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Abstract 

The early detection of prostate cancer is a life-saving event in patients harboring 

potentially aggressive disease.  With the development of malignancy there is a dramatic 

reduction in the zinc content of prostate tissue associated with the inability of cancer cells 

to accumulate the ion. In the current study, we utilized endogenous zinc as an imaging 

biomarker for prostate cancer detection and progression monitoring. We employed a 

novel fluorescent sensor for mobile zinc (ZPP1) to detect and monitor the development of 

prostate cancer in a transgenic mouse model of prostate adenocarcinoma, using in vivo 

optical imaging correlated with biological fluid-based methods. We demonstrated that the 

progression of prostate cancer could be monitored in vivo judging by decreasing zinc 

content in the prostates of tumor-bearing mice in an age-dependent manner. In a novel 

quantitative assay, we determine the concentration of mobile zinc in both prostate cell 

lysates and mouse prostate extracts through simple titration of the ZPP1 sensor.  Our 

findings fulfill the promise of zinc-based prostate cancer diagnostics with the prospect for 

immediate clinical translation.  
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Introduction 

Prostate cancer is the second leading cause of cancer death in men, exceeded only 

by lung cancer (1) and causes no symptoms in its early curable stage.  Consequently, the 

ability to diagnose prostate cancer early, before it has spread beyond the confines of the 

organ, could offer the only possibility of a cure to patients at risk for aggressive disease.  

The current clinical diagnosis and staging of prostate cancer relies on four core 

parameters: digital rectal examination (DRE), serum prostate-specific antigen (PSA), 

biopsy, and imaging (2).  However, all of these tests are associated with considerable 

shortcomings in terms of specificity, sensitivity, and/or invasiveness.  

It has been widely accepted by the scientific community that elevated PSA levels 

do not necessarily signal the presence of cancer. Overall, only 30 percent of men with 

abnormal PSA levels have prostate cancer (3). The lack of reliable diagnostic and staging 

tools for prostate cancer leads to unnecessary invasive and emotionally taxing surgery or 

undiagnosed disease.  Therefore, a true diagnostic biomarker is urgently needed.  

Over half a century of research has identified mobile zinc as an excellent 

candidate biomarker for prostate cells. The healthy prostate contains the highest 

concentrations of mobile zinc of all soft tissues in the body.  These levels decrease 

dramatically during the development of prostate cancer, in agreement with 

downregulation of the ZIP1 transporter in cancer cells (4), even at an early stage (5). 

Even more importantly, there is an abundance of evidence in the literature that prostate 

cancer is the only known disease of the prostate that displays such a substantial decrease 

in tissue zinc content and that neither prostatitis nor benign prostatic hyperplasia are 

associated with this phenotype (6, 7). Reportedly, the zinc concentration in the malignant 
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peripheral prostate, which is the main region of cancer development, is reduced six-fold 

compared to the normal peripheral prostate (500 vs. 3000 nmols/g).  This difference is 

even more dramatic in prostatic fluid (1000 vs. 9000 nmols/g) (6).  Furthermore, 

computer modeling studies, based on synthetic images produced from clinically 

measured zinc-concentration distributions, suggest that zinc-based diagnostics represents 

an approach superior to PSA in terms of sensitivity to the tumor grade, and detection 

capability for tumors with a Gleason score over 6. In addition, the amount of zinc 

depletion could be used as a measure of the Gleason score of the tumor (8, 9). 

 In the current study we report a novel method for early detection of prostate 

cancer based on zinc as a quantitative imaging biomarker. Using a new ditopic zinc 

sensor (ZPP1) with a unique biphasic response to the ion (10), we were able to image the 

progression of prostate cancer in vivo in the TRAMP mouse model, which was deemed 

most appropriate because it develops progressive prostate cancer that histopathologically 

mimics human disease. TRAMP mice recapitulate many salient aspects of human 

prostate cancer and have been utilized for a wide range of studies (11-18). By contrast, 

other models, for example those in which prostate cancer is driven by overexpression of 

c-myc, display a more modest phenotype and develop PIN, which progresses to invasive 

cancer over the course of 6-12 months (19). Furthermore, the progression of prostate 

cancer from well to poorly differentiated malignancy is not as sufficiently characterized 

in the relatively recent c-myc model, which is used primarily to study PIN, whereas the 

TRAMP model has been validated through many years of research (11-18).  

In addition to our imaging studies, we took advantage of the turn-on fluorescence 

property of ZPP1 upon binding to precisely two molecules of zinc to quantify zinc in 
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tissue lysates and prostate cancer cell lines. These measurements offered us an accurate 

means to correlate our imaging data with native zinc tissue abundance. To our 

knowledge, this is the first study describing the use of zinc as an innate imaging 

biomarker in prostate cancer, which we believe will pave the way to a new quantitative 

method for early cancer detection.  
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Materials and Methods  

Chemical Reagents 

tris[(2-Pyridyl)methyl]amine, TPA, was purchased from ATRP Solutions Inc., USA,  and 

used as received.  The cell membrane-permeable fluorescent Zn2+ sensor ZPP1was 

prepared according to a literature procedure (10).  

Cell Lines 

Human prostate epithelial cell lines (RWPE1, RWPE2, LNCaP, and DU145) were 

authenticated based on viability, recovery, growth, morphology, and isoenzymology by 

the supplier (American Tissue Collection Center, ATCC, Manassas, VA).  Culture 

conditions are described in Supplemental Data.  

Fluorescence microscopy  

The abundance of zinc in cultured cell lines was analyzed using fluorescence microscopy. 

Confocal microscopy was used to determine the cellular distribution of zinc and the 

relative expression of the ZIP1 transporter. Experimental details are provided in 

Supplemental Data.  

Zinc quantification in prostate cells by flow cytometry 

Zinc abundance in RWPE1 and RWPE2 cells was quantified by flow cytometry. 

Experimental details are provided in Supplemental Data.  

 Determination of zinc concentration using ZPP1 titration 

Cell lines.  Cells lines were incubated with ZnCl2 for 18 h, detached using cell 

dissociation buffer (Gibco-BRL, Carlsbad, CA), resuspended in Hepes/KCl buffer (25 

mM Hepes and 100 mM KCl, pH: 7.0), and stored at -80 °C for 24 h.  The next day, the 

cells were thawed at room temperature and sonicated using 6-8 strokes at 4 °C. Then, 0.2 
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ml aliquots of the cell lysates were placed in 96-well plates for ZPP1 titration.  Titration 

was performed as previously described (10).  Briefly, ZPP1 was titrated into the sample 

to achieve step-wise increments in ZPP1 concentration.  At each step, the fluorescence 

was measured (excitation 505 nm, emission 532 nm) using a SpectraMax M2 

fluorescence spectrophotometer (Molecular Devices, Union City, CA).  At each step, the 

fluorescence of buffer containing ZPP1 alone (no ZnCl2) was subtracted from the lysate 

measurements.  Zinc levels were divided by the number of cells used to make the lysate 

in order to obtain the zinc content per cell.  

Prostate (Mouse) total extracts.  Prostate extracts were prepared directly from excised 

prostate tissue by suspending the tissue in 2 ml of Hepes/KCl buffer and briefly 

homogenizing it, followed by storage at -80 °C.  The tissue was thawed and sonicated 

using the procedure described for cell lysates.  ZPP1 titration was performed as described 

for cell lysates. 

In accord with the literature (10), initial validation experiments in cell lysates and 

prostatic extracts confirmed that ZPP1 concentration at the peak fluorescence equals half 

of the zinc concentration in the sample. 

Inductively coupled plasma-mass spectrometry (ICP-MS) 

Prostate extracts (200 μl) or prostate cell lysates (200 μl) were digested in concentrated 

HNO3 (0.5 ml) overnight at 37 °C and analyzed for Zn2+ concentration by ICP-MS using 

added strontium as an internal control. 

Animals 

Male TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate, C57BL/6-

Tg(TRAMP)8247Ng/J) and control C57BL/6J mice (Jackson Laboratories; Bar Harbor, 
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ME; n = 8) were used in our experiments. A mouse model of inflammation was generated 

as described in (20). Briefly, animals were injected intraperitoneally with 1mg/kg of 

lipopolysaccharide (LPS, Sigma-Aldrich, St. Louis, MO). The animals were used in 

experiments 18 h after injection. All animal experiments were performed in compliance 

with institutional guidelines and approved by the Subcommittee on Research Animal 

Care (SRAC) at Massachusetts General Hospital.    

Optical Imaging and Image Analysis 

For optical imaging, animals were placed into a whole-body animal imaging system 

(IVIS Spectrum, Caliper Life Sciences, Hopkinton MA), equipped with a 500 nm 

excitation and a 540-nm emission filter.  In the initial feasibility experiments, C57BL/6J 

mice were imaged by epifluorescence before and 30 min after tail-vein injection of either 

ZPP1 alone (100 μl of a 500 μM solution) or ZPP1 plus chelator (TPA; 5mM).  The 

fluorescence imaging settings (exposure time: 0.5 sec., F-stop: 2; Binning: medium) were 

kept constant for comparative analysis.  Gray scale white-light photographs and 

epifluorescent images were acquired, superimposed, and analyzed by using the Living 

Image software.  Image analysis was performed by manually selecting a region of interest 

(ROI) overlying the prostate or muscle, as a control.  The area of the ROI was kept 

constant and the intensity was recorded as average efficiency.  To determine the origin of 

the observed signal, in a set of animals we also performed transillumination optical 

imaging with fluorescence imaging tomographic reconstruction, according to the 

manufacturer’s protocol.  In some experiments, after imaging, the animals were sacrificed 

and the prostate and muscle tissue removed and imaged ex vivo, using the same settings 

as for in vivo imaging.  In the subsequent experiments, age-matched TRAMP and 
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C57BL/6J control mice were imaged at 15-, 19-, 24-, and 28-wks of age, using the 

settings established in the feasibility studies.  At each time point, a set of animals was 

sacrificed, prostates removed, imaged ex vivo, and used for microscopy to determine 

disease stage and ZPP1 accumulation. 

Intravital Microscopy 

A home-built in vivo fluorescence confocal laser scanning microscopy system, as 

previously described (21), was utilized to monitor the uptake of ZPP1 by epithelial cells 

in the prostate of live mice.  Mice were anaesthetized by an intraperitoneal injection of 

ketamine (80mg/kg) + xylazine (10mg/kg) and placed on the heated plate integrated to 

the XYZ motorized stage.  Prior to imaging, ZPP1 (100 μl of of 500 μM solution in PBS) 

was intravenously injected.  After 30 min from the injection, skin and peritoneum 

incision was carefully made to expose seminal vesicle and prostate without damaging 

blood vessels. Several drops of saline water pre-warmed to 37 °C were applied and a 

cover slip was placed on the exposed tissue to avoid dehydration.  After each imaging 

session, mice were either sacrificed for histological analysis or saved for longitudinal 

study at a later time point by closing the incised skin and peritoneum with 6-0 nylon 

suture and applying triple antibiotic ointment.  Fluorescence signals of ZPP1 were 

obtained by excitation with a 491nm continuous wave (CW) laser (Dual-Calypso, Cobolt, 

Sweden) and detections by photomultiplier tubes (R9110, Hamamatsu, Japan) through 

520 ±17nm (ZPP1) and 579 ±17nm (autofluorescence) band pass filters (Semrock, Inc., 

Rochester, NY).  Post-image processing and 3D reconstruction were performed by 

ImageJ and Matlab, respectively.  

Histology.  
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After in vivo imaging, the prostate was excised, embedded in Tissue-Tek O.C.T. 

Compound (Sakura Fineteck, Japan), and snap-frozen in liquid nitrogen. Twenty-μm 

sections were prepared and fixed in 4% formaldehyde for 5 min.  The slides were 

mounted in Vectashield mounting medium with DAPI (Vector Laboratories, Burlingame, 

CA) and visualied by fluorescence microscopy as described above. Consecutive sections 

were stained with hematoxylin & eosin (H&E) and analyzed by light microscopy for 

histopathology.  

Statistical Analysis 

Data were expressed as means ± SDs.  Statistical differences were analyzed by a two-

tailed t-test (SigmaStat 3.0; Systat Software, Richmond, CA).  A value of P < 0.05 was 

taken as statistically significant. 
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Results 

Zinc Sensing in Cell Culture Using ZPP1 

Before embarking on in vivo studies we had to establish the utility of zinc sensing using 

ZPP1 in cancerous and normal prostate cell lines. Normal (RWPE1) and transformed 

(RWPE2) human prostate epithelial cells were analyzed by fluorescence microscopy 

(Fig. 1A) following treatment with ZPP1. Treatment with ZPP1 resulted in bright 

fluorescence in the normal RWPE1 cells (Fig. 1A) with significant extranuclear 

distribution of the signal (Suppl. Fig. 1), which was quenched by subsequent application 

of the extracellular zinc ion chelator tris(2-pyridyl)amine (TPA). This effect is consistent 

with the uptake of extracellular zinc by the cells through one or more of several plasma 

membrane transporters such as ZIP1 (4).  By contrast, the signal associated with the 

transformed RWPE2 cells in which the ZIP1 transporter is downregulated ((4) and Fig. 

1C) was considerably lower, indicative of overall reduced levels of zinc uptake (Fig. 1A). 

This difference was also visible in cells incubated with culture media without added 

ZnCl2, consistent with the presence of small amounts of zinc in the media (Fig. 1A). Flow 

cytometry measurements of ZPP1 turn-on fluorescence confirmed the presence of zinc in 

normal prostate cells and the reduced zinc uptake by transformed RWPE2 cells (Fig. 1B).  

As also shown by fluorescence microscopy, addition of TPA reduced the fluorescence 

intensity in both cell lines to background levels (Fig. 1B), indicating that the detected 

zinc was intracellular. 

Finally, to quantify the difference in actual zinc concentrations in normal and 

transformed prostate adenocarcinoma cell lines we obtained lysates from RWPE1 and 

RWPE2 cells and performed a ZPP1 titration assay, as described previously (10).  The 
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biphasic response of ZPP1 to zinc allowed us to accurately determine the concentration 

of mobile zinc in the cell lysates.  From the ZPP1 concentration at maximum 

fluorescence on the titration curve (Fig. 1D) following overnight incubation with ZnCl2 

(50 μM) and using the relationship  

 

[ZPP1]max = 0.5[Zn2+] 

 

we estimated an intracellular mobile zinc level of 12-16 fmol per cell in the RWPE1 cell 

line, which was consistent with the literature (22).  Mobile zinc in the RWPE2 cells was 

estimated in a similar manner to be 6-8 fmol per cell (Fig. 1D).  This difference in 

cellular mobile zinc levels in these cells correlated with the total zinc concentrations as 

measured by inductively coupled plasma-mass spectrometry (ICP-MS; RWPE1: 20±0.2; 

RWPE2: 9±0.4 fmoles/cell), supporting the validity of our observations.  In order to 

further corroborate the reduced zinc content in prostate cancer cells and the suitability of 

ZPP1 as a sensor for its detection, we analyzed LNCaP and DU145 human prostatic 

adenocarcinoma representing androgen-dependent and androgen-independent variants of 

advanced disease respectively. Fluorescence microscopy revealed virtually no zinc 

sensing in the presence of added zinc and ZPP1 (Suppl. Fig. 2A). ZPP1 titrations (Suppl. 

Fig. 2B) of lysates from both cell lines showed undetectable mobile zinc levels, as 

indicated by the absence of a single distinct peak in the fluorescence titration curves.  

These results are consistent with the low total zinc concentration of the cell lines, 

measured by ICP-MS (RWPE1: 20±0.2; LNCaP: 3±0.1; DU145: 3±0.3 fmoles/cell). 

These initial in vitro findings demonstrated the utility of ZPP1 as a sensor to distinct zinc 
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concentrations in normal and cancerous prostate cells.  

In Vivo Prostate Imaging with ZPP1 

As a first step toward demonstrating the feasibility of detecting prostate cancer in 

vivo using ZPP1 as a fluorescent reporter, we imaged the prostate of healthy C57BL/6J 

mice. At 30-min after intravenous injection, there was bright fluorescent signal associated 

with the area of the prostate, which was not present prior to the injection of the dye (Fig. 

2A).  To demonstrate that this signal was zinc-specific, we co-injected a cohort of mice 

with ZPP1 and a 10-fold excess of the zinc chelator TPA. As a result of this treatment the 

fluorescent signal was reduced to background levels (p = 0.01, n = 4; Fig. 2A and B), 

confirming the specificity of ZPP1 for zinc sensing in vivo. To assure that the observed 

fluorescence signal was derived from the prostate, in a subset of animals we performed 

transillumination optical imaging with tomographic reconstruction.  The origin of the 

fluorescence signal was located dorsally to the urinary bladder and posteriorly to the 

kidneys, consistent with the anatomic location of the prostate (Suppl. Movie 1).  Ex vivo 

imaging of excised prostates of mice injected with ZPP1 alone displayed bright 

fluorescence.  Only diffuse background fluorescence was observed in prostates from the 

mice co-injected with TPA (Fig. 2C).  Histological analysis of frozen prostate sections 

from these mice confirmed the zinc-specific, ZPP1-mediated signal enhancement, which 

was mostly associated with the glandular compartment (Fig. 2D). 

This observation was confirmed by intravital microscopy, which showed that the 

signal 30 min after injection was associated with the zinc-rich prostatic glandular 

epithelium following initial enhancement of the local microvasculature (Fig. 3A).  

To address the issue of potential confusion between prostate signal and signal 
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from the bladder we imaged both organs after intravenous injection of ZPP1 in vivo. As 

shown in Figure 3B, there was minimal enhancement of the bladder compared to the 

prostate. This finding, together with tomographic reconstruction identifying the location 

of the prostate (Suppl. Movie 1), assured us of the capability of ZPP1, as a turn-on 

fluorescent agent, to specifically detect zinc in the prostate.  

In Vivo Prostate Cancer Detection and Monitoring 

 Having established that our method can be applied for the detection of prostatic 

zinc in vivo and that ZPP1 is sensitive to the reduced zinc content of cancer cells, we 

evaluated the potential of this probe to monitor prostate cancer progression in transgenic 

adenocarcinoma of the mouse prostate (TRAMP, C57BL/6-Tg(TRAMP)8247Ng/J) mice 

(Jackson Laboratory, Bar Harbor, ME). This strain exhibits prostatic epithelial neoplasia 

(PIN) by 12 weeks of age, whereas tumors, appearing as well differentiated 

adenocarcinoma, can arise by 24 weeks of age, mostly in the dorsal and lateral lobes of 

the prostate. The development of prostate cancer in this model resembles the human 

condition and is broadly accepted by prostate cancer researchers (12). 

We imaged male TRAMP mice by noninvasive epi-fluorescence optical imaging, 

beginning at 15 weeks of age and until 28 weeks of age, in order to cover the spectrum 

from early to advanced localized disease.  We observed a loss of fluorescence signal with 

disease progression beginning at 19 weeks of age, which is the age representative of well-

differentiated localized carcinoma (Fig. 4A) but not at 15 weeks of age, when the animals 

displayed PIN (Fig. 4C).  By 28 weeks of age, the signal associated with the TRAMP 

prostate was reduced twofold, compared to healthy age-matched controls (p = 0.02, n = 4; 

Fig. 4A).  
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These observations were confirmed by ex vivo optical imaging (Fig. 4B).  

Whereas in the healthy animals the prostate remained brightly fluorescent across all ages, 

in the TRAMP animals, there was a visible loss of signal with age, reflective of reduced 

zinc levels (Fig. 4B). Histopathological analysis of TRAMP prostates revealed the 

presence of only PIN at 15 weeks of age, well-differentiated carcinoma at 19 weeks of 

age, and progressive disorganization of the glandular epithelium with the transition to 

moderately (24 weeks) and poorly (28 weeks) differentiated cancer.  By contrast, the 

glandular organization was preserved in the C57BL/6J controls, even at 28 weeks of age 

(Fig. 4C).  Fluorescence microscopy of prostate tissue from mice injected with ZPP1 

demonstrated that our agent could be used to define the disruption of the glandular 

architecture and reduction in zinc content in the TRAMP animals (Fig. 4C).  To confirm 

the reduced zinc content in the prostate of 28-wk old TRAMP mice compared to 

C57BL/6J healthy mice, we measured zinc levels in tissue extracts by ZPP1 titration, in 

the manner employed by our in vitro studies (Fig. 4D).  The mobile reactive zinc level in 

extracts from the TRAMP prostates, measured by the titration method, was not 

detectable. By contrast, zinc concentration in the prostate of healthy mice was 194±24 

nmol/g of tissue (Fig. 4D).  The reduction in mobile zinc content translated into a 

decrease of total zinc content, as measured by ICP-MS.  There was a three-fold reduction 

in the weight-adjusted total zinc content of the TRAMP vs. C57BL/6J prostates (p = 

0.003, n = 2).  Combined, these results revealed that there was a dramatic reduction of 

zinc levels in the tumors accompanying cancer progression and that this trend could be 

detected by in vivo imaging with ZPP1.  
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Intravital microscopy confirmed a loss of fluorescence signal with disease 

progression, which was evident even at 16 weeks of age, consistent with the superior 

spatial resolution of this method and its sensitivity to local variations in zinc content (Fig. 

5 and Suppl. Movie 2, 3, and 4).  These results were not seen in age-matched C57BL/6J 

animals, in which the epithelial cell layer remained well organized and rich in zinc even 

at 28 weeks of age.  

Importantly, the observed reduction in prostatic zinc content was characteristic of 

cancer. No decrease in prostate-derived fluorescence was observed in a model of 

inflammation (Suppl. Fig. 3A and B), which was confirmed by the presence of substantial 

mononuclear cell infiltration (Suppl. Fig. 3C). The sustained prostatic zinc content in this 

model of inflammation was confirmed by ICP-MS (p > 0.05, n = 2).  
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Discussion 

 Prostate cancer is a highly prevalent disease, for which there is no cure once it is 

no longer organ-confined. In spite of the controversy in the clinical and scientific 

communities surrounding the need for prostate cancer testing, recent trials have affirmed 

the life-saving value of early diagnosis, especially in younger men (23).  Considering that 

according to the American Cancer Society, 1 in 35 men in the U.S. will die of prostate 

cancer, there should be no debate about the need for an effective and reliable diagnostic 

tool for early detection as a facilitator of successful therapy.  

 In response to this need, we have demonstrated the value of in vivo imaging and 

quantitation of zinc as a reliable biomarker for prostate cancer using our novel 

fluorescent probe ZPP1. One of its key advantages over screening for serum PSA is that, 

whereas PSA is elevated in both cancer and BPH, zinc levels are drastically reduced in 

prostate cancer (6).  Therefore, monitoring levels of zinc in the prostate can resolve the 

ambiguity of the PSA test in discriminating between BPH and cancer, which is probably 

the most critical element confounding diagnosis, considering that the majority of men in 

the high-cancer over 55 age group will develop BPH. 

. The studies presented here describe a new diagnostic method, taking advantage of 

the special properties of the zinc-sensitive fluorescent agent ZPP1. This probe is 

quantitative, potentially less ambiguous, and considerably more sensitive and specific for 

the detection of prostate cancer than existing modalities.  Specific advantages of ZPP1 

include high accuracy, high zinc selectivity, low-cost, and ease of utilization for zinc 

detection and quantification. As shown through our studies, the unique two-step 

fluorescence response manifest by ZPP1 allows accurate quantitation of mobile zinc 
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concentrations in biological samples (cell and tissue lysates) by simple titration of the 

agent.  

In addition, the specific turn-on fluorescence response of ZPP1 to zinc and the 

suitability of the agent for in vivo delivery, as demonstrated in our animal experiments, 

allowed us to visualize the zinc-rich prostate by fluorescence optical imaging and to 

monitor the zinc depletion of the organ during the development of prostate cancer. We 

utilized both noninvasive whole-body optical imaging and an intravital microscopic 

approach. While the former has not been yet fully introduced into the clinic, the latter 

may gain significance having in mind the increasing clinical relevance of endoscopic 

optical imaging. Our results suggested the possibility to develop a very specific and 

sensitive clinical tool for prostate cancer detection and monitoring based on a method 

similar to endomicroscopy.  One can envision a scenario in which an optical probe is 

positioned in immediate proximity to the prostate and the tissue is examined at 

microscopic resolution. The unique advantage of this method, as demonstrated by our 

results, is the ability to examine the tissue at a cellular level, with high contrast and, 

therefore, potentially to detect very early lesions.  

Overall, the described studies clearly illustrate the value of zinc-based prostate-

cancer diagnostics, as suggested through years of prior research (6). However, to our 

knowledge, this is the first study that utilized zinc as an imaging biomarker for prostate 

cancer progression. The methods that we have developed can be used separately or in 

combination as a preclinical or clinical tool.  
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Figure Legends  

Figure 1. In vitro studies.  (A) Fluorescence microscopy of RWPE1 and RWPE2 cells 

following (from left to right) sham treatment, incubation with ZPP1 in the absence of 

zinc chloride, incubation with ZPP1 in the presence of added zinc chloride, and 

incubation with ZPP1 in the presence of added zinc, followed by a total zinc chelator 

(TPA). (B) Flow cytometry raw histogram (top) and quantification (bottom) of RWPE1 

and RWPE2 cells following sham treatment, incubation with ZPP1 in the absence of zinc, 

incubation with ZPP1 in the presence of added zinc, and incubation with ZPP1 in the 

presence of added zinc, followed by a total zinc chelator (TPA), as described in (a). (C) 

Confocal microscopy of RWPE1 and RWPE2 cells following immunostaining with ZIP1-

specific antiserum. The differences in zinc uptake between the two cell lines extended 

from differences in the expression levels of the ZIP1 zinc transporter. Results are 

representative of at least three independent experiments.    (D) Determination by ZPP1 

titration of mobile zinc concentration in cell lysates derived from RWPE1 and RWPE2 

cells incubated with a 50 μM concentration of ZnCl2. The results represent a summary of 

two independent experiments. 

Figure 2. In vivo detection of zinc in the mouse prostate by epi-fluorescence whole-

body optical imaging.  (A) Noninvasive, whole-body epi-fluorescence optical imaging 

of C57BL/6J mice before (left) and 30 min after (right) tail-vein injection of ZPP1 alone ( 

top) or ZPP1 plus TPA (bottom).  There was a strong signal enhancement associated with 

the area of the prostate after injection of ZPP1 in the absence of chelator, indicating 

specific detection of zinc.  (B) Quantitative evaluation of the results illustrated in (A), 

reflecting relative fluorescence efficiency derived from a region of interest around the 
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area of the prostate.  There was an increase in normalized efficiency in the mice injected 

with ZPP1, which was significantly higher than in mice co-injected with chelator (p = 

0.01; n = 4), suggesting specific detection of zinc.  Fluorescence efficiency derived from 

the area of the prostate was represented as a fraction of that in adjacent muscle tissue.  

(C) Ex vivo epi-fluorescence optical imaging of the prostate and seminal vesicles (left) 

and adjacent muscle tissue (right) of C57BL/6J mice 30 min after tail-vein injection of 

ZPP1 alone (top) or ZPP1 plus TPA (bottom). (D) Fluorescence microscopy of frozen 

prostatic tissue sections derived from non-injected C57BL/6J mice (left), mice injected 

with ZPP1 alone (green, middle), or ZPP1 plus chelator (right).  In the ZPP1-injected 

group, there was a visible fluorescence enhancement of the glandular regions of the 

tissue, which was not seen in non-injected mice and was dramatically reduced upon co-

injection with chelator. Cells were co-stained with DAPI (blue) for nuclear detection. 

Figure 3. In vivo detection of zinc in the mouse prostate by intravital microscopy. 

(A) Imaging (from left to right) pre-injection, 1 min, and 30 min after intravenous 

injection of ZPP1 (green). Examination of the prostate tissue before injection of ZPP1 

revealed a low level of autofluorescence (left).  Immediately after injection of the 

imaging agent (1 min), there was a clear enhancement of the local microvasculature 

(arrow) and the prostatic glandular epithelium (arrowhead), surrounding the glandular 

lumen (L). Imaging at 30 min post-ZPP1 injection demonstrated a very prominent 

enhancement of the glandular regions.  (B) Distribution of ZPP1 fluorescence in mouse 

prostate and bladder.  The majority of ZPP1 fluorescence after in vivo delivery was found 

in the prostatic epithelium.  The bladder demonstrated minimal enhancement, following 

injection of the imaging agent. 
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Figure 4. In vivo detection and monitoring of prostate cancer by epi-fluorescence 

whole-body optical imaging.  (A) Noninvasive, whole-body epi-fluorescence optical 

imaging of 15-, 19-, 24-, and 28-wk old TRAMP (bottom) and C57BL/6J (top) mice 30 

min after tail-vein injection of ZPP1. In the TRAMP mice, consistent with prostate 

cancer progression, there was an overall reduction in prostate-associated fluorescence 

with age, beginning at 19 weeks of age.  By contrast, the signal in the C57BL/6J mice 

remained the same (n = 4).  Fluorescence efficiency relative to muscle tissue was 

normalized to 1.  (B) Ex vivo epi-fluorescence optical imaging of the prostate (P), 

seminal vesicles (SV) and adjacent muscle tissue (M) of TRAMP (bottom) and C57BL/6J 

(top) mice injection of ZPP1.  There was a strong signal enhancement of the prostate in 

both groups at 15-wks of age.  In the TRAMP mice, there was an overall reduction in the 

prostate-associated signal with age (24 wks is shown).  By contrast, the signal in the 

C57BL/6J mice remained the same (C) Histopathology (top) and fluorescence 

microscopy (bottom) of prostatic tissue sections derived from 15-, 19-, 24-, and 28-wk 

old TRAMP and 28-wk old C57BL/6J mice injected with ZPP1. Note the progressive 

disorganization of the glandular epithelium with age in the prostates of TRAMP mice.  

By contrast, the glandular organization was preserved in the C57BL/6J controls, even at 

28 wks of age. Fluorescent images are represented as an overlay of the green (ZPP1) and 

ultraviolet (DAPI, blue) channels.  (D) Quantitation of zinc concentrations by ZPP1 

titration in prostatic tissue extracts derived from 28-wk old TRAMP and C57BL/6J mice.  

The results represent a summary of two independent experiments. 

Figure 5. Confocal intravital microscopy of prostate cancer progression.  Intravital 

confocal microscopy 30 min after intravenous injection of ZPP1 (was performed at 16-, 
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20-, 24-, and 28-wks of age.  In TRAMP mice (bottom), loss of tissue zinc content was 

seen even at 16 wks of age.  There was a progressive loss of fluorescence and 

disorganization of the zinc-positive epithelial cell layer with age.  This result was not 

obtained in the age-matched C57BL/6J controls (top), in which the epithelial cell layer 

remained well organized and rich in zinc even at 28 wks of age. 
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