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Abstract

We identify a ‘slope’ factor in exchange rates. High interest rate currencies load more on

this slope factor than low interest rate currencies. This factor accounts for most of the cross-

sectional variation in average excess returns between high and low interest rate currencies.

A standard, no-arbitrage model of interest rates with two factors – a country-specific factor

and a global factor – can replicate these findings, provided there is sufficient heterogeneity

in exposure to global or common innovations. We show that our slope factor identifies these

common shocks, and we provide empirical evidence that it is related to changes in global

equity market volatility. By investing in high interest rate currencies and borrowing in low

interest rate currencies, US investors load up on global risk.

JEL: G12, G15, F31.
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We show that the large co-movement among exchange rates of different currencies supports a

risk-based view of exchange rate determination. In order to do so, we start by identifying a slope

factor in exchange rate changes: the exchange rates of high interest rate currencies load positively

on this factor, while those of low interest rate currencies load negatively on it. The covariation with

this slope factor accounts for most of the spread in average returns between baskets of high and

low interest rate currencies – the returns on the currency carry trade. We show that a no-arbitrage

model of interest rates and exchange rates with two state variables – a country-specific and a global

risk factors – can match the data provided there is sufficient heterogeneity in countries’ exposures

to the global risk factor. To support this global risk interpretation, we provide evidence that the

global risk factor is closely related to changes in volatility of equity markets around the world.

We identify this common risk factor in the data by building monthly portfolios of currencies

sorted by their forward discounts. The first portfolio contains the lowest interest rate currencies

while the last contains the highest. The first two principal components of the currency portfolio

returns account for most of the time series variation in currency returns. The first principal

component is a level factor. It is essentially the average excess return on all foreign currency

portfolios. We call this average excess return the dollar risk factor RX. The second principal

component is a slope factor whose weights decreases monotonically from positive to negative from

high to low interest rate currency portfolios. Hence, average returns on the currency portfolios line

up with portfolio loadings on this second component. This slope factor is very similar to the return

on a zero-cost strategy that goes long in the last portfolio and short in the first portfolio. We label

this excess return the carry trade risk factor HMLFX , for high minus low interest rate currencies.

We obtain the same results for exchange rate changes as for currency returns. Our paper is the

first to document the common factor in exchange rates sorted by interest rates, which is the key

ingredient in a risk-based explanation of carry trade returns.

In international finance, there is a large literature that studies asset pricing in integrated capital

markets.1 In this class of integrated capital market models, risk refers invariably to exposure to

some common or global factor. We show that the slope factor in exchange rates provides a direct
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measure of the global risk factor. This factor, which was constructed from currency portfolios,

explains variation in the country-level returns as well, and the estimated risk prices are very similar

to those obtained from the currency portfolios. We explain about two thirds of the cross-sectional

variation when we allow for time-variation in the betas of individual currencies with our factors,

which is captured by variation in relative interest rates.

Building on our empirical findings, we derive conditions that candidate stochastic discount

factors need to satisfy in order to match our currency portfolio returns. Our results refine the con-

ditions derived by Backus, Foresi and Telmer (2001) for replicating the forward premium anomaly

in a large class of exponentially affine asset pricing models.2 Heterogeneity in exposure to country-

specific risk can generate negative UIP slope coefficients for individual currency pairs, as pointed

out by Backus et al. (2001), but it cannot explain the cross-section of carry trade returns. The

intuition is simple. Investors earn the carry trade premium by shorting baskets of low interest rate

currencies and going long in baskets of high interest rate currencies. Provided that they invest in

large baskets of currencies, carry trade investors are not exposed to any country-specific risk.

We show that heterogeneity in exposure to common risk can both explain the carry trade returns

and deliver the negative UIP slope coefficients.3 First, we need a large common or global component

in the pricing kernel, because this is the only source of cross-sectional variation in currency risk

premia. Second, we need sufficient heterogeneity in exposure to the common component: currencies

with currently (on average) lower interest rates need to be temporarily (permanently) more exposed

to the common component. Affine asset pricing models automatically satisfy the second condition

provided that an increase in the conditional volatility of the pricing kernel lowers the short term

interest rate. These two conditions ensure the existence of currency risk premia and carry trade

excess returns from the perspective of all investors, regardless of the home currency. Currency

risk premia are determined by a home risk premium that compensates for home country risk (e.g

a dollar risk premium for the US investor) and a carry trade risk premium that compensates for

global or common risk.

Without exposure to common risk, the carry risk premium is zero as shorting baskets of low
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interest rate currencies and going long in baskets of high interest rate currencies does not expose

investors to any country-specific or currency-specific risk. Temporary heterogeneity in exposure to

common risk matches the conditional deviations from UIP; currencies with currently high interest

rates deliver higher returns. Permanent differences in exposure to common risk match the un-

conditional deviations from UIP; currencies with on average high interest rates also deliver higher

returns. These unconditional deviations from UIP in the cross-section account for 40% of the total

carry trade risk premium. In the data, we find that a measure of global equity volatility accounts

for the cross-section of carry trade returns, as predicted by the model. High (low) interest rate

currencies tend to depreciate (appreciate) when global equity volatility is high.

Many papers have documented the failure of UIP in the time series, starting with the work

of Hansen and Hodrick (1980) and Fama (1984): higher than usual interest rates lead to further

appreciation, and investors earn more by holding bonds in currencies with interest rates that are

higher than usual.4 By building portfolios of positions in currency forward contracts sorted by

forward discounts, Lustig and Verdelhan (2005, 2007) have shown that UIP fails in the cross-

section, even when including developing currencies: investors earn large excess returns simply by

holding bonds from currencies with interest rates that are currently high, i.e. currently higher than

those of other currencies, not only higher than usual, i.e. higher than usual for that same currency.

Lustig and Verdelhan (2007) adopt the perspective of a US investor and test this investor’s Euler

equation. Our paper enforces the Euler equation of all investors. Furthermore, we distinguish

between unconditional deviations and conditional deviations from UIP.

An alternative explanation of our findings is that the interest rate is simply one of the char-

acteristics that determines returns as suggested by Bansal and Dahlquist (2000).5 Ranaldo and

Soderlind (2010), for example, pursue this further by arguing that some currencies are viewed

simply as safe havens and therefore earn a lower risk premium than others that are perceived as

more risky. Based on the empirical evidence, we cannot definitively rule out a characteristics-based

explanation. Interest rates and slope factor betas are very highly correlated in the data. However,

we replicate these findings in the data simulated from a version of our model that is calibrated to
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match exchange rate and interest rate moments in the actual data. In the model-generated data,

we cannot rule out a characteristics-based explanation either, even though the true data generating

process has no priced characteristics.

Our paper is organized as follows: we start by describing the data, the method used to build

currency portfolios, and the main characteristics of these portfolios. Section 2 shows that a single

factor, HMLFX , explains most of the cross-sectional variation in foreign currency excess returns.

Section 3 considers several extensions. We look at beta-sorted portfolios and confirm the same

pattern in excess returns. By randomly splitting the sample, we also show that risk factors con-

structed from currencies not used as test assets still explain the cross-section. Finally, we show our

results continue to hold at the country-level. In section 4, we use a no-arbitrage model of exchange

rates to interpret these findings. A calibrated version of the model replicates the key moments of

the data. Finally, we show that an equity-based volatility measure accounts for the cross-section

of currency excess returns, as predicted by the model. Section 5 concludes. A separate appendix

available online reports additional robustness checks. The portfolio data can be downloaded from

our web sites and are regularly updated.

1 Currency Portfolios

We focus on investments in forward and spot currency markets. Compared to Treasury Bill mar-

kets, forward currency markets only exist for a limited set of currencies and shorter time-periods.

But forward currency markets offer two distinct advantages. First, the carry trade is easy to

implement in these markets, and the data on bid-ask spreads for forward currency markets are

readily available. This is not the case for most foreign fixed income markets. Second, these for-

ward contracts are subject to minimal default and counter-party risk. This section describes the

properties of monthly foreign currency excess returns from the perspective of a US investor. We

consider currency portfolios that include developed and emerging market countries for which for-

ward contracts are traded. We find that currency markets offer Sharpe ratios comparable to the

ones measured in equity markets, even after controlling for bid-ask spreads. As in Lustig and
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Verdelhan (2005, 2007), we sort currencies on their interest rates and allocate them to portfolios.

Unlike those papers, which use T-bill yields to compute annual currency excess returns, our current

paper focusses on monthly investment horizons and uses only spot and forward exchange rates to

compute returns.

1.1 Building Currency Portfolios

Currency Excess Returns We use s to denote the log of the spot exchange rate in units of

foreign currency per US dollar, and f for the log of the forward exchange rate, also in units of

foreign currency per US dollar. An increase in s means an appreciation of the home currency. The

log excess return rx on buying a foreign currency in the forward market and then selling it in the

spot market after one month is simply:

rxt+1 = ft − st+1.

This excess return can also be stated as the log forward discount minus the change in the spot rate:

rxt+1 = ft −st −∆st+1. In normal conditions, forward rates satisfy the covered interest rate parity

condition; the forward discount is equal to the interest rate differential: ft − st ≈ i⋆t − it, where

i⋆ and i denote the foreign and domestic nominal risk-free rates over the maturity of the contract.

Akram, Rime and Sarno (2008) study high frequency deviations from covered interest rate parity

(CIP). They conclude that CIP holds at daily and lower frequencies. Hence, the log currency

excess return approximately equals the interest rate differential less the rate of depreciation:

rxt+1 ≈ i⋆t − it − ∆st+1.

Transaction Costs Since we have bid-ask quotes for spot and forward contracts, we can compute

the investor’s actual realized excess return net of transaction costs. The net log currency excess
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return for an investor who goes long in foreign currency is:

rxl
t+1 = f b

t − sa
t+1.

The investor buys the foreign currency or equivalently sells the dollar forward at the bid price (f b)

in period t, and sells the foreign currency or equivalently buys dollars at the ask price (sa
t+1) in the

spot market in period t+1. Similarly, for an investor who is long in the dollar (and thus short the

foreign currency), the net log currency excess return is given by:

rxs
t+1 = −fa

t + sb
t+1.

Data We start from daily spot and forward exchange rates in US dollars. We build end-of-month

series from November 1983 to December 2009. These data are collected by Barclays and Reuters

and available on Datastream. Lyons (2001) reports that bid-ask spreads from Reuters are roughly

twice the size of inter-dealer spreads. We assume that net excess returns take place at these

quotes. As a result, our estimates of the transaction costs are conservative. Lyons (2001) also

notes that these indicative quotes track inter-dealer quotes closely, only lagging the inter-dealer

market slightly at very high intra-day frequency. This is clearly not an issue here at monthly

horizons. Our main data set contains at most 35 different currencies: Australia, Austria, Belgium,

Canada, Hong Kong, Czech Republic, Denmark, Euro area, Finland, France, Germany, Greece,

Hungary, India, Indonesia, Ireland, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands, New

Zealand, Norway, Philippines, Poland, Portugal, Saudi Arabia, Singapore, South Africa, South

Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, United Kingdom. Some of these currencies

have pegged their exchange rate partly or completely to the US dollar over the course of the sample.

We keep them in our sample because forward contracts were easily accessible to investors. The

euro series start in January 1999. We exclude the euro area countries after this data and only keep

the euro series.

Based on large failures of covered interest rate parity, we chose to delete the following observa-
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tions from our sample: South Africa from the end of July 1985 to the end of August 1985; Malaysia

from the end of August 1998 to the end of June 2005; Indonesia from the end of December 2000

to the end of May 2007; Turkey from the end of October 2000 to the end of November 2001;

United Arab Emirates from the end of June 2006 to the end of November 2006. In addition, there

were widespread deviations from covered interest rate parity in the fall of 2008, as reported for

example in Jones (2009). However, the implications for the magnitude of returns that we report

are limited.6

As a robustness check, we also a study a smaller data set that contains only 15 developed

countries: Australia, Belgium, Canada, Denmark, Euro area, France, Germany, Italy, Japan,

Netherlands, New Zealand, Norway, Sweden, Switzerland and United Kingdom. We first focus

our description of our results on our large sample but we present all of our results on both samples.

Portfolios At the end of each period t, we allocate all currencies in the sample to six portfolios

on the basis of their forward discounts f − s observed at the end of period t. Portfolios are re-

balanced at the end of every month. They are ranked from low to high interests rates; portfolio 1

contains the currencies with the lowest interest rate or smallest forward discounts, and portfolio 6

contains the currencies with the highest interest rates or largest forward discounts. We compute

the log currency excess return rxj
t+1 for portfolio j by taking the average of the log currency excess

returns in each portfolio j. For the purpose of computing returns net of bid-ask spreads we assume

that investors short all the foreign currencies in the first portfolio and go long in all the other

foreign currencies.

The total number of currencies in our portfolios varies over time. We have a total of 9 countries

at the beginning of the sample in 1983 and 26 at the end in 2009. We only include currencies

for which we have forward and spot rates in the current and subsequent period. The maximum

number of currencies attained during the sample is 34; the launch of the euro accounts for the

subsequent decrease in the sample size.
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1.2 Returns to Currency Speculation for a US investor

Table I provides an overview of the properties of the six currency portfolios from the perspective

of a US investor. For each portfolio j, we report average changes in the spot rate ∆sj , the forward

discounts f j − sj, the log currency excess returns rxj = −∆sj + f j − sj , and the log currency

excess returns net of bid-ask spreads rxj
net. We report log returns because these are the sum of the

forward discount and the change in spot rates. We also report log currency excess returns on carry

trades or high-minus-low investment strategies that go long in portfolio j = 2, 3 . . . , 6, and short

in the first portfolio: rxj
net − rx1

net. All exchange rates and returns are reported in US dollars and

the moments of returns are annualized: we multiply the mean of the monthly data by 12 and the

standard deviation by
√

12. The Sharpe ratio is the ratio of the annualized mean to the annualized

standard deviation.

The first panel reports the average rate of depreciation for all currencies in portfolio j. Accord-

ing to the standard uncovered interest rate parity (UIP) condition, the average rate of depreciation

ET (∆sj) of currencies in portfolio j should equal the average forward discount on these currencies

ET (f j − sj), reported in the second panel. Instead, currencies in the first portfolio trade at an

average forward discount of -297 basis points, but they appreciate on average only by almost 64

basis points over this sample. This adds up to a log currency excess return of minus 233 basis

points on average, which is reported in the third panel. Currencies in the last portfolio trade at

an average discount of 901 basis points but they depreciate only by 282 basis points on average.

This adds up to a log currency excess return of 620 basis points on average.

The fourth panel reports average log currency excess returns net of transaction costs. Since we

rebalance portfolios monthly, and transaction costs are incurred each month, these estimates of net

returns to currency speculation are conservative. After taking into account bid-ask spreads, the

average return on the first portfolio drops to minus 117 basis points. Note that the first column

reports minus the actual log excess return for the first portfolio, because the investor is short

in these currencies. The corresponding Sharpe ratio on this first portfolio is minus 0.14. The

return on the sixth portfolio drops to 338 basis points. The corresponding Sharpe ratio on the last
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portfolio is 0.35.

The fifth panel reports returns on zero-cost strategies that go long in the high interest rate

portfolios and short in the low interest rate portfolio. The spread between the net returns on the

first and the last portfolio is 454 basis points. This high-minus-low strategy delivers a Sharpe

ratio of 0.50, after taking into account bid-ask spreads. We also report standard errors on these

average returns between brackets. The average returns on the last four investment strategies are

statistically significantly different from zero.

Currencies in portfolios with higher forward discounts tend to experience higher real interest

rates. The ex post real interest rate differences are computed off the forward discounts.7 There

is a large spread of 559 basis points in (ex post) real interest rates between the first and the last

portfolio. The spread is somewhat smaller (412 basis points) on the sample of developed currencies.

Finally, the last panel reports the frequency of currency portfolio switches. We define the

average frequency as the time-average of the following ratio: the number of portfolio switches

divided by the total number of currencies at each date. The average frequency is 29.84 percent,

implying that currencies switch portfolios roughly every three months. When we break it down

by portfolio, we get the following frequency of portfolio switches (in percentage points): 20% for

the 1st, 34% for the 2nd, 41% for the 3rd, 44% for the 4th, 42% for the 5th, and 14% for the

6th. Overall, there is substantial variation in the composition of these portfolios, but there is more

persistence in the composition of the corner portfolios.

We have documented that a US investor with access to forward currency markets can generate

large returns with annualized Sharpe ratios that are comparable to those in the US stock market.

Table I also reports results obtained on a smaller sample of developed countries. We obtain similar

results. The Sharpe ratio on a long-short strategy is 0.32.

1.3 Average vs. Current Interest Rate Differences

What fraction of the return differences across currency portfolios are due to differences in average

interest rates vs. differences in current interest rates between currencies? In other words, are
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we compensated for investing in high interest rate currencies or for investing in currencies with

currently high interest rates? We address this question by sorting currencies on average forward

discounts in the first half of the sample, and then computing the realized excess returns in the

second part of the sample. Thus computed, these are returns on an implementable investment

strategy.

The top panel in Table II reports the results from this sort on average forward discounts. The

bottom panel report the results from the standard sort on current forward discounts over the same

sample. Even the sort on average interest differences produces a monotonic pattern in excess

returns: currencies with higher average interest rates tend to earn higher average returns. Before

transactions costs, this sort produces a 5.34% ‘unconditional’ carry trade premium compared to

a 10.16% conditional carry trade premium. Hence, the unconditional premium accounts for 52%

of the total carry trade premium. After transaction costs, the numbers change to 2.83% and

6.28% respectively. After transaction costs, the conditional premium accounts for 45% of the total.

However, the strategy with re-balancing by sorting on current interest rates delivers much higher

Sharpe ratios than the unconditional strategy. The unconditional sort produces a Sharpe ratio of

0.23, compared to 0.70 for the conditional sort. Per unit of risk, the compensation for ‘conditional’

carry trade risk is much higher.

These unconditional sorts of currencies mainly seem to pick up variation in average real interest

rates across currencies: the countries in the first portfolio have average real interest rate differentials

of -96 basis points in the second half of the sample, compared to 243 basis points in the last portfolio.

2 Common Factors in Currency Returns

This section show that the sizeable currency excess returns described in the previous section are

matched by covariances with risk factors.
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2.1 Methodology

Linear factor models predict that average returns on a cross-section of assets can be attributed

to risk premia associated with their exposure to a small number of risk factors. In the arbitrage

pricing theory (APT) of Ross (1976), these factors capture common variation in individual asset

returns. A principal component analysis on our currency portfolios reveals that two factors explain

more than 80 percent of the variation in returns on these six portfolios. The top panel in Table

III reports the loadings of our currency portfolios on each of the principal components as well

as the fraction of the total variance of portfolio returns attributed to each principal component.

The first principal component explains 70 percent of common variation in portfolio returns, and

can be interpreted as a level factor, since all portfolios load equally on it. The second principal

component, which is responsible for close to 12 percent of common variation, can be interpreted

as a slope factor, since portfolio loadings increase monotonically across portfolios. Since average

excess returns increase monotonically across portfolios, the second principal component is the only

plausible candidate risk factor that might explain the cross-section of portfolio excess returns, as

none of the other principal component exhibit monotonic variation in loadings.

Motivated by the principal component analysis, we construct two candidate risk factors: the

average currency excess return, denoted RX, and the difference between the return on the last

portfolio and the one on the first portfolio, denoted HMLFX . The correlation of the first principal

component with RX is 0.99. The correlation of the second principal component with HMLFX is

0.94. Both factors are computed from net returns, after taking into account bid-ask spreads. The

bottom panel confirms that we obtain similar results even when we exclude developing countries

from the sample. It is important to point out that these components capture common variation in

exchange rates, not interest rates. When we redo our principal component analysis on the changes

in spot exchange rates that correspond to the currency portfolios, we get essentially the same

results.

The two currency factors have a natural interpretation. HMLFX is the return in dollars on

a zero-cost strategy that goes long in the highest interest rate currencies and short in the lowest
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interest rate currencies. RX is the average portfolio return of a US investor who buys all foreign

currencies available in the forward market. This second factor is essentially the currency “market”

return in dollars available to an US investor, which is driven by the fluctuations of the US dollar

against a broad basket of currencies.

Cross-Sectional Asset Pricing We use Rxj
t+1 to denote the average excess return in levels on

portfolio j in period t + 1. All asset pricing tests are run on excess returns in levels, not log excess

returns, to avoid having to assume joint log-normality of returns and the pricing kernel. In the

absence of arbitrage opportunities, this excess return has a zero price and satisfies the following

Euler equation:

Et[Mt+1Rxj
t+1] = 0.

We assume that the stochastic discount factor M is linear in the pricing factors Φ:

Mt+1 = 1 − b(Φt+1 − µΦ),

where b is the vector of factor loadings and µΦ denotes the factor means. This linear factor model

implies a beta pricing model: the expected excess return is equal to the factor price λ times the

beta of each portfolio βj:

E[Rxj ] = λ′βj,

where λ = ΣΦΦb, ΣΦΦ = E(Φt − µΦ)(Φt − µΦ)′ is the variance-covariance matrix of the factor, and

βj denotes the regression coefficients of the return Rxj on the factors. To estimate the factor prices

λ and the portfolio betas β, we use two different procedures: a Generalized Method of Moments

estimation (GMM) applied to linear factor models, following Hansen (1982), and a two-stage OLS

estimation following Fama and MacBeth (1973), henceforth FMB. In the first step, we run a time

series regression of returns on the factors. In the second step, we run a cross-sectional regression

of average returns on the betas. We do not include a constant in the second step (λ0 = 0).
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2.2 Results

Table IV reports the asset pricing results obtained using GMM and FMB on currency portfolios

sorted by forward discounts. The left hand side of the table corresponds to our large sample of

developed and emerging countries, while the right hand side focuses on developed countries. We

describe first the results obtained on our large sample.

Cross-sectional regressions The top panel of the table reports estimates of the market prices

of risk λ and the stochastic discount factor (henceforth SDF) loadings b, the adjusted R2, the

square-root of mean-squared errors RMSE and the p-values of χ2 tests (in percentage points).8

The market price of HMLFX risk is 550 basis points per annum. This means that an asset with

a beta of one earns a risk premium of 5.50 percent per annum. Since the factors are returns, no

arbitrage implies that the risk prices of these factors should equal their average excess returns.

This condition stems from the fact that the Euler equation applies to the risk factor itself, which

clearly has a regression coefficient β of one on itself. In our estimation, this no-arbitrage condition

is satisfied. The average excess return on the high-minus-low strategy (last row of the top panel in

Table IV) is 508 basis points. This value differs slightly from the previously reported mean excess

return because we use excess returns in levels in the asset pricing exercise, but Table I reports

log excess returns defined as differences between the forward discount and the changes in the log

of the exchange rates. So the estimated risk price is only 42 basis points removed from the point

estimate implied by linear factor pricing. The GMM standard error of the risk price is 225 basis

points. The FMB standard error is 179 basis points. In both cases, the risk price is more than two

standard errors from zero, and thus highly statistically significant.

The second risk factor RX, the average currency excess return, has an estimated risk price

of 134 basis points, compared to a sample mean for the factor of 133 basis points. This is not

surprising, because all the portfolios have a beta close to one with respect to this second factor. As

a result, the second factor explains none of the cross-sectional variation in portfolio returns, and

the standard errors on the risk price estimates are large: for example, the GMM standard error is

185 basis points. When we drop the dollar factor, the RMSE rises from 96 to 148 basis points, but
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the adjusted R2 is still above 70 %. The dollar factor does not explain any of the cross-sectional

variation in expected returns, but it is important for the level of average returns. When we include

a constant in the 2nd step of the FMB procedure, the RMSE drops to 97 basis points with only

HMLFX as the pricing factor. Adding a constant to the dollar risk factor is redundant because

the dollar factor acts like a constant in the cross-sectional regression (all of the portfolios’ loadings

on this factor are equal to one).

The λ’s indicate whether risk is priced, and HMLFX risk clearly is in the data. The loadings

(b) have a natural interpretation as the regression coefficients in a multiple regression of the SDF

on the factors. The t-stats on bHML consistently show that that the carry trade risk factor helps

to explain the cross-section of currency returns in a statistically significant way, while the dollar

risk factor does not.

Overall, the pricing errors are small. The RMSE is 96 basis points and the adjusted R2 is 70

percent. The null that the pricing errors are zero cannot be rejected, regardless of the estimation

procedure: all of the p-values (reported in percentage points in the column labeled χ2) exceed 5%.

These results are robust. They also hold in a smaller sample of developed countries, as shown in

the right-hand side of Table IV.

Time Series Regressions The bottom panel of Table IV reports the constants (denoted αj) and

the slope coefficients (denoted βj) obtained by running time-series regressions of each portfolio’s

currency excess returns Rxj on a constant and risk factors. The returns and α’s are in percentage

points per annum. The first column reports α’s estimates. The second portfolio has a large negative

α of -155 basis points per annum, significant at the 5 percent level. The fourth portfolio has a

large α of 151 basis points per annum, significant at the 5 percent level. The other α estimates

are much smaller and not significantly different from zero. The null that the α’s are jointly zero

cannot be rejected at the 5 or 10 % significance level. Using a linear combination of the portfolio

returns as factors entails linear restrictions on the αs. When the two factors HMLFX and RXFX

are orthogonal, it is easy to check that α1 = α6, because β6
HMLF X

− β1
HMLF X

= 1 by construction

and β6
RX = β1

RX = 1. In this case, the risk prices exactly equal the factor means. This is roughly
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what we find in the data.

The second column of the same panel reports the estimated βs for the HMLFX factor. These

βs increase monotonically from -.39 for the first portfolio to .61 for the last currency portfolio,

and they are estimated very precisely. The first three portfolios have betas that are negative and

significantly different from zero. The last two have betas that are positive. The third column shows

that betas for the dollar factor are essentially all equal to one. Obviously, this dollar factor does

not explain any of the variation in average excess returns across portfolios, but it helps to explain

the average level of excess returns. These results are robust and comparable to the ones obtained

on a sample of developed countries (reported on the right hand side of the table).

A natural question is whether the unconditional betas of the bottom panel of Table IV are

driven by the covariance between exchange rate changes and risk factors, or between interest rate

changes and risk factors. This is important because the conditional covariance between the log

currency returns and the carry trade risk factor obviously only depends on the spot exchange rate

changes:

covt

[

rxj
t+1, HMLFX,t+1

]

= −covt

[

∆sj
t+1, HMLFX,t+1

]

.

The regression of the log changes in spot rates for each portfolio on the factors reveals that these

betas are almost identical to the ones for portfolio returns (with a minus sign), as expected.9

Low interest currencies offer a hedge against carry trade risk because they appreciate when the

carry return is low, not because the interest rates on these currencies increase. High interest rate

currencies expose investors to more carry risk, because they depreciate when the carry return is

low, not because the interest rates on these currencies decline. This is exactly the pattern that our

no-arbitrage model in section 4 delivers. Our analysis within the context of the model focuses on

conditional betas.10

Average vs. Current Interest Rate Differences In Table II we showed that the sorts on

mean forward discounts produce a spread in currency returns of about half of the total spread.

These portfolios still load very differently on HMLFX , the factor that we construct from the sort
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on current interest rates. On the second part of the sample, starting in January 1995, the first

portfolio’s HMLFX loading is -.49 (with a standard error of 0.07), and the loading of the sixth

portfolio is 0.39 (0.07). Hence, the spread in loadings is 0.88, only 12 basis points less than the

spread in the betas of the portfolios sorted by current interest rates. The market price of risk at

3.3%, however, is lower than the mean of HMLFX (6.9%) and is not precisely estimated over this

short sample.

3 Robustness

This section provides more evidence on the nature of currency risk premia that directly supports

a risk-based explanation of our findings.

3.1 Other Test Assets: Beta-Sorted Portfolios

First, in order to show that the sorting of currencies on forward discounts really measures the

currency’s exposure to the risk factor, we build portfolios based on each currency’s exposure to

aggregate currency risk as measured by HMLFX . For each date t, we first regress each currency

i log excess return rxi on a constant and HMLFX using a 36-month rolling window that ends

in period t − 1. This gives us currency i’s exposure to HMLFX , and we denote it βi,HML
t . Note

that it only uses information available at date t. We then sort currencies into six groups at time

t based on these slope coefficients βi,HML
t . Portfolio 1 contains currencies with the lowest βs.

Portfolio 6 contains currencies with the highest βs. Table V reports summary statistics on these

portfolios. The first panel reports average changes in exchange rates. The second panel shows

that average forward discounts increase monotonically from portfolio 1 to portfolio 6. Thus, sorts

based on forward discounts and sorts based on betas are clearly related, which implies that the

forward discounts convey information about riskiness of individual currencies. The third panel

reports the average log excess returns. They are monotonically increasing from the first to the last

portfolio, even though the spread is smaller than the one created by ranking directly on interest

rates. Clearly, currencies that co-vary more with our risk factor - and are thus riskier - provide
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higher excess returns. The last panel reports the post-formation betas. They vary monotonically

from −0.31 to 0.38. This finding is quite robust. When we estimate betas using a 12-month rolling

window, we also obtain a 300 basis point spread between the first and the last portfolio.11

3.2 Other Factors: Splitting Samples

Second, to guard against a mechanical relation between the returns and the factors, we randomly

split our large sample of developed and emerging countries into two sub-samples. To do so, we

sorted countries alphabetically and consider two groups. We found that risk factors built using

currencies that do not belong to the portfolios used as test assets can still explain currency excess

returns.12 However, the market price of risk appears higher and less precisely estimated than on

the full sample, and thus further from its sample mean. This happens because, by splitting the

sample, we introduce more measurement error in HMLFX . This shrinks the betas in absolute

value (towards zero), lowers the spread in betas between high and low interest rate portfolios and

hence inflates the risk price estimates. However, portfolio betas increase monotonically from the

first to the last portfolio, showing that common risk factors are at work on currency markets.

3.3 Country-Level Asset Pricing

Third, we take our model to country-level data. We run country-level Fama and MacBeth (1973)

tests. Creating portfolios of stocks could potentially lead to data-snooping biases (Lo and MacKin-

lay (1990)) and destroy information by shrinking the dispersion of betas (e.g. as argued recently

by Ang, Liu and Schwarz (2010)). In order to address these concerns, we use country-level excess

returns as test assets, but we continue to use the currency portfolios to extract our two currency

risk factors HMLFX and RX. We first study unconditional currency excess returns before turning

to to conditional currency excess returns.

Fama and MacBeth (1973) The Fama and MacBeth (1973) procedure has two steps. In the

first step, we run time series regressions of each country’s i currency excess return on a constant,
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HMLFX , and RX:

Rxi
t+1 = ci + βi

HMLHMLFX,t+1 + βi
RXRXt+1 + ǫi,t+1, for a given i, ∀t. (3.1)

In a second step, we run cross-sectional regressions of all currency excess returns on betas:

Rxi
t = λHML,tβ

i
HML + λRX,tβ

i
RX + ξt, for a given t, ∀i.

We compute the market price of risk as the mean of all these slope coefficients: λc = 1
T

∑T

t=1 λc,t for

c = HML, RX. This procedure is identical to the original Fama and MacBeth (1973) experiment.

The excess returns on individual currencies that are used as test assets do not take into account

bid-ask spreads because we do not know a priori if investors should take a short or long position on

each particular currency. In the interest of consistency, we use the same risk factors HMLFX and

RX reported in Table 1; those risk factors take into account bid-ask spreads. We obtain similar

results with risk factors that do not take into account bid-ask spreads, but the means of the risk

factor are higher.

Unconditional country currency risk premia Table VI reports our results on two samples.

In both samples, the market prices of risk are positive and less than one standard error from the

means of the risk factors. The square root of the mean squared errors and the mean absolute pricing

error are larger than those obtained on currency portfolios, but we cannot reject the null hypothesis

that all pricing errors are jointly zero. High beta countries tend to offer high unconditional currency

excess returns.

Conditional country currency risk premia We now turn to conditional risk premia. We start

by reporting the results obtained with managed investments and then turn to time-varying factor

betas. Investors can adjust their position in a given currency based on the interest rate at the start

of each period to exploit the return predictability and increase the Sharpe ratio. We consider such

managed investment strategies to capture the cross-section of conditional expected excess returns
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in addition to the raw currency excess returns. To construct these managed positions, we multiply

each currency excess return with the appropriate beginning-of-month forward discount, normalized

by subtracting the average forward discount across currencies and dividing by the cross-sectional

standard deviation of forward discounts in the given period. We use the same procedure and the

same risk factors as above on this augmented set of test assets; Table VI reports these results

as well. The market prices of risk are positive and significant, and they are in line with those

obtained on the unconditional returns. The cross-sectional fit has improved. The carry and dollar

risk factors are priced in the cross-section of currency excess returns and account for a large share

of the cross-sectional differences in country excess returns in both samples.

An alternative approach for testing asset pricing models with time-varying risk exposures is to

the estimate factor loadings using rolling windows instead of incorporating conditioning information

explicitly. To estimate the risk prices, we run a set of cross-sectional regressions:

Rxi
t+1 = λHML,tβ

i
HML,t + λRX,tβ

i
RX,t + ξt+1, for a given t, ∀i, (3.2)

where βi
HML,t and βi

RX,t are estimated by running time-series regressions similar to equation (3.1)

but over the sub-sample of Twindow periods up to period t. We report results obtained with rolling

windows of length Twindow = 36 months (therefore, we exclude currencies for which less than three

years of observations are available - there are 6 such currencies in our sample). The model’s cross-

sectional fit is evaluated by comparing the true unconditional average returns with their predicted

values:

E(Rxi
t+1) = E

(

λHML,tβ
i
HML,t + λRX,tβ

i
RX,t

)

, ∀i. (3.3)

The results of tests based on this procedure are also reported in Table VI. The estimated prices of

carry risk are very close (within half of a standard error) to the sample means of the HMLFX factor,

at 4.6% in the full sample and 3.3% in the smaller sample of developed countries (compared to

sample means of 5.1 and 3.1, respectively). The market price of carry risk is statistically significant

in the full sample, but not in the smaller one. The estimated prices of dollar risk are similar to
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those reported previously. The cross-sectional fit of the model is also similar to that with other

methods, with high cross-sectional R2s of 65.8% and 84.2% in the full and small sample.

Another standard approach for estimating dynamic factor loadings that allows us to use condi-

tioning information without enlarging the asset space to include managed returns is to explicitly

model betas as linear functions of the currency-specific forward discounts13. In particular, assume

that βi
HML,t = hi

0 + hi
1z

i
t and βi

RX,t = di
0 + di

1z
i
t, where zi

t is the country-specific forward discount,

standardized as described above. The parameters hi
0, hi

1, di
0 and di

1 can be estimated from the

linear regression

Rxi
t+1 = ci +hi

0HMLFX,t+1 +hi
1z

i
tHMLFX,t+1 +di

0RXt+1 +di
1z

i
tRXt+1 + ǫi,t+1, for a given i. (3.4)

The factor risk prices λHML,t and λRX,t can then be estimated by running the second-stage cross-

sectional regressions (3.2) on the fitted conditional betas. The pricing errors and cross-sectional

tests then can be used to evaluate the unconditional restriction (3.3) as before. The results of

this estimation are in the bottom rows in Table VI. This method produces very similar results to

the rolling-window approach, which provides further evidence for the role of forward discounts in

capturing the currencies’ dynamic exposures to common sources of risk.

The country-level results are consistent with our portfolio-level results. We focus on portfolios

in the rest of the paper since they allow us us to extract the slope factor. They also offer a simple

nonparametric way of estimating conditional covariances, which are key for our analysis.

4 A No-Arbitrage Model of Exchange Rates

We derive new restrictions on the stochastic discount factors (at home and abroad) that need to

be satisfied in order to reproduce the carry trade risk premium that we have documented in the

data. These restrictions are different from the restrictions that need to be satisfied to reproduce the

negative UIP slope coefficients. We impose minimal structure by considering a no-arbitrage model

for interest rates and exchange rates. Our model has an exponentially-affine pricing kernel and

22



therefore shares some features with other models in this class, such as those proposed by Frachot

(1996) and Brennan and Xia (2006), and, in particular, Backus et al. (2001). However, unlike these

authors, we do not focus on currency pairs, but we consider a world with N different countries and

currencies, where N is large. This allows us to distinguish between common and country-specific

factors. 14

In each country i, the logarithm of the SDF mi follows

−mi
t+1 = αi + χizi

t +
√

γizi
tu

i
t+1 + χizw

t +
√

δizw
t + κizi

tu
w
t+1.

There is a common global state variable zw
t and a country-specific state variable zi

t. The common

state variable enters the pricing kernel of all investors in N different countries. The country-

specific state variable obviously does not. This distinction between idiosyncratic (country-specific)

or common (global) risk is very natural in a setting with a large number of countries and currencies.

The currency-specific innovations ui
t+1 and global innovations uw

t+1 are i.i.d gaussian, with zero

mean and unit variance; uw
t+1 is a world shock, common across countries, while ui

t+1 is country-

specific (and thus uncorrelated across countries). The same innovations that drive the pricing

kernel variation will govern the dynamics of the country-specific and world volatility processes.

The country-specific volatility component is governed by an auto-regressive square root process:

zi
t+1 = (1 − φ)θ + φzi

t + σ
√

zi
tu

i
t+1.

The world volatility component is also governed by a square root process:

zw
t+1 = (1 − φ)θ + φzw

t + σ
√

zw
t uw

t+1.

We assume that the standard deviation of innovations to the common and country-specific factors

is identical; we refer to this volatility as σ. We also assume that the price of local risk only depends

on local risk aversion, but the price of global risk is allowed to depend on both local and global

risk aversion. As a result, the conditional market price of risk has a domestic component given by
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√

γizi
t and a global component given by

√

δizw
t + κizi

t.

We assume that financial markets are complete, but that some frictions in the goods markets

prevent perfect risk-sharing across countries. As a result, the change in the real exchange rate ∆qi

between the home country and country i is:

∆qi
t+1 = mt+1 − mi

t+1,

where qi is measured in country i goods per home country good. An increase in qi means a real

appreciation of the home currency. For the home country (the US), we drop the superscript.

Assumption 1. All countries share the same parameters (α, χ, γ, κ), but not δ. The home country

has the average δ loading on the global component.

Hence, we can drop the superscript i for all parameters except δi. All of the parameters are

assumed to be nonnegative. With this notation the real risk-free interest rate (in logarithms) is

given by

ri
t = α +

(

χ − 1

2
(γ + κ)

)

zi
t +

(

χ − 1

2
δi

)

zw
t .

The standard object of interest is the slope coefficient from a UIP regression of exchange rate

changes on the interest rate differential. For an ‘average’ country with the same exposure to

global innovations as the US (δi = δ) this is given by Cov
(

∆qi
t+1, r

i
t+1 − rt+1

)

/V ar
(

ri
t+1 − rt+1

)

=

χ/
(

χ − 1
2
(γ + κ)

)

.15 Large values of γ and κ deliver negative UIP slope coefficients.

Our focus is on the cross-sectional variation in conditional expected excess returns. Since the

log pricing kernel mt+1 and the log excess returns rxt+1 = ri
t − rt − ∆qi

t+1 are jointly normally

distributed, the Euler equation E[MRi] = 1 implies that the expected excess return in levels (i.e.

corrected for the Jensen term) is the conditional covariance between the log pricing kernel and

returns:

Et[rx
i
t+1] +

1

2
V art[rx

i
t+1] = −Covt[mt+1, rx

i
t+1] = V art[mt+1] − Covt[m

i
t+1, mt+1], (4.1)
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where lower letters denote logs. The second equality follows because only the exchange rate compo-

nent ∆qi
t+1 = mt+1 −mi

t+1 of the log currency returns rxi
t+1 matters for the conditional covariance.

4.1 Restricted Model

In order to explore the role of heterogeneity in the global risk exposures across currencies captured

by δi on the cross-section of expected currency returns, we first focus on a restricted version of

the model in which the time-variation in the global component of the conditional price of risk

only depends on the global factor: κ = 0. In this restricted version, the logarithm of the SDF mi

reduces to a more familiar two-factor Cox, Ingersoll and Ross (1985)-type process such as the one

exploited by Backus et al. (2001), with the key difference being the heterogeneity in δi.

Using the expression for the pricing kernels, equation (4.1) simplifies to:

Et[rx
i
t+1] +

1

2
V art[rx

i
t+1] = γzt +

√

δzw
t

(

√

δzw
t −

√

δizw
t

)

.

We can express this risk premium in terms of quantities and prices of risk. The loading on the

domestic (dollar) shock is equal to 1 for returns on any currency, and γzt is the price of dollar-

specific risk. The risk price for global shocks demanded by the domestic investor is δzw
t and the

quantity of global risk in currency i depends on the relative exposures of the two SDFs to the global

shock; since higher δi implies lower interest rates, ceteris paribus, this loading can be interpreted

as carry beta:

βCarry
t =

√

δzw
t −

√

δizw
t

√

δzw
t

= 1 −
√

δi

δ
. (4.2)

The currency risk premium is independent of the foreign country-specific factor zi
t. That is why

we need asymmetric loadings on the common component as a source of variation in currency risk

premia across currencies. The currency risk premium is also independent of the foreign country-

specific loading γi. We have thus set γi equal to γ to keep the model parsimonious. In the absence

of asymmetries in the exposure to global shocks, all currency risk premia are identical and equal

to γzt, an implication that is clearly at odds with the data. Our sorts of currencies by current
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interest rates have shown a large amount of cross-sectional variation in currency risk premia.

Building Currency Portfolios to Extract Factors We sort currencies into portfolios based

on their forward discounts, as we have done in the data. We use H to denote the set of currencies

in the last portfolio and L to denote the currencies in the first portfolio. The carry trade risk factor

hml and the dollar risk factor rx are defined as follows:

hmlt+1 =
1

NH

∑

i∈H

rxi
t+1 −

1

NL

∑

i∈L

rxi
t+1,

rxt+1 =
1

N

∑

i

rxi
t+1,

where NH and NL denote the number of currencies in each portfolio. We let
√

xt denote the average

of

√

xj
t across all currencies in portfolio j. The portfolio composition changes over time, and in

particular, it depends on the global state variable zw
t .

In this setting, the carry trade and dollar risk factors have a very natural interpretation. The

first one measures the common innovation, while the second one measures the domestic country-

specific innovation. In order to show this result, we appeal to the law of large numbers, and we

assume that the country-specific shocks average out within each portfolio.

Proposition 4.1. The innovation to the hml risk factor only measures exposure to the common

factor uw
t+1, and the innovation to the dollar risk factor only measures exposure to the country-

specific factor ut+1:

hmlt+1 − Et[hmlt+1] =

(

√

δL
t −

√

δH
t

)

√

zw
t uw

t+1,

rxt+1 − Et[rxt+1] =
√

γ
√

ztut+1.
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The Role of Heterogeneity When currencies share the same loading on the common compo-

nent, there is no hml risk factor. However, if lower interest rate currencies have different exposure

to the common volatility factor –
√

δL 6=
√

δH – then the innovation to hml measures the com-

mon innovation to the SDF. As a result, the return on the zero-cost strategy hml measures the

stochastic discount factors’ relative exposure to the common shock uw
t+1.

Proposition 4.2. The hml betas and the rx betas of the returns on currency portfolio j are:

βj
hml,t =

√
δ −

√

δj
t

√

δL
t −

√

δH
t

,

βj
rx,t = 1.

The betas for the dollar factor are all one. Not so for the carry trade risk factor. If the sorting

of currencies on interest rate produces a monotonically decreasing ranking of δ on average, then

the hml betas will increase monotonically as we go from low to high interest rate portfolios. As it

turns out, the model with asymmetric loadings automatically delivers this if interest rates decrease

when global risk increases. This case is summarized in the following condition:

Condition 4.1. The precautionary effect of global volatility on the real short rate dominates if:

0 < χ <
1

2
δi.

This condition is intuitive and has a natural counterpart in most consumption-based asset

pricing models: when precautionary saving demand is strong enough, an increase in the volatility

of consumption growth (and, consequently, of marginal utility growth) lowers interest rates.

There is empirical evidence to support this assumption. The de-trended short-term interest

rate predicts U.S. stock returns with a negative sign (see Fama and French (1989) for the original

evidence and Lettau and Ludvigson (2001) for a recent survey of the evidence), consistent with

higher Sharpe ratios in low interest rate countries. To check this, we sort the same set of countries
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into six portfolios by their forward discounts, and we compute local currency equity returns in each

portfolio. The Sharpe ratio is 0.5 in the lowest interest rate portfolio vs 0.1 in the highest interest

rate portfolio. Verdelhan (2010) reports similar findings on developed countries. Sorting by real

interest rates deliver similar results: 0.51 in portfolio 1 compared to 0.11 in portfolio 6.

The real short rate depends both on country-specific factors and on a global factor. The only

sources of cross-sectional variation in interest rates are the shocks to the country-specific factor zi
t,

and the heterogeneity in the SDF loadings δi on the world factor zw. As a result, as zw increases,

on average, the currencies with the high loadings δ will tend to end up in the lowest interest rate

portfolios, and the gap
(

√

δL
t −

√

δH
t

)

increases. This implies that in bad times the spread in the

loadings increases. Hence, the restricted model can generate variation in currency portfolio betas,

even though the individual currencies’ carry betas in (4.2) are constant.

4.2 Full Model

The restricted version of the model analyzed above implies that currencies with high δ loadings

will have low interest rates on average, and earn low average excess returns, while the opposite

holds for currencies with low δ. As we show in section 1.3, such permanent heterogeneity across

currencies explains at most half of the cross-sectional variation in expected currency returns. The

full model imputes variation in excess returns to dynamic evolution in individual currency betas,

as well as to the permanent differences in these betas.

The expected excess return in levels (i.e. corrected for the Jensen term) in the full model is

given by

Et[rx
i
t+1] +

1

2
V art[rx

i
t+1] = γzt + (δzw

t + κzt) −
√

δzw
t + κzt

√

δizw
t + κzi

t.

Relative to the restricted model, the foreign part of the currency risk premium Covt[m
i
t+1, mt+1]

now has an additional country-specific component that depends on zi
t/zt. This new component

captures transitory variation in the exposure of currencies to the global innovation, in addition

to the permanent differences in exposure to the common innovation governed by δi. As foreign
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volatility increases zi
t, the foreign SDF becomes more exposed to global innovations, and, as a

result, its currency beta w.r.t the global shock decreases. The full model generates variation in

individual currency betas in addition to currency portfolio betas. Again, cross-sectional variation

in γi (exposure to country-specific shocks) does not help to generate cross-sectional variation in

currency risk premia.

As before, two portfolios allow us to recover the innovations to the domestic pricing kernel:

hmlt+1 − Et[hmlt+1] =

(

1

NL

∑

i∈L

√

δizw
t + κzi

t −
1

NH

∑

i∈H

√

δizw
t + κzi

t

)

uw
t+1,

rxt+1 − Et[rxt+1] =
√

γztut+1 +

(

√

δzw
t + κzt −

1

N

∑

i

√

δizw
t + κzi

t

)

uw
t+1.

The hml portfolio will have positive average returns if the pricing kernels of low interest rate

currencies are more exposed to the global innovation:

1

NL

∑

i∈L

√

δizw
t + κzi

t >
1

NH

∑

i∈H

√

δizw
t + κzi

t

This will happen in equilibrium if the following conditions are satisfied:

Condition 4.2. The precautionary effect of domestic and global volatility on the real short rate

dominates if:

0 < χ <
1

2
δi, 0 < χ <

1

2
(γ + κ) .

If these conditions are satisfied, then an increase in domestic volatility lowers the real risk-free

rate and temporarily implies higher exposure of the pricing kernel to the global innovation and

hence lower betas for that particular currency. Hence, the unrestricted model contributes a second

mechanism through which lower interest currencies earn lower risk premia than higher interest rate

currencies: variation in individual currency betas that is tied to interest rates in that currency.
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4.3 Inflation

Finally, we specify a process for the nominal pricing kernel, in order to match moments of nominal

interest rates and exchange rates. The log of the nominal pricing kernel in country i is simply

given by the real pricing kernel less the rate of inflation πi:

mi,$
t+1 = mi

t+1 − πi
t+1.

Inflation is composed of a country-specific component and a global component. We simply assume

that the same factors driving the real pricing kernel also drive expected inflation. In addition,

inflation innovations in our model are not priced. Thus, country i’s inflation process is given by

πi
t+1 = π0 + ηwzw

t + σπǫi
t+1,

where the inflation innovations ǫi
t+1 are i.i.d. gaussian. It follows that the nominal risk-free interest

rate (in logarithms) is given by

ri
t = π0 + α +

(

χ − 1

2
(γ + κ)

)

zi
t +

(

χ + ηw − 1

2
δi

)

zw
t − 1

2
σ2

π,

Importantly, the currency risk premia on the one-period contracts that we consider in the data

do not depend on the correlation between the innovations to the pricing kernel and the volatility

processes, which we set to minus one, following the convention in the term structure literature.

This correlation governs the slope of the term structure. For example, if we set this correlation to

zero, eliminating conditional bond risk premia altogether, we still get the exact same expressions

for the one-period currency risk premia in equation (4.3). Of course, the theoretical currency risk

premia on contracts with longer maturity do depend on this correlation. Yet, empirically, Bekaert,

Wei and Xing (2007) find that term premia only play a minor role in explaining currency risk

premia.

We now turn to the calibration of this no-arbitrage model. We show that it can match the
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key moments of currency returns in the data, while also matching the usual moments of nominal

interest rates, exchange rates and inflation.

4.4 Calibration

We calibrate the model by targeting annualized moments of monthly data. A version of our model

that is calibrated to match the key moments of interest rates and exchange rates can match the

properties of carry trade returns.

4.4.1 Moments

The calibration proceeds in two steps. In the first step, we calibrate a symmetric version of the

model: all countries have the same parameters, including δ. All of the target moments of interest

rates, exchange rates and inflation have closed-form expressions in this symmetric version of the

model, assuming the moments of the square root processes exist. In the second stage we introduce

enough heterogeneity in δ to match the carry trade risk premium.

Symmetric Model Let us start with a symmetric version of the full model. We first focus on

real moments. There are 8 parameters in the real part of the model: 5 parameters govern the

dynamics of the real stochastic discount factors (α, χ, γ, κ, and δ) and 3 parameters (φ, θ, and σ)

describe the evolution of the country-specific and global factors (z and zw).

We choose these parameters to match the following 8 moments in the data: the mean, standard

deviation and autocorrelation of the US real short-term interest rates, the standard deviation of

changes in real exchanges rates, the cross-sectional mean of the real UIP slope coefficients, the

cross-country correlation of real interest rates, the maximum Sharpe ratio ( the standard deviation

of the log SDF) and a Feller parameter (equal to 2(1−φ)θ/σ2), which helps ensure that the z and

zw processes remain positive.16 These 8 moments as well as the targets in the data that we match

are listed in Panel A of Table VII.

The data for this calibration exercise come from Barclays and Reuters (Datastream). Because

of data availability constraints, we focus on the subset of developed countries. The sample runs
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from 11/1983 to 12/2009. However, for the US real interest rates data, we use the real zero-coupon

yield curve data for the US provided by J. Huston McCulloch on his website; the sample covers

1/1997–10/2009. For other countries, we use the past 12-month changes in the log CPI index to

proxy for expected inflation when computing real interest rates. Inflation itself is computed as the

one-month change in the log CPI index. The average UIP slope coefficient in our sample is -0.53

on nominal series. However, the average real UIP slope coefficient is smaller (-0.9).

We target a UIP slope coefficient of −0.5, an average real interest rate of 1.4% per annum, an

annualized standard deviation of the real interest rate of .5% per annum, and an autocorrelation

(in monthly data) of 0.95. The annual standard deviation of real exchange rate changes is 10.8%.

We target a maximum Sharpe ratio of 0.5. This is the average Sharpe ratio on equity returns (in

local currency) in our sample for the lowest interest rate currencies with the highest Sharpe ratios.

The average pairwise correlation of real interest rates is .2. The annual dollar risk premium is 0.5%

per annum. A Feller coefficient of 20 ensures that all of the state variables following square-root

processes are positive (this is exact in the continuous-time approximation, and implies a negligible

probability of crossing the zero bound in discrete time).

We obtain the 3 inflation parameters (ηw, σπ, and π0) by targeting the mean, standard deviation

as well as the fraction of inflation that is explained by the common component. In Panel B of

Table VII, we list the expression for the variance of inflation and the fraction explained by the

common component. We target an annualized standard deviation for inflation of 1.1% and an

average inflation rate of 2.9%. 26% of inflation is accounted by the common component. Finally,

for completeness, Panel C also shows the implied moments of nominal interest rates and exchange

rates in this symmetric version of the model. The implied correlation of nominal interest rates is

too high. Introducing heterogeneity in δ will address this problem.

Then, we solve a system of 11 equations to recover these 11 parameter values. The parameter

values that we obtain are listed in Table VIII. Recall that in the symmetric version of the model

all countries share the same δ; we chose a value of 12.84 to match the moments described above.

In the next step, we introduce heterogeneity in the δs.
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Heterogeneity In the second stage of the calibration, we introduce enough heterogeneity in

the SDF loadings δ on the global shock across countries to match an empirical carry trade risk

premium of 5.88% for the subset of developed countries – this is the carry risk premium before

bid-ask spreads; the model obviously does not have transaction costs. The home country keeps

the δ value of 12.84. Table VIII shows the range of δs for the other countries. The δis are linearly

spaced on the interval [δ, δ] for all 30 currencies in our simulation. The moments reported were

generated by drawing 100, 000 observations from a model with 30 currencies.

Table IX presents the simulation results. We list the moments for the nominal and real interest

rates, exchange rates and inflation in the data, as well as the moments implied by the model. Panel

I reports the moments for the US, i.e., the home country in the model. The model’s home country

interest rates match the US interest rates in the data relatively well.

The average nominal interest rate is 4.7% in the model and 4.3% in the US data. The model

slightly under-predicts the volatility of US nominal interest rates (0.6% vs 0.5%), because the only

variation in expected inflation is the common factor zw. Finally, the model under-predicts the

persistence of nominal interest rates (0.98 in the data vs 0.92 in the model).

The model produces an average domestic real interest rate of 1.8% with a standard deviation

of 0.4%, compared to 1.7% and 0.2% respectively in the US TIPS data and 1.4% and 0.5% using

past annual inflation to proxy for expected inflation. The autocorrelation is 0.92, close to the

data. These values are also close to the ones reported in Ang, Bekaert and Wei (2008). The

model matches the mean and standard deviation of US inflation, but the model under-predicts the

persistence of inflation: the first-order autocorrelation at monthly frequencies is 0.46 in the data

compared to 0.27 in the model.

Panel II reports the moments for the cross-section of countries. The model delivers real interest

rates that are as correlated to the US ones as their actual counterparts. The simulated real interest

rates are on average lower, less volatile and more persistent than the ex post real interest rates in

the data, but these are subject to caution. We do not have time-series of real interest rates for the

countries in our sample (except for the US), and, as already noted, we use a proxy for expected

33



inflation.

The nominal interest rates produced by the model are somewhat lower and less volatile than

those in the data. The model roughly matches the average pairwise correlation of foreign with

US interest rates: 0.5 in the model and in the data. The correlation in interest rates is driven by

the common factor zw. The model matches the mean and persistence of the inflation rates but

slightly underestimates their volatilities. The model also matches the fraction of inflation rates’

variations that are explained by the common component in inflation (26% vs 31%). Recall that

there is no inflation risk premium in the model. As a result, we could choose a richer process

for (expected) common inflation that better matches the nominal interest rate and inflation data

without changing any of our asset pricing results. However, to keep the model parsimonious, we

chose not to, since inflation does not play a role in our mechanism.

Finally, we turn to exchange rates. In the model, the cross-sectional average of the standard

deviation of changes in the log spot rates is 12.3%; the corresponding number in the data is

10.2%. Given that the standard deviation of the log pricing kernel is 53%, this implies that the

pricing kernels have to be highly correlated across countries (see Brandt, Cochrane and Santa-Clara

(2006)): the average pairwise correlation of the pricing kernels is 0.97. The cross-sectional average

of the UIP slope coefficient is -.53 in the data, compared to -.46 in the model. However, the model

substantially under-predicts the amount of cross-sectional variation in the UIP slope coefficient in

the data because we have shut down all sources of heterogeneity except in the δs.

4.4.2 Simulated Portfolios

Using the simulated data, we build currency portfolios in the same way as we did in the actual

data. Table X reports the realized returns on these currency portfolios in the model. Panel I

reports the results obtained when sorting on current forward discounts. These moments should be

compared against the same moments in the data reported in Table I.

In the model, the volatility of changes in the exchange rates varies from 11.6% for portfolio 1

to 9.3% for portfolio 5. In the data, this volatility ranges from 9.5% to 10.3% on our small sample

(7.4% to 9.7% in the large sample). As a result, the model over-predicts the volatility of changes
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in spot rates portfolio by portfolio by at most 200 basis points.

In the model, the volatility of the forward discounts is around 105 basis points for all portfolios.

As a result, the model overstates the volatility of interest rates in portfolios 1-5 in both samples

and understates the volatility of interest rates in portfolio 6 in our large sample. The model also

under-predicts the average interest rates in portfolio 6. In the data, portfolio 6 is comprised of

countries which temporarily experience unusually high and volatile inflation. Our parsimonious

specification of a single inflation process for all countries and currencies is not rich enough to match

this. However, real, not nominal, interest rates matter for currency excess returns. The model does

a much better job matching the moments of average real interest differences.

When sorting currencies by current interest rates, the model produces a carry trade risk pre-

mium of 5.91% per annum (4.54% in the data in our large sample). The annualized Sharpe ratio

is 0.48 (.50 in the data).

Panel II reports the results obtained when sorting by the average forward discounts. The long-

short excess return drops to 3.48%, about 60 % of the total carry trade risk premium. In the data,

permanent differences in exposure to global innovations account for half of the total carry trade

premium; in the model, they account for 60%.17

By sorting on average forward discounts, we really are sorting by real interest rates. In the

model, there is a 158 basis point spread between real interest rates in the first and the last portfolio.

In the data, we found a similar pattern (see Table I), but the variation in real interest rates that

we documented was much bigger.

The model matches the turnover data reported in panel III rather well. For the currency

portfolios in the mid range, the turnover is about 2.5 trades per portfolio (1.2 in the data). This

translates into a turnover rate (turnover per portfolio per currency) of about 45%; the rate is

similar to that in the data (40 to 45%), mainly because in the early part of the sample we had

very few currencies in each portfolio.

The simulated market price of carry risk varies for two reasons. First, it is high when the world

risk factor zw is high. Second, this effect is amplified by changes in portfolio composition: higher
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world risk price drives the selection of low-global risk countries into high interest rate portfolios,

and vice versa. Thus, in “bad times,” when zw is high, the spread between the average δ in the

first and the last portfolio increases.

Despite the low unconditional market beta of the carry trade in the data, the carry risk factor

HMLFX is very highly correlated with the stock market during periods of increased market volatil-

ity. The recent sub-prime mortgage crisis offers a good example. Between July 2007 and March

2008, the correlation between US stock returns and HMLFX was .78. This pattern is consistent

with the model. In the two-factor affine model, the conditional correlation of HMLFX and the

SDF in the home country is:

corrt (HMLt+1, mt+1) = −
√

δzw
t + κzt

δzw
t + (γ + κ) zt

.

In the restricted model, this expression collapses to:

corrt (HMLt+1, mt+1) = −
√

δzw
t

δzw
t + γzt

.

As the global component of the conditional market price of risk zw
t increases, the conditional

correlation between the stochastic discount factor at home and the carry trade returns HMLFX

increases.

4.5 Testing the Model

Finally, we subject our model to some ‘out-of-sample tests’. We start by checking whether the

model accurately describes the time-variation in currency betas.

4.5.1 Time-varying Betas

A statistically powerful way to capture time-variation in the individual currencies conditional

betas with respect the two factors is to impose a functional relationship between betas and the

conditioning variables (the forward discounts) that is the same across currencies. If this relationship
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is linear, as assumed in equation (3.4), it can be estimated by running a pooled regression (e.g. as

suggested by Cochrane (2011)) for the entire panel of currencies:

Rxi
t+1 = ci+bHMLHMLFX,t+1+bzi

t
×HMLzi

tHMLFX,t+1+bRXRXt+1+bzi
t
×RXzi

tRXt+1+ǫi,t+1, (4.3)

where the fixed effects ci represent country-specific pricing errors.

Table XI presents the results of this estimation (omitting the fixed effects), for the subsample

of the developed countries and for the whole sample. The coefficient bHML captures an average

country’s unconditional loading on the HMLFX factor; not surprisingly it is small (0.07) and

not significantly different from zero. Also not surprisingly, the coefficient bRX that measures the

average loading on the dollar risk factor is equal to one for the entire sample, and is somewhat

lower at 0.85 in the developed countries sample. The variation in the conditional HMLFX betas

is measured by the coefficient bz×HML. It reaches a value of 0.3 (for the entire sample) and,

jointly with the unconditional loading, implies that a currency whose forward discount is one

cross-sectional standard deviation higher than the average at that time has a conditional beta of

0.37. This coefficient is highly statistically significant. This confirms that the forward discounts

contain conditioning information that is important for understanding the dynamics of carry beta.

Finally, the conditional variation in the dollar factor loading captured by bz×RX is essentially zero.

The last panel reports the results obtained on model-generated data. The model does a remarkable

job in replicating the time variation in the betas. In the model, the coefficient bHML is equal to

0.08, bRX is 1, and bz×HML is equal to 0.35.

Finally, we also replicate on simulated data the asset pricing tests obtained on individual

currencies. To save space, results are reported in the separate appendix. The price of carry

risk estimated using the cross-sectional Fama-MacBeth regressions using both unconditional and

conditional betas is close to the sample mean of the factor, and the model is able to explain roughly

60 − 70% of sample variation in average currency returns.
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4.5.2 Characteristics vs Covariances

Currency-specific attributes other than interest rates could explain some of our findings; maybe

some currencies earn high returns merely because they have high interest rates, not because their

returns co-vary positively with HMLFX . By sorting currencies on interest rate characteristics and

using HMLFX as a factor, are we simply measuring the effects of interest rate characteristics on

currency returns? We address this concern in two ways. First, we run tests to discriminate between

these two explanations on actual and model-generated data. Second, we test other implications of

the model.

The results in the top panel of Table XII suggest that we are simply picking up the effects of

characteristics. This panel reports the cross-sectional asset pricing results obtained after adding the

average interest rate difference for each currency portfolio, which we can call the characteristic, as

a factor. The carry trade risk factor is no longer statistically significant. On the basis of this ‘horse

race’ between the risk factor and the characteristic, one would conclude that the characteristic

wins. However, in the bottom panel, we run the same estimation on simulated data from our

calibrated no-arbitrage model in which only the risk is priced, not the characteristic. We use a

small sample of 300 periods from the same simulation with 30 currencies that we used in section

4.4. The simulation-based estimates are essentially the same as the actual estimates from the data;

the characteristic drives out the risk factor. The estimated risk price for HMLFX has the wrong

sign.

This result is not surprising. In the model, as in the data, there is no variation in exposure

to HMLFX across different currencies that is independent of interest rates. Furthermore, interest

rates are computed from market prices that are recorded without measurement error; factor load-

ings are not. So, the outcome of this horse race, in which the risk factor is at a serious disadvantage,

does not help to distinguish between these competing explanations.
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4.5.3 Volatility as a Risk Factor

As a final test of our model we consider a measure of global financial market volatility as another

proxy for the common risk factor. We expect global volatility to increase in bad times for global

investors. If innovations to the common component of marginal utility growth uw are indeed

correlated with innovations to global volatility zw, then volatility innovations could proxy for

HMLFX innovations. In our model, these innovations are perfectly negatively correlated, so that

volatility should command a negative price of risk.

In the data, our volatility measure is the average volatility of stock returns in local currency

across all currencies in our sample. To build our volatility factor, we first compute the standard

deviation over one month of daily MSCI changes for each currency, and then the cross-sectional

mean of these volatility series. Our risk factor corresponds to volatility innovations, obtained as

log differences of our global volatility series.

The top panel in Table XIII reports the loadings of different portfolio returns on the equity

volatility factor. These loadings confirm our intuition: they decrease monotonically from the first

to the last portfolio from 0.37 to -0.81 in the full sample (reported in the left panel), and from

.58 to -.59 in the case of developed countries (reported in the right panel). High interest rate

countries tend to offer low returns when equity volatility increases. Low interest rate countries,

on the contrary, offer high returns when volatility goes up. As a result, the estimated price of

volatility is negative (and statistically significant), as predicted by the model. Building on our

work, Menkho, Sarno, Schmeling and Schrimpf (2010) find that a measure of global volatility

obtained from currency markets also explains the cross-section of our currency portfolios. Those

results are also consistent with our model.

While the equity volatility risk factor does not use any information on exchange rates, it has

explanatory power for the cross-section of currency excess returns. This is consistent with our

model. However, it cannot replace HMLFX as the pricing factor. In a horse race between these

two risk factors, HMLFX drives out innovations to the volatility factor. We have shown that

HMLFX extracts the common component of the stochastic discount factors directly from currency
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returns; since the global volatility factor is not observed directly but has to be estimated, it is not

surprising that HMLFX has superior explanatory power for returns. As a robustness check, we

sort countries on their global equity volatility betas (as we did for HMLFX betas). Again, we

obtain a clear cross-section of interest rates and currency excess returns. Countries that load more

on global volatility offer higher excess returns because they bear more HMLFX risk.

5 Conclusion

By sorting currencies by their interest rates, we identify a slope factor in currency returns, driven

entirely by common exchange rate variation among different currencies. The higher the currency’s

interest rate, the more the currency is exposed to this slope factor. This suggests a standard APT

approach to explaining carry trade returns. The loadings on this slope factor line up with the

average returns on the currency portfolios.

Furthermore, we derive conditions under which a standard affine model can replicate these

carry trade returns. Heterogeneity in the loadings on a common component in each country’s

SDF is critical. In times of heightened volatility of the common innovations to the SDF, lower

interest rate currencies endogenously become more exposed to the common innovations and hence

they offer insurance, because their exchange rate appreciates in case of an adverse global shock. In

addition, we can recover similar patterns in interest rates and currency returns by sorting currencies

into portfolios based on their exposure to the carry trade risk factor and to a measure of global

volatility in equity markets, not using any interest rate information whatsoever. This suggests that

the common variation in exchange rates that we have uncovered after sorting currencies by their

interest rates is not a statistical artifact produced by sorting the currencies by their interest rates

but instead truly measures differences in exposure to global risk. While we cannot conclusively

disprove them, our work raises the bar for other candidate explanations.
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Notes

1This literature includes world arbitrage pricing theory (developed by Adler and Dumas (1983)

and Solnik (1983)), a world consumption-CAPM (Wheatley (1988)), a world CAPM (Harvey

(1991)), world latent factor models (Campbell and Hamao (1992), Bekaert and Hodrick (1992)

and Harvey, Solnik and Zhou (2002)), world multi-beta models (Ferson and Harvey (1993)), and

more recently work on time-varying capital market integration by Bekaert and Harvey (1995) and

Bekaert, Hodrick and Zhang (2009).
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2In earlier work, Bekaert (1996) and Bansal (1997) had pointed out the need for heteroscedastic

pricing kernels in order to produce time-varying currency risk premia.

3In closely related work, Brandt et al. (2006) infer the need for a large common component in

the pricing kernel from the high Sharpe ratios in equity markets and the low volatility of exchange

rates. Colacito and Croce (forthcoming) deliver a general equilibrium dynamic asset pricing model

with this feature.

4Hodrick (1987) and Lewis (1995) have surveyed this literature. Bansal and Dahlquist (2000)

show that UIP works better for exchange rates of countries that have experienced higher rates of

inflation.

5Bansal and Dahlquist (2000) were the first to examine the cross-sectional relation between

interest rates and currency risk premia. They document that the Hansen and Hodrick (1980) and

Fama (1984) findings seem to apply mostly to developed economies.

6Jones (2009) offers this example to illustrate the size of the implied returns at the peak of

these CIP deviations: “Assuming that USD funds were available, the arbitrageur would attempt

to borrow $1m dollars at 12-month USD LIBOR and enter into a foreign exchange swap to Euros

to invest the funds for an identical term in Euro Libor. On completion of the swap and repayment

of the loan, the arbitrageur will be left with approximately $12,600 (126bp) profit.” We can safely

regard a return of 126 basis points in one of the 26 years of our sample as measurement error.

Taking this into account would change the average return by around 5 basis points.

7We compute real interest rates as nominal interest rates minus expected inflation. We use

the lagged one-year change in log consumer price index as proxy for expected inflation. For some

countries in the developing group, we have no consumer price index data. This is the case for

Kuwait, Saudi Arabia, and United Arab Emirates. The data for Turkey starts in May 1986. The

data for South Africa starts in January 2008.

8Our asset pricing tables report two p-values: in Panel I, the null hypothesis is that all the
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cross-sectional pricing errors are zero. These cross-sectional pricing errors correspond to the dis-

tance between the expected excess return and the 45-degree line in the classic asset pricing graph

(expected excess return as a function of realized excess returns). In Panel II, the null hypothesis

is that all intercepts in the time-series regressions of returns on risk factors are jointly zero. We

report p-values computed as 1 minus the value of the chi-square cumulative distribution function

(for a given chi-square statistic and a given degree of freedom). As a result, large pricing errors

or large constants in the time-series imply large chi-square statistics and low p-values. A p-value

below 5% means that we can reject the null hypothesis that all pricing errors or constants in the

time-series are jointly zero.

9Results available in the separate appendix.

10Unconditional betas at the level of portfolios approximate conditional betas for individual

currencies to the extent that covariation between conditional means of exchange rate changes and

factors is small.

11Finally, we also double-sorted by forward discounts (3 bins) and betas (2 bins), and we found

that there was no significant spread in betas/returns to be generated. This is not surprising, if, as

is the case in our model, interest rates measure the currency’s exposure to the common risk factor,

and the betas are measured with error.

12The detailed results are reported in the separate appendix.

13For example, Ferson and Harvey (1999) use both the rolling window and the linear instrumental

variable approaches to estimate dynamic factor loadings; see numerous references therein.

14Papers that attribute the failure of UIP to systematic risk exposures includes recent papers by

Backus et al. (2001), Harvey et al. (2002), Brennan and Xia (2006), Lustig and Verdelhan (2007),

Bansal and Shaliastovich (2010), Farhi and Gabaix (2010), Colacito (2008), Alvarez, Atkeson and

Kehoe (2009), and Verdelhan (2010). Earlier work includes Korajczyk (1985), Cumby (1988),

Bekaert and Hodrick (1992), Bekaert (1996), and Bansal (1997).
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15When δ is identical at home and abroad, the change in the exchange rate is:

∆qi
t+1 = χ(zi

t − zi) +
(

√

γzi
tu

i
t+1 −

√
γztu

i
t+1

)

.

The real interest rate differential is given by:

ri
t − rt =

(

χ − 1

2
(γ + κ)

)

(zi
t − zt).

Hence, the real UIP slope coefficient for a country with the same δ as the domestic one is given

by:

χ
(

χ − 1
2
(γ + κ)

)

var(zi
t − zi)

(

χ − 1
2
(γ + κ)

)2
var(zi

t − zi)
=

χ
(

χ − 1
2
(γ + κ)

) .

16If the Feller condition 2(1−φ)θ/σ2 > 1 is satisfied, then there exists a unique positive solution

to the equation defining the volatility process z in the continuous-time limit (Feller, 1951).

17 In the restricted model (κ = 0), the entire carry trade premium is due to permanent differences

in that version of the model. However, in the full model, part of the carry trade premium is due to

transitory differences; κ governs the ‘transitory’ fraction of the carry trade risk premium, because

it measures the sensitivity of the price of global risk to local risk aversion.
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Table I: Currency Portfolios — US Investor

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: All Countries Panel II: Developed Countries

Spot change: ∆sj ∆sj

Mean −0.64 −0.92 −0.95 −2.57 −0.60 2.82 −1.81 −1.87 −3.28 −1.57 −0.82
Std 8.15 7.37 7.63 7.50 8.49 9.72 10.17 9.95 9.80 9.54 10.26

Forward Discount: f j − sj f j − sj

Mean −2.97 −1.23 −0.09 1.00 2.67 9.01 −2.95 −0.94 0.11 1.18 3.92
Std 0.54 0.48 0.47 0.52 0.64 1.89 0.77 0.62 0.63 0.66 0.74

Excess Return: rxj (without b-a) rxj (without b-a)

Mean −2.33 −0.31 0.86 3.57 3.27 6.20 −1.14 0.93 3.39 2.74 4.74
Std 8.23 7.44 7.66 7.59 8.56 9.73 10.24 9.98 9.89 9.62 10.33
SR −0.28 −0.04 0.11 0.47 0.38 0.64 −0.11 0.09 0.34 0.29 0.46

Net Excess Return: rxj
net (with b-a) rxj

net (with b-a)

Mean −1.17 −1.27 −0.39 2.26 1.74 3.38 −0.02 −0.11 2.02 1.49 3.07
Std 8.24 7.44 7.63 7.55 8.58 9.72 10.24 9.98 9.87 9.63 10.32
SR −0.14 −0.17 −0.05 0.30 0.20 0.35 −0.00 −0.01 0.21 0.15 0.30

High-minus-Low: rxj − rx1 (without b-a) rxj − rx1 (without b-a)

Mean 2.02 3.19 5.90 5.60 8.53 2.07 4.53 3.88 5.88
Std 5.37 5.30 6.16 6.70 9.02 7.18 7.11 8.02 9.64
SR 0.38 0.60 0.96 0.84 0.95 0.29 0.64 0.48 0.61

High-minus-Low: rxj
net − rx1

net (with b-a) rxj
net − rx1

net (with b-a)

Mean −0.10 0.78 3.42 2.91 4.54 −0.09 2.04 1.51 3.09
[0.30] [0.30] [0.35] [0.38] [0.51] [0.41] [0.40] [0.45] [0.54]

Std 5.40 5.32 6.15 6.75 9.05 7.20 7.11 8.04 9.66
SR −0.02 0.15 0.56 0.43 0.50 −0.01 0.29 0.19 0.32

Real Interest Rate Differential: rj − r rj − r

Mean −1.81 −0.13 0.45 1.04 1.80 3.78 −1.11 0.20 0.76 1.27 3.01
Std 0.56 0.56 0.49 0.57 0.65 0.77 0.78 0.60 0.62 0.62 0.71

Frequency

Trades/currency 0.20 0.34 0.41 0.44 0.42 0.14 0.14 0.28 0.36 0.35 0.10

Notes: This table reports, for each portfolio j, the average change in log spot exchange rates ∆sj , the average log forward discount f j − sj , the average
log excess return rxj without bid-ask spreads, the average log excess return rxj

net with bid-ask spreads, the average return on the long short strategy
rxj

net − rx1
net and rxj − rx1 (with and without bid-ask spreads), the real interest rate differential rj − r, and the portfolio turnover. Log currency excess

returns are computed as rxj
t+1 = −∆sj

t+1+f j
t −sj

t . All moments are annualized and reported in percentage points. Standard errors are reported between
brackets. For excess returns, the table also reports Sharpe ratios, computed as ratios of annualized means to annualized standard deviations. The
portfolios are constructed by sorting currencies into six groups at time t based on the one-month forward discount (i.e nominal interest rate differential)
at the end of period t − 1. The first portfolio contains currencies with the lowest interest rates. The last portfolio contains currencies with the highest
interest rates. Panel I uses all countries, panel II focuses on developed countries. Data are monthly, from Barclays and Reuters (Datastream). The
sample period is 11/1983–12/2009.
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Table II: Currency Portfolios — Sorts on Mean Forward Discounts (Half Sample)

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: All Countries Panel II: Developed Countries

Sorts on Mean Forward Discounts (Half Sample)

Excess Return: rxj (without b-a) rxj (without b-a)

Mean −2.28 −0.69 0.09 1.14 1.74 3.06 −2.94 −0.61 2.01 1.44 1.86
SR −0.24 −0.18 0.01 0.15 0.18 0.26 −0.28 −0.06 0.24 0.15 0.21

Net Excess Return: rxj
net (with b-a) rxj

net (with b-a)

Mean −1.52 −1.21 −0.67 0.45 0.67 1.31 −1.94 −1.42 1.18 0.26 0.48
Std 9.45 3.78 7.32 7.75 9.95 11.88 10.41 10.32 8.37 9.49 9.02

SR −0.16 −0.32 −0.09 0.06 0.07 0.11 −0.19 −0.14 0.14 0.03 0.05

High-minus-Low: rxj
net − rx1

net (with b-a) rxj
net − rx1

net (with b-a)

Mean 0.32 0.86 1.97 2.19 2.83 0.51 3.11 2.20 2.42
SR 0.04 0.10 0.23 0.25 0.23 0.05 0.25 0.20 0.21

Real Interest Rate Differences: rj − r rj − r

Mean −0.96 0.52 −0.23 0.61 0.92 2.43 −1.16 −0.68 0.48 0.27 1.56
Std 0.44 0.60 0.49 0.43 0.55 0.49 0.73 0.42 0.44 0.47 0.45

Sorts on Current Forward Discounts (Half Sample)

Excess Return: rxj (without b-a) rxj (without b-a)

Mean −3.83 −1.36 0.22 1.99 2.22 6.33 −2.25 −0.53 0.91 1.94 3.90
SR −0.50 −0.20 0.03 0.32 0.29 0.67 −0.24 −0.06 0.10 0.22 0.37

Net Excess Return: rxj
net (with b-a) rxj

net (with b-a)

Mean −2.81 −2.23 −0.70 1.02 0.81 3.46 −1.26 −1.48 −0.15 0.84 2.50
SR −0.37 −0.33 −0.10 0.16 0.11 0.37 −0.13 −0.16 −0.02 0.10 0.24

High-minus-Low: rxj
net − rx1

net (with b-a) rxj
net − rx1

net (with b-a)

Mean 0.58 2.11 3.83 3.63 6.28 −0.22 1.11 2.10 3.76
SR 0.11 0.43 0.66 0.54 0.70 −0.03 0.14 0.24 0.35

Real Interest Rate Differences: rj − r rj − r

Mean −1.43 −0.12 0.30 0.81 1.31 3.65 −1.40 −0.26 0.25 0.75 2.69

Std 0.49 0.49 0.33 0.47 0.55 0.67 0.72 0.43 0.42 0.49 0.56

Notes: This table reports, for each portfolio j, the average log excess return rxj without bid-ask spreads, the average log excess return rxj
net with bid-ask

spreads, the average net return on the long short strategy rxj
net − rx1

net and rxj − rx1, and the real interest rate difference rj − r. Log currency excess
returns are computed as rxj

t+1 = −∆sj
t+1 + f j

t − sj
t . All moments are annualized and reported in percentage points. For excess returns, the table also

reports Sharpe ratios, computed as ratios of annualized means to annualized standard deviations. In the top panel, the portfolios are constructed by
sorting currencies into six groups at time t based on the average one-month forward discount (i.e nominal interest rate differential) over the first half of

the sample (11/1983–12/1994). The first portfolio contains currencies with the lowest average interest rates. The last portfolio contains currencies with
the highest average interest rates. In the bottom panel, the portfolios are constructed by sorting currencies on current one-month forward discounts.
Panel I uses all countries, panel II focuses on developed countries. Data are monthly, from Barclays and Reuters (Datastream). The sample period is
1/1995–12/2009.
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Table III: Principal Components

Panel I: All Countries

Portfolio 1 2 3 4 5 6

1 0.42 0.43 0.18 −0.15 0.74 0.20

2 0.38 0.24 0.15 −0.27 −0.61 0.58

3 0.38 0.29 0.42 0.12 −0.28 −0.71

4 0.38 0.04 −0.35 0.83 −0.03 0.18

5 0.43 −0.08 −0.72 −0.44 −0.03 −0.30

6 0.45 −0.81 0.35 −0.03 0.11 0.06

% Var. 71.95 11.82 5.55 4.00 3.51 3.16

Panel II: Developed Countries

Portfolio 1 2 3 4 5

1 0.44 0.66 −0.54 −0.25 0.12

2 0.45 0.25 0.75 0.01 0.41

3 0.46 0.02 0.19 0.04 −0.86

4 0.44 −0.27 −0.29 0.78 0.20

5 0.45 −0.66 −0.14 −0.57 0.17

% Var. 78.23 10.11 4.97 3.49 3.20

Notes: This table reports the principal component coefficients of the currency portfolios presented in Table I. In
each panel, the last row reports (in %) the share of the total variance explained by each common factor. Data are
monthly, from Barclays and Reuters (Datastream). The sample period is 11/1983–12/2009.
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Table IV: Asset Pricing — US Investor

Panel I: Risk Prices

All Countries Developed Countries

λHMLF X
λRX bHMLF X

bRX R2 RMSE χ2 λHMLF X
λRX bHMLF X

bRX R2 RMSE χ2

GMM1 5.50 1.34 0.56 0.20 70.11 0.96 3.29 1.90 0.29 0.20 64.78 0.64
[2.25] [1.85] [0.23] [0.32] 14.39% [2.59] [2.20] [0.23] [0.23] 45.96%

GMM2 5.51 0.40 0.57 0.04 41.25 1.34 3.91 3.07 0.35 0.32 −55.65 1.34
[2.14] [1.77] [0.22] [0.31] 16.10% [2.52] [2.05] [0.22] [0.22] 52.22%

FMB 5.50 1.34 0.56 0.20 70.11 0.96 3.29 1.90 0.29 0.20 64.78 0.64
[1.79] [1.35] [0.19] [0.24] 9.19% [1.91] [1.73] [0.17] [0.18] 43.64%
(1.79) (1.35) (0.19) (0.24) 10.20% (1.91) (1.73) (0.17) (0.18) 44.25%

Mean 5.08 1.33 3.14 1.90

Panel II: Factor Betas

All Countries Developed Countries

Portfolio αj
0 βj

HMLF X
βj

RX R2 χ2(α) p − value αj
0 βj

HMLF X
βj

RX R2 χ2(α) p − value

1 −0.10 −0.39 1.05 91.64 0.36 −0.51 0.99 94.31
[0.50] [0.02] [0.03] [0.53] [0.03] [0.02]

2 −1.55 −0.11 0.94 77.74 −1.17 −0.09 1.01 80.69
[0.73] [0.03] [0.04] [0.85] [0.04] [0.04]

3 −0.54 −0.14 0.96 76.72 0.62 −0.00 1.04 86.50
[0.74] [0.03] [0.04] [0.79] [0.03] [0.03]

4 1.51 −0.01 0.95 75.36 −0.17 0.12 0.97 82.84
[0.77] [0.03] [0.05] [0.85] [0.03] [0.04]

5 0.78 0.04 1.06 76.41 0.36 0.49 0.99 94.32
[0.82] [0.03] [0.05] [0.53] [0.03] [0.02]

6 −0.10 0.61 1.05 93.84
[0.50] [0.02] [0.03]

All 6.79 34.05% 2.63 75.64%

Notes: The panel on the left reports results for all countries. The panel on the right reports results for the developed countries. Panel I reports results
from GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE and
the p-values of χ2 tests on pricing errors are reported in percentage points. b denotes the vector of factor loadings. Excess returns used as test assets
and risk factors take into account bid-ask spreads. All excess returns are multiplied by 12 (annualized). Shanken (1992)-corrected standard errors are
reported in parentheses. We do not include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor betas.
R2s and p-values are reported in percentage points. The standard errors in brackets are Newey and West (1987) standard errors computed with the
optimal number of lags according to Andrews (1991). The χ2 test statistic α′V −1

α α tests the null that all intercepts are jointly zero. This statistic is
constructed from the Newey-West variance-covariance matrix (1 lag) for the system of equations (see Cochrane (2005), p. 234). Data are monthly, from
Barclays and Reuters in Datastream. The sample period is 11/1983–12/2009. The alphas are annualized and in percentage points.
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Table V: HMLFX -Beta-Sorted Currency Portfolios — US Investor

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: All Countries Panel II: Developed Countries

Spot change: ∆sj ∆sj

Mean −1.29 −1.33 −1.15 −2.34 −0.40 0.53 −2.15 −0.43 −0.18 −1.11 −2.28
Std 8.82 7.85 8.18 7.67 8.67 8.44 9.61 9.44 10.47 10.21 9.96

Discount: f j − sj f j − sj

Mean −1.40 −0.34 0.70 1.01 1.58 3.73 −1.67 −0.67 0.68 1.01 2.53
Std 0.66 0.66 0.77 0.66 0.73 0.59 0.79 0.62 0.88 0.98 0.59

Excess Return: rxj (without b-a) rxj (without b-a)

Mean −0.11 0.99 1.85 3.35 1.98 3.20 0.48 −0.24 0.86 2.12 4.80
Std 8.92 7.88 8.20 7.69 8.63 8.43 9.70 9.48 10.47 10.22 9.96
SR −0.01 0.13 0.23 0.44 0.23 0.38 0.05 −0.02 0.08 0.21 0.48

High-minus-Low: rxj − rx1 (without b-a) rxj − rx1 (without b-a)

Mean 1.10 1.96 3.47 2.09 3.31 −0.72 0.38 1.64 4.32
[0.33] [0.38] [0.45] [0.55] [0.57] [0.40] [0.52] [0.54] [0.60]

Std 5.41 6.28 7.48 9.15 9.56 6.64 8.67 9.08 10.02
SR 0.20 0.31 0.46 0.23 0.35 −0.11 0.04 0.18 0.43

Pre-formation β Pre-formation β

Mean −0.39 −0.24 −0.15 −0.01 0.21 0.56 −0.43 −0.24 −0.03 0.06 0.37
Std 0.28 0.25 0.27 0.28 0.44 0.45 0.28 0.31 0.54 0.52 0.47

Post-formation β Post-formation β

Estimate −0.34 −0.19 −0.19 −0.01 0.13 0.34 −0.38 −0.09 0.04 0.04 0.38
s.e [0.04] [0.04] [0.04] [0.05] [0.06] [0.04] [0.05] [0.05] [0.04] [0.05] [0.03]

Notes: This table reports, for each portfolio j, the average change in the log spot exchange rate ∆sj , the average log
forward discount f j − sj , the average log excess return rxj without bid-ask spreads and the average returns on the
long short strategy rxj − rx1. The left panel uses our sample of developed and emerging countries. The right panel
uses our sample of developed countries. Log currency excess returns are computed as rxj

t+1 = −∆sj
t+1 + f j

t − sj
t .

All moments are annualized and reported in percentage points. Standard errors are reported between brackets. For
excess returns, the table also reports Sharpe ratios, computed as ratios of annualized means to annualized standard
deviations. Portfolios are constructed by sorting currencies into six groups at time t based on slope coefficients
βi

t. Each βi
t is obtained by regressing currency i log excess return rxi on HMLFX on a 36-period moving window

that ends in period t − 1. The first portfolio contains currencies with the lowest βs. The last portfolio contains
currencies with the highest βs. We report the average pre-formation beta for each portfolio. The last panel reports
the post-formation betas obtained by regressing realized log excess returns on portfolio j on HMLFX and RXFX .
We only report the HMLFX betas. The standard errors are reported in brackets. Data are monthly, from Barclays
and Reuters (Datastream). The sample period is 11/1983–12/2009.
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Table VI: Country-Level Asset Pricing

λHMLF X
λRX bHMLF X

bRX R2 RMSE MAPE χ2

Panel I: Developed Countries

Unconditional Betas

3.69 2.93 3.90 3.70 59.55 1.11 0.86

[2.31] [1.76] [2.47] [2.25] 36.10

Unconditional and Conditional Betas using Managed Currency Excess Returns

3.65 2.94 3.85 3.71 75.53 1.17 0.88

[2.20] [1.76] [2.34] [2.25] 39.85

Conditional Betas using Rolling Windows

3.30 2.43 3.49 3.06 84.19 0.69 0.57

[2.05] [1.76] [2.19] [2.24] 36.84

Conditional Betas using Forward Discounts

3.96 2.92 4.18 3.68 31.70 1.45 1.08

[2.50] [1.71] [2.66] [2.18] 34.73

Panel II: All Countries

Unconditional Betas

3.40 2.54 4.04 5.04 48.29 2.85 1.88

[2.53] [1.38] [3.15] [2.89] 42.36

Unconditional and Conditional Betas using Managed Currency Excess Returns

4.78 2.69 5.74 5.25 51.51 2.67 1.62

[2.44] [1.38] [3.03] [2.89] 41.77

Conditional Betas using Rolling Windows

4.64 2.34 5.59 4.54 65.76 2.21 1.48

[1.99 ] [1.35] [2.47] [2.82] 37.84

Conditional Betas using Forward Discounts

4.43 2.23 5.33 4.33 66.22 2.36 1.82

[1.59] [1.28] [1.95] [2.63] 33.62

Notes: The table reports results from Fama-MacBeth asset pricing procedure using individual currency excess
returns. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE, the mean absolute
pricing error MAPE, and the p-values of χ2 tests on pricing errors are reported in percentage points. b denotes the
vector of factor loadings. Excess returns used as test assets do not take into account bid-ask spreads. Risk factors
HML and RX come from portfolios of currency excess returns that take into account bid-ask spreads. HML
correspond to a carry trade strategy, long high interest rate currencies and short low interest rate currencies. RX
corresponds to the average currency return across all portfolios. All excess returns are multiplied by 12 (annualized).
We do not include a constant in the second step of the FMB procedure. The standard errors in brackets are Newey
and West (1987) standard errors computed with the optimal number of lags according to Andrews (1991). Data
are monthly, from Barclays (panel I) and Barclays and Reuters (panel II) in Datastream. The sample period is
11/1983–12/2009.
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Table VII: Calibrating The Symmetric Model

Moment Target

(Monthly) (Annualized)

Panel A: 8 Targets – Moments of Real Variables

βUIP
χ

(χ− 1

2
(γ+κ))

−0.50 −0.50

E(rUS) θ
[

α +
(

χ − 1
2 (γ + κ)

)

+
(

τ − 1
2δi
)]

0.11% 1.37%

Std(rUS)

√

(

χ − 1
2 (γ + κ)

)2
var(zi) +

(

τ − 1
2δi
)2

var(zw) 0.15% 0.51%

ρ(rUS
t ) φ 0.95 0.95

Ecross [Std(∆q)]
√

2γθ + 2χ2var(zi) + o 3.13% 10.85%

Std(m)
√

(γ + δ + κ)θ + χ2var(zi) + τ2var(zw) 14.43% 50.00%

Ecross

[

Corr(rUS
t , r⋆

t )
] (

τ − 1
2δi
)2 V ar(zw)

V ar(r) 0.19 0.19

E(rxt) γθ 0.04% 0.50%

Feller 2(1 − φ) θ
V ar(zw) 20.00 20.00

Panel B: 3 Targets – Moments of Inflation

E(πUS) π0 + ηwθ 0.24% 2.92%

Std(πUS)
√

(ηw)2var(zw) + σ2
π 0.32% 1.10%

Ecross

[

R2
] (ηw)2var(zw)

var(inflation) 0.26 0.26

Panel C: Moments of Nominal Variables

E(iUS) θ
[

α +
(

χ − 1
2 (γ + κ)

)

+
(

τ + ηw − 1
2δi
)]

− 1
2σ2

π 0.36% 4.29%

Std(iUS)

√

(

χ − 1
2 (γ + κ)

)2
var(zi) +

(

τ + ηw − 1
2δi
)2

var(zw) 0.18% 0.63%

Ecross [Std(∆s)]
√

2γθ + 2χ2var(zi) + 2σ2
π + o 2.96% 10.25%

Ecross

[

Corr(iUS
t , i⋆t

] (

τ + ηw − 1
2δi
)2 V ar(zw)

V ar(r) 0.39 0.46

This table first reports the moments used in the calibration. The first column defines each moment, the second
column presents its closed-form expression in the symmetric version of our model, while the last two columns report
the monthly and annual empirical values of each moment in our data. The first panel reports moments of real
variables: the UIP slope coefficient βUIP , the mean, standard deviation and autocorrelation of the US real interest
rate rUS , the average standard deviation of changes in real exchange rates ∆q, the standard deviation of the log
SDF m, the average cross-country correlation of real interest rates, the average return rx of a US investor on
currency markets, as well as the Feller coefficient. The second panel reports the mean and standard deviation of
US inflation, along with the average R2 in regressions of each country’s inflation on world inflation. The third
panel presents moments that are not used in the calibration but implied by the moments described in the first two
panels. The third panel thus reports the mean and standard deviation of US nominal interest rates, the average
standard deviation of nominal exchange rates, and the average cross-country correlation of nominal interest rates.

Note that var(zw) =
σ2

wθ

1−φ2 and var(zi) =
σ2

i θ

1−φ2 . o = 2(δ + κ)θ − 2E
(

√

δizw
t + κizt

)(

√

δizw
t + κizi

t

)

is an order

of magnitude smaller than the other terms. Data are monthly, from Barclays (Datastream). The sample runs from
11/1983 to 12/2009. For means and standard deviations, we report annualized values by multiplying their monthly
counterparts by 12 and

√
12 respectively. The other moments are not annualized.

55



Table VIII: Parameter Values

Pricing Kernel Parameters

α (%) χ γ κ δ∗ δ δ

0.86 2.78 0.65 16.04 12.84 8.35 17.34

Factor and Inflation Dynamics

φ θ (in bp) σ (%) ηw σπ π0 (%)

0.92 7.81 0.25 9.41 0.27 −0.49

This table reports the parameter values for the calibrated version of the full model. All countries share the same
parameter values except for δ. δ∗ is the parameter for the home country. These 11 parameters were chosen to match
the 11 moments in Table VII. The parameters δi are linearly spaced on the interval [δ, δ]. α, σ and π0 are reported
in percentages. θ is reported in basis points.
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Table IX: Simulated Moments

Moment Nominal Values Real Values

Data Model Data Model

Panel I: Time Series Moments – Home Country

Interest Rates

E
[

rUS
]

4.29% 4.74% 1.37% 1.84%

Std
[

rUS
]

0.63% 0.50% 0.51% 0.41%

ρ
[

rUS
]

0.98 0.92 0.95 0.92

Inflation

E
[

πUS
]

2.92% 2.89%

Std
[

πUS
]

1.10% 1.10%

ρ
[

πUS
]

0.46 0.27

Panel II: Cross-Sectional Moments – All Countries

Interest Rates

Ecross (E [r]) 5.89% 4.62% 2.53% 1.72%

Ecross (Std [r]) 1.27% 0.50% 0.82% 0.42%

Ecross (ρ [r]) 0.69 0.92 0.54 0.92

Ecross

(

corr
[

rUS , r⋆
])

0.46 0.53 0.19 0.31

Exchange Rates

Ecross

(

Std
[

∆qt+1

])

10.25% 12.26% 10.85% 12.19%

Ecross (βUIP ) −0.53 −0.46 −0.09 −0.46

Stdcross (βUIP ) 0.84 0.07 0.90 0.07

Inflation

Ecross (E [π]) 2.90% 2.90%

Ecross (Std [π]) 1.34% 1.10%

Ecross (ρ [π]) 0.22 0.26

Ecross

(

R2
)

0.26 0.31

Stochastic Discount Factor

Ecross

[

Std(mt+1)
]

0.53 0.53

Ecross

[

corr(mUS
t+1, mt+1)

]

0.97 0.97

This table reports the annualized means and standard deviations of nominal and real variables in the data and in
the model. The autocorrelations (ρ) reported are monthly. In the first section of Panel I, the table presents the
mean, standard deviation, and autocorrelation of the risk-free rate in the home country (the US). In the second
section of Panel I, the table presents the mean, standard deviation, and autocorrelation of the inflation rate in the
home country. In the first section of Panel II, the table reports the cross-sectional average of the mean, standard
deviation, autocorrelation and cross-country correlation of the risk-free rates in all countries. In the second section
of Panel II, the table reports the cross-sectional average of exchange rates’ volatilities and the cross-sectional average
and volatility of the UIP slope coefficients. In the third section of Panel II, the table reports the cross-sectional
average of the mean, standard deviation, autocorrelation and R2 of inflation rates. The R2 corresponds to the share
of each country’s inflation variance explained by the average inflation rate. In the fourth section of Panel II, the
table reports the cross-sectional average of the SDF volatility and of the cross-country correlation of all SDFs.
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Table X: Currency Portfolios - Simulated data

Portfolio 1 2 3 4 5 6

Panel I: Sorting on Current Forward Discounts

Spot change: ∆sj

Mean 0.52 0.03 −0.20 −0.24 −0.38 −0.66
Std 11.60 10.03 9.49 9.31 9.29 9.82

Forward Discount: f j − sj

Mean −2.87 −1.62 −0.86 −0.18 0.49 1.86
Std 1.11 1.06 1.05 1.04 1.05 1.08

Excess Return: rxj

Mean −3.39 −1.65 −0.66 0.06 0.87 2.52
Std 10.86 9.47 8.97 8.82 8.80 9.34
SR −0.31 −0.17 −0.07 0.01 0.10 0.27

High-minus-Low: rxj − rx1

Mean 1.74 2.73 3.45 4.26 5.91
Std 6.64 7.48 8.48 9.53 12.27
SR 0.26 0.36 0.41 0.45 0.48

Average real interest rate difference: rj − r

Mean −2.87 −1.62 −0.86 −0.18 0.49 1.86
Std 1.11 1.06 1.05 1.04 1.05 1.08

Turnover

Trades/currency 0.21 0.45 0.52 0.53 0.51 0.13

Panel II: Sorting on Average Forward Discounts

Forward Discount: f j − sj

Mean −1.99 −1.44 −0.85 −0.21 0.46 1.41
Std 1.18 1.16 1.14 1.14 1.15 1.12

High-minus-Low: rxj − rx1

Mean 0.68 1.24 1.82 2.54 3.48
Std 5.57 5.82 6.34 7.12 7.89
SR 0.12 0.21 0.29 0.36 0.44

Average real interest rate difference: rj − r

Mean −1.99 −1.44 −0.85 −0.21 0.46 1.41
Std 1.18 1.16 1.14 1.14 1.15 1.12

Notes: Panel I of this table reports, for each portfolio j, the average change in log spot exchange rates ∆sj , the
average log forward discount f j − sj , the average log excess return rxj and the average return on the long short
strategy rxj − rx1. All these moments are defined as in Table I. The portfolios are constructed by sorting currencies
into six groups at time t based on the one-year forward discount (i.e nominal interest rate differential) at the end
of period t − 1. The first portfolio contains currencies with the lowest interest rates. The last portfolio contains
currencies with the highest interest rates. All data are simulated from the model. Panel II of this table reports, for
each portfolio j, the average return on the long short strategy rxj − rx1, the average log forward discount f j − sj ,
and the average real interest rate difference: rj − r. The portfolios are constructed by sorting currencies into six
groups at time t based on the average one-year forward discount (i.e nominal interest rate differential) over the
entire period. As a result, there is no rebalancing in this case.
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Table XI: Time-Varying Betas: Data and Model

bHML bRX bz×HML bz×RX

Panel I: Developed Countries

0.07 0.85 0.26 0.06

Robust [ 0.05] [ 0.09] [ 0.08] [ 0.04]

NW [ 0.02] [ 0.02] [ 0.02] [ 0.02]

Panel II: All Countries

0.07 1.01 0.31 0.02

Robust [ 0.04] [ 0.09] [ 0.06] [ 0.06]

NW [ 0.02] [ 0.02] [ 0.03] [ 0.03]

Panel III: Simulated data

0.08 1.00 0.35 -0.01

Robust [ 0.01] [ 0.00] [ 0.01] [ 0.00]

NW [ 0.00] [ 0.01] [ 0.00] [ 0.01]

Notes: The table reports results from the panel regressions of excess returns on individual currencies on the risk
factors scaled with the currency-specific forward discounts. The excess returns used as test assets do not take into
account bid-ask spreads. Risk factors HML and RX come from portfolios of currency excess returns that do take
into account bid-ask spreads. HML correspond to a carry trade strategy, long high interest rate currencies and short
low interest rate currencies. RX corresponds to the average currency return across all portfolios. All excess returns
are multiplied by 12 (annualized). zi

t is the country-specific forward discount rescaled to have a cross-sectional mean
of 0 and standard deviation of 1 at any time t. The standard errors in brackets are robust with clustering by month
and currency (Robust) or Newey and West (1987) with 2 lags (NW). Data are monthly, from Barclays (panel I) and
Barclays and Reuters (panel II) in Datastream. The sample period is 11/1983–12/2009.
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Table XII: Asset Pricing — With Characteristics

Panel I: Data

All Countries Developed Countries

λHMLF X
λRX λFD R2 RMSE p − val λHMLF X

λRX λFD R2 RMSE p − val

FMB −4.87 1.82 0.88 70.55 0.82 −7.44 −2.28 1.47 47.07 0.64

[5.22] [1.64] [0.54] 10.15 [10.97] [3.73] [1.52] 16.92

Panel II: Simulation

λHMLF X
λRX λFD R2 RMSE p − val

FMB −1.28 1.24 1.48 97.15 0.27

[8.26] [2.54] [1.79] 90.02

Notes: This table reports results from a Fama-McBeth asset pricing procedure with characteristics: the average
interest rate differential in each portfolio is added to the second stage of the Fama-McBeth estimation. Market
prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE and the p-values of χ2 tests on
pricing errors are reported in percentage points. The first panel uses actual data. Excess returns used as test assets
and risk factors take into account bid-ask spreads. Data are monthly, from Barclays and Reuters in Datastream.
The sample period is 11/1983–12/2009. The second panel uses the last 300 periods of simulated data. All excess
returns are multiplied by 1200 (i.e., in percent, annualized). We do not include a constant in the second step of the
FMB procedure.
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Table XIII: Asset Pricing - Equity Volatility Risk Factor (Innovations)

Panel I: Factor Betas

All Countries Developed Countries

Portfolio βj
V olEquity

βj
RX R2 βj

V olEquity
βj

RX R2

1 0.37 1.04 74.78 0.58 0.99 72.55

[0.12] [0.05] [0.25] [0.06]

2 0.22 0.94 76.21 0.16 1.01 80.01

[0.10] [0.04] [0.14] [0.04]

3 0.19 0.95 74.34 0.20 1.04 86.67

[0.10] [0.04] [0.13] [0.03]

4 0.13 0.95 75.44 −0.35 0.97 82.02

[0.08] [0.05] [0.18] [0.04]

5 −0.10 1.06 76.30 −0.59 0.99 74.50

[0.13] [0.05] [0.16] [0.05]

6 −0.81 1.07 63.84

[0.16] [0.06]

Panel II: Risk Prices

All Countries Developed Countries

λV olEquity
λRX R2 λV olEquity

λRX R2

FMB −4.20 1.33 66.10 −2.31 1.91 48.12

[1.41] [1.35] [1.46] [1.73]

(1.65) (1.35) (1.53) (1.73)

Notes: The panel on the left reports empirical results using actual data for all countries. The panel on the right
reports results for the simulated data from the calibrated model. Panel I reports OLS estimates of the factor betas.
Panel II reports risk prices from the Fama-MacBeth cross-sectional regression. Market prices of risk λ and adjusted
R2s are reported in percentage points. Excess returns used as test assets and risk factors take into account bid-ask
spreads. All excess returns are multiplied by 12 (annualized). To build our volatility factor, we first compute the
standard deviation over one month of daily MSCI changes for each country in our sample. We then compute the
cross-sectional mean of these volatility series. Our risk factor corresponds to volatility innovations, obtained as log
differences of our global volatility series. We do not include a constant in the second step of the FMB procedure.
The sample period is 11/1983–12/2009. The standard errors in brackets are Newey and West (1987) standard errors
computed with the optimal number of lags according to Andrews (1991). Shanken (1992)-corrected standard errors
are reported in parentheses.
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Abstract

In this separate appendix, we first report in Section 1 the asset pricing results ob-

tained with the first principal components of our currency portfolios. We then check in

Section 2 that our betas are driven by exchange rate changes, not interest rate varia-

tions. Section 3 reports an additional robustness check: we split the sample of countries

in two groups and show that risk factors built using currencies that do not belong to

the portfolios used as test assets can still price these assets. Section 4 checks that our

two risk factors (RX and HMLFX) in the model price the cross-section of simulated

portfolios and replicate the asset pricing tests on individual currencies. Finally, Section

5 focuses on portfolios of countries sorted by their global equity volatility betas.
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1 Principal Components as Asset Pricing Factors

The paper presents our main asset pricing estimates. In this appendix, we first build some

intuition for why the second principal component is a good candidate risk factor. Following

Cochrane and Piazzesi (2008), we compute the covariance of each principal component with

the currency portfolio returns, and we compare these covariances (indicated by triangles)

with the average currency excess returns (indicated by squares) for each portfolio. Figure 1

illustrates that the second principal component is the only promising candidate. Its covari-

ance with currency excess returns increases monotonically as we go from portfolio 1 to 6.1

This is not the case for any of the other principal components. As a result, in the space of

portfolio returns, the second principal component is crucial.

[Figure 1 about here.]

We thus can use the two first principal components themselves as risk factors. The results

are reported in Table 1. The risk price of the carry factor (the second principal component)

is 4.16 % per annum and the risk price of the dollar factor (the first principal component)

is 3.46 % per annum. The risk-adjusted return on HMLFX is -21 basis points per annum.

The only portfolio with a statistically significant positive risk-adjusted return is the fourth

one. However, the null that the α’s are jointly zero cannot be rejected.2 All of the statistics

of fit are virtually identical to those that we obtained we when we used HMLFX and RXFX

as factors.

[Table 1 about here.]

2 Exchange Rate Betas

A natural question is whether the unconditional betas of our main asset pricing experiment

are driven by the covariance between exchange rate changes and risk factors, or between

interest rate changes and risk factors. This is important because the conditional covariance

between the log currency returns and the carry trade risk factor obviously only depends on

the spot exchange rate changes:

covt

[

rx
j
t+1, HMLFX,t+1

]

= −covt

[

∆s
j
t+1, HMLFX,t+1

]

.

The regression of the log changes in spot rates for each portfolio on the factors reveals that

these conditional betas are almost identical to the unconditional ones (with a minus sign),

as expected. Table 2 in this appendix shows the currency betas. Low interest currencies
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offer a hedge against carry trade risk because they appreciate when the carry return is low,

not because the interest rates on these currencies increase. High interest rate currencies

expose investors to more carry risk, because they depreciate when the carry return is low,

not because the interest rates on these currencies decline. This is exactly the pattern that

our no-arbitrage model delivers. Our analysis within the context of the model focuses on

conditional betas.

[Table 2 about here.]

3 Robustness Check: Splitting Samples

To guard against a mechanical relation between the returns and the factors, we randomly

split our large sample of developed and emerging countries into two sub-samples.

To do so, we sort countries alphabetically and consider two groups. Table 3 reports

market prices of risk and factor betas. The panel on the left uses countries A to M as test

assets; the panel on the right uses countries N to Z as test assets. We use two risk factors:

the return on high interest rate minus low interest rate countries and the average return on

currency markets. On the left panel, risk factors are built from portfolios of countries N to

Z. On the right panel, risk factors are built from portfolios of countries A to M. As a result,

test assets and risk factors belong to two non-overlapping sets of countries.

Clearly, risk factors built using currencies that do not belong to the portfolios used as test

assets can still explain currency excess returns. However, the market price of risk appears

higher and less precisely estimated than on the full sample, and thus further from its sample

mean. This happens because, by splitting the sample, we introduce more measurement error

in HMLFX . This shrinks the betas in absolute value (towards zero), lowers the spread in

betas between high and low interest rate portfolios and hence inflates the risk price estimates.

However, portfolio betas increase monotonically from the first to the last portfolio, showing

that common risk factors are at work on currency markets.

[Table 3 about here.]

We also bootstrapped the sample-splitting experiment. For each run of the bootstrap, we

draw randomly two sub-samples of countries. We build four portfolios on each sub-sample.

We use the first set of portfolios as test assets and we build two risk factors out of the

second set of portfolios: the dollar and carry trade risk factors. Again, test assets and risk

factors belong to two non-overlapping sets of countries. We do not take into account bid-ask

spreads. We repeat the estimation 1,000 times. The estimated risk price for HMLFX is
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18.11 with a standard deviation of 6, compared to mean of HMLFX of 6.77 with a standard

deviation of 1.45. This seems to confirm that splitting the sample introduces more noise in

the factors and shrinks the betas.

4 Model

In our model, the two asset pricing factors RX and HMLFX completely explain the cross-

sectional variation in average excess returns on the currency portfolios – this is true by

construction. For completeness, we report these asset pricing results obtained on simulated

data in Table 4. In the cross-sectional asset pricing tests, the estimated market price of the

carry trade factor HMLFX is 5.91% per annum, very close to the sample mean. The price

of the aggregate market return RX is -0.38% and not statistically significant. This is due

to the fact that we assigned the home country’s pricing kernel an “average” loading on the

global risk factor. Due to the cross-sectional heterogeneity in the loadings on the world risk

factor, our model is able to reproduce the variation in average returns on currency portfolios,

and in particular the large average return on the carry trade factor. The bottom panel in

Table 4 reports the loadings of different currency portfolio returns on the two factors. As can

be seen from the pattern in the betas, our model reproduces the common factor structure

in currency portfolio returns and hence in exchange rates.

[Table 4 about here.]

We also replicate the asset pricing tests on individual currencies. One difference between

the simulated and the actual data is that in the model we have a balanced panel whereas in

the data some currencies only appear in the sample in the later years, while others disappear

over time. Nevertheless, as shown in Table 5, the model closely matches the empirical evi-

dence. The price of carry risk estimated using the cross-sectional Fama-MacBeth regressions

using both unconditional and conditional betas is close to the sample mean of the factor,

and the model is able to explain roughly 60 − 70% of sample variation in average currency

returns.

[Table 5 about here.]

5 Global Volatility Betas

As a robustness check, we sort countries on their global equity volatility betas (as we did

for HMLFX betas). For each date t, we first regress each currency i log change in exchange
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rate ∆si on a constant and V olEquity using a 36-month rolling window that ends in period

t − 1. This gives us currency i’s exposure to V olEquity, and we denote it β
i,V ol
t . It only

uses information available at date t. We then sort currencies into six groups at time t

based on these slope coefficients β
i,V ol
t . In constructing these portfolios, we do not use any

information on interest rates. The first portfolio contains currencies with the lowest βs. The

last portfolio contains currencies with the highest βs. Table 6 reports summary statistics

on these portfolios. The first panel reports average changes in exchange rates. The second

panel shows that average forward discounts increase monotonically from the first portfolio

to the last portfolio. Again, we have not used any information on exchange rates or interest

rates to obtain these portfolios. Yet, they deliver a clear cross-section of interest rates. The

third panel reports the average log excess returns. In both samples, they are monotonically

increasing. The last three panels report pre- and post-formation betas. Pre-formation betas

(obtained over short windows) are more volatile than post-formation betas (obtained over

the entire sample). These post-formation volatility betas are not significant, across portfolios

and for both samples. However, using HMLFX , the post-formation betas that we obtain over

the entire sample are significant, and we recover a monotonic cross-section. Countries that

load more on global volatility offer higher excess returns because they bear more HMLFX

risk.

[Table 6 about here.]
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Table 1: Asset Pricing — US Investor — Principal Components

Panel I: Factor Prices and Loadings

All Countries Developed Countries

λc λd bc bd R2 RMSE χ2 λ2 λ1 bc bd R2 RMSE χ2

GMM1 4.16 3.46 0.73 0.10 76.15 0.86 2.45 4.26 0.41 0.09 72.43 0.56
[1.63] [4.48] [0.29] [0.13] 20.62% [1.83] [4.94] [0.30] [0.11] 57.37%

GMM2 4.17 0.96 0.73 0.03 42.27 1.33 3.06 6.64 0.51 0.14 −31.67 1.23
[1.47] [4.25] [0.26] [0.12] 23.48% [1.72] [4.51] [0.28] [0.10] 65.21%

FMB 4.16 3.46 0.73 0.10 76.15 0.86 2.45 4.26 0.40 0.09 72.43 0.56
[1.35] [3.32] [0.24] [0.10] 16.50% [1.39] [3.87] [0.23] [0.08] 50.74%
(1.35) (3.32) (0.24) (0.10) 17.89% (1.39) (3.87) (0.23) (0.08) 51.34%

Mean 4.16 3.46 2.45 4.26

Panel II: Factor Betas

All Countries Developed Countries

Portfolio αj
0 βj

c βj
d R2 χ2(α) p − value αj

0 βj
d βj

c R2 χ2(α) p − value

1 −0.31 −0.43 0.42 86.41 0.38 −0.66 0.44 91.77
[0.67] [0.03] [0.01] [0.63] [0.04] [0.01]

2 −1.17 −0.24 0.38 79.85 −0.86 −0.25 0.45 83.17
[0.71] [0.03] [0.02] [0.80] [0.05] [0.02]

3 −0.06 −0.29 0.38 80.08 0.65 −0.02 0.46 86.81
[0.73] [0.04] [0.01] [0.78] [0.04] [0.01]

4 1.53 −0.04 0.38 74.92 −0.47 0.27 0.44 85.23
[0.77] [0.04] [0.02] [0.80] [0.04] [0.02]

5 0.55 0.08 0.43 77.38 0.27 0.66 0.45 93.86
[0.83] [0.05] [0.02] [0.55] [0.04] [0.01]

6 −0.52 0.81 0.45 96.81
[0.36] [0.02] [0.01]

All 5.49 48.23 2.14 83.00

Notes: The factors are the first and the second principal components (denoted d, for the “dollar” factor, and c, for the “carry” factor, respectively).
The panel on the left reports results for all countries. The panel on the right reports results for the developed countries. Panel I reports results from
GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE and the
p-values of χ2 tests on pricing errors are reported in percentage points. b denotes the vector of factor loadings. Excess returns used as test assets and
risk factors take into account bid-ask spreads. All excess returns are multiplied by 12 (annualized). The standard errors in brackets are Newey and
West (1987) standard errors computed with the optimal number of lags according to Andrews (1991). Shanken (1992)-corrected standard errors are
reported in parentheses. We do not include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor betas.
R2s and p-values are reported in percentage points. The χ2 test statistic α′V −1

α α tests the null that all intercepts are jointly zero. This statistic is
constructed from the Newey-West variance-covariance matrix (1 lag) for the system of equations (see Cochrane (2005), p. 234). Data are monthly,
from Barclays and Reuters in Datastream. The sample period is 11/1983–12/2009. The alphas are annualized and in percentage points.

7



Table 2: Conditional Betas — US Investor

All Countries Developed Countries

Portfolio βj
HMLF X

βj
RX R2 βj

HMLF X
βj

RX R2

1 0.38 −1.03 91.21 0.50 −0.98 93.99
[0.02] [0.03] [0.03] [0.02]

2 0.11 −0.93 77.27 0.09 −1.00 80.10
[0.03] [0.04] [0.04] [0.04]

3 0.14 −0.95 75.71 −0.00 −1.03 86.15
[0.03] [0.04] [0.03] [0.03]

4 0.01 −0.94 75.02 −0.12 −0.97 81.84
[0.03] [0.05] [0.04] [0.04]

5 −0.04 −1.05 74.29 −0.50 −0.98 93.76
[0.03] [0.05] [0.02] [0.02]

6 −0.61 −1.05 91.48

[0.02] [0.03]

Notes: The panel on the left reports results for all countries. The panel on the right reports results for the
developed countries. The table reports OLS estimates of the factor betas obtained by regressing changes
in log spot exchange rates ∆sj

t+1 on the factors. R2s are reported in percentage points. Data are monthly,
from Barclays and Reuters in Datastream. The sample period is 11/1983–12/2009. The standard errors in
brackets are Newey and West (1987) standard errors computed with the optimal number of lags according
to Andrews (1991).
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Table 3: Asset Pricing — Alphabetical Sorts

Panel I: Risk Prices

Countries A to M Countries N to Z

λHMLF X
λRX bHMLF X

bRX R2 RMSE χ2 λHMLF X
λRX bHMLF X

bRX R2 RMSE χ2

GMM1 17.83 5.52 1.53 0.39 79.49 0.99 11.86 1.83 1.33 0.19 97.68 0.25

[7.27] [2.87] [0.64] [0.34] 15.97 [5.44] [2.12] [0.61] [0.39] 86.60

GMM2 16.37 5.13 1.41 0.37 78.23 1.02 12.56 1.93 1.40 0.20 96.57 0.31

[7.07] [2.84] [0.62] [0.34] 16.32 [5.19] [2.09] [0.58] [0.38] 87.38

FMB 17.83 5.52 1.53 0.39 79.49 0.99 11.86 1.83 1.32 0.19 97.69 0.25

[4.50] [1.75] [0.40] [0.23] 8.27 [3.90] [1.39] [0.44] [0.26] 84.55

(5.02) (1.81) (0.45) (0.23) 14.56 (4.14) (1.40) (0.47) (0.27) 86.53

Mean 5.51 2.43 7.04 2.34

Panel II: Factor Betas

Countries A to M Countries N to Z

Portfolio αj
0 βj

HMLF X
βj

RX R2 χ2(α) p − value αj
0 βj

HMLF X
βj

RX R2 χ2(α) p − value

1 −0.13 −0.26 0.83 65.68 −0.15 −0.18 1.16 80.69

[0.08] [0.03] [0.05] [0.06] [0.03] [0.05]

2 −0.00 −0.17 0.73 58.37 −0.03 −0.06 1.03 66.98

[0.08] [0.03] [0.05] [0.09] [0.05] [0.07]

3 0.20 −0.15 0.80 64.48 0.00 0.11 1.02 68.10

[0.08] [0.03] [0.05] [0.09] [0.04] [0.06]

4 0.28 0.09 0.88 62.41 0.05 0.27 1.12 51.26

[0.10] [0.05] [0.06] [0.13] [0.05] [0.08]

All 12.41 1.46 5.53 23.69

Notes: We sort countries alphabetically and consider two groups. The panel on the left uses countries A to M as test assets; the panel on the right
uses countries N to Z as test assets. We use two risk factors: the return on high interest rate minus low interest rate countries and the average return
on currency markets. On the left panel, risk factors are built from portfolios of countries N to Z. On the right panel, risk factors are built from
portfolios of countries A to M. As a result, test assets and risk factors belong to two non-overlapping sets of countries. Panel I reports results from
GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE and the
p-values of χ2 tests on pricing errors are reported in percentage points. b denotes the vector of factor loadings. Excess returns used as test assets
and risk factors take into account bid-ask spreads. All excess returns are multiplied by 12 (annualized). Shanken (1992)-corrected standard errors are
reported in parentheses. We do not include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor betas.
R2s and p-values are reported in percentage points. The standard errors in brackets are Newey and West (1987) standard errors computed with the
optimal number of lags according to Andrews (1991). The χ2 test statistic α′V −1

α α tests the null that all intercepts are jointly zero. This statistic is
constructed from the Newey-West variance-covariance matrix (1 lag) for the system of equations (see Cochrane (2005), p. 234). Data are monthly,
from Barclays and Reuters in Datastream. The sample period is 11/1983–12/2009. The alphas are annualized and in percentage points.
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Table 4: Asset Pricing - Simulated Data

Factor Prices and Loadings

λRX λHMLF X
bRX bHMLF X

R2 RMSE

GMM1 −0.38 6.04 0.03 0.35 99.31 0.14

GMM2 −0.38 5.91 0.03 0.34 99.25 0.14

FMB −0.38 6.04 0.03 0.35 99.31 0.14

Mean −0.38 5.91

Factor Betas

Portfolio αj
0 βj

RX βj
HMLF X

R2

1 0.08 0.99 −0.52 96.51

2 −0.28 1.01 −0.17 84.41

3 −0.06 1.00 −0.04 85.18

4 0.01 1.00 0.07 85.57

5 0.17 1.00 0.18 85.73

6 0.08 0.99 0.48 95.20

Notes: Panel I reports results from GMM and Fama-McBeth asset pricing procedures. Market prices of
risk λ, the adjusted R2, the square-root of mean-squared errors RMSE are reported in percentage points.
b denotes the vector of factor loadings. All excess returns are multiplied by 12 (annualized). We do not
include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor
betas. R2s are reported in percentage points.
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Table 5: Country-Level Asset Pricing - Model

λHMLF X
λRX bHMLF X

bRX R2 RMSE MAPE χ2

Unconditional Betas

5.66 −0.43 3.83 −0.06 68.39 0.81 0.72

[1.49] [0.97] [1.01] [1.24] 41.07

Unconditional and Conditional Betas using Managed Currency Excess Returns

6.26 −0.47 4.23 −0.06 70.57 0.72 0.59

[1.42] [0.97] [0.97] [1.24] 40.13

Conditional Betas using Rolling Windows

4.75 −0.37 3.21 −0.06 64.61 0.86 0.73

[1.31] [0.98] [0.88] [1.25] 41.02

Conditional Betas using Forward Discounts

4.57 −0.36 3.09 −0.06 62.22 0.89 0.77

[1.15] [0.97] [0.78] [1.24] 40.92

Notes: The table reports results from Fama-MacBeth asset pricing procedure using individual currency
excess returns. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE, the
mean absolute pricing error MAPE, and the p-values of χ2 tests on pricing errors are reported in percentage
points. b denotes the vector of factor loadings. Excess returns used as test assets do not take into account
bid-ask spreads. Risk factors HML and RX come from portfolios of currency excess returns that take into
account bid-ask spreads. HML correspond to a carry trade strategy, long high interest rate currencies and
short low interest rate currencies. RX corresponds to the average currency return across all portfolios. All
excess returns are multiplied by 12 (annualized). We do not include a constant in the second step of the
FMB procedure. The standard errors in brackets are Newey and West (1987) standard errors computed
with the optimal number of lags according to Andrews (1991). Data is simulated from the model at monthly
frequency.
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Table 6: Volatility Beta-Sorted Currency Portfolios — US Investor

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: All Countries Panel II: Developed Countries

Spot change: ∆sj ∆sj

Mean −0.66 −0.57 −0.49 −0.46 −1.52 −0.61 −1.49 0.02 −1.22 −2.40 −2.60
Std 8.37 7.96 7.84 7.71 8.82 7.89 9.45 9.85 10.44 9.56 9.51

Discount: f j
− sj f j

− sj

Mean 0.06 0.50 0.76 1.19 1.79 3.72 −0.59 0.33 0.60 1.11 1.74
Std 0.69 0.83 0.82 0.79 0.79 0.98 0.79 0.83 0.93 0.85 0.61

Excess Return: rxj (without b-a) rxj (without b-a)

Mean 0.72 1.07 1.25 1.65 3.31 4.33 0.89 0.31 1.82 3.51 4.34
Std 8.40 7.93 7.81 7.64 8.89 7.98 9.48 9.91 10.46 9.55 9.53
SR 0.09 0.13 0.16 0.22 0.37 0.54 0.09 0.03 0.17 0.37 0.46

High-minus-Low: rxj
− rx1 (without b-a) rxj

− rx1 (without b-a)

Mean 0.35 0.53 0.93 2.59 3.60 −0.58 0.93 2.62 3.45
[0.33] [0.39] [0.37] [0.45] [0.51] [0.40] [0.39] [0.43] [0.54]

Std 5.54 6.39 6.32 7.59 8.40 6.52 6.65 7.26 9.06
SR 0.06 0.08 0.15 0.34 0.43 −0.09 0.14 0.36 0.38

Pre-formation β Pre-formation β

Mean −1.69 −0.95 −0.59 −0.21 0.24 1.87 −2.06 −1.31 −0.90 −0.43 1.10
Std 1.62 1.26 1.12 1.11 1.12 1.46 1.85 1.80 1.75 1.77 1.41

Post-formation β Post-formation β

Estimate 0.10 0.21 0.00 0.16 0.08 −0.55 0.48 0.22 −0.15 −0.01 −0.54
s.e [0.20] [0.13] [0.21] [0.10] [0.13] [0.30] [0.30] [0.10] [0.09] [0.13] [0.24]

Post-formation HMLFX β Post-formation HMLFX β

Estimate −0.17 −0.09 −0.05 −0.00 0.03 0.27 −0.22 −0.03 −0.05 0.09 0.29
s.e [0.05] [0.05] [0.04] [0.04] [0.04] [0.04] [0.07] [0.04] [0.04] [0.04] [0.04]

Notes: This table reports, for each portfolio j, the average change in the log spot exchange rate ∆sj , the
average log forward discount f j

− sj , the average log excess return rxj without bid-ask spreads and the
average returns on the long short strategy rxj

− rx1. The left panel uses our sample of developed and
emerging countries. The right panel uses our sample of developed countries. Log currency excess returns are
computed as rxj

t+1 = −∆sj
t+1 + f j

t − sj
t . All moments are annualized and reported in percentage points. For

excess returns, the table also reports Sharpe ratios, computed as ratios of annualized means to annualized
standard deviations. Portfolios are constructed by sorting currencies into five or six groups at time t based
on slope coefficients βi

t. Each βi
t is obtained by regressing currency i log change in exchange rate ∆si on

V olEquity on a 36-period moving window that ends in period t − 1. The first portfolio contains currencies
with the lowest βs. The last portfolio contains currencies with the highest βs. We report the average pre-
formation beta for each portfolio. The last two panels report the post-formation betas obtained by regressing
realized log excess returns on portfolio j on either HMLFX and RXFX , or V olEquity and RXFX . We only
report the V olEquity and HMLFX betas. The standard errors are reported in brackets. Data are monthly,
from Barclays and Reuters (Datastream). The sample period is 11/1983–12/2009.
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Figure 1: Mean Excess Returns and Covariances between Excess Returns and Principal
Components - Developed and Emerging Countries

Each panel corresponds to a principal component. The upper left panel uses the first principal component. The black squares
represent the average currency excess returns for the six portfolios. Each green triangle represents a covariance between a given
principal component and a given currency portfolio. The covariances are rescaled (multiplied by 15,000). The average excess
returns are annualized (multiplied by 12) and reported in percentage points. The sample is 11/1983–12/2009.
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