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Abstract

This thesis is devoted to the divisibility property of weighted Catalan and Motzkin
numbers and its applications. In Chapter 1, the definitions and properties of weighted
Catalan and Motzkin numbers are introduced. Chapter 2 studies Wilf conjecture on
the complementary Bell number, the alternating sum of the Stirling number of the
second kind. Congruence properties of the complementary Bell numbers are found
by weighted Motkin paths, and Wilf conjecture is partially proved. In Chapter 3,
Konvalinka conjecture is proved. It is a conjecture on the largest power of two dividing
weighted Catalan number, when the weight function is a polynomial. As a corollary,
we provide another proof of Postnikov and Sagan of weighted Catalan numbers, and
we also generalize Konvalinka conjecture for a general weight function.
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Chapter 1

Introduction

1.1 Background

In combinatorics, the nth Catalan number

c = 1 (2n)
n+l\n

has been studied for a long time and has involved various problems, especially in enu-

merative combinatorics. Stanley[18] has listed more than 170 combinatorial examples
of Catalan numbers. For more information, see [2], [4], [6], [7], [8], [15], and [17].

C, is the number of Dyck paths with length 2n, a combinatorial interpretation of
Catalan numbers. A Dyck path consists of two steps (1,1) and (1, —1) which does
not pass below the z-axis. If a step (1,0) is also allowed, the number of paths from
(0,0) to (n,0) is M,, the nth Motzkin number. Motzkin numbers also have been
studied in many papers including [4], [5], [6], [7], [8], [10], [15], and [18]. Donaghey
and Shapiro[5] provided 14 combinatorial examples of Motzkin numbers. The first
Catalan numbers(Sloane[16]’s 4000108) and Motzkin numbers(Sloane[16]’s A001006)
are

Co=1, Ci=1, Cy=2, C3=5 Cy=14, Cs=42, Ce=132
M0=]., M1=]., M2=2, M3=4, M4=9, M5:21, M6=51
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The number of Motzkin paths with length n that are composed of 2¢ (1,1) and (1, —1)

steps is (Z) C;. Therefore, the relation between Catalan and Motzkin number is

n
M, = 0;2 (ZZ) Ci

and arithmetic properties of Catalan and Motzkin numbers are studied in [2], [3], [4],
and [6]. '
Weighted Catalan and Motzkin numbers are generalized Catalan and Motzkin num-
bers by giving weights on Dyck and Motzkin paths. A lot of combinatorial numbers
including Bell, Euler, and Stirling numbers can be expressed by weighted Catalan
numbers with the corresponding weight functions, and congruences properties are
found in [11], [13], and [14].

In this paper, divisibility properties of weighted Catalan and Motzkin numbers are
found and proved. The complementary Bell numbers are also investigated by using

the properties of weighted paths.

1.2 Weighted Catalan numbers

A Dyck path P with length 2n is a path from (0, 0) to (2n, 0) consisting of steps (1,1)(a
rise step) and (1,—1)(a fall step) that lies above the z-axis. It can be expressed by
Po, D1, " , P2n, @ sequence of points in (N U {0}) x (N U {0}) where

(1) po = (0,0), p2r = (21, 0)

(2) piy1 —pi = (1,1) or (1,-1)

b(z)(respectively, d(z)) is the given weight function from N U {0} to Z. The weight
of a rise step from (z,y) to (z + 1,y + 1) is b(y)(respectively, the weight of a fall
step from (x,y + 1) to (z + 1,y) is d(y)). For a Dyck path P, its weight(i.e. w(P))
is defined as the product of the weights of rise and fall steps. See Figure 1-1 for an

example.
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b(0) \d(0) b(0) d(0)

Figure 1-1: A Dyck path with weight 5(0)2b(1)2b(2)d(0)2d(1)d(2)
The corresponding nth weighted Catalan number C>? is given by

Ch = "w(P) (1.1)

where the sum is over all Dyck paths from (0,0) to (2n,0). Since C2¢ = C®1 d(z) is
not concerned in most cases(assume that d(z) = 1) unless it is mentioned. The first

five numbers are

cht o= 1

crt o= (0)

Y = b(0)® +b(0)b(1)

= b(0)® + 26(0)%b(1) + b(0)b(1)* + b(0)b(1)b(2)

it = b(0)* + 3b(0)°b(1) + 3b(0)%b(1)% + b(0)b(1)* + 2b(0)*b(1)b(2)
+26(0)b(1)%b(2) + b(0)b(1)b(2)% + b(0)b(1)b(2)b(3)

From [8, Chapter 5], the generating function of C2? is

1
bd,.n __
2O = o (1.2)
" - CRadE

CL1is the nth Catalan number Cy,. For b(z) = ¢%, C%! is the ¢-Catalan number Cy,(g),

and the corresponding (1.2) is the Ramanujan continued fraction. One property of
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Cn(q) is w(P) = ¢**®) for a Dyck path P, where area(P) is the area between P
and the z-axis.

C®! has another combinatorial interpretation generalizing Cy, as the number of binary
trees with n nodes. A binary tree is a rooted tree in which every vertex has at most
two children, a left or a right child. Each node of a binary tree has the weight b(i),
where 4 is the number of left edges from the root. The weight of a binary tree T'(i.e.
w(T)) is defined as the product of the weights of nodes. It can be checked by the
depth-first search that

Ch =Y "w(T) (1.3)

where the sum is over all binary trees with n nodes. Postnikov and Sagan[14] com-
binatorially found the power of two dividing weighted Catalan numbers by group
actions on binary trees. Konvalinka[l1] defined a generalized g-analogue weighted
Catalan number with m-ary trees and found similar results.

In Chapter 3, Konvalinka conjecture, a conjecture related to the power of two dividing

weighted Catalan numbers, is proved and divisibility properties are studied.

1.3 Weighted Motzkin numbers

Similar to a Dyck path, a Motzkin path @ with length n is a path from (0, 0) to (n,0)
consisting of steps (1,1)(a rise step), (1,0)(a level step), and (1, —1)(a fall step) that
lies above the z-axis. It can also be expressed by pg,p1,- -+ ,Pn, & sequence of points
in (N U{0}) x (N U{0}) where

(1) po = (0,0), pr = (n,0)

(2) pir1 —pi = (1,1), (1,0), or (1,-1)

For the given weight function b(z)(respectively, c(z) and d(z)) from N U {0} to Z,
the weight of a rise step from (z,y) to (z+ 1,y +1) is b(y)(respectively, the weight of
a level step from (z,y) to (z+1,y) is c(y) and the weight of a fall step from (z,y+1)
to (z + 1,y) is d(y)). The weight of a Motzkin path Q(i.e. w(Q)) is defined as the

product of the weight of steps. See Figure 1-2 for an example.
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The corresponding nth weighted Motzkin number M?%¢ is given by

Myt =" w(Q) (1.4)

where the sum is over all Motzkin paths from (0,0) to (n,0). Since M2%¢ = Mool
d(z) is not concerned in most cases(assume that d(z) = 1) unless it is mentioned.

The first five numbers are

MOt =1

Mpet = ¢(0)

MY = b(0) + ¢(0)?

M = 2b(0)c(0) 4 b(0)c(1) + ¢(0)®

MEeL = b(0)2 4 b(0)b(1) + 3b(0)c(0)? + 2b(0)c(0)e(1) + b(0)c(1)* + c(0)*

From [8, Chapter 5], the generating function of M2%? is

1
Z Mb,c,dl.n —
n b(0)d(0)x?
n>0 1- C(O)I - 1‘0(1)96_( : (bg)lx)dmﬂ
bg22¢.i.g‘22z

1-c(2)z—

MY s the nth Motzkin number. For b(z) = 1 and c(z) = 2, M2®! is the (n + 1)th
Catalan number(i.e. Cpy;). For b(z) = 2 and c(z) = 3, M2! is the (n + 1)th little

Schroeder number or super Catalan number(i.e. s,4+1). For more information, see

c(1 c(1
b(0) d(0)

Figure 1-2: A Motzkin path with weight 5(0)b(1)b(2)c(1)%c(2)%c(3)d(0)d(1)d(2).
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Sloane[16]’s A001003.
The power of two that divides the complementary Bell numbers is analyzed in Chap-
ter 2 by using the property of weighted Motzkin numbers. Wilf conjecture, a conjec-

ture of the complementary Bell numbers, is partially proved.
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Chapter 2

Wilf conjecture

2.1 Background

S(n, k) is the Stirling number of the second kind(i.e. the number of partitioning [r]
into k nonempty subsets). The nth Bell number is B, = >_;_,S(n, k), the number
of partitioning [n]. These numbers appear in several combinatorial problems.

The complementary Bell numbers(or the Uppuluri-Carpenter numbers) are f(n) =

S r_o(=1)%S(n, k). The first f(n)(Sloane[16]'s A000587) for n =0,1,2,3,4,--- is
1,-1,0,1,1,-2,-9,-9,50,267,413, —2180, —17731, —50533, - - -

f(n) is the difference between the number of even partitions and odd partitions, and
it is related to p-adic numbers and multiplicative partition functions. The generating

function of f(n) is

Zf(n)mn — el

n>0

Wilf[9] conjectured that f(n) is nonzero for all n > 2.

Conjecture 1 [9 f(n) # 0 for alln > 2.

Yang[21] proved that the number of zeros smaller than z is at most 2% with the sum

estimates. Murty and Sumer[12] approached the conjecture by the congruences of
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f(n), and Wannemacker, Laffey, and Osburn[20] proved that f(n) # 0 for all n # 2,
2944838(mod 3145728). In this chapter, the main result is the following.

Theorem 2 [1,Theorem 2] There is at most one n > 2 satisfying f(n) = 0.

Alexander[1] proved the theorem with the umbral calculus, but weighted Motzkin
numbers are used to prove Theorem 2 in this paper. Section 2.2 deals with con-
gruence properties of f(n) by using the properties of weighted Motzkin numbers.

Theorem 2 is finally proved in Section 2.3.

2.2 Congruence properties of f(n)

f(n) is expressed by weighted Motzkin numbers and investigated by the properties of
weighted Motzkin paths. The theorems and lemmas in this section are used to prove
Theorem 2.

Flajolet[7] found the direct relationship between f(n) and weighted Motzkin numbers.

Theorem 3 [7,Theorem 2]

> S(n, kyut = MY
k=0

where b"(z) = u(z + 1) and '(z) = u+ z.

Flajolet[7] proved the above theorem by using Path diagrams. A bijection was con-
structed between set partitions and weighted Motzkin paths by generalizing Francon-
Viennot decomposition in [8]. B,(Bell numbers) and I,(the number of involutions
on [n]) also can be expressed by weighted Motzkin numbers with Theorem 3. In

particular,

fln) =M<
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for ¥(z) = —z — 1 and ¢(z) = z — 1. Slightly changing the weight functions,
f(n) = Mpe?

for
{ b@) = (—z—1)/2, c(z)=z—1, andd(x)=2 ifzxisodd

b(z)=-2—1, c(r)=2x—-1, andd(z)=1 ifziseven
From now on, the above weight functions b(z), c(z), and d(z) are used. If W, is the

sum of weighted paths from (0,0) to (n, k) that lies above the z-axis,
W1 = b(B) Wy + c(k + 1)W1 + d(k + D)W kso

for n,k > 0 and Wy110 = c(0)Wp o+ d(0)W, 1. If A, is the following (r41) x (r+1)

matrix,
c0) d0) 0 o)
b(0) (1) d(1)

\ 0  br-1) ) )
(Wn+k,0; Wn-{-k,ly v 7Wn+k,r) = Aﬁ(Wn,Oa Wn,ly e ,Wn,r) (mOd b(O)b(l) e b(T‘)) be-
cause W, ; = 0(mod b(0)b(1) - --b(r)) for I > r + 1.

Since b(4k — 1) = —2k = 0(mod 2) and d(4k — 1) = 0(mod 2) for k£ > 1,

(4 0
0 A
Ag = 2 ¢ 0 .| (mod2)
A 0

\SESOA)
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where

1100
1000
A =
0111
0010
Therefore,
A, =I(mod 2) (2.1)

because A% = I(mod 2), where I is an identity matrix.

The next lemma deals with congruences of W, for n. S is the shift operator(i.e.
S(Wag) = Wasr and S(f(n)) = f(n+1)), and (3i_ a:S")(Wa,k) means 35;_o a;S* (W) =
Z::o aiWn+i,k-

Lemma 4

(E = 1)"(Wyx) = 0(mod 27)

forr > 1, where E = S%Y andt € N.

Proof For a given r, (E — 1)"(W,x) = 0(mod 2") for k > 4r — 1 because Wy, =
0(mod 27) for k > 4r — 1 from b(0)b(1)- - b(4r — 1) = 0(mod 27). Therefore, it can
be assumed that S = As_1.

It is proved by mathematical induction on r. For r = 1, A = I(mod 2) from (2.1). It
is assumed that the statement is true for r = m(m > 1), and it is proved for r = m+1.
Using the inductive assumption for r = m(ie. (E — 1)™(W,x) = 0(mod 2™)) and
(Wass0y s Watsdm+) = Afms(Wao, - s Waames) (mod 2741,

(E - 1)mWn+s,0 (E - 1)mWn+sy4m+3
( o T 5 )

= A3 (E _ l)m n,0 (E - 1)mVVn,4m+3
= 4m+3(—2m—7"' ) om

)(mod 2)

(E-)mEWni) _ (E-1)™(Wh
2m - 2m

) (mod 2) and (E—1)™(W,, ) = 0(mod 2™+1)
for k < 4m + 3. The proof is done. B

Therefore,

20



We remark that g(E) = 0(mod 27) for r > 0 if (zx — 1)" divides g(z) € Z|z].

Corollary 5
(B — 1)%(f(n)) = 0(mod 2%+?)

for k > 0.

Proof It is true for k = 0 from Lemma 4(r = 2). For k > 1, E* —1 = (E —
1)(E+1)(E2+1)---(E¥ " +1) and E¥ +1 = (E — 1)g,(E) + 2 for s > 0, where
gs(E) = E¥* 14 ...+ E+ 1. If we expand (E¥ — 1)?, each term is divisible by

o™ (E—1)2k+2-m for some 0 < m < 2k+2, and 2™(E—1)%*+2-"( f(n)) = 0(mod 22+?)

from Lemma 4.

Similar to Corollary 5, it can be proved that (E?* — 1)(f(n)) = 0(mod 2%+1). It
implies that
f(n+3 x 281 = f(n)(mod 2**Y) for all n (2.2)

2.3 Proof of Theorem 2

In this section, Theorem 2 is proved. It is proved by mathematical induction and

Corollary 5.

Proof From Corollary 5,
(B¥™ ~ 1)(f(n)) = 2(B - 1)(f(n))(mod 2%+2) (2.3)

for k > 0. It implies that f(n + 3 x 28¥2(2t — 1)) — f(n) = 2(f(n + 3 x 25+1(2t —
1)) — f(n))(mod 2%*+2) for k > 0 and ¢t > 1.
It is shown that

f(n) % 0(mod 25*2) for n # 2,ax(mod 3 x 2F) (2.4)
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where k > 5, ar = 38(mod 3 x 2°%), and 0 < a;, < 3 x 2F. The statement is true
for Kk = 5 and a5 = 38 because Wannemacker, Laffey, and Osburn[20] showed that
f(n) # 0(mod 27) for n # 2,38(mod 3 x 2°). It is assumed that the statement is true
for r = m(m > 5), and it is proved for r = m+ 1. From the inductive assumption for
r=m, f(n) Z 0(mod 2™3) for n # 2,2+ 3 X 2™, am, am + 3 X 2™(mod 3 x 2™*1).
If there exist a > 0 and b > 0 such that f(2+3x2™+3x 2™ a) = f(2+3x2™H1p) =
0(mod 2™+3), let

A = 243x2mM+3x2MH,

= 2+3x2™p
A+B
c = ; —243% 2™ 43 x27(a+b)

(if a < b, change a into a + 4b by using (2.2)). From (2.3),

F(A) = £(B) = 2(f(C) — f(B))(mod 2™*?) (2.5)

by taking n = 24+3 x 2™ t =a—b+1and k = m — 2(i.e. n =2+ 3 x 2™t}
RE3x M (2 —1) = 243 x 2" +3 x 2" lg n 43 x 22 x (2 — 1) =
24+3x2m P43 x2™(a+0b), and 2k +2 =2m — 2 > m + 3 for m > 5). Therefore,
f(C) = 0(mod 2™+2), where C = 2 + 3 x 2™7! 2 2, ax(mod 3 x 2™), and it contra-
dicts the inductive assumption for r = m. From f(2) = 0, f(n) # 0(mod 2™*3) for
n =243 2"(mod 3 x 2m*1).

Similarly, f(n) # 0(mod 2™*3) for n = a,,(mod 3 x 2™*1) or n = a,, +3 X 2™(mod 3 x
2m+1) . The proof of (2.4) is completed, and am41 = G OF @ + 3 X 2™,

If there exist x and y such that f(z) = f(y) = 0 and = # y > 2, we can find some
k such that 0 < z,y < 3 x 2*. Therefore, T = y = a; from (2.4) and it contradicts

x # y. The proof is done. B
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as 38 a3 20294 = a2 + 3 X 212
ag 134 = as + 3x2° ai4 44870 = a1z + 3 x 283
ar 326 =ag + 3 X 26 ais 94022 = a14 + 3 X ol4
ag 326 as | 192326 = ags + 3 x 215
ag 326 a7 192326

a1g 1862 = ag + 3 X 29 aig 585542 = a7 + 3 X 217
a 1862 Q19 1371974 = a5 + 3 x 2'8
aig 8006 = ay; + 3 x 21 Q920 2944838 = a9 + 3 X 219

Table 2.1: a; for 5 <3< 20

2.4 Remark

From (2.4), it can be checked that Wilf conjecture is true if and only if a;’s are in-
creasing. If a;’s are increasing and there exists n > 2 such that f(n) = 0, we can find
some k such that a; > n. Then, n # ax(mod 3 x 2¥) and Wilf conjecture is true from
(2.4). Table 2.1 shows a; for 5 <14 < 20.

Subbarao and Verma asked whether f(n) takes some value infinitely or not in Problem 5.7
and 5.8 in [19]. The following theorem partially answers the question by using Ta-
ble 2.2 and f(n + 96) = f(n)(mod 128) in Corollary 5.

Theorem 6 [10] f(n) takes some value except —2(mod 128) at most 3 times.

Proof Similar to the proof of Corollary 5, it is proved that
f(n+3(2t —1)2™) £ f(n)(mod 2™*?) (2.6)

for t > 1, m > 5, and n > 1 except the case f(n) = —2(mod 128) because
f(n+3(2t —1)2%) £ f(n)(mod 128).

If there exist a > b such that a = b(mod 96) and f(a) = f(b), it contradicts (2.6).
The proof is done. B
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| f(n)(mod 128

~—

| n(mod 96)

2,38
3,4
5| 36,87,88
15 | 21,49
17 | 48,52
32 | 61,74, 96
35 | 19,33
39 | 25,54
51 | 67,85
53 | 40, 82
55 | 73,93
57 | 22,72
61 | 12,64
64 | 50, 86
75 | 18,43
96 | 14,26
99 | 37,42
109 | 16,58
119 | 6,7
126 | 5,17, 29, 41, 53, 65, 77, 89
127 | 1,31

(]

Table 2.2: f(n)(mod 128)
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Chapter 3

Konvalinka conjecture

3.1 Background

Alter and Kubota[2] arithmetically determined the largest power of p dividing Cj,
where p is a prime number. For p > 3,ifn+1 = Zf:o n;p' where 0 < n; < p for

0<i:<kandng >0,

ptl+1
2

i
&(Cn) = #{il D_nip’ > }
=0

where &,(m) is the largest power of p dividing m[2, Theorem 7]. For p =3, ifn+1=
Ef:j n;3 where 0<n; <3forj <i<kandn;n >0, it will be proved that
&(Cy) = #{j < i < k|n; = 2} in Theorem 21.

&(Cy) is s(n+1) —1 where s(m) is the sum of digits in the binary expansion of m, and
Deutsch and Sagan[4, Theorem 2.1] found a combinatorial proof with the standard
binary tree interpretation. G, is the group of automorphisms of a complete binary
tree with height n, a binary tree which has all possible descendants at height n. In
[4, Lemma 2.3], for an orbit O of G, acting on T;, where T;, is a set of binary trees

with n nodes,

&(0) > s(n+1)—1 (3.1)
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with equality for 2(s(n+1) — 1)!! orbits, where (2m)!! = (2m—1)(2m —3)--- 1. Since
T, is partitioned by orbits and 2(s(n+1) —1)!! is odd, &(C) = &(|T5]) = s(n+1)—1.
Arithmetic properties of weighted Catalan numbers have been investigated by [2], [4],
[11], [13], and [14]. Postnikov and Sagan[14] found sufficient conditions for &(C?!) =
&(Cy) by giving weights on (3.1).

Theorem 7 [14, Theorem 2.1] If b(0) = 1(mod 2) and A™b(z) = 0(mod 2"*!) for all
n>1andx >0,

&(CYY) = &(Cp) =s(n+1) — 1

for alln > 0, where Ab(x) = b(z + 1) — b(z).

For a polynomial b(z), Konvalinka[11] conjectured equivalent conditions for & (C%1) =
&(Cy). It was checked for some b(z) and n < 250 with a computer program C + +
n [11]. It is interesting that the first four b(i) determines whether & (C%!) = &(C,,)

or not.

Conjecture 8 [11,Conjecture] For b(z) € Z[X], &(C8Y) = &(Cy) for all n > 0 if
and only if b(0) = 1(mod 2), b(1) = b(0)(mod 4), and b(3) = b(2)(mod 4).

The forward direction of Konvalinka conjecture is not trivial. But, it is easy to show

the backward direction by using &(C2%?!) = &(C,,) for 0 < n < 4 as follow.

CM' = 1 = 1(mod?2)
oYt = b0) =
0)° +b(0)b(1) = 2(mod 4)
)
)

( 1(mod 2)
0)" +

CM = 5(0)® + 26(0)°b(1) + b(0)b(1)* + b(0)b(1)b(2) = 1(mod 2)
(0)*+3

Cy' = b
ot o= 4 1+ 30(0)%b(1) + 3b(0)*b(1)% + b(0)b(1)* + 2b(0)%6(1)b(2)
+ 2b(0)5(1)%6(2) + b(0)b(1)b(2)? + b(0)b(1)b(2)b(3) = 2(mod 4)

b(0
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For a generalized version and its proof, see Proposition 11 in [11].

Proof of the backward direction b(0) = 1(mod 2) because C>" = 1(mod 2).
Since C' = 2(mod 4), b(0)(b(0) + b(1)) = 2(mod 4) and b(0) + b(1) = 2(mod 4).
Therefore, b(1) = b(0)(mod 4). Furthermore,

C = b(0)* + 36(0)*b(1) + 3b(0)%b(1)% + b(0)b(1) + 2b(0)*b(1)b(2)
+ 2b(0)b(1)%6(2) + b(0)b(1)b(2)* + b(0)b(1)b(2)b(3)

il

1434341+ 2b(1)b(2) + 2b(0)b(2) + 1 + b(2)b(3)

1+ 5(2)b(3)

2(mod 4)

because from b(1) = b(0) = 1 or 3(mod 4) implies b(0)2 = b(0)b(1) = b(1)* =
1(mod 4) and b(2) = b(0) = 1(mod 2) implies b(2)* = 1(mod 4). b(2)b(3) = 1(mod 4)
means b(3) = b(2)(mod 4). W

The next corollary gives another version of Konvalinka conjecture, Conjecture 8. The
following are conditions for the coefficients of a polynomial b(x), and both conditions

are used in our proof.

Corollary 9 Ifb(x) = by + byx + byz® + - -+ + bz! € Z[X], the conditions of b(z) in
Conjecture 8 are equivalent to the following conditions.

1. by = 1(mod 2)

2. by +by+ -+ b = 0(mod 4)

3. bg+bs + by + - =0(mod 2)
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Proof b(0) = by = 1(mod 2) is equivalent to condition 1 and b(1) — b(0) = b1 +

by + -+ + b = 0(mod 4) is equivalent to condition 2. Furthermore,

b(3) —b(2) = b(-1)—-b(2)

(bo—bl+b2—b3+b4—"')——(b0+2b1)

(by +by+ - +b) —2(b3+bs + by +---)(mod 4)

implies that b(3) = b(2)(mod 4) is equivalent to condition 3 under condition 1
and 2. Therefore, the conditions that 5(0) = 1(mod 2), b(1) = b(0)(mod 4), and
b(3) = b(2)(mod 4) are equivalent to condition 1, 2, and 3. W

In Section 3.2, &(C,) = s{(n + 1) — 1 is proved by finding the recurrence relation
of Catalan numbers in Theorem 10. Its coefficients have the simple largest power of
two, and the proof is completed by mathematical induction on n.

In Section 3.3, Konvalinka conjecture is divided into two theorems. Theorem 11 shows
£(CPY) = &(Cy) if b(0) = 1(mod 2) and b(0) = b(1) = b(2) = b(3)(mod 4), and The-
orem 14 shows &(C%) = &(C,) if b(0) = 1(mod 2) and b(0) = b(1) = —b(2) =
—b(3)(mod 4). The proof of Theorem 11 is similar to that of Theorem 10 by finding
the recurrence relations of weighted Catalan numbers in Section 3.3 and Section 3.4
with two lemmas. Lemma 12 and Lemma 13 provide the largest power of two dividing
the coefficients of the recurrence relations.

In Section 3.5, Theorem 14 is similarly proved by Lemma 15 and Lemma 16. The
lemmas are more complicated than the previous lemmas but they are similar.

In Section 3.6, Theorem 20 provides the conditions of &(C%1) = &(C,,) for a general

function b(x). &(Cy) is arithmetically investigated in Theorem 21.

3.2 The power of two in Catalan numbers

&(Cp) = s(n+1) — 1 is proved by Dyck path interpretations. The recurrence rela-
tions of W, x, the number of Dyck paths from (0,0) to (n, k), are represented by a
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matrix and its characteristic polynomial provides the recurrence relations of Catalan
numbers. Its coefficients are binomial coefficients, and we know that &((})) is the
number of carries when we add k and n — k in the base 2. &(C,) = s(n+1) — 1 is
finally proved.

The idea of the proof is also used in the next sections for Konvalinka conjecture.

Theorem 10 [/, Theorem 2.1]
&(C)=s(n+1) -1

for all n > 0, where s(m) is the sum of digits in the binary expansion of m.

Proof W, is the number of paths from (0,0) to (n, k) that lies above the z-axis.

The recurrence relations for W, j are
Wn+1,k+1 = Wn,k + Wn,k+2
for n,k > 0 and W, 110 = Wy for n > 0. Therefore, for any z; and y;(¢ > 1),

AT(WH,O; e >Wn,k—17 Wn,k, Ty, ') = (W’n+1,07 T )W’n+1,k—layl,y2a tre ) if T Z k
Ar(Wn,O) e aWn,na 07 07 o ) = (Wn+1,07 e aWn+1,'n7 Wn+1,n+l7 07 v ) if r Z n+1

and the first component of A2"(1,0,---,0) is Wapo = Cy, for 0 < n < 7 if A, is the

following (r + 1) x (r + 1) matrix.

01 0 \
10 1
A, =
1 0 1
\ 0 1 0



If D, is the characteristic polynomial of A,, Dy =z, D; = 2* — 1, and
D,.=zD,_1—D,_5 forr>2

From the above recurrence relation, it is shown that D, = 2™ —d, 12" +d 22" 3 —

- for
d(nk):le 1x---x1
where the sum is over all (c1,cg,- -+ ,cx) such that 0 < <ep—-1<e3—2<--- <
cx—(k—=1)<r—k=(r—-1)—(k—1). So, dpx) = (T"ZH).
For r = 2t — 2, &(d_ax) = &((* 7)) = s(k) for 1 < k < 2" and t > 2. From

the Cayley-Hamilton theorem for z2~1Dg: 5,

Cotat-1-1 — d(2t_21)Clyp-1-2+ d(zt—2,2)05+2t—1—3 -t (—1)2H_1d(2t—2,2t'1—1)os =0
(3.2)

where 1 < s < 271 — 1 since C; is the first component of A% ,(1,0,---,0) for

0<i<2t-2.

Similarly, for 7 = 2¢ — 1, &(de_1p)) = &((*1%)) = s(k) — 1 for 1 < k < 2t and

t > 2. From 22Dy,
Cyyot-1— d(2t_1’1)cs+2t—1_1 +d(2t_1’2)cs+2t—1_2 —- 1 (—1)2t_1d(2t_1’2t—1)03 =0 (33)

where 0 < s < 271 — 1.
The proof is done by induction on n with (3.2) and (3.3). For 0 < n < 4, it is obvious.

It is assumed that the statement is true for n < k(k > 5), and it is proved for n = k.

Case1: k =2'—1 for some t > 3(in this case, s(k+1) —1=0)
From (3.3)(r =2 —1,s=2""1 - 1),

CQt_l = (—1)2t—1+1d(2t_1’2t—1)02t—1_1

Il

1(mod 2)

30



because &(Cp) = 0(28"1 —1<n < 2! —1) if and only if n =21 — 1.

Case 2: 2t < k < 2t*! — 1 for some t > 2

£(Cy) = s(k+1) — 1 from (3.2) when s = k — 2! 4 1(in this case, 7 = 2'*! — 2)
because &(dt+1-24)Chi) = (i) +s(k+1—4) —1>s(k+1)—1for 1 <3< 2" —1
with equality for 25+D-1 — 1 cases and s(k +1) — 1> 1 for 2! < k < 2¢+1 — 1.

From Case 1 and 2, the proof is done. B

Remark It can be shown that s(m) + s(n) > s(m + n), and s(m) + s(n) is equal
to s(m + n) if and only if m; # n; for all 0 < i < pand 0 < j < g, where
m=2"m042™ 4...2Mp gnd n=2"+2M+4...2™ for 0 <mg <my; < --- < myand

0 <ng<ng < -+ <ng Therefore, Case 2 in Theorem 10 is easy to check.

3.3 Proof of Konvalinka Conjecture: Part 1

In this section, Konvalinka conjecture is divided into two theorems: Theorem 11 and

Theorem 14. Theorem 11(respectively, Theorem 14) shows that
£(Cy") = &(Cn) = s(n+1) - 1

if 5(0) = 1(mod 2) and
b(0) = b(1) = b(2) = b(3)(mod 4)

(respectively, b(0) = b(1) = —b(2) = —b(3)(mod 4))

Theorem 11(the first part of Konvalinka conjecture) is proved by Lemma 12 and
Lemma 13 in Section 3.3 and Section 3.4. Similarly, Theorem 14(the second part of

Konvalinka conjecture) is proved by Lemma 15 and Lemma 16 in Section 3.5.
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Theorem 11 b(z) is a polynomial. If b(0) = 1(mod 2) and b(0) = b(1)
b(3)(mod 4),

b(2)

&(CY) = &(Cp) =s(n+1) -1

for alln > 0.

Proof Similar to Theorem 10,

and Dy =z, D, = z% — b(0),
D,=zD,_1—b(r—1)D,_5 forr>2

From the above recurrence relation, it is shown that D, = 27! —d(m)xr“1+d(r,2)x7_3—

- where

diriy = _ bler)b(ca) -+~ blck) (3.4)

and the sum is over all (c1,co,-++ ,cx) suchthat 0 < ¢ < —-1<ez—2<--- <
a—(k—=1)<r—k=(r-1)—(k-1).

It is easy to check that &(Cb) = &(C,) = s(n+1) — 1 for 0 < n < 4 and
diae+1-1t) = b(0)b(2) - - - b(2T1=2) = 1(mod 2). I &(d(2-2,k)) = (k) for 1 <k < 2t-1
and &(di—1 ) = s(k) — 1 for 1 < k < 271(t > 2), the proof in Theorem 10 can be
used in the same way.

Therefore, it is enough to show that & (d@i—2k)) = s(k) for 1 < k < 21 and
Ea(dgi-1py) = s(k) — 1 for 1 < k < 27Xt > 2). It will be shown on Lemma 12.
|
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Remark For b(z + h), drx) in (3.4) is generalized.

dgy =Y _bler +h)b(ca + h) - blck + ) (3.5)

where the sum is over all (c1,cp,-+- ,¢x) suchthat 0 < ¢ <ep—1<ez—2<--- <

a—(k—-1)<r—k=(r-1)-(k-1).

The recurrence relations of d” (an—2,5) and d(zn 1,5 are found in Lemma 13, and & (dh (an—2 l))
and &y(d? (an—1 z)) are studied in Lemma 12 by mathematical induction on n. The lem-

mas are proved in the next section.

Lemma 12 Forn > 1, szm) d?zn—u and D?n 5= d?Qn_lﬂ.),

g(D(nz))_S()_l fOT‘ 1<Z<2n1
&(Dly — Diniy) 2 s()) +1 for 0<i<2v!

(C(m))—s() for 1<i< 2!

3.4 Lemmas

For n =1 and 2, C* and D" are

Cho =1

Digy=1 Dfyy=b(h)

Choy=1 Clyyy =b(h)+b(h+1)

Diyg) = Doy =b(h) +b(h+1) +b(h+2) Diyq = b(h)b(h +2)

The recurrence relations for C* and D" are provided in the next lemma before we

prove Lemma 12. C(hk L) and D?k +1,0) are expressed by C("k’j) and D?k,j)’ where 0 <
j S 2k—1'
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Lemma 13 b(z) is a polynomial. If b(0) = 1(mod 2) and b(0) = b(1) = b(2) =
b(3)(mod 4),

h _ h h k+1
Clirry) = chg) Geiegy + Dliiziy) = X Clijo)Cliisoy (mod 2°77)

Jo
h _ h h+1 k
Dl = ZD(k],)D(,“ Ly (= 1)) Ch i ClEL L (mod 2611
jl/
for k > 2, where the sum is over all max{0,i — 2*7'} < 5 < min{i, 28! — 1},
maz{0,i+1— 281} < jo < min{i, 281 — 1}, maz{0,i — 2*71} < 5’ < min{i, 2871},

and maz{0,i — 2871} < j” < min{i — 1,21 — 1}.

Proof b(z) is by + b1z + byz® + - - - + byz!. Since 0 = b(2) — b(0) = (by +2b1) — by =
2b1(mod 4), by = 0(mod 2). Therefore,

bz +2¥)—bz) = bz+2"—2)+(by-2-25 4. 4b,-1-25)2

2’°bl +2k(b3+b5+)$

= 0(mod 2F)
for z > 0 because (z + 2¥)! — 2* = 2¥x'™! = i2%x(mod 2¥*!) for i > 2 and
bs + bs + by + - - - = 0(mod 2) from condition 3 in Corollary 9.

Case 1 : The recurrence relation of C’('}C +140)
C&J‘rlyi) is the sum of products of nonconsecutive ¢ number of b(l + h), where 0 < I <

2F+1 _ 3. If b(2* — 2 + h) is not used in the product, the sum is
Z ch kJ)D b (mod 2k+1) (3.6)

because the first part before 5(2¢ — 2 + h) with j number of b(l + h) is C? (kj) and
the second part after b(2¥ — 2 + h) with i — j number of b(l + h) is th%? ]—)1 =
D?k - ])(mOd 2k+1) from b(z + 2¥) = b(z)(mod 25+1), where max{0,i — 2871} < j <
min{i, 251 — 1}.
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If b(2% — 1 + h) is not used, the sum is

D Dltij)Cligy (mod 2°71) (3.7)

J
because the first part before b(2¥ —1+h) with :—j number of b({+h) is D{‘k’i_ j and the
second part after b(2¥ — 1+ h) with j number of b(l + h) is C("kJ;?)k = Cf ;) (mod 25*1)

from b(z + 2%) = b(z)(mod 2%+1), where maz{0,i — 2871} < j < min{, 2871 — 1}
If both b(2% — 2 + h) and b(2* — 1+ h) are not used, the sum is

Z C(hk,jo)c(’;c,i—jo)(m()d 2641 (3.8)
Jo
because the first part before b(2% — 2 + h) with jo number of b(l + h) is Cf; ;) and
the second part after b(2¥ — 1 + h) with ¢ — jo number of b(l + h) is C('};;z_kjo) =
C(hkﬂ_jo) (mod 2Kt1) from b(z + 2¥) = b(x)(mod 2F*+1), where maz{0,i+1 — 2571} <
Jo < min{i, 281 — 1},

From (3.6), (3.7), and (3.8),

h — h h—1 h h h k+1
Clvry = D Clen(Dlei sy + Dleici)) = D Clijo)Clicimsoy(mod 2°1)
J

Jo

where the sum is over all maz{0,i — 2¥71} < j < min{i,2*"! — 1} and maz{0,: +

1—2k1} < jo < min{i, 28! —1}.
Case 2 : The recurrence relation of DZ‘k +1,0)

D?k +1,) is the sum of products of nonconsecutive 7 number of b(l + h), where 0 <[ <

2k+1 _ 2 Tf b(2* — 1 + h) is not used in the product, the sum is
> Dy 1 Disicyry(mod 241 (3.9)
j(

because the first part before b(2% — 1+ h) with j/ number of b(l + h) is D, ;) and
the second part after (2 — 1 + h) with ¢ — 7’ number of b(l + h) is D?,:i2_’cj,) =
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Dp i_jn(mod 21) from b(z + 2¥) = b(z)(mod 2k+1) where maz{0,7 — 2871} < j' <
min{i, 271}

If b(2¥ — 1 + h) is used in the product, the sum is

b(h— 1) ChimClitl i (mod 21) (3.10)
j//

because the first part before b(2¥ — 2 + h) with j” number of b(l + h) is C(hk,j,,) and
the second part after b(2% + h) with ¢ — 1 — j” number of b(l + h) is C’(hk*:gf_lj,,) =
C(hk";il_l_j,,)(mod 2kt1) from b(x + 2¥) = b(x)(mod 2F*1), where maz{0,7 — 2!} <
i < min{i — 1,251 — 1},

From (3.9) and (3.10),
h — h h h h+1 k+1
Dlpryy = O DhinDlssn+b(h=1)> CliynCltiy_jn(mod 2571
jl j//

where the sum is over all maz{0,i—25"1} < j/ < min{i,2¥"1} and maz{0,i—2¥"1} <

7 <min{i—1,2v1—-1}. m

The proof of Lemma 12 is completed by mathematical induction with the recurrence

relations in Lemma 13.

Proof of Lemma 12 D, = 2°¥~'(mod 2:0), D¢, — D?n_zl) = 0(mod 25®+1),

and C* . = 250 (mod 2°M+1) are shown by mathematical induction on n. For
(ny3)
n =1, Dby, = b(h) = 1(mod 2) and D}y o) — D{gy = 1 =1 =0, D) = D7) =

b(h) — b(h—1) = 0(mod 4). For n = 2, D3|y = b(h) +b(h+1) +b(h+2) = 1(mod 2),
Dy 5y = b(h)b(h+2) = 1(mod 2) and Dfy ) — Dl =1-1=0, Dfy — Dy = b(h+
2) —b(h—1) = 0(mod 4), Dfy 5, — Dis 3 = b(h)b(h+2) —b(h—1)b(h+1) = 0(mod 4).
Similarly, C'(hm) = b(h) + b(h + 1) = 2(mod 4). It is assumed that the statement is

true for n = k(k > 2), and it is proved for n = k + 1.

Case 1: D?k—l—l,i)
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Case 1 deals with D?k+l,i) = 250~ (mod 2°™) for 1 < 4 < 2*. From Lemma 13,

Dy =Y Db Dpisyn +b(h = 1)) ClijnClrly_jm(mod 2571 (3.11)
Iz Iz

where the sum is over all maz{0,i—2¥"'} < 5’ < min{i, 2¥~1} and maz{0,i—25"1} <
3" < min{i — 1,281 -1}
For 2 <14 <28, 3., Ch .nChtL, iy = 0(mod 2°P)) can be shown. If 2 < i < 2871,
the sum is over all 0 < j” < i —1, and 52(0&,1.,,)) + §2(C(’}:;1_1_j,,)) = s(5") + s(i —
1—j") > s(i—1) > s(i) — 1 with equality for 2°(~1 cases if ¢ — 1 is even(in
this case, s(i — 1) = s(i) — 1) and 0 cases if ¢ — 1 is odd(in this case, s( — 1) >
s(i) —1). If 2671 < 4 < 2% the sum is over all 4 — 2F~1 < j” < 251 — 1 and
&2(Ch jmy) + EQ(C'("k”;I_l_j,,)) =s(")+s(i—1—3") > s(i — 1) > s(i) — 1 because
1<j"i—1—4" < 2F(but 2871 <i—1 < 2*). Therefore, for 2 <1 < 2k (3.11) is

D?k+l,i) = Z D?M,)D?k’i_j,)(mod 23(i)) (312)
j/

where the sum is over all maz{0,i — 2¥71} < j' < min{s, 2*71}.

(1) : Dfyyyy fori=1
Dl 11y = 2Db o Dby + b(h — 1)Ch 0, Cifsy = 1(mod 2). Therefore, D,y =
25M=1(mod 2°M).

(2) : Dfyyyy for2 <i <281

In this case, the sum in (3.12) is over all 0 < j' < 7. Therefore,

h h
Y Dy Diii-sn
0<y'<i
h h h h
> 2Dy Dzt + Liiis even} D 1) Dy 1
0<j'<%

= 2°071(;mod 2°®)

h
D (k+1,3)

Il
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because 1+(s(j")—1)+(s(i—j")—1) > s(i)—1for 0 < j' < % with equality for 2°¢)=1—1
cases and 2(s(%)—1) = s(i) +(s(¢) —2) > 5(i) — 1 with equality for one case if s(i) = 1.

3):Dh . for 26l << 2k
(k+1,9)

In this case, the sum in (3.12) is over all 4 — 251 < j/ < 25=1. Therefore,

h — h h
Dijiriy = > DijyDli-i)
i_gk—1§j1<2k—1
R R h
Y 2Dy Dlsi-iny + Liiis eveny Dfy 1y D 5
i—Zk_ISj’<

= 20-Y(mod 25())

because 1+ (s(5/) — 1) + (s(i — ') — 1) > s(i) — 1 for ¢ — 257! < j' < & with equality
for one case when j/ = i — 25! from 1 < 5,4 — ' < 25" (but 2¢~! < i < 2¥) and
2(s(4) — 1) = s(3) + (s(4) — 2) > s(i) — 1 from s(i) > 1 for 267 <4 < 2,

(4) : Dfyyyy fori=2"
D?k—}-l ohy = D?k,Qk_l)D?wk_l) = 1(mod 2). Therefore, D?k+1,2’°) = 252)~1(mod 25Y).

. Ph h-1
Case 2: D(,H_m D(k+“)

Case 2 deals with D(k+1,z) D} y = 0(mod 250+1) for 0 < 4 < 2F. For ¢ = 0,

(k+1,
h h—1 _ L ok
D100~ Pigrr0=1-1=0. For 1 <7 < 2% from Lemma 13,

h-1
D(k+1 Q)T D(k+lz)

— h—1 h-—-1
= Z Dy jy Dl = Doy Pleieiny)
h+1
+ZOW) — 1Oy — bR = 2)CHL )
_ h h—1
Z D(k]’)+D(kJ ) (D imjry — Dz Jf))

h k
+ Zc(k ]") 1)0(1:1'1_1_]‘//) —b(h - Q)C(kz 1 ],,))(mod 2 _H)
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where the sum is over all maz{0,i—2""1} < j’ < min{i, 2"} and maz{0,7—2"1} <
3" <min{i— 1,281 -1},

By definition in (3.5), diy’_» = Dfy; juy + b(h — CGEL, ) and diz; ) =
D?k—,il—j”) +b(h + 2" - 2)C(hk_,-il—1—j”) = D?k_,il—j") + b(h - 2)0&}1_1_]‘//)(7”0(1 251). So,
b(h — I)C&Zl_l_j,,) —b(h — 2)0(",6;1_1_3-,,) = D?kfil_j,,) - D{‘k,i_j,,)(mod 28+1) . Therefore,

h —
D(k+1,i) - D}t

(k+1,9)
—_ h h—1 h h—1 h h—1 h
=" (Dl + Do) Dliiosy = Diin) + D Clign (Dl = Dl
jl j//
= 0(mod 2°1)
because Dfy ;_jn— D) = 0(mod 226704Y), D i =Dl iy = 0(mod 2°0-79+1)

and s(j') +s(i - j') + 12 s(3) + 1, s(j") +s(i = j") + 1 2 s(i) + 1.

Case 3: C(hk+1,i)

Case 3 deals with C . .. = 250 (mod 250+ for 1 < 4 < 2¥. From Lemma 13,
(k+1,9)

h — h h—1 h h h k+1
Clivr) = 3 ClioyyDleipy + Dlimp) = D Clocs) Climiy(mod 271) - (3.13)
J Jo
where the sum is over all maz{0,i — 2871} < j < min{i, 2! — 1} and max{0,7 +
1— 21 < 5o < min{i, 251 — 1}
For ¢« = 1, C'(h,ﬂ_l’l) = D o<j<orrr_z b(R + j) = 2(mod 4). Therefore, C(hic+1,1) =
25 (mod 28MW+1).
For1<i<2F—1,
> ClijoyCliimso) = 0(mod 220%1) (3.14)
Jo
can be shown. If 1 < i < 2¢71 the sum is over all 0 < jo < ¢, and §(C&J.O)) +
E(Chi_soy) = 8(jo) + (i = jo) = s(4) with equality for 25() cases. If 2671 <4 < 2F—1,
the sum is over all i + 1 — 2571 < jo < 28 — 1, and &(C ;) + &(Clijo) =
s(jo) + s(i — jo) > s(i) because 1 < jo,i — jo < 2F"(but 2F~! < i < 2F). For
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1<i<2F—-1,(3.13) is
h _ h h—1 1
C(k-l-l,i) = Zc(k,]) D(;” - + D - ]))(mod 2e()+ )
J

where the sum is over all maz{0,i — 2¥7'} < j < min{i, 27! —1}. Fori = 0, it
doesn’t work because C(};c+1,0) 1#2= C(k 0)(D(k o T D(k o) (mod 2). Therefore, for
0<i<2b—1,

Chiriy = Y Clioyy(Dliiiy + Dliicsy) + Lii=oy (mod 2s(O+1) (3.15)
J

where the sum is over all maz{0,i — 287} < j < min{i, 2871 — 1}.

For 1 <i<2F—1,(3.15)is

Clirny = 2 CliogyDliicgy =Dl casy Cliay +1 2261y 20( ety (mod 2707)
J
(3.16)
h-1

because ) _; C(’}w.) x 2D L =2 C(k io) C(kz_]o +1gi<or-1-13C l,”)(ZD(l,c 0) C(k 0))
1{@22k—1}c(hk7i_2k_1) X 2D(k gk-1) = 1{i<2’°_1}C(k,i) + l{izzk_1}2C(kﬂ._2k_1)(mod 23 )
from (3.14), where the sum is over all maz{0,s — 2¥"'} < j < man{i,2*' — 1}.
For i = 0, it also works because C; 1,0y = 1= C(k ())(D(,c 0 D?k g)) + C(k 0)-
From the inductive assumption Df}; ) — D(k i—j) = 0(mod 2° =9+1) and s(j) +s(i —

7)+1>s(i)+ 1, (3.16) is
Clictr) = Lacor-1yClisy + Liis2k-1)2C i _gk-1)(mod 2s()+1y

Clisry = Chyy = 220(mod 220%1) if 1 < i < 287" and Cfj 5 = 20 ;_per) =
250 (mod 25(1)“) if 281 <4 < 2%,

From Case 1, 2, and 3, the proof is done. W
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3.5 Proof of Konvalinka Conjecture: Part 2

In this section, Theorem 14, the second part of Konvalinka conjecture, is proved.

Theorem 14 b(z) is a polynomial. If b(0) = 1(mod 2) and b(0) = b(1) = —b(2) =
—b(3)(mod 4),
&(Cr) = &(Ch) =s(n+1) -1

for alln > 0.

Proof Same as Theorem 11,

[0 1 0 )

bO) 0 1
Ar := . .
ol b(r—2) 0 1
k Lt 0 b(r=1) 0 )
and Dr = .TT+1 — d(r,l)x’r—l + d(r12)x7‘_3 —_ e for
dirky = Z b(c1)b(cz) - - - blex)
where the sum is over all (¢;,¢2, -+ ,c;) suchthat 0 < ¢ <cp—1<eg—2<--+ <

k= (k-1 <r—k=(@r-1)—(k-1).

It is easy to check that &(C%!) = &(Cn) = s(n+1) —1for 0 < n < 4 and
dige+1_1.90) = b(0)b(2) - - - b(2T1—2) = 1(mod 2). If &a(d(a—2,)) = s(k) for 1 <k < 2t-1
and &(dgi-1p) = s(k) — 1 for 1 < k < 2071(t > 2), the proof is the same as Theo-
rem 11.

Therefore, it is enough to show that & (dgi—ar)) = s(k) for 1 < k < 27! and
€x(d—1py) = s(k) —1for 1 < k < 27'(t > 2). It will be shown on Lemma 16.
|

Similar to Lemma 13, the recurrence relations for C* and D" are provided in Lemma 15
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before Lemma 16.

Lemma 15 b(x) is a polynomial. If b(0) = 1(mod 2) and b(0) = b(1) = —b(2) =
_b(3)(mod 4),
Clirry = ZC(kJ) Dy + 2 = §)Dfiy)
+ ZD(M H(Cligy + 251 Clh)
- Z Ch, i (Cliijoy + 25(i — jO)C(hk,i—jo))(mOd 25+
D1y = ZDM') Dijei—jny + 2" (i = ') Dy 3n))

+ (b(h — 1) +25) Y Ch (il + 25— 1= 5O ) (mod 257)
jl/
for k > 2, where the sum is over all maz{0,i — 2¥"1} < j < min{i, 287 — 1},
maz{0,i+1— 251} < jo < min{i, 257! — 1}, maz{0,i — 2571} < j' < minfs, 27"},
and maz{0,i — 2¥71} < j” < min{i — 1,21 — 1}.

Proof Similar to Lemma 13, b(z + 2¥) — b(z) = 2*(mod 2**1) for z > 0. If
b(z) = bo+biz+box®+- - +bzt, by = 1(mod 2) since 2 = b(2) —b(0) = (bo+2b1) —bo =
2by(mod 4). Therefore,

bz +25) —b(z) = bile+2¥—2)+(bp-2-25+ - +b-1-2%z

2%by + 26 (by 4+ b + -+ )z

i

2k (mod 2Ft1)
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for z > 0 because (z + 2F)! — ' = i2kz'~! = 12Fz(mod 2"t1) for i > 2 and b3 + bs +

b; + --- = 0(mod 2) from condition 3 in Corollary 9.

Ol = Y b(ey +h+ 28)b(eg + o+ 2) - bles + A+ 2F)

S (b(er + h) + 2) (blea + B) +25) -+ (bei + h) + 2°)
S (b(es + h)blea + h) - bles + h) +2%)

= Cly + 28Cl 5y (mod 2H)

it

where the sum is over all (¢;,co,+--,¢;) suchthat 0 < ¢ <cp—1<e3—2<--- <

¢i — (i —1) < 2¥ — 2 — 4. Similarly,

Dw)k = ) bler+h+2)b(ca +h+25) - blei +h+ 2"
> (bey + k) +25)(b(ez + ) +2°) -+ (blei + ) + 2k)
> " (b(er + h)b(ca + h) -+~ bci + h) +2%)

= D}, ; + 25Dfy  (mod 2¢*)

where the sum is over all (c;,c, - ,¢;) suchthat 0 <ec; <cp—1<e¢—2<---<

¢; — (i — 1) < 28 — 1 — ¢. Therefore,

City = Cligy +28Clz(mod 217 (3.17)
D?,;;%k = D?k’i) + 2kiD?k,i) (mod 2Ft1) (3.18)

Case 1 : The recurrence relation of C& +1,0)
C(’Z 41,4 is the sum of products of nonconsecutive i number of b(l + h), where 0 <[ <

ok+1 _ 3. If (2% — 2 + h) is not used in the product, the sum is

S Ch (Dl + 28 — ) Dl L) )(mod 2441) (3.19)
J
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because the first part before b(2¥ — 2+ h) with j number of b(l + h) is C} ; and the
second part after b(2F —2+h) with —j number of b({+h) is D?,:f_’_cj’)l = D?k",il_j)-i—Qk(i—
j)D?k_’il_j)(mod 2++1) from (3.18), where maz{0,i — 2¥-'} < j < min{s, 257" - 1}.

If b(2¥ — 1 + h) is not used, the sum is

> Dlyi—iy(Cligy + 255Cli. jy) (mod 271 (3.20)
J
because the first part before b(2*¥ — 1 + h) with ¢ — j number of b(l + h) is Df‘hi_ i
and the second part after b(2* — 1+ h) with j number of b(l + h) is C(hk“;%k =Chy+
26jCP, ; (mod 251 from (3.17), where maz{0,1 — 2k-11 < j < min{i, 251 — 1}
If both b(2¥ — 2 4 h) and b(2* — 1 + h) are not used, the sum is

S Ol joy (Cliiio) + 2 = 50)Clijo)) (mod 27 (3.21)
Jo
because the first part before b(2¥ — 2+ h) with jo number of b(l + h) is C(hk’ joy @nd the
second part after b(2¥—1+h) with i—jo number of b(I+h) is C(hk""fjo) = C(hk)i-jo)+2k(z'—
50)Clici oy (mod 2¥41) from (3.17), where maz{0,i+1-2F1} < jo < min{i, 2571 -1}
From (3.19), (3.20), and (3.21),

h h h— ki: . h—1
Clisig = 2 ClpyDloiyy + 20— ) D)
J

h h k - ~h
+ Y Dhimiy(Cligy + 25 5Ch )
J

= Y Clijo)(Cliimioy + 2°(i = 50)Cli -y (mod 2°7)

Jo

where the sum is over all maz{0,i — 25"} < j < min{s,2""! — 1} anid maz{0,7 +

1— 261 < jo < min{i, 251 — 1}

Case 2 : The recurrence relation of D?k +1.0)

Df‘k +14) 8 the sum of products of nonconsecutive ¢ number of b(l + h), where 0 <1 <
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2kl 9 TIf (2% — 1 + h) is not used in the product, the sum is
> Dy (Dfss—gry + 26(i = §) Dy gny) (mod 25+ (3.22)
j/

because the first part before b(2* — 1+ h) with j' number of b(I + h) is Df; ;) and the
second part after b(2% — 1+ h) with ¢ — 5’ number of b(l + h) is D?,:f_kj,) = D+
2k(i—j') Dly, ;i (mod 281 from (3.18), where maz{0,i—2*"'} < j < min{i, 2k-11,

If b(2¥ — 1 + h) is used in the product,

(b(h—1)+26) > Clioin(Claily_jm + 25 = 1= 7")CGEL, ) (mod 2k+1)  (3.23)

J
because the first part before b(2F — 2 + h) with j” number of b(l + h) is C&j,,) and
the second part after b(2* + h) with ¢ — 1 — j” number of b(l + h) is C'(hk*f_kf_lj,,)
Claty_m+28 (-1 — 3Oy (mod 28%1) from (3.17), where maz{0,i - 2k-11 <
g <min{i — 1,21 — 1},
From (3.22) and (3.23),

h — h h ki(; . h
Dy = D DignyDiiiogn +2°( = 7)Dfyiyn)
]‘I
+ (b(h = 1) +2)) " Ch i (CRH ) + 256 — 1= j)CRL i) (mod 281
jl/

where the sum is over all maz{0,i—2%"1} < j' < min{i, 2"} and maz{0,i—2""1} <

" <min{i— 1,21 -1}. =

§2(C’(hm)) and §2(D€‘n’i)) are investigated in Lemma 16 by induction on n. Lemma 16

is similar to Lemma 12 but &(Df::j)l — D)) and &(CHY) are different if 7 is odd.
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Lemma 16 Forn > 2,

52(D?n ) = s(i)—1
E(DPy — D(z,’fl D > (i) +1
3 (D%:j)l D(szz)) = s(3) if 1 is odd
&o (D(zrizlt)l D%f:,i)) > s(i)+1 ifiis even
for1 <i< 2! and
GCh) = ()
52(0(27’:?)1) = s(7) if 1 s even
E(CHY) > s(i)+1 if iis odd

for1<i<2n i

Proof It is shown by mathematical induction on n. For n = 2, D?Z y = b(h) +

b(h+1)+b(h+2) = 1(mod 2), D(2 2 = b(R)b(h+2) = 1(mod 2) and D(2 0 Déhl)l =
b(2h + 2) — b(2h — 1) = O(mod 4), D1} — D)) = b(2h + 3) — b(2h) = 2(mod 4),
D}, — Dissy = b()b(h + 2) — b(h — 1)b(h + 1) = 0(mod 4). Similarly, C#yy =

b(2h) + b(2h + 1) = 2(mod 4) and CHF! = b(2h + 1) + b(2h + 2) = 0(mod 4). 1t is

fl

assumed that the statement is true for n = k(k > 2), and it is proved for n =k + 1.

Case 1: D(‘,H_1 0
Case 1 deals with Dfy ., = 2~ (mod 25@) for 1 <4 < 2F. Since 1 < s(i) < k for

1 < i < 2*, the following recurrence relation modulo 2¥ from Lemma 15 is enough:
k
D1y = ZD,” Dfyi_jn+b(h—1 ZCW/)CW L_m(mod2¥)  (3.24)

where the sum is over all maz{0,7—2%"1} < 5/ < min{i, 2k‘i} and mazx{0,i—2F"1} <
§" < min{i — 1,251 —1}.
For i = 1, Dy = 2D{, yDfiry + b(h = 1Ch, O)C(}jjol = 1(mod 2). Therefore,

D1y = 250 -1(mod 2°D).
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For 2 <14 < 2%, 37 C(ZI?,;})C?ﬁi—l—j") = 0(mod 2°™) can be shown. If 2 < i < 2571,

the sum is over all 0 < j” < i —1, and 5(0(2,:”;,1)) +E(CF 1)) 2 s(J") + s(i —
1—3") > s(i — 1) > s(i) — 1 with equality for 25(-1) cases if i — 1 is even(in this
case, j” and i — 1 — j” are even) and 0 cases if ¢ — 1 is odd(in this case, s(i — 1) >
s(i) —1). If 281 < § < 2% the sum is over all i — 271 < j” < 2% —1, and
ECHTN) + ECFr i _jmy) = s(") +s(i =1 7") > s(i — 1) > s(i) — 1 because
1< 4" i—1—j"<2"1(but 251 < i — 1 < 2¥). Therefore, for 2 <7 < 2%, (3.24) is

j/
where the sum is over all maz{0,i — 257} < j/ < man{i, 2571},
The proof is completed by using the idea of Case 1 in Lemma 12 because (3.25) is

same as (3.12). Therefore,

D?k+l,i) = 2O~ (mod 25(0))

. h h—-1
Case 2: D(k+1,i) - D(k+1,i)

: 2h—1 2h+1 h ,
Case 2 deals with D(21?+1,i) — Diyia and D(k-:_l,i) - D(2k+1’i) for 0 < ¢ < 2%, From

Lemma 15,

h h—1
D(k+1,i) - D(k+1,i)

_ h h—1 h h—1
= (Dl 51 — D jy) Dl + D)
j/

+ Z Cl g (bl = 1)0&?_1_]-,,) —b(h - Z)Cglk?il—l_jll))(mOd 9k+1)
jll

For i = 1, D%, — Dt} = b(2h + 28 — 2) = b(2h — 1) = O(mod 4) and

Dy~ Ditay =0(2h+ 1+ 2k —2) — b(2h) = 2(mod 4).
For i = 25, D2, o — Doty = Tlogjer DR + 2§) = [logjemr (20 + 27 = 1)
O(mod 4) and D! o = DIy oy = Tlogjeoe b(2h + 25 + 1) = Tlog;cor 0(2h +29)

0(mod 4) because b(2h + 2j + 1) = b(2h + 2j) = —b(2h + 2j — 1)(mod 4).

il

I}
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By deﬁnition in (35) d(2k1, —j") = D?k’t - + b(h — 1)C(hk-21 1-5) and d(2kz -3 =

D?k i T 0(h + 28— 2)0’;c i = D(,” i + 0(h = )C(’; L1 (mod 2¥41) if
h h—1 h
1 j” # 0 SO O(’C ]")(b( )C(k—*;l 1-—- ]//) ( - 2)C(k,’t—1 7 ) = C(k J//) (D(k 1'1 J")
D?k’i_j,,))(mod 2k+1) if 4 > 2. Therefore, for 2 < i < 2,

h h—1
Dty = Digrra)

= h—1 h—1 h k+1
Z D(k] (’”'))(D’“ -1~ Plia-i +chﬂ”) Diizgy — Dy i—jvy)(mod 2°77)

(1): D&, — Dty for2 < i< 2t

(k+1,7)
2h-1  _ i~ 2h—1 i
From D(k’i_],) Dy = 0(mod 28(i=3)+1) D(z,z‘l iny = Digi—jm = 0(mod 2s(i=1")+1)

by the inductive assumption and s(j') +s(i —j') +1 > s(¢) + 1, s(4") +s(i —j") +1 =
s(i) + 1,

D(k+l Q) D?/?-Hl ) = = 0(mod 2°0H)

(2) D2h+1 _ D2h

(k+1,0) (ka1 for2<1 < 2*

In this case,

2h+1
D(k-:-l i) D(k+1 1)

= PR 2ht1 2h+1 ( 2h+1
- Z(D(k 3" + D(kJ ))(D(k i—jy (kz g’ )) + Z C(k 3" D(k i—j'") D(k z—]”))
2h+ 2h+1 2h+1
Z D(k an T k (kg") — C(k j”))(D(k i—j"") D(k,i—j"))
+1{J —mingizi-1y) (DR + D) (Dt = Difiyn) (mod 2207

(kyi—3")

where the sum is over all maz{0,i—25"1} < j/ < min{i,2*"'} and maz{0,i—2"""} <

§" < min{i—1,2F1 — 1}.

DUHL D2y = (DEHL D2, 142D, = 220"42x2°007! = 0 = Gt (mod 2207+
2h+1 2h+1 2h "1 —
if ]H is odd and D(k,j”) + D (k") = (D(k]” D(k ]")) + 2D(k = =0+4+2x 28(] )= =
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2s(j") = 0(2,? ,,)(mod 250")+1) if §” > 0 is even. Therefore,

2h+1
Dty = Doy
= Loy (Dps) + Dipoy — Cony V(DR = Di'y)
+1{j’=min{z‘,2k-1}}(D(£ﬁ+D(ky )(Dzzg:rl]/) Dlm -i") )

= licor- 1}(D 1?51 D(kz))

+ 1 isor- 1}(D(k 2k-1) +D Yok 1))(D2h+12k by = D(z}ﬁi_zk_l))

= 1{i<2k'1}(D%I?:;1 Dzlill))

Flisoe-1y2(D sy = Dijei_gr-ny) (mod 250+

because ng;} o + DRy = Tlogjene1 0(2h + 25 + 1) + [ogjcoer bR + 27) =
2 [To<jcor-1 0(2h + 2j) = 2(mod 4) from b(2h + 25 + 1) = b(2h + 2j)(mod 4) for
0<j< 2k L,

Finally, D2, — D3ty =

il

= 2°O(mod 25+1) if i is odd, and Dzh_:llz) - D(ZI?H,Z')

0(mod 2°®+1) if i is even.

Case 3: C(k+1 9

Case 3 deals with Cf,,, ;) = 2°®)(mod 250+1) for 1 < ¢ < 2.

For i = 1, Ck+1 1) = 2ocjcorrig0(2h + 7) = 2(mod 4). Therefore, 0(2,:;1,1)
25 (mod 25M+1).

For i = 2¥ — 1, from Lemma 15, 0(2,:;1)2,6_1) = C2h2k L 1)(D(ngkl y+ sz?l?,;’“l—l)) +
(Clizems 1)+2kC(k gr-1-1y) Dy = C(zl?,zk—l—n([)(2/?2'cl 1y + D k) = 2(mod 2°+1)
because D" kzk y + D(,c -1y = [logjeann b(2h + 25 — 1) + [[ocjcor—1 b(2h + 2j) =
2 [Tocjcor-1 b(2h + 25) = 2(mod 4) from b(2h + 2j) = —b(2h + 2§ — 1)(mod 4) for

0<5< 2k=1 Therefore, C%:‘H k1) = 9s(2F~ U“(mod 9s(2k— 1)+1)

Since 1 < s(i) < k for 2 < i < 2¥ — 1, the following recurrence relation modulo 2k

from Lemma 15 is enough:

Ciiry = Z Cii( D2;?'1 Lo+ DR i) Z Co iy Cotiioy (mod 2F) (3.26)
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where the sum is over all maz{0,i — 281} < j < min{i, 2"~ — 1} and maz{0,7 +
1-— 2k—1} <jo < min{i,Qk'l _ 1}.
For1<i<?2F—1,

Z Cltejo)Clii-so) = 0(mod 2s()+1)

is shown in (3.14). Therefore, (3.26) is
h s(i
Clirp = EZC@J)Daz%'FDwZnXWWd2(H5

where the sum is over all maz{0,i—2%"1} < j < min{i, 21 —1}. Fori = 0, it doesn’t
work because C’(k_!_1 g =1#2= i 0)(D(2,:”0)1+D(k o)) (mod 2). Fori = 2k —1, it works
because C(k+1 gk_1) = =2k = C(k oem1_ 1)(Dzhzk y+ D(k oo 1))(mod 2k+1) . Therefore, for
0<i<2F—1,

k+1 i) = Z Cit) D?]?z—lj) + D)) + Loy (mod 2:@1) (3.27)

where the sum is over all maz{0,i — 2871} < j < min{i, 257! —1}.

For 2 <i<2F—1,(3.27) is

Clirio = Z Clea)(Diei-n =Dl 11))+1{i<2’“‘1}0(21?,1')+1{i22’°-1}20(21?,i—2k-1)(mOd 270+
(3.28)
where the sum is over all maz{0,i—25"1} < j < min{i,2""! — 1} because }; 0(2,:‘].) X
21)(21?z 1]) =3 C(k]o)C(k i—jo) T1{i<2k-1- 1}0(2’?")(21)(250)1 (ko))+1{1>2k 1}0(,“ pk-1) X
2D(2’]:2‘°1 1y = licor- 1Oy + Lizoe- 1}20(,” gk-1y(mod 2s()+1y,

From D(kz i) D(z,?1 7 = 0(mod 28(=)+1) by the inductive assumption,

C(k-l-l 1) = 1{i<2k_l}c(2]s’:];i) + 1{i22k_1}2c(2£i—2k—1)

25(0) (mod 2°0)+1)
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1

Clry = Clly = 250 (mod 2°W+1) if 1 < i < 287!, and CFY,, ;) = zcg,gi_zk_l)
250) (mod 250+1) if 2k-1 <4 < 2%,

. 2htl
Case 4: C(k+1,z‘)

Case 4 deals with C(z,ifllyi) for 1 < i< 2k,

For i =1, C?,:‘_:’lll) D o<j<or+r_3b(2h + 1+ j) = 0(mod 4). Therefore, C(ng'lll =
0(mod 25MW+1).

For i = 2% — 1, from Lemma 15, Cottl, ) = Ot ) (DR gy + 2°Dijanny) +
(C2h2,c iyt QkC?,Z;kl_l_l))Dzlz‘;ﬂ} e CZh;“kl . 1)(D(k ge-1y + D?,’:;L,}_l ) = O(mod 2k+1)
because D(k,zk—l) + D?@ 1y = Tlogjeor b(2h + 25) + [logjcoe-1 (2R + 1+ 2j) =

2 To<jcar-10(2h + 27) = 2(mod 4) from b(2h + 2j + 1) = b(2h + 25)(mod 4) for

0 < j < 2F-1. Therefore, C?,i:"ka )y = 0(mod 252 =D+,
Since 1 < s(i) < k for 2 < i < 2¥ — 1, the following recurrence relation modulo 2k
from Lemma 15 is enough:

2h+l 2h+1 2h+1 2h+1 2h+1 k
Clrsra) = ZC(M) (Ditigy + D) Zc(kgo) Coiliy(mod2®)  (3.29)

where the sum is over all maz{0,i — 2871} < j < min{s,2¥"! — 1} and maz{0,i +
1 — 21} < 4o < minfi, 2571 — 1}

For1<i<?2F—1,

2h+1 ~2h+1 s(i)+1
Z CHH O, = 0(mod 2201 (3.30)
can be shown. If 1 < i < 2¥1 the sum is over all 0 < j, < ¢, and §2(C’(2,?;;1))
62(0(2,2;’_1].0)) > s(jo) + s(i — jo) > s(i) with equality for 2°@) cases if 4 is even(in this

case, jo and i — jo are even) and 0 cases if ¢ is odd(in this case, one of jo and 7 — jo is

odd and £ (CGtY) > s(jo) or &(CHT) > si—jo)). 2571 < i< 28—1, the sum is

over all i+1-28"1 < jo < 2¥1—1, and §(C3L TN +E(CRTL ) = s(jo)+s(i—Jo) > (i)

because 1 < jo,i — jo < 28" (but 2*71 < i< 2¥ —1). For 1 <i<2F -1, (3.29) is

2h+1  _— 2h+1 2h+1 1)+1
Gk-:-lz) :Zij) (D(kz _ +ij]))(m0d 25( )+ )

J
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where the sum is over all maz{0,i—2*"1} < j < min{i, 27! —1}. Fori = 0, it doesn’t

work because C2M1 0 =122 = Cz’*“(D%,fO)—I—Dzh“)(mod 2). Fori = 2%—1, it works

(k+1,0) = (k,0) (k,0)
because C’(,?_:rllyc y=0= C(ZI:"Z",CI_I_I)(D(ZQZ,C_I) + D%z,c 1)) (mod 2k+1) Therefore, for
0<i<2k—1,

C(Zl?:ll,i) = Z C(Q:;r)l(D(kz 5T D?’?TIJ)) + Li—oy (mod 2°*1) (3.31)

J

where the sum is over all maz{0,i — 2871} < j < min{s, 257! — 1}
For2 <i<2"-1,%. 0(2,:‘;10(2,?1 _joy = 0(mod 2°*1) can be shown. If 2 <é < 2k-1

the sum is over all 0 < jp <4, and 52(0(2,:1701)) +&(CH_y) = s(o) + s(i — jo) = (1)
with equality for 2°®) cases if i is even(in this case, jo and i — jo are even) and
250)-1 cases if i is odd(in this case, jo is even and s(i) — 1 > 0 since ¢ is odd and
i >1). If 2"=1 <4 < 28 — 1, the sum is over all i + 1 — 28" < jo < 2¥°' — 1, and
§2(02,£‘;L01) + §2(C'(kl_m)) > s(jo) + s(i — jo) > s(i) because 1 < jo,i — jo < 257" but
k-1 <j< k1 For2<i<?2F-1,(331)is

2h 1 2h 1 2h 1 s 1
Clrny = ZCUJ DU~ D)+ icary Ol 1 (i226-1) 205 sy (mod 2 @)

(3.32)

where the sum is over all maz{0,i—2F"1} < j < min{s, 257! —1} because ) _; C(z,fj)l

2h 1 2h+1
(I“ H T ZJO C(kv;:) (kyi— Jo)+1{1<2’c ! 1}C(k$ (2Dk0) C(k0))+1{i22’<"1}0(k,@-_2k_1)
2D<k ety = Licor1) Ot + Lizar1 2050 gy (mod 220041,
From (3.32), ifdis even, CGifL ) = Lyscor ) Ol +1{i>2k‘1}20(2: ey = 220 (mod 2201

(k+1,
because either j is odd or i — j is even and Cz,f;r)l(D?;‘f_lJ) (k i) = 0(mod 25®+1),
If 7 is odd,
2h+l  — 2h+1 y2h+1
C(kil,z') = Z C(h;r (D(Icz -j) - D (k,i—7) )

j is even

+ l{iggk—l_l}c(z,?:;gl + l{izzk—l}QC(QI::—_}zk_l)
= 1{1S2k—1_1}c(2£$1 + 1{i22k_1}20(2]?’j_12k—1)
= 0(mod 2°D*1)
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because if j is even 52(0(2,2;)1(D?£;"_1j) — D) = s(G) +s(i—j) = (1) with equality

for 2601 cases if 2 <4 < 2¥~! and 0 cases if 287! < i < 2F.

From Case 1, 2, 3, and 4, the proof is done. B

Now, another proof of Theorem 7 is found.

Corollary 17 Theorem 7 is true.

Proof It is enough to show that b(z 4 2") — b(z) = 0(mod 2"*!) under the assump-
tion b(0) = 1(mod 2) and
A"b(z) = 0(mod 271) (3.33)

forallr>1and > 0.
Tt can be shown by induction on n. For n = 0, b(z + 1) — b(z) = 0(mod 2') from
r=11in (3.33). It is assumed that the statement is true for n < k(k > 0), and it is

proved for n =k + 1.

b(z + 28 —b(z) = (S —1)(b(x))
(S —1)(S +1)(S%+1)--- (8% + 1)(b(x)) (mod 2+1?)

fHl

and % + 1 = (S — 1)g(S) + 2 for t > 0, where g,(S) = S¥ 1+ .-+ 5+ 1. If we
expand (S2"' —1), each term is divisible by 28(S —1)¥1=* and 2/(S —1)**'7*(b(z)) =
0(mod 2%t?) from r = k+ 1 — ¢ in (3.33) for 0 < ¢ < k. The proof is done. B

3.6 Remark

Tt is natural to extend Konvalinka conjecture for a general function b(x) from NU{0}
to Z. The property of a polynomial b(z) that we used is b(z +2¥) — b(z) = 0(mod 2)

for kK > 2 and C(’”k't';:_l_l) = C’szk-l_l)(mod 2F+1) for x > 0.
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It is easy to show that C(zk-t-;:—l—l) = C(’Emk_l_l)(mod 2k+1) is equivalent to
km + k:z+4 + -+ km+2k_4 = b(mod 2) ’ (334)

for some b and for all z > 0 if b(z + 2¥) — b(z) = k,2¥(mod 25+1).

Theorem 18 For b(x) from N U {0} to Z, if b(0) = 1(mod 2), b(0) = b(1) =
(=1)*b(2) = (=1)°b(3)(mod 4) for some s € N, and b(z+2¥)—b(z) = k,2*(mod 2+1)
for x >0 and k > 2 with k, satisfying (3.34),

EC) =€(Ca) =s(n+1) -1
for allm > 0.

Proof The proof can be done by using the idea in Theorem 11 and Theorem 14. B

But, it is uncertain whether the above condition is sufficient or not.
Conjecture 19 b(z) is a function from NU{0} to Z. If£(Ch') = £(Cy) = s(n+1)—1
for alln > 0, there exists k, satisfying (3.34) and b(z + 2F) — b(z) = k,2"(mod 2**7)

forx >0 and k > 2.

It is interesting that the conjecture is true if b(z + 4) = b(x)(mod 4).

Theorem 20 If b(x + 4) = b(z)(mod 4) for x > 0, Conjecture 19 is true.

Proof First of all, it is shown that b(x) is odd for € N U{0}. If there exists some
z that b(z) is even, W, = 0(mod 2) for k > =+ 1 and Ae(Wno, W1, , Waz) =
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(Wn+l,0a Wn+1,1a e 7Wn+l,m)(m0d 2)7 where
[0 1 o0 \
o) 0 1

b(z — 2) 0 1
\ Do 0 b(x—1) 0

There exist m > 0 and t > 0 that (W0, , Winz) = Wm0, -+ s Wingt,z) (mod 2)
because there are at most 2! possible combinations of (W, 0, W1, -+ , Wy z)(mod 2).
Then, Wy110 = Wy o(mod 2) for n > m and C%(mod 2) is periodic for n > m. But,
C%! = C, = 1(mod 2) if and only if n = 2¥ — 1 for k > 0, and Cp'(mod 2) is not
periodic for n > m. Therefore, b(z) is odd for z € N U {0}.

Similar to the proof of the backward direction of Konvalinka conjecture, b(1) =
b(0)(mod 4) and b(3) = b(2)(mod 4). Therefore, we can divide the proof into two

cases.

Case 1 : b(4z) = b(4x + 1) = b(4z + 2) = b(4z + 3) = a(mod 4) for z > 0, where
a=1or 3(mod 4)

It is shown that C(hn y = 250) (mod 25M+1) for 1 < 4 < 2"7' — 1 and D?n,i) =
250=1(mod 2°®) for 1 <4 < 2"~! by induction on n.

Forn =1, Dy, = b(h) = 251 (mod 2°W).

Forn =2, C = b(h) +b(h+1) = 2b(h) = 2°W(mod 2°W*1), D¢, ) = b(h) +b(h +
1) + b(h + 2) = 2°D~Y(mod 2°M), and D, 5y = b(h)b(h +2) = 251 (mod 2°®?).

It is assumed that the statement is true for n < k(k > 2), and it is proved for n = k+1.
(1): D(k+1 5 = = 250-1(mod 25M) for 1 < ¢ < 2*

From (3.5), diy. » = Dl + b(R)CHE ) and dfye ;) = Dfyy) + b(h + 25 = DG, yy.
Therefore, D) —Dfy. iy = b(h+2F-1)C{; ;1 —b(R)C(iF2 ). Since Claryy = Clijon) =
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2s(i—1) (mod 2s(i—1)+1)’
DS = Dfiy = b(h+ 2% = 1)Cli i) = b(h)C{i2,, = 0(mod 286-1+1)  (3.35)

Similarly, from (3.5), d{y ;5 = D2+ b(h)Dé‘,:f_l) +b(h+ I)C&J’“i?’_l) and d”

(ki) (2F4143)
D?k’i)+b(h+2k)D?k,i_l)+b(h+2k—l)C(’}C,i_1). Since D3 = Dty = Dfy, ;y(mod 28(i-1)+1)
from (3.35) and C(hk’f_l) = Cliiy = 25(-1) (mod 2°C-DFL), D?l:,?—l) — Dy =
0(mod 250-D+1) and

D2 — Dfy ;) = 0(mod 2°0+1) (3.36)
Similar to Lemma 13,
ke k
Diory = Dy DI+ b(h+25 = 1) Y Cl i Ciiti™n (3.37)
jl jl/

where the sum is over all maz{0,i—25"1} < 5/ < min{i, 21} and maxz{0,i—2""'} <
§" < man{i — 1,281 — 1}.

1 h+2F h4-2k h+-2k _
For i = 1, Dfuryy = DiuoyDiih + Dl Disle) + blh+2" = DG Cilgy - =
1(mod 2). Therefore, Df‘kﬂ’l) = 2501(;p0d 2°0).
For 2 <4 < 2% 3 C'(hk’j,,)C(hk';z_kf“_lj,,) = 0(mod 2°?) can be shown by Case 1 in
Lemma 12. From (3.36), D?k‘?)k - D?k’i) = 0(mod 2°0*1) and s(j) — 1+ s(i—j) +1 >
s(1), (3.37) is

D?Ic+1,i) = Z D?kyj,)D?k’ivj,)(mod 25(%)) (3.38)
j/

Since (3.38) is same as (3.12), Dfy,, ; = 2°@7!(mod 25@) for 1 < i < 2F by Case 1

in Lemma 12.

(2): Cloypryy = 2°9(mod 250+1) for 1 < i < 2%(i is even)

Similar to Lemma 13,

h _ h h—1+2k h h+2k h h-2k
Clirr = Z(C(kmD(k,z‘—j) + Doi-nCliy ) = D Cliio) Clii=io) (3.39)
Jo

J
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where the sum is over all maz{0,i — 257!} < j < min{7,2*"! — 1} and maz{0,i +
1 — 281} < jo < minfs, 2871 — 1}
From (3.14), >~ C’(hk,jo)Ch“k ) = 0(mod 250+ If 5 is odd (i — J is odd), s(j) +s(i —

(k,’i—jo
. . 140k k sti ,
j) — 1> s(i) and Cf  Di > + D?kyi_j)C(hk?) = 0(mod 2°W+1). Therefore, (3.39) is
_ k k ;
Clory = Y (Chy Dty + Dis—pyCintyy ) (mod 25D+ (3.40)
j:even

From (3.35) and (3.36),

(k,i+1) o
= Dy — D?;;Z-'in = b(h+ 2"+ 1)Cs — b(h + 2)Cé‘k2‘§(mod 2s(i+1)+1)
If 7 is even, C("k’i) - C(hkfs = C("kﬁ — (’m‘i(mod 25()+2) and
Clisy = Ciby(mod 2°0+2) (3.41)

If 4 is even, from (3.35),
DMl = Db o (mod 2°0*1) (3.42)

(ki) =
since s(i — 1) > s(i). Therefore, (3.40) is

Clisry = D 2C0Dikiog

j: even
h h
> 2CG 5 Disi-s)
J

Z C(};C,jo)c(};c,iwjo) + 1{i§2k“1—1}c(hk,i) (ZD?,CYO) - C(hkyo)) + 1{i22k—1}C&’i_zk—l)QD?ka—l)
Jo

il

Licob-1)Cliy + Laz2r-1)2C( 5 an)
28(’i) (mod 23(i)+1) (mod 23(i)+1)

(3): Chyryy = 2°0(mod 250+1) for 1 < i < 2%( is odd)
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From (3.40),

h _ h h—1+2F h h+2F
Clivry = D (ChpyDieity + DiiiClay )

J

h h—1+2k h h-+-2k h h42F i)+1
> Clin Dty = Dlicien Clithy + 2D{aim Clicy (mod 220H)
J

where the sum is over all maz{0,i—25"'} < j < min{s, 2""*—1} because 2D?k’i_j)0&fr]%k =

s Cle o) Cliicioy + Lisot-1-1yCliiy(2Dfi0) — Cliogy) + Liz2e-) Cligoon-1)2D{h 01 =

1{i<2k_1}C£‘k’i) + l{iZQk-1}2C’(’}”_2k_1) = 2°0)(mod 2°+!) where the sum is over all

maz{0,i + 1 — 2871} < jo < min{i, 28~ — 1}. Therefore, all we need to show is

— k k s(z
S (Clsy Dl — DliiepClity ) = 0(mod 2°9*) (3.43)

J

From (3.36), (3.41), and (3.42), (3.43) is same as

h h—1+2k h h-+2k
> Cliay Py~ Dlki-C6i)
J

h h+1 h h h h+-2k
3" Gy (DL = Dhicy) + D Diia—y(Clicyy = CGy)

jeven j:o0dd

h h+1 h h h h4-2k i)+1
N Ch (DL = Dliicp) + D D=y (Clicgy = Cliny ) (mod 220+
j j

because ¢ is odd.

It is shown that C’(h,fll:)l —C’&_m = 0(mod 2°*?) and D?Ij—ll,i)—D?k—l,i) = 0(mod 25®F1)
if 7 is odd. If k = 2, D?ffll) — Dy = b(h + 1) — b(h) = 0(mod 2+ If k > 2, by
the inductive assumption with (3.41) and (3.42), for 1 <o < 281 —1,

S Cles (Dl o= Dlcsiomi)F 2 Doy (Clioryy=Cliyy ) = 0(mod 27000
jeven j:odd (3.44)
For 1 < i < 2¥2 _ 1 take 49 = i + 2¥72 in (3.44). Then, if s(j) + s(io — j) >
s(io), Cleer )Pl = Dleorio-g)) = 0(mod 2260041y and Dfy ;50 (Clhiyjg) —

2k—1

Cé’,fﬁ;;) = 0(mod 2°(0)+1), Therefore, D?k—1,2k—2)(0(’}cfl,i)—C(hktl,i) ) = 0(mod 2°00)+1)
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and Ci% " — Cl | = 0(mod 220+2). (3.44) is

Y Clicry (D ig-g) = Dl-1i0—) = 0(mod 2691 (3.45)

jreven

If 4, is the minimum that satisfies th+11 i~ D14y # 0(mod 2200F) 37 even Clir (D ?1:-11,11—1')_
Dy 141-5) = D?;ll iy~ Di-14,) # 0(mod 25(1)+1) and it contradicts (3.45). There-
fore, D(k 1) D(k—l,i) = 0(mod 25M+1) for 1 < < 2+2.

Similar to Lemma 13,

k-1

h _ h h—14-2k-1 h2k-1 h h+
d(2’“+2’°-1—2,i) - Z C(k—l,i—n D(k 1) + Z D(k 1 1—12)C(k,jz) o ZC(k—l,i-Js C(kds)
j Js
_ h h—142F h+2F h h4-2k
- Z C(krh)D(k 1,i—j2) + Z D(k JI)C(k 1,i—-j1) Z C(k,JS)C(k 1,5—j3)
2 3
where maz{0,i+1—28"2} < j; < min{i, 2¥71}, maz{0,i—2""2} < jp < man{s, 2871 -

1}, and maz{0,i + 1 — 2¥72} < j3 < man{i, 2871 — 1}. Since C'(,:’21kz)1 Che_1gy) =
0(mod 2°@+2) and D, ;) — Dfy_; ;) = 0(mod 2°@71),

h+1 h — h h+2k—1 h s(i)+1
Zo(k vi-3) (P = Dion) = ZD(k—l,i—jz)(C(k,jQ) — Cfi. 1) (mod 22001)
(3.46)
From (3.46),

h+2k
ZD(k 1,i—j2) C(k j2) C :Jz)
o2t _ oh+2 1 h2k=1 h
ZD(k Li— Jz) (k,m sz) "‘ZD(k 1,i-j2) C(km) _C('w'z))
(i—41) h+1 h+1 h
22“ (DG = Dy + Dy = D))

Ji

0(mod 2:®+1)

I1l

il

and

k s
ZDk 1imin (CHrE = Cf py) = 0(mod 27041 (3.47)
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It is shown that

Z DY ; ;) (Co2 — Ch. 1)) = 0(mod 22071) (3.48)

where maz{0,i — 2571} < j < min{i, 25! — 1} with (3.47).
For0<i<2¥2-1,0< 7, <4 and 0 <j <4. From (3.47),

h+4-2k h
Z Diiei-i (Ciy = Clie))

Il

h h+2k h
ZD(k—lyi—jz) C(k 72) C(k,jz))

0(mod 25+1)

For 2872 < 4 < 21 1§ -22 < j, <ijand 0 < j < 4. From (3.47) with
0<i—252 <282 —1(s(i) = s(i — 2°7%) + 1),

h+-2k h
ZD(M »(Ciyy — Cleg))
h+2’° h++2% h
ZD(M i (CE = Clha) T Y. Diwicin(Ciy = Cligy)
0<j)<i—2k—2-1

h-2* h h ht-2 h
ZD(k—u—jz> Cleiy = Clioa) + D 2Dlemnimar-2-y (Cily = Clip)

0< 5 <i—2k~2

= 0(mod 2°®+1)

For 2F1 < g < 2k-142k2 1 §_2k2<jy <2kt _landi—2F1<j <211,
From (3.47) and 1+s(i — 252 —j)) —1+s(js) +1 > s(i —2F2) + 1 = s(1) + 1(2F2 <
i— 282 <21 ),

h+2% h
ZD(M HCES = Cliyy)

+2k h+2k h
ZD ki) (Clezy = Clign) + > Dl iy (Clizay = Clieay)

i—2k-1<j0<i—2k=2-]

i—2k—1<j <i—2k=2-1

O(mod 25+
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For 2871 4 2k=2 < j < 28 — 1 4 — 281 < j < 2%1 — 1. From (3.47) with 2F7! <
i— 282 < 2kl L ok=2 _ 1(5(4) = s(i — 2F72) + 1),

h+42k h
z D(k i—3) C(k 7) C(k,j))
h h-+2F h
Z 2D(k—1,i—2k—2—j5)(c(k ) C(k,jé))

(i—2k‘2)—2k_2§jé§2k"l—l

= 0(mod 2°*1)

Finally, (3.43) is 3" .eren Clis)(Dliinjy — Dieizj))(mod 22971). Tt is shown that
Clery = 2°@(mod 2°0H1) for 1 < i < 2° — 1. From (3.39), it is obvious that
Clerrsy = 0(mod 2:®)). If 4, is the minimum that Cf},,,, = 0(mod 2si)+1)
then &(C,) > s(n+1) for n = 28 — 1 4 4; from Case 2 in Theorem 10 because
52( (h+1,7)Cn—j) = s(n +1) — 1 with equality for 2s(+1)-1 _ 9 cases and s(n + 1) =
s(2¥ +14;) > 2. This is because &(Cy, ;)Cn—j) = s(f) +s(n+i1—j)—1>s(n+1)-1
if j >i1(n+1—j <2¥), and &(CQ ;) Cnmin) 2 8(01) +1+5(2%) = 1 =s(n+1).
Since Cliyysy = 2°@(mod 2°0%1) for 1 < i < 28 =1, 3o5en Cliy(Diriny) —
Dfy;_;y)(mod 2°91). Since Cf 1y = Cf  (mod 28(M+1) and Dh+2 5y = Dl ijy(mod 28(0)+1)
n (3.37),

h+1 0 1 0 — s(i)+1
Y Clhup (DL = Dlizp) = Cliyy(Ditisy = Do) = 0(mod 2°0*)

jreven

for 1 <4< 2% — 1, and the proof is done.

From (1), (2), and (3), C}, ) = = 20 (mod 2°@*) for 1 < i < 27! — 1 and Df,,) =
2501 (mod 2°0)) for 1 <i < 2n°L

For k > 2, from (3.35), D?:fk N = D(k ge-1y(mod 2%). Therefore,

b(h + 2%) — b(h) = 0(mod 2¥) (3.49)
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because D2 ) — Dl vy = (b(h +2%) = b(h))b(h + 2)b(h + 4) - - - b(h + 2 — 2).

Since C(”kﬁk - C("kﬂ.) = 0(mod 25012), C(’;:;:_l_l) = (hwk_l_l)(mod 2k+1) - From
(3.49), b(h+2%)—b(h) = kp2*(mod 25+1) for some ky,. From (3.49), b(h+25+1)—b(h) =
0(mod 25+1) and ky,ox = ki(mod 2).

Since C&T;:—l—l)_c(hk,zk‘l—l) = 25 (kntknir+knratkniste - FEnior_stkppor_s)(mod 2841),
En + kny1 4 knpa + kngs + -+ Kpyorg + Epyor_3 = 0(mod 2) (3.50)

and it is equivalent to (3.34).

Case?2 : b(4z) = b4z + 1) = (—1)b(4x + 2) = (-1)b(4z + 3) = a(mod 4) for

x > 0, where a = 1 or 3(mod 4)

It is shown that 2,y = 2°0)(mod 2°9+1) for 1 <4 < 2711, 0(2;"2*11) = 25 (mod 25(39+1)
for 1 <20 < 27! — 1, CZM3l ) = O(mod 2G0T for 1 < 2i+1 < 2771 — 1, and
D(hn,i) = 250~Y(mod 2:™) for 1 < i < 2"! by induction on n.

For n =1, D}, ;) = b(h) = 2207 (mod 2°).

For n = 2, Clyy = b(2h) + b(2h + 1) = 2b(2h) = 2°D(mod 2°V*1), CF:,y = b(2h) +
b(2h + 1) = 0(mod 22W*Y), DY, |\ = b(h) + b(h + 1) + b(h + 2) = 2°)"}(mod 2°M),
and Df, 5, = b(h)b(h + 2) = 2°®)~}(mod 2°?)).

It is assumed that the statement is true for n < k(k > 2), and it is proved for n = k+1.

(1): Dl gy = 2207 (mod 2°0) for 1 <4 < 28

From (3.35),

Df) = Dfiy = b(h+2F = 1)C i1y = b(R)CEE ) = 0(mod 2°¢-D%Y) - (3.51)

Similar to (3.36), if i is even,

D{i5 = Diysy = 0(mod 27+ (3.52)



and if ¢ is odd,

DS — Dy = 220 (mod 2°0+) (3.53)
Similar to Lemma 13,
k k
Dfyry) = Z Dy jn Dty +b(h + 28 = 1) Z Clrm Cl (3.54)
7 J"

where the sum is over all maz{0,i—2%"1} < j’ < min{i, 2*='} and maz{0,7— 21} <
3" <min{i — 1,21 — 1}

For i = 1, Dfy ;) = Do DI + Db |\ D 4 b(h+ 28 — 1)Ch o Chi3™!
1(mod 2). Therefore, D¢, ,, ;) = 2°V7(mod 2°0).

For 2 < i < 2% Zj,, C& " C('}ﬁkl‘"lj,, = 0(mod 2°%)) can be shown by Case 1 in

Lemma 16. From (3.52) and (3.53), D{) — Dfy, ;) = 0(mod 2°@*1) and s(j) — 1 +
s(i—7) 4+ 1> s(i), (3.54) is

Dfiirs) ZD(,”,)D(,” in(mod 2°®) (3.55)

Since (3.55) is same as (3.12), Dfy,, ;) = = 250~ (mod 2°™) for 1 < i < 2% by Case 1

k+1,i

in Lemma 12.

. Ch = 250 (mod 250+ for 1 < 4 < 2%(; is even
(k+1,1)

Similar to Lemma 13,

h — h h—1+2F h 2’° h+2F
Clisry = D (Cleg Dy + Dl Clit Z Cliego)Clriiio) (3.56)
J
where the sum is over all max{0,7 — 2¥71} < j < min{i,2*"! — 1} and maz{0,i +
1 — 261} < 5o < minfi, 2571 — 1}
k . . ..
From (3.14) and (3.30), ZJOC,CJO)C”,:;Z_]O = 0(mod 2°W*1). If j is odd(i — j is

k
odd), s(j) + s(i — j) — 1 > s(i) and C&])th iy + Dy J)C"k’rf) = 0(mod 2:0+1),
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Therefore, (3.56) is

Cloriy = D (Choy Dty + Diy iy Cley ) (mod 2291 (3.57)
j:even

From (3.51) and (3.53),

DL ) = Diisry = b(h+ 28 = 1)Cf. oy — b(R)C(3

(k,i+1) (k1)
= D% — Diily = blh+ 25 + DO — b(h + 2)C(5 (mod 20D+

If 4 is even, C'(hk)i) + C(’;jg = _C(hkﬁ — Ch*(mod 2:®+2) and

(ki)
Cliy = Cliy(mod 279%7) (3.58)
If ¢ is even, from (3.51),
Diit = Dijy(mod 2707+ (3.59)

since s(z — 1) > s(7). Therefore, (3.57) is

Clisty = D 2C(;Dliy)

j: even
h h
> 2Ch 5 Dlis)
J

> CloioyCliimio) T Liszt-1-1yCli iy 2D 0) = Cli)) + Liazar-11Clk i1y 2D 61y
jo

il

1{i<2k—1}C(hk’i) + 1{522k—1}2c&yi_2k_1)

25(1) (mOd 23(i)+1)(m0d 23(i)+1)

(3): Cyr) = 29 (mod 2°0*1) and 0(21?-:-11,1‘) = 0(mod 2°W*1) for 1 <4 < 2¥(4 is odd)
Fori=1,Cfl\, 1) = Docjcorri_s D(2h+j) = 2(mod 4) and C(Q,fjll,l) = Y ocj<omi_g b(2h+

1+5) = 0(mod 4). Therefore, Cf,, ;) = 220 (mod 2°W1) and CF, , ;) = 0(mod 28(D+1),
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For 3 < i < 2¥(i is odd), from (3.57),

h = h—1+2 h Qk
J
k .
= Z(C kJ)th zljﬁ (k i—j) C(hk—; + 2D(kz J)C(hk*‘]z )(mOd 23(z)+1)
J

where the sum is over all maz{0,i—2""'} < j < min{i,2""'~1}. Since 2D[; ;_ J)C(’}:“f)k =

250 Cliio) Cliido) + Hi<at-1 -1y Cle ) (2Dfh0) = Clioey) + Lizai1y Cli s w1y 2D 1) =
1{i<2k—1}c(k7i) + l{izgk-1}20(k’i_2k_l) = C(k+1,i) (mod 25™M*1) where the sum is over all
max{0,i + 1 — 2871} < 5o < min{i, 2*7! — 1}. Therefore, all we need to show is
h— k h — s(d
ZC,C] DY — Dy HCh2 = 0(mod 2°0+1) (3.60)
For i =1, if h = 2R/, it also works.
From (3.52), (3.53), (3.58), and (3.59),

h—142F h+2k
ZC(’CJ)DIM Y = Dihisn Ot

h—1 h+2F
Z ClesyDliisy = Dlioi—) + D Dl Clisy = Cie)

j:even j:odd

h-1 h-++2k s(i)+1
ZC’U) Dkz 9 kz—y +ZD(]” ]) k]) C(k]) )(mo d 2% )

because % is odd.

It is shown that C(h,:’zlkz)1 —C 14 = 0(mod 229¥2), DB | D?,? “1y = 0(mod 220%1),
and Dtl — DI, = 2°0(mod 2°0F1) if i is odd and k > 2. By the inductive
assumption with (3.58) and (3.59), for 3 < ig < 2871 — 1,

h h ht2k=1y _ i0)+1
Z C(hk—l»ﬁ) D?k 11 sio—3) D?‘C—l,iO‘j))+Z D—1i0-(Cle1,y— C,:rlj)) = 0(mod 2:(0)+1)

jreven j:odd

(3.61)
For 1 < i < 2¥?2 1 take 49 = ¢ + 2*72 in (3.61). Then, if s(j) + s(ip — j) >
S(/';O)v C(k l])(D?k 1lzo - (k 10— ])) = O(mOd 28(i0)+1) and Dk lzo—])(c(};c—l,j) -
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C2) = 0(mod 256041, Therefore, D(k 1,2k- 2)(0&4@)_0&4—_21’:)1) = 0(mod 2°(0)+1)

(k=1,5) )
and C’hk“fz)l Cli_15 = 0(mod 2°0%2). For 2h, (3.61) is
D Chr iy (Dt iosiy = Ditria—gy) = 0(mod 2200+ (3.62)
j:even

If i3 is the minimum that satisfies D7), \=Dg* ;) # 0(mod 2°0)+) 57, CZ | (D?,f i)™

DR i) = D(zlg ]11) D, ;) # 0(mod 2°9*1) and it contradicts (3.62). Therefore,
DF 14 _D(zl?—ll,z‘) = 0(mod 2°®*1) for 1 < i < 252, From (3.53), D(z,f+111) DR,y =

250 (mod 2°W+1) for 1 < < 2k-2,
Similar to (3.46), for 3 <14 < 282

h h—1 h+2k—1 h i)+1
Zc(k‘lvi"jl) D(kJ1) (kh ZDk 1,i—j2) C(k”) C'(k,jz))(mod 28(1) )

(3.63)
From (3.63),
h+2F h
ZD(k 1i-12)(Clija) = Clin))
_ h+2% h+2k-1 h4-2k—1 h
= Z D(k 1,i—j2) C’(k ja) C(k j2) ) + Z D (k—1,i—j2) C(l:-]z C(k,jz))
— s(i— h+1 h+1
= 22 CI(DEEE) = Dl + Dl = Diiin)
J1
= 0(mod 2°W+1)
and
k h — s(z
Z D(k 14— Jz) (’;:_322) - C(kyjz)) = O(mOd 2° )+1) (3'64)
It is shown that
k s(1
Z D iy (CHES = Cli ) = 0(mod 27041 (3.65)

where maz{0,i — 2571} < j < min{i,2¥71 — 1} by (3.48) because (3.64) is same as
(3.47). Tt is easy to check that it also works for k = 2.
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Finally, (3.60) is Y open Ce 5y (Diieiy = Dliimgy) (mod 2201 350 e Cliiy(Dficiciy—
Dfy.i_jy)(mod 2°@*1) because Cf ., ;) = 25 (mod 2°+1) by using the idea in Case 1.
Since CF;) = Cfy ;) (mod 2°9+1) and DL = Dfy,_j(mod 2°9*1) in (3.52) and
(3.53),

2h—-1 — s(i)+1
Z C(kJ D (k,i— j) (k’L ])) - C(k])(D(k i-j) D(kl—])) = O(m0d2 @+ )

C’UC'I'L

for 3<4<2F—1 and

2h 1 2h — 0 3 4 s(i—7 — s(1)+1
> CHLNDE, ) — DEL) = Cluy(Dikicsy = Diizgy +2°¢77) = 0(mod 2°0%)

j:even

for 3 <4 < 2¥ — 1. The proof is done.

From (1), (2), and (3), Cft, 5,y = 2°®" (mod 25@0F) for 1 <20 <2V — 1, Clypyy =
25241 (mod 22 +D+1) and CIM3L ) = 0(mod 223D for 1 < 2i+1 < 2071 — 1,

and D, ;) = 2°0~"(mod 2° @) for 1 <4 < 2n7L

For k > 2, from (3.51), Dh’:rzzk 1y = D(k gk-1) (mod 2¥). Same as Case 1 with (3.49)

and (3.50), ky, satisfies (3.34). W

Forn+1= ZfzjniSi where 0 < m; < 3 for j < i < k and nj,ne > 0, §&(Cr) =

#{j < i < k|n; = 2} is proved in the next theorem.

Theorem 21 Ifn+1= Zf:j n;3" where 0 < n; <3 for j <i <k and nj,ng >0,

&(Cn) = #{j <1 < kn; = 2}

Proof By definition, C, = =4 (%) = (nfg'n, Since &(n!) = [2]+ %]+ [ %]+,

((n+ 1)) Zn,1+3+ + 37

i=j
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Since n = ZLj ;3 —1=37"02-3 4 (n; —1)3 + Zfzjﬂ n;3',
E3(n!) = Zz Q43+ +3 )+ n; - DA +3+---+371
+ Z ni(1+3+--+371)
i=j+1
and
j—1
&) = D> (142201434 +37))+(2n; — (1 +3+---+37)
=0
+ Z (LQ"’ (1434 +37)
i=j+1
Therefore,
&(Cn) = &((2n)!) = &((n +1)!) — &s(n!)
j—1
= > (1420 43+ +3 D)) - (1434 +37) + Z L%J
i=0 i=j+1
i 2n; )
= ) 3 —(143+---4+37) Z | =]
1=0 i=j+1
k
2n;
= > 15
i=j+1
and &(Cyp) =#{j <i<kln;,=2}. &
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