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Abstract

We begin the study of unitary representations in the lowest weight category of ra-
tional Cherednik algebras of complex reflection groups. We provide the complete
classification of unitary representations for the symmetric group, the dihedral group,
as well as some additional partial results. We also study the unitary representations
of Hecke algebras of complex reflection groups and provide a complete classification
in the case of the symmetric group. We conclude that the KZ functor defined in
[16] preserves unitarity in type A. Finally, we formulate a few conjectures concerning
the classification of unitary representations for other types and the preservation of
unitarity by the KZ functor and the restriction functors defined in [2].
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Chapter 1

Introduction

The classification of the unitary complex representations of groups and algebras is

an important and often difficult problem in representation theory. This thesis will

begin the study and classification of unitary highest weight representations of rational

Cherednik algebras and will begin to connect them to the unitary representations of

Hecke algebras.

The rational Cherednik algebra Hc(W, ) is defined by a finite group W, a finite

dimensional complex representation of W, and a parameter function c on conju-

gacy classes of reflections in W. For any irreducible representation A of W, one can

define the irreducible lowest weight representation Lc(A) of Hc(W, j). For a certain

restriction of the parameter function, the representation Lc(A) admits a unique non-

degenerate contravariant Hermitian form (up to rescaling). We call Lc(A) unitary if

this form is can be normalized to be positive definite.

Given A an irreducible representation of W, we describe the set U(A) of parameters

c such that the module Lc(A) is unitary. We call it the unitarity locus of A. The

problem of describing the unitarity loci is motivated by harmonic analysis, and was

formulated by I. Cherednik. In this thesis, we will solve the problem for certain

families of reflections groups, such as the symmetric and dihedral groups, and also

provide some partial results for other types of groups.

The main result of the first part of the thesis is Theorem 2.3.5 that describes

the unitarity locus for the symmetric group (type A). We also describe completely



the unitarity locus for the dihedral group and the cyclic group. In type A, if A

is not 1-dimensional, the unitarity locus U(A) consists of the interval [- L] (1)

("the continuous spectrum") union with and a certain finite set of points of the

form 1 ("the discrete spectrum") where j is an integer and L(A) is the largest hook

of the Young diagram corresponding to A. In particular, this answers a question

posed by I. Cherednik, proving that for c = I where 2 < m < n, the irreducible

subrepresentation of the polynomial representation Mc(C) is unitary. Furthermore,

as it is shown in detail in [15], its unitary structure can be given by an integration

pairing with the Macdonald-Mehta measure.

In the second part of the thesis, we begin the study of unitary representations

of Hecke algebras of complex reflection groups. Given a complex reflection group W

and the corresponding Hecke algebra N = Nq(W) over the complex numbers, we

investigate the existence of a certain N-invariant nondegenerate Hermitian form on a

representation V. The defining property of the form is its invariance under the braid

group Bw of W, namely (Tv, v') = (v,T-v') for all T E Bw and v,v' E V.

A representation of N with such a Hermitian form will be called unitary if the form

is positive definite. Since unitary representations are semisimple, we may restrict the

study of unitarity to irreducible representations.

The main result of the second part of the thesis is Theorem 3.3.2 which provides a

complete classification of the unitary irreducible representations of the Hecke algebra

of the symmetric group. The proof uses the theory of tensor categories and properties

of restriction functors for Hecke algebras.

The organization of this thesis is as follows. Chapter 2 focuses on the unitary rep-

resentations of rational Cherednik algebras. Section 1 contains definitions and general

results. Section 2 contains a few properties of unitarity loci. Section 3 describes the

unitarity loci for the cyclic group, dihedral group and the symmetric group, along

with some partial results.

Chapter 3 focuses on the unitary representations of Hecke algebras of complex

reflection groups. Section 1 contains a few general definitions and results regarding

the Hecke algebra of the complex reflection group G(r, 1, n). Section 2 contains the



construction of a Hermitian form on Specht modules and their irreducible quotients

which is invariant under the action of the corresponding braid group. Section 3 is

focused on the classification of the unitary irreducible representations of the Hecke

algebra of the symmetric group.

Finally, Chapter 4 contains a few closing remarks and conjectures.
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Chapter 2

Unitary lowest weight

representations of Cherednik

algebras

2.1 Preliminaries

2.1.1 Definition of rational Cherednik algebras

Let be a finite dimensional complex vector space and a positive definite Hermitian

inner product (,) on j. Let T : -a be the antilinear isomorphism given by

(Ty)(y') = (y, y') for any y, y' E G.

Let W be a finite group of linear transformations of preserving the Hermitian

inner product (unitary transformations). A reflection element in W is an element

s E W such that rk(s - 1)|, = 1. Let S be the set of reflections in W and c: S -4 C

be a W-equivariant function on S (W acts on S by conjugation). For every s E S, let

(s be its nontrivial eigenvalue in r*, as E C* a generator of Im(s - 1)1k., and a' E o

be the generator of Im(s - 1)|a, normalized such that (a., a') = 2. If W is a group

generated by its reflection elements, let di, . . . , ddim4 be the degrees of the generators

of the ring of W-invariant polynomials C[)IW.

Definition 2.1.1. (see e.g. [13, 14]) The rational Cherednik algebra He(W, ) is



defined as the quotient of the algebra CW x T( e *) by the ideal of commutation

relations

[z IX'] = 0, [y, y'] = 0, [y, X] = (y, x) - C s(y, o,)(X, o')s,
sGS

for all x,x' E r*, y, y' E j.

Let Y1, Y2, ... be a basis of 0 and x1, x2 ,... the dual basis of *. The element

h = Zxiyi + 2 1i s
sCS

plays an important role in the representation theory of rational Cherednik algebras.

It does not depend of the choice of the basis. Its most important properties are the

identities

[h, xi] = xi, [h, y] = -yi (2.1)

2.1.2 Verma modules, irreducible modules, Hermitian forms

Let A be an irreducible representation of W. It can be extended to a representation of

W x So by letting 0 act by 0. Define the Verma module Mc(A) := He(W, ) 0cwxsb A

as an induced module from W x Sj. Every quotient of the Verma module Mc(A)

is called a lowest weight module with lowest weight A. Let Lc(A) be the unique

irreducible quotient of the Verma module.

Denote by Oc(W, 0) the category of He(W, [)-modules which are finitely generated

under the action of C[ ], and locally nilpotent under the action of . The Verma

module Mc(A) and all its quotients belong to this category. Note also that the element

h acts locally finitely on any object of Oc(W, j) with finite dimensional generalized

eigenspaces. In particular, it acts semisimply on any lowest weight module of lowest

weight A. The lowest eigenvalue is given by

dim E 2cS

s2 S I-(



The eigenvalues of h on Mc(A) are of the form hc(A) + Z+ which gives a Z+-grading

on Mc(A).

Let M E Oc(W, j). A vector v E M is called singular if yv = 0 for any y E F. It

is clear that a lowest weight module M is irreducible if and only if it has no nonzero

singular vectors of positive degree.

2.2 Unitarity loci and their properties

2.2.1 Definition of unitarity

Let C be the space of functions c on the set of reflections S such that c(s) = 4s-')

for all s C S.

Let A be an irreducible representation of W, and (, ) a W-invariant Hermitian

form normalized to be positive definite. If c E C, we can extend it to modules of

lowest weight A in the category Oc(W, 0) as the following result shows.

Proposition 2.2.1. (i) There exists a unique W-invariant Hermitian form #c,A on

Mc(A) which coincides with (, )A in degree zero, and satisfies the contravariance con-

dition

(yv, v') = (v, Ty -v')

for all v, v' C Mc(A), y C 0.

(ii) The kernel of #c,A is equal to the maximal proper submodule Jc(A) of Mc(A), so #,,
descends to a nondegenerate form on the irreducible quotient Lc(A) = Mc(A)/Jc(A).

Proof. Straightforward. E

We will call , the contravariant Hermitian form. It is unique up to rescaling.

We can define * a semilinear anti-automorphism of Hc(W, F) by

x* =T-x, y* Ty, and w* = w-1



for all x E f*, y E (, and w E W. Then the contravariant form #,, satisfies

(fI v, ' (o, f v)

for all v, v' E Mc(A), f C Hc(W, j).

Definition 2.2.2. (i) The representation Lc(A) is said to be unitary if the form #c,A

is positive definite on Lc(A).

(ii) Let U(A) be the set of points c E C such that Lc(A) is unitary. We call U(A) the

unitarity locus of A.

2.2.2 Properties of the unitarity loci

Let us present some basic properties of the unitarity loci. Let A be an irreducible

representation of W.

Proposition 2.2.3. (i) U(A) is a closed set in C.

(ii) The point 0 belongs to the interior of U(A).

(iii) The connected component of 0 in the set of all c for which Mc(A) is irreducible

is entirely contained in U(A).

Proof. (i) c C U(A) if and only if the contravariant form #c,' is positive semidefinite

on Mc(A), which is a closed condition on c.

(ii) Because the Cherednik algebra satisfies the Poincare-Birkoff-Witt property, we

have a natural identification of Mc(A) with A & C[O] as vector spaces. The form #00,A
is simply the tensor product of the form (, ), on A and the standard inner product

on C[j], given by the formula (f, g) = (Dgf)(0) where Dg C S is the differential

operator on C[] with constant coefficients corresponding to g E Sj* via the operator

T-. Thus #o,A is positive definite, as desired.

(iii) This property follows from the standard fact that a continuous family of

nondegenerate Hermitian forms is positive definite if and only if one of them is positive

definite. E



Below, we consider separately the case of constant functions c E C (in this case,

c is real). Let U*(A) be the subset of U(A) containing constant functions. We can

describe U*(A) as a subset of R. In this case, Proposition 2.2.3 implies

Corollary 2.2.4. (i) U*(A) is a closed set in R.

(ii) The point 0 belongs to the interior of U*(A) for any A.

(iii) The connected component of 0 in the set of all c for which Mc(A) is irreducible

is entirely contained in U* (A).

Let Wa be the group of characters of W. It is easy to see that Wa acts on the

space C by multiplication. It also acts on representations of W by tensor multiplica-

tion.

Proposition 2.2.5. For any X E WV one has U(X @ A) XU(A).

Proof. There exists a natural isomorphism i : H(W, j) -+ Hx-ic(W, 0) given by

ix(w) =X-1(w)w, ix(x) = x and ix(y) = y for all w E Wx G *, and y E . The

pushforward by this isomorphism maps a representation A to X 9 A. The desired

conclusion follows. E

Proposition 2.2.6. Let c E U(A). If o is an irreducible subrepresentation of W

inside A 0 *, then hc(-) < hc(A) + 1.

Proof. Let us regard - as sitting in degree 1 part of Mc(A). The action of y E on

the degree 1 part can be viewed as an operator o o 0 A - A which sends sends

y 0 X 0 V to

(y, x)v - cs (av, x)(y, s)s(V).

seS

Equivalently, we obtain an endomorphism Fc,A,l of [* 0 A given by

Fc,,1 = 1 - 2 ( - s) O s, (2.2)
sE S 1-(S



because ((1 - s)x, y) = 0-)('',x). Thus F,A,1 acts on u by the scalar

1 + hc(A) - hc(a).

Let us look at the restriction of the inner product 1c,x to the irreducible W-

subrepresentation a sitting in the degree 1 part of Mc(A). This restriction must be of

the form P(c)(, ),, where P(c) is a linear polynomial in c. Since P(c) is positive for

c = 0 (by Proposition 2.2.3(ii)), we conclude that P(c) = K(1 + hc(A) - hc(a)) for

some K > 0. This implies the statement. E

Remark 2.2.7. The representation a sitting in degree 1 in Mc(A) contains singular

vectors if and only if hc(-) - hc(A) = 1.

Note that ES.s is a central element in C[W], and hence it acts by a scalar on any

irreducible representation of W. Let TA be the scalar by which EEs s acts on A.

Corollary 2.2.8. Let c E U*(A). If o is an irreducible subrepresentation of W inside

A (*, then

c(Tx - TU) < 1.

We will now generalize the operator Fc,A,1 acting in degree 1 to higher degrees. For

any c E C, there is a unique self-adjoint operator Fx on Mc(A) = AOS *, given by the

formula #c3a(v, v') =/#a,A(Fc,\v, v') for all v, v' E Mc(A). We have Fc,A = em>oFc,A,m,

where Fc,A,m : A 0 S"'* - A 0 Sm * is an operator which is polynomial in c of degree

at most m. Note that if Fc,A,m is independent of c, then FcAm = 1, since Fo,),m = 1.

The following proposition gives a recursive formula for F,,m.

Proposition 2.2.9. Let ai, ..., am E *, and v E A. Then

Fc,,m(al...amv)

m

- 2c (1 - s)(aj)Fc,A,m - (a ... ajis(a+ ... amv )).
j=1 sCS



Proof. For any y E 0 we have

Fc,A,m-1(yai...amv) = ByFc,,m(ai...amv).

This follows from the defining property of F,,. Let u = a1...amv. Then, we obtain

F,,,m(U) = XiFc,A,m-1(Yit).

We used the property that K xj8, acts by m on homogeneous polynomials of degree

m. After computing yiu using the commutation relations of the rational Cherednik

algebra, we obtain the desired formula. D

Remark 2.2.10. Note that for m = 1, this formula reduces to formula (2.2).

Corollary 2.2.11. Assume that F,, is constant (and hence equal to 1) for 1 < i <

m - 1. Then on every irreducible W-subrepresentation o of A 09 SmO*, the operator

Fc,A,m acts by the scalar 1 + hc()-hc(o)

Let us now assume that W is a (finite) group of real reflections. Its reflection

representation 0 is the complexification of a real vector space (e with a positive

definite symmetric inner product, which is extended to a Hermitian inner product on

the complexification, and that W acts by orthogonal transformations on OR. In this

case, s2 = l and (s = -1 for any reflection s E S. Also, c E C iff c is real valued.

Let us choose Y1, Y2,... to be an orthonormal basis of OR and X1, X2, ... its dual

basis. Define the elements

It is easy to see that the element h introduced above satisfies in this case

hh e t e (xlye + yixi).

The elements e, f , h form an S 12-triple. Their construction does not depend on the



choice of the orthonormal basis. Note that e* = -f, f* = -e, and h* = h. The

following theorem explains the usefulness of the s[2-triple.

Proposition 2.2.12. (i) A unitary representation Lc(A) of Hc(W, ) restricts to a

unitary representation of s12 (R) from the lowest weight category 0. In particular,

hc(A) = dF - csx > 0.

(ii) A unitary representation L(A) is finite dimensional if Lc(A) =A.

(iii) A unitary representation Lc(A) is finite dimensional iff hc(A) - hc(A) 1 for

any irreducible W-subrepresentation a contained in A o 0*. In this case, hc(A) = 0.

Proof. (i) Let v E A in the lowest weight h-eigenspace of Lc(A). Then fv = 0. Also

(ev, ev) = (v, -f ev) = (v, (h - ef)v) = hc(A)(v, v).

If ev f 0, then hc(A) > 0. If ev = 0 then hv = [e, flv = 0, so hc(A) = 0. Hence h acts

on the lowest weight vectors by a nonnegative scalar.

(ii) If Lc(A) is finite dimensional, then by (i), it is a trivial representation of.sl 2 (R).

So h acts by 0, which combined with (2.1), implies any x C f* acts by 0.

(iii) Using (ii), this is equivalent to Lc(A) = A, which is equivalent to y C ) acts

by 0 on any subrepresentation a in A D 0*. By 2.2.7, this is, in turn, equivalent to

hc(a) - hc(A) = 1. l

Let W be an irreducible Coxeter group, and ) be its reflection representation.

Recall that the representations A' are irreducible. The representation Adimi is

isomorphic to the sign representation C_ of W. The following theorem describes the

unitarity locus of the exterior powers N ).

Proposition 2.2.13. (i) Let T be an irreducible representation of the Coxeter group

W and H be its Coxeter number. Then [-1, 1 ] C U*(r).

(ii) U*(C) = (-oo,-], and U*(C ) = [-k,+oo).

(iii) For 0 < i < dim I), U*(AN ) [- , ].



Proof. (i) If c C (-1, 1), then c is a regular value ([10, 16]), namely the category

0c(W, ) is semisimple. Therefore, the Verma module Mc(T) is irreducible, and the

desired conclusion follows from Proposition 2.2.3(iii).

(ii) Let c C U*(C). Then hc(C) =_ ) -dci = |S( - c). By Proposition 2.2.12,

hc(C) > 0, hence c < . On the other hand, for any negative c, the module Mc(C)

is irreducible, and hence unitary. The first statement of (ii) now follows from (i). To

obtain the second statement, we use Proposition 2.2.5.

(iii) The "D " inclusion follows from part (i). To prove the "C" inclusion, we

note that the irreducible representation A2+1 sits naturally in the degree 1 part of

Mc(A' ). Let us compute TAib. The trace of a reflection in A j is

dimo - 1 dimo - 1

Thus, we have

dimT0 -1 dim 1 -1

T imdim

Hence,

hc(A"+1)- hc(A b) = 2c|S|/ dim = cH.

Thus from proposition 2.2.6, we conclude that if c E U*(A ) then cH < 1, namely

c - I. The inequality c -- follows from Proposition 2.2.5. El

cIH H

2.3 Description of unitarity loci

2.3.1 The cyclic group

Let W = Z/nZ. All its irreducible representations are 1-dimensional. By Proposition

2.2.5 it is sufficient to determine the unitarity locus for one such representation. For

instance, let ( be given by j --+ ( where (= e2xi/n.

The module Mc(C) has basis xk k > 0. Let ak := /3c,c(Xk, xk) (we can normalize



the form such that ao 1). We obtain by a straightforward computation

-1 i _ jk
ak =ak _(k - 2 1- (j)

j=1

where c3 = c(j), jn ,...,rn-1.

Let
n-1 i _(k

bk := 2 j. cj,

j=1

for any k > 0. Note that bo = 0, and bn+m = bn. If c E C then bj are real, and

it is easy to see that b1, ..., bm-1 form a real linear system of coordinates for the

parameter space C. This follows from the basic fact that the matrix with entries

1 < j, k < n - 1 is nonsingular.

The following proposition and corollary describe Lc(C) and its unitarity locus.

Proposition 2.3.1. (i) Mc(C) is irreducible iff k - bk -/ 0 for any k > 1. It is

irreducible and unitary iff k - bk > 0 for all k= 1, ... , n - 1.

(ii) If Mc(C) is reducible, then let r is the smallest positive integer such that

r = b,. Then Lc(C) has dimension r (which can be any number not divisible by n),

and basis 1, X,.., xr1. The representation Lc(C) is unitary iff r < n and bk < k for

all 1 < k <r.

Corollary 2.3.2. U is the set of vectors (b1 , ..., bn_ 1) such that in the vector (1 -

bi, 2 - b2 , ..., n - 1 - bn_ 1) all the entries preceding the first zero entry are positive (if

there is no zero, all entries must be positive).

If n = 2, then ci = c and bi = 2c, and we obtain that U = (-oo, 1]. At c = the

unitary representation is 1-dimensional.

2.3.2 The dihedral group

In this subsection we will describe the unitarity loci for the irreducible representations

of the dihedral group.



First, let W = D, be an odd dihedral where n = 2d + 1 (the group of symmetries

of the regular (2d+ 1)-gon). The group W has only one conjugacy class of reflections

(so C = R). It has two 1-dimensional representations, C and C_, and d irreducible

representations of dimension 2, A,, 1 < 1 < d. The representation A, can be described

in matrix form by

0 (20 1

( 0 0 1 0

Then A =, is the reflection representation.

Proposition 2.3.3. (i) U(C) = (-, 2d1].

(ii) U(Al) = [- 1, 2] for all 1 < 1 < d.

Proof. (i) Already proved in 2.2.13.

(ii) Let us look at the decomposition SkAi = Ae Ak-2 ( ... (the last summand is

C if k is even). By tensoring this decomposition with A,, we obtain only 2-dimensional

summands if k < 1, while 1-dimensional summands appear first when k = 1. Since

hc(A) = 1 for any 2-dimensional A, using Corollary 2.2.11, it follows by induction on k

that the operator Fc,A1,k is constant in c for k < 1 (and hence equal to 1). Thus, again

by Corollary 2.2.11, Fc,A,(X) = (1 ± 'ilc)X if X belongs to the sign, respectively

trivial subrepresentation of A, 9 S'Ai. If c E U(Al), this implies c E 1 [ 1- 2d1.

It remains to show that Mc(A,) is irreducible if (2d + 1)1cl < 1. This is proved in

[6]. It can also be proved directly. It follows from the above that Mc(Al) contains no

singular vectors of degree at most 1. Assume now c > 0. Then any singular vector

would be in the sign representation. Let k > I be the degree of this vector. Then we

get hc(C_) - hc(Al) = k, which implies that (2d + 1)c = k > 1, as desired. The case

of negative c is similar. El

Let now W = D, be an even dihedral group where n = 2d, d > 2 (the group

of symmetries of a regular 2d-polygon). This group has two conjugacy classes of

reflections, represented by the Coxeter generators Si, s2 that satisfy (sis 2)2 d = 1. The

1-dimensional representations are C, C_, and also the representations Ei and E2, given

by the formulas



Ei: E2:

S2 a 1  S 2

There are also d - 1 irreducible representations A, of dimension 2, 1 < 1 < d - 1,

defined by the same formulas as in the odd case. As before, [j = A, is the reflection

representation. We will extend the notation A, to all integer values of 1, so that we

have A, A= Land Ad1 = Ads1, A0 = CfC_, and Ad = El E2. Note that Al@Ei = Ad-1

and A @ C_ A A.

Let ci and c2 be the values of the two parameters corresponding to the two con-

jugacy classes. The unitarity locus U(A) will be a subspace of the real plane R 2. By

Proposition 2.2.5, it suffices to find U(A) for A = C and A = A for some 1 < I < d

Proposition 2.3.4. (i) U(C) is the union of the region defined by the inequalities

c1 + c2 < 1, c1 < 1 and c2 < j with the linec1+ c2 =.

(ii) If 1 4 then U(Aj) is the rectangle defined by the inequalities c1 +c 2 | < -2d

and Ic1 - C21 - -

Proof. (i) The operator Fc,c,1 acts by the scalar 1 - (ci + c2)d. This implies the

condition c1 + c2  for c E U(C).

Now recall that SkA1 - Ak e Ak-2 ... (the last summand is C for even k). In

particular, SdA, contains one copy of Ei and E2. The operator Fc,c restricted to the

1-dimensional subrepresentation E6 acts by a scalar. This scalar is given by

d-1 d
Q(c) (1 - 2ci) 7(I - (ci + c2)). (2.3)

j=1

It follows from [6] that for ci =,the representation E6 contain singular vectors. Also

that if c1 + c2 - d for some 1 < j < d - 1, there is a singular vector in degree j in the

representation Aj, and that the subrepresentation generated by this vector contains

E6 in degree d of Mc(A1 ). This implies that Q(c) is divisible by right hand product

(2.3). In the meantime, Q(c) is a polynomial of degree at most d and Q(0) = 1. This

proves the desired equality for Q(c).



Formula (2.3) and the inequality c1 + c2 < ' imply that if a unitary represen-

tation Lc(C) contains Eg in degree d, then ci < 1. It remains to consider unitary

representations Le(C) that do not contain ei, i = 1, 2. This means that either this

Ei is singular in Mc(C), which implies ci = j, or, A, is singular in degree 1, which

implies c1 + -c2 =

(ii) Let 1 < d. Using a similar argument as in the odd case, there is no 1-

dimensional subrepresentation of W in Mc(Al) in degrees k < 1, while the trivial and

sign representations sit in degree 1. This implies by Corollary 2.2.11 and induction

on k that FeA,, = 1 for i < 1, and Fc,A,(X) = (1 ± 4(c 1 + c2 ))X, if X belongs to

the sign, respectively trivial subrepresentation of A, 9 S'Ai. If c c U(A), we obtain

Ici + c2 | < 1.

Let us now prove that |CI - C2 1 < 4---1. By [6], at c1 - c2 = ±-1 there are singular

vectors in Ei or E2 in degree d - 1 > 1. We can show inductively that FcA restricted

to Al±j sitting in degree j for 0 < j < d - I - 1 acts by 1. Hence, we conclude that

Fc,Al,d-l acts on Ei by the scalars 1 ± g (ci - c2 ), which proves the desired inequality

for unitary representations.

Finally, if both inequalities are satisfied strictly, then Mc(Al) is irreducible [6], and

thus the rectangle defined by these inequalities is contained in U(Al), as desired. This

finishes the proof. E

2.3.3 The symmetric group

We will now study the case W = 65, n > 2, and ) = Cn. In this case we have only

one conjugacy class of reflections, so C = R.

Irreducible representations of 6n are labeled by Young diagrams A (=partitions).

We will denote by Av the conjugate partition of A. Note that if we identify represen-

tations with Young diagrams, then A 0 sgn = Av.

We let L(A) be the length of the largest hook of the Young diagram A, b(A) denote

the multiplicity of the largest part of A, and set f(A) = L(A) - b(A) + 1.

The main result of the first part of the thesis is the following



Theorem 2.3.5. Let A / (n), (1n) be a partition. The unitarity locus is given by

U(A) (-L , L) U { j |(A) < k < L(A) or - L(A) < k < -f(Av)}

The proof of Theorem 2.3.5 will be contained in the propositions 2.3.6, 2.3.7, 2.3.9.

The eigenvalue TA of Eses s on A equals the content of the Young diagram A,

ct(A) = i - J.
cell (ij)CA

Proposition 2.3.6. Let A $ (n), (1). Then (- , L')) C U(A).

Proof. Let q = e21ic and 7-t(q) be the Hecke algebra of G3 with parameter q, and SA

be the Specht module corresponding to A, as defined in [7]. It follows from Theorem

4.11 in [8] that SA is irreducible if c E (-22), I ). By the properties of the KZ

functor introduced in [16] this implies that Mc(A) is irreducible in this range. El

Proposition 2.3.7. Let A f (n), (1). The unitarity locus U(A) c (-1, L) U

{ | I(A) < k < L(A) or - L(A) < k < -f(Av

Proof. Let f =f(A), L=L(A), b=b(A) (so L= 2+b- 1).

Let us first show that U(A) c [-1 , 1 ]. Recall that A ® 0* is the sum of

representations whose Young diagrams p is obtained from A by removing and then

adding a corner cell. Hence hu(p) - hc(A) = c(ct(A) - ct~p)). We note that f (A) and

-f(Av) are the maximum and minimum values of ct(A) - ct(p). From Corollary 2.2.8

we obtain U(A) C [-£, V].

Let us now prove that the intervals Ik = ( 4 , +k 1 ), k = 1, ..., b - 1 do not

intersect U(A). Denote by Aj, i = 1, ..., b the partition of n obtained by reducing i

copies of the largest part of A by 1, and then adding i copies of part 1. It follows from

the rule of tensoring by r* that A 0 S[* contains a unique copy of A. Consequently,

for any c, Mc(A) contains a unique copy of Ai in degree i. Let us show that #c,AlAi

fi,A(c)(, )A, where (, )x, does not depend on c.

Lemma 2.3.8. Up to rescaling, fA,i(c) = (1 - (f + i - 1)c) ... (1 - ic).



Proof. We will proceed by induction on i. The case i = 0 is automatic. Let us assume

that the statement is proved for i < m - 1 and prove it for i = m. By the induction

assumption, at c = 1 for some j 1, ..., m - 1, the module Mc(A) has a singular

vector u sitting in Aj in degree j. Indeed, the contravariant form on A3 is zero at such

c, and there can be no singular vectors of lower degree, because if one moves at most

i < j corner cells of A to get a partition o, then TA - T < i(f + ' 1) <i(E + j - 1),

so c(Tx - T,) < i.

Note that A @ Sm1* contains a unique copy of Am-1 in degree m - 1 and a unique

copy of Am in degree m and that Am-1 0 I* contains a copy of Am. It can be proved

that the vectors of Am-1 generate a copy of Am in degree m, which implies that fAm

is divisible by fA,-1. Also, degfAm < degfAm- + 1.

Thus, to complete the induction step, it suffices to show that

fA,m(0) = fA,m-1(0) - + - n+ 1.

To prove this formula, let us differentiate the equation of Proposition 2.2.9 with

respect to c at c = 0. We get

FO",m(a,1---amo) = nE ajFO,Am-1(a1 ... aj_1aj +1... amo) - [la1... am, slv .
j=1 \ sES

This can be rewritten, using tensor notation, as

1 m
Fl,Am = - (FA,m-1)" - -(TA - TAm),

j=1

where the subscript j means that the operator acts in all components of the tensor

product but the j-th. We obtain

1
fi m(0) = fAm-1(0) - -(TA - TAm) = frm-1(0) - f - m + 1,

m

as desired.



Now the theorem follows easily from Lemma 2.3.8. Namely, we see that Lc(A) is

not unitary on the interval Ik because the polynomial fA,k+1 (c) is negative on this

interval, and hence the form #c,, is negative definite on Ak+1-

The following proposition contains the rest of proof of the Theorem 2.3.5.

Proposition 2.3.9. Lc(A) is unitary at c = for any integer k < -f (Av) or k ;> f(A).

Proof. We will follow S. Griffeth's argument in [15] based on [22]. Let us first intro-

duce the Cherednik-Dunkl subalgebra E C Hc(6,. C") generated by

6i =xzyi - C I i

1<j<i

for all 1 < i < n. This algebra is well-known to be commutative (for instance [11],

[18]). Let us also define the intertwiners

1
o-i = si --

Ei - Ci+1

= x 1 s 1 ... sn- 1. and

=1 y fnsn-1g -i r,

for 1 < i < n - 1. They satisfy the following intertwining relations

eCia

C q

= o-sj(i), for all 1 < i K n, 1 < j K n - 1,

= #Ei_1, for all 2 < i < n,

In addition,

2 (c, _ 6,+1) 2 _ C2

En-

Ei1d = 4(En + 1).



For an n-tuple of complex numbers a = (o...., a) we define the eigenspace

Lc(A)(ai...,a) {m E Lc(A) I c'm = aim for 1 < i < n}.

If v c Lc(A),, where ac e ai+1 for 1 < i n - 1, then os(v), #(v), and $(v) are

also eigevectors of E (non necessarily nonzero).

Let us now assume c = } where k < -f(Av) is an integer (the case when k > f(A)

is similar). The crucial property we will use (see Theorem 4.12 in [22]) is that Lc(A)

has a basis of eigenvectors of E, and any eigenvalue a has properties a2 C cZ<o and

a$ / ai+1-
We can now show that Le is unitary. Any xi can be expressed as a polynomial

in o-, # and e. Since Lc(A) is irreducible, any vector in Lc(A) can, therefore, be

obtained by applying a polynomial operator in oj, # and Ej to degree 0 vectors in A

(remember that Lc(A) = C[h] 9 A as a vector space). Furthermore, since oj and #
map eigenvectors to eigenvectors and eigenspaces are 1-dimensional, any eigenvector

can be obtained by applying a monomial in these variables to a degree 0 eigenvector

in A. Eigenvectors of different eigenvalues are orthogonal, since o2 are self-adjoint.

Hence, it is sufficient to show that, if f is an eigenvector of E with (f, f) positive,

then (o'2f, af) and (#f, #f) are positive. We use the basic properties e* = Ei, o=

and #* = b. From the contravariance of the Hermitian form, we obtain

(#f, #f) = (f, 0#f) = (f, ef) = ae(f, f),

( 0Z e+ )2 _C2
(uf, ouf) = (f, off) = (a2 ai +1 - c2

(a - ai+1)

for 1 < i < n - 1. The coefficients a,, and (" 2 - are nonnegative, since the

a& E cZ<O, c < 0, and ai / ai+1. On the other hand, the inner products on 1-

dimensional eigenspaces cannot be zero, because the form is nondegenerate. Hence

the form is positive definite on each eigenspace, and, therefore, on Lc(A). OI

Theorem 2.3.5 now follows from the propositions 2.3.6, 2.3.7, and 2.3.9.



Remark 2.3.10. In [22], the Cherednik algebra of the symmetric group &" is defined

by the commutation relations

xjyi - Sij if ij
Yi X~

xy + K+ E ki sik if ij

where r, = - To connect our definition and operators to those in [22], we send
C

yi - y, xi - -xi/c and i - (-c)cv.

2.3.4 Unitarity and the integral representation of the Gaus-

sian inner product on Mc(C).

In this subsection, we attempt to motivate the study of unitary lowest weight repre-

sentations of rational Cherednik algebras. For this purpose, we define the Gaussian

inner product on a Verma module Mc(A), introduced by Cherednik in [4].

Definition 2.3.11. The Gaussian inner product -, on Mc(A) is given by the formula

7c,A (V, v') = #c,A(exp(f)v, exp(f)v').

This inner product is well defined, since the operator f acts locally nilpotently on

Mc(A). We note that the kernel of -, is Jc(A), the same as the kernel of #3c,A. There-

fore, the inner product descends to any lowest weight module with lowest weight A,

in particular to the irreducible module Lc(A), on which it is nondegenerate. Further-

more, it is positive definite on Lc(A) if and only if #,,A is positive definite.

Proposition 2.3.12. (i) The form Yc,A satisfies the condition

}c,A(xv, v') = Yc,A(v, XV'), X E[j~.

(ii) The form 'Yc,A is the unique Hermitian form, up to rescaling, that is W-invariant



and satisfies the condition

'}c,N((-y + Ty)v, v') ='c,A(v, yv'), y E )R.

Proof. The most important ingredient in the proof is the identity

fx=xf+T 1x.

This implies exp(f)x = (x + T-1 x)exp(f) and also exp(f)(y - Ty) = Tyexp(f).

(i) We have

YC,A(Xv, v') = #c,,x(exp(f)xv, exp(f)v')

3c,A((x + T~1 x) exp(f)v, exp(f)v') = ,,,(exp(f)v, (T-1x + x) exp(f)v') =

#c,A(exp(f)v, exp(f)xv') = Yc,A (v, xv').

(ii) The proof that -cA satisfies the condition (ii) is entirely similar. Let us show

uniqueness. If 7 is any W-invariant Hermitian form satisfying the condition in (ii),

then let #(v, v') = y(exp(-f)v, exp(-f)v'). It is easy to show now that #(yvv') =

#(v, Tyv') for all v, v'.

multiple of -yc,A.

By Proposition 2.2.1, # is a multiple of #c,x, hence -y is a

El

We will need the following known result (see [12], Theorem 3.10).

Proposition 2.3.13. We have

7c,c(f,g) = K(c)-1 JR
where

dy,(z) := e-7ZJ/2 H IaS(Z)1- 2c9 dz,
sS

and

K(c) = dyc(z),

provided that the integral (2.5) is absolutely convergent.

(2.4)

(2.5)

f (z) g(z) dyc(z)



Proof. From Proposition 2.3.12, the form 7c,c is uniquely determined, up to rescaling,

by the condition that it is invariant under the anti-involution g -+ g1, X -* x, and

y -* Ty - y for all x E 0*, y E 0 and g E W. These properties are easy to check

for the right hand side of (2.4), using the fact that the action of y is given by Dunkl

operators. D

The integral formula extends analytically to arbitrary complex c. The constant

K(c) is given by the following Macdonald-Mehta product formula, as proved by E.

Opdam [21] for Weyl groups and by F. Garvan for H3 and H4 . Given an irreducible

reflection group W and a constant parameter c,

K(c) = Ko dim - djc)
f I(1 - c)j=1

where dj are the degrees of generators of C[O]'. It follows that for constant c the

first pole of K(c) occurs at c =, which gives another proof of Corollary 2.2.13(ii).

Let c be a constant positive function, which is a singular value for W (i.e., it is

rational and has as denominator a divisor of some degree di of W). Let Nc be the

minimal nonzero submodule of the polynomial Verma module Mc(C). I. Cherednik

observed that

Proposition 2.3.14. If Nc C L 2 (OR, diic), then Nc is a unitary representation.

Proof. As in the proof of Proposition 2.3.13, the integral gives a W-invariant form y

on Nc that satisfies the condition in Proposition 2.3.12 (ii). This implies that y is a

multiple of A,. The positive definiteness is straightforward. l

Let W be an irreducible Coxeter group, 0 its reflection representation, and c = .

Motivated by the previous observation and a number of examples, I. Cherednik asked

whether Nc is contained in L2 (OR, dyc) and, in particular, if it is unitary.

Let W = 6, and c = where 1 < m < n. Using Enomoto's theorem, reprovedm

differently and in slightly more generality in our paper [15], N = Li (A) where

A = (m- 1,...,m-1,s) andn=a(mn-1)+s and 0 < s < m- 1. Theorem 2.3.5



shows that L 1 (A) is unitary. Moreover, it can be shown that N1 is contained in

L2 ( R, dpc), which gives another proof of unitarity (see [15] for details).
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Chapter 3

Unitary representations of Hecke

algebras

3.1 Preliminaries

Let r and n be positive integers. We will first review the definition of the Hecke algebra

of the complex reflection group G(r, 1, n), namely the wreath product (Z/rZ)" x 65.

This algebra is also known as the Ariki-Koike algebra.

Definition 3.1.1. Given a commutative domain R and a family of parameters q =

(q, qi,. .. , q,) E R+ 1 , the Hecke algebra lHq(W) of the complex reflection group W =

(Z/rZ)" X 6n is the algebra generated by To, T1 , . .. , T_1 and relations

(To - qi) ... (To - q,) = 0,

T0T1ToT 1 = T1T0T1To,

(T + 1)(Ti - q) = 0

TIT4+1T = T+1TT+1

T T = T T

for all

for all

for all

i=1, . .. , n- 1,

1 <i < n -2,

0 < i j -2 < n - 3.

Note that T1, ... , T,_1 generate a subalgebra of Wq (W) isomorphic to the Hecke

algebra W (6n) of the symmetric group. It has a natural basis {T, I w E &n} over R



indexed by permutations, such that every T is given by certain a product of elements

T for 1 < i < n - 1.

In our thesis, we will assume R = C. For 'most' complex values of the parameters

q = (q, q1 , q,), the Hecke algebra q(W) is semisimple. We will call these values

generc.

We assume all parameters are invertible. We will use extensively the involution o,

a semilinear involution of = 'Hq that sends a F-* d, q --+ q-1, qi - q[, T - T -1,

and TI i-± Ti- 1, for all a E C and 1< i < n - 1. This defines an involution for

the universal Hecke algebra, where q are taken to be (invertible) formal parameters.

When we specialize the parameters to complex numbers on the unit circle, this map

can be extended to a C-semilinear involution of the special Hecke algebra. Note

that we must assume the parameters are on the unit circle to be able to define this

involution for specializations to complex numbers.

We also define the C-linear anti-involution * on R that sends q - q, qj i-4 qi,

To i-* To, and T i-+ T, for 1 < i < n - 1. This determines an anti-involution for any

specialization of variables to complex numbers.

We will follow [9] in defining for any multipartition A = (Al, ... , Ar) of n a

Specht module SA. Given two multipartitions A and pi, we say that A dominates

pfE'_' IA41|+ E _ A > Ef_-I |pil + E _ p for all 1 < k < r and j > 1. If A

dominates p and A - p we write A > p.

Let tA be the standard A-tableau filled with 1,2,..., n in order in the first row,

second, and so on, in A',. . . , Ar. For any standard A-tableau s, define d(s) C Gn

to be the permutation such that tAd(s) = s. It is straightforward that the set

{ d(s) [s standard A-tableau} is in one-to-one correspondence with (right) coset rep-

resentatives of 65A in 6 rt where SA = iA1i x 6 x ... 6|ri is a Young subgroup of

Given the multipartition A of n, let a = (ai, ... , ar) where ai = Z=-_I A I for any

1 < i < r. Let also x), = E GT Tw and

Lm = qI--"TT_1 ... T 1 TOT 1 ... Tm_1



for m = 1,..., n. We define mA = (]jHjf" H(L - qk))XA C N. For any pair of

standard A-tableaux (s, t), set met = T* mATd(t)

Now, let us define the vector space

N A = C{m5 4s, t standard p-tableaux for a multipartition y of n, P > A}

which is a two-sided ideal in 7- (see [9] Proposition 3.22).

Definition 3.1.2. Define zx = (NA + mA)/NA to be an element in N/NA and the

Specht module SA = NZA.

Remark 3.1.3. In [9], the Specht module SA is defined as a right module ZAN, but

we prefer the opposite definition. The anti-involution * maps one to the other, since

= mA and (NA)* = NA.

It is well known that for generic values of the parameters, the Specht modules

corresponding to multipartitions of n are irreducible and exhaust all irreducible rep-

resentations of N.

3.2 Hermitian representations of the cyclotomic

Hecke algebra of type G(r, 1, n)

In this section, we assume N =Nq(W) is the Hecke algebra of the complex reflection

group G(r, 1, n) defined above. We prove that if parameters are complex numbers on

the unit circle, any irreducible representation V of N is Hermitian, namely, it admits

a nondegenerate Hermitian form such that (Tv, v') = (v, -(T*)v') for all v, v' C V
and T E N. Equivalently, the form is invariant under the corresponding braid group.

In order to construct the Hermitian form, we will use the symmetric bilinear form

(,) on the Specht module SA defined in [9], which satisfies (Tv, v') = (v, T*v') for

every v, v' E SA, and T E N. If the Hecke algebra is semisimple, the Specht module

is irreducible and the form is nondenegerate. If the Hecke algebra is not semisimple,

the form may degenerate, and the quotient DA = SA/rad(, ) will be either irreducible



or zero. The family {DA| A multipartition of n, DA $ 0} forms a complete set of

irreducible representations of W (for more details, see [9])
For any multipartition A of n, the following holds

Lemma 3.2.1. (i) The involution o- preserves NA, and o-(mA) = mAn for some in-

vertible element u E N;

(ii) The involution a preserves the Specht modules, namely a(SA) = SA for any

A.

Proof. Let us first prove that o(XA) = q'xA for some integer s. It is easy to observe

from the definition of XA that we can reduce the problem to the case x = E T.

Note that Tex = q(W)x for all w C Grn where 1(w) is the length of w. It is well known

that x is unique with such property, up to scaling (see, for example, [7], section 3).

Applying a, we obtain Twa(x) = ql(w)o(x) which, combined with the uniqueness of

X, gives a(x) Px where P C C[q, q~1]. Since a is an involution, P(q)P(q- 1) = 1

which implies P = q' for some integer s.

Since mA = 1Q(H_1(Lm - qk))xA E N, a straightforward computation taking

into account the commutativity of Lm for 1 < m < n gives -(mA) = mAn where

qtfJ = L bq-~4k for some integers t, ak, bk, and 1 < k Kr. Note that u EN is

invertible. Finally, we note that NA =E"A Nm7,, since it is a two-sided ideal in

7-. Hence, a preserves NA, and also SA. El

Proposition 3.2.2. If the complex parameters q are on the unit circle, then any

irreducible representation DA f 0 has a nondegenerate Hermitian form such that

(Tv, v') = (v, a(T*)v') (3.1)

for all v, v' c DA and T c N.

Remark 3.2.3. For any 0 < i < n - 1, a(Ti*) = Ti. Moreover, a(T*) = T 1 for

any T from the group generated by elements T.

Proof. First, let us recall the existence of a symmetric bilinear form (,) on SA such



that (Tv, v') = (v, T*v') for any v, v' E DA and T E W. This form descends to a

nondegenerate form on D'.

Let us note that there is a semilinear involution on the Specht module SA, which

by abuse of notation we will also denote by a, such that u(T)a(v) = u(Tv) for any

T E 'W and v E SA. On SA, we construct a new form (v, w)1 = (v, o(w)). Clearly,

the form (,)1 is sesquilinear and descends to a nondenegerate form on D'. Since the

form (, )1 is unique up to rescaling, it follows that (v, v') 1 = c(v', v)I for all v, v' E DA

and a complex constant c. Note that c must be on the unit circle, hence c = exp(io)

for some 0 E R. Define now (v,v') = az(v,v')1 where z = exp(i4). We conclude

immediately that (,) is Hermitian.

We end this section with the following

Definition 3.2.4. Given a multipartition A such that DA / 0, we say the DA is

unitary if the nondegenerate Hermitian form defined above can be normalized to be

positive definite.

3.3 Unitary representations of the Hecke algebra

of type A

The rest of the thesis will focus on the Hecke algebra of the symmetric group 6,. In

this case, the Hecke algebra depends only on one parameter q. For a complex q, let

e be the smallest positive integer such that 1 + q + ... + qe-1 = 0. If such an integer

does not exist, we set e = oo.

The irreducible representations DA of 'q are indexed by partitions of n. As it

is well known, DA # 0 if and only if Av is e-restricted where Av is the conjugate

partition. In other words, A' - Ai'+ 1 < e for all i . In this section, we will denote

DA: = DAV. Hence, DA f 0 if and only if A is e-restricted. Similarly, we will denote

Sa = SA". As mentioned in the previous section, DA = SA/rad(, ).



We define the unitarity locus of A to be the set

1 1
U(A) = {c E ( I 2 2]IDA is nonzero and unitary at q = exp(27ic)}.

2 2

Proposition 3.3.1. (i) For any n > 2, U(14) (-i, j] and

1 1 r
U(n) =(- ,- \ {± |1 r,m < n,gcd(r,m) = 1}.

2 2 m

(ii) If n > 3 and A (n - k, 1k) for 1 < k < n - 2, then U(A) [- , ].

Proof. Given c E (-i, ], we set q = exp(27ric) and e the smallest positive integer

such that 1+ q+ ... + ge- 1 = 0.

If A = (n) is e-restricted, then D(,) / 0 is one-dimensional and, therefore, unitary.

Similarly, D(in) is one-dimensional and unitary.

Let us, now, assume that n > 3 and A = (n - k, 1k) for some 1< k < n - 2.

The form on SA is nondegenerate, if c C (-, (), and positive definite at c = 0,

hence (-C, ) c U(A). At c = , the form is positive definite on the quotient

DA = SA/rad(,), therefore [-C, ] c U(A).

We will use induction on n and the restriction functor Res given by the natural

inclusion 'H(6S- 1 ) C 'H(On) to prove that U(A) C [-k, ].

First, we will use the induction hypothesis to show that U(A) C [-, n] For

n = 3, this is automatic, so we may assume n > 3. Let c E U(A) and assume A is

e-restricted. At least one of the partitions (n - k - 1, ik) and (n - k, 1 k-1) is different

from (n - 1) and (In-1). Let us denote one such partition by v. We observe that

D, f 0, since v is e-restricted. Using Theorem 2.5 in [3], the module D, is contained

in the composition series of ResDx. Since DA is unitary, so is D,. By the induction

hypothesis, c (E [- , n]

We will now show that DA is not unitary for c E -) U (), ] Using an

argument similar to that in 3.2.2, we can define a Hermitian form (,) on the universal

Specht module SA for the universal Hecke algebra. It will be related to the symmetric

form (,) defined in [7, 8] by (v, v') = q-k/ 2(V) o(v')) for any v, v' SA and a fixed



integer k depending on A. Specializing at generic complex values of q, we obtain

the Hermitian form on SA, up to rescaling. Since for c E (-k, }) the module SA is

irreducible and its form is nondegenerate, we can normalize the form on SA, such that

it is positive definite upon specialization in this interval.

Note that SA is irreducible for any c E ±(I, -1-] because the e-core of A is itself

(see [8], Theorem 4.13 for details). Hence, the signature of the form on SA does

not change when c E ±(, 1 -- ], because the form on SA does not degenerate when

specialized in this interval. It suffices to prove that this form is not positive definite

upon specialization in a small neighborhood ±(!, 1 + ). Let us look at the signature

of the form in this interval. Let ( e2 7ri/n and M, {v E SAl(q - () divides (v, -)}.

The Jantzen filtration of the Hermitian form given by SA MO D M 1 D ... is

the same as for the symmetric form (,). Looking at the determinant of the latter

computed in [8] Theorem 4.11, we observe that it has a root ( of multiplicity (nk2).

This equals the dimension of D. at c = where p=(n - k - 1, 1k+1). At c = ±,

it is known that SA has length 2, its socle is D,, and its head DA. Hence, specializing

at c = ±, the Jantzen filtration becomes 0 = M 2 C M1 = - SA. Therefore,

the signature of the form changes when crossing c ± t1, without becoming negative

definite. We conclude that the form ceases to be positive definite in the interval

i( , + c), which finishes the proof. El

We will now state and prove the main theorem. Let A be a partition, L(A) its

largest hook, and b(A) the multiplicity of the largest part. If A is rectangular with

b > 1, let f*(A) = L(A) - b(A) + 2, otherwise, let £*(A) = L(A) - b(A) + 1. For any

A, we will call the integers f*(A) < k < L(A) the main hooks of A. Note that if k is a

main hook of A $ (n), then A is k-restricted.

Theorem 3.3.2. If A $ (n), (l), the unitarity locus is given by U(A) = (-L , L)U

{±11 |*(A) < k < L(A)}.

Proof. The proof will be contained in the following two propositions. L

Proposition 3.3.3. If A / (n), (1), then U(A) is contained in the set (- L) U

{i1 f *(A) < k < L(A)}.



Proof. Let us assume n > 4 and A / (n - k, Ik) for all 0 < k < n - 1, otherwise the

result follows from 3.3.1. We will use the restriction functor coming from the natural

inclusion C(1) c -((6). Let c E U(A), q = exp(27ic) and e the smallest positive

integer such that 1 + q + . . . + q6-1 =0.

Let L = L(A). First, assume that e > L. We will prove that c E (-i, D) Using

the restriction functor, we obtain ResSA = eAS, where the arrow indicates the

addition of a box. Let v be a partition in this sum obtained by removing a box from

A situated away from the largest hook. Since SA is unitary, so is S,. The largest hook

of v is L, hence c C (- 1, 1) by the induction step.

Let us now assume that 2 K e K L, c - g for some integer r relatively prime to

e. Note that A is e-restricted. From Theorem 2.6 in [3], the socle of the restriction of

DA to W(6,_1) is

Soc(ResDA) = e good p

where the arrow indicates the addition of a good box (see [3] for details). For all

partitions p in the sum, D,, y4 0 and unitary.

We distinguish the following cases. First, we assume there exists a good corner

not situated on the largest hook of A. Let v be the partition obtained by removing

this corner. Applying the induction hypothesis to D., we conclude that 1 < e < L

and r = +1.

Assume, now, that all good corners are on the largest hook. If there is a good

corner on the first column, we remove it and obtain a partition v. Applying the

induction hypothesis, we obtain r = ±1 and I - 1 < e < L. Assuming e = I - 1,

we note that the highest corner of A is good, hence it must be on the largest hook.

In addition, A has no corners outside the largest hook, because they would be good.

Hence, A is of the form (n - k, 1k), a contradiction. Therefore, I K e K L.

Assume, now, there is a good corner only on the first column. By removing this

corner, we obtain a partition v such that D, is unitary. Hence r = t1 and a < e < L

where a = f(v) is the smallest main hook of v. Assume, first, that the highest corner

of v is also a corner for A. This must be a normal corner of A (see [3] for the definition).



It is not situated on the largest hook of A, otherwise, A = (2, 1"-1). Let us remove

this corner and obtain a partition v'. Note that D,, # 0. Using Theorem 2.5 in [3],

D,, belongs to the composition series of ResDA, hence it is unitary. Applying the

induction hypothesis, we obtain the desired result.

Finally, if the highest corner of v is not a corner of A, then A, - A2 > 2 and

L - 1 < e < L. Then there is no corner outside of the largest hook, because it

would be good. Hence, A is of the form (n - k, 1k), a contradiction. This finishes the

proof. l

Proposition 3.3.4. If A $ (n), (1n), then (-L , L) U {±! |*(A) k L(A)} is

contained in the unitarity locus U(A).

Proof. Let L = L(A). First note that (-(, ) E U(A), since the form on Sx is

nondegenerate on this interval and it is positive definite at c = 0. We will now prove

that DA is unitary at t for all nonnegative integers k where 1 = f(A) is the smallest

main hook.

Let N > 2 and a be positive integers and Q a primitive root of unity of order

2(a + N). Then one can define the fusion category CQ of representations of the

quantum group UQ(slN). It is a modular tensor category whose simple objects are

highest weight representations with dominant integral highest weight p such that

(p', 0) < a where 0 = (1, 0, ... , 0, -1) is the highest root. For details, we refer to [1]

and the references therein.

The category CQ is unitary for Q = exp(±ri/(a + N)) and Hermitian for any

Q. For this fact, and the general notions of Hermitian and unitary categories, see

[19, 20] and the references therein. Since CQ is unitary for such Q, the braid group

representations on multiplicity spaces of tensor powers of an object are also unitary.

In particular, if V is the vector representation, this is true for the power V ".

Now, the braid group representations on multiplicity spaces of this tensor power

factor through the Hecke algebra Q2. From the quantum Schur-Weyl duality we

obtain

V"n = ep:(,,O)<a 7rp 9 DPv



where r,1 are simple objects of CQ and Dv are irreducible representations of the Hecke

algebra 7 4 Q2.

If we think of p as a partition, then it is a partition of n with at most N non-zero

parts such that p1 - pN < a. Equivalently, A = p' is a partition of n with largest

part at most N, smallest main hook 1, and 1 - N < a.

Returning to our problem, given a partition A # (n), (1") with smallest main hook

1, let N > 2 be its largest part and a = I - N + k for a nonnegative integer k. Note

that a > 0. It follows from above that DA is unitary at q = exp(I27ri/(l + k)). This

finishes the proof. E



Chapter 4

Preservation of unitarity and

several conjectures

Let W be a reflection group and i its reflection representation. The KZ functor

defined in [16] maps representations from the category Oc(W, j) of the the rational

Cherednik algebra Hc(W) to representations of the Hecke algebra 7 (q (W).

Let W = 6, and q = exp(2iric). The KZ functor maps the irreducible lowest

weight module Lc(A) to the irreducible 7-q-representation DA, if c > 0, and to DAv,

if c < 0. Note that Lc(A) is mapped to 0 if A is not e-restricted.

Using theorems 2.3.5 and 3.3.2 we obtain the following

Corollary 4.0.5. The KZ functor maps unitary representations from the category

Oc(6, () to unitary representations of the Hecke algebra 7tq(6n) or to zero. More-

over, all unitary representations of the Hecke algebra are obtained in this way.

Remark 4.0.6. The only irreducible unitary representations mapped to zero by the

KZ functor are those corresponding to rectangular partitions (1, 1,..., 1) at c = j.

As in type A, for W = G(r, p, n) and its reflection representation, the question of

unitarity is expected to be closely related to Cherednik-Dunkl semisimplicity, namely

the existence for every lowest weight irreducible representation of a basis given by

eigenvectors of the Cherednik-Dunkl subalgebra of Hc(W, j).



Let W = Z/2Z x 6, (type B) and 0 its reflection representation. The irreducible

representations in category Oc(W, ) are parametrized by 2-partitions. Let us de-

scribe below a conjecture we have formulated for the unitarity loci in type B. It is a

subspace of the real plane.

Let A = (A, p) be a 2-partition of n. Let also A(A) and a(A) the largest and

smallest parts of A, respectively. Let L = A(A) + A(pv) - 1 and f = A(A) + A(pv) -

a(Av). Set Av (Av v) and AGP - (p, A). Define, now, fv = f(Av), fo = f(A"P),

'op = f (AVOP), and, similarly, L"P.

Let us introduce the following regions of R2. Let us define

1 1 1 1r (A)= {(ci, c2 ) eci1 + c2 < -, e"pci - c 2 < -, -fVc 1 + c2 < - -LVOPc1 - c2 < -}2 2 2 2
1 1

R(A) = {(c1, c2)|ILc1 + c21 < - and |L*Pc1 - c2 < -}2 2'
1

d(A)= {(ci, c2) sci + c2= for some f < s < L} n r(A),2'

and, similarly, d"P(A), dv(A) and dvoP(A).

Conjecture 4.0.7. Let A = (A, p) a 2-partition of n such that A, y / 0. The

unitarity locus is given by U(A) = R(A) U d(A) U dv(A) U doP(A) U dvor (A).

A similar conjecture to 4.0.7 can be formulated when A or p are empty.

We also conjecture that Corollary 4.0.5 can be generalized to the restriction functor

defined in [2] for all complex reflection groups. Let W be a complex reflection group, j

its reflection representation, and W' a parabolic subgroup of W, namely the stabilizer

of a point in j. Let also Hc(W, r) be the corresponding rational Cherednik algebra, c'

the restriction of the parameter c to W', and Loc(b() the category of local systems

on Ow). There is a restriction functor

Res: Oc(W, )-+Oc, (W', /w' 14Lc 71)

Composing it with the functor Mon: Loc(W') -+ Rep wri(b() which sends local

systems on ow to representations of the fundamental group 7r1 (rW), we obtain the



functor

Res': Oc(W, 0 , Oc(W', /o w') M Rep 7r1( ,').

Let I be a finite set. If Mi C O,(W', / W') and Vi E Rep 7i( i) for all i E I,

we say that the object eiEIMi M VE O ,(W', / 1 W') M Rep -r1( W') is unitary if and

only if Mi and V are unitary in their categories.

Conjecture 4.0.8. If M E Oc(W, j) is unitary then so is Res'(M).

In this thesis, we have proved the conjecture for W = Se, j its reflection repre-

sentation and W' = 1.
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