the piston

(displacer). This gap is ring-sealed at the cold end. As the

engine is pressurized and depressurized, gas flows into and

out of this gap. Since the closed end of the gap is cold,

extra heat must be added to the gas as it comes back from this

gap. Leo [131 has derived the following semi-empirical equa-

tion for the amount of heat loss by this mechanism

2d/31*(w*B*Cp/ (2Kg) . 6* ((Pmax-Pmin) *t/(R*TR)j 1 .6*Cp (TH-TC) *L*Lp

(2-38)

Where B is the bore, I is the gap size, Lp is the length of the

displacer (piston) and w is the frequency.

2.3.3- Force-Displacement Domain Loss

The only utilized loss in this category is mechanical

friction loss. In the literature of Stirling engine there is

no equation or correlation or even any data for this type of
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loss. Martini [13] has arbitrarily used 20% of the basic output

power as mechanical friction. For the present analysis, the

data for internal combustion engines has been used to estimate

this loss. Fig.(22) shows the basic correlation which is

derived from reference [27] . This figure shows mechanical fric-

tion loss for the piston in terms of the friction-mean-effec-

tive-pressure (fmep). Since it approximates a linear relation-

ship between fmep and engine speed, then the following corre-

lation has been used.

fmep=.002N+l (2-29)

Where N[RPM] and fmep~psi).

Then the power loss due to this friction effect, based on the

mean effective pressure definition, is:

P=fmep*V*N*n/531

Where n is the number of cylinders, and V is the displacement

volume.

P loss2N*(.002N+l)* (VH+VC)/531 (2-30)

3
NiRPMIJ, VH,VC[in ] , and Ploss[Wattsl.

Although equation (2-33) is based on IC engines and here

is used for Stirling engine nevertheless, as is shown in the

following sections, it matches reasonably well the only data

published by Philips Laboratories [15] concerning this loss.
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2.4- Analysis and Modelling of Practical Stirling Engines

Analysis of the Stirling enaine can be divided into three

groups or so called "orders" [ 13.] . First order analysis

includes the basic thermodynamics of the engine on a stepwise

model which is usually called the Schmidt analysis. In order

to make this analysis comparable with real engine performance

it should be combined with some critical experience factors.

Second order analysis starts with the Schmidt analysis or some-

thing similar. Various power losses are calculated and deduc-

ted from the Schmidt power. Various heat losses are calculated

and added to the Schmidt heat input. All these engine processes

are assumed to proceed in; parallel and independently c-f each

other. Finally, the third order analysis divides the engine

into a number of nodes and solves the basic differential equa-

tions that govern this engine by numerical methods. Third or-

der methods are much more laborous, but since fewer assump-

tions are made, prediction of engine performance is expected

to be more accurate.

In this section the method of analysis which is used for

this thesis is presented. This method is more accurate than

the second order analysis and it is essentially based on the

Rios [22] second order model. Similarity of this model and the

second order methods is because calculation of the losses is

independent of the basic engine thermodynamics calculations.

Otherwise, it makes no use of the Schmidt model, as being too

idealized.
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As a first approximation to the Stirling cycle, consider a

system with five perfect components as shown in Fig (18). By per-

fect it is meant that there is no pressure drop and no gas-to-

wall temperature difference in the heat-exchange components, no

axial conduction nor heat transfer to the environment, and no

irreversibility due to friction in the cylinders or in any

other components. It is also presumed that the cylinders are

perfectly adiabatic and the temperature inside them has a uni-

form distribution.

2.4.1- Perfect Engine Model

The differential equations governing the behavior of the

Stirling engine with perfect components are derived in appendix

H). The assumptions made in this derivation are as follows

a- The cylinders are adiabatic. In the early analyses of

the Stirling engine the cylinders were considered to be iso-

thermal. This was due more to the ease of analyzing a constant-

temperature cylinder than to the existence of isothermal condi-

tions even in the slow machines of the nineteenth century.

Stirling engines which have been designed recently operate at

relatively high speeds. This makes the heat transferred per

cycle in a cylinder negligible when compared to the work trans-

fer per cycle. Attempts have been made to obtain isothermal

compression and expansion by increasing the piston and cylinder

areas, but up to the present time they have not been of prac-

tical importance.

b- Perfect heat-exchange components. This assumption is



made for the first approximation only and will be removed by

subsequent corrections.

c- The gas density at any point in a heat-exchange compo-

nent is a function of pressure only, and, therefore, the mass

of gas in a component is a function of pressure only. Since

the working gas is exchanging heat with a constant-temperature

medium in the heat exchangers, it follows that for efficient

heat-exchangers the variation in the temperature of the gas in

the heat exchanger must be small when compared to the absolute

temperature. Therefore, the mass contained in a heat exchanger

may be considered to vary with pressure only. This is true even

for the regenerator because gas is exchanging heat with a solid

matrix material which has a heat capacity higher than the gas

heat capacity by several orders of magnitude. Then for a rela-

tively efficient regenerator the temperature variation at a

point must be small when compared to the absolute temperature.

d- The temperature is uniform throughout any plane perpen-

dicular to the direction of flow; therefore, the problem may

be treated as one dimensional in space.

e- The gas in each cylinder is perfectly mixed. The amount

of mixing in the cylinder will depend on the way in which the

gas enters the cylinder from the heat exchanger. Generally, the

free flow area of the heat exchanger will be less than that of

the cylinder, and there will be relatively effective mixing

when the jet of gas enters from the heat exchanger into the

slower-moving gas in the cylinder.



As it is discussed in the previous section the above two

assumptions (e,f) will be removed later on by calculation of

transient heat loss inside the cylinders.

f- The working fluid is a perfect gas. As shown later,

helium and hydrogen are the best gases to use as working fluids

because of their heat transfer and viscous properties. These

two gases behave as perfect gases in the operating temperature

range of the Stirling engine.

The above assumptions yield the additional constraints

that the mass contained in the dead spaces may vary only with

pressure, and the effect of the dead volumes on overall perfor-

mance may be lumped.

The differential equations for pressure, mass, and work

transfer are derived in Appendix (H). There are four sets of

equations because each cylinder obeys a different equation when

gas is moving into or out of it, so that four combinations may

be formed with two cylinders. In order to determine which equa-

tion applies at a given time it becomes necessary to keep track

of the signs of the mass flows at all times.

The equations have been derived in terms of the following

dimensionless parameters and variables. The basic geometry para-

meters are:

vd= (mD) *R*TH / (P*VH) (2-31)

r vt (VC*TH) / (VH*TC) (2-32)

vcEVC/VC (2-33)

vh5Vh/VH (2-34)

Where Vd is the normalized mass in the dead volumes, rvt is the
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ratio of maximum masses in hot and cold cylinders, vc is the

ratio of the instantaneous cold cylinder volume and maximum

cold cylinder volume, and vh is the same as vc but for the

hot cylinder.

The mass in a cylinder, mc or mh, may be scaled in terms

of the mass contained in one half the corresponding cylinder

displacement assumed held at the maximum cycle pressure Pmax

and at the temperature of the adjacent heat-exchanger. This

norming process leads to:

'.c E(mc*R(TC)/(Pmax*VC) (Cold Cylinder)c

Mh h *R*TH)/(Pmax*VH) (Hot Cylinder)

The pressure can be scaled as a fraction of the maximum pressure

P=p/Pmax

In terms of these variables the differential equations for

the momentary pressure may then be written as:

-= k -PO *t*'c +A (]/r*Vc+W+ ksV) (2-35)

dP,~ ~ /4, > 0 (rA44L/v >ka*4L

yr t McA f t 4+k * p d ( 2 -3 6 )

(2-37)

VGi~ct XPxrd Mc~a, d M14 )e

M /(2-38)



The differential equations for the mass are:

a VC v.+aA (2-39)

AAWC >0

M=c -x( Vc-r.-4 0$/9 (2-40)

4c 4 0

dieI=VPA-+ VA.P/k (2-41)

A simple and understandable method to derive these dif-

ferential equations is through the modelling of the engine as a

whole system. In every component of the system we encounter

momentum of the gas (inertia-I), elastic and thermal capaci-

tance of gas and solids (C), and fluid and thermal resistances

(R). Then by using bond-graph techniques [31] the whole system

can be modelled with these I, R, and C elements; transformers

(TF) or gyrators (GY) relate the different power domains. Fig.

(19) shows the bond-graph of a cylinder. This particuler model

is taken for the case assuming a given form of the volume varia-

tion; such as a sinusoidal form. The power of this technique is

that one can pass from a first order analysis to higher orders

very easily simply by adding more bonds and elements for more



detailed analysis of the system. In the first bond graph of Fig.

(19), the motion of the piston is converted to the volume flow

of the gas,i.e. going from the force-velocity domain to the

pressure-volume flow domain. Then a viscous resistance and fluid

inertance is used for the gas motion inside the cylinder. There

is a free bond from the 1-junction identifying the gas flow in

the cylinder with the gas flow of the adjacent heat-exchanger.

A modulated transformer is used for converting the pressure-

flow domain to the temperature-entropy domain,i.e. the thermal

side of the model. This conversion is accomplished through the

gas state equation such as the ideal gas law (P*V=MRT). Besides

thermal capacitance and resistance, there is a free bond which

shows the coupling of temperature and entropy of the cylinder

with the temperature and entropy of the adjacent heat-exchanger,

i.e. the rest of the system.

In this model there is only one independent energy storage

element, therefore it is, in a differential equation sense, a

first order system. The second bond graph in Fig.(19) shows a

more detailed model of the cylinder. This model includes the

piston inertia, thermal resistance due to the shuttle loss and

the number of RC units to take into account the non-uniform

temperature distribution loss (i..e.the previously discussed

transient heat transfer loss).

By using the above techniques the state equations of the

system or equations (2-38) through (2-45) can be routinely

derived.

M____



2.4.1.1- Solution of System State Equations:

It is clear from the system state equations, equations

(2-38) through (2-45), that there would not be analytical solu-

tions to them, therefore a discrete and approximate method

should be used. In most cases computer would be very helpful.

For the present work, where the forcing function is the volume

variation given by crank-connecting-rod mechanism, the solu-

tion is obtained by the computer progarms in Appendix (I).

This program is in FORTRAN language and it has its own integ-

ration subroutine. The integration has been done by Runge-Kutta

method; whole there are many other methods, such as Runge-Kutta

forth order, with more accuracy, they would generally increase

the computation time and consequently the cost of running the

program. The details of the solution are explained in Appendix

(I) and only its limitations will be discussed here.

The solution to the differential equations is carried out

by selecting an initial condition for the complete system and

emulating the system through its transient behavior until an

over-all steady state is reached. This solution has been set

up to utilize the fact that when a piston is at its top dead

center position the mass in the corresponding cylinder is zero.

This provides knowledge of the mass at one point in the cycle

for each cylinder. Any error in the mass computation may be

corrected at this point. In addition, the lack of gas in the

cylinder at one point in the cycle accelerates the convergence

to the over-all steady state.

0 M- M___
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2.4.2-Real Engine Model:

In the previous section a model for an engine with per-

fect components and the corresponding computer program were

discussed. Now, the combination of the losses, which were dis-

cussed in section 2.3, with the perfect engine analysis

furnishes a model of the real engine.

Fig. (18) shows both -energy flow, and bond-graph of an

ideal Stirling engine. The thickness of the arrow indicates

the engine efficiency. When all of the losses are introduced

then that energy flow of the engine is augmented as shown in

Fig. (19). This figure shows the different domain losses, en-

tropy generations, and mechanical dissipations. As the thick-

ness of the arrows show, the output of real Stirling engine

is less than a half of that of the ideal Stirling engine (Fig.

(15) describes this phenomenon through a bond-graph of a real

engine). There are two sources of temperature, TH & TC , these

are connected to series of thermal resistances which generate

entropy and add through the thermal feed-backs to the other

internal entropy generations. In addition to the thermal mecha-

nisms for entropy generation, there are viscous dissipations

which generate more entropy. This is shown in the bond graph

by a feed-back from the pressure-flow domain to the temperature

entropy domain. The important factors for generating power

from the engine are the effective hot and cold temperatures;

as is shown in section (2.2) smaller TC and larger TH produce

more output. Because of the various dissipations and irrever-

sibilities the hot temperature TH decreases to TH and the

M__ -
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cold temperature TC increases to TC (see Fig. (15)). Conse-

quently, the output of the system would drop by nearly the

factor 1(TH/TC)/(TH TC )]

In order to calculate the real engine performance, the

losses should be calcuated and added to basic heat input and

subtracted from basic output which are computed through the

computer program of the engine with perfect components.

The perfect component engine calculation is done by in-

creasing steps the rotational angle, (G=wt). The whole length

of the three heat exchangers is divided to N-sublengths. For

each of these N sections the following quantities are calcu-

lated in a non-dimensional form.

~ {j (2-43)

PMRTG - ' f I --am 1, 1 Lwt --.J (2-44)
.T" J I 

(wt)

UTEGRA 11W"-,10,(2-44)

XI2= I'6z'"*-1 e LteI
-6 a't) 1 (2-46)

X12= XI/X12 (2-47)

Where n is the exponent for Reynolds number in the correlation

for convective-heat-transfer coefficient, which is about 0.405.
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These quantities are used for calculation of losses due

to the pressure drops and temperature drops inside the three

heat-exchangers. For example DMRE, equation (2-43), produces

an average mass flow rate which can be used for calculating

the Reynolds number and,consequently, the friction factor in

each component.

In the Rios model [2 2]one needs to know the details con-

cerning these quantities and even with his computer results

there still remain a significant amount of real time calcula-

tions and graphical reductions in order to obtain the final

real engine performance. But in the complete model of the

present work all of these calculations are done by the supple-

mentary modelling steps which have been added to the program

itself and the previously required graphics are done automa-

tically in such a way that by giving the necessay input data

to the model, with no extra calculations, the engine perfor-

mance will be presented as the output of the program.

There are some special points about this complete model

which make it more general and decrease the amount of the re-

quired input data. These features are discussed in the next

section.

Equations (2-43) through (2-46), which depend on the his-

tory of the basic calculations, are used only for the pressure

and temperature drop losses in the heat-exchangers. The other

types of the losses are calculated independently by using the

closed form solutions which are given in the previous section

(section 2.3).
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When all of the loss calculations are completed they will

be added to the required heat input and subtracted from the

output power as shown in Fig.(20). In this way, the overall per-

formance of a real engine is determined.



2.5- Results of Complete Model and Comparison with Available
---------------------------------------------

Data

2.5.1- Complete Model:

The basis for analysis of a real engine performance was

discussed in the previous section. Fig. (21) gives a summary of

this procedure. The whole analysis has been written in FORTRAN

language (see the attached computer program)and is called the

Complete Model. The input data for this model are: temperatures

of the hot and cold sources, mean pressure inside the system,

working fluid, speed of the engine, cold and hot space volumes,

dead volumes, phase angle difference between hot and cold spaces

volume displacements, and if the heat-exchngers geometries are

not given then the total rate of heat input to the engine should

be given in order to calculate the required heat transfer areas

for meeting the duty.

When all of the engine geometries are calculated and com-

pleted then the analysis of the engine with perfect component

begins. By the time that this analysis is completed, both those

losses which depend on the results of this analysis as well as

those which can be calculated by closed form solutions indepen-

dently have been computed. The summation of the above computa-

tion results produce a first-pass analysis of a real engine.

The results determine the amount of heat transfer in each heat-

exchanger; therefore, by a subsequent feed-back of these results

the geometry computation is corrected and the other steps are

repeated. Usually the second iteration is sufficient and any



further iteration will not change the overall performance

significantly.

A sample of the complete model output is attached. This

output, which repeats the intput data, shows the pressure drop

in each component together with the corresponding power loss

as well as the power loss due to the temperature drops, axial

conduction, transient heat transfer, heat leakage, shuttle heat

transfer, pumping loss, and dry friction. Finally, the output

includes the total heat transfer in heater/and cooler, the

total power in hot and cold spaces, the net output and effi-

ciency, the brake-mean-effective-pressure, the torque, and the

total loss due to the entropy generation inside the engine.

In the process of calculating the various losses we need

to know the viscosity, thermal conductivity, and Prandlt number

for the working fluid and the construction material of the en-

gine. Also we need to know the relationship between friction

factor and Reynolds number. On the other hand, we wish to make

the model as general as possible, which means requiring mini-

mum input data. In order to achieve this, the fluid and thermal

properties of the three working fluids(hydrogen, helium, and

air) are represented by empirical correlations in particular

for viscosity the following correlations are used [13].

For H2: p=(30.13+T/9+.0013*Pm)*2.4191/104

4For He2: 1J(60.188+T/3.88...00064*Pm)*2.4191/104

For Air: p=(24.812+T/3.36+.0084*Pm)*2.4191/104

Where y [lbm/hr/ft] , T[R ] , Pm[psi.]

M___ -
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For friction factor:

In heater and cooler-

Re<2000 F=16/Re

Re>2000 F=.0457/Re.2

In regenerator-

Reg60 F=53.7/Re.93

60<Re<l000 F=5.176/Re.36 5

Re>1000 F=1.035/Re.12 5

Figures (23) and (24) show the data for thermal conduc-

tivity and Prand:il number with their assigned correlations.

These correlations case the computations and minimize

the required input data.

Finally, the complete model has two switches for activa-

ting the coulumb friction calculations and consequently obtain-

ing shaft output and efficiency instead of indicated ones; and

for adding or eliminating the regenerator from the Stirling

engine, as discussed in Chapter V.

2.5.2- Available Data and Comparison with Complete Model Results:

The complete model can be used for any operational tempera-

ture ratio and mean pressure. Since the low temperature-ratio

results are to be compared with the available data in the follow-

ing chapters, then in this section we use the certain high
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temperature measured data on Stirling engines to compare with

the complete model predictions. In this way, we might better

test the accuracy of this model over a wide operating range for

temperature and temperature-ratio.

Many different types of Stirling engines have been designed

and built. However, only a few of them have published specifica-

tions wherein sufficient details have been given in the litera-

ture. For the comparison purposes of this section, the following

engines are considered and discussed.

a)- Philips Engine:

Design details of this engine is given in [25] . The opera-

ting characteristics of this small engine were never published

by Philips or any of the recipients. In early 1970s the opera-

ting characteristics of the engine were carefully measured by

Ward (1972) at the University of Bath. This was done as part of

a program of development for small Stirling engines for navi-

gation signal beacons, encouraged by the Trinity House Light

house Service, London, England, and by Atomic Energy of Canada

Ltd. The engine used by Ward was removed from a Philips Type

102 C motor generator set and modified to operate with water

cooling and liquid petroleum gas (LPG) as heat source. This

engine has:

Cylinder bore :2.2 in

Stroke of piston :1.1 in

3
Hot space swept volume :3.9 in

.3
Cold space swe-pt volume :4.1 in

.3Dead volume 4 .8 in



70

Since the geometry of the heat-exchangers have not been

specified, the optimum design model of Chapter IV has been used

to find the optimum dimensions based on the given operating con-

ditions.

Table (6) and Fig. (25) show the Ward pertormance aata

and the complete model predictions. There is a small dif-

ference between the experimental data and the model results.

This error would appear to come from two sources: (1) the

first one results from having no access to the real geometry

of heat-exchangers for the experimental engine; (2) the

second reason is that the cold temperature of the engine is

not specified so that 70 F (530R) has been used for TC. Since

the experimental data does not give the amount of input heat,

then in Fig. (26) the calculated input heat is plotted versus

the measured fuel mass flow rate. As shown, this plot is a

straight line which means its slope is the heat value of the fuel.

b)- Allison Engine:

The investigation conducted by the Allison Division of

General Motors Corporation [18] has been the only test report-

ed in which all conditions were described in sufficient detail

to give a reliable verification of the overall model. The deve-

lopment of this engine was part of a space-power program and

several engine designs were built and tested as part of the

project. The recorded performance data of two of the designs

are compared to the results of the complete model. Tables (7)

and (8) and Figs.(27) through (30) show this comparison. The

two designs differ in only one respect. The first one runs with
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a phase shift of 112 between the cold and hot space displace-

ment. In the second one, this phase difference has been chang-

ed to 118 . In Figs,(28) and (30) the Carnot efficiency (corres-

ponding to the ideal Stirling cycle efficiency) is plotted to

indicate how far the performance of a real engine is from the

ideal engine. Comparison of the experimental data and the pre-

dictions of complete model shows that the model represent a

great improvement in performance predictions over the ideal

cycle. Furthermore, the performance level, the decrease in out-

put per cycle with increased speed, and the change in perfor-

mance with phase angle difference of the hot and the cold

volumes are all predicted to a relatively high degree of pre-

cision.

Specifications of the Allison engine are as follow:

Engine speed =3000 RPM

Mean pressure =1544 Psia

Working fluid =He2

Expansion volume amplitude =2.475 in3

Compression volume amplitude =2.33 in3

Dead volume of cold heat-exchanger =1.5 in3

Ducting and clearance volume in cooler =1.215 in3

Regenerator dead volume =3.35 in3

.3Regenerator clearance volumes at both ends =1.038 in

Dead volume of hot heat-exchanger =1.3 in3

Ducting and clearance volume in heater =1.29 in3
0

TH=1680 R

0
TC= 628 R
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Cold Heat-exchanger:

Number of tubes =152

I-D- of tubes =.04 in

Length of tubes =2.6 in

Hot heat-exchanger:

Number of tubes =76

I-D.of tubes =.06 in

Length of tubes =6. in

Regenerator:

Matrix: screen stack

Wire diameter =.0016 in

Mesh =250 in

Porosity =0.69

Length =.8 in

c- GPU-3 Engine:

General Motors Research conducted a program for the U.S.

Army to produce a silent electric power source in 1960s. This

Ground Power Unit (GPU) development went through three dif-

ferent models. Two of the last model GPU-3 were preserved and

are now being used by NASA Lewis Research Center to obtain re-

liable measurements of a more or less modern type of Stirling

engine. Some of specifications of this type of engine is given

in[13]which are listed below.

Engine speed =3000 RPM

Mean pressure =1000 Psia

Bore =2.75 in

Stroke =1.208 in
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TH=1860 R

TC=560 R

Displacement volume=2.175 in3

Working fluid =H2

Cold heat-exchanger:

Tube length =1.76 in

I.D. of tubes =.04 in

O.D. of tubes =.06 in

Number of tubes =312

Hot heat-exchanger:

Tube length =9.539 in

Tube I.D. =.119 in

Tube O.D. =.19 in

Number of tubes =40

Regenerator:

Length =.89 in

Diameter =.89 in

Wire diameter =.0016 in

Mesh =213 in

Porosity =.714

Although Martini [13] has given the engine specifications,

nevertheless there is no experimental data available. However,

Lewis Research Center (LeRC) has used a third order analysis and

presented a series of test points with computed performances.

Therefore, the results of LeRC are compared with the complete

model results in Tables (9) and (10), and Figs.(31) and (32).

This comparison shows that LeRC model is more optimistic than
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the present complete model from the output power view point.

On the other hand, their heat input is more than what the com-

plete model is predicting. This is due to the fact that the

complete model has been run with incomplete specifications of

the engine, such as dead volumes inside the system; and that

is the reason for having higher efficiences from the complete

model than LeRC results. Finally, the LeRC performance is as-

suming the mechanical dry friction losses to be 20% of the

basic output power, which has no reason to be a good approxi-

mation.
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CHAPTER III

3.1- Need for Simplified Stirling Engine Models
~-------------------------------------

Due to the difficulties involved in the use of elaborate

computerized models of Stirling engines people still use the

idealized Schmidt equations for preliminary design and for

determination of optimum design parameters for the system.

This follows because the Schmidt model is in a closed form

solution, which is easy to work with and easy to differentiate

for optimization purposes. However, Schmidt solutions don't

predict real engine behavior accurately; people have tried to

introduce some power "experience factors" to the Schmidt

solution [13] . In spite of many efforts for determination of

these power factors, so far there have been no definite re-

commended values for these correction factors which have been

determined on a rational basis. Those which have been intro-

duced typically are estimated numbers taken independent of the

physics of the system and its operating conditions. Perhaps

that is why these approaches have been unable to predict real

engine performance.

In this chapter a new method of improving the basic

Schmidt equations is introduced and a simplified model for a

Stirling engine is derived. This new simplified model has

sufficient accuracy for prediction of the behavior of real

engines and its results are very close to the second order

model results, even surprisingly close to the results of

M-



the complete model which was discussed in Chapter II. Yet, it

supplies a closed form solution which is easy to work with;

some of its applicaions for optimization purposes are shown in

the following chapters.

3.1.1- Basic Heat Input & Work Output Derivation:

An approach similar to that taken for derivation of the

complete model will be again followed here; which is to calcu-

late basic heat input and work output first for an engine with

perfect component; then the losses are calculated and intro-1

duced into the basic calculations.

The Schmidt model assumes isothermal expansion and compres-

sion processes inside the cylinders, but the real engine works

nearly adiabatically. Therefore, by adding some correction fac-

tors to the Schmidt basic work output equation (see section 2.2),

it can be modified for determining real engine output in the

form:

A it/ Pm A *119 S109 F (I-Tc/To)/(,+ x'to) (3-1)

In order to determine appropriate correction factors to

apply to this expression one needs to find the important para-

meters which influence the output of the engine. In equation

(3-1) Pm, VH, <p, and TC/TH are the terms which determine the

output Wout. Based on the physics and thermodynamics of the

system we can see Pm and VH are linearly related to the output

work, but temperature ratio, phase difference between the two

cylinders ($), and dead volumes have non linear effects on



the output. Therefore, three essential correction factors have

to be added to equation (3-1), F(T), O(D), F(O$), which means

the new equation would become:

WogT=1T*sY .,. V'4 *~L~ S (#8 TC/T)(j) EN #LT FI() ~(D)
(3-2)

To determine the factor ;(T), the phase angle ($) and geo-

metry of the heat-exchangers are(VD)kept constant and only the

temperature-ratio (TC/TH) is changed. For different values of

(TC/TH) the complete model has been run where helium as the

working fluid and TC held constant at 5300R, the results were

then compared with the values calcuated by equation (3-1).

Assuming the output work of the complete model to be the exact

solution, the error between that solution and the Schmidt equa-

tion was determined and has been plotted versus temperature

ratio as shown in Fig. (33). Different empirical correlations

can be fitted to the data of Fig. (33). A simple one is deter-

mined as:

Y=542*EXP (-8. 56*x)+1.36 (3-3)

Where Y= (W-W l) *100/Wreal

and x=l-TC/TH

Since F(T), as defined by equation (3-2), is the ratio of the

real output and Schmidt model output, then by using equation

(3-3) we get:

F,(T)=l/l.0136+.00104*EXP(8.56 TC/TH)3 (3-4)

In order to determine F($), the above correlation for F(T)

is substituted in equation (3-2) and for a constant temperature

ratio, the value of $ has been changed in the range of 80 to 130.
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The results of the complete model for different $ is calcula-

ted and compared with the results of equation (3-2) and the

error is calculated and plotted versus ($) as shown in Fig. (34).

It seems that the error is a linear function of $, and a simple

correlation fitted to the data is taken as:

Y=.36167x-87.4476 (3-5)

Where W-W
Y--- ----*100

W real

and x=360+$

Since in the Stirling engine the cold space volume is lagging

the hot space volume,then $ is a negative angle. In order to

eliminate the negative sign, both in the complete model and in

the correction factor(3-5) a 360 is added to the angle. There-

fore, F($) would be written as:

F($)=l/ 1.4275-3.6167*10-3*$3 (3-6)

In equation (3-6) the 360 has already been added so that the

absolute value of $ should be substituted.

Finally the dead volume correction factor, F(D), should be

determined for this purpose, taking constant phase angle($) and

temperature ratio (TC/TH), the heat-exchanger geometries have

been varied, this has been done for different sets of constant

($)and (TC/TH) ard rigs.(35) and (36) show the results of F,(D)

versus the total dead volume in the system. These two figures

are the conclusion of many different runs and comparisons of

the complete model with equation (3-1). Their concentration

onto curves indicates that no other terms than F,(T), F(*) ,and
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F(D) would appear to have any significant effect.

Different correlations can be fitted to the results of

Figs.(35 ) and (36 ), however, simplest one is the better one.

Following are linear correlations which has been used for F,(D).

(.58D-.13)(.803 TH/TC); if D.2.
For TH/TC<1.5 F;(D) 1/3 (3-7A)

(303D+. 418) (TC/TH)'*l. 076; if D>2.

.1143D+.72 ; if D43
For TH/TC>l.5 F (D)= .02D+1.02 ; if 3<D<6 (3-7B)

.004D+l.12; if D>6

Where D=(VDR+VDC+VDH)/VC

VDR=Dead volume inside the regenerator (including ducting
and clearances)

VDC=Dead volume inside the cooler (including ducting and
clearances)

VDH=Dead volume inside the heater (including ducting and
clearances)

By substituting equations (3-7), (3-6), and (3-4) into equa-

tion (3-2), we get the basic output for a real engine very accu-

rately.

An easy way to calculate the basic heat input to a real en-

gine is by using the output work and a thermal efficiency term.

Since the output work is already given by equation (3-2), then we

need only to determine an efficiency term. Through the results

for various cases performed by the complete model it has been

estimated that for a real engine efficiency is about 10% less

than the corresponding Carnot efficiency. Therefore, if the tem-

perature-ratio is given then the efficiency term and, consequent-

ly, the basic heat input are as follow.



Efficiency=(l-TC/TH)-.10=.90-TC/TH (3-8)

Performance calculations can be done by using equations

(3-2) and (3-9). If, at the end, the calculated efficiency is

significantly different from that calculated by equation (3-8)

then the new efficiency can be used and the calculations should

be repeated again. Usually, this has not been the case and

equation (3-8) gives reasonable values for efficiencies.

3.1.2- Derivation of Mass Flow Rates Inside the Stirling Engine:

As discussed in Chapter II, one of the important tasks

of modelling a Stirling engine is to present a model which is

able to represent the dynamics involved in all essential pro-

cesses of the engine. Determination of an accurate average

mass flow rate, over a cycle, inside each component of the

systemi is very important, because these values determine the

Reynold's number, pressure drop, and temperature drop-inside

the corresponding components. This constitutes one more reason

why most over-simplified closed form solutions which have been

previously presented do not predict the behavior of a real

Stirling engine accurately. In this section a method for cal-

culating the mass flow rates is shown.

Fig. (37) shows a general configuration of a Stirling

engine. Since it is assumed the total mass of the working

fluid is constant and there is essentially no mass leakage,

then it means what ever mass flows into the three heat-
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exchangers in the first half of the cycle should come out of

them during the second half of the cycle. The assumption of

sinusoidal volume variations inside the hot and cold spaces

usually helps to provide simpler mass-flow results. The deri-

vatives of the two volume variations give the net volume flow

rate to the three heat-exchangers. This is shown in Appendix

(J) which yields the following results:

VA (- SIA/(Wt))/2 (3-10)

(3-11)

I-c W) N CIVM

(3-12)

Where
TW~ot) =(V'N/vC+ CastV)/6IN4P)

Equation (3-10) shows the instantaneous volume flow rate

through the three heat-exchangers. It has a sinusoidal form

which means over half of the cycle it is positive, represen-

ting flow into the heat-exchangers, and for the next half it

would be negative, corresponding to flow out of the heat

exchnanger.Fig(37) shows this variation. The maximum volume

flow rate, Qmax , and the half period, tH.P., have the follow-

ing relationship, as shown in Appendix (J).

sp.*-O j =occupied volume (3-13)

Where

V-C* 0NW/(AI*9Cso(



Equation (3-12) is true for an ideal case, i.e. the maxi-

mum flow rate and half period can show the occupied volume

during the period. In a real engine because of the presence

of the dead volumes, it would be better to use effective volume

which is a proper fraction of the occupied volume. This sug-

gests that the volume flow rate in each of the heat-exchanger

can be written as:

., f woJe SI9 - c xSIM NT+*)$2 #4( 3-14 )

Where Fc is a correction factor (less than unity) for calcu-

lating the effective volume.

In order to calculate the mass flow rate, we need to find

an average density for the working fluid inside of each heat

exchanger. This can be done by assigning a pressure and a tem-

perature to each of the components. As shown in Appendix (J),

the following pairs of properties have been assigned.

For Hot Heat-Exchanger:

Pupon ( A/f( F) ,T=To
For Cold Heat-exchanger:

T=TC

For Regenerator:

P = T= TR ( T ,Tc)/ (r. /Tc)j

These pressures and temperatures would result in the following

mass flow rates.

Heater:

(3-15)



Cooler:

Z- fV--T ' a * F'C
(3-16)

Regenerator:

(3-17)

Where Fch, Fcc, and Fcr are the correction factors, which

have to be determined. As might be expected, they are very

close to unity. In order to determine specific numerical

values, we have to find which terms would affect them. The

same consideration used for basic output power correction

factors can once again be applied here. This means that each

of these correction factors Fcc, Fch, Fcr are functions of

temperature ratio (TH/TC), phase angle difference $, and dead

volume ratio. Therefore, each of them can be taken as a mul-

tiplication of three factors.

F = f (T)*f(*)*f (D) (3-18)
cc cY c co

Fc = f (T)*f (4)*f (D) (3-19)
cr rT re r(

Fc = fh(T)*fh44 )*fh(D) (3-20)
Fch hi hT ha()(-0

To calculate each of the nine factors (three sub-factors

for each of the three basic correction factors), first the

geometry and the phase angle are kept constant and with the

ratio of the mass flow rate determined from the complete

model as the results of equations (3-15) through (3-17), the

subfactors fh T)' f (T), and f (T) are calculated for dif-h! CT r~r

ferent values of the temperature-ratio. Fig. (38) shows the

result of this calculation, where the values of f(T)'s lie

in the range 0.9 to 1.2 as was mentioned before. The same



procedure has been done for phase angle correction factors.

However, this time the temperature-ratio is kept constant and

$ has been changed. Fig. (39) shows the results for f c(')

f ($), and f ($). Then finally, by keeping temperature-ratio

and phase angle ($) constant, in different set, and varying

the heat-exchanger geometries in a random order then the

correction factors based on the dead volumes of heat-exchang-

ersa're calculated and plotted in Fig. (40) through (42).

Now, the important task is to determine the correspond-

ing correlations for each of the figures. In pursuing this,

an attempt has been made to find the simplest possible cor-

relations, even by using different zones in a graph. The

following are the resultant correlations.

For temperature-ratio (TH/TC):

Heater- t
- .24 (TN/Tc.)+.127(TO/c) +. 8455

(T) j
t4 -20 6 (T*/Tc.)+ .79445

Cooler-

{ 1972 (Tr/Tc)-.20&$(TN/rc,)+{. 310

-7 (To /Tc)4.3o

Regenerator-

-..oI4 (TH/rc) +.423MT)/c+. f/;

For the phase angle difference ():

; T/tc)41.i
(3-21)

(3-22)

To/-Tc <.S

TH/-rc >~2

TY/TC(j 2

(3-23)



Heater- fh $)=. 4 6 3 6 6 7 *1042-1.5516*10-2++.798 (3-24)

Cooler- f ($)=7.04762*10 542-1.504764*10 -3+.201 (3-25)

Regenerator- f ($)=8.0381*10-5 2 1.60382*10-3 +.08 (3-26)

Note: The absolute value of 4 should be used for above equa-

tions.

For the dead volumes:

.1373*DH+.8864; DH<2
Heater- fh(DH)= (3-27)

ho .0408*DH+l.08 ; DH>2

-.333*DC+l.293 ; DC.6
Cooler- f (DC)= 3-28)

ca -.lll*DC+1.163 ;DC>.6

1.06 TH<l000 R
Regenerator-f (DR) .06 DR<l.17 ,(3-29)

rb 1/30*DR+l.072 ; DR>l.17&TH>l000R

Where:

DH=VDH/VC

DC=VDC/VC

DR=VDR/VC

Substitution of equations (3-21) through (3-29) into equa-

tions (3-18) through (3-20) would give the correlations for

Fcc, Fcr, Fch . Having these correction factors and equations

(3-15) through (3-17), the mass flow rates inside the three

heat exchangers can be calculated. While, the correlations

for these correction factors might seem complicated, never-

theless, all of the results are in order of unity (in the

range .8 to 1.2).
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3.1.3- Loss Calculations by the Simplified Model:

In Chapter II the derivation of losses in different

domain was discussed. The difficulties encountered in their

detailed calcualtion arose through integrations which were

not possible to perform analytically so that a computer was

needed. For the simplified model, because mass flow rates

occured in a closed form, the corresponding integrations and

loss calculations could be done by hand so that no computer

was required for either part of the calculations.

3.1.3.1- Pressure Drop Losses:

Appendix(K) shows the derivation of power loss due to

the pressure drop in each heat-exchanger, the result follows

in a closed form solution.

(3-30)

Where f is the friction factor, A is the flow path area, L is

the length of the heat-exchanger and

RH = AFR*L/(AHT)

AHT is the total heat transfer area.

Equation (3-30) can be rewritten for each of the heat-

exchangers, based on their geometries, as follows.

For Heater:



A~$.DI 4* -~T CpS20.

(3-31)

Where DH is the heater tube diameter, NH is the number of

tubes, LH is the tube length, and fH is the friction factor

in the heat, Appendix(K) shows how it can be calculated.

For Cooler:

(3-32)

Friction factor fc is given in Appendix(K).

For Regenerator:

From Appendix(K), we get:

(for wire filling)

('3-334)

(for sphere filling)
-p c-o-~

3 --- R

C3- 33 P,)

AFR=VDR/LR

es5 ~~ * W CI- WS S(ot )+NS2Yos
I14TT R L(DVnRA Csaok * R*TR F +

(3-33)

Equations (3-31) through (3-33) give the power loss due

to the pressure drops inside the three heat-exchangers.



3.1.3.2- Temperature Drop Losses Inside Heat-Exchangers:

In section (2.3.2.1), the power loss due to the tempera-

ture drop inside the heat-exchangers is derived and the re-

sults are given by equations (2-10) and (2-11).

Power loss' due to heater- AT :: C,- e -- * (2-10)

t (2-11)
Power loss due to cooler AT= s &T * c

Based on the simplified model, We a Wc can be written as:

We=1/2 (Wout+Qin)

Wc=1/2 (Qin+Wout)

Wout is given by equation (3-2) and Qin is given by (3-9), mH

and mC are given by equations (3-15) and (3-16).

Where Pr is the Prandlt number and ReC and ReH are Reynold's

numbers which are ,defined in Appendix (K).

For the regenerator Martini [13] has shown that its in-

effectiveness can be written as:

Ineffectiveness=2/(NTUV+2) (3-34)

Therefore, the heat loss due to the regenerator imperfection

can be written as:

S * cr# TT-1c) I +
IV ToV+ -( 3-35)

Where m;R is given by equation (3-17).
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NTUV=H*AHT/mR*CV (3-36)

In reference [13] a correlation for the heat transfer coeffi-

cient, H, is given as:

74 13*- * Pr21 * (goo-) 1
AFR

Therefore,

Substitution of equations (3-17) and (3-37) into (3-35)

would then give the heat loss in the regenerator.

As shown in Chapter II, all those losses other than the

just-derived ones above exist in closed form expressions.

Therefore, the same equations which are shown in Chapter II

can again be used here for the simplified model.

As shown in these two sections, all of the calculations

for performance of the Stirling engine are written and derived

as closed form solutions so that there is no need for a compu-

ter for any part of the process. In the next section the sim-

plified model and complete model results will be compared.
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3.2- Comparison of Complete and Simplified Models:

Appendix(K) shows a sample of calculating Stirling engine

performance via the simplified model. This sample shows how

the calculations should be carried out and it also demonstrates

the accuracy of the simplified model in comparison with the

simulated complete model of Chapter II. In similar fashion,

the accuracy of the simplified model has been checked over the

temperature-ratio range of 1 to 2.0; the results are shown in

table (11) and Fig. (43).



CHAPTER IV

Procedure and Derivation of Optimization Method for

Designing Stirling Engine

An important goal of this thesis is to find the tempera-

ture-ratio boundary beyond which no engine can produce posi-

tive shaft power. In order to determine that boundary, the

engine should be designed in such a way that all losses be

at their minimum levels. Therefore, there is a real need

for an optimization method for Stirling engines. Yet in the

published Stirling engine literature, there appears to be

no general method of optimization for practical Stirling

engines. There are a few cases for ideal engines based on

the Schmidt solution in reference [25]. However, they do

not cover the whole range of operating conditions for Stir-

ling engines; furthermore, they are useful only for preli-

minary design purposes, not for detailed engine design.

In this chapter, a new method of optimization will be

derived which covers the whole range of operating conditions

for practical Stirling engine's. This -method is based on the

closed form solutions of Chapter III (simplified model) and

optimizes each component of the system separately. However,

this doesn't mean that the optimization of different compo-

nents is totally independent, partly because the ducting and

clearance volumes which connect various components are in-

cluded in the optimization parameters. On the other hand,

M_ M__ M
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because regenerator and cylinder losses are the dominant

losses in the system, sub-optimization of these particular

components is nearly equivalent to optimization of the en-

tire engine.

The first question is what quantity is going to be

optimized? In the method used here for each component one

aims to find an optimum geometry ratio such that the ratio

of the total loss in that component to the output power of

the system is minimized. That geometric ratio, which might

be called an "aspect ratio", is taken as the ratio of heat

transfer length to hydraulic diameter for the three heat

exchangers; and as the swept-volume ratio for the hot and

cold space volumes.
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4.1- Optimum Design Model for Stirling Engine
---------------------------------------

Through the next four sections of this chapter, it will

be shown how to optimize each component of the engine, how

to calculate the optimum swept-volume ratio, how to find

the optimum phase angle and speed of the engine, and finally

what should be the bore-stroke ratio for minimizing the

cylinder losses. This section shows how the results of the

following sections should be put together for derivation of

an optimum design model for a Stirling engine. The optimum

design procedure of this chapter can be applied to any

type of Stirling engine over the whole range of operating

conditions. It is a general method of optimization filling

the need for an optimum design procedure for many applica-

tions of Stirling engine in the published literature. In

section 4.6 the results of this optimum design method will

be compared with some available data to indicate its accuracy.

Based on the application of the Stirling engine, especial-

ly for waste-heat recovery, it is almost always the case, that

there are two temperature sources and with a certain avai-

lable heat flow from the hot source and the question is:

what should be the design of a Stirling engine in order to

exploit these available sources and get the maximum out-

put power? And how much is that output power?

Based on the above logic, the optimum model of this

section has been made with the following data as the basic

input for this model.
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Inputs:

TH=hot source temperature

TC=cold source temperature

Pm=mean pressure of the system (given based on the engine
material)

Qin=available rate of input heat

VD=percentage of the dead volum (based on the available
space)

Performance of the optimum designed engine will be cal-

culated by either complete or simplified models. Both of them

require the complete data about the engine geometry. Deter-

mination of this geometry data is the optimization task which

will be shown in this chapter and is summarized as follows.

a)- By using equation (3-9) the required cold volume

(cold cylinder volume) can be calculated.

T- Th*)4 *1 (3-9)

For the first round calculation, it can be assumed that

swept volume ratio is unity, FD(D) is equal to one, and opti-

mum speed & phase angle can be selected from Fig. (47). The

reason for calculating VC instead of VH is because the major

losses occur in the hot space, therefore if VC is determined

then by using the optimum design method, derived from mini-

mizing the losses, the swept volume ratio and conseqently the

hot space volume can be calculated.

b)- Since in all of the analysis of Stirling engines it

is assumed that the heater & cooler have constant wall tem-

perature, therefore for the coefficient of heat transfer



between heater or cooler wall and the working fluid the

ollowing equation can be used (23}.

Nu = 5.75 (4-1)

Since all of the input heat should be given to the wor-

king fluid via heater, then we can calculate the required

number of tubes for the heater, by assigning a standard tube

diameter, see Appendix (L).

Qin=h*A*(TH-TR) (4-2)

A=NH*7r*DH*LH (4-3)

h=5.'75 Kg/DH (4-4)

NH=Qin/f5 75 1Kg*LH* (TH-TR)j
TR= (TH-TC)/[ln TH/TCI

By using a ten percent safety factor, the result would be:

NH=(I.l*Qin)/[5.75rKg*LH*(TH-TR)J (4 -5

Equation (4- 5) has LH, the heater tube length, but this

equation can be solved simultaneously with the result of

the heater optimization, i.e. equation (4-37).

Similar procedure can be applied to the cooler, except

that in cooler the amount of heat which is exchanged bet-

ween the working fluid and coolant is not Qin, it is

(1-Eff.)*Qin, Since equation (3-8) represents a good esti-

mate of efficiency then for the number of tubes required in

the cooler we get the following, see Appendix (L).

NIC LI fo t *I+ C/TA) uJKI Y3. r LC, C 1V TC)] 4

Because equation (4-6) has LC, cooler tube length

which is unknown, then this equation should be solved simul-

taneously with equation (4-27) which is the result of
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optimization for cooler aspect ratio.

C)- Cylinders, heater, and cooler geometries have now

been calculated. The only part which is left is the regene-

rator. Equations (3-33A) and (3-33B) show that the hydraulic

diameter for the regenerator depends only on the porosity

and wire or sphere diameter of the filling material in the

regenerator. Therefore, by using nominal values for porosity

and particle (or wire) diameter, 70% and .0016 in, respec-

tively regenerator hydraulic diameter can be calculated.

Equation (4-19) shows the result of optimization for

the regenerator. Having that equation and the hydraulic dia-

meter, the optimum regenerator length can be calculated. The

only problem is that the diameter of the regenerator cross-

sectional area (DRR) should be determined, if it is circu-

lar otherwise an equivalent circular area should be calculated.

However, from the heat transfer view point, there would be

a geometrical relationship for a regenerator in order to

exchange the required heat with the working fluid. Appendix

(P) has shown the derivation of this equation and the result

is following, also see the next section for derivation of

this equation.

L~.Oa= ~ c -TC
P# e Tp, 6-O-)CK COset "TR-TC ( 4-?7)

Where

TR="'(TH-TC)/n TH/TCJ

p=Regenerator material density

CR=Regenerator material specific heat

CP=Working fluid specific heat

a=Porosity
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Therefore, equation (4-7) and (4-14) should be solved

simultaneously, in order to get the whole geometry of the

regenerator.

When the optimum geometry of the engine is determined

then the complete or simplified model can be used in order

to find the performance of the engine. Completion of Stirling

engine performance shows how much heat is required. If that

heat is less than Qin, then the cold space volume (VC) will

be increased by AVC, which is part of the input for model,

and the whole geometry calculation will be repeated and a

new performance will be calculated. This continues until the

calculated required heat will be in the neighbourhood of the

Qin. If the first time calculated required heat is greater

than Qin, then VC will be decreased by AVC and the similar

procedure will be continued. During each iteration, equations

(4-54), (4-64), and (4-72) have to be used for calculating

optimum phase angle, speed, and bore-stroke ratio.

At this stage the optimum design model is completed and

the final geometry and engine performance will be printed out.

Fig. (59) shows a block diagram of how the optimum design model

works.

Appendix (Q) shows the computer program of the optimum

design model based on the complete model. This design model

has a switch (SW3) which can be used to indicate either the

input heat or the required net output power is given.
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This section indicates how the results of the following

sections, namely the optimum geometry derivation, should

be used in order to get the optimum designed engine and its

performance.

Since for a Stirling engine, regenerator and cylinder

losses are the dominant power losses, then in the following

procedure the optimization of the regenerator will be per-

formed first and, due to the similarity in derivation, opti-

mization of cooler and heater will be followd. Finally, cy-

linder optimizations will be presented. However, this deriva-

tion sequence does not imply the relative importance order.

4.1.1- Regenerator Optimization:

As discussed in the last two chapters there are three

major power losses associated with a regenerator: loss due

to the pressure drop; axial conduction loss; and loss due to

the regenerator imperfection. From fluid and heat transfer

viewpoints, it can be seen that an increase in aspect ratio

of the regenerator (length over hydraulic diameter) would

increase the pressure drop power loss while, at the same

time increasing the heat transfer area so to decrease the

regenerator imperfection and decrease axial heat conduction.

Therefore, this aspect ratio has opposite effects on the

fluid and the thermal losses of the regenerator, and there

should be an optimum value corresponding to the minimum

value of the total power loss.
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The analysis to follow is based on the simplified model

results because they exist in closed form. Equation (3-33)

expresses the power loss in the regenerator because of

pressure drop.

put 4 V*&Qi. Cfd i(2V()

By using equation (3-2) which gives the output power we get

the following equation, see Appendix (L).

WIUS C1. (?) * LIDb),t VC2# 14_____0

(4-8)

Where C, 41itI'T/ceSk)s Fc29 [%%v'f 4 . SIA(zA-3)* rf(cdt)]

Since the optimum phase angle (f) will be calculated for

overall processes of the engine in the next section, then

those terms which depend on e are grouped together as the

single fuction C (t) for equation (4-8). Also there are

some additional corrections for the final optimum result

which will take into account these minor points.

For a given temperature-ratio and mean pressure the re-

generator has to have enough thermal capacity to handle the

resultant heat transfer between the working fluid and the

regenerator filling material. Appendix (P) shows how by

applying an averaged energy equation we can get the folloq..p,

ing relationship between the length (LR) and cross-sectional



diameter (DRR)

O R 2 . 3

of a regenerator.

*CP
z~.C

This equation indicates that for a given Pm and TH/TC the

regenerator dead volume (VDR%, LPategDtCar)

dead volume is independent of regenerator length

Equation (4

free path area,

equation

Appendix

-8)

is frozen, i.e. the

(LR ).

has AFRR term which is the regenerator

i' e.A~gg . 012g, then by using equation

(4-8) can be written in non-dimensional form as

(4-9)

(see

2, :2 .8
*4sto ,u (&$)'

(4-10)

3 1.7
~*)a ~ (~L~r4.1 s~Lzd-ff) 4jzLtCf)

* .
F0(h) 4-Ty) 5T(T)

S2 oc. Pr4s waslev

ft T*/TC

a to F)Z . (I .t.r)2/16186% it £41A' 4I

100

4 ,- Ito Tc. cOS.
(4-9)

VV ~rS 1wo L -r =I

Where ,

53.1

TV

Cp
cP

..' [oR P, , (1-4: ] / L V-C'L 4-4%,o0a]

) [ sr F, 1)]
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The regenerator imperfection causes a heat transfer loss

which is calculated by equation (3-35)

~ ~~cw*(Trc,) (335)

Where

Appendix (L) shows that equation (3-35) can be written in

non-dimensional form as:

In ) * (4-11)

Where 'm( 2
C2. ~ ces 342.U62(k- **

Heat transfer loss due to the axial conduction in a re-

generator is expressed by equation (2-15) as:

= +4 (#A) a (TY -TC)/ 9 (2-15)

A. 11/4 T , (p

Appendix (L) shows derivation of the following non-

dimensional form of equation (2-15):

POT (fit ire) (4-12)

Where

As mentioned before, the purpose of optimization is to

get the minimum power loss in the regenerator. This power loss

is not simply the summation of Wloss, QR, and QC equations
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(4-10) through (4-12), because QR and QC are in the form of

a heat transfer rate where as, Wloss is in form of mechanical

power (work transfer). The following diagram shows QR and QC

are the by pass heat flows from the hot temperature source

to the cold temperature source.

Stirling Engine
with Perfect

Effective heat Components

Leakage Due to Net Output Power
Imperfect Components

Power Loss Due

to Engine Compo-

nent Imperfection

In order to see how much power loss the engine has due

to the heat transfer losses and compare them with the other

power losses we can put an irreversible engine in the by

pass flow and convert those heat leakages to mechanical

power (work transfer) losses. This idea is shown in the

following diagram.

Power Loss Due to
Effective Heat Leakage

mout

Component Imperfection
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This suggests that in order to calculate the regenerator

total power loss QC and QR should be first multiplied by the

real Stirling engine efficiency then added to the pressure

drop power loss.

"1.0T Wss .- I-IL 2

(4-13)

For the first round calculation efficiency ( can be approxi-

mated as:

In order to get the optimum (L/D)R we should differen-

tiate equation (4-13). Note that the regenerator dead volume,

as discussed before, is independent of (L/D),; therefore FR1%. R

is independent of (L/D)R and has no effect on differentiation.

Appendix (L) shows the result of differentiation as:

A.0 Ot.017 .4 Y"gt [2 oS

(4-14)

Equation (4-14) shows that if the temperature-ratio ( )

approaches unity, then (L/D)R approaches zero, i.e. near the

unity temperature-ratio the engine does not have any regene-

rator.

Equation (4-14) is a non-linear equation and requires

some trial and error in order to find its solution. To get a

good first estimate for (L/D)R we can neglect the heat con-

duction term in comparison with the regenerator imperfection,

good approximation for low temperature-ratios, then equation
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(4-14) can be approximated as:

(4-15)

For typical values of porosity (r) and Prandelt number Pr

i.e. 701* and .72, respectively, with the assumption of hydrogen

as the working fluid the values for C C 2, and C can be cal-

culated as:

Ct ~ 47 I'~oq
CS (4-16)

(4-17)

As shown in Appendix (L), there has been no simplification

in deriving of equation (4-14) except that a correction factor

should be added to that equation in order to take into account

the effect of ducting and clearance volumes at both ends of the

regenerator. In order to find that effect and check the re-

sults of the equation (4-14) the complete model of Chapter II

was used. That model has been run for about one hundred dif-

ferent cases in various series. For example, to see the effect

of temperature ratio the f4, , andi parameters are kept cons-

tant and i, has been changed for a wide range of temperature-

ratios. For each!', the optimum aspect ratio is determined

by trial and error. This has been done more than five times,

i.e. each time then$, V, andg have been kept at different

values and 'is changed. It is interesting to observe (after

the fact) that nearly identical results could in fact be
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obtained using the simplified model.

The results of equation (4-14) and complete model are

very close (within ±2 units of L/D). This comparison also

suggests that for effect of ducting and ends dead volumes

the following correction should be added to the result of equa-

tion (4-14).

L$)=8go -- 20
(4-18)

Ihere { Dej V e. rds, De VoNete)/ (I

( L/ )=(% .R+ fL R (4-19)

4.1.2- Cold Heat-Exchanger Optimization:

The procedure to derive the optimum aspect ratio of the

cold heat-exchanger is similar to that for the regenerator,

except that for the cooler there are two types of losses:

Power loss due to the pressure drop; and power loss due to

the temperature drop.

The previously derived equation (3-32) gives the power

loss due to the pressure drop.

- Cfc) a M A ? +x-%)*Jywz4*cf
WT T3 c(Akts (0C044 TC C*s20

Ey normalizing this equation with respect to the output

Dower it can be written in terms of the non-dimensional

parameters. Appendix (L) shows the derivation of the follow-

ing resultant equation.
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These result to the following representation of equation

)E,/ - 2
(4-22)

00 T
Where

C(<

3.8S

E 2 ( .04)7 su+ +(2 ) S3A11de ] 4P
I= T 1P a'': I,Sr-+ s (--)+s u.,)}F7T 4"/C.)IS(CVOjI' c

)#F (T) -F r0) W

As shown in Appendix (L), the number tubes for cooler

can be calculated based on the given input heat (Qin)

the engine.
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(4-20)

(4-21)

Then

(4-20)-

to

k. I- A/Ei F747
D.#TeA U-TC/TH

ILyg .-.

/.) F 6,Tv, V



107

NI = (.L #CTR-Tc)]A4.1 (4-23)

By using a standard tube diameter for cooler and apply equa-

tion (4-23) for the number of tubes, the dead volume of the

cooler would be constant and frozen for a given Qin and a

given temperature-ratio.

Appendix (L) shows how the power loss due to the tempera-

ture drop in cooler can be written in the following non-dimen-

sional form.

VOUT (4-24)

Where 22 *S --s@
-041 (-Tev)

STo/T7C

Therefore, the total power loss of the cold heat-exchanger

would be:

OTWus.. (4-2522).

In equation (4-25) Fc (De,(, Tr' Vr) is independent of

(L/D) c because the volume of the cooler is frozen by equation

(4-23); therefore, Fc has no effect on differentiation of

equation (4-25) with respect to (L/D)c

)cc

YD (4-26)
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Equation (4-26) shows the optimum aspect ratio as a

function of three parameters coupled together. Because of

the simplifying assumptions which were made in derivation of

equation (4-26), it might be improved by some correction

terms, especially those due to dead volume effects, as

follows:

*2 '

IT 1 #(4-27)

Then in order to find each of the correction terms to

the right in equation (4-27), the results of the complete

model and those of equation (4-26) could be compared. In

fact the complete model was run for about fifty different

cases, i.e. different operating conditions to determine

(L/D) c, OPT by direct interpolation. In each run one of the

four parameters was varied and the others were kept constant-

All of the runs were divided into different sets, such as4

set, used to determine f . This consists of more than

twelve runs, in all of which / is taken as variable while

the others are kept constant at different values for every

four runs.

Comparison of the complete model and equation (4-26)

results gives the following correlations. Appendix (L) shows

an example of how the f(g) has been derived. In deriving

these correlations, an attempt was made to keep them both

simple and accurate.

()= ,3 P/dt 47 (4-28)
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.0275M 
(4-29)

(4-30)

(4-31)

Where

VCD/r 1/2(VH+VC)=(Cooler Dead Volume + Cooler Ends Dead Volume/[

Therefore, the combination of equations (4-26) through

(4-31) now represents the corrected optimum value of the

cold heat-exchanger aspect ratio based on the four non-dimen-

sional parameters.

Although the above corrections have to be add to equation

(4-26), it doesn't mean there is a significant difference

between equation (4-23) and (4-27). In order to see that ty-

pical values for the parameters have been used to calculate

this difference as follows.

-3 = =-f2
= 2-7e > =-

TOT41= ).4

This means that equation (4-27) results to !/D=130 and equa-

tion (4-26) gives L/D=120. However, this 10 units difference

has only one percent error in calculating the minimum power

loss in the cooler.
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4.1.3- Hot Heat-Exchanger Optimization:

The same procedure which was taken for cold heat-exchan-

ger can be used for hot heat-exchanger too. Pressure losses

for heater are given by equation (3-31). The normalized form

of this equation with respect to the output power can be

written as following.

t 3.U g~ 4)e~ V.C 4_____A_(IAlone)_ti _

Woro/r~, 1T3T)&F(4)

(4-32)

Due to the similarities between the heater and cooler

we can write the final optimization results of the heater as:

WJhere £ 4 E 1 t(/)

There is a similar equation to equation (4-23) for

calculation of NH, the heater tube number, as follows. This

equation would freeze the dead volume of the heater.

.1 / 14 19 t TH -T(4-36)
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Since this is not the complete form of the optimum

aspect ratio and still needs some modification, equation

(4-33) will be rewritten as:

Where

SVHD/ 1/2(VH+VC)J

=Heater Dead Volume + Heater Ends Volumej/[1/2(VH+VC)J

For more than fifty different runs the complete model

has been used in order to find these correction terms. Since

the procedure is the same as that done for cold heat-exchan-

ger, only the results are given below.

f4)=-35(+/+ too (4-38)

5= - 7 T12 (4-39)

.N=) -t (4-40)

-* 3 (4-41)

Substitution of equations (4-38) through (4-41) into

equation (4-37) would give the expression for optimum aspect

ratio of the hot heat-exchanger based on four non-dimensional

parameters which are related to Mach number, Reynolds number,

temperature-ratio, and the dead volume percentage.

As shown for the cooler, the optimum aspect ratios for

heater calculated by equations (4-33) and (4-37) would not

have a significant effect on the value of minimum power loss.

For the following typical values:
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B=.321

v=550

6=1.83

=. 27

This difference in L/D calculation is seven units which has

less than one percent error in the minimum value of the

heater power loss.

4.1.4- Cylinder Optimizations:

One of the important tasks of Stirling engine optimiza-

tion is to minimize the cylinder power losses. What this

means is that the cylinders should be designed in such a way

that the total power loss of the cylinder be at its minimum

value. The first question is what dimension(s) should be

taken for optimization? Upon reviewing the equations in

Chapter III for the different power losses and the basic

output power of the engine, it can be seen that the volume

ratio (VH/VC) is the important factor both in the various

cylinders losses and in the output power.

The cylinder losses are: shuttle losses; non-uniform

temperature distribution loss; dry friction loss; heat leakage

and pumping loss. Details and derivations of all of them are

given in Chapter II. Since the first three losses are the

dominant ones (as indicated in Fig. (64)), then only they will

be used for optimization purpose.

In fact, an increase in the cylinder volume ratio (VH/VC)

would increase the basic output of the engine, while at the

same time it would increase the cylinders losses. Since the

net output power increases by an increase in basic output
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power and decreases by increasing cylinders losses, then there

would be an optimum cylinder volume ratio corresponding to

the maximum net output power. This means that the cylinder

optimization should be performed based on the swept-volume

ratio of the two cylinders (VH/VC).

Equation (2-16) gives the shuttle loss, although, this

loss is calculated for the hot cylinder, however, when it is

normalized with respect to the output power it will include

the volume ratio.

Equation (2-20) calculates the power loss due to the

transient non-uniform temperature distribution inside the

cylinders. There is no direct cylinder volume term in this

equation, rather, there are the heat transfer areas of the

two cylinders (Ae, Ac). But these two areas are directly

related to the two volumes.

Power loss due to the dry friction is given by equation

(2-33), in this equation the volumes are directly involved,

and by the time that this loss is normalized based on the

output power we get the volume ratio of the cylinders.

Although, the above losses would increase by increasing

the volume ratio, however, as shown in equation (3-2) the

basic output power would also increase and both of them have

opposite effect on the net output power. Appendix (L) shows

how these significant losses in cylinders can be normalized

with the output power.

The resulting equations are:

M-
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Friction: -sc5 (* I/A)(1/ /( 6 g(qT)

Shuttle: F2* * 6t{ (443)

Non-Uniform Temperature:

In the above equations the minor factors and the coeffi-

cients have been put together in forms of new coefficients

c 1, c2, and c3 . In these equation, A, 6, 6, (, are defined

as:
A=VH/VC

6=TH/TC

a=Reynold Number=Pm/PREC W* (VC/Ac)

Ac=Heat transfer area of cold cylinder

(= (VDC+VDH*TC/TH+VDR*TC/TR) /VC

By summing those losses and taking the derivative of

the normalized total loss with respect to A, the following

equation would be resulted (see Appendix(L) for the deri-

vation of the following equation).

3 (4-45)

In order to calculate the three coefficients di, d2, d3

the complete model has been used. It has been run for two

extreme cases and an intermediate case, and by trial and error

the corresponding values of A for these cases calculated as

follows.

6=1.8113
=1.859 =4 x=1. 6

6=8678
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6=1.6226
=2.03 Wo A=1.3

a=9140

6=1.434
(=2.42 =: A=1.1
a=9900

By using these data, the following equation for optimum

swept volume ratio has been derived:

2 =- 1-t 4+ E 1340('-1)//3 -. 02L(-') Id-5 . (4-46)

Since there has been some simplification in derivation

of equation (4-46), then some correction terms should be added

to it.

(4-47)

By using different sets of the complete model runs, simi-

lar to the previous cases, the correction terms have been de-

termined as following.

(4-48)

= -e . 54 (4-50)

Substitution of equations (4-48) through (4-50) into

equation (4-47) gives the final correlation for calculating

optimum volume ratio of the two cylinders.

As discussed in heat-exchangers optimization, there

would not be a significant difference on the maximum net

output power by using the optimum swept volume ratio
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calculated by equation (4-45) instead of (4-47).

Fig. (L-1) through (L-6) of Appendix (L) show the

variation of optimum geometries as functions of different

non-dimensional numbers.
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4.2- Working Fluid for Stirling Engine:
------------------- --------------

The performance of any type of engine is highly depen-

dent on the choice of working fluid. Sometimes the working

fluid must be replaced upon changing the operating conditions,

in order to get acceptable performance; this is normally true

for Rankine engines where different organic fluids should be

used at different operating temperatures.

In case of a Stirling engine, the properties of the wor-

king fluid used are important in two ways: (1) properties

affecting heat transfer, especially in the regenerator; (2)

properties affecting friction losses. Thus heat capacity and

thermal conductivity are important as far as heat transfer in

the cooler, heater, and regenerator is concerned while density

and viscosity of the working fluid are important in relation

to the flow friction losses. As shown in Chapter III, these

latter losses are directly proportional to ( OvA), p being

the density and v the gas velocity.

Initially the preferred working fluids for Stirling engine

were air, nitrogen, ammonia, carbon dioxide, steam vapor,

helium and hydrogen L5) . The first five give substantially

lower power densities and lower thermal efficiencies than

helium or hydrogen for equal mean pressure, pressure ratio,

engine speed and heat-exchanger cost (even when cosidering water

and carbon dioxide). In addition the first five fluids cause

metallurgical problems. Air and water produce scale-growth on

all metals exposed at representative heater temperature which
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cause problems in precision-controlled clearances in gas

bearings and in reciprocating seals. Nitrogen and ammonia

produce both scale-growth and nitride formations that are

deleterious to thin-skinned hot heat exchangers. Carbon

dioxide produces carbide formations in heat resistant alloys.

Helium is an inert gas while hydrogen presently appears com-

patible with specific alloys not subject to hydrogen embrit-

tlement. As a result, the choice narrows to helium and hydro-

gen, with choice based on engine performance, gas availability

leakage and hazard.

Some years ago, Philips Laboratories [15] made a compari-

son between the three working fluids: helium hydrogen, and

air. Fig.(44) shows their results. This comparison was made

for a large engine rated at 165 KW per cylinder; that is,

the three curves in that figure are all for 165 KW total

output power. This figure, giving the overall efficiency as

a function of specific power, shows that the speed increases

and the swept volume decreases along the curves at increasing

specific power output. Furthermore, superiority of hydrogen

at high specific power levels is clearly indicated. However,

this figure also shows that helium can be used with small

penalty in efficiency or specific power in those applications

where the use of hydrogen would be objectionable. Also, if

low specific powers are acceptable ,e.g., in stationary appli-

cations. even air can be used as a working fluid with still

tolerable efficiencies.
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Using the optimum Stirling engine model of section (4.1)

for temperature ratios from 1.2 to 2.2, different engine per-

formances have been calculated for two working fluids, hydro-

gen and helium, under the same operating conditions(i.e. tem-

peratures, speed, and mean pressure). The results are shown

in Figs.(45) and (46). From these figures also we can see the

advantage of using hydrogen over helium for Stirling engines,

particularly at high temperature-ratios. Again, for low.tem-

perature-ratios the difference between fluids is noticable

but not particularly significant.

Considering that the cost and availability of helium would

become critical if the Stirling engine ever became widely

used and also that helium gives lower performance than hydro-

gen and can not be generated on-site, then suggests that

methods of controlling hydrogen leakage and reducing its

hazards be seriously considered.

Leakage can be reduced to tolerable levels by appropriate

surface coatings, and by improved joining methods, while

hazards can be reduced by venting the system through a bur-

ner. Permeability into a sodium heat pipe appears controllable

by using semi-permeable septums and by operating the heat pipe

above the sodium-hydride dissociation temperature (1900*R),

[ 5]. on-site hydrogen supply is state-of-the art using re-

placeable pressurized-cartridge electrolysis units or, alter-

natively, returnable metal-hybrid storage canisters.

Summarizing, hydrogen would appear to be the best choice
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of working fluid especially at high temperatures and high

temperature-ratios. But for the other end of the scale, i.e.

at low temperatures and low temperature-ratios, either hydro-

gen or helium can be used with only modest differences in

overall performance.
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4.3- Derivation of Optimum Phase Angle and Speed via Simplified

Miodel

4.3.1- Derivation of Optimum Phase Angle:

In Chapter II section (2.2), an equation for optimum

phase angle was derived based on the Schmidt equations. Since

in the ideal model (Schmidt solution) there is no loss term,

then the resultant optimum phase angle of that section can

not be used for a real engine. On the other hand, it is not

possible to get an analytical solution for determination of

optimum phase angle by using the complete model. The only teason

why that complete model can be used for this purpose is through

iteration. which means every time the phase angle should be

c.anged and the whole model should be run in order to find

the phase angle corresponding to the maximum net output. This

method is time consuming and expensive, because the complete

model should be run many times. Therefore, it is clear again

how helpful is the simplified model. Because of closed form

solutions for basic power and different forms of losses in

the simplified model, we are able to differentiate them-and

find the desired equation for optimum phase angle.

Equations which include the phase angle terms are: basic

power output equation (3-2); power loss due to the pressure

drop in heat-exchangers, equations (3-31) through (3-33);

losses due to the temperature drop in heater and coolerequa-

tions (2-10), (2-11); and power loss due to the non-uniform

temperature distribution inside the cylinders, equation (2-20)-

Appendix(M) shows how each of these equations should be treated
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before differentiation.

Net Output Power=Basic Power-Total Loss

Wout W

Then ' . ) - '(Teral Lors) (4-51)

In order to simplify the whole derivation, in all of the

involved equations those terms which are independent of phase

angle ($) have been substituted by K's (constants). Therefore,

as shown in Appendix(M), the followings have been resulted.

-o Tz4/9 ( CI) 4 -2*TAjf (4-52)

' ~ ~ [(( t7 K-l )es (Y t A '--I- 87  [Cosqc? c S C(Zo C) L4 &A1 (.44)] 4I[18 (K? ti4),

(4-53)

Where / ()f/c42 ic*CScf

Substitution of equation (4-52) and (4-53) into (4-51)

would result to the following equation which has been derived

in Appendix(M) after a quite amount of mathematical and tri-

gonometrical simplifications.

(4-54)

The equations for each of the K's are given in Appendix

(M), and a sample of how equation (4-54) should be used is

presented in that appendix. For that example, the optimum

value of 6 is calculated by equation (4-54) which is 1070and

for the same engine, by going through the iterations, the



12~3

complete model is giving 110a. As we see, the result are

close enoughland the method is very simple and easy to follow.

Fig. (58) shows a comparison of the results of equation (4-54)

with the complete model results over the temperature-ratio

range of 1.2 to 2.0. This figure also shows the accuracy of

equation (4-54) and proves that simplified model can be apply

to this type of derivation too.

4.3.2- Derivation of Optimum Speed:

It is important to run an engine at the proper steady

state speed. This comes from the fact that for an engine,

ihe mean effective pressure decreases with increasing the

engine speed.

Since torque is proportional to the mean effective pressure

then:

Torque i:: 6 -- 84A

Therefore, the engine power would be

Power = Torque * "J :& r c -w 2

This means that there would be an optimum speed for the

engine which delivers the maximum power.

By looking at the ideal analysis of section (2.2), it

is clear that the output power is proportional to the speed,

equation (3-1). The reason of having linear relationship is

because this system, ideal Stirling engine, has no losses or

resistances. Therefore, it is obvious that Schmidt equation

is suggesting the highest possible speed in order to get
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maximum power. But it isn't true for a real engine. In a

practical engine there are various losses which would increase

by any amount of increase in speed of the engine. Such as,

mechanical friction loss which is proportional to the square

of speed. Therefore, there is a trade-off between higher

power and increase in losses. In fact, the optimum speed can

be seen much better by looking at the efficiency of the en-

gine, because some of the losses which depend on the speed

have effects only on the heat input not the output power.

Appendix(M) shows the derivation of the optimum speed

by using the simplified model. Since the ideal equations

(Schmidt analysis) can not be applied to a real engine, then

the only choices for determination of optimum speed are the

complete model and the simplified model. The first choice

doesn't give the optimum speed directly. Because the computer

model should be run for many times, sufficient to get the

highest output amrongst the resulting performances. This method

would be time consuming and needs a good amount of computer

time. Therefore, we can see again how helpful is the simpli-

fied model.

As shown in Appendix(M), the basic output power and

those power losses which are speed dependent can be written

as follows:

'UT = (4- .

AP- Heater KLeS = K2. (4-56)

AP- Cooler (4-57)
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A@- Regenerator VL.4s # (4-58)

AT.- Heater Vim Ko5 - (4-59)

AT-Cooler 4)eg = k1 1 W (4-60)

Non-Uniform Temperature -7 +. 4.'5 (4-61)

Friction WL, )(. g (=- ,2e t 4j) (4-62)

Therefore, the net output of the Stirling engine can be

written as:

A/,f (rf t) (4-63

12 (4-64)2.Kt .*)A+ -. Y 4+04 Ks)' + 4C ~17 +-=k' 7( -6)

Equation (4-64) presents the optimum speed for Stirling

engines. In order to calculate K's, for any arbitrary speed we

can calculate the engine performance, then by using equations

(4-55) through (4-62) all of the K's can be determined. Then

by substituting in equation (4-64) we can determine the op-

timum w. Since equation (4-64) is non-linear, then it requires

some trial and error. In order to get the first guess we can

use the following equation which is approximate form of equa-

tion (4-64). The following equation can be derived by set-

ting the exponents of equation (4-64) to nearest integers

and taking into account that the K? term is negi gible.
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2.8 (L+k:) '+ (2-cVK 4 +.,M4Kg)w +KS+k it -K=o (4-65)

Equation (4-65) is a quadratic equation which is easy

to solve and to determine the first value for trial and error

of equation (4-64).

Appendix (M) shows an example for how the K's can be

determined and how results can be obtained from this deri-

vation. As shown, the optimum value of speed which has been

determined by equation (4-64) is very close .to sample re-

sults obtained by iterating the complete model. Fig. (47)

shows the optimum speed for the whole range of temperature

ratio from 1.2 to 2.0. This figure shows the accuracy of

equation (4-64) by comparison with the complete model results.
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4.4- Derivation of Aspect Ratio for the Cylindeis (B/S)

Part of the optimum design of Stirling engine is to

determine the ratio of bore over stroke for the cylinders.

This ratio can be determined by considering different power

losses inside the cylinders. Consider the non-uniform tem-

perature distribution inside the cylinders. If the cylinder

has a long stroke and small bore, then the temperature gra-

dient in the axial direction is much higher than the radial

direction. Therefore, the power loss in the axial direction

is more significant than the radial direction. A reverse

situation happens when the cylinder has a short stroke and

long bore. Therefore, by considering this single loss we can

see there has to be an optimum bore over stroke ratio.

As discussed in Chapters II & III, there are two major

power losses inside the cylinder which depend on the bore-

stroke ratio: shuttle loss, and non-uniform temperature dis-

tribution loss. Heat leakage depends on this ratio too, but

for low temperature applications this term is not significant

in comparison with the two mentioned losses, see Fig.(64).

As shown in Appendix(N), equation (2-24) can be used

for power loss in radial direction due to the non-uniform

temperature. This appendix shows how a similar equation can

be derived for power loss in axial direction. Therefore, for

this type of loss we have the following equations:

*V 4T*#X sCPS(%f) (3-24)
tw I-
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7A( 1. P pis (4-66)

Assuming a given cylinder volume, the bore and stroke

can be written as:

*t (4-67)

(4-68)

Since Reynolds number for cylinder is defined as:

(4-69)

and
xm=1/2 S

Then the above equations can be written as:

8s277 et *Mwt TPC
R (4-70)

(4-71)

Equation (2-16) represents the shuttle loss.

TT (2-16)

By using equations (4-67) & (4-68), equation (2-16) can be

rewritten as:

Appendix(N) shows that by differentiating the total loss

with respect to B we get the following equation for derivation

of optimum bore/stroke ratio.
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There is an example in Appendix(N) to show how

(4-73) should be used. For that example, which

the optimum ratio is about 1.8.

Since solution of (4-72) requires some tr

then in order to start with a proper value for

better to use the value which is calculated by

equation.

P-4

(4-74)

(4-75)

equation

is for TH/TC=l.62

ial and error,

B it would be

the following

(4-76)

Where
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(4-72)

(4-73)



4..- Comparison of Optimum Design Model Results with Available

Data

This chapter introduced a new method for optimization

of Stirling engine based on the operating conditions and

physics of the system. The method is not restricted to low

temperature or low temperature ratio applications, it can be

appliea for whole range of operating conditions. However,

this thesis concentrates only on the low temperature-ratio

duties and in this section the results of this optimum model

will be compared with the only published data by Philips -

Laboratories [151 which has the comparable operating tempera-

ture range.

Since the operating temperatures and temperature-ratios

are low, due to the use of waste-heat as input energy source

,then the output of the engines will assumed-in the order of

one KW.

In 1976, Philips Laboratories [151 started a study on

Stirling engine efficiency as a function of operating tem-

peratures and working fluids for low power level applications.

By using the Philips Stirling engine optimization computer

program, a large number of engines were calculated to deter-

mine the influence of heat and cooler temperatures on the

efficiency. Followings are the characteristics of their ana-

lysis.

1)- Since the study was planned to satisfy the geometry

of Philips 1-98 engine, then the engine size was chosen to

be equal to that, and the same stroke and piston dimensions

M -0

.L .' -
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were taken.

2)- Three different heater tube temperatures were used,

i.e. 850 C, 400 C and 250 C.

3)- Three different working fluids were used: hydrogen,

helium and nitrogen.

No indication is given about their design model..Fig.

(8) and Table(13) show the results of their study.

The optimum design model of this chapter has been used

for temperature-ratios between 1.2 to 2.0. The mean pressure

of 500 Psia and input heat rate 6850 Btu/hr or 2000 Watt have

been used. As derived in previous sections the speed of the

engine and phase angle difference between the two cylinders

have been calculated based on the operating conditions and

optimum geometry of the engine for each case. The results of

this analysis are shown in Table(13) and Fig.(49).

Fig. ( 49) shows the comparison between the results of

this thesis optimum design model and the Philips optimum

design model. As shown, the results are reasonably close,

yet there is a -ignif icant difference between the two models.

In fact, the Philips results seems more optimistic than the

results of the present study. Temperature-ratios data for this

Philips model go down to 1.3, but it is interesting to see if

similar agreement would hold for lower temperature-ratios,

closer to unity.

Two years later, in 1978, Philips and General Electric

126] performed a low temperature and low temperature-ratio

M __ M_
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experiment on a Stirling engine based on the 1976 Philips

Laboratories study. The results of their experiments are

shown in Fig. (50). They have gone to temperature-ratio, down

to 1.6 but not lower than that. As this figure indicates,

the results of the experiment are closer to the optimum de-

sign model of this chapter than Philips'optimum model results.

This shows the accuracy and validity of the present study

optimum model. Even the gradient of the efficiency curve has

been predicted well, by comparing with the experimental data.
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CHAPTER V

5.1- Stirling Engine both with and without Regenerator
--------------------------------------------------

In the cursory analysis of Chapter II section (2.1), it

was indicated- that at low temperature and low temperature-

ratio a Stirling engine with zero regenerator effectiveness

has an efficiency comparable to that of a highly regenerative

Stirling engine and even to that of practical Rankine engines.

Since in Chapters II through IV, the Stirling engine has been

studied in great detail, then it would be interesting to

investigate the behavior of the optimum design engine opera-

ting at these low temperature-ratios to see if these tenta-

tive conclusions are confirmed.

The optimum model of Chapter IV is used to investigate

the performance of Stirling engine, especially its regene-

rator -eometry.

One of the major reasons that a Stirling engine reaches

the Carnot efficiency in the ideal case is due to presence

of a regenerator. However, it has been shown in previous

chapters that the imperfect regenerator produces entropy

even while it improves the engine performance. When tempera-

ture ratio becomes close to unity, then the Carnot efficiency

whould itself be low and a practical engine would not be

expected to work with high performance. Therefore, this

consideration would suggest that a practical Stirling engine

might indeed perform better without a real regenerator.

This supposition is reinforced when we look at the sources
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of imperfection of the regenerator, namely the regenerator

losses. One would anticipate that at low temperature-ratios

the pressure drop in the regenerator will be significant

in comparison to indicated mean effective pressure of the

engine. Since in this same situation the temperatures are

not high enough to fully exploit the power-gain value of the

regenerative heat-exchanger compared to the power loss due

to the pressure drop in the regenerator, then it may be

concluded that the presence of the regenerator might indeed

lower the performance of the engine rather than improve it.

Fig. (55) shows the variation of optimum design rege-

nerator-length with temperature- ratio. These are the re-

sults of the optimum design model of Chapter IV. As shown

in this figure, when temperature-ratio is less than 1.3 the

regenerator length is so small that it suggests to use Stir-

ling engine without any regenerator. This means that although

the regenerator is one of the distinguishing features of the

Stirling engine, yet, for temperature-ratios less than 1.3

the engine evidently behaves more efficiently without a

regenerator. Figs. (53) and (54) show the variation of re-

generator power loss and heat loss for an optimum design

Stirling engine. As.shown, the optimum design model vanishes

the regenerator when the temperature-ratio goes toward unity,

which results in vanishing values for regenerator power

loss and heat loss.
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This means that although the regenerator is one of the dis-

tinguishing features of the Stirling engine, yet, for tem-

perature-ratios less then 1.4 the engine evidently behaves

more efficiently without a regenerator.
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5.2- Low-Temperature Rankine Engines:

Among the published literature regarding low-temperature

and low temperature-ratio Rankine engines there are some

limited results indicating concern with temperature-ratios

close to unity. Most of these efforts have been concentrated

on the use of solar energy. However there are others which

have concentrated on waste-heat recovery, especially addressed

to recovering some of the energy from the exhaust gas of

trucks and automobils.Thermo-Electron Corp. [16] has studied

the use of an organic Rankine cycle system operating on the

exhaust energy of a gas turbine. The special organic fluid

which they have used is trifluoroethanol CF3CH2OH (85%) and

water (15%). This working fluid performes efficiently for

temperature ratios more than 2.0. Although Thermo-Electro.n

has done much research and development on waste-heat recovery

using Rankine cycle systems nevertheless, these efforts have

been concentrated on waste-heat sources with temperatures

more than 600 F. Yet, they have in fact made some studies for

lower temperature and their results are shown on Fig.(51).

While these results are largely theoretical rather than ex-

perimental, nevertheless certain experience power-factors

have been used in order to bring results as close as possible

to achievable Rankine engine performance. In the corresponding

analysis for their results shown on Fig.(51), the following

assumptions have been used; these assumptions would appear

to represent reasonable practice.

M
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a)- Turbine expander efficiency (including 75% thermal

and 95% mechanical efficiencies)=71%

b)- Coolant has temperature at 70 F and temperature -

rise across the condensor is 200F, i.e. the condenser tem-

perature is 90 F (TC=90"F).

c)- Pressure drop in the condenser is about one percent

(1%) of the mean pressure in the system.

d)- Boiler (vapor generator) has a 20*F temperature

change across, i.e. TH is 20 F less than the heat source

temperature.

e)- Pressure drop across the boiler is assumed to be

five percent (5%) of the system mean pressure.

f)- Regenerator has 90% effectiveness with 2% pressure

drop (1% on each side).

g)- Feed pump has a 65% efficiency.

h)- Working fluid is R-85 for TH/TC>1.4 and R-113 for

TH/TC<l.4 .

Table (15) and Fig. (51) show the results of their ana-

lysis for a Rankine engine operating at low temperature and

low temperature-ratio. In the next section these results will

be compared with the corresponding results of a Stirling

engine.

For several years, Robert E. Barber, of Barber-Nichols

Engineering Co., has initiated efforts for waste-heat reco-

very by means of Rankine engines[ 2]. Recently he has studied

this engine for solar energy systems [ 3 1. Part of this effort

involves the efficiency and other practical considerations of
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-the combined collector-Rankine engine system; these studies

have concluded that based on use of particular working fluids

temperatures of 200 F, 300-400 F and 600 F represent optimum

operating conditions for flat plate concentrators. These

studies also report that the peak solar conversion efficien-

cies of these systems are in the range of 5 to 11 percent.

Part of the requirements for the solar application is

to find the optimum efficiency of the Rankine engine under

different operating conditions. Barber [3 ] has shown his

results as a generalized curve of efficiency versus maximum

cycle temperature. By generalized curve, he means a single

curve which covers the performance of different working fluids

at different temperature ranges. Clearly, as mentioned above

and as discussed later, any optimum Rankine engine requires

different working fluids depending on the operating tempera-

tures.

In fact, refrigerant 113 most nearly follows Barber's

generalized curve up to a hot temperature of 400 F, assuming

a fixed cold temperature of 950F; it should be noted that

this 400OF temperature is near the critical point of R-113.

Above the 400'F temperature, R-113 decomposes rapidly and is

not suitable as working fluid 1 3]. For application above

4000 F, possible working fluids are pure, fluorinated, or

chlorinated toluenes or benzenes.

The results of Barber-Nichols analysis are shown in

Table (16) and Fig. (5 the assumption for derivation of

these results are as follow:
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a)- Expander efficiency is 80%

b)- Mechanical efficiency is 95%

c)- Condenser temperature is 95 F

d)- Feed pump efficiency 50%

e)- Regenerator effectiveness is 80%

f)- Pressure losses are 5% in high pressure side, and 8%

in low pressure side.

Barber-Nichols results seem to be more optimistic than

Thermo-Electrc.n results. This might be due to the fact that

Thermo-Electron assumptions appear to be closer to the charac-

eristics of a particular real Rankine engine. In the next

section these results will be compared with the corresponding

results for Stirling engines.

M_ __ ___
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5.3- Comparison of Stirling and Rankine Engines at Low

Temperature and Low Temperature-Ratio

Two sets of results for low temperature ratio Rankine

engines were presented in the previous section. There are

other published literature concerning Rankine engines for

waste-heat recovery applications, however, most of this

presents theoretical results, often too optimistic to be

true of practical cases. Since the Stirling engine results

which were used for comparison purposes in this section have

been obtained by detailed analysis of this thesis (Chapter IV),

then an attempt was made to find comparable Rankine engine

results. However, this effort was not completely successful

and the presumably more practical results from Thermo-Electron

play a larger rule in this comparison than other results.

This action may not lead to a completely fair comparison,

yet it doesn't seem to be altogether unrealistic. Moreover,

it suggests a need for future work, namely completion of

similar open literative objective and detailed analysis for

the Rankine engine at these operating conditions, showing

how the two compatible detailed analyses will in fact compare.

Figs.(1) and (52) show this final comparison of Stir-

ling and Rankine engine performances at low temperatures and

low temperature-ratios. It is clear from both figures that

a Rankine engine has superiority over a Stirling engine with

regenerator up to about a 1.6 temperature ratio. For tem-

perature ratios more than 1.6 (TH/TC>l.6), a Stirling engine



appears to perform better than a Rankine engine. Another ob-

servation is that at temperature-ratios close to unity the

optimum design Stirling engine which has practically no

tends to behave more efficiently than a Rankine engine.

Finally, it appears that the temperature-ratio 1.2 is an

operational limit for Rankine engine; that is, this engine

produces no net power for temperature-ratios less than 1.2.

On the other hand, the optimum design Stirling engine which

now has vanishing regenerator can still produce output power

even for temperature-ratios less than 1.2 down to a new

limit at about temperature ratio of 1.1.

It is recognized that a Stirling engine is efficient at

high temperatures and high temperature-ratios, due to the

fact that its behavior becomes closer to the Carnot engine.

That is why for temperature-ratios more than 1.6 it might be

expected to perform better than a Rankine engine. On the

other hand, as shown in Chapter II and III the regenerator

is one of the sources of entropy generation in Stirling engine.

Therefore, with entropy source eliminated from the system,

more efficient behavior results in comparison with Rankine

and Regenerative Stirling engines operating at temperature-

engine operating at temperature-ratio less than 1.25.

A further important note about Rankine engines is that

in all of the analysis, as shown in cursory analysis of

Chapter II, it is assumed that the Rankine engine was mild-

ly superheated. This process would increase the entropy
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generation inside this engine. Therefore, if a wet-Rankine

engine (ile. an engine with two phase flow expander) could

be designed and built, then the engine efficiency will be

significantly increased, because a wet cycle Rankine, as

shown in section 2.1 reaches the Carnot efficiency. There-

fore, this engine in a wet-cycle might be more efficient

than Stirling engine at all temperature-ratios.
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CHAPTER VI

6.1- Significant Contributions of Present Investigation

During the course of this thesis analysis elucidating

some of the interesting features of the Stirling engine have

been undertaken which have yielded important conclusions.

In Chapter II, in addition to providing a simplistic

preliminary analysis of Rankine, Stirling, and Brayton en-

gines and their comparison, a more thoroughgoing and complete

computerized model for Stirling engines was established.

This so-called complete model includes all of the significant

losses which have been considered upto present time; moreover

all of the loss derivations have been put on a firm rational

basis. For some cases new derivations have been presented,

such as the two additional new approaches for calculating

the power loss due to the transiant non-uniform temperature

distribution inside the cylinders. For calculation of mecha-

nical friction loss in Stirling engines a rational method

is presented for the first time. This method is necessary and

suitable for one KW waste-heat engines which were the purpose

of this thesis and for which the lower limit of temperature

ratio will depend directly on the magnitude of this loss.

The complete model of Chapter II is able to predict

engine performances reasonably accurately, at least within

the range of uncertainty determined by the scatter in the

initial design data and by other experimental errors.

Chapter III furnishes a derivation of a new so-called
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"simplified model". The purpose of this model was to be able

to optimize Stirling engines by analytic means in a general

way. Although, there are at present various models for cal-

culation of Stirling engine performance, nevertheless, they

are unsuitable for optimization studies because they are not

presented in directly differentiable algebraic form, and would

require extended computer iteration. In contrast, the simpli-

fied model supplies closed form results for practical Stir-

ling engines, yet with accuracy comparable to computerized

models such as the complete model of Chapter II. Of course,

this confirmation required the necessary prior establishment

of the latter model.

In Chapter IV a general method of Stirling engine design

optimization is presented. This method can be applied to any

type of Stirling engine under the entire range of operating

conditions, because it is rationally based and characterized

by dimensionless groups; in particular by the Mach number,

Reynolds number, temperature ratio, and percent dead volume;

such a design model appears for the first time in the open

literature.

Finally, the results of the optimum model of Chapter IV

have led to some interesting conclusions regarding the Stir-

ling engine when operating at low temperature..ratios. In

particular, definitive conclusions have been reached concer-

ning the behavior of this engine without the regenerator,

these will be discussed in the following section.
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By means of closed form solutions of simplified model

a general method of Stirling engine design optimization was

derived. This method was used for calculation of Stirling

engine performance for temperature-ratio range of 1.0 to 2.0

which is the region for temperature-ratio of most available

waste-heat sources. This analysis yields to following defini-

tive conclusions:

a)- Fig. (55) shows the variation of a regenerator

length with temperature-ratio. This variation shows one of

the important results of the detailed analysis of Stirling

engine, namely elimination of a regenerator from a Stirling

engine for temperature-ratios less than 1.3. This means that

although the regenerator is one of the distinguishing fea-

tures of the Stirling engine, yet the engine evidently be-

haves more efficiently without a regenerator for temperature

ratios less than 1.3.

b)- Figs.(51) and (52) compare performances of Stirling

and Rankine engines. There are some interesting and important

temperature-ratios in this comparison. It is indicated that

in temperature-ratio range 1.25 to 1.6 a Rankine engine

operates more efficiently, while for higher temperature ratios

a Stirling engine is the better alternative. Also it is shown

that Rankine engine has vanishing efficiency at temperature-

ratio of 1.2 or less. For temperature ratios less than 1.25

Stirling engine without the regenerator appears to perform

more efficiently than either Rankine engine. However, a
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efficiency when it reaches the temperature-ratio of 1.1 or

less.

c)- Table(12) and Figs. (45) and (46) show a comparison

between the results of optimum designed Stirling engine with

two working fluids: helium and hydrogen. It is clear that

hydrogen improves the Stirling engine performance signifi-

cantly. This improvement is noticeable at temperature-ratios

1.4 or more. Therefore, if the working temperature-ratio is

very close to unity (1.3 or less) then there is not that

much difference between hydrogen and helium performances.

But for temperature-ratios higher than 1.3 hydrogen will be

the number one alternative.

The complete model of Chapter II has been successfully

applied to the analysis and prediction of the performance

of paractical Stirling engine. This requires no "real time"

calculations; merely by giving the operating conditions and

engine geometry the model yields the performance of the

engine with detailed values of the different losses.

In modelling of a practical engine aided by the bond

graph technique it has been shown how internal effects occur-

ring in one region of the system generate entropy, but the

power losses due to those effects.should be recover in ano-

ther region of the system, such as temperature drops in

heater and cooler which produce losses that will be taken

out of the system output power in the compressor.
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Simplified model of Chapter II, which expresses the

Stirling engine performance in closed form solution, pre-

dicts the behavior of real engines accurately. and it is

well suited for optimization studies and for studies of

engine performance under extreme conditions. This model

allowed to derive a general optimization method.

Optimum design method of Chapter IV which includes

correlations for optimum geometry of each component, for

optimum phase angle and engine speed, and for optimum bore,

stroke ratio, represents a general method for optimizing

Stirling engine. The result of this optimum model has shown

a good agreement with the available experimental data.

Comparison of Stirling and Rankine engine which is shown

in Chapter V is for low output power level(1KW)engines. Since

at these power levels the optimum design Stirling engine seems

to perform as efficiently as a Rankine engine at temperature

ratios close to unity, then it would be interesting to see if

the same conclusion can be reached at higher output power

levels. Namely, this thesis suggests that for Ocean Thermal

Energy Conversion (OTEC) project, which undergoes a Rankine

cycle and has temperature-ratio of order of 1.1, the optimum

design Stirling engine should be investigated as an efficient

alternative. Because a Stirling engine with no regenerator

might have higher efficiency than a Rankine engine at high

output power level. The optimum design model of Chapter IV

enables us to investigate this comparison.
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Table (18) and Figs. (45) and (46) show the behavior of

Stirling engine with isothermal expansion and compression

processes. The results are much closer to the Carnot engine,

and engine performs more efficiently than the adiabatic case.

Stirling engine has some advantages over Rankine engine,

no matter what the operating conditions are, such as working

fluid. If helium or hydrogen or any other working fluid is

chosen for Stirling engine, it doesn't have any operAting tem-

perature restriction, i.e. over the entire temperature range

engine can work efficiently with one working fluid. But for

a Rankine engine depending on the operating temperature range

the working fluid should be changed -in order for.e-'< ine to

work efficiently. Also Stirling cycle is a reversible cycle,

i.e. it can go back and forth between an engine and a heat

pump just by changing the direction of the process. This is

notpossible for Rankine cycle because the throttling process

in the Rankine cycle is not a reversible process. Therefore,

flexibilities of Stirling cycle in practice are more than a

Rankine cycle.

As a result, for waste-heat recovery there are three

alternatives, presently, which depending on the operating

temperature-ratio one of them should be selected as dis-

cussed above, Stirling engine without the regenerator for

temperature-ratios close to unity, Rankine engine for tem-

perature-ratios less than 1.6 and regenerative Stirling

engine for high temperature-ratios.
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6.3- Suggestions for Future Work

The present analysis explores some new ideas about the

Stirling and Rankine engines for low temperature and low

temperature-ratio applications. However, these results should

be checked in practice. Particular areas and problems of inz

terest are:

1- An experiment should be set up to see the behavior

of Stirling engine without the regenerator, because this com-

ponent has been the major part of this engine and its elimi-

nation for low temperature-ratios should be investigated

practically.

2- Mechanical friction loss is the important item which

pushes Stirling engine to zero efficiency at 1.2 temperature-

ratio. As mentioned before, the mechanism for calculating

this loss, in the present analysis, was derived by using the

internal combustion results. Therefore, it should be checked

to indicate if this derivation is comparable with experimen-

tal observations. Otherwise a more accurate method should be

presented. However, the results of present derivation are

very close to the Philips mechanical power loss [15]. There

is no indication of how Philips has calculated this loss.

There are some alternatives for lowering this loss, and

that is the use of flexure material such as tension actuators

[32] and rolling diaphragm. Fig.(57) shows how the tension

actuators, which have been manufactured by some reinforced

rubber material, can be set up to behave as a double acting
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cylinder and piston. By a simple set up of four actuators

connected to an eccentric shaft from one side and to a pres-

surized air tank on the other side, it was demonstrated that

friction-mean-effective-pressure of these actuators is about

5 Psi which is less than half of the Fmep which is used in

the present analysis by using the IC engine results. Since

at low temperatures and low temperature-ratios these flexure

material can have a reasonable economic life, then it might

be worthwhile to investigate their applications as substitute

for cylinder and piston in Stirling engine.

3- In the present analysis the effect of finite matrix

heat capacity in the regenerator is not included, and it is

interesting to add that to the analysis and see the behavior

of the system at very low temperatures and/or high pressures.

4- The effect of finite heat transfer in the heat exchan-

gers should be investigated, especially at low temperatures.

5- For the purpose of comparison between Stirling and

Rankine engines a superheated Rankine engine was used, because

it is a practical design of this engine. Due to this super-

heating there is an entropy generation which is very signifi-

cant; therefore, if a wet-Rankine engine can be designed and

constructed where the expander and compressor can handle

two phase flows then that engine can behave more efficiently

than Stirling engine over the whole range of waste-heat

recovery application.
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6- There is a need for a completion of an open litera-

tive objective and detailed analysis for a Rankine engine at

low temperatures and low temperature-ratios, similar to the

present study on Stirling engines.
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Table ( 1 ): Performance of Rankine Engine

Dissip.
TH/TC Wout Energy Wcomp. Qin Ef f.

Btu/lb Btu/lb Btu/lb Btu/lb %

1.1 5.174 91.466 .94 96.64 5.35%

1.2 12.58 99.42 .417 112 11.23%

1.4 25.51 113.14 .989 133.65 18.4%

1.6 40.52 123.3 .98 163.82 24.73%

1.8 55.28 125.74 .95 181.02 30.54%

2.0 61.57 135.43 .126 197 31.25%
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Table ( 2 ): Performance of Brayton Engine

TH/TC
Wout

Btu/lb

Wc omp.
Ideal
Btu/lb

Qin
Ideal
Btu/lb

p p 'I

Wcomp.
Reg.

Btu/lb

Qin
Reg.

Btu/lb

Eff.
Ideal

%0

Ef f.
Reg.

1.1 1.5 32.25 33.75 28. 29.5 4.4% 5.1%

1.2 6.03 63.97 70. 56.17 62.2 8.6% 9.6%

1.4 22.24 121.52 143.76 113.02 135.26 15.5% 16.4%

1.6 46.5 176 222.5 163 209.5 20.9% 22.2%

1.8 77.3 225.8 303.1 213 290.3 25.5% 26.6%

2.0 113.7 273.9 387.6 262.9 376.6 29.3% 30.2%
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Table (3 ): Performance of Stirling Engine

Wout W Dissp. Qin Dissp. Qin Eff. Eff.
TH/TC Displ. Energy E=90% Energy E=0% E=90% E=0%

Btu/lb Btu/lb Btu/lb Btu/lb Btu/lb Btu/lb

1.1 29.18 364.77 385.22 414.4 503.62 532.8 7.04% 5.5%

1.2 58.36 364.77 405.64 464 642.44 700.8 12.58% 8.33%

1.4 116.7 364.77 446.6 563.3 920.2 1036.9 20.72% 11.26%

1.6 175. 364.77 487.6 662.6 1198 1373 26.4% 12.75%

1.8 233.4 364.77 528.4 761.8 1475.7 1709.1 30.6% 13.7%

2.0 291.8 364.77 569.3 861.1 1753.2 2045 33.9% 14.3%
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Table (4A): Effect of Regenerator Effectiveness on Stirling
Engine Efficiency

TH/TC=].2

E 0% 20% 40% 60% 80% 100%

Eff. 10.4% 11.25% 12.25% 13.43% 14.88% 16.67%

Eff./Eff 62.4% 67.5% 73.5% 80.6% 89.3% 100%idl

TH/TC=1.6

E 0% 20% 40% 60% 80% 100%

Eff. 15.9% 18.0% 20.7% 24.3% 29.5% 37.5%

Eff./Eff 42.5% 48.0% 55.2% 64.9% 78.7% 100%
Edl
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Table (4B): Effect of Regenrator Effectiveness on Stirling
Engine Efficiency

TH/TC=2. 0

E 0% 20% 40% 60% 80% 100%

Eff. 17.8% 20.5% 24.0% 29.0% 36.7% 50%

Eff./Eff 35.7% 40.9% 48.0% 58.1% 73.5% 100%
idl

TH/TC-oo

E 0% 20% 40% 60% 80% 100%

Eff./Eff. 21.7% 25.7% 31.6% 40.7% 58.1% 100%
idl
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Table ( 5): Variation of Stirling Engine Output with Dead Volume

TH/TC = 1.2

X 0% 20% 40% 60% 80% 10

Wout/
Wout 100% 45.4% 20.3% 8.0% 2.2% 0.%
ideal

TH/TC = 1.6

X 0% 20% 40% 60% 80% 100%

Wout/
wout 100% 42.5% 17.4% 6.0% 1.2% 0.%
ideal

TH/TC = 2.0

X 0% 20% 40% 60% 80% 100%

Wout
wout 100% 42.2% 17.3% 6.0% 1.2% 0.%

ideal
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Table (6): Comparison of Philips Engine Results and Complete
Model Predictions

TH N Pm Q m w Eff.
R RPM psi atgmi Watts %

Experiment 2112 1800 200 7,7 465.5

Complete 2112 1800 200 1200 455 38.0/'
Model

Experiment 1752 1200 200 '5.1 292

Complete 1752 1200 200 800 316 39-7%
Model

Experiment 2112 1600 200 4'. 480

Complete 2112 1600 200 1200i 9 41.4
Model

Experiment 1752 1600 200 !6.1 251

Complete 1752 1600 200 950 306 q2.2;oModel

Experiment 1752 1400 200 5.5 285

Complete 1752 1400 200 8601 308 36.0
_Model
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Table (7): Comparison of Allison Engine Performance with
Complete Model Predictions($=ll8)

TH TC N Pm Qin Wout Eff.
lb-ft/ lb-ft/ %
cycle cycle

Experiment 1680 628 3000 1544 292 113 39%

Complete 1680 628 3000 1544 275 118.2 43%
Model

Experiment 1680 628 2500 1544 300 120 40%

Complete 1680 628 2500 1544 280 121.7 43.5%
Model

Experiment 1680 628 2000 1544 302 124 41%

Complete 1680 628 2000 1544 277 122.5 44.2%
Model

Experiment 1680 628 1500 1544 319 134 42%

Complete 1680 628 1500 1544 278.3 128 46%
Model IIIIIII
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Table (8): Comparison of Allison Engine Performance with
Complete Model Predictions ($=112)

TH TC N Pm Qin Wout Eff.
R R RPM psi lb-ft/ lb-ft/ %

cycle cycle

Experiment 1680 628 3000 1544 259 97 37.5%

Complete 1680 628 3000 1544 269 108 40.2%
Model

Experiment 1680 628 2500 1544 260 106 40.8%

Complete 1680 628 2500 1544 274.7 114 41.5%
Model

Experiment 1680 628 2000 1544 271.8 112 41.2%

Complete
Model 1680 628 2000 1544 274 118.4 43.2%

-___ I _____ I 1 4 1 1 I

Experiment 1680

Complete 1680
Model

628

628

1500

1500

1544

1544

275.5

275

119

123.6

43.2%

45.%
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Table (9,): Comparison of GPU-3 Performance with Complete
Model Predictions (H2)

TH N Pm Qin Wout Eff.
R RPM psi lb-ft/ lb-ft/ %

cycle cycle

LeRC 1760 3000 300 139.6 49.2 35.3%

Complete 1760 3000 300 114.5 43. 37.5%
Model

LeRC 1760 2000 300 139 50.3 36.2%

Complete 1760 2000 300 125 45.5 36.3%
Modle

LeRC 1760 1500 300 129.4 48.8 37.7%

Complete 1760 1500 300 124 44.8 36.2%
Model
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Table (10): Comparison of GPU-3 Performance with.Complete
Model Predictions (Hen)

TH N Pm Qin Wout Eff.
R RPM psi lb-ft/ lb-ft/ %

cycle cycle

LeRC 1762 1500 400 178 65.2 36.6%

Complete 1762 1500 400 157 57.3 36.5%
Model

LeRC 1762 1500 600 251 101 40.2%

Complete 1762 1500 600 247 96.3 39%
Model

LeRC 1762 3000 400 153.1 57.2 37.8%

Complete 1762 3000 400 144.4 54.3 38%
Model

LeRC 1762 3000 600 225 92 41%

Complete 1762 3000 600 237 88.5 39%
Model
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Table (11): Comparison of Simplified and Complete Model
Predictions

Type of TH/TC Qin Wout Eff.
MOdel [Watt] [Watt] %

Complete 1.4 (f/0 170 5.2%Model 97

Simplified 1.4 3200 173 5.4%Model

Complete 1.6 2591 355 13.7%
Model

Simplified 1.6 2568 360 14%
Model

Complete 1.8 3845 777 20.2%
Model-

Simplified 1.8 3830 781 20.4%
Model

Complete 2.0 5390 1267 23.5%
Model

Simplified 2.0 5373 1263 23.5%
Model

Coplte 2.6 19045 7600 39.9%
Mo el

Simplified 2.6 19130 7560 39.5%
Model IILIII
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Table (12): Optimum Stirling Engine Model Results for Different
Temperature-Ratios (Qin=2000 Watts)

Hydrogen Helium

Wout Ind. Shaft Wout Ind. Shaft N
TH/TC [Watt] Eff. Eff. [Watt] Eff. Eff. RPM Deg.

1.20 56 5.510 2.87' 50 5.2O 2.5 800 118

1.25 80 7.2-, 4 78 7.2 4 900 117

1.3 125 9.80'c 6.5/O 124 9.6'O 6,370 950 116

1.43 220 15. 3do 11 0 214 137o 10 .7k 1050 113

1.62 360 20.970 19. 4 o 354 1970 17.7" 1120 110

1.81 450 25. 3/ 22- 57 406 2 3 20.37c 1210 108

2.0 530 29.2'o 26.5 466 27 , 23. 3>o 1350 104

2.2 591 32.51o 28.87o 526 27.7/O 26.> 1500 95
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Table (13A): Philips Optimum Design Model Results
Ref. [15 1

Helium Hydrogen

Indicated Shaft Indicated Shaft
TH/T Eff. Eff. Eff. Eff.

1.33 10.8% 7.5% 11.9% 8.5%

1.4 13.7% 10% 15.6% 12%

1.54 18.5% 15% 20.4% 17%

1.66 23% 20.5% 25.5% 22.5%

1.80 26.5% 23% 29% 26%

1.9 28% 25% 30.8% 27.7%

2.0 30% 28% 32.7% 30%

2.1 33% 30% 35% 32%

Table (13B): Philips & G.E. Optimum Design Results (Helium
as Working Fluid) Ref . [ 26 1
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Table (14): Performance of Stirling Engine without Regenerator
(Helium as Working Fluid)

Qin=2000 Watts Qin=4000 Watts

Wout Ind. Shaft Wout Ind. Shaft
TH/T [Watt] Eff. Eff. [Watt] Eff. Eff.

1.1 - - - - --

1.15 20 3.5% 1% 80 4.% 2%

1.2 40 5% 2% 118 5% 3%

1.3 88 7.2% 4.7% 214 7% 5.5%

1.43 100 8.1% 5.5% 240 9.4% 6.%

1.62 150 9.3% 7.1% 370 11.6% 9.1%

1.81 175 10% 8.4% 456 13.3% 11.2%

2.0 186 10.5% 9.3% 490 14.2% 12.3%



167

Table (15): Barber-Nichols Model Results for Rankine Engine
Ref. T 2 ]

TH/TC 1.10 1.19 1.37 1.55 1.73 1.90

Eff. 5% 10.5% 17.2% 20.5% 23% 26%

Table (16): Thermo-Electron Results for Low Temperature-Ratio
Rankine Engine. Ref. [ 7 1

TH/TC 1.3 1.4 1.6 1.8 2.0

Eff. 10.2% 13% 18% 22% 23.6%

Ldef. 11.6% 15% 19.5% 23% 25%
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Table (17): Optimum Stirling Engine Model Results for Different
Temperature-Ratios (Qin=4000 Watts, Hydrogen,

pm=400 Psia)

TH/TC Wout Ind. Shaft N
[Watt] Eff. Eff. RPM Deg.

1.2 112.2 5.63/o 3> 800 126'

1.3 272 8.6 6.-5 900 117

1.43 447 14.6k 11.2% 1000 115

1.62 774 21.8;% 19.5A 1100 110

1.81 907 25.0% 2,2.7 'o 1200 106

2. 1089 29.8 -27.2'o 13150 103

2.2 1135.6 32.2io 29-Oio 1500 95



Table (18): Optimum Model Results for
Engine (Qin=2000 [Watts],

Isothermal Stirling
Hydrogen)

Wout
[Watt]

Ind.
Eff.

Shaf t
Eff.

1.2 200 13% 10.%

1.3 289 18.8% 15.3%

1.43 373 23.9% 20.5%

1.62 532 30% 27%

1.81 649 34.3% 31.5%

2. 719 37% 34.4%

2.2 797 39.4% 36.9%
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Fig. (1): Original Single-Cylinder and Piston Stirling Engine

Ref. [251
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(a)

(b)

Fig. (2): First Double-Acting Cylinders Stirling Enqine

Ref. [25]



Fig. (3):

SCHEMATIC DIAGRAM OF OTEC POWER CYCLE Ref . [17]
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Fig. (4) : CUTAWAY VIEW OF TRW OTEC PLANT MODEL
Ref. [17]
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RANKINE CYCLE
HEAT RECOVERY

Allied Chemical Corp., 500 KW Sulfuric Acid Waste-

Heat Recovery, Rankine Cycle

Ref. {12]

Fig. (5) :
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EXHAUST

STACK FLOW

EC ONO MIZER I

EVAPORATOR

SUPERHEATER STEAM LOOP

430*

40 PSIG
$2CF*r GENERATOR

PSIG

.2 PSIG

75 PSiG

CONDENSER COOLINOWATER

FREON LOOP

Fig.(6): DOE and MTI Binary Rankine Cycle Waste-Heat Recovery
Ref. (21)
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Fig. (15): Schematic Diagram of a Real Stirling Engine with
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Fig. (17): Variation of Stirling Engine Output with Dead
Volume, Table (5) , Equation (E-16b)
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Fig. (18): Schematic Diagram and Energy Flow of Stirling Engine
with Perfect Components and Corresponding Bond Graph.
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Fig. (22) : Variation of Mechanical Friction Mean Effective Pressure (Fmep)
with Engine Speed, Ref. [27]

1000



18

16

14

12

10

6
500 700 900 1100

Fig. (23) : Thermal
Ref. [13]

Conductivity of Helium and

Temperature [R)

Assigned Correlation

K= (1.7704*T+521) /17300

1300 1500



21

19

17

15

13

11

9

500 700

Fig. (24) : Thermal Conductivity and Prandtl
and Assigned Correlations,
Ref. {13]

Temperator [*R

Number for Hydrogen

80

'78

.76

'74

.72

.70

1500900 1100 1300



193

6-T=2l2 R
EXPERIMENTj

-TH=1752 R

COMPLETE MODEL

320-

COMPLETE MODEL

0 0

I I I

1400 1600 1800
Speed RPM
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Fig. (27) : Comparison of Allison Engine Output Power with
Complete Model Predictions ($=112),
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Fig. (30) : Comparison of Allison Engine Efficiency with
Complete Model Predictions ($=118),
Ref.f18], Table (7)
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Fig. (31) : Comparison of LeRC Model and Complete Model
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Ref.(3), Table (10)
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Fig. (34): Variation of Error between Schmidt and Complete Model
Outputs with Phase Angle
Simplified Model, Equation (3-6)
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Fig. (38): Temperature Correction Factors for Mass Flow Rates
in Heater, Cooler, and Regenerator
Simplified Model, Equations (3-21) to (3-23)
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Fig. (39): Phase Angle Correction Factors for Mass Flow Rates
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Simplified Model, Equations (3-24) to (3-26)

207

--o0

.50

.401L
70



208

fh(DH)

1.25

1.20

1.15

1.10

1.05

1.0

1.2 1.8 2.4 3. 3.6 4.2 4.8

DH
Heater Dead Volume Ratio

Fig. (40): Dead Volume Correction Factor for Mass Flow Rate in
Heater
Simplified Model, Equation (3-27)

.95-

o..9 -

0.6



209

fc (DC)

1.16

1.14-

1.12 -

1.10 -

1.08

1.06 -

1s04 0

1.02 -

0 .2 .4 6 .8 1. 1.2 14

DC
COOLER DEAD VOLUME RATIO

Fig. (41) : Dead Volume Correction Factor for Mass Flow Rate in
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Fig.(45): Comparison of Stirling Engine Output Power with
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Qin=2000[Watt], Pm=500 Psia
Tables (12) , (18)
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Fig. (46): Comparison of Stirling Engine Efficiency with Different
Working Fluids and Different Processes,
Qin=2000[Watt], Pm=500 Psia
Tables (12),(18)

Note: Different Points Have Different Engine Geometries
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Fig. (47) : Variation of Optimum Speed and Phase Angle with
Temperature-Ratio
Table (12), Pm=500[Psia], Qin=2000[Watt]
Equations (4-54) & (4-64) (Points)
Complete Model Results (Curves)
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O-PHILIPS SHAFT EFFICIENCY
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Fig. ( 49 ): Comparison of Optimum Model Results and Philips
Optimum Design Model Results, Hydrogen as Wdrking
Fluid. Ref.115]
Tables (13A) and (12)
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50 - 0--PHILIPS COMPUTER RESULT

A-'PHILIPS & G.E.
EXPERIMENT

&.1 40 -
>I
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CARNOT

r4
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/A

10 COMPUTED RESULTS
OF

OPTIMUM MODEL

0
1.0 1.2 1.4 1.6 1.8 2.0 2.2

TEMPERATURE-RATIO(TH/TC)

Fig. ( 50 ): Comparison of optimum Model Results, Philips Optimum
Design Model Results, and Philips & G.E. Experiment,
Hydrogen as Working Fluid
Ref.E[11], Tables (13A), (13B), and (12)
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O. 'hermo-Electron Results

50

40

301

1.8 2.0 2.21.0 1.2 1.4 1.6

TEMPERATURE-RATIO (TH/TC)

Fig. (51) : Comparison of Optimum Designed Stirling Engine
Performance and Thermo-Electron Rankine Engine
Performance. Ref. 17]
Tables ( 7 ) and (15)

Note: Different Working Fluids Have Been Used for Rankine Engine

Depending on Operating Temperature-Ratio

Qin=4000 Watts

STIRLING ENGINE

RANKINE ENGINE

STIRLING ENGINE

WITHOUT REGENERATOR

Pm=400 Psia
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0- BARBER-NICHOL'S RESULTS

50-

CARNOT

d 40-

z
W STIRLING ENGINE

H
r4

30 -

RANKINE ENGINE

20

10- --

STIRLING-ENGINEl

WITHOUT REGENERATOR:

0
1.0 1.2 1.4 1.6 1.8 2.0 2.2

TEMPERATURE-RATIO (TH/TC)

Fig.(52): Comparison of Optimum Designed Stirling Engine
Performance and Barber-Nichols Rankine Engine
Performance. Ref. (31
Tables (1', (10)

Note: Different Working Fluids Have Been Used for Rankine

Engine Depending on Operating Temperature-Ratio.

Qin=4000 Watts Pm=,400 Psia
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Fig. (53): Stirling Engine Power Loss Due to Regenerator Pressure

Drop as Percentage of Input Heat;

Qin=4000 Watts, Pm=400 Psia
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Fig. (54): Stirling Engine Heat Loss Due to Regenerator

Imperfection and Axial Conduction as Percentage

of Input Heat; Qin=4000 Watts, Pm=400 Psia
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Fig. (55): Variation of Regenerator Optimum Length with Temperature

Ratio; Porosity = 70% , Wire Diameter=.0016 in

Qin=4000 Watts , Pm=400 Psia
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Fig. (56): Variation of Net Output Power, Power losses

and Heat Losses with Temperature Ratio as

Percentage of Input Heat;

Qin=4000 Watts Pm=400 Psia
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Fig.(57): Tension Actuators Acting Like a Double-Acting
Cylinder and Piston, Ref.[32]
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APPENDIX(A)

Survey of Stirling Engine Technology

The Stirling engine technology began with the early designs

which were made by Robert and James Stirling. As with all en-

gineering developments they were beset by limitations of mate-

rials. Since that early age, many of the hot-air engines made

were small, low-power machines of 100 W to 4 KW. The most nota-

ble, large machine was the enormous marine engine built by

Ericsson in 1853 having four cylinders 14 ft in diameter with

a stroke of 5 ft, running at 9 R.P.M and producing about 220

KW brake power (3000 hp). This low specific power (i.e. power/

displacement) was characteristic of all Stirling engines in

the last century.

One of the widest uses of early hot-air engines in small

sizes was to drive ventilating fans and water pumps. The pro-

duction of similar machines in substantial quantities was car-

ried on in England to the late 1940s largely for export to tro-

pical countries.

In the 1930's some researchers employed by the Philips

company recognized some possibilities in this old engine, pro-

vided modern engineering techniques could be applied. Since then,

this company has invested millions of dollars and has reached

a commanding position in Stirling engine technology. Their deve-

lopments have lead to smooth, and quiet-running demonstration

engines having high efficiency (relative to the Carnot efficiency)

which can use many sources of heat. Potentially they might be
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used for vehicle propulsion to produce low level of pollution.

A great variety of experimental Stirling engines have been built

from the same general principles to pump blood, generate elec-

tricity, or generate hydraulic power.

Silent electric power is the laboratory application of

Stirling engine that has received the earliest attention by

Philip [2.53. Super-reliable thermo-mechanical generators using

a diaphragm Stirling engine and an oscillating electric alter-

nator are used for thermo-electric generators in remote power

source applications. It appears possible that certain types of

Stirling engines and electric generators will take the place of

flame heated or radioisotope heated thermoelectric generators

because they ill be both cheaper to build and can reach higher

efficiencies (13 .

Application of the Stirling engine to motor vehicles has

to date received the most attention. On the next section this

type of application is discussed in some detail. Stirling en-

gines in reverse cycle, operates as heat pumps, have been used

in the cryogenic industry to produce liquified gases and to

cool infrared sensors. They have also been tested in systems to

replace the electric motor in a common Rankine cycle heat pump

for air conditioning. Engine driven heat pumps have the advan-

tage of heating the building with the combined waste heat from

the engine and the output of the heat pump. Using systems of

this type it appears possible that the primary fuel needed to

heat our buildings can be substantially reduced [25].
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Miniature Stirling engines have been developed to power

artificial hearts and heart-assist devices. Indeed this engine

appears well-suited for this application sicne it is very re-

liable and can be made efficient in small sizes.

There have been some efforts on the application of Stir-

ling engines for central station electric power. R.J.Meijercl'j

calculates that Stirling engines could be made up to a capacity

of 3000 hp/cylinder and Stirling engines with 500 hp/cylinder

have been checked experimentally (1. Also, there are efforts

to apply Stirling engines to powered wheel chairs which now

commonly use lead-acid batteries, control systems and electric

motor/belt drives to each large wheel. With a Stirling engine

and thermal energy storage comparable performance might be ob-

tained, at substantially reduced bulk and weight.
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APPENDIX (B)

Stirling Engine for Automative Application

Philips Laboratory started the design of Stirling engine

for automative application. This seemed an interesting area since

Stirling engines operate quietly, have low exhaust emissions,

and can operate with any fuel or source of heat with high effi-

ciency and rapid response. They are comparable in size and weight

with internal combustion engines. Their part-load performance

and torque speed characteristic is favorable to vehicular appli-

cations they have the promise for long operating life, extended

periods between maintenance, and low lubricating oil consumption.

Cost is the principal disadvantage of Stirling engines com-

pared with internal combustion engines. This is due to the need

for high strength materials such as cobalt or ceramic components

in the hot parts of the engine. Moreover, the heat exchange and

control systems are relatively complicated and the cooling sys-

tem has to handle double the load of an internal combustion en-

gine of comparable power since the exhause heat from the Stir-

ling engine must be kept to a minimum.

Serious interest in Stirling engines for automative appli-

cations developed at General Motors in the mid-1960s. Their in-

terest was focused on the Stirling engine for bus applications.

A four-cylinder bus engine was designed and built before their

program was abruptly terminated in 1970.

After GM, Ford made a contract with Philips for design of
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a double-acting Stirling engine with swash-plate drive for pas-

senger cars. A 170 hp four-cylinder engine was developed and

installed in a Ford Torino car and a smaller engine for compact

passenger was investigated. In these engines tubular gas heaters

and gas coolers are used. The coolers are water cooled and heat-

ers may be heated by a flame or a heat pipe. Stacked screens

with very fine wire mesh are used for the regenerator. Power

control is by adding and removing gas. The engines must be pre-

heated and then cranked to start. One of the important reasons

Department of Energy is interested in, Stirling engines is that -

it can have high fuel economy and low pollution and low noise.

Ford has not been able to meet emissions standards with the

vehicle engine. The results of other tests show that the engine

is about 50 lbs over weight objective. The slower start-up and

acceleration is attributed to a higher pressure drop through the

combustion side of the engine than was anticipated. However, for

the program to be successful the big development has to be to

lower cost.

Major technical problems encountered and resolved on Philips-

Ford program are :3]

- Swashplate surface galling.

- Drive system noise due to non-concentric crossheads.

- Regenerator end-plate bending.

- Crankcase failure.

- Engine out of balance.

- Piston attachment failure.

- Insufficient exhaust gas recirculation.

Unstable air/fuel control system.

N__
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- Power control contamination.

Problems encountered yet to be resolved on Philips-Ford

program are (13:

- Roll sock seal system failure

- Preheater leakage.

- Preheater binding.

- Fuel burning on preheater core.

- Heater-head temperature distribution.

- Excessive warm-up time.

- Insufficient burner air supply.

- Heater head cracking.

- Power control instability.

United Stirling Company in Sweden is one of the largest re-

search centers on Stirling engine. United Stirling is planning

a product line of three engines, all of them are intended to be

available as direct flame heated versions as well as heat pipe

heated versions. Their production engines are expected to look

like Figure (44). They will have two cranks on each of two crank-

shafts geared to a common drive shaft. The four connecting rods

drive the four double-acting pistons through cross heads to take

the side thrust. The burner and air preheater is different than

the Philips engine. This air preheater is the counter-flow type.

This substitution eliminates the machinery needed to rotate the

the reversing flow matrix and seals the matrix as it rotates as

done in the Ford-Philips design. This burner system can get the

engine started rapidly from a cold start. The heater tubes in a

Stirling engine must be heated up before the starter motor is

M- M__ - M-



235

engaged. The burner blower, normally driven by the engine, is

driven by a separate electric motor during the heating-up period.

Finally, NASA-Lewis Testing Center has done some work on

Stirling engine. Their research is part of the General Motors

efforts on GPU-3 engine. Their tests have shown that the brake

specific fuel consumption is about the same as that obtained by

the Army in their acceptance testing. However, the engine output

falls short of that originally obtained by the Army and the dif-

ference is suspected to be due to the excessive leakage of gas

past the power piston (1.
Although there has been much efforts directed toward the

automative application of Stirling engine no commercial vehicle

yet exists. This is due to that fact that Stirling engine is not

yet economical for this type of application, and most of the

researches in this area are now concentrated on investigating

different alternatives for materials which can operate at, say,

3000 Psia pressure and 2000 R temperature.
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APPENDIX (C)

Steady State Analysis of Practical Rankine Engine
------------------------- ---------

In section (2.1.1) a schematic diagram of a practical Ran-

kine engine is shown. Steady state analysis of this engine is

done for different temperature-ratios. Followings are the states,

shown in figure of section (2.1.1), at different temperatures.

Table (1) shows the summary of following results.

Working fluid is R-142b or C2H3F2Cl, which is selected for

covering the whole range of temperature-ratio.

a)- TH/TC=1.l

TC=555 R

TH=610 R

State 1:

T=555 R

P=66.11 Psia

H=33.04 Btu/lb

S=.069 Btu/lb R

V=l/67.64 ft3/lb

State 2:

P=ll2 Psia

H-33.166 Btu/lb

S=.069 Btu/lb R

State 3:

T=610 R

P=112 Psia

H=125 Btu/lb

S=.226 Btu/lb
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State 4:

P=86 Psia

H=122.5 Btu/lb

S=.226 Btu/lb

T=595 R

State 5:

T=610 R

S=.235 Btu/lb

H=127.3 Btu/lb

State 6:

P=66.11 Psia

H=124.5 Btu/lb

S=.235 Btu/lb

Wout=H3-H 4 +H5-H 6-H 2+H 1=5.174 Btu/lb

Qin=H3-H2+H5-H4=197 Btu/lb

Eff .=Wout/Qin=5. 35%

b)- TH/TC=1.2

TC=550 R

TH=660 R

State 1:

T=550 R

P=60.99 Psia

H=31.58 Btu/lb

S=.0663 Btu/lb R

V=l/68.ll ft 3/lb
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State 2:

T=640 R

S=.0663 Btu/lb

P=2.14.3 Psia

H=32 Btu/lb

State 3:

T=660 R

S=.225 Btu/lb R

H=131 Btu/lb

P=214.3 Psia

State 4:

P=115 Psia

H=124 Btu/lb

T=595 R

State 5:

H=137 Btu/lb

T=660 R

S=.24 Btu/lb R

State 6:

P=60.99 Psia

S=.246 Btu/lb

H=131 Btu/lb

Wout=12.58 Btu/lb

Qin=112 Btu/lb

Eff.=11.23%

c)- TH/TC=1.4

TC=515 R

TH=720 R
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State 1:

T=515 R

P=33.23 Psia

H=21.86 Btu/lb

S=.0477 Btu/lb

V=1/71.24 ft3/lb

State 2:

P=413.8 Psia

H=22.85 Btu/lb

S=.0477 Btu/lb

State 3:

P=413.8 Psia

T=720 R

H=133 Btu/lb

S=.22 Btu/lb

State 4:

P=120 Psia

H=122.5 Btu/lb

T=600 R

State 5:

H=151 Btu/lb

T=720 R

S=.264 Btu/lb R

State 6:

P=33.23 Psia

H=135 Btu/lb

S=.264 Btu/lb R
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Wout=25.51 Btu/lb

Qin=l38.65 Btu/lb

Eff.=18.4%

d)- TH/TC=1.6

TC=450 R

TH=720 R

State 1:

TC=450 R

P=8.37 Psia

H=6.2 Btu/lb

S=.0146 Btu/lb

State 2:

P=413.8 Psia

H=7.18 Btu/lb

S=.-146 Btu/lb

State 3:

P=413.'8 Psia

T=,720 R

H=133 Btu/lb

S=.22 Btu/lb

State 4:

P=60 Psia

T=552 R

H=116 Btu/lb

State 5:

P=60 Psia

H=154 Btu/lb

T=720 R

M-
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S=.281 Btu/lb R

e)- TH/TC=1.8

TC=400 R

TH=720 R

State 1:

T=400 R

P=2.136 Psia

H=-3.74 Btu/lb

S=-.0093 Btu/lb R

V=1/80.27 ft 3/lb

State 2:

P=413.8 Psia

H=-2.79 Btu/lb

S=-.0093 Btu/lb R

State 3:

P=413.8 Psia

T=720 R

H=133 Btu/lb

S=.22 Btu/lb

State 4:

P=30 Psia

H=109.77 Btu/lb

T=510 R

State 5:

P=30 Psia

T=720 R

H=155 Btu/lb

S=.295 Btu/lb
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State 6:

P=2.136 Psia

H=122 Btu/lb

S=.295 Btu/lb

Wout=55.28 Btu/lb

Qin=181.02 Btu/lb

Eff.=30.54%

f)- TH/TC=2.0

TC=380 R

TH=760 R

State 1:

P=1.118 Psia

T=380 R

H=-7.44 Btu/lb

S=-.019 Btu/lb

V=1/81.74 ft3/lb

State 2:

P=413.8 Psia

H=-6.5 Btu/lb

S=-.019 Btu/lb

State 3:

T=760 R

P=413.8 Psia

H=147.5 Btu/lb

S=.24 Btu/lb R

State 4:

P=21.5 Psia

T=562 R



H=122 Btu/lb

S=.24 Btu/lb R

State 5:

T=760 R

P=21.5 Psia

H-=165 Btu/lb

S=.318 Btu/lb
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APPENDIX (D)

Ideal Engine Analysis (Schmidt Solution)

In section (2.2.1) the assumptions of the Schmidt's

Stirling engine performance derivation are stated. Based on

those assumptions the followings can be resulted.

Vh=l/2 VH(l+ COSot) (D-l)

Vc=l/2 VC(l+ COS(wt-$)) (D-2)

VD=X*VE (Dead Volume) (D-3)

Then the mass of working fluid in different spaces can be

written as:

Mh=P*Vh/(R*TH) (D-4)

MC=P*Vc/ (R*TC) (D-5)

MD=P*VD/ (R* (TH+TC) /2) (D-6)

Since the total mass is constant;then

P er"#(1+CPs t) +P 1+ c_ (._-9) 2'X*___* _

T2 2.R*TC0 A(To-tT)

(D-7)

This equation can be summarized by using the following defi-

nitions.

Tcm=() o+2C/ * S4)/[TC/ + (VC/V#-*C (D-8)

TC/T4 -+ rc/%r" + 4-X-TC/Tc* TO)
(D-9)

Then the instantaneous pressure can be written as:

P=Const./(1+A*COS(wt-e)) (D-10)
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This means that:

P min=Const./(l+A) (D-ll)

P max=Const./(l-A) (D-12)

Pressure Ratio=Pm min= (l+A)/(l-A) (D-13)

P=Pmaxm(1-A)/(l+A*COS(t-)) (D-14)
r

P 1~/020) .P *d (wt- 6) (D-15)

Pmean =max* (1-A)/(l+A) (D-16)

Expansion and Compression Works:

Because of isothermal expansion process the work and heat

transfer are the same:

9*Erg (D-17)

(D-18)

vi Pnn('±,4) # 0GI CW4 JL't)
2 + 2 cas tot-P)

(D-19)

This integration can be carried out analytically, the final

result is:

Wve =lTt * ivi 4,%fAIc S IAC#)/(')+,'A (D-20)

By the same procedure, the compression work can be derived as:

(D-21)

\WO We -W/C PWIf * N It UPIT7+

(D-22)
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Instantaneous Masses:

Hot space:

R1-TH

Cold space:

MC
Ra *C

Dead space:

AD

R * ~T R+ cos(ot-4)1
(D-23)

1/2 _ * E+ CosA-9

R *- TC jt A C0sc t- El (D-24)

R * (-rct T) +A cos4 t )R*LTw+TC)
(D- 25)

Then the total mass in the system is the summation of the above

masses.

MT= Tc/-o -+2 X#TC/tTmtTc)+(1+ COS9)/(2#YWN
R*'TCIF 1+$-c15(t-0)C

(D-26)

Derivation of Optimum Parameters from Schmidt Analysis:

Wa4 r
2(D-27)

I

VC/a & y TC/T# & 7

Tr +r.+ 4 x/(I, /T,)

To see the effect of dead volume on the net output,

derivative of output respect to X(x=VD/VH) is taken:

- - =

'bX

W
*

(D-28)

the

(D- 29)
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=.T f, S IWO v+-Tr 1+ *. IEI

(D-30)

(D-31)

X V '= T S
-tN

I

(D-32)

Since there is no X term in the numerator it means there is no

optimum value for dead volumes and as it is increased the output

would decrease.

By taking the derivative of output respect to swept-volume

ratio (VC/VH), we get:

_-

A [ * +41(,t ] Te +1r+41Tr/(Te)

1T WsVO (-T)

"V~r) rt--A1 [+(,, "

ITrI fe (t-T) [_

~+
99%+f~4'; LT+ r fi~~P[ Tr+V4tV,(,,-)

(D- 34)

-(TAT ase) ( -, ces+-) +

+TTr + V))4- ) TA 2Jw (IT ew g+2 yv Te' caste)= 0

(D-35)

Twe / ) + 

"W
MWOUNft

-b V-V,

*I*b V
' b ro,

(D-33)

4. a -P /(%+ T)

-r. VO 4-A X ar-+t%)

_-4A1_KAI-tTr) -

IV

y,

+4X Te-
s+Te,
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Assuming COS$%0

(2+.)[
tv-+ IT) [r434-2Tr) +IoXTe +3 +rT(8X+27)I = 6-w )*

IV +T te4 41 oe6,+ T")0

or if A assumed to be constant and first use Vr=1 to calculate A,

then the optimum Vr can be calculated from the following quad-

ratic equation:

11
I ____,F g I r (AZ+ A? -1 + 4 x 2-r

I -..Tv

A2 A6

Finally,

% -+ Tr )f

to find the optimum phase angle difference

derivative of output is taken respect to $:

-V 10 -bt.* W

[ A/tc ] ) .-A ' *A'

=> sN 9 vTr -A"
T + +rvT CCSo

W+ Y + 2- .T . CS I

'+Y;' coy+ V.-rT1r. Su. NI

(D- 3 9)
AT. roee 11 W

jii[14 (1 --f T+ -4 X ir.

(D-36)

SA2X il,1 T 2

* -

I+ T,

(D-37)

$, the

(D-38)

*
%TWOc

IF,' _ +1 A2V',2A 42T _,eX I -1)_
14r,,

~ 2*#-" X r
S+'are

V T Y

""01/ Te

OIL
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TA +
- =-I

g[Tjit,-4x-rAtTy]

(D-40)

CoCO-VV f[ {1;tv;2e ,41- F +__ _

I]T,

-LI yCOS?+~ 4X-~y-+1 cscF+Y,-TJ-0- 4

(D- 41)

This quadratic equation would give the optimum design $

based on the schmidt analysis.

Or

-bq



APPENDIX (E)

Ideal Engine with Dead Volume

Since the isothermal compression and expansion is still

held, then:

WSXe Jp ch'i (E-l)

Y" ='
(E- 2)

Where

VD=l/2 (total dead volume)

TR=TH-TC/ln TH/TC

r~i (E-3)

WC-0V4 S Aye(E-4)

"T C 4 )
(+ ) T 

(E- 5)

(E-6)

IL Oz Yr I
U ~ ~ ~ ~ i T 44 T. T

(E- 7)
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v-pl = vrCl ,r"2= IrC2

rTO +'9I+C2=V-0 + vi+ -c I (E-11)

1
n., 4

*I
xr

IYT

(E-12)

(E-13)

ra~c

(E-14)

OUT =M* R+Tc

If X=O then,

X=P l/P2

I i1-
e '- XI A-/,.

____ I V

M'iA

JLI X A..j.

L. *I L
1T A rc

t+~
(TU/TC1)e

T/Tc -f

& T(/Tc

251

(E-8)

(E-9)

Or,

(E-10)

(E-15)

Then,

WOU

TK
& -TrqTc

(E-16)

VMl2 /y-* =

-Vb
'rT

Z =X
Vi

-+4

I... X 44
14 A-

WO-7 ='e' A+T

e
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APPENDIX (F)

Stress Analysis for Cylinder Thickness

Consider the following cylinder with Pm to be the mean pres-

sure inside of it and it has radius R and thickness t.

14

From the stress analysis for a thin cylinder [27] the

following equation is resulted:

a$/Rl+ae/R2=Pm/t

For cylinder:

Rl=o , R2=R

Therefore,

ae=Pm*R/t , a#=Pm*R/2t

In order to consider the thermal effects too, let the

allowable stress be 5000 Psi, then:

t= (Pm*R) /5000
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APPENDIX (G)

In reference [10] the temperature distribution in the

radial direction of the cylinder of a Stirling engine has

been calculated as:

Since temperature is a real quantity, then by using the

appropriate phase angles we can write this temperature dis-

tribution as:

k Pow e(G-1)

Where $ and $ are phase differences between temperature

and pressure waves with respect to the expansion volume

displacement.

In order to calculate the upper bound of the tempera-

ture difference between the gas and the cylinder wall we

can assume:

S(G-2)

T 0 !').s l)3t (G-3)

This temperature difference can be used to calculated

the corresponding heat transfer, as follows.

a= R Ai 4T (G-4)
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The following figure shows a cylinder with sinusoidal

volume variation and constant cross-sectional area.

For this cylinder the instantaneous heat transfer area is:

(G-5)

The heat transfer coefficient (h) is calculated from

the following empirical correlations:

=--=Nw 0 3 ( e P (G-6)

Therefore,

The average heat transfer over a cycle would be:

(G-8)

A =-T * D A, X = 3-D -Xin ( 14 SLVWea)
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Lumped Model Approach

Since each cylinder can be modelled as a combination of

thermal capacitances and resistances, then the circuit and

bond graph for a cylinder

capacitances
I I

I I

-a

resistances

would be:

. .... c A

1 L 1 T T

4  Cz'

The simplest model would be a two-lump one:

V_// r- a 4 2
Sf C

State equation for this system are:

I*= =.4 Q-(IT.
LiGLI)
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In terms of the temperature:

Ct 4; rs) (G-9)

(G-10)

Ct I +%5 )

Where t =RC ' t =RC, Ct=C +C ' SEd/dt

If we assume a one-lump system then its temperature would be

the mean temperature of the more detailed system.

Q=C t*S*Tm

or

- (G-ll)

(G-12)

If we substitude iw for S, then t/+, this can
I _t-4

include the first order approximation to e lo; therefore, the

equation in reference [16] or equation (2-22) can be easily

derived from the above approach. If t1 and t are selected

properly, then the two-lump approximation would be very close

to the exact solution.

Calculation of t & t

For a two-lump model, the cylinder can be divided to

two sections a smaller cylinder and an annular which covers

the first one.

................. T&

Cwt ?"it Ot Pr
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t 1=RC 2  (G-13)

t =RC 1 C2/ (C1 +C2) (G-14)

C2 is the thermal capacitance of the annular, C1 is the

thermal capacitance of the internal cylinder, and R is the

thermal resistance between them. Since t has the dimension

of time and R has dimension [hr R/Btu] then C should have

the dimension IBtu/ R]. Since the volume of gas is changing

with time then average value which is the volume variation

amplitude is used.

aT (G-15)

Assume C /Ct=a , then C2 t=l-a

&( (G-16)

2& -T (G-17)

For resistance R, consider the following cross-sectional

area of the cylinder:

Annular

Internal Cylinder
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The characteristic length which is going to be used for

calculating R would be the summation of one-half of the

internal cylinder radius and thickness of a gap which has

volume equal to the one-half of annular volume. Heat trans-

fer mechanism between these two sections can be considered

as a combination of conduction and convection.

Since each cylinder has a uniform

temperature, then coefficient of heat

transfer can be assumed to be [23):

NuR=3 .66 h=3.66 kg/D (G-18)

=L +_-D-__ 2 T Ig I. (G-19)

D is the internal cylinder diameter

4 ~ 2
or D (G-20)

1/2 Gap volume= 17 (1 -o) S .
F T

1/2 Gap volume +Internal cylinder volume= (t-et)8 o(,gBgi c2

=> 2

C. = +2
(G-21)

Therefore:



259

'D G8 4 (G-22)

'(G-23)

4'T- k'S(k-) %/ (G- 25)

The only unknown for calculating t1 & t is a. Since we

are considering the radial direction, then it would be resona-

ble to assume a=0.5 . Based on this value for a, we get:

i (G-26)

; = -98 -<6
(G-27)

Example:

For hot cylinder with TH=860 R and Pm=500 Psia, B=1.5 in

t and t1 will be:

Assuming helium for working fluid.

TH=860 R

k =.118 Btu/hr ft R

.284 * 500 & .5) 23t eo
Usi of-fs 014-I)Y778
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APPENDIX(H)

Derivation of State-Equations for Stirling Engine with Perfect
--------- -------------------------------------------
Components

Differential equations governing the behavior of a two cy-

linder Stirling engine with perfect components will be derived

with the following assumptions:

a)- The cylinders are adiabatic.

b)- All heat-exchange components are perfect, i.e. no gas-

to-wall temperature difference, no axial conduction, and no

pressure drop.

c)- The temperature at any point in the heat-exchangers

is constant with time.

d)- The temperature is uniform at any crossection perpen-

dicular to the direction of flow.

e)- The gas in the cylinders is perfectly mixed.

f)- The working fluid is an ideal gas.

g)- The mass of the working fluid remains constant through-

out the cycle (no leakage).

Assumptions (a) and (b) will allow the first law of thermo-

dynamics to be applied without regard to the heat transfer pro-

perties of the gas or any flow considerations.

Assumption (c) allows the mass of working fluid in the heat

exchange components to be written as a function of pressure only.

Consider now a cylinder from the engine shown in Fig.(15).

The total volume swept by the piston in the cylinder is 2VA. The

variable VA will be referred to as the volume variation ampli-tude.
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At time t the volume available to the working gas in the cylin-

der is V, and the mass contained in this volume is m. The pres-

sure in the cylinder will be denoted by P.

The heat exchanger adjacent to this cylinder exchanges

heat with the working fluid at a temperature T . Since it has

been assumed that there is no gas-to-heat-exchanger-wall tem-

perature difference, then the temperature of the gas entering
*

the cylinder will always be T

The first law- of thermodynamics may be written for the

control volume consisting of the volume swept by the piston in

the cylinder as

d C-= j - h+- (H-1)

Where E is the energy of the gas in the control volume, Q is

the heat transferred to the gas and h is the specific enthalpy

of the gas.

The term dQ in (H-1) is equal to zero for an adiabatic

cylinder, and the perfect gas relationship permits writing

the other variables in terms of the specific heats C and C
p

When gas is moving into the control volume

CaT = -- pT Z JA a (H-2)

and when gas is moving out of the control volume

CV aT = --P t Cp T am m<] (H-3)

With the introduction of the perfect gas relationship

(H-2) and (H-3) may be rewritten as

RT* k 9 T*(H4
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and (H-5)

Where K is the specific heat ratio C /C and R is the gas

constant.

Equations (H-4) and (H-5) are valid for both the hot

cylinder, which will be denoted by the subscript h, or the

cold cylinder, which will be denoted by the subscript c.

Since it has been assumed that the heat-exchange components

introduce no pressure drop, then the pressure P will be uni-

form throughout the system at all times.

The mass in the heat-exchange components or dead space

is proportional to the pressure in the system. Therefore, we

get the following.

44 AR v T-) (H-6)

The quantity Vd represents the ratio of the mass contained

in the dead space to the mass contained in one half the volume

displaced by the warm piston at the same pressure and at tem-

perature TH. This mass ratio Vd may be called the reduced dead

volume, since it represents the effect of introducing dead space

in the system. The amount of working gas which must be moved in

an out of the dead space without actually moving through all

the heat-exchange components is proportional to Vd for a given

pressure ratio. This means that additional work must be trans-

ferred in and out of the system in order to pressurize the

dead space without actually increasing the net work.

If (H-6) is differentiated, then the change of mass in

the dead space is given by:
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4g YA= VA_ * V~4 I P P/CR *Ti H)7

Based on assumption (g) we get:

MYA= Vc +C t +M Mf Coert (H-8)

or

dMC mMR 40 d(H-9)

Because working gas may be accumulated in the dead space,

there are four different possible combinations for the direc-

tion in which mass is moving at the interfaces between the

cylinders and the adjacent heat exchangers. These possible

combinations are:

C":> (H-10a)

dmr <0 
(H-10b)

I nA. >0(H-10c)

(H-10d)

When (H-4), (H-5) and (H-7) are introduced in (H-9) for

case (H-10a) the result is

'TC RTc R T4  RT Tl

(H-11)

If the variables

(P V _' V-c TI1

(H-12)
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are introduced, where Pmax is the maximum pressure during the

cycle, then (H-11) may be rewritten as

P =0t 4 r'+ rm V' j

(H-13)Th)is la0 d "ifg eq ut
This leads to the differential equation

e i-++k d (H-14)

for the dimensionless pressure.

The differential equation for the mass in the cold cylin-

der is given by (H-4) as

P ,cT k 0 TC (H-15)

If the dimensionless mass variable

MA' (H-16)

is defined, then (H-15) may be written as

Ll > (H-17)

Similarly, the differential equation for the mass in the

warm cylinder is given by (11-4) as

c~i F, 114  TL__

If the dimensionless mass variable

is defined, then (H-18) may be written as

(H-18)

(H-19)

[jMA>]dM . V+ -L A- .A (H-20)

[JMC.>O' J.*'A >03

_LAA C + V A P
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The work W may be found by integrating p dV for the approp-

riate cylinder, or if a dimensionless work W is defined

f c (H-21)

and

jd ? qIg

(H-22)

Since (H-9) must be satisfied at all times, the mass

changes in the cylinders are related by

(H-23)

When the same procedure is followed for case (H-10b) the

differential equation for the pressure becomes

A:-- t 7
rWhl tA4s angs a

P
While the mass changes are given by

and

c LIC)

aMMq47

The same procedure may again be

and (H-10d) to yield the equations

and

[d.4o]

[4mg Z01

(H-24)

(H- 25)

(H-26)

followed for cases (H-10c)

L4r;

4 +~k--1

(H-27)

(H- 28)

..t dAer + d + 0 .p o

A4 A<v]

[ j A, Zo , dA4# XD ]
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Equations (H-14), (H-17), and (H-20) through (H-29) des-

cribe the behavior of the Stirling cycle with adiabatic cylin-

ders and perfect heat-exchange components. These equations may

be integrated numericalyy for an arbitrary set of volume varia-

tions. The integration would consist of taking a step with the

appropriate pressure differential equation and integrating the

mass changes will determine whether the step in the integration

is valid or whether a new set of equations must be used. It is

necessary, however, to start the integration by assuming a given

mass or temperature in the cylinders, and by selecting either

(H-1-a), (H-10b), (H-10c) or (H-10d) to start.

The integration has been carried out by the computer prog-

ram described in Appendix I for two crank-connecting-rod volume

variations with no clearance volume. The volume relation is

calculated in a separate subroutine which may be changed to an

arbitrary set of volume variations. The details of the integ-

ration of the equations are given in Appendix I.

The reduced dead volume Vd may be calculated by assuming

that all the gas in the cold space is at TC; the gas in the

warm space is at TH. The gas in the regenerator is assumed to

be at TR.

Equation (H-6) may be rewritten as

t jC t- , (H-29)

Where

TC (H-30)
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T -t~: (H-31

and

NTDf A~~
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APPENDIX (I)

Computer Program of Complete Model
-------------------- --------

The equations for the pressure, mass and work derived

in Appendix(H) may be written in discrete form in order to

perform a numerical integration of these variables for a

complete cycle.

The values of volume, mass and pressure at the beginning

of a step are used to calculate the values of the same varia-

bels after one half a step. These values are then used as

an average for the calculation of a complete step.

The computer program consists of a main program and five

subroutines.

Main Program

ZZC

The inputs for this program are:

TH: Hot source temperature in ("R)

TC: Cold source temperature in (-R)

,ZZW: A crank-connecting rod mechanism is assumed. This

is the ratio of the connecting rod length to one

half the stroke for the cold and warm crankcases

respectively.

XNHT: The value of the exponent of the Reynolds number

in the heat-transfer correlation for the regenera-

tor matrix.

SHR: Specific-heat ratio K for the working gas.

NFI; A crankshaft revolution is divided up into NDIV
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steps. The variable NFI is the number of steps

which represent the phase angle between the volumes.

NDIV: The number of divisions into which a crankshaft

revolution is divided.

NWR: This is an index which will govern the amount of

printout from the program. If it is zero the print-

out will show only the results for the overall per-

formance. If it is greater than zero it will show

values of the variables versus crank angle.

NDS: The number of locations in the dead space for which

the pressure-drop and heat-transfer integrals are

to be calculated.

VAC: Amplitude of cold cylinder volume variation (in 3

VAH: Amplitude of hot cylinder volume variation (in3 )

DRR: Diameter of regenerator cross-sectional area (in)

LR: Regenerator length (in)

VDEER: Ends clearance volume of regenerator (in 3

a: Regenerator effectiveness

d : Wire or sphere diameter of regenerator filling mate-

rial (in)

DC: Tube diameter for cooler (un)

LC: Cooler tube length (in)

NC: Number of tubes in cooler

VDC: Ends clearance volume of cooler (in 3

DH: Tube diameter for heater (in)

LH: Tube length in heater (in)

NH: Number of tubes in heater
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VDH: Ends clearance volume of heater (in 3

N: Engine speed (RPM)

Pm: Mean pressure in the system (Psia)

Qin: Input heat rate (Watts)

R: Gas constant for working fluid (lbf-ft/lbm R)

M: Molecular weight of the working fluid

SWl: Switch for addition or elimination (1 or 0) of

mechanical friction loss.

cyL: Indicates wire or sphere (1,0) is used in the re-

generator.

The main program starts by reading in the above variables.

Since the integration proceeds in steps of equal crank-angle

changes, the change DALF is calculated. The integration starts

with the crank angle at a value of 3/27r. At this angle the

cold cylinder is at top dead center.

Subroutine VOLC and VOLW are called. These subroutines

will fill in arrays C, Cl, DC, DCI, W, WI, DW, DWI with the

values of the volume halfway through a step (C,W), the value

of the volume at the beginning of a step (Cl, WI), the changes

in volume for a step based on the volume derivatives at the

beginning of a step (DCI,DWI) and halfway through a step

(DC, DW), for the cold and warm volumes respectively. These

subroutines are set up for a crank and connecting-rod mecha-

nism, but may be changed for any other relationship.

One set out of the four possible sets of equations is

selected depending on the sign of the mass change in the

cylinders. The array IND (I, J) describes whether a mass
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change is positive (index set equal to 1) or negative (index

set equal to 2). The first index refers to the warm mass

and the second to the cold mass. The set of equations is

then selected by the value of IND (I, J) which may be one

through four.

The actual integration is carried out in a DO LOOP.

Then volumes and the volume changes equal to the proper values

and following line determines which of the four sets of equa-

tions are to be used.

When a step is taken, the sign of the mass changes is

verified. If there has been a change in sign and the equa-

tions which have been used are no longer applicable, then

the step will be recalculated by using the new set.

It is possible that due to discretization and truncation

errors the value of the mass in a cylinder approach a slightly

negative value rather than zero at top dead center. In this

case, the value of the mass is set to zero and the calcula-

tion continues.

Another possibility is that in searching for the proper

set of equations to use, the program will get caught in a

loop. In this case an arbitrary set is used to calculate the

step. This action is noted on the output.

The integration proceeds until top dead center of the

other piston is reached. At this point the mass is set to

zero and the integration continues.

At the end of each cycle the initial and final values

of the warm mass are compared as well as the initial and
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final values of the pressure. When the variation from cycle

to cycle is small, then the integration is assumed to have

reached an overall steady state.

The changes which have been considered satisfactory are

0.001 for the mass and 0.005 for the pressure. Since both

these variables are of the order of one this amounts to about

0.1% and 0.5% change. This point has usually been reached

after two cycles.

When the cyclic integration has been completed, then

values for the overall variables of the cycle. The maximum

and minimum pressures are found to obtain the pressure ratio,

and the pressures, works and masses are normalized with the

maximum pressure. The maximum mass is found to give the value

of MA. An equivalent phase angle between the cold volume and

pressure variations is determined by equating the cold cylin-

der work to that done by sinusoidal volume and pressure varia-

tions of the same amplitude. This value will be useful if

it is desired to combine the results with those of the one

cylinder model.

The subroutine PDINT evaluates the integrals necessary

for the evaluation of pressure-drop and heat-transfer losses.

These values are shown on the output as

X/L=X

L/ *bK VC'
INTEGRAL= -* -'."- C

DMRE=
2.T JL Mt (6
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XII= IlX

X12= I2X

X13= I x/I2X

Up to this point the basic output power (difference

between the expansion and compression power) can be evalua-

ted. Then power losses are calculated, first by calculating

(via two DO LOOP) non-dimensional mass flow rates in each

component, then first pressure losses and second the heat

transfer losses are calculated. Finally the overall perfor-

mance is computed. A sample of the output of the program is

attached. It shows the input data plus all of the power

losses in [Watt], total heat input in heater and heat rejec-

tion from cooler, net output power and efficiency, torque,

mean effective pressure, and total losses. The same quanti-

ties normalized based on the net output power is also pre-

sented.

The difference between programs of complete-model and

optimum design model is that in optimum case correlations

for optimization are given to calculate the optimum geometry.

Program needs to have some non-zero, initial,geometrical

vales for starting the optimization. The optimum model prog-

ram has optimum bore-stroke ratio equation which will be

solved automatically inside the program.

The first part of the output shows the pressure ratio

and phase angle difference between pressure wave and hot

volume displacement.

M__
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APPENDIX (J)

Derivation of Mass Flow Rate in Heat-Exchangers

Considering Fig.(37) which shows a general configura-.

tion of a real Stirling engine. For this engine we have

\Q 2 N7'f- ( I+ I(lW t) (j -2)

Since the only flow sources for heatexchangers are the

cylinders volume variations, then by considering the control

volume of Fig. (37) we get the net volume flow in to be:

C- Lt t (j-3)

~eT 2 1.Ces W±1 C--C(WC-) (j-4)

-V"C .W( CAS W- C" &rt C-S.| 14SIg W -CN

-c
- C .d L ("..- - ChST ) C549t' QhT( N& S14/wt

or

'VNT t :\IC'C ' if CDt + IVW t (j-5)

If we define a to be:

Then equation (j-5) can be written as:

Q .e = 
j--6C. 

, 
)IN ( IW A - COS) + N t - Ces P(

2 Co O(L( j-6 )
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Since Qnet has sinusoidal form with period 27/w then

it has the following figure:

From equation (j-6) we get:

2 CS a
(j -7)

The area under Qnet curve in half of the cycle shows an effec-

tive occupied volume during that half cycle.

(j-8)

Where Tp is the period and TH. is half of the period.

Therefore, if we use a correction factor for effective

occupied volume we can calculate the volume flow rate to be:

2C'o

Since in the cold end of the system (cooler) the tem-

perature is lower, then by using the ideal gas law we can

estimate that maximum pressure should be used for calculating
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an average density of gas in heater, minimum pressure should

be used for average density in cooler, and the mean pressure

should be used for average density of the regenerator. There-

fore, we have following pairs of properties for the heat

exchangers.

For Heater: I /i e)

For Cooler:
P=P ~-/'7i

T= TC
For Regenerator: P

Where TR=(TH-TC)/ln(TH/TC)

Pm A c.

r PM1
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APPENDIX (K)

Pressure Losses Derivation by Simplified Model

In reference [ it is shown that for a flow through

a component with flow path area AFR, and effective cross-

sectional area A eff the pressure drop would be:

#g# A 0 n (k-1)
flow acceleration core friction

Where RH=(AFR*L)/AHT, AHT is the total heat transfer area,

and f is the friction factor. For the full cycle the acce-

leration term is negligible because flow rates going to or

out of hot and cold spaces are the same. Therefore, the

above equation can be written as (assuming pp 1 )

2M P (k-2)

Equation (3-14) gives the value of Q.

ev L~- fCp So(16 N (k-3)

Based on the discussion in Chapter II, the power loss

due to the pressure drop is given by:

VL b AP cLv

V-c -=rc:+Sx )
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VLS = &P Cl c6 . = 2C .cJ- C&s (Wt-.J tet) (k-4)

Where Tpis the period.

~'* 4= - ~L- i1 _______ts) is Cw= ci( j .t Sa 0-4.. st-) Cs& C Lt'.e)
2 (k-5)

which i.( s C# - as (.wemI a)Cssft-l)ldw

21f C&5(u&f-4)- 2.aC05(3W f -2oIq)- ce S&A(t t Z4. &)&uf )

Ther ef or e,

hST R" (# C;,+ 25~~-)) - -+

(x- C)
The only unknown in this equation is f, i.e. friction factor,

which is determined as follows.

For Heater:

FR44)(k-7)

R T 4 (k-8)T 4
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If ReH<2000

(k-9)

If ReH>2000

A .067
tD = (k-10)

(Re*) 2

InH is given by equation (3-15).

For Cooler:

_W.. C, OCD (k-11)

4w~

Ke[)c /CAc (k-12)

If ReC<2000

fc=16/Rec (k-13)

If ReC>2000

fc=.0457/(Rec). 2 (k-14)

ic is given by equation (3-16)

For Regenerator:

AP LA - (k-15)

If ReR<60 fR=53.7/(ReR) 93  (k-16)

If 60<ReR<l000 fR=5.176/(ReR).365 (k-17)

If ReR>l000 f R=l. 035/ (ReR) .125  (k-18)

mR is given by equation (3-17), and VDR is the regenerator

dead volume, LR is the regenerator length, and dR is the

wire or sphere diameter of the filling materials inside the
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regenerator.

Note: For calculation of pressure drop we need to know (L/D)

for the regenerator.

(L/D) R=l/4*AHT/AFR (k-19)

Depending on what is inside the regenerator, particle

(spheres) or wires, there are two cases.

a)- For Wires:

T =_Iq V-TDR

Where VDR is the regenerator dead volume.

An imaginary length for the wires can be determined as:

(k-20)

Pb Y=bRA/LR

Therefore,

or

ND AF -- x- (k-21)

This means:

(k-22)

Where a is the porosity and dW is the wire diameter.

b)- For Sphere Particles:

An imaginary number for the spheres can be determined

as: 3
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A# AT =Aim rz 12 V Q

~. I

o r LD) 2 I L?(k-23)

This means:

3 -a- (k-24)

Where ds is the diameter of the sphere particles.

A Sample of SimpifdMoeCacltn

For the following temperature-ratio, the optimum design

is:

TH=860 R

TC=530 R

VC=2.476*2in3

VH=2.845*2in 3

Working fluid=helium

Mean pressure=500 Psia

Engine speed=1000 RPM

Phase angle=108

Heater:

LH=9 in

NH=50

DH=.07 in

VHD=l.3 in3
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Cooler:

LC=6.8 in

NC=77

DC=.05 in

VCD=l. 22 in 3

Regenerator:

LR=.946 in

DRR=1.5 in

aT=.69

Wire diameter=.0016 in

VRD=l.038 in3

From equation (3-2):

V,,,.T TV P. V9 .6 !;Iw -7-r. + / )/ or- ) F(er) -F?)6F

/Ty+ /+T--) V (E+r +%A /,P (-v2 L p4M)ece+ ,)

T(R Te -rc-

vb OA14 ' ITD# 2E 4=2o2.

Y 0 C = xb-MC, T D J e 4 - 2.48 

b k= VRD +- 7 r -- v D tR & LpR4.= 2. Q

=:P90= 172'
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From equation (3-4):

F (T)=. 822

From equation (3-6):

F ($)=. 9644

From equation (3-7B):

D= (VDH+VDR+VDC) /VC=1. 5085

F (D)=.8924

Therefore,

Wout=678 Watts = 500 ft-lb/sec

From equation (3-9):

Qin=2390 Watts = 1763 ft-lb/sec

Losses Calculations:

Equation (3-12):

f AT)=l.086  Eq. (3-21)
T

f (T)=l.023 Eq. (3-22)

fr (T)=l.0417 Eq. (3-23)rr

f' (4)=.83 Eq. (3-24)

f c()=.8605 Eq. (3-25)

f r(#)=.8444 Eq. (3-26)

fh(DH)=. 97  Eq. (3-27)

f (DH)=l.142 Eq. (3-28)
cD
f r(DR)=l.06 Eq. (3-29)

Therefore,

Fch= f (T)*fre* h*(DH)=.874

f =1.005
cc

fcr=.9324
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Mass flow rates:

mH=.039 lbm/s Eq. (3-15)

mC=.062 lbm/s Eq. (3-16)

mR=.49 lbm/s Eq. (3-17)

For Heater:

AFRO &A TT OD./ .

P y --- os b-/1r P4

Qg & -.. 4& -0r31 412-s'3IPP

TT t -6 7f Sd or -BiP/(J4~ O *oh -~~;

From equation (3-31):

-6v.6 JT3 %) ( K *n 1. 1-iaVU

Correction factor for units: 1/112) 3 *32.2*.737563

Wloss=6 Watts

For Cooler:

pc=.0475

Rec 4 t 1 135

IT (0c) Wc-/c4

-- S = *x0cY1 = ./

From equation (3-32)

Wloss=13.75 Watts
c.,(#e. ap

For Regenerator:

ReR=38

fR=l.464



285

From equation (3-33)

Wloss=148 Watts

Temperature Drop Losses:

Heater-Equation (2-10):

Mw.-R-To I -

We=l/2(Wout+Qin)=1534 Watts

Wc=l/2(Qin-Wout)=856 Watts

NTUH=4(LH/DH) (.023*ReH 2 '*Pr-. 6 )=2.35

Wloss=.6 Watts

Cooler-Equation(2-11)

vie- R-Tc -

NTUC=2.15

Wloss=.6 Watts

Regenerator Heat Loss:

Equation (3-35):

#TO rt 2

AIU.= -74(3 Pr;'3 LAUc.) -7

NTUV=l27.3

QR=66. Watts

Shuttle loss by equation (2-16):

Qs=86 Watts

Heat leakage by equation (2-19)

QL=29 Watts
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Transient heat loss in cylinders by equation (2-24)

QTR=6 5 Watts

Friction loss by equation (2-33)

QFR=6
8 Watts

Pumping loss in negligible because temperatures are not very

high.

[equation (2-31)].

Axial conduction loss by equation (2-15).

Q A=3 Watts

Final Results:

Wout=Woutasic- (APloss)-(ATlosses)-Q QL -QTR -FR

Wout=270.8 Watts

From complete model we get 262 Watts

Qin=Qi asic R +A= 2459 Watts

Complete model:

Qin=2257 Watts

Effic.ienc =270.8/2459=11%

Efficipncy =262/2257=11.6%
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APPENDIX (L)

OPTIMIZATION METHOD:

a)- Regenerator Optimization:

As shown in Chapter II, there are three different losses

associated with a regenerator: (1) power loss due to the pres-

sure drop; (2) heat transfer loss due to the regenerator imper-

fection; (3) heat transfer loss due to the axial conduction.

Equation (3-33) expresses the pressure drop power loss as:

(ge(Aw)) P, ~ Cs V j~ x2f *L[SI#+ V (-)14SI(&C-)]

(L-1)

The net output power of a Stirling engine is given by equation

(3-2):

(L-2)

Therefore the normalized power loss would be:

__ 6(Lo . r ,, Vt 1 ,49 ________'

-r C8-r + '' T RTR a(MR) 4 (1-T/TY) *(T E o(D)

(L-3)

Where:

(E) /

Vv =TF*l* Pn A x A *-STAU -TC/-*; ()h q)*. D
Nav \+{1
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Cop= 1 S~gq 14 C~v~ 14( ;w 2 rcz cf ) (L-4)

Lets define:

wJ6 (I a $e s (L-5)

/3 A act - (L-6)

This implies that '/jlis a Reynolds number. In these

definitions DR is the regenerator hydraulic diameter and DRR

is the regenerator cross-sectional area diameter.

For a given temperature ratio and mean pressure the rege,

nerator has to have enough thermal capacity to handle the

resultant heat transfer. By an averaged energy balance equation

(heat transfer), we can get the following relationship LR and

DRR, as shown in Appendix (P).

Where & CR are density and specific heat of regenerator

material. Since in the present optimization method the re-

generator porosity (t-) is assumed to be constant, then equa-

tion (L-7) indicates that for a given Pm and TH/TC the rege-

nerator dead volume is frozen.

For the regenerator we have:

TZW =C - (L-8)

R T ~*- 2CPk
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By substituting for DRR in equation (L-8) from equation

(L-7) we get:

I (T ?) 8a4 /r#['4A #1C ( ) (L-9)

For most cases the Re? for regenerator is less than 60, then

fR=53.7/ ReR*93

Also

2 2 2 2

Therefore,

________~20429 LC)U (ij' (C
R*TR O(,QAP Th

2 .07 \ {

Lets define:
CR

ZLCp

b'=A Tg/Tc

Then equation (L-3) can be re-written as:

cs = C; 1017 2(-0

(L-10)

Where

Foto) YZ
(16-Tc/r) E(T)

(L-11)
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Or

07 2,D F
(L-12)

Where:

0~7 '14
2 T*t acvZ [11 4 S/2 9-() +/I q t-~

Since the regenerator dead volume is frozen then FR in

equation (L-12) is independent of

Heat transfer loss due to the regenerator imperfection

is given by equation

Since NTUV>>2 , then by substituting for rnR we ge t:

PvrC)*4J ( 4V *C
2 A* (rs 0 V-C1'NTOV

NTLV= 2. f 52 s (L/O

the normalized heat transfer loss would be:

(L-15)

Where

CL lj FC2.- =. 
"coset

*
3' if2.V52 (k-)

(L/D)R '

(3-35):

(L-13)

(L-14)

Therefore,

y4 - TC/TH)FTcr) FoT )

WILOU
V2---r = (q, D,

QY it .y C. x (,Tir T), 2
A 3 ToV +2

),t p;23 G *

TC /-YP

07
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By substituting for ReR from equation (L-9) we get:

P' nil-I t (L-16)
*T7

Where (
=C2  )

Heat transfer loss due to the regenerator axial conduction

is given by equation (2-15):

.j= (A R ) * (TY - TC)/ R (L-17)

A R =}r (Ra)

Then the normalized loss would be:

V'VT T- ICC t* PMWO
Or

devy (L-18)

Where

S*(L-19)

As discussed in Chapter IV, in order to add these three

loss terms Wloss' QR, and Qc an efficiency term should be added

to QR and Qc because QR and Q are in the form of an heat

transfer rate where as Wloss is in form of mechanical power

(work transfer).
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Therefore, the total power loss due to the regenerator is:

l~~qf2 i .0 i?'~2.? -.51 - 9

D Ct -( T b)a (L-20)

For the first round calculation efficiency (Z) can be approxi-

mated as:

Carnot Efficiency .- /0=.

Since the regenerator volume is frozen, then F ( , D, T r r)

is independent of (L/D)R, i.e. it has no effect in the follow-

ing differentiation.

T-.4 1 14.1-
-/D7 Cons .07

Solution to equation (L-21) gives the optimum geometry-ratio

for a regenerator.

b)- Cold and Hot Heat-Exchangers Optimization:

There are two forms of power losses for heater and cooler:

(1): Power loss due to the pressure drop; (2) Power loss due

to the temperature drop.

Equation (3-32) expresses the pressure drop power loss

inside the cooler as:

cIT (L-22)
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The normalized form of equation (L-22) with respect to the

net output power is:

Vout 1T (AMi) tfA * ( - TC/T)4 F.(T)-t F4D)*'VI (L-23)

Where r.)7(y

Lets define: P 3

(L-24)

( 'c*,4RC P-*TC

IAJ (L-25)

Where 4Fpc =/c*7 (Dcf4-

Or cr C

This means that 2aforms a Reynolds number.

Since Reynolds number inside the cold heat-exchanger is

almost always greater than 2000, then the friction factor can

be expressed as:

2 -45 7ei eC .2 (045 v %/I/Cr(L-26)

Therefore equation (L-23) can be written as:
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0 f c (L-27)

Where:
73 8 IS

(L-28)

(-TC/ITc) FTLT) V)

(L-29)

Since the present optimization method is based on a given

input heat (Qin) or net output (Wout), then in either case the

heater and the cooler have to have enough heat transfer area

to handle the given task. This yields equations for calcula-

tion of Nc and NH the number of tubes in cooler and heater.

Since it is assumed that both heater and cooler have constant

wall temperatures (TH,TC) then the Nusselt number for both of

them would be 5.75 for inside the tubes, assuming a slug flow

with a mean velocity.

=V* IT *0 iL

=k'9gS.7 6 /D

AT =.- TR-TC (cooler)

A'T'=*T14 -'R (heater)

For Cooler:

1 c = 5'.76' *A/C *Tri LC x-(TR-TC)

or aVCr = LC/(5.75'1T f Z *LC * (R -Tc)It/C (L~-'-./-30)
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Where Qc is the total heat transferred in cooler which is

(1-Eff.)* Qin and Kg is the gas thermal conductivity.

For Heater:

Q,-v =575 M W IjT* LH (TH -TR)

or

fi 'n/(675T gel I(aT) (L-31)

In addition to calculation of NH and NC, equations (L-30)

and (L-31) will freeze the cooler and heater dead volumes.

Power loss due to the temperature drop in cooler is given

by equation (2-11) as:

wc- , (L-32)
fc T k * R*Tc_

This can be approximated as:

Where,

NTOC 4 A -023 ac
Since we can be approximated by,

wc s; Pm 6t - % /--t) w co c t-c * (T H /Tr-.)

Then the normalized power loss would be:

s. A/j'-)(A Y~i) -A Ftt) * (T I . L P0 (

Viv T 9 Vll P Fa0) *(T)* f TC/TVlf *k 4j C .10) -o23 W2 .,v (

(L-33)

O r L-4 1 #

(L-34)



296
2 g

Where: 2 ~'____ __ P

404's (CT/c) IAM?

=TR /TC

Therefore, the total power loss due to the cooler would be:

-r,-'i 2 (LI It--

(L-35)

In equation (L-35) Fc is independent of (L/D) because of

cooler frozen volume for calculation of NC. Therefore, Fc has

no effect in the following differentiation.

I ~V/Oe

Llor Y(L 36)

Since heater and cooler are similar, then an equation

similar to (L-36) can be written for optimum heater geometry

ratio.

D (L-37)

Where:

S2*

Yq R, D ')/ ,V . VC(L-38)

if-Z4, T * 0Vr)(L-39)
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-Effect of Ducting and Clearance Volumes:

In order to find the effect of ducting and clearance

volumes on optimum aspect ratio we can compare the result

of the complete model with equation (4-27). Following are

the results of this comparison for some cases:

= 1.6649 , 1.04 , .6243 , .3122 , .104

= -26 , -16 , -6 , -3 , +4

Similar results have been derived for other cases. The

simplest correlation which fits very accurately the the above

data is:

f( ) = -19.2 * +6

C)- Cylinders Optimization:

As discussed in Chapter IV, three major power losses

in cylinders and the output power would determine the opti-

mum volume ratio for cylinders.

Power loss due to the mechanical friction is estimated

by:

s-: (.o2A)(V-g cg (L-40)

VI S? Ta OW '/+ /r +I *1r#I tkq
edOT 5-'T (I -TC/TW) f T\y

or w

ss149g ($ i-(/g1L-1

Where:

Total Dead Volume/Ve

'= TI)/TC



Equation (2-16) expresses the shuttle loss as:

%AI -- . 4 ( LTI-TC)A X (BET)

Or

'4QT

Where
P* ( W*t) 2 / +/(f(G)

Finally, from equation (2-20) we get the power loss due

to the non-uniform temperature distribution inside

as:
&-'~~ 2K?

cylinders

Net Output = Output - Total Power loss

Net Output _
Wout

Tqv r

Total Power Loss
Wout

(i 

(L-44)
Toll 

WIns=
vV T

-.5

-+ _/ __

Or

X 113r AD50_
(L-45)

i+ g

298

R + J4 PI,) (L-43)

(L-46)

2 ( 15- 0(L-42)

+1 44 P:S)

Wei- 04 A.
V/ou ,. _

9 1.xs 00

+2 R~ ~- M. = 0
-5
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For simplicity and because of the fact thatjA 1, then we

combine and d2 as a new constant then we get the following

equation:

(L-47)

Figures (L-1) through (L-6) show how the optimum geomet-

ries of different components vary with the non-dimensional

numbers, such as Mach number and. Reynolds number.
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130

I110(

90

ClQ-

Fig. (Li): Optimum Cooler Aspect Ratio as a Function of Mach
Number and Temperature Ratio ((=.4, y=300)
Equation (4-24)

300
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140

120.C

100

100

Fig. (L2).: Optimum Cooler Aspect Ratio as a Function of Cooler
Dead Volume and Reynolds to Mach Number Ratio

(a-.08, 6=1.4
Equation (4-24)
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140

120

100

C .

Fig.(L3): Optimum Heater Aspect Ratio as a Function of Mach
Number and Temperature Ratio ( =.4, y=800)
Equation (4-37)
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Jo0'

Fig.(L 4 )t Optimum Heater Aspect Ratio as a Function of Heater
Dead Volume and Reynolds to Mach Number Ratio
(a=.25, 6=1.4)
Equation (4-37)
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1.4 i

020
PIN

0oo

0

Fig.(L5): optimum Swept-Volume Ratio as a Function of Reynolds
Number and Temperature Ratio ( =3.5)
Equation (4-47)
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.80

Fig.(L6): Optimum Swept-Volume Ratio as a Function of Dead
Volume and Temperature Ratio (a=5000)
Equation (4-47)
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APPENDIX (M)

Derivation of Optimum Phase Angle & Speed:

a)- Optimum Phase Angle

In order to find the optimum phase angle we need to

differentiate the net output with respect to $.

Wout=Basic Wout-Total Losses

-O-- (M-1)

Appendix(D) has the derivative of basic power with res-

pect to phase angle.

jw...TJ. 2  cIA1 CCT(P D'- V -I .1.rwcf.Lv7 4( V. '910f 0. SW
I*V ? it T'+ tV T, CottT /(i-2)

In this equation everything except the phase angle terms

would be consider constant because differentiation is respect

to $.

- .Id T9-Tt(2 N- (M- 3)

Losses can be determined from Chapter III, simplified model.

AP-loss in Heater:

AP-loss in Cooler:

K4 @( 1e V.6 YLI (M-5)

is the combination of frictionNote that 1._8 Of (SIN#/COSa) 1.8
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factor and (SIN#/COSa) terms.

AP-loss in Regenerator:

1155 Y Cu(M-6)
Power loss due to the non-uniform temperature distribution

inside the cylinders can be summarized as:

YLss - C ( + V7 CA/9) (M-7)

The only other losses which have effects on the net out-

put power and include the phase angle are temperature drops

in heat and cooler. However, they are insignificant comparing

with non-uniform temperature loss.

In the above equations:

K1 =TA- 4L' Tor)/Loo*))-t ) (M-8)

I T&V.-- t,1 2._V; T 05) (r - 2 2M-9)

28 z bpa Is
.0_ Vca- +L. (I*v'p)

T2 4-(8 4 3 8  8 8 (M-10)

' A/c .D~n'.a - -,re - (M-ll)

-9 73  9 A7?

Tr 2*2 A)"' ( r c ?",4 n 7c'b(M-12)

4TC T"C1. M (M-13)



K7  =

SIinc -+ CbS
Since

-4/vAod = V7 + Cps IA

and

T44{.9) = ~cAq

~T+ C

Then :

CaS X =

and 0

lV * cs (

V' VLT" CPCP (M-16)

$ is the phase angle difference between pressure wave

and expansion volume displacement and it is measured by peak

to peak of pressure I21].

1T p=t W C (M-17)

RP is the pressure ratio and with the proper correction fac-

tor, 1.04 obtained by trial and error from complete model,

is given:

RP='-A .1O

WpIV'PLA~tA

-o4 42.a+
y & .'

FI -iA9/(t

(M-18)

(M-19)

(M-20)

308

(M-14)

( M-15 )
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If we define M as:

"9I (M-21)

Then the total loss is:

TTq I Less -gw'-o rwIj 5±L -)+ SWt+)J-+kg(ces qq 4Cf)

(M-22)

(K~iK)A'+5AS asC S2)tksCS(U~)]+.O.4)1

- (K 7 KS+) + - as V4S asC 2(u-q)+ 1 Ssty (2(t,?)+ -kg( S(Y)-K 7Ce)

Since in most cases 2a+~180 and 2a-$~0, then we can write:

(hia IL)*w)'.a 07 (5s- l-+wft[.(< )4 ,74 *

-bT I(XiiKe) 8.+ (,As w O- 1 /s)

N ( t?~.) '44' (tVC?- K7 CPS) (M-23)

Therefore,

STQ (K, cv( t c S~ IAVcf)- (c.-scp Vj [KX3+ 4)1A', 1" 7J
- +' + ( s10- kt7Cs')=o

(M-24)

Since $ is close to 90, COS$~O, and M is not strongly depend

on $ then for simplicity we assume M is not a variable term.
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N ( V4 C6 z4 iN9.(COS'- SUIN 2K7 + K4 {SZV --|7m =o

Where kB ( 4) Al'+ 1 " 7.0

TV V -+2Wr4)Yo ;

lo -= 2- P%-,V2rT, COS I
Therefore,

15 g KL' Z-G S.3/ kg -K 4 SU- .. 17 q:. (M-2 5)

Since 1 f - Cf

=:Po 8K -I(6 7MGSf+ gV -K lejv VY bT ktV (rI,+M-26)

in order to make this equation analytically solvable, it is

assumed that SIN$~.93

+ COS- - +3 kM-27)

Example:

We want to calculate the optimum $ for the previous

case in Appendix(K), i.e. for TH=860 R, TC=530 R.

The specifications of the engine are given in Appendix (K).

A=.16 , Tr=.6163 , Vr=.87

~ A.

K2=.3770
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In order to calculate K3, k4, and k5, it is easier

to divide each of the correspondingpower losses by their

phase angle terms.

$=108 , a=41.5 , Wloss=6

K3 4.97

K 4= 11.4

k 5=146

For K6 and K7 we use the power loss

temperature.

Losus [-S Lp) C iro

due to the non-uniform

+ CT )+ SLNF 0 (Cx1p--COS4p)3

Since. $q =
p

C 5-- 15.z-37
1,637-121I

1<7 TANp *~532
~I*4 p*

A4 =i

k11D =v 4V-Vfr 2 V.,' Ce 1:

17 Uept

Y *3 = VASS

02
11-B e3+4M + 1.07 ksit "3 174KI = .re

1V %5W(2U-)+, 59039
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Then by substituting these in the equation:

- C*SS- W- KM-+K7) COS T / 4 -KjK - k+.* o

By iteration and trial and error of complete model

opt =110 then we can see how well the above equation predict

the optimum $.

b)- Optimum Speed Derivation

Since the trade-off, for determination of speed, is bet-

ween output power and different losses, then we have to con-

sider those losses which are speed dependent.

Power loss due to the pressure drop:

Heater:

(M-28)

Where - 0 7 .457'T . 2
-*6 057 D'A#o

qt 4

I. A t I t- A ~ q VI

(M-29)
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By the same procedure we get the following for cooler:

A, c - DeC T eA~:'v ~DC~ T'11  4- A, S's4Ar

(M-30)

Regenerator:

(M-31)

Where 5,7 (VPo Y 3(ActAty

CL ol

53.7 -1 4r"7 10 't 1.7 Z-0
Ss: Af O N L 107

(M-32)

Therefore, pressure drop power losses can be written as:

Heater:

ess I (M-33)

Cooler:

l,-os3 -34 LA
(M-34)

Regenerator:

LS3 9 1 Y7
(M-35)

For Power loss due to the temperature drops in heat and

cooler we have following equations from Chapter II:
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These equations can be approximated as:

LeSS = }|es is W (M-36)

LeeS = 4j*.C (M-37)

The other losses which affect the output power and are speed

dependent are:

1)- Power loss due to the non-uniform temperature, which

can be rewritten as (see equation (2-20)).

(M-38)

2)- Friction Loss:

SS k& 'k/91001 wU) (M-39)

Therefore, the net output can be written as

A4e+ tta = )cW- LK-. *K,)cj'. 4L.~ w &k'.7cAJS . od2 W2*"9)
(M-40)

In order to find the optimum w, the above equation

should be differentiated with respect to w.

KW 2.avt uJ.... 2.+? 49 -4 (jK7k.+ g).67 c4

(M-41)
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Following example shows how this equation can be used.

Example: The designed engine of Appendix(K) is used to deter-

mine its optimum speed.

AI 100 RPA

W Z , 606P =2.'1rli1

3=-= 13.75 5.474 rI

xt1o
J4Y

VI

2. -0.27

By substituting the above K's into the equation for optimum

speed by some trial and error we get:

W pt=ll20 RPM

For the same engine by using the complete model we get

W opt=1080 RPM
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APPENDIX (N)

Optimum Bore/Stroke Ratio:

Since equation (2-23) and (2-24) are easier to work

with, for non-uniform temperature loss, then they have been

used for this derivation. Equation (2-24) shows the power

loss in radial direction.

s=.o2 (Oe. (Ip )"A X.S Costff (3-24)

We can cerive a similar equation for axial direction as

follows.

C = , At 6T (N-1)

h the heat transfer coefficient is given by equation (2-21),

AT is given by (2-22).

A=Tr/4*B 2

Where B is the bore.

( P) p(N-2)
This equation can be integrated over a cycle to find the

average power loss in the axial direction. The results of

integration follows.

(N-3)

For a given volume of cylinder we can write followings.

I
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Y3 (N-4)

-2

(N-5)

Therefore, losses in both directions can be written as:

fs4
-. ~ -Ot i

(N-6)

0=.0727 /0 /1

(N-7)

If we wanted to consider only this loss for determination

of Bore/Stroke ratio then we get:

33

-4 /7 -53

Since the shuttle loss is very significant, then we have

to consider that too. Equation (2-16) gives this loss.

- .. (2-16)

5 -T Tc



±3s 0 (~q -TC a 7) it 4~I % tL TTs

--r~- i;ILs s

orLT6T4 loss)

o r

1-4,--'A/- k2 /3 ~ k3

(N-ll)

Where

it -P-1- i Ct S ( 5

)4= -Qf-9Ki

ExamTpl -TC) (06T) a

Example:

For the engine in Appendix(K) we want to calculate the

optimum bore/stroke ratio.

N=l000 RPM

P=500 Psia

p=.0 6 8 lbm/hr ft

38925 d, 8t 4 . ott
8345

Pl/Pm. 1

Kg=.l18 Btu/hr

Q =17

V=2. 845
.i3
in

1=.005 in
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-I 
-

* (N-9)

(N-10)

- -2K

I4::9 sOP. ' h-I
(N-12)

(N-13)

(N-14)

ft

3 Z

k;j -'-'113
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L=1.5 in (assumed)

From equation (4-73) through (4-75) the K's have been cal-

culated:

K =107.3

K 2=30

K 3=162.3

By these coefficients equation (4-72) gives the optimum bore,

stroke ratio to be 1.8.
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APPENDIX (P)

Regenerator Heat Transfer Area Derivation:

Consider the following figure.

TI,
TC

When the working fluid flows through the regenerator

with mass flow rate mR and temperature TH, it will releases

heat to the regenerator material and brings its temperature

from TC to a nominal regenerator temperature TR. Therefore,

by assuming no heat leakage, the amount of heat released

by the working fluid should be equal to the heat gained by

the regenerator material.

VA R v ceLT* TCJ,$4 Co.LTo,.TC)(P)
(P-1)

Where tp is the average passing time for the working fluid

through the regenerator, and M is the regenerator filling

material mass with specific heat CR.

Mass of the regenerator material can be written in

terms of the density and its volume.

AA 'ZO 0t-7-) ONa = "0 I~)I Def ale
"T (P-2)

tp is usually one third of the half period, therefore,

P U 30 (P-3)

mR is given by equation (3-17) and for simplicity we assume

. . 0

I *

'4T



321

Fcr=1*

Therefore, from the above equations we get:

____SY f C~ LT,-TC~ 2, k r-
3 C&SdL (P-4)

or

2K* 6 2 PMrrc Cp %_____ T
=- Rol 0 "-0-7-) CS -R-Tc (P-5)

Where p and CR are density and specific heat of the regenera-

tor material.
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APPENDIX (Q)

Computer Program of Optimum Model

ODIMENSION XDMC(720) ,XDMW(720) ,IND(2, 2) ,PR(720) ,XMCX(720),XMWX(720)
I ITEC (720) , TEW (720), XMT (720)

DIMENSION AX(10),AXINT(10), ADMRE(10),AXI2(10)
1,AXI3 (10)

ODIMENSION W(720),C(720),WI(720),CI(720),DW(720),DC(720),DWI(720),
1 DCI(720),DPR(720)
DIMENSION SIFI(720),COFI(720),SALF(720),CALF(720)

DIMENSION XC(6),XINTC(6),DMREC(6),XI3C(6),XI2C(6)
DIMENSION TTW(20)
REAL MIUCMIUW,LCLRLWMN,LVNCNW

C NDIV = MULTIPLE OF 4
READ (91, 5)TH,DELV

5 FORMAT(F6.1,F5.2)
FACTC=1.
FACTH=1.
SAR=DELV
TW=TH
READ(92, 901)ZZCZZWXNHTSHRNFINDIVNWRNDSTC

901 FORMAT(2F4.1,F7.4,F6.4,I3, 3I3, F6.1)
READ(93, 902)VAC,VAH, DRR, RC,DH, LR, LC, LH,NC,NH, DO,VWD, VCDVDEER

902 FORMAT(2F6.3,3F5.3, 3F5.2, 2F5.1,F7.5, 3F7.3)
AFI=(360. -NFI) *3.1415/180
READ (94, 903 )N, PMQIN, SWl

903 FORMAT (2F6.1, F10. 2, F3.1)
READ (95,904)R, SIGM, CYL ,SW3

904 FORMAT (F6.2, F5. 3, F6. 2, 2F3.1)
RW=DH
NW=NH
VAW=VAH
GL=.005
IF(M.EQ.4. )PRW=.711
IF(M.EQ.4. )PRC=.711
SH=SHR
OMG=N*3.1415/30
AC=5.8584* (VAC**.66667)
WOUT=Q IN* (1-T C/TW-.- 20)
IF(WOUT.LT.100.) WOUT=100.

IF (SW3. EQ.1. ) WOUT=QIN
BS=1.
IF(M. EQ. 2. )PRC=6. 54139*TC/100000+. 6881
IF(M.EQ.2. )PRW=6.54139*TW/100000+.6881
NCC=1
VCDO=VCD
VWDO=VWD
IF(SIG.EQ.1)GOTO 1751
VAC=WOUT*6*10.516/(OMG*PM*(1-TC/TW)*SIN(AFI))

1751 NUM=1
WH=WOUT/ (1-TC/TW) *1. 5
AWC=WOUT*TC/TW/ (1-TC/TW) *1.5
AVM=VAC
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20000 MM=1
SHW=SHW+1.
NAH=1
PUSH=l.
OMG=3.1415*N/30
TR=(TW-TC)/ALOG(TW/TC)
IF(M.EQ.2.)GOTO 1635
MIUC=(196.14+.464*(TC/1.8-293)-.093*PM*.00689)/1000000*241.9076
MIUW=(196.14+.464*(TW/1.8-293)-.093*PM*.00689)/1000000*241.9076
GOTO 1636

1635 MIUC=(88.73+.2*(TC/1.8-293)+.118*PM*.00689)/1000000*241.9076
MIUW=(88.73+.2*(TW/1.8-293)+.118*PM*.00689)/1O00000*241.9076

1636 NMM=1
AKC=(1. 7704*TC+521) /17300
AKH= (1. 7704*TW+521) /17300
IF(M.EQ.2. )AKC=(.0194444*TC+8. )/173
IF(M.EQ.2.)AKH=(.0194444*TW+8.)/173

1740 NW=WH*3.563/(AKH*LW*(TW-TR) )*1.1*ZAP
NC=AWC*3.563/(AKC*LC*(TR-TC) )*1.1*ZAP
IF(NW.LT.10) NW=10.
IF(NC.LT.10) NC=10.

30000 NC=NC*FACTC
NW=NW*FACT H

C OPTIMUM COOLER
1728 BC=((R*TC)**.5)*RC*RC/(OMG*VAC)*34.047

GC=PM* (RC**3) *83462.4/ (OMG*VAC*MIUC)
A=1.535*(NC**.8)
DLC=TW/TC
IF(SIG.EQ.1. )VCD=VCDO+.5*(VDEER+3.1415*DRR*DRR*LR/4)
IF(MM.GE.2)GOTO 1700
ZC=VCD/ (2*VAC)
GOTO 1702

1700 ZC=VCD/ (VAC+VAW)
1702 LC=RC*(DLC*A*(GC**.2)*(BC**.6)+192-59.2*DLC+.0275*GC

1-688.3*BC-19.2*ZC)
AFRC=NC*3.1415*RC*RC/4

C
C OPTIMUM HEATER
C

BH=( (R*TW)**.5) *RW*RW/(OMG*VAC)*34.047
GH=PM* (RW**3) *83462.4/ (OMG*VAC*MIUW)
DLH=TW/TC
B=1.535*(NW**.8)
IF(SIG. EQ.1. )VWD=VWDO+.5* (VDEER+3. 1415*DRR*DRR*LR/4)
IF(MM.GE.2)GOTO 1703
ZH=VWD/(2*VAC)
GOTO 1704

1703 ZH=VWD/ (VAC+VAW)
1704 LW=RW*(DLH*B*(GH**.2)*(BH**.6)+244- 75.7*DLH+GH/100-356*BH-

116*ZH)
AFRW=NW*3 .1415*RW*RW/4
NMM=NMM+1
IF(NMM.LE.3)GOTO 1740
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OPTIMUM REGENERATOR

IF(SIG.EQ.1.)GOTO 1749
VEF=AFRW*LW+AFRC*LC+VDEER+VWD+VCD+3.1415/4*DRR*DRR*LR

FOR METAL C=.11 BTU/LB/R , RHO=488 LB/FT3
CAL=(VAW/VAC+COS(AFI) )/SQRT (1+(VAW/VAC)**2+2*VAW/VAC*COS(AFI))
DRR=(288/3*PM*VAC/(488*TR)*SHR/(SHR-1)*SIN(AFI)/(1-SIG)/.11
1*(TW-TC)/(TR-TC)/(CAL*778*LR))**.5

AL=ATAN( (VAW/VAC+COS(AFI) )/SIN(AFI))
A=47.6*SIN(AFI)/(CAL)/(SIN(AFI)+1/6*
1SIN(2*AL-AFI)+. 5*SIN(2*AL+AFI))
DEL=TH/TC
DR=SIG*D0/( 1-SIG)
Z=.11*778*(SHR -1)/(R*SHR)*OMG*DR*DR*488/

1( (MIUC+MIuW)/2)*3600/144

GA=(DR**3)*PM*83462.L4/(MG*VAC*(MIUC+MIUW))

BET=((R*TR)**.5)*DR*DR*((1-SIG)**2)*68.o94
1/(SIG*0MG*VAC)
IF(EFF.EQ.0 0 ) EFF=0.9-1/DEL

AREG=(.285*A*((ALOG(DEL))**1.66)
1GA/(BET*BET*(Z**. 66)) )**2. 66

ZET=(VDR+VDEER )/(VAW+VAC)
FZ=80*ZET-20.
ARN=AREG+FZ

LR=ARN*DO*SIG/(1-SIG)

*EFF*GA*

VDDR=SIG*(3.1415*DRR*DRR*LR/4)
AFRR=VDDR/LR

OPTIMUM CYLINDERS

BCY=PM*OMG*VAC*VAC/(R*TC*MIUC*AC*AC)*3600*.047548
DLCY-TW/TC
ZCY=(AFRC*LC+VCD+TC/TW*(AFRW*LW+VWD)+VDDR*TC/TR)/VAC
FZCY=.357*ZCY-.78
FDL=.548*DLCY-.54
FBY=.525-8.8*BCY/100000
AAA=.11*(ZCY+1)*DLCY/(1+3400*(DLCY-1)/BCY-.02*(DLCY-1)*( (BCY

1/DLCY)**.5))
VAW=VAC* (AAA**. 5+FZCY+FBY+FDL)
WRITE(6,1743 )VAW,BCY, DLCY, ZCY
IF(SIG.EQ.1)GOTO 1730
IF(NCC.NE.1)GOTO 1730
DELA=(TC/TW)**2+2*TC*VAC/(TW*VAW)*COS(AFI)+(VAC/VAW)**2
DELB=TC/TW+VAC/VAW+2*TC/VAW*((AFRW*LW+VWD)/TW+(VDDR+VDEER)/TR

1+(AFRC*LC+VCD) /TC)

C

1749

C

C
C
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DEL=(DELA**. 5)/DELB
TET=ATAN(VAC*SIN(AFI) / (VAW* (TC/TW+VAC/VAW*COS(AFI))))
VAC=WOUT*(1+(1-DEL*DEL)**.5)*1.409*3/(OMG*PM*DEL*SIN(TET)*
1(1-TC/TW) ) /1. 5*AZ
IF(VAC.LT.O.9) VAC=0.9
NCC=NCC+1
GOTO 30000

1730 VAW=VAW
IF(ABS(VAW/AVM-1) .LT.0.05)GOTO 1725
AVM=VAW
MM=MM+1
GOTO 1728

1743 FORMAT(///////////,1OX, 'REAL VAW=', F1O.5, //, 5X, 'BCY=',F1O.5
1,//,5X,'DLCY=',F10.5,//,5X,'ZCY=',F10.5)

1725 WRITE(6,u1726)VAC,VAWLW, LR,LC,NWNC, DRR
1726 FORMAT(1H1,///,15X, 'OPTIMUM DESIGN RESULTS' ,///,5X, 'VAC=' ,

1F10. 5, / /, X, 'VAW=', F10. 5, //, 5X, 'LH=' , F10. 5,//,5X, ' LR=' , F10. 5
1,//,5X,'LC=',F10.5,//,5X,'NW=',F10.5,//,5X,'NC=',F10.5, //,
15X, 'DRR=',FlO.5)
IF(SIG.EQ.1)GOTO 5000
IF(SIG. EQ. 1)GOTO 5000
IF(CYL.EQ.1. )GOTO 4000
DR=SIG*DO/ (1-SIG)
GOTO 5000

4000 DR=2*SIG*D0/(3*(1-SIG))
5000 VDC= (LC*AFRC*TW) / (VAW*TC)

VDEC=VCD*TW/ (VAW*TC)
VDEW=VWD/VAW
VDW=AFRW*LW/VAW
VDER=VDEER*2*TW/ (VAW* (TW+TC))
VDR=VDDR*2*TW/ (VAW* (TW+TC))
RVT=VAC*TW/(VAW*TC)
VD=VDC+VDEC+VDER+VDR+VDW+VDEW
NNN=NDIV
XND=NDIV

NDIV1 = NDIV + 1
DALF = 6.2831853/XND
NT = NDIV/4+2
NE = NT - 1
ALF = 4.7123889
NF = NDIV/4
CALL VOLC(DALFNFC,CIDCDCI,ZZCNDIV, SIFI, COFI, SALF, CALF)

100 FI = DALF*NFI
SFI = SIN(FI)
CFI = COS(FI)
IND(1,1) = 1

OCALL VOLW(W, WIDWDWI, CFISFI, ZZWNDIV, SIFICOFISALF, CALF,
DALF)

IND(1,2) =3
IND(2,1) =4
IND(2,2) =2
NN = 1
XMC = 0.
p = 1.
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XMW = 1.-CFI
XMWS = 0.
PS = 1.
NO = 4
WW = 0.
WC = 0.
NITE = 1
NST = 1
NFIN = NFI
NLOP = 0

404 DO 102 I=NST,NFIN
VW = W(I)
vc = C(I)
VWI = WI(I)
VCI = CI(I)
DVW = DW(I)
DVC = DC(I)
DVWI = DWI(I)
DVCI = DCI(I)
GO TO (201,202,203,204),NO

601 NLOP = NLOP+1
IF(NLOP-6) 201,201,605

201 DP = -SHR*P*(RVT*DVCI+DVWI)/(RVT*VCI+VWI+SHR*VD)*DALF
S = P+DP/2.
DP = -SHR*S* (RVT*DVC+DVW) / (RVT*VC+VW+SHR*VD) *DALF
DMW = S*DVW*DALF+VW*DP/SHR
DMC = -(DMW+VD*DP)/RVT
IF(DMW)302, 301, 301

301 K = 1
GO TO 303

302 K = 2
303 IF(DMC) 304,305,305
305 L = 1

GO TO 306
304 L = 2
306 NO = IND(KL)

GO TO (400,602,603,604),NO
602 NLOP = NLOP+1

IF(NLOP-6) 202,202,605
202 IF(XMC) 803,801,801
803 XMC = 0.0
801 IF(XMW) 805, 802, 802
805 XMW = 0.0
8020DP -SHR* (XMC*RVT*DVCI/VCI+XMW*DVWI/VWI) /

1 (XMC*RVT/P+XMW/P+SHR*VD)*DALF
DMC = XMC*(DVCI*DALF/VCI+DP/SHR/P)
DMW = -RVT*DMC-VD*DP
S = P+DP/2.
SMC = XMC+DMC/2.
SMW = XMW+DMW/2.
ODP = -SHR*(SMC*RVT*DVC/VC+SMW*DVW/VW)/
1 (SMC*RVT/S+SMW/S+SHR*VD)*DALF
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DMC = SMC*(DVC*DALF/VC+DP/SHR/S)
DMW = -RVT*DMC-VD*DP
IF (DMW)3 12, 312, 307

312 K = 2
GO TO 308

307 K = 1
308 IF(DMC) 309,309,310
309 L = 2

GO TO 311
310 L = 1
311 NO = IND(KL)

GO TO (601,400,603,604),NO
603 NLOP = NLOP+1

IF(NLOP-6) 203,203,605
203 IF(XMC) 704,703,703
704 XMC = 0.
7030DP = -SHR*(P*DVWI+XMC*RVT*DVCI/VCI)/(VWI+XMC*RVT

1 /P+SHR*VD)*DALF
DMC = XMC*(DVCI*DALF/VCI+DP/SHR/P)
DMW = -RVT*DMC-VD*DP
S = P+DP/2.
SMC = XMC+DMC/2.
SMW = XMW+DMW/2.

ODP = -SHR* (S*DVW+SMC*RVT*DVC/VC) / (VW+SMC*RVT
1 /S+SHR*VD) *DALF
DMC = SMC*(DVC*DALF/VC+DP/SHR/S)
DMW = -RVT*DMC-VD*DP
IF(DMW) 313,314,314

314 K = 1
GO TO 315

313 K = 2
315 IF (DMC) 316,316,317
316 L = 2

GO TO 318
317 L = 1
318 NO = IND(K,L)

GO TO (601,602,400,604),NO
604 NLOP = NLOP+1

IF(NLOP-6) 204,204,605
204 IF(XMW) 705,702,702
705 XMW = 0.
7020DP = -SHR*(P*RVT*DVCI+XMW*DVWI/VWI)/(RVT*VCI

1 +XMW/P+SHR*VD) *DALF
DMW = XMW*(DVWI*DALF/VWI+DP/SHR/P)
DMC = -(DMW+VD*DP)/RVT
S = P+DP/2.
SMC = XMC+DMC/2.
SMW = XMW+DMW/2.

ODP = -SHR*(S*RVT*DVC+SMW*DVW/VW)/(RVT*VC
1 +SMW/S+SHR*VD) *DALF

DMW = SMW* (DVW*DALF/VW+DP/SHR/S)
DMC= -(DMW+VD*DP)/RVT
IF(DMW) 319, 319, 320

319 K = 2
GO TO 321

320 K = 1
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321 IF(DMC) 322,323,323
323 L = 1

GO TO 324
322 L = 2
324 NO = IND(K,L)

GO TO(601,602,603,400),NO
605 WRITE(6,17) NITEI,NO

WRITE(6,45) INODPDMC,DMWP,XMCXMW
400 P = P+DP

XMC = XMC+DMC
XMW = XMW+DMW
PW = P-DP/2.
WC = WC+PW*DVC*DALF
WW = WW+PW*DVW*DALF
PR(I) = P
DPR(I) = DP
XMCX(I) = XMC
XMWX(I) = XMW
XDMC(I) = DMC
XDMW(I) = DMW
NLOP = 0

102 CONTINUE
GO TO (401, 402) ,NN

401 NST = NFI+1
NFIN = NDIV
XMW = 0.
NN= 2
NO= 3
GO TO 404

402 TEST = SQRT( (XMWS-XMW)**2)
TESTl = SQRT((PS-P)**2)
IF(NITE-15) 471, 471, 406

471 IF(TEST-.0O1)473,473,405
473 IF(TEST1-.005) 406,406,405
405 NN = 1

XMC 0.
PS = P
XMWS = XMW
WW = 0.
WC = 0.
NST 1
NFIN = NFI
NITE = NITE+1
NO = 4
GO TO 404

406 PMAX = XLARGE(PR,NDIV)
PMIN SMALL(PRNDIV)
WC = WC/PMAX
WW = WW/PMAX
RP = PMAX/PMIN
FI = FI*180./3.141593
WRITE(6,11) SHRRVT,FIVDNDIV
WRITE (6,12) WC, WW, RP
WRITE(6, 13) NITE
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CMMAX = XLARGE(XMCX,NDIV)
WMMAX = XLARGE(XMWX,NDIV)
CMMAX = CMMAX/PMAX
WMMAX = WMMAX/PMAX
WRITE(6,19) WMMAXCMMAX
ARG = 2.*RP/(RP-1.)*WC/3.1416
IF(1.-ARG**2) 1607,1608,1608

1608 FIPV=ASIN(ARG)
WRITE(6,18) FIPV
XNDS = NDS
X = 0.
DX = 1./XNDS
WRITE(6,21)
NIN = NDS + 1
COR = PMAX**(XNHT-2.)*DALF**(XNHT-1.)
DO 854 I=lNIN
CALL PDINT(X, XDMWXDMC, RVT, DCNDIV, DMREPR,XINTDPRXI1, XI2, XNHT)
XINT = XINT/DALF/PMAX

AXINT(I)=XINT
DMRE = DMRE/PMAX/6.2832

ADMRE(I)=DMRE
XIl = XI1*COR/(1.5708*DMRE)**(1.-XNHT)
X12 = XI2*COR/(1.5708*DMRE)**(2.-XNHT)

AXI2(I)=XI2
X13 = XI1/XI2

AXI3(I)=XI3
AX(I)=X

WRITE(6,22) XXINT,DMRE,XI1,XI2,XI3
X = X+DX

854 CONTINUE
1607 IF(NWR) 1509,606,1509
1509 DO 509 I=1,NDIV

PR(I) = PR(I)/PMAX
XMCX(I) = XMCX(I)/PMAX

509 XMWX(I) = XMWX(I)/PMAX
WI(NDIV1) = WI(1)
CI(NDIV1) = CI(I)
DO 1001 I=1,NDIV
IF(XMCX(I)) 1003,1003,1002

1002 TEC(I) = PR(I)*CI(I+1)/XMCX(I)
GO TO 1006

1003 TEC(I) = 0.
1006 IF(XMWX(I)) 1004,1004,1005
1005 TEW(I) = PR(I)*WI(I+1)/XMWX(I)

GO TO 1001
1004 TEW(I) = 0.
1001 CONTINUE

TEW(NDIV1) = TEW(1)
TEC(NDIV1) = TEC(1)
PR(NDIV1) = PR(1)
XMCX(NDIV1) = XMCX(1)
XMWX(NDIV1) = XMWX(1)
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TWDM = 0.
TCDM = 0.
DO 573 I=1,NDIV
DMW = XMWX(I+1)-XMWX(I)
IF(DMW) 574,575,575

574 TMPW = (TEW(I)+TEW(I+1))/2.
TWDM = TWDM+( TMPW-1. ) *DMW

575 DMC = XMCX(I+1)-XMCX(I)
IF(DMC) 576,573,573

576 TMPC = (TEC(I)+TEC(I+1))/2.
TCDM = TCDM+(TMPC-1.)*DMC

573 CONTINUE
TWDM = TWDM*SHR/(SHR-1.)
TCDM = TCDM*SHR/(SHR-1.)
DO 1021 I=1,NDIV

1021 XMT(I) = XMCX(I)*RVT+XMWX(I)+PR(I)*VD
WRITE (6, 51) TWDM , TCDM
WRITE(6,14) PR(NDIV),(PR(I),I=1,NDIV)
WRITE(6, 15) XMCX(NDIV), (XMCX(I) ,I=1,NDIV)
WRITE(6,16) XMWX(NDIV), (XMWX(I) ,I=1,NDIV)
WRITE(6, 1010) TEC(NDIV),(TEC(I),I=1,NDIV)
WRITE(6,1011) TEW(NDIV), (TEW(I),I=1,NDIV)
WRITE(6,1022) (XMT(I),I=1,NDIV)

606 NDIV=O
IF(NDIV) 511, 511, 100

511 GO TO 10000
110FORMAT (22HlSPECIFIC HEAT RATIO =F8.3,10X,18H (VC/VW)*(TW/TC) =F8.
13//17X,5H FI =F8.3,22X,5H VD =F8.3//11X,11H DIVISION =I8//)

120FORMAT (10X,12H COLD WORK =F8.3//10X,12H WARM WORK =F8.3//5X,
117H PRESSURE RATIO =F8.3///)

13 FORMAT (10X,10,11H ITERATIONS )
14 FORMAT (24H1ARRAYS START AT MC = 0. ///12H PRESSURE /(10F10.4))
15 FORMAT (12HlCOLD MASS /(1OF10.4))
16 FORMAT (12HlWARM MASS /(10F10.4))
17 FORMAT (SHOLOOP 3110)
18 FORMAT (20H P-V ANGLE IN RAD = F10.4//)
19 FORMAT(16H MAX WARM MASS = F10.4, 16H MAX COLD MASS = F10.4//)
21 FORMAT (/// 23H PRESSURE DROP INTEGRAL)
220FORMAT (6H X/L = F6.2,11H INTEGRAL = E12.4,7H DMRE = E12.4,

1 6H XII = E12.4, 6H X12 = E12.4,6H X13 = E12.4/)
45 FORMAT (2110,10X,6E10.3)
510FORMAT (16H INTEGRAL (H*DM) /9H WARM END F10.4,10X,9H COLD END

1 F10.4,1H1)
1010 FORMAT(12HlCOLD TEMP /(10F10.4))
1011 FORMAT(12H1WARM TEMP /(10F10.4))
1022 FORMAT (liHlTOTAL MASS/(10F10.4))
10000 HR=SHR

IF(SHR.LT.1.4.AND.M.EQ.2. )HR=1.4
IF(SHR.LT.1.4.AND.M.EQ.4.)HR=1.66
NDIV=NNN
PMIN=2*PM/ (1+RP)
PMAX=RP*PMIN
IF(SIG.EQ.1)DR=DRR
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WDW=N *PMAX*VAW*WW/7 20.
WDC=N*PMAX*VAC*WC/720.
WNET=WDW+WDC
OMG=N*3 .1415/30
OMGN=OMG*((2.54648*VAW)**.333)/((HR*16.1*R*(TW+TC) )**.5)
WDWN=WDW/( (PMAX-PMIN) *VAW*OMG) *6.
WDCN=WDC/ ( (PMAX-PMIN) *VAW*OMG) *6.
IF(M.EQ. 2. )GOTO 7001
IF(M.EQ.4. )GOTO 7002
MIUC=(181.94+.536*(TC/1.8-293)+1.22*(PM*.00689) )/1000000*241.91
MIUW=(181.94+.536*(TW/1.8-293)+1.22*(PM*.00689))/1000000*241.91
GOTO 8000

7001 MIUC=(88.73+.2*(TC/1.8-293)+.118*PM*.00689)/1000000*241.907568
MIUW=(88.73+.2*(TW/1.8-293)+.118*PM*.00689)/1000000*241.907568
GOTO 8000

7002 MIUC=(196. 14+.464*(TC/1.8-293)-.093*PM*.00689)/1000000*241.9076
MIUW=(196.14+.464*(TW/1.8-293)-.093*PM*.00689)/1000000*241.9076

8000 XC (1)=VDEC/VD
XC(2)=(VDEC+VDC)/VD
XC (3 )=(VDEC+VDC+. 5*VDER) /VD
XC(4)=1-(VDEW+VDW+. 5*VDER) /VD
XC (5)=1-(VDEW+VDW) /VD
XC (6) =1-VDEW/VD
DO 7100 I=1,6
DO 7200 J=1,NIN
K=NIN
IF(XC(I)-AX(J)) 7044, 7022, 7200

7022 XC(I)=AX(J)
XINTC(I )=AXINT(J)
DMREC(I)=ADMRE(J)
XI2C(I)=AXI2(J)
XI3C(I)=AXI3 (J)
GO TO 7100

7044 XINTC(I)=(AXINT(J)-AXINT(J-1))*(XC(I)-AX(J-1))
1/(AX(J)-AX(J-1) )+AXINT(J-1)

DMREC(I)=ADMRE(J-1) -(ADMRE (J-1)-ADMRE (J) )*(XC (I )-
1AX(J-1) )/(AX(J)-AX(J-1))
XI2C(I)=(AXI2(J)-XI2(J-1) )*(XC(I)-AX(J-1))
1/(AX(J)-AX(J-1) )+AXI2(J-1)
X13C(I )=(AXI3(J)-AXI3(j-l) )*(XC(I )-AX(J-1)
1)/(AX(J)-AX(J-1))+AX13(J-1)
GO TO 7100

7200 CONTINUE
7100 CONTINUE

XINTCC=(AXINT(1)+XINTC(1) )/2
DMRECC=(ADMRE(1)+DMREC(1) )/2
XI2CC=(AXI2(1)+XI2C(1) )/2
XI3CC=(AXI3(1)+XI3C(1) )/2
XINTCL=(XINTC(1)+XINTC(2)) /2
DMRECL=(DMREC(1)+DMREC(2) )/2
XI2CL=(XI2C (1)+XI2C (2) ) /2
XI3CL= (XI3C(1)+XI3C(2) ) /2
XINTCR=(XINTC(2)+XINTC(3) ) /2
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DMRECR=(DMREC(2)+DMREC(3) )/2
XI2CR=(XI2C (2)+XI2C (3) ) /2
XI3CR=(XI3C(2)+XI3C(3) ) /2
XINTMR=(XINTC(3 )+XINTC(4) ) /2
DMREMR=(DMREC(3)+DMREC(4))/2
XI2MR=(XI2C (3 )+XI2C (4) )/2
XI3MR= (XI3C (3)+XI3C (4) ) /2
XINTWR=(XINTC(4)+XINTC(5) ) /2
DMREWR=(DMREC(4)+DMREC(5) )/2
XI2WR=(XI2C (4)+XI2C (5) ) /2
XI3WR=(XI3C(4)+XI3C(5) )/2
XINTHT (XINTC(5)+XINTC(6) ) /2
DMREHT=(DMREC(5 )+DMREC (6)) /2
XI2HT=(XI2C (5)+XI2C (6) )/2
XI3HT=(XI3C (5)+XI3C (6) )/2
XINTHC=(XINTC(6 )+AXINT (K) ) /2
DMREHC=(DMREC(6)+ADMRE (K) ) /2
XI2HC=(XI2C (6)+AXI2(K) ) /2
XI3HC=(XI3C(6)+AXI3 (K) )/2

C PRESSURE DROP LOSSES
C COOLER

AL=LC+VCD/AFRC/2
REAVC=DMRECL*PMAX*VAC*OMG*RC*3 600/ (R*TC*AFRC*
iMIUC)

IF(REAVC.LE.2000) GO TO 708
AP1=-1.34-0.2*ALOG1O(REAVC)
FC=1O.**(AP1)
GO TO 710

708 FC=16/REAVC
710 QCP=(OMG**3) *PMAX* (VAC**3) *(AL/RC) *XINTCL*FC

1/(TC*AFRC*AFRC*R*699212.9672*.73756)
C HEATER

BL=LW+VWD/ (2*AFRW)
REAVW=DMREHT*PMAX*VAC*OMG*RW*3600/ (R*TC*AFRW*

1MIUW)
IF(REAVW.LE.2000) GO TO 711
AP2=-1.34-.2*ALOG1O(REAVW)
FW=10. ** (AP2)
GO TO 713

711 FW=16/REAVW
713 QWP=(OMG**3) *PMAX* (VAC**3) *(BL/RW) *XINTHT*FW

1/(TC*AFRW*AFRW*R*699212.9672*.73756)*TW/TC
C REGENERATOR COLD END

RECR=DMRECR*PMAX*VAC*OMG*DR*3600/(R*TC*AFRR*
iMIUC)
LV=LR+VDEER*2/(3.1415*DRR*DRR)
IF(RECR.LE.60. )GOTO 714
IF(RECR.GT.60.AND.RECR.LE.1000)GOTO 715
AR3=.015-.125*ALOG1O(RECR)
FCR=10.**(AR3)
GO TO 716

714 AR1=1. 73-.93*ALOG1O(RECR)
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FCR=10.**(ARl)
GO TO 716

715 AR2=. 714-.365*ALOG10(RECR)
FCR=10. **(AR2)

716 QCRP=(OMG**3) *PMAX* (VAC**3 ) *(LV/DR)*XINTCR*FCR
1/(TC*AFRR*AFRR*R*699212.9672*.73756)

C REGENERATOR HOT END
REWR=RECR* (MIUC/MIUW) * (DMREWR/ DMRECR)
IF(REWR.LE.60. )GOTO 717
IF(REWR.GT.60.AND.REWR.LE.1000)GOTO 718
AR4=. 015-.125*ALOG10(REWR)
FWR=10.**(AR4)
GO TO 719

717 AR5=1.73-.93*ALOG10(REWR)
FWR=10.**(AR5)
GO TO 719

718 AR6=.714-.365*ALOG10(REWR)
FWR=1 0.* * (AR6)

719 QWRP=QCRP*(XINTWR/XINTCR)*(FWR/FCR)*(TW/TC)
C MIDDLE OF REGENERATOR

REAM=RECR*(MIUC/(MIUW+MIUC)*2)*(DMREMR/DMRECR)
IF(REAM.LE.60.)GOTO 720
IF(REAM.GT.60.AND.REAM.LE.1000)GOTO 721
AR7=.015-.125*ALOG1O(REAM)
FMR=l0. ** (AR7)
GO TO 722

720 AR8=1. 73 -. 93*ALOG10(REAM)
FMR=10.**(AR8)
GO TO 722

721 AR9=.714-.365*ALOG10(REAM)
FMR=10. **(AR9)

722 QMRP=QCRP*(XINTMR/XINTCR)*(FMR/FCR)*(TW+TC)
1/(2*TC)
WRITE(6, 10006)REAVC, REAVW, RECR,REWR, REAM, FC, FWFCRFWR,FMR

10006 FORMAT(//,5X,5F13.5,5F7.3)
C TOTAL ENERGY DROP IN REGENERATOR

ORP=(QCRP+QWRP+4*Q4RP) /6
C HEAT TRANSFER LOSSES
C COOLER

VDR=VDDR+VDEER
ANUC=.023*(REAVC**.8)*(PRC**.4)
ANTUC=4*LC*ANUC/(RC*REAVC*PRC)
AMAC=1.5708*DMRECL
AC=EXP(2*ANTUC) -1
COOLOSS=WDC*WC*(HR-1) /( HR*AC*2*AMAC* .73756)

C HEATER
ANUW=.023*(REAVW**.8)*(PRW**.4)
ANTUW=4*LW*ANUW/ (RW*REAVW*PRW)
AMAW=1. 5708*DMREHT
AW=EXP(2*ANTUW)-l.
HEATLOSS=WDW*WW* (HR-1) /(HR*AW*2*AMAW*.73756)

C REGENERATOR
C COLD END

IF(SIG.EQ. 1. )GOTO 24000
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REC=l. 5708*RECR
STC=1. 1*SIG/ (REC** .405) / (PRC** .667)
ANTUCR=4*LR/DR*STC

C HOT END
REH-l. 5708*REWR
STW=1.l*SIG/((REH**.405)*(PRW**.667))
ANTUWR=4*LR/DR*STW
AMR=(DMRECR+DMREMR/2)/ (DREWR+DMREMR/2)
ANPH=.63662*VDR*(HR-1) /(VAC*HR* (DMRECR+DMREMR

1/2) * (TW/TC-1) )
ALANDR=(1+ANPH* (XI3CR+XI3WR*AMR) /2) / (ANTUCR/

1XI2CR+ANTUWR*AMR/XI2WR)
IF (S IG-l)2 50000 24000 25000

24000 ALANDR=l.
25000 RHEATLOSS=ALANDR*HR/(HR-1) * (TW-TC) /TC*PMAX*VAC

1*OMG*DMRECR/ (24*M*.73756)
DLPC=8*FC*LC* ( (PMAX*VAC*N*DMRECL/ (RC*RC*NC ) )**2) / (28980*RC*PM

1*R*TC)
DLPH=8*FW*LW*((PMAX*VAC*N*DMREHT/(RW*RW*NW))**2)/(28980*RW*PM*

1R*TC) *TW/TC
DLPR=8*FMR*LR*((PMAX*VAC*N*DMREMR/ (SIG*DRR*DRR) ) **2 ) /(28980*DR*

lPM*R*TC) *TR/TC
WRITE(6, 26000)ALANDRDLPC iDLPHDLPR

26000 FORMAT(///, lOX, 'LANDA=', FlO.6,///
1,5X, 'PRESSURE DROP IN COOLER EPSI]=' ,F8.3,//,5X, 'PRESSURE DROP
1 IN HEATER EPSI]=',F8.3,//,5X, 'PRESSURE DROP IN REG. [PSI]=,
1F8.2)

C SHUTTLE HEAT TRANSFER
C ASSUMING CONSTANT:DENSITY=488 LB/FT3 , C=.1l BTU/LB.R
C FOR AKGAKM THE UNITS ARE WATT/CM.K

AKG=(1.7704*TR+521) /1000000
IF(M.EQ.2. )AKG=( .0194444*TR+8)/l0000
AKM=.01111*( (TR/1.8)** .45425)
ALP=AKM/ .928664

1624 BS=BS
B=(8*VAW*BS/3. 1415)**. 3333
S=(8*VAW/(3 .1415*BS*BS) ) ** .3333
AL1=AKM/AKG* ( (OMG*GL*GL/ (2*ALP) ) **. 5) *5
BET1=(2*AL1*ALl-AL1)/(2*AL1*AL1-1.)
SHUTLOSS=AKG*S*(TW-TC)*B/(2*GL)*BET1*.554142

C REGENERATOR AXIAL CONDUCTION
AMM=(1+AKM/AKG) / (1-AKM/AKG)
VDR=VDDR
AKMG=AKG* (AMM+S IG-1. )/(AMM+1. -S IG)
AXILOSS=AKMG*DRR*DRR*(TW-TC)/LR*1.108284075

C DRY FRICTION LOSS
FRLOSS=N*( .002*N+1)*(VAW+VAC) /265.5*SW1

C SPRING GAS LOSSES
AE=(8.*VAW*VAW*3.1415/BS)**.3333
PA=(PM**.5)*(RP-1)/(2*(RP**.5))
AKL=(1.7704*TC+521) /1000000



C
C
C
C
C
C

C

1610

1611

1612

* 1626
1625

IF(M.EQ.2. )AKL=(.0194444*TC+8)/10000
AC=(8. *VAC*VAC*3.1415/BS) ** .3333
ALANDA=VAW/VAC
VETA=(AFRC*LC+VCD+TC/TW* (AFRW*LW+VWD )+VDDR*TC/TR) /VAC
AKW=(1.7704*TW+521) /1000000
IF(M.EQ. 2. )AKW=( .0194444*TW+8) /10000
FE=3.84*PM*N*( (2*VAW)**.6667)/(100000*TW*MIUW)+2.22
FC=2.1*PM*N*( (2*VAC)**.6667)/(100000*TC*MIUC)+2.95
SGL=.35381*((OMG*(((SHR-1)/SHR)**3))**.5)*PA/(1+ALANDA
1*TC/TW+VETA)*(TC/TW*((AKW*TW)**.5)*FE*AE+( (AKL*TC)**.5)
1*FC*AC)*((COS(FIPV)-SIN(FIPV))*(ALANDA+COS(AFI))-(SIN(AFI))
1* (SIN(FIPV)+COS(FIPV)))
TIC=PM*((VAW/3.1415)**.3333)/5000
ARI=B/2
ARO=TIC+ARI
AB=12/ (1089.54*S*AKG)+ALOG(ARO/ARI) *12/(3.1415*S*10)+
1144/ (21.99*S*ARO) *2
QLEAK=(TW-TC)/AB*778/ (3600* .73756)
GK=AKW/ .0173
QP=2*OMG/(3*3.1415)*(300/778*OMG*B/(2*GK))**.6*((12*(PMAX-P
1*GL/TR)**1.6)*GL*(TW-TC)*S*HR/(144*.73756*(HR-1))

FINAL RESULTS
TCP=TOTAL COOL CYLINDER SHAFT POWER [WATTS]
THP=TOTAL HOT CYLINDER SHAFT POWER [WATTS]
THC=TOTAL HEAT FLOW IN COOLER [WATTS]
THH=TOTAL HEAT FLOW IN HEATER [WATTS]
SGL=SPRING GAS LOSS [WATTS]

TCP=WDC/.73756-QCP-QWP-QRP-COOLOSS-HEATLOSS

THC=TCP-RHEATLOSS-SHUTLOSS-AXILOSS-SGL
THH=WDW/.73756+RHEATLOSS+AXILOSS

BORE-STROKE OPTIMIZATION
AK=(1.7704*TW+521) /17300
AKK1=.026*((PM*MG*3600/(R*TW*MIUW))**.8)*(PRW**.4)*(SHR-1)
1SHR*PA/PM*AK*TW*COS(FIPV)*( (4*VAW/3.1415)**.9)
IF(M.EQ. 2. )AK=( .0194444*TW+8) /173
AKK2= *28*AKK1

AKK3=3.1415/8*AK/(S*GL)*(TW-TC)*(BET1)*4*VAW/3.1415*778/12/
RLG=.4*AKK1*(BS**2. 6)+3*AKK3
RIG=2. 6*AKK2* (BS**3.6)
IF(ABS(RIG-RGL)-10 )1610,1611,1612
BS=BS+.05
IF(BS.GT.2.5)GOTO 1611
GOTO 1624
WRITE (6,1626)BS
GOTO 1625
BS=BS-.05
IF(BS.LT.O.8)GOTO 1611
GOTO 1624
FORMAT(////,1OX, 'OPTIMUM BORE-STROKE RATIO=',F5.2)
IF(NAH.GT.3)GOTO 28000
NAH=NAH+1
WH=ABS(THH)
AWC=ABS (THC)
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WRITE (6,1741)WH,AWC
1741 FORMAT(/////, 5X, 'WH= , F10. 5,//, 5X, 'WC=' , F10. 5)

SHR=SH
GOTO 1740

28000 IF(SIG.NE.1.)GOTO 27000
NUM=NUM+1
IF(NUM.NE.2)GOTO 27000
FACTC=FACTC*THC/ (THC+RHEATLOSS)
FACTH=FACTH*THH/(THH-RHEATLOSS)
SHR=SH
GO TO 30000

27000 THP=WDW/.73756-QLEAK-QP
OUTPUT=THP+THC+RHEATLOSS+AXILOSS-FRLOSS
DLV=2*VAW+VAC* (1+COS(AFI))
BMEP=0UTPUT*.73756*12/ (DLV*OMG)
PANOR=BMEP*OMG*DLV/(12*.73756)
THPN=THP/PANOR
TCPN=TCP/PANOR
WRITE(6, 1726)VACVAWLW,LRLC,NWNCDRR
THCN=THC/PANOR
WCC=WDC/ .73756
WRITE(6, 10011)PMAX, PMIN, TCTW,N, SIZE, WCC

10011 FORMAT(1H1,//,10X, 'MAX. PRESSURE EPSIA]=',F7.2,//,1OX
1, 'MIN. PRESSURE EPSIA]=', F7.2, //,10X, 'COLD TEMP. [R]='
lF6.1,//,10X, 'HOT TEMP.[R]=',F6.1,//,10X,'SPEEDERPMJ=', F6.1
1, //,10X, 'SIZE=', F6.3, //, 10X, 'COMPRESSION WORK=', F14.5)

IF(SIG.NE.1. )GOTO 7013
WRITE(6,10010)FACTC, FACTH

10010 FORMAT(///,20X, 'ALL OF THE FOLLOWING QUANTITIES ARE IN WATTS',
1/////,5X, 'FACTOR FOR CHANGING COOLER=' ,F7.3,//,5X, 'FACTOR FOR
1 CHANGING HEATER=',F7.3)

7013 THHN=THH/PANOR
QCPN=QCP/PANOR
QWPN-QWP/PANOR
QRPN=QRP/PANOR
QM=QP/PANOR
COOLOSN=COOLOSS/PANOR
HEATLOSN=HEATLOSS/PANOR
RHEATLOSN=RHEATLOSS/PANOR
SHTOSN=SHUTLOSS/PANOR
AXILOSN=AXILOSS/PANOR
FRLOSN=FRLOSS/PANOR
SGLN=SGL/PANOR
OUTPUTN=OUTPUT/PANOR
TOR=OUTPUT/OMG*. 73756
TORN=TOR/( (PMAX-PMIN) *2*VAW) *12
BMEPN=BMEP/ (PMAX-PM IN)
EFFN=100*OUTPUT/(THH* (1. -TC/TW))
TOTLOSS=QCP+QWP+QRP+COOLOSS+HEATLOSS+RHEATLOSS+SHUTLOSS+AXILOSS

1+FRLOSS+SGL+QLEAK+QP
IF(SIG.EQ.1.) TOTLOSS=TOTLOSS-RHEATLOSS
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TOTLOSN=TOTLOSS/PANOR
EFF=OUTPUT/THH*1 00
QL*OLEAK
QN=QLEAK/PANOR
WRITE(6, 90)QCP, QWP, QRP, COOLOSS, HEATLOSS, RHEATLOSS, SHUTLOSSIQL

1,QOP
1, SGL, AXILOSS, FRLOSS, TCP, THP, THC, THH, OUTPUT, EFF, TOR, BMEP,
1TOTLOSS

90 FORMAT(//, 25X, 'PRESSURE LOSSES:',//, 5X, 'COOLER=', F10.5, /
1,5X,'HEATER=',F10.5,/,5X,'REGENERATOR=',F10.5,//,25X,'
1HEAT TRANSFER LOSSES:' ,/,5X, 'COOLER=' ,F1O.5, /,5X, 'HEATER
1=',F1O.5,/,5X,'REGENERATOR=',F13.5,/, 5X, 'SHUTTLE LOSS=',
1F10.5, /,5X, 'HEAT LEAKAGE=', F10. 5, /5X, 'PUMPING LOSS=',
IF10.5,/,5X,'SPRING GAS LOSS=',F1O.5,/, 5X,'AXIAL LOSS=',F1O.5,
1/, 5X, 'COULUMB FRICTION LOSS=',F1O. 5,//, 5X, 'TOTAL COOL CYLINDER
1 POWER=',F12.5,/,5X,'TOTAL HOT CYLINDER POWER='',F12.5,/,5X,
1'TOTAL HEAT FLOW IN COOLER=',F14.5,/,5X, 'TOTAL HEAT FLOW IN
1 HEATER=',F12.5,//,10X,'NET OUTPUT POWER=',F12.5,/,10X,'EFFIC
1IENCY=',F8.4, '%',///,10X, 'TORQUE [LB-FT]=', F12.5, //, 10X, 'BMEP
1 §PSIAt=',F12.5,//,10X,'TOTAL LOSS=', F12.5)
IF(ABS(OIN-THH) .LE.50. )GOTO 1738
IF (QIN-THH )1627 ,1738, 1628

1627 VAC=VAC-SAR
IF(VAC.LE.O.7.OR.SHW.GT.(VAX/SAR) )GOTO 1738
SHR=SH
GOTO 20000

1628 VAC=VAC+SAR
IF(VAC.GT.VAX.OR.SHW.GT. (VAX/SAR) )GOTO 1738
SHR=SH
GOTO 20000

1738 WRITE(6, 10013)PANORN, WDWN, WDCN
10013 FORMAT(////,20X, 'THE NONDIMENSIONAL OUTPUTS IN PERCENTAGE' ,////

1, 10X, 'NORMALIZE QUANTITY: ',//, 10X, 'PM*VC*N [WATTS)=' ,F11.3,
1////,1OX,'WARM WORK=',F10.5,///,10X,'COLD WORK' ,FlO.5)
WRITE (6, 90)QCPN, QWPN, QRPN, COOLOSN, HEATLOSN, RHEATLOSN, SHTOSN, QN,
1M,
1SGLN, AXILOSN, FRLOSSN, TCPN, THPN, THCN, THHN, OUTPUTN, EFFN, TORN,
1BMEPN, TOTLOSN
STOP
END
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SUBROUTINE PDINT (XiDMWDMC, RVTDVCNDIV, DMPRXINT,
1 DPRXI1,XI2,XNHT)
DIMENSION DMW(720),DMC(720),DVC(720),PR(720),DPR(720)
DM = 0.
XINT = 0.
XIl = 0.
EXl = 1.-XNHT
XI2 = 0.
EX2 2.-XNHT
DO 101 I=1,NDIV
DMX = DMC(I)-X*(DMW(I)/RVT+DMC(I))
Y = ABS(DMX)
DM = DM+Y
A = DPR(I)*Y**EX1
IF(DMX) 201, 202, 202

201 A = -A
202 XIl = XI1+A

X12 = XI2+Y**EX2
101 XINT = XINT+Y*DMX/PR(I)*DVC(I)

XNDIV = NDIV
RETURN
END

SUBROUTINE VOLW(W, WI, DWDDWI, CFI, SFI, ZZW,NDIV,SIFI,COFIDSALFCAF,
DALF)

DIMENSION SIFI(720),COFI(720),SALF(720),CALF(720)
DIMENSION W(720), WI(720), DW(720), DWI(720)
SIFIP = SIFI(1)*CFI-COFI(1)*SFI
DO 101 I=1,NDIV

201 SALFi = SIFI(I+1)*CFI-COFI(I+1)*SFI
SALFP = (SIFIP+SALF1)/2.
CALFP = (SALF1-SIFIP)/DALF
CRW = SQRT(ZZW**2-CALFP**2)
W( I )=1. +SALFP-CRW+Z ZW
WI(I)=1.+SIFIP-CRW +ZZW
DW( I )=CALFP* (1. -SALFP/CRW)
DWI (I)=CALFP*(1. -SIFIP/CRW)

101 SIFIP = SALF1
RETURN
END
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SUBROUTINE VOLC(DALF,NFC,CI,DC,DCI, ZZCNDIV, SIFI, COFISALF,CALF)
DIMENSION C(720),CI(720),DC(720),DCI(720)
DIMENSION SIFI(720),COFI(720),SALF(720),CALF(720)
ALF = 4.7123889
NDIV1 = NDIV+1
DO 852 I=2,NF
ALF = ALF + DALF
COFI(I) = COS(ALF)

852 SALF(I) = SIN(ALF)
SALF(1) = -1.
COFI(1) = 0.
NFF = NF+1
SALF(NFF) = 0.
COFI(NFF) = 1.0
NS = NFF+1
NL = NFF+NF
J =NF
DO 853 I=NSNL
SALF(I) = -SALF(J)
COFI(I) = COFI(J)

853 J = J-1
NS = NL+1
J =NL-1
D0854 I=NS,NDIV
SALF(I) = SALF(J)
COFI(I) = -COFI(J)

854 J = J-1
SALF(NDIV1) = SALF(l)
COFI(NDIV1) = COFI(1)
DO 855 I=1,NDIV

855 CALF(I) = (SALF(I+1)-SALF(I))/DALF
CALF(NDIV1) = CALF(1)
DO 851 I=1,NDIV
SIFI(I) = SALF(I)

851 SALF(I) = (SALF(I)+SALF(I+1))/2.
COFI(NDIV1) = COFI(1)
SIFI(NDIV1) = SIFI(1)
N = NF*4
DO 302 I = 1,N

201 CRC = SQRT(ZZC**2-CALF(I)**2)
C(I)=1.+SALF(I )-CRC+ZZC
CI(I)=1.+SIFI(I)-CRC+ZZC
DC(I)=CALF(I)*(1.-SALF(I)/CRC)

302 DCI(I)=CALF(I)*(1.-SIFI(I)/CRC)
RETURN
END
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FUNCTION SMALL(X,NDIV)
DIMENSION X(720)
SMALL = X(1)
DO 507 I=2,NDIV
IF(SMALL-X(I)) 507, 507, 508

508 SMALL = X(I)
507 CONTINUE

RETURN
END

FUNCTION XLARGE(X, NDIV)
DIMENSION X(720)
XLARGE = X(1)
DO 505 I=2,NDIV
IF(XLARGE-X(I)) 506, 505, 505

506 XLARGE = X(I)
505 CONTINUE

RETURN
END
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Sample of the Output:

OPTIMUM DESIGN RESULTS

VAC= 1.98000 [in 3 J

VAW= 2.19500 [in 3J

LH= 8.00000 [in]

LR= 0.90000 Lin3
LC= 5.60000 [in]

NW=

NC=

DRR=

76.00000

90.00000

1.98000 in

1SPECIFIC HEAT RATIO = 1.659

FI = 252.000

DIVISION =

COLD WORK =

WARM WORK =

PRESSURE RATIO =

MAX WARM MASS =

(VC/VW)*(TW/TC) =

VD =

360

-0.415

0.581

1.669

2 ITERATIONS
1.6278 MAX COLD MASS 1.3421

P-V ANGLE IN RAD =

1.634

4.628

-0.7199
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"7

MAX. PRESSURE [PSIA]= 625.29

MIN. PRESSURE [PSIA]= 374.71

COLD TEMP. [R]- 530.0

HOT TEMP. [R= 960.0

SPEED[RPM] =1200.0

PHASE ANGLE=108

PRESSURE LOSSES rattsj

COOLER= 16.36585
HEATER= 3.20996
REGENERATOR= 17.91938

HEAT TRANSFER LOSSES [WattS]
COOLER- 0.82483

HEATER= 1.06657
REGENERATOR= 10.09036
SHUTTLE LOSS= 100.97824
HEAT LEAKAGE= 7.72464

SPRING GAS LOSS- 32.42121
AXIAL LOSS= 7.00228
COULUMB FRICTION LOSS= 64.15820

TOTAL COOL CYLINDER POWER= -1200.55603
TOTAL HOT CYLINDER POWER= 1793.96497

TOTAL HEAT FLOW IN COOLER= -1351.04822
TOTAL HEAT FLOW IN HEATER- 1818.78223

NET OUTPUT POWER- 395.85120
EFFICIENCY= 21.7646%

TORQUE [LB-FT]= 2.32344

BMEP iPSIAtm 4.84198

TOTAL LOSS= 261.76154


