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Abstract

This thesis consists of two parts. In the first part, we start by investigating the classical
permutohedra as Minkowski sums of the hypersimplices. Their volumes can be expressed
as polynomials whose coefficients - the mixed Eulerian numbers - are given by the mixed
volumes of the hypersimplices. We build upon results of Postnikov and derive various
recursive and combinatorial formulas for the mixed Eulerian numbers. We generalize
these results to arbitrary root systems 4D, and obtain cyclic, recursive and combinatorial
formulas for the volumes of the weight polytopes (D-analogues of permutohedra) as well
as the mixed D-Eulerian numbers. These formulas involve Cartan matrices and weighted
paths in Dynkin diagrams, and thus enable us to extend the theory of mixed Eulerian
numbers to arbitrary matrices whose principal minors are invertible.

The second part deals with the study of certain patterns in standard Young tableaux
of shifted shapes. For the staircase shape, Postnikov found a bijection between vectors
formed by the diagonal entries of these tableaux and lattice points of the (standard)
associahedron. Using similar techniques, we generalize this result to arbitrary shifted
shapes.
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Chapter 1

Introduction

My main research interests lie in geometric and algebraic combinatorics and in particular

in the geometry of convex polytopes. Convex polytopes lie at the crux of combinatorics.

Studying their classical invariants, such as their volumes, numbers of lattice points, f-vectors

and Erharht polynomials has been a central problem, not only in its own interest, but more

importantly because of the vast connections of these invariants with other areas of mathe-

matics such as algebraic geometry and representation theory. The first problem investigated

here is stuying invariants of a certain class of polytopes called permutohedra. The classical

permutohedron P(xi, . . . , xn+1) is defined as the convex hull of the (n+ 1)! points obtained by
permuting the coordinates of (xi, ..., xn+1). Permutohedra and more importantly, their vari-

ous generalizations, have been studied sistematically by Postnikov and others. Special cases
of permutohedra include many interesting polytopes such as graphical zonotopes and graph
associahedra in graph theory, as moment polytopes (and in particular matroid polytopes) in
algebraic geometry, and as alcoved polytopes and weight polytopes in representation theory. It
is a general principle that the volumes, numbers of lattice points and other invariants of these
polytopes should have alternative descriptions in terms of other objects (both combinatorial
and non combinatorial) such as trees, Young tableaux, degrees of toric varieties, Weyl group
elements with special properties, and so on. For example, P(n - 1,... , 1, 0) is the zonotope
corresponding to the complete graph Kn+1, and it is known that n!Vol (P(n - 1, ... , 1,0)) is
the number of spanning trees of the complete graph K+1. -'A more interesting example is
the hypersimplex An+1,k = P (1k, On+1-k) (ik means k ones), which are matroid polytopes,
the moment polytopes corresponding to a toric varieties X, for generic points p in the Grass-
manian, and also appear as weight polytopes of the fundamental representations of g[. In
this work I have investigated volumes of permutohedra by computing the mixed volumes of
hypersimplices, called the mixed Eulerian numbers. These numbers include many classical
combinatorial numbers such as the Catalan numbers, binomial coefficients and Eulerian num-
bers. I have found various recursive, combinatorial and cyclic formulas that enable one to



compute the mixed Eulerian numbers easily. All of these results generalize to arbitrary root

systems, and some results even to arbitrary positive definite matrices. The second problem

that I have explored in this thesis is studying patterns in Young tableaux of shifted shapes.

Generalizing a result of Postnikov, I have shown that diagonal vectors of these tableaux are in

bijection with lattice points of a certain polytope, which can be represented as a Minkowski

sum of coordinate simplices (depending on the Young shape). These polytopes are generalized

permutohedra, and are often combinatorially equivalent to the associahedron.

The thesis is organized as follows. Chapter 2 is devoted to Permutohedra, Mixed Eulerian

numbers and their generalizations. In Section 2.1, we give a brief overview on permutohedra

and their volumes. In Section 2.2, we introduce the (classical) mixed Eulerian numbers,

motivate their study and discuss known results about them. Section 2.3 generalizes the

setup to any affine root system <b. Next, in Section 2.4 we derive recursive formulas for

the mixed Eulerian numbers, and in particular show that they are positive integers for any

root system. We illustrate these results in Section 2.5, as well as provide new simple proofs

for known results on the mixed Eulerian numbers. In Section 2.6 we prove a cyclic relation

between volumes of weight polytopes associated to root subsystems of an extended affine

root system. In Section 2.7 we use the dependence of the mixed Eulerian numbers solely

on the Cartan matrix A4 of the root system to generalize the theory to arbitrary positive

definite matrices. We specialize some of these general results to Ab in Section 2.8 and obtain

an alternate characterization of the mixed Eulerian numbers in terms of weighted paths in

Dynkin diagrams. Chapter 3 is about Shifted Young Tableaux. Section 3.1 reviews basic

definitions. In Section 3.2 we use a result of Baryshnikov and Romik to derive a generating

function for the diagonal vectors of shifted Young tableaux. We use this later in Section 3.3

to establish a one-to-one correspondence between diagonal vectors of shifted A-tableaux (A

is the shape of the tableaux) and lattice points of a certain polytope PA. This polytope is a

Minkowski sum of simplices in R' and its combinatorial structure only depends on the length

of the partition A. In particular, if the length of A is n, PA turns out to be combinatorially

equivalent to the associahedron Assn. In Section 3.4 we describe the vertices of PA in terms of

certain binary trees, and give a simple construction of the corresponding "extremal" A-shifted

tableaux.



Chapter 2

Permutohedra, Mixed Eulerian

Numbers and beyond

2.1 Permutohedra

The classical permutohedron P(x,... , xn+i) is defined as the convex hull of the (n+1)! points
obtained by permuting the coordinates of the point (X1, ... , xn+ 1). According to G. Ziegler,
permutohedra appeared for the first time in the work of Schoute in 1911 ([20]), though the
term permutohedron was only coined much later. For generic x1, ... , Xn+1, P(x1, ... , xn+1) is n-

dimensional, lying in the hyperplane t1i+- ... + -+tn+1 = x1+ -... -xn+1. For a polytope P C Rn+1

included in a hyperplane t1 +-...-+tn+ c, define its volume as the usual n-dimensional volume
of the projection of P onto tin+1 = 0. Permutohedra as well as their various generalizations
have been studied extensively in [16, 17]. In particular their combinatorial structure has been
described in terms of certain posets - building posets - which will also appear in Chapter 3.
Special cases of permutohedra appear as graphical zonotopes and graph associahedra in graph
theory, as moment polytopes in algebraic geometry, as alcoved polytopes arising from affine
Coxeter arrangements (see [13]), and as weight polytopes of fundamental representations of
Lie groups. Of particular interest are invariants associated to them such as their volumes,
numbers of lattice points or their Ehrhart polynomials. For example, P(n, n - 1, n - 2, ... , 0)
is the graphical zonotope corresponding to the complete graph Kn+1:

P(n, n - 1, n - 2, ...,10) = [ ei, eg)
1i<jsn+l

In other words, it is the Minkowski sum of all the line segments [ei, ej] between eiand ej,
where ei denotes the ith standard basis vector in Rn+1. As such, a basic result of zonotope
theory tells us that n!Vol (P(n, n - 1, n - 2, ..., 0)) is the number of spanning trees of Kn+1

(see [22, Ex.4.32]), namely (n + 1)n-1, whereas its number of lattice points is the number of



spanning forests of Kn+1.

An important example of a permutohedron is the hypersimplex

An+1,k P (ik n+1-k)

(ab means a sequence of b a's), which is the intersection of the unit hypercube with the

hyperplane ti + - - - + i+1 = k. This is the matroid polytope corresponding to the uniform

matroid of rank k consisting of all the k-subsets of [n + 1]. It appears in algebraic geometry

as the moment polytope of the toric variety X, = Tp of a point p E Grk,n+1 whose Plucker

coordinates are all non-zero (the action of the torus T = (C*)n+lon Grk,n+1 is given by

(ti, ... ,tn+1 ) - (x 1, n+) - (tixi, -,tn+ 1 xn+1 )). As such, it is known that the normalized

volume of An+1,k is the degree of X, as a subvariety of CIP(k-1(see [9, 8]). On the other

hand, it is well-known that
1

Vol(An+1,k) -A,k
n!

where An,k is the number of permutations of size n with k - 1 descents (i.e. An,k's are the

Eulerian numbers). This is a famous old result, dating back to Euler. However, the first

published proof seems to be due to Laplace ([14]). A simple half-page proof constructing a

triangulation of An+1,k into An,k unit simplices was found by Stanley ([24]).

More recently, Postnikov has computed the volume of P(xi,... , xn+) explicitly as a

homogeneous polynomial of degree n in x1,...,xn+1. To state the theorem, recall that

there is a natural bijection between sequences of nonnegative integers c1 ,... , cn+1 such that

c1 + + cn+1 = n, and lattice paths in Z2 from (0, 0) to (n, n) with "up" or "right" steps:

The path L corresponding to (ci, ... , cn) has ci vertical steps along the line x = i - 1. Let

IC...Cn+l C [n] be the set of indices i such that both the (2i - I)th and 2 ith steps of L are

below the x = y axis (see Figure 2.1), and Dn(Ic1...c.) be the number of permutations in S,+ 1

with descent set Ic.

Theorem 2.1.1. [16, Theorem 3.2] The volume of P(x1,... ,xn+1 ) is given by

Vol(P(x1,...,Xn+1)) = (1)IClcn+dlIDn(Ic 1 ...cn±1 ) -1! Xn+1

c1+...+cn+1=n,ci>o

Example 2.1.2. The path in Figure 2.1 corresponds to the composition (2, 1, 0,0, 2, 0,0, 2).

We have 121002002 = {4, 6, 7} and there are ( )-3+ ) 2 = 189 permutations in S8 with descents

in positions 4,6,7. Hence, by Theorem 1, the coefficient of x2X 2x2X2 in Vol (P(x1, ..., x 8)) is
189

8'



Figure 2.1.1: Lattice path corresponding to (ci, . . . , c8) = (2, 1, 0, 0, 2, 0, 0, 2)

2.2 Classical Mixed Eulerian Numbers

Theorem 2.1.1 is a strong result, however it is not presented in a way that can be naturally

generalized to other root systems. Let us instead introduce the new variables uil - x 1 -

X2, U2 = X2 - Xs, - . , un = n - Xn+I. We have the following Minkowski sum decomposition:

P(i,...,on+1) =P(ui+ ...- i+un+Xn+,---,un+xn+1,xn+1)

= U1An+1,1 + u2 An+1 ,2 + - - + unAn+1 ,n + xn+(1, - - - , 1)

Since the Minkowski sum of Q and a point v is just Q translated by v, we may ignore the

term Xn+1(1, ... , 1) when taking volumes of both sides in above to obtain

Vol (P(x1, ... , xn+1)) = Vol (U1 An+ 1,1 + u2 An+1, 2 + -. + unAn+1 ,n)

Vol(An+ 1,ii... , An+1 ,in)U 1  Uin (2.2.1)
(i,. n

where Vol (An+ 1,.. , An+,in) is the mixed volume of the polytopes An+1 ,ii, An+1 ,i2 ,-.-

An+1,in. The (Brunn-Minkowski) theory of mixed volumes of polytopes is one of the corner-

stones of classical convexity theory, and was pioneered by Minkowski in [15]; the last equality

in (2.2.1) is essentially a restatement of Minkowski's main theorem in the case of the hypersim-

plices. Mixed volumes of integer polytopes have important connections to algebraic geometry.

For example, by a famous theorem of Bernstein, they count common zeroes of generic polyno-

mials whose Newton polytopes are the given polytopes (see [2]). Computing mixed volumes

of integer polytopes is very difficult in general, but for standard coordinate simplices Post-

nikov has managed to find combinatorial formulas by using Bernstein's result and ingenious

linear algebra techniques ([16]). An excellent treatment of the Brunn-Minkowski theory is



contained in [191; see also [4] for formulas and inequalities involving mixed volumes. Since the

mixed volume of n polytopes does not depend on their listed order, we may combine similar

terms in (2.2.1) to obtain

C1 C

Vol (P(Xi, ... n+)) A c (2.2.2)
c1+...+c,=n,cj>0

where Ac-..., = n!Vol (A± 1 1, ..- An+ 1  , and A denotes ci copies of An+1,i. The

coefficients Ac. are called the (classical) mixed Eulerian numbers. They are positive

integers because hypersimplices are integer polytopes of full dimension (see [8]).

Example 2.2.1. The kth hypersimplex An+1,k is the Newton polytope of the k-th elementary

symmetric polynomial in x1, ... , xn+1. Bernstein's theorem says that A120 equals the number

of distinct solutions in CIP3 of the system

a1x1 + a2x2 + a3X3 + a4x 4  0
b1x1x2 + b2x2x 3 + b3x3x 4 + b4x1x 3 + b5x2x4 + b6 x3x 4 = 0
C1X1X2 + C2X2X3 + C3X3X4 + C4X 1X3 + C5X2X4 + C6X3X4 = 0

where aj, bj, Ck are generic.

It is natural to ask whether these coefficients have a simple combinatorial interpretation.

This is one of the main problems that will be explored here. The question becomes more

relevant given the following list of known results.

Theorem 2.2.2. [16, 6, 24] The mixed Eulerian numbers have the folowing properties:

(1) Acl...c, = Ac...c .

(2) For 1 < k < n, Aok-1,n, 0n-k = A,,k (the usual Eulerian number). Here and below 01

denotes a sequence of 1 zeros.

(3) Ak,O...0,n-k = (T).

(4) For 1 < k < n, i = 0,..., n the number A 0k-l_,, 0 n-k- is the number of permuta-

tions w E Sn+1 with k descents and w(n + 1) = i + 1.

(5) If c1+- - -+ci ; i fori = 1, ... , n then Ac 1C12c2 ... ncn. There are 1= n)y (2)
such sequences (ci, ... , ca).

(6) Let - be the equivalence relation on sequences (c1,...,cn) given by (c1,...,ca)

(di, . . . , dn) if and only if (c, ... , cn, 0) is a cyclic shift of (di, . . . , dn, 0). Then the sum of

mixed Eulerian numbers in each equivalence class is n!, and the number of equivalence classes

is Cn = (-2n

(7) Eci...C. cl!. cf!7Aclc2...cf = (n + I)n1



Some comments about the above theorem are in place. Part (1) of the theorem follows

because the volume-preserving isometry of Rn+1 given by

(zi,,..., on) F (1 x1, ... , 1 n)

maps An+ 1,i to An+1,n+ 1 -, i 1, - - -n. Part (2) is essentially a restatement of the classical

formula n! Vol(An+l,k) = An,k. Part (4) was originally proved by Ehrenborg, Readdy and

Steingrimsson in [6]. The idea behind their proof is that uk An+1,k+uk+1An+1,k+1 (the volume

of which is k 1 Ak-1,a,,n-k-1u- turns out to be a slice of another cube, and so can

more or less be handled directly. However it's not clear how one could generalize their method

to compute other mixed Eulerian numbers (for example of form AO...O,a,b,c,O...O), because the

Minkowski sum of even three (rescaled) hypersimplices is; in general, a complicated polytope.

Part (6) is an interesting result which was conjectured by Stanley and proved by Postnikov

in [16, Theorem 16.4]. This claim has a simple geometric explanation in terms of alcoves of

the affine Weyl group in type A. In some sense, it comes from symmetries of the extended

Dynkin diagram of type A, which allow one to express the volume of the fundamental alcove

(which is easy to compute) as a sum of volumes of n permutohedra. We will generalize this

result in Section 2.6. It is known that there are Cn equivalence classes - and each of them

contains exactly one Catalan sequence (ci,... , cn) such that ci + - - - + ci > i, Vi = 1 . .. n.

The right side in (7) is exactly the volume of the permutohedron P(n, n - 1, . . . , 0), which as

we have seen, is the number (n + 1)" of spanning trees of Kn+1.

Problem 2.2.3. It is known that there are C, equivalence classes - and each of them

contains exactly one Catalan sequence (ci, .. . , cn) such that cl + - - - + ci > i, i =1 .. .n.

For each Catalan sequence (ci, ... , cnI), can we find some statistic on permutations of Sn

(or Sn+1 ) whose distribution gives the mixed Eulerian numbers in the -- equivalence class

of (ci, .. . , ca)? For example, part (4) of 2.2.2 implies that for i = 1, .. . , n - 1 the mixed

Eulerian numbers of the sequences in the ~-class of (n - i, i, On-2) are given by counting

permutations w E Sn+1 , w(n + 1) = i + 1 with a fixed number of descents.

Rather than handle the (classical) mixed Eulerian numbers directly, we generalize the

setup to other root systems, and then discuss particular cases.

2.3 Root Systems, Hypersimplices and Mixed Eulerian Num-

bers

Let 4 be a reduced root system of rank n spanning a real vector space V. Fix a choice

of simple roots ai, ... ,an in (D. The roots are ordered in accordance with the standard

labelling of the Dynkin diagram of D (see [12], p.58 for example). Let A be the associated



weight lattice, WV - the Weyl group of D, and (-, -) - the correponding W4-invariant inner

product on V. Let A,, . . . , An E V be the fundamental dominant weights of 4; they form the

dual basis of the simple coroots . For x E V, we can define the weight polytope P)(x)

as the convex hull in V of the orbit Wex. Write x = u1A + - + uAn, ui E R. Note that

the coefficients ui are given by

uz ( x, )(2.3.1)
(ai, ai)

We have the following Minkowski sum decomposition

P (x) = uiP4 (A1) + - -- unP(An).

The polytopes P(A1),..., P4(An) are called the 4-hypersimplices. Taking volumes of

both sides we obtain:

Vol (PV(x)) = Ac I c (2.3.2)
Cl,.., C>±0,C1+---+Cn=n

where

Acj en =n! - Vol (PD (A1)"1,. . . , P(An )Cn)

is the mixed volume of cl copies of PD(A 1 ), c2 copies of P(A 2 ),..., cen copies of Pp(An). We

define

1 1
V4det (a ... a) Vol (P4 (x)) =det ( Vol (P (ui A - ... - u .n An))

Thus, Vp is a homogeneous polynomial of degree n = rank@. It is the volume of Pp(x), if the

volume form were normalized so that the box spanned by ai, ... , an had unit volume. The

coefficients Ac... are called the mixed 4-Eulerian numbers. As before, they are positive

because the 4-hypersimplices have full dimension.

The main purpose of this Chapter is to study the mixed +-Eulerian numbers. Postnikov

has expressed these coefficients as complicated sums over weighted doubly-labelled trees [16].

Our purpose is to find simpler formulas, or combinatorial interpretations involving paths in

the Dynkin diagrams, or the geometry of the root system P.

Example 2.3.1. 4 = An. Recall that the standard realization of An is given by a1 = ei -

e2, a 2 = e2 - e3, ... , an = en - en+1 inside the hyperplane V = {(x 1 , ... , xn+1)Ix1 + ... + Xn+1 =

0}. If P is the box generated by ai, ... , an then the volume of the image of P under the

projection (Xi, ..., xn+1) -4 (x, ..., Xn) is



det 1 -1
1

hence Vol on V agrees with the volume form defined in Section 2.1. The Weyl group is

Sn+1 which acts on V c Rn+1 by permuting the coordinates. The fundamental dominant

weights are A = (i, On+1 i) - (1, 1, ... , 1), hence the 1-hypersimplices are wA()

Pn+1 (ii, On+1-i) - ni (1, ---, 1) = - (1, ... , 1), i.e. the classical hypersimplices

translated into V.

numbers.

Therefore, for D = An, A*... are just the classical mixed Eulerian

Lemma 2.3.2. If D is the direct sum of two root systems 41 and (D2 , spanned by a1 , ...,a,

and am+1, ... , an respectively, then

V-1 (uII ..., IUn) = VD (u1, ..., IUM) V"D2 (Umn+1, -- ,Un)

Proof. This follows because PD(x) is the direct product of Pe1 (xi) with P12 (x 2), where xi is

the projection of x onto the subspace of V spanned by i. E]

2.4 Recursive Formulas For Mixed Eulerian Numbers

In this section we derive recursive formulas for the mixed Eulerian numbers. One of the main

tools that we employ is the following result due to Postnikov.

Proposition 2.4.1. [16, Proposition 18.6] For i = 1, ... , n, we have

a |WIeM|(A, A)
SV-D (Ui, .... ,I aj, A) V 3 u, ... ,ui1, ui+1, Un),

where Ij = D - { j} is the root subsystem of D with node aj removed.

Recall that the Cartan matrix associated to D is given by A4 =

(al 1)

(a%,aj)

''n. Since a),a =3 o, it follows that(C'~a) ) ,,'Cj

2
(aiai)

A- = (Al

(2)

Now, letting V. = 1 V, 2.3.2 can be rewritten as follows:

(al ... an)T

det = 1

... An )T (A, ... An)
=2(Ai, A))

(aj, aj ) fj



89/Oui(VD) V4)1 (U2, .. ,Un)

=A-'

I /Oun(V-) VTn (UI, ... IUn-1
or

8/Oui(V'D) _Ve(D(2 .,Un)

A, (2.4.1)

O/Oun(VI) V (i , Un-1)

The polynomials V4 are completely (over)determined by the recurrence (2.4.1) and the

initial condition VA, (ul) - l1. Tables of polynomials V (u1 , ..., un) for irreducible root

systems of rank up to 4 can be found in Appendix A. The table is missing Vc4 , but this

polynomial is easily readable from VB4 as the following observation shows.

Lemma 2.4.2. For any n,

VBn (u1,..., un) =2VCn Ui,..., un-1, IUn

Proof. This follows since the root systems Bn and Cn are dual to each other. Indeed, assume

ai, ... , an is a set of simple roots for B. in some space V, (corresponding to the nodes of

the Dynkin diagram). Then ai, ... , an-1, 2an can be taken as a set of simple roots for a root

system of type Cn in V. Let x E V. Since the Weyl groups of Bn and Cn are the same (as

subgroups of GL(V)), we have PBn (x) = Pc, (x). By definition, the volume of PBn () is

I det (a1 ... an)|IVB, (Ul1, --- , Un)

where ui (x, X ). Similarly, the volume of PC (x) is

det (ai ... an_1I 2an) I|VC, (ui, .. ,Un-1, on)

where now vn = (x, 2 -un. Equating the two volumes implies the result. E

Theorem 2.4.3. For any b, the mixed D-Eulerian numbers are positive integers.

Proof. We have seen that Ac c > 0. We show that A. E Z, by using the recursion

(2.4.1). This recursion implies that for each i, -V, is a linear combination of the poly-

nomials VD1 (u2, --.,un), --- V (UI, ... Un-1) with coefficients of the form 1 IW4. It isdetA,, TW__
straightforward to show that these numbers are always integers by using explicit tables for

det A. and IWp I (see [12, p.66,68]). For example, suppose D = E7. Then

j E D6, A6, A1 e A5 , A2 E A1 D A3, A4 e A2, D5 e A1 , E6



hence

det A4|We, I E 2 -25 6!, 2 -7!, 2 2!6!, 2 - 3!2!4!, 2 - 5!3!, 2 -245!2!, 2 -2 7345

which always divides WE7  10345. 7. Thus, '9V4 is an integer linear combination
ci n

of V4, ... , V4,. Integrating in ui, it follows that for ci > 0, the coefficient A(".c of u1...Un

in V4 is an integer linear combination of numbers of the form AD . Hence the result

follows by induction on the rank n of 4D (we have already seen this result for D = An). El

Rather than deal with the entries (AD)i,j directly, it's more convenient to consider the

natural weight function wt on the edges of the Dynkin diagram of (I, defined as follows:

wt(i -* j) is times the number of edges in the diagram from i to j, where undirected

edges count both ways. For example, in type G2, there are 3 directed. edges from node 2 to

node 1, so we set wt(1 -+ 2) = 1/2 and wt(2 -+ 1) - 3/2. In types A, D,E all edges are

undirected so wt(i -+ j) = 1/2 if i and j are connected, and 0 otherwise. In other words,

wt(i - ) = 2 (A4) 3 . The function wt will also appear later in Section 2.8. Next, given a

weak composition (ci, ..., cn) of n, we identify it with the weight function w : i -4 ci on the

nodes of the Dynkin diagram. We write A* for 1Ac*.c . Let wi~j denote the labelling

which is identical to w except wi g(i) = w(i) - 1,wi+(j) = w(j) + 1.

Theorem 2.4.4. Fix i such that w(i) > 0. The mixed Eulerian numbers satisfy the following

recursive formula

A*,- wt(i-j)A* = A (2.4.2)
i,j-connected

ci--1

Proof. The result follows by comparing the coefficients of L -. . _ -- in the ith

equation of (2.4.1). l

Looking at these recursions, it seems that one could generalize the mixed Eulerian numbers

to graphs. However, they overdetermine A,, and one can show that the only simple connected

graphs which admit such positive coefficients come from the -Dynkin diagrams.

Consider the case 4 An. Then 4D - {i} = Aj-1 e An-i. Let di, ..., dn > 0 be integers

with di + ... + dn = n - 1. Applying Theorem 2.4.4 for w corresponding to the composition

di, ., di + 1, ..., dn of n, we obtain

Proposition 2.4.5. For every nonnegative integers d1,..., dn which sum to n - 1, we have

2A di...di-1,di+1,di+1..-n- Ad ... ,d,+1,di,...dn- Adi ...di,di+1+1,di+ 2 ...d (2.4.3)

{(±i) Ad,... di- Ad+ 1 -...dn if di + ... + di- 1 = i - 1, di = 0

0 otherwise.



These recurrences (together with A1 = 1) determine all of the mixed Eulerian numbers

uniquely. On the other hand, Proposition 2.4.1 gives us directly another set of recurrences

which characterize the coefficients Ac,..c. Following the setup of Example 2.3.1, we have

(Ai, Aj) = i - T for i < j. Therefore

a VA (U1, U- in fi, - Aj-, (U1- , Uj-1) An_, (Uj+ - Un)
j=1

To find Ac, choose any i such that ci > 0. Extracting the coefficient of 1 -.. _ -
i-1 Cjfr

_ -i+l ...- on both sides of the last equation, we obtain (formally)

1 A

(n + 1 c...c

ij 1 1
= (j n r + 1IK (n - j + 1)! Acl...cil .Ac,.._(c 1..c

ij 1 1
+ Z z - n + (n -j +1)! Aci...cis_(C*_l)...Cj, - Ae +1---en

<j<n+ J!(nj

However, remember that Acl... is only defined when c1 + ... + cn = n, so we have to set

it equal to 0 otherwise. Therefore in the above sums, the terms for j < i only appear when

ci +... + cj1 j - 1 and cj = 0, and similarly, the terms for j > i only appear when cj = 0

and ci + ... + c= j (with the exception for the case i = j, in which case the restrictions are

ci = 1, c1 +- ... + ci = i). We call such indices j good. Therefore,

j(nm+ 1 -i) (n + 1~ \
n + l j Ac...c - Ael +1---ci-1(ci-1)i-n

j<i, j-good +

zn
+ (n + )(t i n 1 Aci...(c_-1)...cji - Ac+1...cn

ji-900d+

(2.4.4)= (n - i l + 1) Ac, ... cj- - Aes+1---ci-1(ci-1) ...c C

j<ij-good

+ (n) Ac1 ...(C-1).--cj-1 ~ AeC+1.--n
j>i,j-good

In particular, by choosing i to be maximal such that ci > 0 in the last formula, we obtain

the following result.



Theorem 2.4.6. Let c1,..., cn be a composition of n, and suppose i = max{jcj > 0}. Then

the classical mixed Eulerian number Ac .c is given recursively, by

Ac,...c. = (n - i+ 1) 1 AcQ ...c -Ac...c _(c1)...c, + iAc 1... l(c )c 1 ,
j<n,j-good

(2.4.5)

where the last term only appears if en < 1. This recurrence together with A1  1 deter-

mines all the mixed Eulerian numbers uniquely.

2.5 Examples.

In this section we apply Theorem 2.4.6 to give new proofs of parts (2)-(5) of Theorem 2.2.2.

Example 2.5.1. (volumes of hypersimplices) Let A(n, k) = Ao... ...O, where n is in position

k. Thus A(n, k) is the normalized volume of the kth hypersimplex in Rn+ 1 , i.e. the volume

of the slice of the unit cube in R' lying inside k - 1 <X1 + ... + Xn < k. We have A(1, 1) = 1

and for n > 2 2.4.5 becomes A(n, k) = (n - k + 1) - A(n - 1, k - 1) + kA(n - 1, k), where the

last term appears unless k = n. This is exactly the recurrence characterizing the Eulerian

numbers, hence A(n, k) is the number of permutations in S, with k - 1 descents. Thus we

recover Euler's famous result.

Example 2.5.2. (mixed volumes of the opposite hypersimplices) Let A(n, k) = Ako...0(n-k)

for k = 0, 1, ... , n. We have A(n, 0) = A(0, n) = 1. Theorem 2.4.6 implies A(n, k) =

() AkO...oAO... (n-k-1) = (n) for 0 < k < n - 1, and A(n, n - 1) = nA(n-1)o -.0= n. Therefore,

in all cases we have A(n, k) - (n), as claimed in part (3) of Theorem 2.2.2.

Example 2.5.3. (mixed volumes of two adjacent hypersimplices) Let

A(n, i, k) = Ao...i,-i, ...o

with n - i in position k. We have A(n, n, k) = A(n, k - 1), A(n, 0, k) = A(n, k) and for n >

2, 0 < i < n the recurrence 2.4.5 becomes A(n, i, k) = (n-k+1)A(n-1, i, k-1)+kA(n-1, i, k).

Claim. A(n, i, k) equals the number of permutations w E Sn+1 with k - 1 descents such that

7r(n+1) = n - i+ 1.

Proof. For i = 0 or i = n the result follows easily from the previous section. It remains

to show that the number B(n, i, k) of permutations i E Sn+1 with k - 1 descents and last

coordinate n - i +1 satisfies the same recurrence as A(n, i, k). Consider such a permutation w



written as a sequence of numbers. If we remove 1 from 7r, and then decrease all the remaining

digits by 1, we obtain a new permutation - E Sn such that T(n) = n - i and T has k - 1 or

k - 2 descents. If r has k - 1 descents then 1 must have been inserted in a descent position

of 7r - {1}, or in the beginning. If w has k - 2 descents, 1 must have been inserted in one of

the n - 1 - (k - 2) = n - k + I ascent positions of -r - {1}. El

This establishes part (4) of Theorem 2.2.2.

Example 2.5.4. Suppose ci, ...,cn satisfies cl+ ... +-ci ;> i,Vi 1, ..., n. Let i = max{jcy >

0}. Since there are no good indices j < i and cn = n - (c1+ -... + cn+1) < 1, we have Ac,... =

iAc ... ci_(ci_1)... c,. An easy inductive argument implies Aci... ici(i - )ci-1...cIc'A 1 ,
hence part (5) of Theorem 2.2.2 follows.

Theorem 2.4.6 gives another characterization of the mixed Eulerian numbers in type A.

It's not obvious at all that 2.4.3 and 2.4.5 are equivalent recursions. The set of good indices of

a composition has a simple geometrical interpretation. There is a natural bijection between

n-tuples ci, ... , cn of non-negative integers which sum to n, and plane lattice paths S between

(1, 1) and (n+1, n + 1) with "up" and "right" steps. Fix i such that ci > 0. Let's modify S by

moving 1 unit down the part of S which lies to the right of the x = i. Call the new path S'.

It is easy to see that the set of good indices j is precisely the set of x coordinates of points

where S' crosses the diagonal x = y.

Example 2.5.5. The lattice path in Figure 2.5.1 corresponds to the composition (ci, . .. ,c 8)

(1, 0, 3, 0, 0, 1, 3, 0). For i = 7, the set of good indices is {2, 5}. In this case formula 2.4.5 gives

A 10 300 1 30 = 2 ()A 1 A3oo 120 + A1o3 oA12O + 7Ai 030012.

Using 2.4.6 repeatedly, we find Ai 030 = 2 ((4)A 1 A20) + 3A102 = 2 - 4. 1 - 1 + 3(i) 17

and A1030012 = ()A 1 A3oo11 + (4)Aio3 oAn = 7 - 3 - 4. 5 + (4) . 17- 2! = 1330, and finally
Ai 0300130  16- 13 . 4. 52 + 140- 17- 1 . 22 + 7 -1330 = 20430.

The mixed Eulerian numbers include the factorials, binomial coefficients, numbers of

permutations with various restrictions, numbers of the form 1C1...ncn. While finding a simple

closed formula for Ac1..cC is unlikely (there is no such formula already for Ao...o,k,n-k,o..o), it

seems reasonble to try the following

Problem 2.5.6. Find a way to label the n vertical segments of the path S with numbers

1, ... , n with certain order restrictions depending on how S behaves (e.g. how S crosses the

diagonal x = y), such that the number of labelings is Ae, .. ,..



2 3 4 5 6 7

Figure 2.5.1: The lattice path corresponding to the composition (ci,.: ., c8)
(1, 0, 3, 0, 0, 1, 3, 0).

2.6 A cyclic formula for the volumes of weight polytopes

In this section we investigate the geometry of alcoves in the affine Coxeter arrangement of

a root system <b to obtain a generalization of Theorem 2.2.2(6). Our approach is similar

to Postnikov's in [16, Proposition 16.6], and uses symmetries of extended Dynkin diagrams.

Recalling the setup of Section 2.3, we introduce additional notation. It is well-known that

there is a well-defined highest root an+1 = mia1 + - - + man, where mi, ... , mn are positive

integers and mi + ... + mn is the height of an+1. We also let mn+1 = 1. See [3, Chapter 6]

for more on these coefficients.

Theorem 2.6.1. Let Tj denote the root system in V spanned by {ajj # i}. For any

ui, ., Un+1 we have

n+1 det (ai ... an)|-2 n+1 mi (ai, aj) n

zVj (ni, ... , usi, ..., Un+1) = -EUs (2.6.1)
WJ |n!mi ... - 2

Proof. Recall that the affine Coxeter arrangement of <DI in V consists of all hyperplanes of

the form

(ai, x) =_ k, k E Z, i = 1, 2, ... , n + 1.

These hyperplane arrangements as well as polytopes arising from them have been studied

(mostly in type An) in [18, 13]. These hyperplanes subdivide V into regions called alcoves.

The reflections in these hyperplanes generate the affine Weyl group We, which is the semidi-

rect product of W4(reflections fixing the origin) and Z"(translations) . The fundamental

I" -

8 9



alcove A" is given by

A' ={y E V|O < (ai,y),Vi < n, (-an+, y) <1}

It is a simplex with vertices Vi, ... , vn+1 given by vn+1 = 0 and vi = Q2 A- for i K n (the

latter points lying on (-an+, y) = 1). Hence its volume is

Vo 1 A" = det 2A 1  2An - (2.6.2)
n!m1 ... m (,ai) ona.) (

1 de (iT 1
= det ((ai ... an)=
n!mi ..-. mZ, n!mi --- mn det (ai ... an)

On the other hand,. consider any point x = uA 1  ... + UnAn in the interior of A4. The

We-orbit of x has a unique point in each alcove. If we look at the elements of Wex closest to

vi (i.e. the ones in the alcoves adjacent to vi), they are the vertices of the weight polytope P

(centered at vi) corresponding to the root system Ti in V generated by the roots {ag j # i}

(also centered at vi). The walls passing through vi subdivide P into |WF| congruent pieces,
one of which is Pi n AD. Figure 2.6.1 illustrates the geometry in type B2: The shaded region

is the fundamental alcove, and there are 3 adjacent weight polytopes at x). Therefore,

Vol A S Vol=P( (2.6.3)

Now, how do we compute Vol((Pi) as a polynomial in U1 , ... , un? Recall that x = u 1 A1 + ... +

unA, implies i = ( , i.e. we only need x and the simple roots in order to know where to

evaluate V4 (u1 , ... , un). We let un+1 2  ((x, an+1) + 1) for convenience, so that

n+1

Tus =aa)U 1 (2.6.4)Z2
i=1

Since Pi is centered at vi, the coefficients of the linear expansion of x in terms of the funda-

mental dominant weights in Ti are

Wj-2 (x - vi, aj) .i7
(aj, aj)

(This follows easily since (vi, aj) = 0 for j # n + 1 and (vi, an+1) = 1;i # j). The volume of

the parallelotope formed by the aj's (j #L i) is

Tdet (ai .. o... an+1) miI det (ai ... an)

Therefore,



Combining the latter with (2.6.2) and (2.6.3) we arrive at

1 m det (a1 ... an)2 V (Ui,
n m -=1 - -m I

The last formula holds for all u1 , ..., uji+1 satisfying (2.6.4). Since the right side is a homoge-

neous polynomial of degree n in U1, ... , un+ 1 , we obtain

)2n+1 - m 1
det (ai ... an) VT, (1, ... , u1 ... , Un+1)

a W) | n!mi- ... n

mi (ai, a )
2

for any a1 , ..., un+1. The theorem is proved.

Equation (2.6.1) can be somewhat simplified, by using the following classical formula for

the size of the Weyl group of an irreducible root system (see [3, Proposition 7 on p.190 ]):

|W4 l = n!mim 2 ... mn det A4

We have

det A4, = ( 2ca )-det [(al ... &n)T( alail)
.a )

= det (ai ... an)2 H7 c
(al, a )

With these last formulas, equation (2.6.1) becomes

n n+1 ' i V U , Ii n 1fJ(ai 7 i)= 1I Wt 
1=1 i=1 ~I~I

for any irreducible root system <b. In types A, D, E all roots have the same length, hence the

latter simplifies to

n+1 I n+1 )n

i=1 i(U=1...,ii ... ,Un±i) (Mi)
ii=1

n+1 )

Vol (P) = mniI det (ai ... an)|lV- (ni, . .. ,..., Un+1) -

--- ,) 6i, --- , 7Un+1)



Figure 2.6.1: Alcoves in the affine Coxeter arrangement of type B2.

2.7 Generalization To Positive Definite Matrices

Let D be an affine root system with Cartan matrix A4. Then equation 2.4.1 can be rewritten

A(O/OUIV41

0&/&u"I4
=4

Since Vb(ui, ... , u,,) is a homogeneous polynomial of degree n = rank(1), we obtain

nV = ( uj V4) [U1 ... un] A I
ou -

VD (11 (U2, .,Un)
V-c_-nJ(Ui, ..., iUn_1)_

Since the Cartan matrix of 4 - {j} is just the jth principal minor of Ab, the last equation

motivates the following construction:

Definition 2.7.1. Let A be a positive definite n by n matrix. We define the homogeneous

polynomial PA(ui, ... , Un) by the following recursion:

PA(ul, ... , un) = [u1 ... un] A- 1 U
Pfra](U) = a (2.7.1)

By the above discussion, we have

Theorem 2.7.2. Let D be any root system, and AI its Cartan matrix. Then

PA (Ui, ... r Un) = n!V (Ui, .. of, UT)

We also provide a new direct proof of Theorem 2.7.2.

PA1 1(U2, ... , Un)

PAn (Ui, ..., Un-1)



Proof of Theorem 2.7.2. Consider the point x = uiAI + ... + uAn in the weight lattice of

D. We may assume without any loss that x is dominant. The Weyl chambers divide

the polytope Pw(,(x) into |We congruent subpolytopes; denote by P the piece contain-

ing x. For i = 1, 2, ..., n let P be the projection of x onto the hyperlane orthogonal to

ai, and let Qi be the projection of x onto the line spanned by Ai. One can see that

the points x, P 1 , ... , Pi_1, Qi, Pi+1, ... , Pn lie on the hyperplane Hi which passes through x

and is orthogonal to Ai. Thus, these points together with the origin 0 form a pyramid

with base xP1...Pi_IQiPi+I...Pn and altitude 0Qi, and P decomposes into n such pyra-

mids. Now, the projection to the affine hyperplane Hi (considered as having the origin

at Qi), naturally induces a root system structure isomorphic to '1 - {i} on Hi: the sim-

ple roots are aj, and the fundamental dominant weights are just the projections A' of Aj

onto Hi, j # i. Since projections are linear transformations, x - u1A1 + ... + unAn implies

xc = -'= uiA1+...+ui-A'+Ui+1A'i+...+unA', and one can see that xP 1... P- 1QiPi1-Pn
is one of the |W,-I | congruent pieces of Pwo-mc(x'), the weight polytope of x' with the

respect to the root system 1 i = 4 - {i} in Hi. Therefore,

Vol (xPI...Pi_1 QiPi+1 ...Pn)

1
= Vol(Pw) (uiA' + ... + ui-1A'>_1 + ui+1 Ai+1 + ... + unA'))

Vol(ai, ... di..., an)
= .Vol(ai ... ,an)

The last quotient is 1 over the length of the projection of a onto Ai (because Ai is the

orthogonal complement of the hyperplane spanned by aj, j # i). Thus

Vol(ai, ...cd..., an) A( , A2) - 2
Vol(ai, ... ,,) (Ai, A) (ai, a)

Therefore, the volume of the ith pyramid 0xP 1...Pi 1 QiPi+1...Pn is

1 1 (x, A)2

- ||0Qill Vol(XP1 ...Pi- 1QiPi+1...Pn) = 1 - Ai 2 Aill (1,-...-i...un)n n (Ai, Ai) (ai, ai)

2 (x, Ai) D ( .d..Un
(ai, ai)n

Summing the last expression over i = 1, ..., n we obtain the volume of P:

2(x, Ai)
(ai, ai)n



which upon multiplying both sides by n! can be written as

=f 2(x, A)
(a , aj)

Y- jft i 2(Aj, Ai)

, as claimed.

We now derive some basic properties of the polynomials PA(ul, ... , u,).

Proposition 2.7.3. Suppose A is a block diagonal matrix, A

sizes n,...,nk. Then

with block
Ak

PA(U1,...,Un) = j + - + n PA1(Ui,., Uk) -. -PAk (un1+----_+k1, -,unl+...+nk)-
ni,..., nk

Proof. The general case follows from the case k = 2 by induction. Henceforth, we assume

A = ( B ) where A, B, C are of size n, m, n - m respectively. We induct on n, the case

n = 1 being trivial. By using the inductive hypothesis and the recurrence formula for the

PAD (Uli, ..., IUn) (ui, ... - 4...-, Un)

PA'Dj (Ul, ---di ---, U")

=[u1 ... Un] A-'

PA.1I (U2, ... n)

PACD, (Ui ., Un- 1)



polynomials PA, we have

B- 1

PA = [U1 ... un] (

(B-1
- [Ui --- Un]

C_1

C-1(

PB1, (U2, --

= [ui .---Um B- 1

PBmm(U1, - -

PAn (Ui, .

PB 11 PC

PBmmPC (-1)

PB PCn-.,n-,,

- ,Urn)1

PC(Um+1, Un)-

- Urn-1)

PCi (Um+2, -- ,Un)

+ [Urm+1 --- un] C-(

PCn-m,n-m (Um+1, --- ,Un-1)

n -1
PB(U1,---,Um)PC(Um+1,---,Un)(- (( )+

S()PB(ul - . ,Um)PC(Um+1, Un)-

PB(Ul, -

n-1

(n - ++

-ium) -

k~m-m

di

Corollary 2.7.4. If A = then PA = d i - - -Un-

Proposition 2.7.5. The coefficient of u1 -.- Un in PA is -. In particular, for any root

system <b, the mixed volume of the n (b-hypersimplices is AD -= -
ZS- .. -detA,

Proof. If we define QA = JAl . PA, then 2.7.1 implies that the coefficient of U1 - - -Un in QA

satisfies the recurrence [Ui ... un] QA =U1Ui - - -j ... Un]QAjj and [UIjQ[a] = 1. Therefore

[U1 -. Un]QA = n!. The second part of the Lemma follows since the coefficient of ui ... u, in

Vol (Pw,) is A4.. 

Thus, the determinant of A is encoded by the coefficient of U1 ... un in PA. It would be

interesting to find out what other invariants associated to A are represented by coefficients

of PA(Ui, ..., Un).

PA11 (U2, . - - , Un)

- n-1)

M-1)



For an n by n matrix A, and two sequences of numbers ai, . . . , ak and bi, . . . , bj we

denote by Aa1...a,bli...bk I the minor of A corresponding to deleting rows ai, ... , ak and columns

bi, . . . , b We write Aa,...akI instead of Aa.akaI.

Theorem 2.7.6. We have

PA+Jl7r -S( ~ Ini iA~ria2 ,rr 2 I* JAiri... 7rn- 1 n,r...rn
P2JA A j I~ ... I A 7,- 1 U ... LO Ucyn

(2.7.2)

where the sum is over all permutations 7r E Sn and sequences a = (U1 , ... ,on) E [n]" such

that 9k - 1, . . . , 1. Here i47, o) denotes the number of (-F, o)-inversions, i.e. the number

of pairs of indices (i, j), i < j such that c-j < ri.

Proof. The theorem follows by repeatedly applying the recurrence relation. Indeed, 2.7.1 can

be rewritten as

n 
A~

PA = PAj (Ui . .di ... Un)(-1)i ~ __ . (2.7.3)
,-1

Next, we have PA, = l lPA - (-1)k+l+ IIikIu, where is 0 if k,I > i or

k, 1 < i and 1 otherwise (this e accounts for the fact that we haven't changed the labelling

of the rows and columns of A2). Let's perform one more step: PAk = E,s=1,r,sik PA*

(-1)r+s+6 |A(sjrI u,. Again, o compesates for the fact that the rows and columns of Aik are

still labelled as in A, hence 3 is the number of pairs among (i, r), (k, r), (i, s), (k, s) which are

in order ((a, b) is in order if a < b). Now it's easy to see that if we apply 2.7.3 recursively

n - 1 times, we obtain exactly the right side of 2.7.2 except that the exponent of -1 is

71 + - - -+n + 0-1 + - - -+-++ p, where ( is the number of pairs (i < j) such that 7i < rj,
and p is the number of pairs (i < j) such that qri < o-j. In other words, the exponent of -1

is 1 + 2 + --- + n + o0-1+ --- + an + (n) -F )+ (n) - i(7, 0-) -- ( ) + -1 + --- + o-n + i(7r) +

i(7, o) (mod 2). The proof is complete. El

It's interesting to note that similar expressesions to the right side of equation 2.7.2 ap-

pear in the famous work in non-commutative algebra on quasi-determinants by Gelfand and

Retakh ([10]).

Corollary 2.7.7. The coefficient of un in PA(ul,.. . ,,u) is

( - 1) ( " ) + n i + i )+ ) eAnum e o -oAdi ,r el p a i r s -r. . .s c i , 7 .. .
|JA | - | A jr | - - .| A ... _ 1| 1

where c(7) is the number of ordered pairs (r < s) such that ix, > i.



2.8 Weighted Paths in Dynkin Diagrams

While Theorem 2.7.2 gives an explicit formula for the polynomials PA(ui, ..., u 7,), it is difficult

to compute the coefficients of PA (or even check whether they are positive). However, in the

case of a Cartan matrix A - A4, one can perform a trick which expresses the entries of A- 1

in terms of weighted paths in the Dynkin diagram of 4 as follows. We define the weight of

each edge of P to be 1/2. For example, in type G2, there are 3 directed edges from node 2

to node 1, so we set wt(1 -* 2) = 1/2 and wt(2 -- 1) = 3/2. In types A, D, E all edges are

unlabelled so wt(i - j) = 1/2 if i and j are connected, and 0 otherwise. The weight of a

(directed) path is defined as the product of weights of its edges.

Theorem 2.8.1. For any root system 4, the D-mixed Eulerian numbers are given by

A -e = W3.cwt(Pi)...wt(Pn) (2.8.1)
7 =71 ... Arn CSn P1,...,Pn

where the sum is over all (directed) paths P : 7- o- in the Dynkin diagram such that

Pi avoids 71, ..., r_ 1, and such that exactly cj of these paths end at j.

Proof. Consider the Cartan matrix A A = = 2(I - B4), where the ij entry

of B4 is just wt(i - j). Then A = j(I + B.1- + B2 + ...). It follows that the ij entry

of A-' is ' (ogg + (BD)ij + (B2)ij + ... ) = E wt(P), where the sum is over all paths P

in D starting at i and ending at j (the term (Bk),j is the sum of weights of such paths

of length k). More generally, we may consider any principal minor Ai,...1 i = 2(1 - B*i...ik)
and by a similar argument we obtain A-'. (o + (Bil..,)ij + (B li+

EQ wt(Q), where the sum is over all paths Q in D from i to j avoiding i,..., i. Now,

recall that 1 AD is the coefficient of U 1 ... Un in Vol (Pw, (uiA1 + - + unAn))CJ!- .Cn! C1..Cn1 n

'W4K'PA,(u1, ...,un) (cf. Theorem 3). Proceeding as in the proof of 2.7.6, we have

n .n

PA(ul,..,un) PA, (ui, ... u..., u -,) (A-) ,1

1..1 (

PA21 7(r , --'U^i 1U2 ---un) (A ) (A- )'2 U12 U11
710172,02#ltl7

- >3 (A-1 )7 (A )7r ... (A-'i..) n (2.8.2)

1rESn,OaE[n]n 
1 22.. 7l..7n- r r 1 . l

where the sum is over all 7r E Sn, o- E [n]" such that o-i # i 1, ..., 7i1. By the above discussion,

(A- 1) (A-) ... (Ajl 1 ) = wt

1..................... ....,.Pn- 1



where the sum is over all collections of directed paths Pi : ri - i such that P avoids

7i_1. We may as well include the weight 1 of the empty path P, : 7r - o-, = ,ra (the
only path avoiding 7r1 , ... , rn-1), to each product in the sum. The theorem now easily follows
by extracting the coefficients of u" ... u on both sides of 2.8.2. E

Remark. By reversing all the paths in 2.8.1, one gets a similar formula for Ac.c where

Pi : oi -+ ri avoids iri, ...7r 1 , and cj of these paths start at j.

Example 2.8.2. Let's illustrate Theorem 2.8.1 by computing the usual mixed-Eulerian num-
ber A030 . Here, the root system is A 3, all 4 edge weights of the Dynkin diagram are j. We
are interested in triples of paths P : 2 - r1 , P2 : 2 -+ 7r2 , P3 : 2 * 7r3 = 2 with P 2

avoiding 7ri (and P3 is just the empty path which we may ignore). There are 2 possibili-

ties (7r1 = 1, 72 = 3, and vice versa) which, by symmetry, yield the same contribution to

A0 30 . Consider pairs of paths P1 : 2 -+ 1, P2 : 2 -+ 3, with P2 avoiding 1. There is one
path P2 of each odd length k, hence EP2 wt(P2) = + 1 + ... = . If ak is the number of

k-1
paths P1 of length k, then ak satisfies ak = 2 ak-2, ai = 1. Thus, a =2 2 for odd k, and

P Wt(RI) - Zk=2n+121 2 k Zn>O 1 = 1. Therefore, Theorem 2.8.1 implies

4!0!3!0! 2
Ao3 0=2- -- =

233! 3

which, in accordance with Euler's classical result, is also the number of permutations in

S3 with 2 descents.



Chapter 3

Shifted Young Tableaux

This chapter is based on [5]. In this chapter, we study vectors formed by entries on the

diagonal of standard Young tableaux of shifted shapes. We will establish a connection between

such vectors and the lattice points of certain generalized permutohedra which are Minkowski

sums of coordinate simplices.

3.1 Shifted Young diagrams and tableaux

Definition 3.1.1. Let A = (A1, . . . , An) be a partition into (at most) n parts. The shifted

Young diagram of shape A (or just A-shifted diagram) is the set

D= {(i, j) E R211 < j < n, j i < n + Aj}.

We will think of DA as a collection of boxes with n-+1 -i+Ai boxes in row i, for i = 1, 2, .. . , n

and such that the leftmost box of the ith row is also in the ith column. A shifted standard

Young tableau shape A (or just A-shifted tableau) is a bijective map T : DA - {1,. .. , IDA}
which is increasing in the rows and columns, i.e. T(i, j) < T(i, j + 1), T(i,j) < T(i + 1,j)

(IDA I (nl) + A1 + + An is the number of boxes in DA). The diagonal vector of such a

tableau T is diag(T) = (T(1, 1), T(2,2),... , T(n, n)).

Figure 3.1.1 shows an example of a shifted standard Young tableau for n = 4, A

(4, 2, 1, 0). Its diagonal vector is (1, 4, 7, 17).

We are interested in describing the possible diagonal vectors of A-shifted Young tableaux.

The problem was solved in the case A = (0, 0, . . . , 0) (the empty partition) by A. Postnikov, in

[16, Section 15]. Specifically, it was shown that diagonal vectors of the shifted triangular shape

Do are in bijection with lattice points of the (n - 1)-dimensional associahedron Ass-1 (to be

defined in section 2). Moreover, a simple explicit construction was given for the "extreme"

diagonal vectors, i.e. the ones corresponding to the vertices of Assn_1. We use similar
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Figure 3.1.1: A A-shifted Young tableau of shape A = (4, 2, 1, 0).

techniques to generalize Postnikov's results to arbitrary shifted shapes.

3.2 A generating function for diagonal vectors of shifted tableaux

For a non-negative integer vector (ai, an), let NA(ai,..., an) be the number of standard

A-shifted tableaux T such that T(i + 1, i + 1) - T(i, i) - 1 ai for i = 1, . . ., n and where we

set T(n+1,n+1) = (") +Ai+...-+An+1.

Theorem 3.2.1. We have the following identity:

)ta1 tan

NA (ai,.. . ,an) -- tn

1an O al a .

, . -(tj+ -- + ty 1) -s>t1 + -+n , t2 - t , . ,

UI(As +t n - z)j Xt tjt n n
M 0! 1<i<j<n

where s,\ denotes the Schur symmetric polynomial associated to A.

Proof. Consider a vector x = (x1 , x2, ... , xn) with x1 > x 2 > ... > Xn. Define the polytope

PA(x) = {(Pij)(ij)EDI 0 Pij > Pi(j+1), Pij P(i+1)j, Pii Xi}-

By definition, PA(x) is exactly the section of the order polytope of shape DAwhere the values

along the main diagonal are x1,..., X . If A = 0, this polytope is known as the Gelfand- Tsetlin

polytope, which has important connections to finite-dimensional representations of g1n(C) (see

[11]). Our proof strategy is to compare two different formulas for the volume of PA(x), one of

which is more direct and the other is a summation over standard A-shifted Young tableaux.

On the one hand, by [1, Proposition 12] we have

vol(PA (x)) = I I . - (Xi - X)- sA(x). (3.2.1)
i=1(i+n- z 1<i<j<n



Baryshnikov and Romik proved this result directly by an inductive argument (on the number

of boxes plus the number of parts of A) using iterated integrations. On the other hand, there

is a natural map # from PA(x) to the set of standard A-shifted Young tableaux defined as

follows: Let p =(pij)(i, j)EDA E PA(x) be a point such that Pij = pij (i, j) - (i', j').

Arrange the pij's in decreasing order and define the tableau T = #(p) by writing k in box

(i, .) if Pij is the kth element in the above list. By the definition of PA(x), it is clear that

T is a standard A-shifted Young tableau. Given standard A-shifted tableau T with diagonal

vector diag(T) = {d,. .. , dn}, it is easy to see that 4- 1(T) is isomorphic to the set

{ (yi) (E RIT Iyi > Y2 > -.'' > yJTI > 0, ydi =- Xi}

which-is the direct product of (inflated) simplices

{X1 = y1 > y2 > yd 2 -1 > X2} X ... X Xn = Ydn > Ydn+1'' > YTI > 0}

Therefore,
1 ( - x 2)al (x4-1 - )"n-1 zan

vol(#- (T)) - a2 an1
a,. an-1. an.

Summing over all A-shifted tableaux T, we obtain

vol(PA(x)) = vol(#- (T))
T

(x 1 -- 2
2

i _ - an-1 an

N(al,...,an) a,. an-1. an.
ai,...,an;>0

Comparing the last formula to (3.2.1), and making the substitutions

ti = Xi - x 2 , ... , _1 z 1 - Xn, tn = Xz we obtain the identity in the theorem. D

3.3 A bijection between diagonal vectors and lattice points

of PA

In this section we recall the setup from [16, Section 6]. Let n E N and let ei,... , en denote

the standard basis of Rn. For a subset I E {1, 2, .. . In}, let A1 = Conv{eili E I}, which is

a coordinate simplex of dimension III - 1. A class of generalized permutohedra is given by

polytopes in R" of the form

P(yI}) = S /'
0#IC{1,...,n}



In other words, P'({yj}) is the Minkowski sum of the simplices A, rescaled by yr > 0. It
is straightforward to see that if y' = yj, whenever III = |Jl, then P!({yr}) is the classical
permutohedron P(z[n n Z[n 1] ..., zI11), where

z n] = yE Y~z[n_1] = Eyi, . , zf1j = yfil.
IC[n] IC[n-1]

An extensive study of generalized permutohedra, including their combinatorial structures,
volumes, numbers of lattice points was carried by Postnikov and others in [16, 17]. One
particular example of a generalized permutohedron, the associahedron, in its Loday realization,
is defined as

Assn = 3 A[,]
1<i<j<n

It is also known as the Stasheff polytope [21], and it has generalizations to any Lie type via
cluster algebras (see [7], for example).

Proposition 3.3.1. For any subsets 1, . .. , I [n], and any non-negative integers ai,.. . ,
the coefficient of ti 1 - ta in

k

ti (3.3.1)
j=1 (iEi,

is non-zero if and only if (a1,... , an) is an integer lattice point of the polytope E 1kI A13 .

Proof. It's easy to see that the coefficient of til ... tan in (3.3.1) is non-zero if and only
if (a1,... , an) can be written as a sum of vertices of the simplices A1 A,..., I . By [16,
Proposition 14.12], this happens if and only if (ai,. . . , an) is a lattice point of Ek1 Ag. O

Proposition 3.3.2. The coefficient of ti . .. tn in sA(tl+ - - 2 - . ,t) is non-

zero if and only if (ai, ... , an) is a lattice point of the polytope A1A[l,] +A 2 A[2,n]+- -+Andfn

Proof. Recall that

s(t1+ -- +n,t2+--+t,.,n)= (t1+- +t)"' -- t"", (3.3.2)

T

where the sum ranges over all semi-standard Young tableaux T of shape A and weight w

(wi, . .. , wn), i.e. wi is the number of i's appearing in T (see [23]). Let T be a SSYT of shape
A and weight w. Then wi +-- + wi A1 + ..- + Ai, Vi = 1 . .. n, because if we consider the

boxes containing the numbers 1, 2,..., i in T, there can be no more than i of them in the

same column. Hence the number of such boxes is at most the size of the first i rows in the
Young diagram of A, which is A, + - - - + Aj.



It follows that any monomial t" - t' appearing in (ti + - + tn)"'. t4n'a also appears

in (t1 -- -+i)A1 - tA-. On the other hand, (ti + -+ )A -.- tA7does appear in the right

side of (3.3.2) as the term corresponding to the tableau T with l's in the first row, 2's in the

second row, etc. Therefore, the coefficient of t-- tin in sA(t1 -- + to, t 2 +- + tn,... , tn)

is non-zero if and only if it is non-zero in (ti - -+ta)A1 -- tn, which by Proposition 3.3.1, is

non-zero if and only if (ai,. .. , an) is a lattice point of A1A[l,n] + A2A[ 2,n]+ -.. +A Aln I El

We now have all the tools to establish the first main result of this chapter.

Theorem 3.3.3. The number of (distinct) diagonal vectors of A-shifted Young tableaux is

equal to the number of lattice points of the polytope

PA > A[ij1 + A1,A11,n1 + A2A[2,n] + + AnAf n.
1<isjsn-1

Proof. By Theorem 3.2.1, and Propositions 3.3.1, 3.3.2 it follows that NA(ai,. . . , an) = 0 if

and only if (ai, . . , an) is an integer lattice point of the polytope

E3 A~j + AlA[l,n] + A2 A[2 ,n] + . + AnAfn}.
1<i<j<n-1

El

In particular, if A has n parts (i.e. An > 0), we see that PA is combinatorially equivalent

to Assn.

3.4 Vertices of PA and extremal Young tableaux

In what follows we describe the vertices of the polytope PA by using techniques developed

in [16]. Given a generalized permutohedron Pn({yi}) = E. {1,...,n yjAi, assume that its

building set B = {I C [n]|yj > 0} satisfies the following conditions:

1. If I, J E B and I n J # 0, then I U J E B.

2. B contains all singletons {i}, for i E [n].

A B-forest is a rooted forest F on the vertex set [n] such that

1. For any i, desc(i, F) E B. Here and below, desc(i, F) denotes the set of descendants of

i in F (including i).

2. There are no k > 2 distinct incoparable nodes i1 ,. . . , ik in F such that

k

U desc(ij, F) E B
j=1



3. {desc(i, F)|i- root of F} ={I E B|I-maximal}.

We will need the following result of Postnikov:

Proposition 3.4.1. [16, Proposition 7.9] Vertices of PW ({y1}) are in bijection with B-forests.

More precisely, the vertex VF = (ti, - - - , n) of Pn({yi}) associated with a B-forest F is given

by ti = EJEB:iEJCdesc(i,F) YJ, for i E [n].

Remark 3.4.2. It's not hard to see that Proposition 3.4.1 remains essentially true even if we

allow the building set B not to contain the singletons {i}. This is because a term of the form

ysilAfil = U'filei in a Minkowski sum just translates the other Minkowski summand.

The combinatorial structure of PA clearly only depends on its building set, i.e. the number

of non-zero parts of the partition A. Assume A has k positive parts, so that the building set

of PA is

Bn,k = {[ij]|1 < i < j < n - 1} U{[i, n]|1 < i < k}.

We first deal with the case k - n. Let T be a plane binary tree on n nodes. For a node

v of T, denote by Lo, Rv the left and right branches at v. There is a unique way to label the

nodes of T such that for any node v, its label is greater than all labels in Lv and smaller than

all labels in R,. This labelling is called the binary search labelling of T.

Proposition 3.4.3. [16, Proposition 8.1] The Bn,n-forests are exactly plane binary trees on

n nodes with the binary search labeling.

If k = 0, then the building set of PA is the same as Bn_1 ,n_1 hence Bn,o-forests are plane
binary trees on n - 1 nodes. The rest of the theory for k = 0 is the same as for the case
k = n, but with n replaced by n - 1.

Assume now k > 1. Let T be a Ba-forest. It's easy to see that desc(x, T) has form

[a, n] if and only if the path from the root to x always goes to the right. In this case,
desc(x, T) = [x - |Lx 1, n]. We want to check when desc(x, T) E Bk. This will happen if and

only if x - ILx| 5 k or x - |Lx| = n (cf. Remark 3.4.2). But x - |Lx| increases as x moves

down to the right starting from the root of the tree, and x - ILx I = n can only happen when

x = n and ILxI= 0. It follows that {desc(x, T)Ix E [n]} C Bk,VX if and only if n

{desc(x, T)Ix E [n]} Bk n - 1 -|-L_1| < k and |Ln|= 0
n - |Ln| < k and |Ln| > 0

This argument together with Proposition 3.4.3 implies



Proposition 3.4.4. Let k > 1. The Bk-forests are exactly plane binary trees on n nodes

with the binary search labeling and such that either |Ln| > max{n - k, 1}, or |L,| = 0 and

|Ln_1| > n - 1 - k.

Corollary 3.4.5. For 1 < k < n, the number of vertices of PX is

(CoCn-I + C1Cn-2 + - + Ck-1Cn-k) + (CoCn-2 + - - - + Ck 1Cn_1- ) (3.4.1)

where Cn = (2n denotes the nth Catalan number, and C_1 is taken to be 0.

Proof. By Propositions 3.4.1 and 3.4.4, the number of vertices of PA is equal to the number

of plane binary trees T on n nodes such that right-most node v in T has a non-empty (left)

subtree L, of size at least n - k, or v has no descendants and its parent u has at least n - k

descendants. In the first case, if ILI = i, then there are Ci ways to choose L and Cn-1-i ways

to choose the tree T\LU {v}. In the second case, if the size of the left subtree of u is |LUl = j
then there are C ways to choose Lu and Cn-2-j ways to choose T\Lu U {u, v}. Summing

over i = max{1, n - k}, ... ,n - 1 and j = n - I - k, ... ,n - 2 yields the desired formula. El

Remark. There is no difference in the combinatorial structure of PA whether A has n or n - 1

parts. Indeed, if A - (A1, ..., An) and A' - (A1, ..., An_ 1 ) then PA is just the translation of PA'

by Anen. In either case, the number of vertices of PA is Cn = CoCn-1 +... + Cn-1Co. On the

other extreme, if A has k = 0 parts, then PA = Assn 1 has Cn_1 vertices.

To describe the vertices of PA, recall that plane binary trees T on n nodes are in bijective

correspondence with the C subdivisions of the shifted Young diagram De into n rectangles.

This can be defined inductively as follows: Let i be the root of T (in the binary search

labeling). Then draw an (ILil + 1) x (|Ril + 1) rectangle. Then attach the subdivisions

corresponding to the binary trees Li, Ri to the left and, respectively, bottom of the rectangle.

For a subdivision 7 of De into n rectangles, the ith rectangle is the rectangle containing

the ith diagonal box of Do. If T is the binary tree corresponding to E, then the ith rectangle

of = has size (|LiI + 1) x (IRiI + 1). In particular, ILnI + 1 is the length of the (bottom-right)

vertical strip of the subdivision -.

Example 3.4.6. Figure 3.4.1 depicts a subdivision of the staircase shape De and the corre-

sponding binary tree with the binary search labeling when n = 4.

We are finally in a position to prove the second main result of this chapter.

Theorem 3.4.7. Vertices of PA are in bijection with subdivisions of the shifted diagram

Do into n rectangles such that the bottom-right vertical strip of the subdivision has at least

n - k + 1 boxes. Specifically, let B be such a subdivision. One can obtain a subdivision B* of

DA(lk) by merging the rectangles in B with the rows of the Young diagram of A - (1k) that
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Figure 3.4.1: A subdivision of De and the corresponding labelled binary tree

they border. Then the corresponding vertex of PA is V = (t 1 ,...,ta), where ti is the number

of boxes in the ith region of '*

Proof. The first part of the theorem follows from Proposition 3.4.4 and the discussion preceed-

ing the theorem. To prove the second part, we use Proposition 3.4.1. Recall that the building

set of PA is Bk ={[i, j]j1 < i < j < n} U {[i, n1 < i < k}, and PA = E[i,j]EBk Y'[', il
where yi= 1 if j 1 and y Ai . Let T be a Bk-forest, i.e. a binary tree on n nodes

with the binary search labeling such that |Lnl > n - k (cf. Proposition 3.4.4.) Note that

desc(i, T) = [i - |Lij, i + |Ril). Now Proposition 3.4.1 implies that the correponding vertex

VT - (ti,... , tn) of PA is given by

ti yj Yk
JC-Bk, ieJCdesc(i,F) [k,l|CBk, i-jLi|:Ikgi<l1i+Ri|

S(|Li + 1) - |Ril + yk(i+|Rl)-
k=i-ILI|

If the ith rectangle of 7 borders the right edge of Do (i.e. n E desc(i, T)), then ti =

(|Lil + 1) -Ril + Ek-i-Li Ak. Otherwise, ti = (|Lil + 1) - (IRil + 1) . In any case, ti is the

number boxes in the ith region of B*.

Example 3.4.8. Let n = 4, A (4, 2, 1, 0), k = 3. Figure 3.4.2 shows how a subdivision

of Do yields the subdivision E* of DA_(1k) = D(3 ,1 ,o). The corresponding vertex of PA is

given by counting boxes in the regions of B*: v=- = (1, 10, 1, 2). It follows that there is a

(4,2,1,0)-shifted Young tableau T whose diagonal vector is diag(T) = (1, 1 + 1 + 1, 1 + 1 +

1 + 10 + 1,1± 1 + 1+ 10 + 1 + 2) = (1,3, 14, 16).

On the other hand, one can directly construct A-shifted Young tableaux with diagonal

vector vs = (cl, C2, .. . , cn) by using the subdivision B*. Indeed, we know what the diagonal

vector of the tableau (al, ... , an) should be. Consider again the subdivision B* of DA_(lk).
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Figure 3.4.2: Constructing the subdivision E* of D(3,1,o) from a subdivision E of Do.
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Figure 3.4.3:

D(3,1,0) -

Constructing shifted Young tableaux from a subdivision E* of DA<lk, =

We can extend the diagram DA-(lk) to DA by first adding a box to the left of each row of

DA_(1k), and then, by deleting the last n - k boxes in the nth column of DA_(ik). Now, we

start by putting ai, ... , a, in the diagonal boxes of DA. The remaining part of DA is divided

into n regions by 3*. Finally, for each i = 1,.. , n, put the ci numbers ai .. . , ai+ 1 - 1 in

the ith region of E* in a standard way, i.e. such that entries increase along rows and down

columns (as before, we set a,+ 1 - DAI + 1). In this way we obtain a A-shifted tableau T
such that diag(T) = (ai, . . . , a,).

Figure 3.4.3 illustrates the above procedure for the subdivision in Example 3.4.8.

Problem 3.4.9. The normalized volume of a polytope is in some sense "dual" to its number
of lattice points. Given our results on the lattice points of PA, it is natural to ask for a
combinatorial interpretation of the normalized volume of PA. Are there any combinatorial
objects (vectors of Young tableaux, trees, etc) which would give a triangulation of PA?

2 I
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Appendix A

<b_ Diagram _W_l VIP (1, ... , Un)

0

A1  2 U1

1 2
2 2

A2  6 - + 2u132 + u
123-- I3+ 4!L2 + u3 2 u~u2 + 4u1u2 + 3 U1lu3

A 3  24 3 + 4 3! + 2 + 2 2

+3uu3 + 4U2 + 2u2u3 + 6uU2U
_______2 2 2 UUU

1 2

B2 2 2B2 C# 8 4 -T7 + 4u1&2 + 2 22

1 2
0=#O 

2 2C2  8 2-T + 4uiu2 + 4u
2 1

G2 12 6" + l2uiU2 + 18u
1 2 3 U3-4O- 3 6' 3 32u~

8T,+ 40u2+ 6A+ 16H2L+ 32"ul2+12u uB3483 2 36! ±u 2 2 12
B3  48 +12u1u3 + 24u2 + 12"fu + 24uiU2U3

2 2 2
1 2 3 U3UU 

1 UU 231
4T,+ 20u32+24! !+ 8H22+16"ul2+12u2 u

C3  48 3! + 24u +2 2 2
+24!Lu3 +F 24u2u + 24?I2u,+2uUU_______________2 2 2 24- uu



Diagram W V (UI Un)

4! 4! 4! 4!
+2u~~2 + 119j + 3U12 + 8u$ + 4ui! ±s34

+2u3 + 14u3 + 34 + 8 + 14 + 17u4u3

1234 3 3! 3! 3! 3!

A41022+ 22 2 2 2 2 2 2 2 2

6 + U2 U) + 162 + 12u4

+8 (PU4+ U3U)+ 18 (uu +UU3)

+12 4 + 2 4+ 32!23!4 +!!
4 4 U 4 2 C1 4 HU

+352A 10 + 18! ! + 25636 + + 3!

+48 (2 + + j + +32

B4  384 +1921U + 64 + 3201 + 96 +

22 22

+144$ + 48 + +128 "u2 34 + 288U3
2+ U2U+ 2

+ 6 2 + + UU3U4 U1+ +U4_
12 192 (u+-2 + 2 2 2)

_____+192_ 2 36u43 +2!4 9uU2U3U4 ~l ___

+965~2u + 28 u + 2H + 26 + u3+36)

! 4! 4! 3! U~ 3 3!

+16 (8u-! + u$u2 + u4u2) + 64 (- + 3u +

3 +2 (u"u + ""L1 "+ U"U + U"" + U~+ U=2 3)

D4 12 32(uu+2 "l2fl2 + +12 " + u2u2 1 2 3 4 + 3! + +)

3L K + 2 + 222

384 +9 +j48 uuu +- -2! ~ U +U U4)2 UU

16B4 + 232u + 58u + 4u + 1152iu2U34+

12844u2 + 512iL! + 384uIus + 6728sU + 336u2ui

+720zU2U + 128uju4 + 32u3u4 + 96jU4 + 96uu 3

2~~~6 3192('23uu +46u 4 +8u 3

+208Uiut +216 ( 2Uju + 2) 2 2

F4 1152

11L+64uu 4 + 32nin! + 72uuu + 576 (u8u243 + u2uju4)

+768uiuju 4 +288 (uu uu4 + in2 + U2U3R4)

+384 (u u2u4 + ui33u4) + 192niu34

+1152u1inu 3 + 864 (uu3u4 + uit 2 2)
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