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Abstract

Many interesting stochastic models can be formulated as finite-state vector Markov pro-

cesses, with a state characterized by the values of a collection of random variables. In

general, such models suffer from the curse of dimensionality: the size of the state space

grows exponentially with the number of underlying random variables, thereby precluding

conventional modeling and analysis. A potential cure to this curse is to work with models

that allow the propagation of partial information, e.g. marginal distributions, expectations,
higher-moments, or cross-correlations, as derived from the joint distribution for the network

state.
This thesis develops and rigorously investigates the notion of separability, associated

with structure in probabilistic models that permits exact propagation of partial informa-

tion. We show that when partial information can be propagated exactly, it can be done so

linearly. The matrices for propagating such partial information share many valuable spec-

tral relationships with the underlying transition matrix of the Markov chain. Separability

can be understood from the perspective of subspace invariance in linear systems, though

it relates to invariance in a non-standard way. We analyze the asymptotic generality-- as

the number of random variables becomes large-of some special cases of separability that

permit the propagation of marginal distributions.

Within this discussion of separability, we introduce the generalized influence model,
which incorporates as special cases two prominent models permitting the propagation of

marginal distributions: the influence model and Markov chains on permutations (the sym-

metric group). The thesis proposes a potentially tractable solution to learning informative

model parameters, and illustrates many advantageous properties of the estimator under the

assumption of separability. Lastly, we illustrate separability in the general setting with-

out any notion of time-homogeneity, and discuss potential benefits for inference in special

cases.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis investigates at a rigorous level the exact propagation of partial information in

Markov chains, i.e., incomplete descriptions of the distribution for the Markov chain's state.

As Markov chains for even moderately large collections of dependent stochastic processes

are in general intractable, there is a natural inclination to consider propagating lower-order

partial information. Markov chains describing large interconnected systems are common

in biology, network theory, economics, and quantitative finance. All these areas could

potentially benefit from a thorough analysis of exact propagation of partial information in

Markov chains.

1.1 Motivation

Markov chains provide a rich, tractable mathematical framework to analyze discrete-time

stochastic processes satisfying appropriate assumptions [1, 2]. One can determine many

useful properties of a Markov chain from its transition matrix, such as its rate of mixing

and its steady-state probability distribution. In general, computation of such properties for

chains with 71 states require algorithms of O(r 3 ) complexity.

Modeling a collection or network of interacting finite-state stochastic processes as a

single Markov chain in general suffers computational limitations. Because the number of

states in the Markov chain grows exponentially with the number of underlying processes,
conventional analysis of such a network does not scale favorably with the network's size.

Consequently, using a general Markovian framework to model and analyze large stochastic

networks has severe limitations.

These computational limitations, a consequence of the explosion in the size of the state

space, can be clearly demonstrated by some tangible examples. Suppose one has a deck

of n = 52 cards that is repeatedly shuffled. If there is some independent randomness to

the mechanics of each shuffle. we can model the shuffling probabilistically. One can define

the state of the deck as the positions of each of the 52 cards, i.e., each card's position may

assume one of m = 52 values. Its stochasticity upon shuffling can be modeled as a Markov

chain. This model, however, may be rather complicated to analyze. There are 52! > 1067

possible states for the deck, exceeding the number of atoms on earth! It would be impossible

to track the exact state occupancy probabilities over the course of several shuffles that fully

randomize the deck.

Alternatively, for an example with more freedom in the modeling assumptions, consider

the evolution of the weather. We focus on the daily weather in n = 4 different cities



(Pittsburgh, Toronto, Montreal, and Boston), and to maintain a simple model, the weather
each day is classified as one of m = 3 possibilities: sun, clouds, or rain/snow. Assume that
the dynamics of this weather model can be aggregately modeled as a single Markov chain,
whose states correspond to unique weather combinations among the cities. Unless some
weather combinations can be ruled out, the Markov chain will consist of r = m" = 81 states.
Double the number of cities to n = 8, and the number of possible states grows to r/ = 6, 561.
In general, analyzing such a network requires algorithms of O(msn) complexity. The Markov
chain not only requires storage that is exponential in n, but the computational complexity
of analyzing such a chain is exponential in n. This paper seeks to identify constraints on
the time-update structure of the network that enable analysis with algorithms that scale
polynomially with n.

Many current research problems involve the analysis of network dynamics naturally
modeled by large numbers of interacting stochastic processes. Models of this kind may be
used to represent complex biological interactions [3], interactions among adjacent cells in
a GSM/GPRS cellular communications network [4], or encounters among economic agents
[5]. Some of these applications might benefit from stochastic network models whose analysis
scales in a more friendly way with the number of underlying processes.

Returning to the shuffling example, the reader who is well-versed in group representation
theory [6., 7], and in particular, representation theory of the symmetric group, may recall
some powerful results regarding the analysis of shuffling a deck of cards [8]. Because the
state of the 1\arkov chain describing a deck's shuffling is a Markov chain on permutations,
group representation theory for the symmetric group offers tractable techniques to analyze
the performance of such chains, particularly, their convergence to steady-state. A product
of this research is the notion that seven riffle shuffles fully randomizes a deck of cards [9].

The focus of [10] is how group representation theory for the symmetric group permits the
propagation of marginal distributions. To explain what we mean by marginal distributions,
consider the state of the deck of cards as n random variables, the positions of each of the
cards. The Markov chain representation permits one to propagate the joint distribution
on these n random variables, the vector process, as a probability vector. Representation
theory for the symmetric group [11, 9] shows that the collection of n univariate marginal
distributions for each random variable can be propagated linearly, using matrices with O(n)
size. Computationally, this may be tractable for typical values for the number of cards in
a deck. In addition, the collection of bivariate marginal distributions can be propagated in
time with matrices of size O(n 2). This propagation similarly holds for rth-order marginal
distributions, for all values of r. This special property of Markov chains that maintain
permutations offers an array of intermediate methods of analysis requiring computations
that are only polynomial in n, as an alternative to the full analysis of the Markov chain
and its state occupancy vector with a length that is exponential in n.

The influence model (IM) [12, 13] offers a parametric probabilistic model that, like the
Markov chains on permutations, permits one to propagate rth-order marginal distributions.
The IM also has the advantage of offering a compact representation requiring storage order
O(n 2m 2 ), and moreover, generating a realization of length t requires computation of com-
plexity only O(nm2 t). These properties allow IMs to offer tractable models for networks
when n is large. Although IMs can illustrate many interesting behaviors, their modeling
generality is restricted by requiring independent updates of the random variables.

The moment-linear stochastic systems (MLSS) of [14, 15] consider general parametric
models where moments propagate linearly. 'Moments' include any linear function of the
joint probability vector, including iarginal distributions. Many interesting examples of



MLSS are illustrated within the aforementioned references. The flavor of MLSS is similar

to many approaches in chemical kinetics [16, 17, 18, 19] that seek approximate methods

to propagate moments, as an alternative to analyzing a Kolmogorov forward equation, the

continuous-time analogue to a discrete time Markov chain's probability vector update.

What is missing in these analyses is a general theory to characterize and understand

when particular moments can be propagated exactly. When one envisions the probability

vector update equation of a finite state Markov chain as a discrete-time linear system,
the notion of propagating moments, linear transformations of the state, suggests some

kind of invariance. Invariant subspace theory for linear systems [20, 21] is well developed,
providing an algebraic and geometric characterization of when dynamics remain isolated

in subspaces, or effectively become isolated in the subspaces generated by the eigenvectors

associated with the dominant eigenvalues. Lower-dimensional characterizations are made

possible by subspace invariance. Invariance in Markov chains is a old idea: recurrent classes

and stationary probability vectors are obvious examples. However, the idea of propagating

moments exactly offers a new perspective on invariance. Rather than needing dynamics

to be trapped in some subspace, what is necessary is that information orthogonal to the

chosen moments be invariant.

Besides characterizing the models permitting the propagation of moments, it is equally

important to have tractable representations of network models that could be used for sim-

ulations. A common assumption to ensure a tractable representation is to assume that

transitions occur locally, thereby mandating a sparse transition matrix. However, there are

other alternatives. Stochastic automata networks (SANs), [22, 23, 24, 25] offer a formalism

for representing a transition matrix as a sum of simpler matrices. Each of these matrix

terms can be represented as a sequence of Kronecker products of smaller matrices-and

hence has a compact representation in memory, despite its size. When a transition ma-

trix can be represented as a sum of a limited number of such simpler matrix terms, the

SAN representation offers computational gains. It has also been shown that in some cases

SANs can be analyzed tractably; in [26], iterative algorithms are developed to calculate

the steady-state probability distribution. The IM also offers a solution to the problem of

tractable representation of stochastic networks.

1.2 Thesis outline

The thesis is organized as follows. In Chapter 2, the notation used to represent networks

of stochastic automata is introduced, and the idea of propagating moments is formalized in

in the language of separability. We connect the notion of separability to many previously

proposed models in the literature. A general constraint-based approach is developed. In a

sense, separability continues the story of MLSS, by offering MLSS an algebraic character-

ization. In the language of algebra, MLSS proposed the parametrization, and this thesis

identifies the equivalent constraints.

We rigorously develop several equivalent perspectives on separability in Chapter 3, and

develop some measures of how general separable models are. The algebraic structure of

separability is revealed, as is the new notion of invariance for Markov chains. We particularly

focus on what we call the canonical examples of separability: when marginal distributions

can be propagated, as is the case for both the IM and Markov chains over permutations.

We reveal some interesting asymptotic properties of separable models when n is large.

In Chapter 4, we introduce the generalized influence model (GIM), which generalizes



both the IM and Markov chains over permutations. Several examples of GIMs are discussed.
We derive the GIM's separability, and discuss some of its algebraic and geometric properties.

We consider the problem of parameter learning in Chapter 5. We discuss some illumi-
nating perspectives on general parameter learning of Markov chains. We propose a tractable
parameter learning algorithm under the assumptions of separability, and illustrate some of
its interesting properties with computational examples.

The final chapter extends the notion of separability to cases without an underlying
time-homogeneous Markov chain. We illustrate the connection of particular instances of
separability to the familiar notions of Fisher sufficiency [27] and conditional independence.
Inference on Bayesian networks with the additional structure of separability is discussed.

1.3 Contributions

" This thesis provides a rigorous characterization of when partial information, in the
form of moments, can be propagated exactly in a Markov chain, i.e., when Markov
chains exhibit separability. In doing so, this thesis offers a constraint-based analysis
of moment-linear stochastic systems.

" The thesis algebraically connects the dynamics of partial information propagation
and the dynamics of the underlying Markov chain. We build a general framework to
analyze invariance in Markov chains, offering a new perspective on invariance in linear
systems.

" We offer measures of generality for many important examples exhibiting the propaga-
tion of partial information, and consider the asymptotic properties of these measures
of generality.

" The thesis presents a parametric model exhibiting the propagation of partial informa-
tion, generalizing both the influence model and Markov chains on permutations. In
many respects, it permits both of the latter models to be understood, developed, and
analyzed more simply.

" We offer an algorithm for parameter learning for networks that permits the propaga-
tion of partial information.

" We investigate the propagation of partial information in spatial models without a
notion of time-homogeneity. We make abstract connections between separability and
conditional independence, as well as Fisher sufficiency. We illustrate potential benefits
of separability for inference.



Chapter 2

Introducing Separability

In this chapter, we formally introduce separability. Before doing so, we introduce our per-

spective and its notation for networks of stochastic automata that allows us to characterize

various kinds of separability in a general, yet succinct, mathematical framework. As will be

shown, the notion of separability is effectively equivalent to the moment-linear stochastic

systems (MLSS) of [14, 15] that are derived from discrete-time, finite-state Markov chains.

However, we introduce separability (and thus MLSS) from a new perspective that becomes

the essential foundation from which many of the results of subsequent chapters are derived.

In effect. we develop a constraint-based characterization, the algebraic analogue to the para-

metric description of MLSS. We demonstrate several equivalent characterizations and offer

comparative insight into instances of this special class of stochastic models. We hope this

aids in subsequent identification of systems satisfying these special properties.

We introduce several notions of separability, including several examples that have been

proposed and discussed in previously published work. Many of these examples will be

referenced in subsequent chapters, especially, the instances that we refer to as the canonical

examples of separability. The chapter also introduces some algebraic characterizations that

will be expanded upon in subsequent chapters.

2.1 General setup for a network of automata

Our analysis involves a collection of n interacting finite-state, discrete-time stochastic pro-

cesses xj [t], for j - 1,.,n, which we refer to individually as automata and collectively

as a network. At each time t, automaton j expresses a particular value xj[t] drawn from a

finite set of possible values Xj (its alphabet); this value will be referred to as its status at

that time. The number of possible statuses for automaton j is denoted as mj jX 1,w hich

is the jth element of the vector m A (mi, M 2 ,..., nn). If m is a vector with constant

entries, m refers to any of its identical entries. In our weather example of Chapter 1, each

automaton corresponds to a different city, and m - 3 as m = (3, 3, 3, 3). Typically we

assume that mj > 1, as otherwise we have degenerate random variables. We will later

consider the complexity of algorithms for a network of stochastic automata as n grows. For

such cases, it will be assumed that mj < iii for all j and some finite Tfi.

We assume that the automata collectively evolve as a time-homogeneous Markov chain,
that is, the vector process x[t] = (x1 [ti, x 2 [t],. . ., xn[t]) is time-homogeneous and Markovian

(a listing of scalars separated by commas and enclosed by parentheses, e.g., (0, 1, 0), indi-

cates a column vector). Under these assumptions, the probability mass function (PMF) of



the network state x[t] and the underlying Markov chain's transition matrix are of interest.
As our state is defined in terms of several random variables, we will also wish to represent
the marginal PMF for a single automaton's status, as well as the marginal PMF for the
statuses of a subset of automata. Our aim is to represent all PMFs as probability vectors,
not as tables or matrices. This standard framework for representing all PMFs as probabil-
ity vectors will simplify the development and description of general forms of separability.
To represent any PMF as a probability vector, we employ Kronecker products and expec-
tations of indicator vectors. Equivalently, we will show how all such probability vectors
can be obtained via special marginalizing matrices that operate on the probability vector
representation of the PMF for the network state. We begin by defining indicator vectors
for random variables.

2.1.1 Automaton status indicator vector sj[t]

For a random variable x taking values in alphabet X, its indicator vector is denoted as sx,
which is a |XI x 1 vector consisting of all Os except for a single 1. When sx = ek, the kth
standard unit vector (with a 1 in its kth position and Os elsewhere), the random variable x
assumes the kth element in its alphabet X. The expected value of Sx is a probability vector
representation for the PMF of x.

In the case of a network of stochastic automata, a simplified notation is employed for
each automaton's indicator vector. The status of automaton j at time t is represented by a
status indicator vector sj[t], which is shorthand notation for sxj[t. Returning to the example
of Chapter 1, s1 [t] is the random indicator vector corresponding to the particular weather
of the first city, Pittsburgh, at time t, and would be defined as follows:

( (1, 0. 0) if Pittsburgh has sun at time t
s1 [t] = (0, 1, 0) if Pittsburgh has clouds at time t

(0, 0, 1) if Pittsburgh has rain/snow at time t

The expected value of the status indicator vector is a probability vector for the associated
automaton being in its various statuses. If E [s1 [t]] = (ai, a 2 , a 3 ) in our weather example,
then

P (Pittsburgh has sun at time t) = 1

P (Pittsburgh has clouds at time t) = a2

IF (Pittsburgh has rain/snow at time t) = a3

where E[.] denotes the expected value of a random variable/vector and P (-) denotes the
probability of an event.

2.1.2 Joint status indicator vector sgIt]

Each automaton's random indicator vector indicates its status. Suppose one wants to
consider the statuses of automata jm, j2, ... ,Jr together at time t. Define the vector x3 [t] A
(xil [t], xj 2 [t], ... , Xjr [t]) involving all such automata, characterized by its vector subscript
j (ji1,j, - - - ,Jr). An indicator vector for xj [t], i.e., s [t], will be denoted in shorthand
form as sj [t], and can be defined as

sj [t] A sl [t] @ sj [t] ® ... osj,[t] , (2.1)



where 0 indicates the Kronecker product [28].1 Such an indicator vector for several au-

tomata will be referred to as a joint status indicator vector.

Returning to our weather example for a concrete illustration, suppose that

S(1 ,2) [t] A si ® s2  (0, 1, 0, 0, 0, 0, 0, 0, 0) . (2.2)

One can deduce from such a joint status indicator vector that Pittsburgh is sunny and

Toronto is cloudy at time t, as

si[t] = (1, 0, 0)

s2 [t] = (0, 1, 0) . (2.3)

Since the joint status indicator vector for automata j1 , J2 ,- -,jr indicates the simulta-

neous statuses of r automata, we say that the joint status indicator vector indicates a joint

status. A joint status indicator vector involving r automata is referred to as an rth-order

joint status indicator vector.

The expected value of a joint status indicator vector is a probability vector representing

the PMF for the joint status of the corresponding automata. For example, by representing

the expected value of the joint status indicator vector for Pittsburgh and Toronto at time

t as

E [s(i 2)[t] = (1, a2 , a3, a4 , a5 , a, a7, a8, a9) , (2.4)

we can conclude that the probability that both Toronto and Pittsburgh are simultaneously

sunny is a 1 . Probabilities for all other simultaneous weather combinations appear as other

entries of the probability vector. Thus, status vectors and Kronecker products permit one

to define an indicator vector whose expected value represents the PMF for any desired r-

tuple of automata at a given time instant. By using status indicator vectors and Kronecker

products, we can compactly express the joint PMFs for any subset of our random variables

as a probability vector: it is the expectation of the appropriate joint status indicator vector.

2.1.3 State indicator vector s,[t]

A rather important joint status indicator vector is sj [t] for j = (1, 2, ... , n). As x[t] is

Markovian, such a joint status indicator vector (denoted as sx[t] rather than s(1 n)[t]) is

an indicator vector for the network state. The length of sx[t] is r A Hj mj; for the weather

example, its length is I sx[t] = 34 = 81.

The expected value of the state indicator vector sx[t] is a probability vector for the joint

PMF over the statuses of all automata at time t. As x[t] is assumed to be time-homogeneous

and Markovian, there exists an q x rI matrix G that updates the state-occupancy probability

vector of the underlying Markov chain, i.e.,

E [ s,[t]' I s,[r[] sx[T]'Gt T (2.5)

for any t> T (we use ' to denote the transpose of a vector or matrix). The row-stochastic

matrix G is referred to as the joint transition matrix, and its corresponding Markov chain

as the master Markov chain or underlying Markov chain.

'Refer to Appendix A for a condensed introduction to Kronecker products.



2.1.4 Probability vectors represented via -7r notation

Rather than representing each probability vector via an expectation of a (joint) status
indicator vector, we will often represent PMFs using a more compact form,

irj[t] A E [ sj [t]] , (2.6)

where j may be either a scalar (when representing a PMF for a single automaton's status)
or as it is written, a vector (when representing a PMF for a subset of automata's statuses).
Oftentimes, the expectation in (2.6) is a conditional expectation, with irx[t] representing a
conditional probability. When j is a scalar, we refer to 7rj [t] is a univariate PMF. When j
is a vector of length r, for r = 2 we refer to irj [t] as a bivariate PIF, and for general r > 2
as an rth-order marginal PMF. When j = (1, 2, ... , n), as in the case of the state indicator
vector, we will denote the r x 1 probability vector that is propagated by the Markov chain's
transition matrix as 7rx[t] A r . [t].

In the case of Markov chains, such notation can be abused, as the probability vector
7rx[t] often represents conditional probabilities given some implicit event. This fact is easily
overlooked, as the following example illustrates.

Suppose that we have a probabilistic description of a finite-state stochastic process
x[t]. Without making any assumptions regarding its behavior, we can always express the
conditional PMF for x[t] given x[t - 1] via some matrix Gt and indicator vectors as follows:

E [sx[t]' I x[t - 1] ] = sxIt - 1]'Gt . (2.7)

The pth row of the matrix Gt therefore displays the conditional PMF for the current
value of the stochastic process, given that the process assumes its pth value at the pre-
ceding time instant. Thus, Gt is a row-stochastic matrix, i.e., the entries of' each row are
nonnegative and sum to 1. By total expectation applied to (2.7),

E [sx[t]'] = E [sx[t - i]'j G . (2.8)

If we assume that there exists a matrix G = Gt for all t (thereby assuming time-homogeneity),
we would have

7rx[t]' = grx[t - 1]'G (2.9)

where 7rx[t] A E [sx[t] ). By repeatedly invoking (2.9), it would then follow that

rx [t]' = 7rx[r)'G
t -- , (2.10)

for all t > T. As (2.10) holds for all t > r, some may claim that it directly follows that x[t]
must be Markovian: by (2.10) its state occupancy probabilities can be updated in a linear
fashion. Obviously, this is not true: time-homogeneity does not imply Markovianity, in
general. The confusion lies in the fact that in order to be Markovian, (2.10) must hold for
any initial condition 7rx[r], with 7rx[t] understood to represent the conditional probability
of the state given this initial condition. In other words, (2.10) must hold when irx[t] and
7rx r] are interpreted as conditional probabilities given an event identifiable by time r, that
is, an event in the o-field generated by the stochastic process at or before time r. One
often thinks of being able to vary the initial condition 7rxr], with 7rx[t] being affected as a
consequence; this idea can be more clearly stated as varying E in the aforementioned o--field,
with 7rx r] - IE [sx[r] I c and 7rx[t] E [sx[t] ].



Evidently, using notation like -7r [r] and -7r [t] for Markov chains can often be misleading,
as the probability vectors often represent conditional probabilities. It is important to be

mindful of such implicit conditioning events. In instances where we feel it is important

to maintain full clarity, the precise notation involving conditional expectations of indicator

vectors will be used, thereby permitting explicit tracking of conditioning events. However, in

other cases, we will commit such notational abuses by not explicitly indicating an assumed

conditioning event, and the reader must be mindful of this warning.

2.1.5 Marginalizing matrix M,

As marginalization is a linear operation, there exists a marginalizing matrix Ms that maps

any valid. probability vector for the network state, 7rx, to the probability vector for the jth

automaton's status, 7ry (the seemingly peculiar subscript , will make sense momentarily):

7r' r', (2.11)

Note that we have omitted a time index '[t]' on the probability vectors 7r, and 7rj so as

to simplify notation. We will commonly omit such time indices provided that all indica-

tor vectors and PMFs in the expression share a common time index, and the expressed

relationship holds irrespective of the specific time.

In essence, (2.11) states that the expected value of sx linearly maps to the expected

value of sj, and hence such a mapping holds in the absence of expectations. Consequently,

s s'Asi , (2.12)

and the choice of subscript s, should now be clear-As, maps the state indicator vector sx

to the status indicator vector sj. The structure of As, is evident from (2.12): the pth row

of As must be the indicator vector for automaton j when the network is in its pth state.

As the state indicator vector sx is defined as a Kronecker product of the status indicator

vectors (2.1), As can be compactly represented as follows: 2

Ms 41®@ 11.. . I ... ®lll , (2.15)

jth position

with I being the mj x mj identity matrix, and the kth 1 being the mk x 1 all-Is vector.

Note that Mj is an r/ x mj matrix, and thus is usually a 'skinny' matrix. Moreover, Ms
consists of only Os and Is, and is row-stochastic.

2To show why (2.12) holds for As defined as in (2.15), we require the mixed-product property of
Kronecker products (A.3), namely,

(AB) ® (CD) = (A 2 C)(B 0 D), (2.13)

for appropriately-sized matrices A, B, C, and D. With this,

s, = <C>/ s (P@..2....41)
\j=1 /

= s'11@...o sI I@... 0s'.IL

= s . (2.14)



One can generalize this notation and define a matrix M5l that permits one to derive the
joint status indicator vector sj from s,:

S = s'x Ms . (2.16)

The matrix Ms, also serves as the marginalizing matrix that maps the network state prob-
ability vector 7rx to the probability vector 7rj. As long as the dimension of j is much less

than n, M,, will be a 'skinny' matrix. This discussion of marginalization matrices will be
continued after defining a few additional vectors.

2.1.6 State array vector s(l)[t]

While we have defined status indicator vectors and joint status indicator vectors whose
expected values provide one with a means of representing the PMF for an automaton's
status or several automata's joint status, respectively, we have yet to consider concatenating
these indicator vectors into a larger vector whose expected value contains several pieces of
marginal information. For example., consider the state array vector s(1)[t], defined in terms
of the individual status indicator vectors as follows:

s(') t] = [ s1It]' s 2 [t]' . . . sn It]' ]' (2.17)

The state array vector s()[t] has as many l's as the number of automata in the network,
n. For n > 2, its length is much less than the length of s,[t], namely Y 1 mj instead of

=1 mj. For our weather example, the length of s0() [t] is just 12 (compared to a length of

81 for sx[t]).

The expected value of s(1)[t), typically denoted as 7r(l)[t], is a concatenation of the
probability vectors for each automaton's status:

7rDl) [t] L E s [t]

( EF ( S1 [t ]'] E- ( S2 [t ]'] ... E ( sn [t ]']] .

= [7r1[t]' 7r2 [t]' . . 7t t]' ] (2.18)

Note that r() does not tell us anything specific regarding the probabilities of simultaneous
statuses of multiple automata, it only gives us partial information in the form of univariate
marginal PMFs. This is in contrast to 7r = E [s X], which provides a joint PMF over the
statuses of all automata.

2.1.7 2nd-order state array vector s(2)[t]

One can define a vector whose expected value provides the marginal PMF for the joint

status of any r of automata. We focus on the r = 2 case, where the expected value of the

vector provides all bivariate marginal PMFs. Generalizing to r > 2 is straightforward.

The 2nd-order state array vector S(2) [t] is defined in terms of the state array vector sN() {t]
as follows:

S(2) It] = Sb it] Sa q t] .(2.19)

This 2nd-order state array vector S(2[ t] can be partitioned into a sequence of n 2 Kronecker



products involving two status indicator vectors:

S (2) [t] - ~ S® S[t]'lt] 1 S2[] S, ~t'®Sn[] (2.20)

1st pair 2nd pair n 2th pair _

Each of the above blocks is an indicator vector, which the reader should recognize as a

unique 2nd-order joint status indicator vector. The expected value of the 2nd-order state

array vector S(2) [t] provides the joint PMFs for the joint statuses of any two automata at

time t, i.e., all bivariate marginal PMFs. By extending these definitions to r > 2, we can

define an rth-order state array vector s(r) [t] that is composed of blocks of rth-order joint

status indicator vectors,
sh) [t] = (s 0[t] ,(2.21)

where a superscript 0' denotes the rth Kronecker power, which is obtained by taking Kro-

necker products of r instances of the base vector/matrix [28]. The expected value of s(r) [t],
often denoted as -r(r), provides partial information about the full PMF of the network state,
in the form of all PMFs for joint statuses of r automata. We say that ir(r) contains all rth-

order marginal PMFs. The expected value of an rth-order state array vector consists of n'

marginal PMFs for rth-order joint status vectors. Note that such a representation is redun-

dant. For example, consider the 2nd-order state array vector. The PMF for the joint status

of automata 1 and 2 appears twice, in blocks 7r(1, 2) = E [Si ® S2] and 7r(2,I) = E [S2 3 S1].

Note that the marginal PMF for automaton 1 is given by the sparse probability vector

7r(11) = E [si 0 si], and can also be obtained by marginalizing (linear operations) either

7r(1,2) or 7r(2,1), is also offered . Evidently, there are only (n) marginal PMFs that are of

interest. Consequently, for general r. we will refer to 7r(r) as containing all (") rth-order

marginal PMFs (even though the expected value of such an rth-order state array vector

actually contains nr probability vectors).

2.1.8 General marginalizing matrices

One should note that the state array vector, as suggested by its name, is a state vector,
for which there is a bijective mapping between its value and the value of the state x. This
bijective mapping can be represented via a matrix Ms(m), whose pth row provides the value of

the state array vector s( when the network is in its pth state. As the mapping is bijective,
the rows of Msm must be unique. It should be evident that Ms(,) directly maps the state

indicator vector sx to the corresponding state array vector s(1),

si) =/ s',sm (2.22)

Such notation for A/Ism() should be familiar to the reader; recall that Ms3 maps the state

indicator vector sx to the status indicator vector sj (2.12). In fact, we will employ this

notation repeatedly--a matrix M maps the state indicator vector sx to the vector v. We

think of v[t] as a stochastic process, whose value at any time t must be expressible as a

function of the network state at time t, i.e., v[t] is in the o--field generated by the random

variable that is the network state at time t. We should note that v need not be a state

vector, which is indeed the case when n > 2 and v is only a single automaton's status

indicator vector, e.g., v = si.



The notation for such marginalizing matrices M will be simplified in two cases, when
v is either a (joint) status indicator vector-the special case discussed in Section 2.1.5-or
when v is an rth-order state array vector. In the former case, we denote the matrix that
maps the state indicator vector sx to the joint status indicator vector sj as M A AfM,. Note
that by linearity of expectation, Mj is the marginalizing matrix that takes the probability
vector for the network state and maps it to the probability vector for the joint status for
automata j. In the later case, we denote the matrix that maps the state indicator vector
sx to the rth-order state array vector s(r) as M(r) AMs().

As sN() consists of a sequence of concatenated status indicator vectors (2.17), we can
represent M(1) in block form as follows:

Msml) [A=S, MS2 .N.. lS

-=MI M12 ... M ] (simplified notation) . (2.23)

By linearity of expectation, the mapping of (2.22) must hold under expectations, and
thus,

Es(1' = E [ s' ] MCI (2.24)

If we denote r(') A E [s() ] what we have have in (2.24) is

7r = [7r' / r' - -.. 7r/ '] = r'/M (2.25)

Thus AP) is the matrix that converts the probability vector for the network state (repre-
senting a multi-variate PMF) into a sequence of probability vectors, each of which represents
the univariate marginal PMF for a different automaton's status. We say that the matrix
A(1) takes the full probabilistic state information 7rx and maps it to the partial information
in the form of the marginal PMFs for each of x1 , x2 , .. , x,. Although the mapping between
the state vectors sx and s(i) via MP is lossless, the mapping between the expected values
of such state vectors via MID) is lossy, in general.

The matrix M1, is referred to as a marginalizing matrix even in cases when v is neither
an indicator vector nor a concatenation of indicator vectors. However, in the majority
of examples we consider, M is a marginalizing matrix in the strict sense, so the term
marginalizing matrix in only infrequently abused.

We will often want to consider an unspecified marginalizing matrix, which will be de-
noted as M,. By following our simplified notation, A, maps the state indicator vector sx
to the vector s*, a linear transformation of the state indicator vector, i.e.,

s' = ',, (2.26)

Moreover, M maps the probability vector for the network state to the partial information
vector,

7r' = 7r' MN . (2.27)

As was noted in Section 2.1.7, the expected value of the rth-order state array vector
7r) provides redundant information for r > 1 Equivalently, the columns of M satisfy
linear equalities, i.e., Ar does not have full column rank (strict linear equalities are of
consideration here for the existence of a null space, not affine linear equalities). In fact, this



is true even for r = 1, as each of its partitions as probability vectors will have the same sum.

By considering general matrices M, and the linear transformations of the state indicator

vectors that they provide, one may consider in place of M( 1) a matrix with the same colurmn

space but full column rank. This notion is central to our subsequent discussion, and is the

basis of our approach to remove the redundancies in the representation of r), thereby

reducing computational burdens.

2.2 M,-separability

Consider a network of stochastic automata that evolves as a time-homogeneous Markov

chain. As long as the size of the state space is of 'reasonable' size, there exists a tractable

means of estimating the joint transition matrix G that permits one to compute the condi-

tional PMF for the network state at some future time t, given the current network state at

time T, as in (2.5). This will not be the case when n, the number of automata, is large, as

the size of the state space, r/ is exponential in n. M,-separability is a general framework that

often offers tractable analysis in such regimes when n is sufficienty large that traditional

analysis via (2.5) is intractable.

The PMF for the network state is captured by the r/ x 1 probability vector E [sx [t]], a

vector whose size is exponential in n. Such detailed information as provided by the PMF

for the network state may be unnecessary. Under many situations, one may only need

to know the probabilities of the joint statuses for a relatively small number of r << n

automata, meaning that knowing the expected value of the rth-order state array vector,
E [s) [t] a vector whose size is Q(n') would be sufficient. This observation, combined

with the computational limitations already discussed in the large n regime, motivate the

idea of AI-separability.

Under M-separability, A, serves as a matrix that transforms the probability vector

for the network state at time t, 7rx[t), into some partial information 7r,[t]' -rx[t]'M,.

By partial information we mean that M, is a lossy linear transformation, or equivalently,
A, fails to have full row rank. Examples of lossy AL, include M() for any r < n, which

transforms a joint PMF on n random variables into a sequence of marginal PMFs involving

only r variables.

Definition 1. A network of stochastic automata with transition matrix G is M,-separable

provided that G exhibits a special property: Tr,[t]' 7 ,r,[t]'M, can be expressed as a linear

function of 7r,[t -1], when r,[t - 1] can assume any of it possible values (meaning that both

vectors should be thought of as conditional expectations of instances of the random vector

S' = s'M, at different times). Mathematically, there exists a matrix H* such that

7r[t]' - r,[t - 1]'H, (2.28)

for any initial condition ir*[t - 1].

Corollary 1. A network of stochastic automata with transition matrix G is M*-separable

if and only if there exists a matrix H* such that

E [ s,[t]' I s, [t - 1] s, [t - 1]'H (2.29)

for every possible value of s,[t - 1] s,[t - 1]'M.



This directly follows from Definition 1 by setting the initial condition 7r, [t - 1] equal to
s, [t - 1]., the linear transformation of the state vector s,, [t - 1].

Corollary 2. A network of stochastic automata with transition matrix G is Mt-separable
if and only if there exists a matrix H, such that

GAI= M= H* . (2.30)

This directly follows by applying the definition of A,-separability.
When M-separability is assumed, we will represent the corresponding H, matrix as H,.

Furthermore, we will employ the same shorthand notations for H, as we have for Al, i.e.,
under MI-separability, there exists a matrix Hi, and under M(r)-separability there exists a
matrix H(r). Moreover, it should be clear from (2) that any network of stochastic automata
is A-separable for AI = 1.

Corollary 3. A network exhibits MA-separability if and only if it exhibits M*-separability
for every M such that 7Z(M,) =R(MI).

Note that R(-) denotes the range/column space of a matrix. Corollary 3 follows upon
realizing that the existence of a matrix H* in (2.30) is equivalent to G being R(A)-
invariant [29]. Such algebraic equivalences for A-separability will be discussed at length
in Section 3.2.1.

Corollary 4. For a network of stochastic autonata that is Ak-separable,

1r, [t]' =r gr[r]'H' ' (2.31)

for every possible initial condition 7r*[T]' 7rx [r]'A.

This follows by repeatedly applying Corollary 2 to (2.28). Note that Corollary 4 allows
one to propagate the partial information 7r*[T] via a matrix H, whose size equals the
number of columns of A. Recall that when A = I(r), the number of columns of A(r)

(and hence the size of H(r)) is polynomial in n, and thus computations involving H(r) may
be tractable when G of (2.5) is intractable.

Corollary 5. For a network of stochastic automata that is A-separable,

E [ s, [t]' I s, [r]] =s* [r]'H' T (2.32)

for any possible value of s*[r]' ,, s[T]'M.

This follows from Corollary 4 in the same way that Corollary 1 follows from Definition 1.

2.2.1 Origins of separability

A-separability is primarily inspired by two sources, the influence model (IM) [12, 13]
and Pfeffer's notion of separability [30]. Pfeffer's separability is, in essence, a local char-
acterization of M )-separability in a Bayesian network without any notion of time. See
Section 4.1.1 for a clearer explanation of this relationship. As shown in [31], one can en-
vision the influence model as Pfeffer's separability applied to a dynamic Bayesian network
(DBN) [32, 33, 34, 35], or in other words, an influence model is a DBN that exhibits MM1 -
separability. One can show that it is a consequence of the conditional independencies of



the DBN that the influence model also exhibits A&)-separability for all r < n. It is the

computational advantages offered by these different forms of M,-separability that make the

influence model attractive.

The Bayesian network backbone that is characteristic of both Pfeffer's separability and

the IM simplifies the parametric definition of the probabilistic models; nevertheless, such

conditional independencies are not necessary for partial information to be propagated. The

moment-linear stochastic systems (MLSS) defined in [14, 15] extend the propagation of

partial information beyond Bayesian networks. As a class of probabilistic models, MLSS

overlap substantially with M,-separable systems; MLSS include all of the cases of M-

separability when 1 E 7Z(M,), and II has unique rows or, equivalently, s, is a state vector.

Despite this overlap, we elect to adopt different terminology to emphasize our constraint-

based perspective for M,-separability. Naturally, our discussion on M,-separability offers

much insight into MLSS examples, and vice-versa.

It is also important to note the generalized influence model (GIM) [36], a specific class of

parametric probabilistic models that propagates partial information without the constraints

of conditional independence. As its name suggests, the GIM generalizes the parametric form

detailing how updates occur in a IM to permit richer dynamics, and thereby moves beyond

the DBN restrictions of the IM (the GIM is still Markovian, however) while maintaining a

compact parametric representation. The GIM is presented in Chapter 4.

2.2.2 1,-sufficiency

An obvious consequence of assuming AI,-separability is that for any two probability vectors

for the network state at time t - 1. 7rx[t - 1] and -fx[t - 1], that produce the same partial

information, i.e.,
-7rx[t - ]M, = -7x[t - 1]'M,, (2.33)

the resulting partial information at time t will be equal, should the network be initialized

by either probability vector at time t - 1 (as clear by (2.28) ). We call this MJ-sufficiency. 3

Definition 2. A network of stochastic automata with transition matrix G exhibits AI,-

sufficiency provided that for every pair of probability vectors gr[t - 1] and Fx[t -1], such

that 7rx[t - 1]'A, =rx[t - 1]'A,, the partial information at time t will be equal regardless

of which of the two probability vectors at time t - 1 is chosen to initialize the network.

Although it should be clear that A-separability implies A,-sufficiency, the converse,
which is also true, may not be as obvious. These facts are summarized in the following

theorem.

Theorem 1. A network of stochastic automata with transition matrix G is M,-separable

if and only if it is Me-sufficient.

Proof. That M-separability implies Af-sufficiency should be obvious. Necessity is a con-

sequence of basic properties of linear algebra, which will be explained in what follows. One

can define an open ball B C R'I such that for any 7r E B, there exist probability vectors

7rx[t - 1] and W[t - 1] such that ir =7rx[t - 1] - W[t - 1]. Note that 13 must be small. By

the assumption of M,-sufficiency (Definition 1), for all k E 13 such that irM, = 0, it follows

3We borrow the term 'sufficiency' from Pfeffer [30], for whom sufficiency is a local characterization of
M sufficiency.



that irGM, = 0. As B is an open ball with full dimensionality in Rr7, it follows that

A(A') c N( (GM)') . (2.34)

where V(.) indicates the null space of a matrix. Consequently,

R(GM*) C R(M,) . (2.35)

Thus by (2.35) there must exist a matrix H* such that GM* = MH,. Note that the ex-
istence of a matrix H, satisfying such an equation is equivalent to M*-separability (Corol-
lary 2), and thus M-sufficiency implies M*-separability. 4  E

Although it is now clear that M*-separability and Mt-sufficiency are equivalent, we will
henceforth go back to referring only to Mt-separability.

2.2.3 Examples of M-separability

The simplest form of M* -separability is when A = 1. All networks of stochastic au-
tomata exhibit 1-separability, as the joint transition matrix G always has constant row
sums (and in fact always sums to 1, and thus the associated H* matrix is simply 1). As
1-separability is not illuminating, we will mostly ignore it. Occasionally we will consider it
when characterizing the constraints of separability.

One of the simplest forms of separability is Mi-separability. When Mi-separability
is assumed, the distribution of the joint status for the automata identified by j can be
determined by linear recursion. This fact, in conjunction with the assumed Markovianity of
the network state and the tower property of conditional probabilities [37], necessitates that
the subprocess xj itself be Markovian. However, the Markovianity of xj is not equivalent to
Mi-separability. MI-separability demands not only that xj be Markovian, but that given
the value of xi at time t, future values of xj be conditionally independent not only of past
values of xj, but also of past values of the other automata not enumerated in j. That M1j-
separability imposes this additional constraint beyond Markovianity of xj is easily seen by
example. Suppose there are two automata. Let the first automaton be Markovian, and let
the second always be a delayed replica of the first (delayed by one time unit). Clearly, the
network state X( 1 2 ) is Markovian, and x2 is individually Markovian. However, the network
does not exhibit A 2 separability, as the aforementioned conditional independence does not

hold.
A second interesting example of separability is M(')-separability, for 1 < r < n. Exam-

ples of M1(r)-separability are collectively referred to as canonical examples of separability.
In the r = 1 case, it is assumed that the univariate marginal PMFs can be propagated in
time; the bivariate marginal PMFs can be propagated in time for r = 2. It is desirable to be
able to propagate such partial information, particularly when n is large (as the probability
vector capturing the PMF for the network state would be exponential in n, while the vector
capturing the marginal PMFs would only be an rth-order polynomial in n). A common mis-
conception is that for r 2 > ri, A(r2)-separability implies M(r)-separability. As illustrated
within the discussion of the parametrization of M-separability (Section 3.4.3), this is not
true; neither implies the other, in general. However, when r 2 > ri, one can always obtain
the lower-order marginal information -tr(r) from -7r(2). In examples when M(")-separability

4This proof is a generalization of the proof offered in [31] that equates M( 1)-separability to A)-
sufficiency. We should note that in [31] there is an additional restriction that H( 1 ) be nonnegative.



does not hold but M(r2)-separability does, one may elect to propagate -r(2) with a matrix

H(r2) of size O(nr2) and marginalize tw(2) to obtain the coarser information ri).

We can illustrate these ideas for our weather example. When MM-separability is satis-

fied, the marginal distributions for the weather in each of the four cities can be determined

by a linear recursion (2.31). Similarly, when M( 2)-separability is satisfied, the joint distri-

butions for the weather in pairs of cities can be determined by a linear recursion. Under

MO -separability, the joint distributions for the weather in r cities can be determined by a

linear recursion.

Mt-separability is not limited to cases that involve the propagation of marginal distri-

butions. Consider the matrix M, that maps the state indicator vector to x. Under the

assumption of Ax-separability, one assumes that the expected value of x can be propagated

linearly in time. By selectively choosing the columns of M, one can define a vector s,

whose expectation yields any desired sequence of moments, i.e., any quantity expressible

as a linear function of the PMF for the network state (recall that the term 'moment' will

be used to refer to any such quantity, including marginal distributions). M*-separability in

such a case characterizes the models for which such moments can be linearly propagated.

Affine linear propagation

Rather than limiting ourselves to linear models, we may want to consider when the expected

value of s* can be propagated in time by an affine linear function, i.e.,

E [s*[t]' I s*[t - 1] ] = s*[t - 1]'H* + h, , (2.36)

for some matrix H* and vector h*. Note that this was the setup considered in MLSS.

Mirroring how Corollary 2 was derived from Definition 1, we can show that the expected

value of s* can be propagated in time by a linear function if and only if there exists a matrix

H such that
GM = [Ak 1] widetildeH* , (2.37)

or in simple terms, GM, is in the column space of [M, 1]. It follows that GM, is in the

column space of [Al 1L] if and only if G [M, 1] is in the column space of [Al 1] (because

1 is a right eigenvector of G). This realization leads us to the following corollary.

Corollary 6. The expected value of s), can be propagated in time by an affine linear function

if and only if the network is [M, I1]-separable. When 1 E R(M*), the expected value of s*
can be propagated by an affine linear function if and only if it can also be propagated by a

linear function.

The second observation in Corollary 6 is a consequence of Corollary 3.

By definition, a network is a moment-linear stochastic system of degree 1 with respect

to the state vector s, if the expected value of s, can be propagated in time by an affine

linear function [14, 15]. Because for any state vector s* there exists a matrix A that maps

the state indicator vector sx to s*, i.e.,

' 'M (2.38)

it follows from Corollary 6 that an MLSS of degree 1 with respect to the state vector s*
that is derived from a finite-state Markov chain is equivalent to [M, I]-separability.



Separability in chemical kinetics

Mass action kinetics (MAK) [38] can be thought of as an example of A-separability that
is extended to continuous-time Markov chains (extending the ideas of M" -separability to
continuous-time models is straightforward). Consider a large collection of chemical species
in a closed container. The species will react with one another, and the counts of the
number of molecules of each species will fluctuate. Provided that the temperature remains
constant, one can argue that such a system can be well modeled as a time-homogeneous
Markov process whose state vector x is a vector of species counts. This mathematical
description, the Kolmogorov forward equation, in chemical kinetics is commonly referred
to as the chemical master equations (CME). MAK is the assumption of Mx-separability
in continuous-time; MAK is the mathematical description of the evolution of the expected
concentrations of the chemical species, i.e., scaled counts. Note that because of conservation
of mass, there is a linear equation involving the counts of the various chemical species
that remains constant over time; this fact ensures that the all Is vector 1 E 'R(Mx) (the
coefficients of a conservation of mass equation specify how to conibine the columns of Ay
to define a constant column, a scaled instance of 1).

Alternatively, rather than just propagating the moments of a state vector, one can
consider propagating the moments and correlations; this would be equivalent to M[ x0 2

]-

separability. For chemical kinetics, AI[X X02]-separability would allow one to linearly prop-
agate the means and correlations of the various species counts. In the language of MLSS,
this is an example of a system that is assumed to be 2nd-moment linear. One can con-
sider other instances of Mk-separability involving even higher moments. Note that central
moments cannot be incorporated into examples of A-separability, as central moments can-
not be obtained by a linear function of a joint distribution 7rx. Mass fluctuation kinetics
(MFK), which intends to generalize MAK by presenting a means via moment-closure to
approximately propagate not only the expected counts of the chemical species, but also
the covariances [16], is not an instance of -separability, because of the incorporation of
central moments. If, however, MFK was altered to include only non-central moments and
was exact, it would be an instance of MT-separability generalized to continuous-time.

Other models in chemical kinetics intermediate between the complete description offered
by the CME and the coarse description of MAK have been proposed, e.g., [17] proposes
a method to propagate bivariate marginals by nonlinear recursions. There has also been
a concerted effort to develop further moment closure recursions [18] and approximately
propagating higher moments [19]. Although the theory of M-separability does not pertain
to such approximate schemes, it does offer specific guidance when partial information can
be propagated exactly. This is summarized in the following corollary.

Corollary 7. Consider any partial information ,r, and any bijective function f(-) on
such partial information ,r. For example, ,r, is a sequence of moments, e.g., mean and
second moment, and f(,r*) is a sequence of corresponding central moments, e.g., mean and
variance. Then f(,r*) can be propagated exactly if and only if ,r* can be propagated linearly.

This corollary follows from Theorem 1. Note that Corollary 7 does not make any state-
ments regarding approximate propagation. The correct approach to gauging the fidelity of
approximate propagation of moments depends on the situation and costs. If for example,
one wished to derive a function that could provide the exact value of the moment ,r* [t]
given s[t - 1]. this could be done exactly, and unless A*-separability is satisfied, must be
done by nonlinear means. On the other hand, suppose one wanted to propagate -r* [t - 1]



to time t. Unless M,-separability is satisfied, the information orthogonal to lr, [t - 1] in

part determines r, [t]. To determine the fidelity of an approximate method to propagate

moments, one must place some measure on 7r*[t - 1] to evaluate a cost, and how this is

done is subject to interpretation.

2.2.4 M-separability

The idea of M-separability is motivated by networks of stochastic automata that exhibit

multiple kinds of Mi-separability.

Definition 3. A network of stochastic automata exhibits M-separability, with M being a

set of matrices, provided that it exhibits M*-separability for every M* E M.

Recall that every network of stochastic automata is l-separable. Hence, for any net-

work that is Mt-separable, we can envision it as being M-separable, with M = {IL, M}.

Typically, we will not incorporate 1 as a element of M, as it can always be assumed.

When there is a nesting of the range spaces of the matrices constituting M, this special

case of M-separability is termed regular separability. It is assumed that under regular

separability, I E R(M) for each M* E M. Our particular interest in regular separability

is twofold: many of the important examples of M-separability that we consider are regular,
and as we will show in Section 3.2.2, characterizing the parametrization induced by regular

separability is straightforward. The generic terms 'separability' is intended to encompass

both AI*-separability and M-separability.

Although there are endless versions of M-separability to consider, there are a few ex-

amples that we will focus on primarily. The first is when a network of automata satisfies

M(r) -separability for all 1 < r < n, which is referred to as total network separability in

[36]. Here we will refer to such networks as being M(")-separable, where the set of matrices

M() is defined as
M()A{M(M : 1 r n} . (2.39)

Note that M( )-separability follows from the network state being Markovian. The IM

[12, 13] and GIM [36] exhibit M(")-separability. When a network is M-()-separable for all

1 < r < r with T < n, we classify it as being MV)-separable. Such examples of regular

separability are also referred to as canonical examples of separability.

A second kind of M-separability that will be of interest is MA-separability, where the

set of matrices MA is defined as

M1 <jA : 1 < n} . (2.40)

Under this particular kind of M-separability, each automaton is itself Markovian. Each

automaton also exhibits an additional property: given its current status, its future statuses

do not depend on the past statuses of any of the automata. This may seem to imply that all

of the automata are independent, but this is not the case. A GIM with all automata always

selecting themselves as their influencers achieves this kind of M-separability, without the

automata necessarily being independent. For this special case, there is an independent and

identically distributed (IID) exogenous input process, which then specifies how each Markov

chain will transition for each of its possible current statuses. This framework provides a

natural means to model coupled Markov chains.

MLSS [14, 15] provide an entire class of examples of M-separability. Before proceeding

to these examples of M-separability, we first need to define when a state vector v is rth-



moment linear. In order for a state vector v to be rth-moment linear, the conditional
expected value of v[t]@r (sometimes referred to as the rth-moment of v[t]) given v[t - 1],
must be expressible as an affine linear function of {v[t - 1]®k} for k < r, that is,

E [V[t]®r/ I v[t - 1]]

= [v[t - 1]'r]'Hr,r + [v[t - 1]0' 1]'Hr,r-1 + ... + v[t - 1]'Hr,1 + h', , (2.41)

for some matrices Hr,r, Hr,r1, ... , H,,1 and vector hr,o [14, 15]. Equivalently, there exists

a matrix Hr such that

GMevr = [Mer Mvor-1 ... M IL] Hr , (2.42)

One should recall that in the r = 1 case, by Corollary 6, the existence of a matrix H1

in (2.37) is equivalent to [Mv 1]-separability. However, when r > 1, being rth-moment
linear does not equate to any form of separability. However, it does equate to a form of M-
separability when we assume that the state vector v is rth-moment linear for all r < r; this
is referred to in [14, 15] as an MLSS of degree r. To see this, we argue by induction. First
note that in the r =1 case, we have [Mv IL]-separability. Next as our inductive step, assume
that [M Dr-1 M IVr-2 ... 1]-separability holds. Suppose that the network is rth-moment
linear with respect to v. As [M,-g 1 M r-2 ... 1]-separability is already assumed, our
equation for being rth-moment linear, (2.42). can be equivalently expressed in terms of the
existence of a matrix HR, such that

G [Ivr M~Ao'1 ... 1JM Il]= [Mvor Mvr-1 ... MV 1] HR, . (2.43)

One should now recognize (2.43) as being equivalent to [M®r Mver-1 ... IL]-separability.
Consequently, an MLSS of degree f is equivalent to being [Mver MIler-1 ... Mv IL]-separable
for all r < T, which we refer to compactly as Mve -separability. Note that this is an instance
of regular separability.

We have already discussed an instance of M eo.-separability: M(0-separability, which
is satisfied when the network exhibits IMf()-separability for all r < f, is equivalent to
M [1) or-separability. This can be demonstrated on the basis of Corollary 3. First, note that

MAPr) is shorthand notation for M e(1)r , and thus [M e()]or A1 (1)]®r-1 ... 1 -separability

is equivalent to [M(r) M(r-1) ... IL]-separability. Next, as 11 E R(M(r)) for all r, and

RI$M(r')) C R(M()) whenever r' < r, it follows that M(')-separability is equivalent to
[M(r) II(r 1) ... I]-separability.

The majority of the examples in [14, 15] are MLSS of degree T. We refer the reader to
these references for these interesting examples of regular M [SMl)]r -separability.

2.3 Conclusions

This chapter serves as the foundation for the remainder of the thesis. The general frame-
work characterizing separability that is introduced in this chapter is further analyzed in the
next chapter, which examines our general description of separability algebraically and geo-
metrically. In future chapters, we will elaborate further on several examples of separability
introduced in this chapter.



Chapter 3

Algebraic and Geometric

Perspectives on Separability

In order for a network of stochastic automata to exhibit M--separability, its transition ma-

trix G must satisfy two conditions: not only must G be row-stochastic, but by Corollary 2,
there also must exist a matrix H, such that

GM, M1H= . (3.1)

Although these conditions define when a transition matrix satisfies A-separability, they

fail to offer intuition into the algebraic and geometric structure of separability. This chap-

ter attempts to reveal the inherent structure in networks exhibiting -separability, as

characterized by their transition matrices, and to likewise do the same for networks ex-

hibiting M-separability. The set of transition matrices satisfying A,-separability will be

denoted as g(MI). Similarly, we define 9(M) as the set of transition matrices exhibiting

M-separability. Note that as A or M effectively fix n, the number of automata/random

variables, and m, the sizes of their alphabets, both g(AM,) and 9(M) are thought of as

a set of transition matrices that exhibit a particular form of separability for a network of

automata with fixed n and m .
The contributions of this chapter extend to the models that have motivated our discus-

sion of separability, including the influence model [12, 13], moment-linear stochastic systems

[14, 15], and the generalized influence model [36]. Most results of this chapter provide new

insights into these specific examples of separability, while a few are generalizations of what

is already known about some of these models, e.g., the spectral relationships of G and H

for the IM (discussed in [12]).
We begin in Section 3.1 by discussing the implications of (3.1) on the transition matrix

G, and proceed then to its implications on H*. In both cases, our perspectives will draw

heavily on geometry and linear algebra. Then we develop a unified algebraic parametrization

of separability in Section 3.2, from which we will derive expressions for the dimensions of

g(M) and g(M), i.e., which can be interpreted as the number of free parameters in a

probabilistic model exhibiting M,-separability or M-separability, respectively. In doing so,
it will become clear the relative degree to which different forms of separability constrain

the underlying transition matrix of a network. Although we will develop equations for the

dimension of g(M*) and G(M) under general settings, we do so with the plan to apply

such findings in Section 3.4 to canonical examples of separability: M(')-separability and

MMV)-separability. In Section 3.5, we will analyze the evolution of the dimension of g(A(r))



as r, m, and n vary, and then subsequently do the same for g(M(r)). Several interesting

insights into the asymptotic properties of separability will be illustrated. We conclude the

chapter in Section 3.6 by offering an interpretation of the asymptotic results of Section 3.5,
namely, that many canonical forms of separability have increasingly high relative dimension

as n grows.

3.1 Geometric implications of M,-separability

We begin by discussing some special structure in the dynamics of the update equation
for the probability vector for the network state (2.5) when M,-separability is satisfied.

Without loss of generality, we assume that A, has full column rank (recall Theorem 16).
Our arguments will rely heavily on the the complementary orthogonal subspaces R(M,)

and R1Z(Af) (R1'(-) denotes the orthogonal complement to the range space of the specified
matrix). To simplify notation, we define M1< as a matrix whose orthonormal columns serve

as a basis for R'(Ml).

By multiplying [Me]' to both sides of (3.1), we obtain an equation that equivalently
characterizes the existence of a matrix H* in (3.1):

[K GM, 0 (3.2)

We can also express the linear constraint on G given in (3.2) as a requirement that G
be upper triangular under the linear transformation specified by [M, M/], i.e.,

[M, A]1 G [AI MY] - [ H* H* 2 (3.3)

where [A, A1] I can be rewritten as

[A, I =- *i , (3.4)

where

M-- L (M') M' (3.5)

is the Moore-Penrose generalized inverse of A, [39], or equivalently, the only left inverse of
M whose row space coincides with the column space of A. It should be clear how the

constraints of (3.2) manifest themselves on the right-hand side of (3.3), as the (2, 1) block

consisting of Os.

Those familiar with linear dynamical systems may recognize the existence of a matrix

H* in (3.1), or the block triangular form of G under a linear transformation in (3.3), as

a statement concerning invariant subspaces [20, 21], namely, R(Al) being G-invariant,
or, as we may alternatively state, G leaving R.(M*) invariant. Invariant subspaces are a

well-developed topic in linear dynamical systems theory; however, at least to this author's

knowledge, invariant subspaces beyond steady-state vectors or recurrent classes have not

been explored in the context of Markov chains. We feel it is instructive to expose the

ramifications of such invariance from a variety of perspectives.



Mathematically, this invariance can be expressed as

Go E IZ(M*) V v E R(M) . (3.6)

As we already noted, R(M,) being G-invariant is equivalent to G having an upper block

triangular form under the linear transformation specified by [M* M-], as well as equivalent

to the existence of a matrix H* in (3.1). Such invariance can also be equivalently expressed

in terms of eigenvectors. AI-separability is equivalent to the existence of a basis for 7Z(M*)
consisting only of right eigenvectors (and generalized right-eigenvectors) of G. 1

3.1.1 Left-invariance

As G is the transition matrix of a Markov chain, it is more illuminating to discuss such

invariance in terms of row vectors left-multiplying G; we call this left-invariance. As evident

from (3.3), M,-separability is equivalent to G leaving R(M ) left-invariant, i.e.,

v'G E R(M#) V v E R(M*) , (3.7)

and similarly equivalent to the existence of a matrix H(22) in (3.51) such that

[M 'G = H( 22) [A'j . (3.8)

In terms of left eigenvectors, such left-invariance is equivalent to the existence of a basis for

R(A') consisting only of left eigenvectors (and generalized left-eigenvectors) of G.

In linear systems theory, one leverages invariance when the dynamics are initialized in

the invariant subspace. Because the subspace is invariant, the dynamics are guaranteed to

remain in the subspace, thereby permitting a lower-order description of the dynamics in the

subspace. Separability offers an alternate perspective on invariance. There is no precondi-

tion that the dynamics must be initialized in the invariant subspace to take advantage of

such left-invariance. Under Mg-separability, left-invariance is leveraged by allowing one to

track projections of the dynamics (evolution of probability vectors) into R(M,), the orthog-

onal complement of the assumed left-invariant subspace, with a lower-order description.

To see how this works, let's return to our weather example. Suppose that the network

is initialized with a probability vector at time 0, 7r,[0], which provides the joint probability
of weather combinations for each of the four cities. Any probability vector -rx can be

represented as a sum of its projections onto two complementary orthogonal subspaces,
R7(M) and R-'(M,), as follows:

r A Ir'M M*L E7 R(MA/)

7r*_ 7 r'xM* [MIIf]' E R-L(M*) .(3.9)

with

rX = 7re* + 7
r-* . (3.10)

As G is not necessarily symmetric, it is possible for G to have complex eigenvectors. However, since
G is real, such complex eigenvectors will always come in complex conjugate pairs and will be associated
with eigenvalues that are complex conjugates. When the matrix G is multiplied by a real vector and such
complex eigenvectors are excited, the result must be real (obviously) and will be a linear combination of the
real part and imaginary part of such complex eigenvectors. Thus, it is not the complex eigenvectors that
will contribute to the basis for R(M.), but rather, their real and imaginary parts.



If MA1 )-separability was assumed for our weather example, 7r,, would contain all in-
formation about the univariate marginal distributions for the weather in each of the four
cities, i.e., it would provide information equivalent to the expected value of the state ar-
ray vector, E [s()]. Alternatively, -r, would contain all 'orthogonal' information, the

additional information from which one could construct the joint distribution (the distribu-
tion for the network state) from the univariate marginals. In a sense, 1ru would provide
the information about how the statuses of the different automata would be coupled. Un-
der M 1M -separability, it would be assumed that such coupling information was invariant,
meaning it would be irrelevant as far as updating the univariate marginals.

Because of linearity, the updated probability vector at time 1 can be computed by
individually propagating the projections of -7r,[0] onto the complementary orthogonal spaces
and then summing such propagated projections, i.e.,

7rx[1]' =7r*1[0]'G + ir*[O]'G . (3.11)

However, if one was only interested in the projection of 7rx[1] onto R(Ms) (in the context of
our weather example, one would only be interested in univariate marginal distributions for
each city's weather), because of the assumption of A*-separability and its left-invariance,

7r1[1] = 7r*,[0]G , (3.12)

as by the assumption of left-invariance, r*,[O]GMAM;-L = 0. By induction, it follows that
when initializing the network with probability vector 7rx[T],

-r*[t]' = ru*[T]'Gt -T (3.13)

By then multiplying both sides of (3.13) by M,, we obtain our familiar update equation
(2.31) for our partial information vector -r*. It is because the dynamics of -r, remain
trapped in R-(I*), it permits low-order representations of the projected dynamics of 7rx

in R(Mf). Fig. 3-1 attempts to schematically illustrate this phenomena in three dimensions.

For typical cases of -- separability, the Markov chain exhibits a left-invariant subspace
with meaningful structure, R(MI), whose orthogonal complement, R(M), is of low-order,
i.e., p << q, where p denotes the dimension of R(M,), and il is the dimension of the state
space. This allows one to monitor dynamics tractably in the orthogonal complement R(M,).
Consider again the case of M(1 -separability. Rather than tracking the dynamics of the j x 1
vector -r* directly, which offers no computational advantages, one tracks the dynamics of

the substantially smaller vector 7r()' A 7r'A[(l) that parameterizes vectors in R(M(1).
As a function of the number of automata n, the size of 7rx is growing exponentially, while
7r( is growing linearly. Considering our weather example where m = 3 and n = 4, we
can monitor the dynamics of the evolving univariate mnarginals via a 12 x 12 matrix H ),
under the assumption of MC1)-separability, which is substantially smaller than the 81 x 81
transition matrix G. These apparent computation advantages offered by Mt-separability

motivate our interest in its development.

3.1.2 Correspondence of eigenvalues/eigenvectors of G and H*

We have already noted that under M-separability, G has a set of p right eigenvectors (and
generalized right eigenvectors) spanning the p-dimensional subspace 7Z(M*). Let's visualize
this subset of right eigenvectors (and generalized right eigenvectors) of G in Jordan canonical



7R(Ms)
7rX[1]' = 7rx[O'G

= (7r, [0]' + 7r, [0]')G

Figure 3-1: This schematic attempts to illustrate the invariance of M-separability. Two

complementary subspaces are pictured, the line R(M,), and the plane, R7Z(M,). An initial

probability vector irx[O] is shown, and its projections onto the two subspaces, 7r*.[O] and

7t* [0], respectively, are indicated by dotted lines (all dotted lines in the picture indicate

projections). By linearity, -rx[0] can be propagated by G to define -rx[1], or its propa-

gated projections can be summed. Because G is left-invariant with respect to R7Z(M,), the

projection of Irx[1] onto R(M*) is the same as the projection of 7r,[0]'G onto R(Ms).

form [39]:
- A 0 ~V'

G = [X Z~ ~ ,(3.14)
0 A V

where X is an il x p matrix whose columns are the right eigenvectors (and generalized right

eigenvectors) spanning R(M,); X is an r1 x (q - p) matrix of additional right eigenvectors

(and generalized right eigenvectors) as its columns; A and A are p x p and (,q - p) x (I - p)

block diagonal matrices, respectively, consisting of Jordan blocks with the eigenvalues of G

on their diagonals; V' and V' are matrices whose rows are left eigenvectors (and generalized

left eigenvectors) of G. 2 Note that all matrices are partitioned commensurately.

By nature of being in Jordan canonical form, the matrix of right eigenvectors must be

the inverse of the matrix of left eigenvectors, and hence,

~ XXk = . (3.15)

We will denote the ith column of X as xi, the ith column of V as vi, and the ith diagonal

element of A as Ai. We will refer to xi and vi as a right/left eigenvector pair associated

with the eigenvalue Ai. It should be evident from (3.15) that as V'X = 0, the rows of V'

must be the (q - p) left eigenvectors spanning R(M ) guaranteed under Mt-separability.

2Up to this point, we have been careful to include the possibility of generalized eigenvectors for many of
our statements, when appropriate. For the remainder of this section, 'eigenvectors' will refer to both eigen-

vectors and generalized eigenvectors, collectively. If general eigenvectors shall be excluded when discussing
'eigenvectors,' this will be explicitly noted.



Thus it is evident from the Jordan canonical form that the right/left eigenvector pairs of
G can be partitioned into two sets: one set whose right eigenvectors span R(MI) and the
other set whose left eigenvectors span R(M).

As before, assume that A4, has full column rank. Recall (3.1) and consider the equation
obtained for H, when both sides are multiplied by M;L:

H* = M;LCGM, . (3.16)

By substituting G's Jordan canonical form (3.14) into (3.16), we obtain

H*= A;L [X X ~ ~ M . (3.17)
0A V

By (3.15), it follows that VX = 0, and as A and X have the same range space (the
columns of X consist of the right eigenvectors of G spanning 7Z(M,)), it also follows that
V'N = 0. Using this fact, we can simplify (3.17) as follows:

~ A 0V' ~H, = M-LX M-LX~ [~ ** * 0 A 1 V

LX * ~- AV'M

= M LXAV'/I . (3.18)

Note that the p x p matrix A is block diagonal consisting of Jordan blocks. Moreover,
observe that

(V'M,) (M;-LX) = V'X

= I , (3.19)

where the first equality follows from the fact that MM L acts as an identity when right-
multiplied by column vectors in R(AI) (the columns of X span R(M,)), and the second
equality follows from (3.15). Combining these two facts, it follows that H* is represented
in Jordan canonical form in (3.18). Evidently, the eigenvalues and eigenvectors of H* are
directly inherited from G. For each xi (a right eigenvector of G in the column space of A)
and its paired left eigenvector vi, both being associated with an eigenvalue of Aj,

" A Lx, is a right eigenvector of H, and

" M'vi is a left eigenvector of H,,

both associated with an eigenvalue of Aj. Conversely, 3 for any right/left eigenvector pair

3The astute reader may be concerned with the fact that, in general, a matrix's Jordan canonical form need
not be unique (when there exist eigenvalues with geometric multiplicity greater than 1, i.e., when eigenspaces
of dimension greater than 1 exist, the choice of a linearly independent set of normalized eigenvectors and
generalized eigenvectors is not unique). As we have only derived a particular Jordan canonical form for
H., the natural question to ask is whether the eigenvector pairs suggested by any Jordan canonical form
for H, share such a correspondence with eigenvector pairs of G. The answer, thankfully, is yes. Although
the Jordan canonical form may not necessarily be unique, the eigenspaces and their associated eigenvalues

(as well as any generalized eigenspaces and their associated eigenvalues) are unique. The eigenvectors and
eigenvalues of G and H. could just as well have been related in terms of their unique eigenspaces, instead
of relating their potentially not unique left/right eigenvector pairs.



of H,, 2i52 and U, associated with an eigenvalue of Aj,

" M*Yj is a right eigenvector of G associated with the eigenvalue Aj, and

" although a left eigenvector of G cannot be uniquely identified from a left eigenvector of

H,, it is known that U = M'vi, for some vi that is a left eigenvector of G associated

with the eigenvalue of Ai.

As evident from (3.19), we have defined a linearly independent set of left eigenvectors of

H* as well as a linearly independent set of right eigenvectors of H*. Thus, all left/right

eigenvectors of H., as well as the associated eigenvalues, are inherited from G. The spectrum

of H, (its eigenvalues) is the subset of the spectrum of G, and specifically, consists of the

eigenvalues corresponding to the right eigenvectors of G spanning Z(M,).
This has important implications for the dynamics of our network as monitored in Z(M*),

via (2.31). Such dynamics will only be affected by eigenvalues inherited from G. From

the spectrum of H, one can obtain lower bounds on the second largest eigenvalue of the

network's transition matrix G, as well as lower bounds on settling times for the network

[40].

We note that in the case of M-separability, for each M E M, we have such left/right

invariance and a correspondence of eigenvalues and eigenvectors between G and H*.

When A, fails to have full rank

Up to this point, it has been assumed that M has full column rank. Suppose that M,

separability is assumed for a particular ML. that lacks full column rank. Such is the case

for M)-separability, for any value of r > 1. Let p denote the rank of A. as before, and

p > p its number of columns. Nothing changes regarding G: it will still have a basis of

right eigenvalues spanning R(ML) and il - p left-eigenvalues in R(Mf). What may change

are the characteristics of an H* that satisfies (3.1). Because A. lacks full column rank, it

will have a null space of dimension p - p. Therefore, an H* that solves (3.1) will not be

unique. For a given G, an entire affine subspace of matrices will satisfy (3.1). In contrast,
recall that H* is unique when AL. has full column rank (3.16).

Let's look at this affine subspace of p x P matrices. A particular matrix satisfying (3.1)
can be determined by solving (3.1) column by column, and minimizing the 2-norm for the
selected solution for each column. What we obtain is the matrix of minimal Frobenius norm
[39] amongst all matrices solving (3.1). We denote such a matrix as Ho; this matrix HO can

be expressed as
Ho = MIGM, , (3.20)

where Mt denotes the Moore-Penrose generalized inverse of M, [39). Note that the rank of
Ho cannot exceed p, as both its row space and column space are subsets of the p-dimensional

subspace N/'(A,) (the row space of M*).

By the same arguments that allowed us to derive the Jordan canonical form for H, when

M, has full column rank (3.18), we find that

H,0  MlXAV'M* . (3.21)

HO expressed as in (3.21) is almost in Jordan canonical form; by augmenting the decom-

position to include N(M,), HO will be expressed in Jordan canonical form. Specifically, let



N, be a p x (p - p) matrix with orthonormal columns that span N(M,).4 We can rewrite

(3.21) as a product of p x P matrices as follows:

Ho =[ M X XN, A][ ][v *] . (3.22)
. 0 0 N'

Note that the middle matrix on the right hand side of (3.22) is a block diagonal matrix

consisting of Jordan blocks, and that the product of the outer matrices of (3.22) satisfies

[vjM* ][MX NJ = vM /Ijx 0
N' 0 N'N*

1 , (3.23)
0 I '

where the first equality follows from the fact that since the columns of N* form a basis for
N\/(M,), both MN* = 0 and N'Mt = 0. The second equality in (3.23) follows by definition
of N* having orthonormal columns (N'N, = I) and from the fact that as X E

IAI*X = X, while V'X = I by (3.19). From these observations, it follows that HO is in
Jordan canonical form in (3.22), and thus, as in the case when MI has full column rank,
HO inherits all of its eigenvectors (and generalized eigenvectors) associated with nonzero

eigenvalues from G. For each xi (a right eigenvector of G in the column space of M,) and

its paired left eigenvector vi, both being associated with an eigenvalue of Aj,

* Mfzxi is a right eigenvector of HO,

" 'Ivi is a left eigenvector of HO,

both being associated with an eigenvalue of Aj. Conversely, for any right/left eigenvector
pair of HO, x, and vi, associated with an eigenvalue of Ai / 0,

* MIMx is a right eigenvector of G associated with the eigenvalue A1 , and

" although a left eigenvector of G cannot be uniquely identified from the left eigenvector
of HO, it is know that v= M'vi, for some vi that is a left eigenvector of G associated
with the eigenvalue A1 .

We have examined the spectral structure of a particular matrix HO that solves (3.1) (the
one of minimal Frobenius norm), now we wish to examine the spectral structure of other
matrices that solve (3.1). By linear algebra, any matrix solving (3.1) for a given G and M*
can be expressed as the summation of HO with a matrix whose columns are drawn from

A/(AI,), i.e.,
H*Z ) = Ho + N*Z ,(3.24)

where N* is defined as before (a p x (p - p) matrix whose columns form a basis for A(M*)),
and Z E R P)xp is otherwise unconstrained. Each unique Z corresponds to a unique

matrix in the affine subspace of matrices satisfying (3.1) for a given G and AI, and thereby

parameterizes the affine subspace. Note that the columns of HO are always orthogonal to

the columns of N*Z.
4 The careful reader will notice that in representing such a matrix as N., we have departed from our tra-

ditional notation for matrices with orthonormal columns spanning the orthogonal complement to a matrix's
range space. Rather than defining a new matrix N., our convention would be to express such a matrix as
(A'). In this case, we found such notation overwhelming.



It can be shown that H,(Z) inherits the left eigenvectors of Ho associated with nonzero
eigenvalues. Consider any left eigenvector of H0 , Ui, in the row space of M,. As the columns

of N. span Af(M,),

u'H,(Z) = VHo +U' N*Z

= AiU' ,(3.25)

and thus ;Ui and its associated eigenvalue of A2 are a left eigenvector and eigenvalue of any

H* satisfying (3.1). On the other hand, Ui's paired right eigenvector in H*(Z) need not

coincide with Ui's paired right eigenvector in H0 , Yi. As Z is unrestricted, N*Zxi may be

nonzero, meaning that zi would not be a right eigenvector of H* (Z). The only restriction on

any Vi's paired right eigenvector in H,(Z) would be that it must have a nonzero projection

onto the row space of M*.

It can be similarly shown that H*(Z) acquires right eigenvectors and associated eigen-

values from N*Z. As the matrix N*Z's columns span NA/(M), it can always be expressed

in Jordan canonical form as

N*Z-[X * V (3.26)
- 0 0 *

where X is a p x (p - p) matrix whose columns are right eigenvectors of H*(Z) spanning

NA(M,), A is a (p-p) x (p-p) Jordan block with the associated eigenvalues on the diagonal,

and V would be a p x (p - p) matrix with left eigenvectors as its rows, which are paired

with the right eigenvectors of N*Z given in X. Consider any right eigenvector of N*Z in

the null space of AI, denoted as 22 and associated with the eigenvalue Ai. As Ho shares

the same row space as M,

H*(Z)31 - Hozi + N*Zxi

=Ai i ,(3.27)

meaning that Yi is also a right eigenvector of H*(Z) associated with the eigenvalue Ai.
Because such right eigenvectors of H,(Z) lie in NA(M,), they cannot be the right eigenvector
pairs to H*(Z)'s known left eigenvectors in the row space of M, that are acquired from Ho.

Hence we can conclude that H*(Z) can be expressed in Jordan canonical form as follows:

A 0 V'
H, (Z) = *0 =* (3.28)

where the columns of X are the p - p right eigenvectors that H*(Z) inherits from N*Z,
and the rows of V'M* are the p left eigenvectors that H,(Z) inherits from Ho. Evidently,
the eigenvector pairs of H*(Z) can be partitioned into two sets: one whose left eigenvectors

and corresponding eigenvalues are copied from H0 , and a second whose right eigenvectors

and corresponding eigenvalues are copied from N*Z.

Clearly when Z f 0, H*(Z) will have additional left eigenvectors paired with the right

eigenvectors it acquires from N*Z. As these additional left eigenvectors will be paired with

right eigenvectors in NA/(M,), such left eigenvectors and their eigenvalues will not be excited
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Figure 3-2: Markov Chain Example

when H,(Z) is left-multiplied by a row vector in the column space of AI,-and this will
always be the case when we properly initialize the partial information dynamics in terms of
H,(Z) (2.31) with the linear transformation of a probability vector, -r'Ms. It is why any
such additional left eigenvectors of H,(Z) not restricted to the row space of M, are referred
to as "irrelevant" in [12] for the special case of the IM's AIM1 -separability.

By (3.24), any matrix H, that satisfies (3.1) can be expressed as a sum of two matrices,
one (Ho) whose row and column spaces are subsets of the row space of -M, and a second
(NZ) whose column space is a subset of .A(M,) and row space is arbitrary.

Example

We feel that it is instructive to illustrate these eigenvalue and eigenvector relationships
via an example. Suppose we have two automata (n = 2), each with two possible statuses

(m = 2): 0 ('off') or 1 ('on'). Assume these automata are modeled via the Markov chain
illustrated in Fig. 3-2, where the state label '01' represents the state when automaton 1 is
off and automaton 2 is on. The other network state labels can be similarly decoded.

The transition matrix for such a network would be

1 9 9 3
4 32 32 16
11 3 1 7

G 32 16 4 32 (3.29)
1 1 3 17

32 4 16 32

0 9 9 7
32 32 16 .

and it is straightforward to show that such a network is M1)-separable by applying (3.2):

1 0 1 0

[1 -1 - 1 ]G = [0 0 0 0] ,(3.30)
0 1 1 0

0 1 0 1

where evidently, [M(1]I (I, -1, -I, I).

By nature of being MlIM -separable, we know that G's left/right eigenvector pairs can be

partitioned into two sets: one whose right eigenvectors span R(NMI), and a second whose



I
left eigenvectors span R([Ml) . The first set's right eigenvectors spanning R(M( 1)) are

as follows:
1 0 5

1 2 , =, (3.31)
1 -1 -3

1 0 -3

which are paired with the left eigenvectors

1 1 1

1 1
_ 0

V1 4 v 2  , v 3 = , (3.32)
i 1 042
3 1 1

- 8 - 2 . 8 -

each associated with the eigenvalues A1  1, A2 = -1/16, and A3 = 1/4, respectively.

On the other hand, G must also leave R ( [M0)] ) left-invariant, meaning it must have

left eigenvectors spanning [MIj . As [M()] I is merely a 1-dimensional subspace, the

requirement reduces to G having a left eigenvector

v4 (3.33)

which will be paired with the right eigenvector

X4 = [1 -1 -1 1] , (3.34)

both associated with an eigenvalue A4 = -1/8 (note that the left and right eigenvectors of

the pair are the same, apart from scaling). As there is only a single eigenvalue of modulus

1, v' must be the steady-state vector of the Markov chain.

Let's now consider a matrix HM , satisfying (3.1) for M, = MN1), which, like G, will be

a 4 x 4 matrix (this a consequence of the anomaly mI + m 2 = nlm2; typically HM' is a

much smaller matrix than G). As M') does not have full column rank, HM) need not be

unique. We can find a specific matrix HM via (3.20),

21 11 23 9
64 64 64 64

t 5 27 3 29
H =1 MC(1) GMII =1 64 4 64 64 .(3.35)0 13 19 11 21

64 64 64 64
13 19 15 17

. 64 64 64 64 -

As HM of (3.35) is the matrix of minimal Frobenius norm amongst the affine subspace

of matrices satisfying (3.1) for A, = 10), all of its left and right eigenvectors associated

with nonzero eigenvalues will correspond to the the subset of right/left eigenvector pairs

of G whose right eigenvectors span R(MM). In particular, by (3.22), H( will have right



eigenvectors

2 2 2 2

£3 = M tx 3 = [9 (3.36)

paired with left eigenvectors

u1 = MAl vi -= 3 5 3 5]

f2 = M( v2 = 0 0 -1 1

V = M V 3 = - - (3.37)

associated with eigenvalues A1 = 1, A2  -1/16, and A3 = 1/4, respectively. Note that

both the left and right eigenvectors of H O given in (3.36) and (3.37) lie in the row space of

M. It may seem peculiar that the rows of HM sum to 1, and moreover are nonnegative.

Naturally the rows sum to 1 by (3.36), which states that 21 = must be a right eigenvector

of HM11 associated with an eigenvalue at 1. The fact that HP) is nonnegative is special to

our example and not guaranteed in general.

In addition, Hf will have an additional right and left eigenvector pair associated with

the eigenvalue A4 = 0,

1

c4= c1 y , (3.38)
1 1

2 2

2 .2

respectively. Note that such additional right eigenvectors (those not inherited from G) for a
matrix satisfying (3.1) of minimal Frobenius norm will always be associated with eigenvalues

of 0 and will span A(M(1)) (again, recall (3.22)). The same can be said for the additional
left eigenvectors.

As Mf0) does not have full column rank, there is an affine subspace of matrices that solve

(3.1) for MI, = M . Using (3.24), let's consider another matrix in this affine subspace,

1

H (1) (z) = H11 + ZI (3.39)
2

1
2

As argued in (3.25), V1, W2, and V 3 must be left eigenvectors of H((z) associated with

eigenvalues A1 , A2 , and A3 , respectively, for any choice of z. However, by choosing z

strategically, any desired left eigenvector and eigenvalue can be introduced provided that

the left eigenvector is not in the row space of M(1). As evident from (3.39), the right

eigenvectors paired with such 'new' left eigenvectors will be restricted to being in N(31(1)),



and hence will not be excited by left multiplication of H 1 (z) by row vectors in the row

space of MC.

Suppose that we want

V4 = 2 0 0 0 (3.40)

to be a left eigenvector of HM (z) associated with an eigenvalue of X 4 = 2. As N(MM') has

a dimension of 1, U4's paired right eigenvector must be

X4 = - - . (3.41)

After some algebra, we find that the necessary z to achieve such a left eigenvector (3.40)
and associated eigenvalue A4 = 2 is

z 107 11 23 9 (3.42)
32 32 32 32 J.'

and the resulting HC')(z) for z specified as in (3.42) is

2 0 0 0
7 1 5 5

H1)(z) = 8 4 6 16 (3.43)
47 15 17 15
32 32 32 3 2
47 15 19 13

- 32 32 32 32 -

As a double-check, one can verify that for L, = M) and the G specified in (3.29), HM(z)

of (3.43) satisfies (3.1). Note that H()(z) as given in (3.43) does not have rows summing

to 1 (as was guaranteed for H )
HC')(z) inherits the left eigenvectors f1, 2, and U3 of H given in (3.37). The choice

of z in (3.42) results in the paired right eigenvectors for H')(z) becoming

0 0 0

X1 -^8 . (3.44)
10 5

11 5

As evident on comparing (3.36) to (3.44), the particular choice of z in (3.42) results in a

substantial shift in the paired right eigenvectors.

With Corollary 3 in mind, one could define a matrix MO') with full column rank such that
R(MMf) = R(M(1)). The unique 3 x 3 matrix satisfying (3.1) for M, = Y ), denoted by
5('), could be computed using (3.16) and replace HC1)(z) in computations. There would be

no ambiguity regarding the spectral structure of f(1). The partial information expressed in

terms of MC), i.e[, 7(1)]' - ir,MC ), which is a sequence of probability vectors representing

univariate marginal PMFs, could always be recovered from the partial information expressed

in terms of (X1), as

r (1) (1) L (3.45)

For small network such as this example, working with HM in place of HM) offers limited

computational advantages. However in large networks, the benefits of using NR1 ) can be



substantial. After computing the rank of 3M) in Section 3.4, one can determine precisely

what the benefits would be.

3.2 The algebraic parametrization of separability

The objective of this section is to develop an abstract characterization of Q(M,), the set

of transition matrices exhibiting M,-separability. One may note that we already have an

algebraic characterization of g(MI): it consists of matrices G that are row-stochastic and

satisfy (3.1). We will combine these constraints into a unified algebraic characterization,
with the intention of developing equations for the dimension of g(M,), i.e., the minimum

number of scalar parameters needed to specify uniquely any probabilistic model exhibiting

M,-separability, or equivalently, the dimension of the affine subspace of smallest dimension

containing g(M). By (3.3), which expresses the additional constraints of Mt-separability

as an (r -p) xp block of Os, we expect the dimension of g(M,) to be roughly qT- (r-p)p. As

clear by Corollary 3 and our discussions of AI,-separability in Section 3.1, any equations for

the dimension of g(M) should depend only on R(M,); it will be shown that the dimension

of g(M,) is determined by the dimension of R7(M,) as well as whether or not 1 is an element

of R(A,). We will then similarly analyze the dimension of g(M). After developing some

general mathematical machinery, these results will be applied to the canonical examples of

separability, M-3() separability and M(-separability, in Section 3.4.

3.2.1 The feasibility set g(M,) under A,-separability

The feasibility set g(Mf), the set of transition matrices exhibiting A,-separability, is char-

acterized by satisfying two sets of constraints: row-stochasticity (nonnegativity combined

with affine linear constraints) and the existence of a matrix H, satisfying (3.1) (linear

constraints). Thus the feasibility set 9(A,) can be identified as the intersection of the non-

negative orthant (a polyhedral cone) with an affine subspace that captures both the linear
constraints of (3.1) and the affine linear constraints of row-stochasticity. This intersection
must be bounded (as a subset of the bounded set of row-stochastic matrices), and as it is

the intersection of a polyhedral cone with an affine subspace, it must be a finitely-generated

convex set (have a finite number of extreme points). Rather than differentiating between

linear and affine linear constraints, we will subsequently refer to both as linear constraints.

On the other hand, we will continue to differentiate between subspaces and affine subspaces.

By rearranging (3.2), the additional linear constraints imposed by Al-separability can

be expressed as a null space constraint on vec(G):

(AMl 0 [M* )vec(G) = 0 , (3.46)

where we have used the fact that vec(ABC) = (C'OA)vec(B) (A.5). Thus by (3.46), g(AM,)
must be a subset of the the null space (kernel) of M 0 [MJ]

There are additional constraints on any G E g(ME), namely that the matrix be row-

stochastic. This imposes nonnegativity constraints, as well as the linear constraints that its

rows must sum to 1, i.e.,
GI =1 . (3.47)



Combining all linear constraints into a single equation, we obtain

0 11 'vec(G) =.(3.48)0 [~~0

The dimension of the affine subspace of matrices G that satisfy (3.48) is determined by the

dimension of the null space of the matrix on the left hand side of (3.48), provided that the

constraints are consistent. The matrix on the left hand side of (3.48) is an example of a

block Kronecker matrix, a block matrix whose blocks are expressed in terms of Kronecker

products. Section A.2.1 discusses techniques to calculate the rank of block Kronecker ma-

trices. Since R,(1) c R(I), the dimension of the null space of the matrix on the left hand

side of (3.48) can be determined by applying Corollary 19 to its transpose. Note that the

dimension of this null space will depend on whether or not 1 E R7(M,). If IL E R.(M,), the

null space will be of dimension r/2 - p(q - p) - p, where as before, p is the rank of A*. On

the other hand, if I ( R(MI), then the null space will be of dimension 72

Returning to our objective, which is to characterize g(M,), we see that it can be identi-

fied as the intersection of the nonnegative orthant with the affine subspace of rJ x r; matrices

satisfying (3.48). Suppose that the affine subspace of matrices satisfying (3.48) intersects

the interior of the nonnegative orthant, i.e., the positive orthant. As the nonnegative or-

thant is of full dimension q x r, we are assured then that the dimension of g(MI) will equal

the dimension of the null space of the matrix on the left hand side of (3.48) (note that this

condition is sufficient, yet not necessary). For the majority of examples of A-separability

that we have introduced, including both M(r)-separability and Mi-separability, such an

intersection is assured: for any y x 1 probability vector 7rx > 0, the strictly positive matrix

L7r' exhibits both M -separability and Mg-separability. These results are summarized in

the following theorem.

Theorem 2. If there exists a strictly positive matrix that exhibits Mt-separability, then the

dimension of g(M*), the minimum number of scalar parameters needed to specify uniquely

the transition matrix of any probabilistic model exhibiting MXIe-separability, is given as fol-

lows:

dim) 2 lp( - p) - p if 1 E R(ME )
T) - p01 - p) - r if IL R (M)

where p = rank(M,), and dim(-) denotes the dimension of a set, defined as the dimension

of the affine subspace of smallest dimension enclosing it.

If one would like to highlight the number of free parameters 'lost' in assuming M,-
separability, (3.49) can be rearranged as

dim(goll) dim(9) - (p - 1)(,q - p) if 1 E R (M*)
dim(g) - p(q - p) if I V R(M,) '

where g is the set of otherwise unrestricted i- x 77 row-stochastic transition matrices of

dimension r7(r - 1).

Although there exist cases where 9(M,) is of lower dimension than the subspace satis-

fying (3.48) (implying that there does not exist a strictly positive matrix in g(M*)), this
intersection can never be empty. As evident from (3.1), I e g(M*) for all M,.



Visualizing the free parameters of A-separability

After having meticulously computed the number of free parameters under Mr-separability,
we recall our comment in the introduction to this section that the number of free parameters

under M,-separability is effectively illustrated in (3.3) by G's upper triangular form under

the linear transformation specified by [M, AI] (we have assumed that M, has full column

rank). This equation can be rewritten in terms of G as follows:

G I* M' [1 [*AI M2-1 1 (3.51)0 H(22) J

Expressing G as in (3.51) intuitively allows one to visualize the free parameters under A,-
separability. The p(rj - p) zeros in the (2, 1) block of the middle matrix of the right hand

side of (3.51) are the constraints imposed by (3.46), and the number of potentially nonzero

entries in the matrix, 72 - p(Tj - p) is the dimension of the null space of (3.46). If we further

consider the linear constraints that the rows of G must sum to 1 (3.47), we obtain

[M M] [ L H H() ] [kIM M] 1-=1 . (3.52)
1[0 H(22)_

By multiplying both sides of (3.52) by [A, Mj and recalling (3.4), we obtain,

The seemingly convoluted (3.53) simplifies substantially when 1 c j~)

1* 1(12) IL , M L 1 ] [AM M 1
0 H(22) 0 

* * 1 =j * IL 1* . (353)

where we have used the fact that [M I] 1= 0 if any only if 1 E R(M,). When 1 E R(JA),
as should be evident from (3.54), the additional linear constraints of row-stochasticity (G's

rows summing to 1, i.e., G having a right eigenvector of 1 associated with the eigenvalue

1) require that M -LI be a right eigenvector of H* associated with the eigenvalue of 1.

From our discussion of the correspondence of the eigenvalues and eigenvectors of G and

H* (Section 3.1.2), this fact should have already been deduced. The exact number of free

parameters involved in Mt-separability, 1,2 - p(7 - p) - p, is illustrated in (3.51), taking

into consideration the p additional constraints imposed on H* when 1 E R(M,). When

1 R(M), there is an additional linear constraint for each row of the middle matrix on the

right hand side of (3.52), meaning the number of free parameters involved in Mt-separability

must be j2 -p(q -p) -q. The parametrization of Mil-separability is complete by recognizing

that such free parameters of the middle matrix on the right hand side of (3.51) must lie in

a particular cone, which is the nonnegative cone under the linear transformation specified

by [M* M].



3.2.2 The feasibility set 9(M) under M-separability

In Section 3.2.1, it was shown that matrices exhibiting M,-separability can be character-

ized as the nonnegative matrices satisfying the linear constraints of (3.48). Under M-

separability, a set of linear constraints will be imposed by nature of being M,-separable for

each M, E M. All such linear constraints satisfied by a matrix G exhibiting M-separability

can be illustrated as follows:

1'®I 1
Ml(1)' [M3((1)'] 0

M1(2)' 0 [M(2)'] vec(G) 0 , (3.55)

M(Y;) [M(T)'L]' 0-

where
M = l{M(1), Ml(2), ... , M()} . (3.56)

The dimension of the affine subspace of matrices G solving (3.55) equals the dimension

of the left hand side matrix's null space, provided that the constraints are consistent. Note

that this left hand side matrix of (3.55) is a block Kronecker matrix. In general, the rank

of a block Kronecker matrix will not have a simple analytical solution. An exception is

when the common orthonormal bases assumption is satisfied (discussed in Appendix A.2.1)
for matrices 1, 1(1), M1(2). ., (r), meaning that there is single orthonormal basis in

R77 whereby the range of 1 and each M(r) can be expressed as the span of a subset of the

basis vectors. As discussed in Appendix A, this notion is the linear algebraic equivalent

to the running intersection property of junction trees in Markov random fields [411, as

well as sufficient conditions for the extendability of measures [42, 43, 44]. Obviously this

necessitates that 1 E R(M(r)) for all r. A special case of this is when

1 c R(M(1)) c R(M1(2)) c ... c R(M(T)) , (3.57)

which the reader should recognize as regular separability (Section 2.2.4). Corollary 19 offers

an analytical expression for the dimension of the affine subspace of matrices G satisfying

(3.55) when regular separability holds,

T

7/2 ( ( + (PAI(1) - 1')(- p1(1)) + Z(pM(r) - AM(r-1))( - PAI(r)) (3.58)
r=2

where pMlI(r) is the rank of M(r). If there exists a strictly positive matrix exhibiting such

an instance of M4-separability, then (3.58) also provides the dimension of g(M), as stated

by the following theorem.

Theorem 3. Consider an instance of regular separability, with

M = {M(1), M(2), ... , M(f)} , (3.59)

and for each r, M(r) has rank pI(r).

Provided that there exists a strictly positive transition matrix exhibiting 1W-separability,
then the dimension of 9(M), the set of row-stochastic matrices exhibiting M-separability,



will be

dim (g(A4)) =Tr/2- 1 -~ (PI(r) - PAI(r-1)) (7 - PI(r))

ri

= dim(g) - (PMIr - PM(r 1))(TI - PM(r))

= dim(9 (M(T)) - (PNI(r) - PAI(r--1))(PI(r) - PI(r)) , (3.60)

where we have defined pM(o) 1.

Although there are other cases for which one can derive relatively simple analytical forms
for the dimension of 9(M), we do not pursue these other cases. Our canonical examples of
M-separability are covered by Theorem 3.

Visualizing the free parameters of regular separability

The number of free parameters under regular separability can be visualized via a linear
transformation on the matrix G. To show this, we define a new orthonormal matrix M(r)

for each M(r) E M. Let M1(1) be an orthonormal matrix with the same range space as

M(1), with its leading colnumn being 1. We represent M(1) as

M(1) = [1 AlO] , (3.61)

where the columns of Mi serve as an orthonormal basis for R(M(1)) n1
Then for each 1 < r < F, let

f(r) =K(r - 1) Mlrir _1 (3.62)

where MI3 P i is a matrix with orthonorinal columns spanning

R(MI(r)) n ' R(M(r - 1)) . (3.63)

Note that this process, an example of Gram-Schmidt orthogonalization, is constructing
the orthonormal basis guaranteed by the common orthonormal basis assumption. By nature
of our construction and the common orthonormal basis assumption, it follows that

R(M(r)) - R(M(r)) .(3.64)

By (3.64) and Corollary 3, A(r)-separability must be equivalent to M(r)-separability.

Consider the linear transformation of G under the orthonormal matrix [M(T) M(r):

Hl(r) *G = M(I) (F)* [M() M(T)'] , (3.65)

where the (2, 1) block in the middle matrix on the right hand side of (3.65) is 0 by the
assumption of M(7)-separability, and H(T) is the matrix that propagates the partial infor-

mation A7rM(T).



Because of the way that M(F) is constructed (3.62), the matrix specifying the linear

transformation of (3.65) can be equivalently expressed as

[M(f) M(T)_ = ( - 1) MrLT-1 M(T)
(3.66)

and by induction,

[2i11(T) M() -I= ( - 1)
= [I7( - 2) M(T - 2)

-=' 1 1] (3.67)

What this means is that the middle matrix on the right hand side of (3.65) can illustrate

all constraints of (3.55) simultaneously., that is, all linear constraints associated with M-

separability:

M(F) G L
Ho,2  ...

H1 2  ...

H 2, 2  ...

0 ...

0 ...

0 0

PAI(2)

PAI(1)

Ho,-F
Hir

H 2 r

H0r

0

0

PAI(T- 1

-PMI(r

1 Ho,1

0 HH1,1

-Al21 1 .Ali

1 Ho,

I H1,

1 H2,-

1 H3yr

0

PAI(r)

2) -PM(r-1)

... Ho,,
.Hi,r

. r,r

is the matrix that propagates the partial information r). The numbers adjacent to the

brackets along the bottom of the matrix in (3.68) indicate the number of columns of a given

block. If one counts the number of free parameters in the matrix represented in (3.68),
one finds that this is equal to the dimension of g(M). There are different approaches

to counting the fixed parameters (and thereby the free parameters), and these different

approaches correspond to the different expressions for the dimension of the set of matrices

l21 1 .Al rir 1

1 Ho,1

0 H1,1
0 0
0 0

0 0

1 31(T)']

0

1

*

*

*

*

*

T0-PM~r)

where

PAI(i)-1

(3.68)

(3.69)

=- [M(; - 1) R11(T - 1) -,

fi(;F - 1)11

1l Ma-o



exhibiting M-separability as given in Theorem 3. For example, if one counts the entries

of the matrix that are fixed as 0 or 1 (in fact all are fixed as 0 except for the (1,1) entry)

column by column, one will obtain the expression in the first line of (3.60). Alternatively,
if one counts first the fixed parameters associated with assuming M(T)-separability, which

includes the (,q - pM(r)) x pM(r) block of zeros as well as the entries of the first column of

(3.68), and then counts the remaining entries that must be 0, column by column, we would

arrive at the expression in the third line of (3.60). It is important to be reminded that the

free parameters are constrained to be in a cone, which is the nonnegative orthant under the

given rotation.
As noted in Section 2.2.4, an MLSS of degree T that is derived from a finite state

Markov chain is an example of regular separability. One can show that the propagation

matrix of an MLSS of degree T will be upper block triangular, much like the propagation

matrix of the right hand side of (3.68).5 However, in the case of MLSS, the number of Os

will not correspond to actual number of free parameters lost under the assumption of an

MLSS of degree T, because of the redundancies of the representation. Effectively, the partial

information that is propagated in an MLSS is obtained via a matrix lacking full column

rank.

3.3 Illustrating the restricted dynamics of Mt-separability

A transition matrix G exhibiting M,-separability has restricted dynamics, as evident from

the constraints that must be satisfied in (3.2). Such constraints provide a mathematical

characterization of M-separability, but fail to offer visual or intuitive cues. In Section 3.1,
it was shown that M,-separability requires that particular subspaces be invariant (either by
left or right multiplication), but again, no visual intuition is offered. This section hopes to

offer such visual intuition into A-separability. A model with two automata (n = 2), each

having two possible statuses (m = 2) is assumed, meaning that r = m2 = 4. We consider a

particular 4 x 4 transition matrix for this set-up that exhibits A 1 )-separability. We then

illustrate the restrictions on the dynamics as a consequence of M -separability.

A discussion regarding the dynamics must begin with the joint transition matrix G,
which is given in this example as

2 1 1 3
5 4 5 20
1 1 3 1

G = -10 2 20 4 (3.70)
1 1 9 1
4 5 20 10
3 1 1 2

.20 4 .5 5 -

The matrix G is a representation of the time-homogeneous function E [sx[t + 1)' I [t]

(recall (2.5) for t - T = 1), or abstractly, G : S -- A, 6 where the domain S C R4 is the set

5 One may note that in an NILSS, propagation of the moments, i.e., partial information, is accomplished
via right multiplication of the propagation matrix, meaning that by switching from left multiplication to
right multiplication, such propagation matrices should become lower block triangular. However, this switch
is reversed in an MLSS, because its partial information vector (or state vector prior to taking expectations)
is in reverse order compared to the ordering induced in our example by the process of constructing AT in
(3.61) and (3.62).

6 Using the same notation for the function and the matrix that represents the function is sloppy. At the
same time, representing the matrix and the function with different notation, we feel, would be confusing.



of possible values for the state indicator vector, i.e.,

S = {ei, e 2 , e 3 , e4} , (3.71)

and A c R 4 is the probability simplex, i.e., the convex hull of S, the set of probability vectors

of length 4. Fig. 3-3 illustrates such a mapping using arrows, where both the domain and

range of the function are superimposed. Each arrow originates at a standard unit vector

in the domain S and points to the element in the range A to which it is associated by the

function. Note that the probability simplex for an alphabet of size 4 can be visualized in

3-dimensions as a regular tetrahedron, as all probability vectors satisfy the linear constraint

that the entries sum to 1.

Typically we think of the domain of the function G as being extended to the entire

probability simplex A, which is accomplished by taking an expectation on both sides of

(2.5), where we obtain the new function

ir x[t + 1]' = -7rx[t]'G , (3.72)

defined for any initial condition irx[t), i.e., any element of A. Iterated expectation extends

G as a linear function that is defined over the extended domain A, the convex hull of the

original domain, S. Such an extension is well defined because each probability vector in A

has a unique convex expansion in terms of the extreme points of the probability simplex,
the standard unit vectors.

In order to visualize MM'-separability, the dynamics specified by G must be considered

under a transformation by MA10). Define

S {e'MA): e E S , (3.73)

and
A - {7r'M ) : 7t A . (3.74)

Both S) and AM1 ) are subsets of R4 because MO) has p = 4 columns. However, as the rank

of MM1 is p = 3 < 4 and I E M0), the dimension of both sets is p - 1 = 2. An additional

dimension beyond the rank of MfI) is lost when 1 E AM because the linear constraint that

a probability vector's entries sum to 1 is transformed into an additional linear constraint
on the transformed spaces SM) and AM.

As each row of MM) is unique (or equivalently, s'AMv(1) is a state vector for the network),
we can define the function HM) : S) -+ AM, which is the transformed version of our G
function, defined as follows:

H(1)(e(1)) = M4A1-(eM) I/GMP') V e (1 E SU (3.75)

where M--(.) is the inverse mapping from S) to S (well defined as it only defined on

extreme points). This function HM) is illustrated in 2-dimensions in Fig. 3-4, once again

using arrows with the domain and range superimposed. In the projection shown, the first

and third coordinates of the vectors serve as the x and y Cartesian coordinates.

M1)-separability holds if and only if HM) can be extended as a linear function over AM.
The fact that HM) cannot necessarily be extended as a linear function over AM) should be

clear. As AM1 ) is a convex set in p - I = 2 dimensions with r1 = 4 extreme points, an element
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Figure 3-3: G : S - A. Figure 3-4: H( 1 ) : S(l) A(1).

-r(c) E A(') will not necessarily have a unique representation as a convex combination of

the extreme points S(1). By Carath6odory's theorem, any element 7r(l) in a convex set
in p -1 = 2 dimensions can be expressed as a convex sum of p = 3 extreme points [45].
For many points in the convex set, their convex expansion in terms of extreme points will
not be unique. This may result in the linear extension of HM1 ) over A 1) to be ill-defined;
M(l) -separability is the property that assures that such an extension is well-defined for all
elements r(') E A). Fig. 3-5 illustrates this problem of extending HM) over AM' for an
underlying transition matrix G that is not M1 ) -separable.

There are several visual ways to verify whether or not HM can be extended as a lini-
ear function over AM. When n = 2 and m = 2 as in our example, one must verify that

the four points comprising the image of H(1) form a parallelogram, with neighboring ver-
tices being neighboring extreme points in their preimage. This notion extends to general
Mk-separability: when the image of S, under HM) is a linear transformation of S", ,-
separability is satisfied. A specific example of this illustrated in Fig. 3-4, as the vertices of
the parallelogram are a linear transformation of the vertices of the square.

Alternatively, as HM') is a vector-valued function, one can visualize in 3-dimensions the
individual mappings for each coordinate of the function. HM1 ) can be extended as a linear
function if and only if the four points plotted lie within a common plane for each one of these
coordinate functions, meaning that there is a matrix representation of HM' : S) -+ AM.
Fig. 3-6 illustrates this fact for G given in (3.70).

For general A, -separability, A, will be a (p - 1)-dimensional convex set whenever I E
AI. When the jth coordinate function of H, is defined at p elements of S,, these p plotted
points representing the jth coordinate function will coincide in a plane. Provided that
the p plotted points of the function only satisfy a single linear constraint, the plane will
be unique. When such a plane is unique and the underlying transition matrix G is M-
separable, the values of the jth coordinate function at the remaining q - p elements of S"
will be predetermined by the plane, should M,-separability be satisfied. This realization
suggests that the constraints imposed by A,-separability are captured by p, the number of
linearly independent coordinate functions of H, multiplied by q - p, effectively the number
of values of each coordinate function of H, that are constrained; this should be intuitively
satisfying as it concurs with the result of Theorem 2.

(() 1. 1.0()) (10 1. 0)
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(a) Defining H(1 )(7r( 1)) by taking the appro-
priate convex combination of H ( (0,1, 0,1)),
H(1)((0, 1,1,0)), and H ") ( (1,0, 1,0)).

(0,1,1,0)

(0,1,0,1)

(1,0,1,0)

(1,0,0,1)

(b) Defining H(1 )(7r(1 )) by taking the appro-
priate convex combination of H()( (0,1, 0,1)),
H('()(0,1,1,0)), and H('()(1,0,0,1)) (inconsis-
tent with the extension pictured in part (a) ).

Figure 3-5: Two ways of attempting a linear extension of HP) at 7r(1). As illustrated in
(a) and (b), there are two different ways to express the partial information vector 7r() as a
convex combination of 3 extreme points in SM). H10)(7r(')) is defined in each case by taking
the appropriate convex combination of HM' evaluated at the three extreme points, i.e., a
linear extension. Because the underlying G matrix does not exhibit MM -separability, the
two ways are inconsistent.
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Figure 3-6: Individual plots for the coordinates of the function H0l)(-)=
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3.4 The dimensions of M(O -separability and M(7)-separability

We now apply the results of Theorems 2 and 3 to the canonical examples of M(r)-separability
and M()-separability. As clear from the theorems, the tasks that remain involve determin-

ing the rank of M(r) and whether or not 1 E R(M(r)). Because M(r) can be expressed as

a block Kronecker matrix, the approach explained in Section A.2 can be followed to derive
its rank.

The relatively simple case of determining the rank of MM1 ) is first considered, and an

equation for the dimension of g(M(')) is derived as a function of n and m, i.e., the number
of automata and each automaton's number of possible statuses. We compute the dimension
of AI()-separable probabilistic models is compared to otherwise unconstrained Markovian
models. Leveraging the same techniques used to determine the rank of MM, we develop a

general equation for the rank of M(r), and thus, the dimensions of g(M(r)) and g(Mr)),
as a function of n, m and r. At times, our discussion will involve some long and tedious

derivations, although we feel there is value in following the derivations closely to be ex-
posed to several interesting techniques. Those with less patience are encouraged to skip to
Section 3.5 to see how g(M(r)) and g(MV)) vary in regards to n, m, and r.

Intuitively, one can argue that the rank of M() should be roughly the number of inde-
pendent pieces of information that the partial information vector S(r) = s M\IM ) provides (we
use the terms 'independent" and 'information' in a loosely defined sense). Recall that the
partial information vector s(r) provides the marginal PMFs for the statuses of any r-tuple
of automata. There are (7) subsets consisting of r unique automata, and all information

contained in S(r) can be captured by these (7) rth-order marginal PMFs. Yet there is
overlapping information provided by any two rth-order marginal PMFs that have associ-

ated automata in common: both provide the marginal PMFs for any automata in common.
To 'orthogonalize' this information into independent pieces, consider the following: s(r)
provides the univariate marginal PMFs for each automata. Assuming that all automata
have the same number of possible statuses, then the univariate marginal PM\JFs provide
(4)(m - 1) pieces of information-there are (") such marginal PMFs, and each provides
m - 1 pieces of information (as probabilities must sum to 1). Next, consider the bivariate
marginal PMFs. There are (") bivariate marginal PMFs of interest, and considering that
the univariate marginals PMFs are already known, each bivariate marginal PMF provides
(m - 1)2 bits of information. This gives us a subtotal of () (m - 1) + (") (m - 1)2 pieces of
information. By continuing this process, we would find that the partial information vector
s(r) contains

S (m - 1 (3.76)

bits of information, and consequently (3.76) would be the intuitive estimate for the rank

of M1(. This estimate seems reasonable, particularly because s(n) would provide complete
information, i.e., m - 1 pieces of information, and we know by the binomial expansion

theorem,

m"n - 1= (m - 1)' (3.77)
r=1

In fact, as proven based on the structure of AI(r) in Theorem 5, such an intuitive estimate
is off by 1, and only because we are trying to intuitively estimate the rank of M(r) by
considering the partial information it provides when left multiplied by a probability vector,



which is inherently constrained to sum to 1.

3.4.1 M )-separability

We wish to illustrate the process of determining the dimension of a probabilistic model

for the special case of MC)-separability. Recall that MM) is the matrix that maps the

network's state indicator vector to a sequence of status indicator vectors (and under expec-

tations, maps a probability vector for the network state to a sequence of univariate marginal

probability vectors). As has already been shown in (2.23), MM) can be expressed as

M [) M -1 M2 ... Mj , (3.78)

where My is the matrix mapping the state indicator vector to the status indicator vector

for automaton j. As shown in (2.15), the mixed-product property of Kronecker products

permits one to represent each AI as

M.li 10 1. ._ @ . .. 0 1]. (3.79)
jth term

By (3.78) and (3.79), clearly M_1) is a block Kronecker matrix. We shall determine the

rank of M~l) by following Appendix A.2 as a guide for determining the rank of a block

Kronecker matrix. However, before proceeding to do so, we shall show that I E Z(M 1 )).
Consider Mj, which is a subset of the columns of AM), for any value of j (3.78). Because

each row of My is a possible value (transposed) of the indicator vector for automaton j,
each row must consist of all Os except for a single 1. Consequently,

My 1 1 , (3.80)

and likewise, I E R(MM)). This fact can also be shown algebraically. From (3.79), one can

surmise that the kth column of My is

1 10 0 ... e 0... , (3.81)

jth tern

where ek is the k standard unit vector of length m, and equivalently the kth column of an

mj x mj identity matrix. By the distributive property (A.2), we can write

M, 1l= I 1lo...@e k 0... 01I

k=1

=1@10... (ek0 ... 01

=k1 . (3.82)

We now return to our second objective, which is determining the rank of MM. Although

there are several approaches to determining the rank of MM) (Appendix B in [12] derives

the rank of AM, denoted there as B, by induction), we pursue the approach outlined

in Section A.2 for block Kronecker matrices that relies on two tools: the mixed-product
property of Kronecker products (A.3) and Theorem 16b. A matrix MM) will be constructed



that shares the same range space as M10), with all of its columns being either orthogonal

(easily checked by the mixed-product property of Kronecker products) or equal. With such

structure, the rank of AP) can be determined by counting its unique columns.

AMgi will be a block Kronecker matrix,

,I 1  [ M1 M2 .... M , (3.83)

where
A j .1 .0 1 ... f(mJ) . , (3.84)

jth term

and F(mj) is an mj x mj orthogonal matrix with its first column being 1. For our purposes,

we do not explicitly construct such a matrix F(mi), only note that such a matrix exists.7 In

comparing the definitions of Mj (3.79) and Mj (3.84), we see that I, the jth term in the

Kronecker product defining Mj, has been substituted for F(mj), another square, orthogonal

matrix that has 1 as its first column. As R(I) = R(F(mh)), by Theorem 16b, it follows

that R(Mj) = R(Mj), and furthermore, by Theorem 17. the columns of each My must be

orthogonal. Consider two columns in distinct blocks of -MM: column k1 of A, and column

k2 of MIr 2, which will be denoted as x1 and x 2, respectively, for notational simplicity.

Evidently from (3.84),

x1 = & 1 .... o1 , (3.85)

jith term

x 2 = 1010.0 j-2) - ... 01 (3.86)

j2th term

where -y <j) is the kth column of F(mTh). If ki = k2 = 1, both x1 and x 2 are a column of all

Is. Otherwise. either ki f 1 or k2 f 1, and without loss of generality we will assume that

k1 f 1. Provided that ki , 1, it will be assured that j'1 = 0, and thus,

(x1, X 2 ) X 1 X2

j 1 th term

-L (9@L0 ...@ .. %2

j2th term

jIth term j 2 th term

=0 , (3.87)

7 Should one wish to explicitly construct 1(mj), it is fairly straightforward to do. Naturally the first

column is 1. The remaining columns must span RZ(1), the orthogonal complement to the all is vector.
Determining a basis for R' (1) is straightforward: consider the vectors (1, -1, 0,... 0), (0, 1, -1, 0,... 0),...,
(0, . . . , 0, 1, -1). Clearly such vectors are linearly independent and as all are orthogonal to 1, such vectors
must form a basis for R'(1). Although this is not an orthonormal basis, such a basis can be easily converted
into an orthonormal basis via Gram-Schmidt.



Table 3.1: Dimension of g(MM)) for varying n (m = 2).

dim (g(AMI))) dim (g(MI)))

dim(g) dim(g)

n =2 10 12 0.833

n 3 44 56 0.787

n 4 196 240 0.817
n 5 862 992 0.869
n 10 1037422 1047552 .990
n 100 1.607 x 1060 1.607 x 1060 1.000

where the third equality is by the ubiquitous mixed-product property of Kronecker products

(A.3). We conclude that the first column of each M is the all is column, and otherwise,
the columns of A(1) are orthogonal. As MRM has a total of n _ mj columns,

rank(MA1 )) = rank(.A('))

(3.88)>mj - n +1
j=1

We now can conclude using (3.88) and Theorem 2 that

dim (g(MI))) = Imlm-

ju ria -1) ( mi - T1 (3.89)

In the case that n = mj for all J, the expression for the

simplified to

dimension of g(M1(1)) can be

dim (g(M())) =m" (m" - 1) - (m" - n(m 1) - 1) (n(m -1)) (3.90)

We can see how the dimension of g(M')) evolves in relation to the dimension of the oth-

erwise unconstrained set of row-stochastic transition matrices, denoted as g. This relative

growth is highlighted in Table 3.1 and Table 3.2 for the m = 2 and m = 3 cases, respectively.

The reader may note some interesting asymptotic behavior, which will be discussed further

in Section 3.5.

3.4.2 M()-separability: extending M )-separability

The techniques used to determine the rank of of MM) can be generalized to determine the

rank of M(r), for any value of r < n. To do so, we first need to show how M(r) can be

represented. Recall that M(r) maps the network's state indicator vector to a sequence of n'

rth-order joint status indicator vectors. Each joint status indicator vector sj corresponds to

Emy + n



Table 3.2: Dimension of 9(M(1)) for varying n (m = 3).

d(g(MW))dim (g(M(l))) dim(g) dim(g)

n = 2 56 72 0.778
n = 3 582 702 0.829

n =4 5904 6480 0.911
n 5 56486 58806 0.961
n 10 3.486 x 109  3.487 x 109 .9997
n 100 2.656 x 1095 2.656 x 1095 1.000

a different sequence of r automata, 8 which is specified by the vector subscript j. Naturally
under expectations, M(') maps the probability vector for the network state to the marginal
probability vectors for the joint statuses of any r automata.

Like MM , we can represent M(r) in block form:

M(r) [ M m1 M( 2) ... M(n] , (3.91)

where each block Af (a marginalizing matrix) maps the state indicator vector to the joint

status indicator vector sj. The sequence of vectors j(1), j(, .. , j("* consists of all length

r vectors consisting of integers between 1 and n, in lexicographic order. For example, when

r 3, j = (1, 1, 1), j(2) = (1, 1, 2), and so on.

Unlike the case when r = 1, M(') for r > 1 is not a block Kronecker matrix. Prior

to applying our techniques for determining the rank of block Kronecker matrices, some

manipulation of the blocks is necessary, made possible by defining some new notation, the

binary subset operator ('c') for vectors. Let the boolean function k c 1 for vectors k E R'

and 1 E kr be defined as follows: for vector k, define the unordered set /C consisting
of the values assumed by the elements of k, and similarly define a set L for 1; return

k c C. For example, suppose one wants to determine whether or not (1, 4, 2, 4) c (4, 1, 2, 3).
To answer this, we construct sets composed of the elements in each vector: {1, 2, 4} and
{1, 2, 3, 4}, respectively. Clearly, {1, 2, 4} C {1, 2, 3, 4}, and consequently it follows that

(1, 4, 2, 4) C (4, 1.2, 3). Note that k C 1 is well defined even when the vectors k and I have
different lengths.

Theorem 4. If j c k, then
RI(Mj) c R(Mk) . (3.92)

An immediate corollary is the following:

Corollary 8. For r < r,
R(~ )C R.(ME) . (3.93)

The corollary follows by noting that for any block Aj of M(r), there must exist a block Al

in M/(r) such that j C 3.

31n defining a sequence, the ordering of the elements is important and repeated elements are permitted.



Proof of Theorem 4. By assumption, we have j C k. Suppose that j E Rr and k E R'. We

can construct a matrix MAkj that maps the joint status indicator vector for automata k

to the joint status indicator vector for automata j, i.e.,

s'kMk-j =s . (3.94)

The matrix Mkaj can be defined row by row. Suppose that Sk = el, the lth standard unit

vector. From this information that sk = el, we can determine the values of Ski, sk2 , ... sk,,

where k = (ki, k2 , .. , k). As j C k, we also know the values of sy, si,..., sj and

consequently the value of sj, which we denote as ef(1). Define the lth row of Mkaj as ef(l),
ensuring that e'MAIk = e'(1). Note that for some values of 1, it is not possible for sk to
assume the value of el, e.g., for mi = 2, si 0 si cannot equal e 2 or e3 . When there are no

possible combination of values for ski, ... , sk, such that sk = el, define the /th row of MAlkj
to be all Os (technically how it is defined is irrelevant). One should now be convinced that

when Mkaj is defined in this way for all 1 1, 2,... , k, it follows that Afk j as constructed

satisfies (3.94), and therefore,
s'AI = s/ s' Mk-j

Ss' . (3.95)

As (3.95) holds for all possible values for sx, which span R', we conclude that M =
AkMAkj, and by linear algebra,

R(Mg) C R(M) . (3.96)
D

By lines of reasoning similar to those used to prove Corollary 8, we claim that for any

block M in KIM (3.91), there exists a vector k that corresponds to a strictly increasing

sequence, with j c k (j and k need not be distinct). Based on this observation, we define

M(r) A [Ai Mk2 ... M I (3.97)

where k1, k 2 , . .k. , is the subsequence of ji, j2, - - - , , in (3.91) consisting of all vectors

that correspond to strictly increasing sequences. Evidently by our claim and Theorem 4,

R,(fi(r)) = R(M(r)) . (3.98)

From this point forward, we mirror the steps taken to determine the rank of MM, as it can

be shown that fj(r) is a block Kronecker matrix. Effectively, this reduction from M(") to

SI) is the structural equivalent to the intuitive argument in the introduction to this section

that only (') of the rth-order marginal PMFs produced by MM under left multiplication

by a network state probability vector are necessary.

For each k = (ki, k2 .  kr) corresponding to a strictly increasing sequence, we can

represent Mk as

Ilk = 19.. .10 I l®.. .®1 I$. ol.. .010 1$ 010.. .01 (3.99)

k 1th term k2 th term kr th term

as the mixed product property of Kronecker products (A.3) ensures that s' = s'Mk for Mk



defined as in (3.99).

For each block MAk in (3.97), we define a new matrix

k 1th term k2 th term kth term

(3.100)
where F("), as in Section 3.4.1, is an m x n matrix with orthogonal columns and its first
column as the all Is column, 1. By Theorem 16, it follows that

R(M) = R(Mk) (3.101)

for any block Mk in (3.97).

If we consider the matrix

M MA k2  /k(n)1 , (3.102)

we can be assured by (3.98) and (3.101) that

R(M )= R(Mr)) , (3.103)

and moreover, by construction, all columnuls of 7(r) are either equal or orthogonal. Although
the details are slightly different, the idea as to why pairs of columns mlust be either equal
or orthogonal is the same as illustrated in (3.87) for the special case of M).

We can compute the rank of Ir) (and consequently by (3.103). the rank of M(r)) by
identifying the number of unique columns ill 1I(r). By (3.100), each column of (r) can be

expressed as a sequence of Kronecker products of all Is vectors interspersed with column
vectors from the F(") matrices, i.e.,

1 0 ... @1 0 1 ... .10 7 OIL ... Jr1 (3.104)

d 1 th term drth term

for some positions di, d 2 , ... , d, that identify the terms in the sequence of Kronecker prod-

ucts drawn from columns of F("Md), F(",1- ... , F(md r), respectively. Note that whenever

the first column of F(ITd appears (i.e., ji = 1) in (3.104), then we have an additional all
Is vector appearing in the chain of Kronecker products. By a basic counting argument, we
determine

rank(M(r)) = rank(M(r))

- # of unique colunis in M(r)

r

=1±+ > #ways for d1 ,... , dr' terms to be 1
r'=1 1<di<...<di<n

r n-r'+1 n-r'+2 n r'

=1 + . . .Y(m, - 1) .l( (3.105)
r'=1 d1=1 d 2 >d 1 d,,>dri i=1

where the leading '1+' accounts for the column consisting of all Is.

The expression in (3.105) can be simlplified when mj = m for all j. This is summarized



in the following theorem.

Theorem 5. When mj = m for all j (all automata have the same number of possible

statuses), M(r) is a m" x (nm)r matrix such that

rank(jM(r)) (m - 1)'' , (3.106)

and consequently,

rank( AI(r) (m - i)' . (3.107)

The statement regarding the rank of in (3.107) follows from the binomial expansion

theorem.

When there are automata with different numbers of possible statuses, we can conclude

Z )(n - i)Ir < rank (M(r)) (n 1)r' , (3.108)
r1=o r'=o

where Yf A maxj m, m A mi 1 in1 m. As (") =(nr) for fixed r (B.6),

rank(AI(r)) O(nr) (as a function of n) , (3.109)

whenever the number of possible statuses for each automata is bounded with rm > 1.

As derived in (3.105) and (3.106), we now have a way to compute the rank of M(r).

Because 1 E R(MM), we know by Corollary 8 that 1 E R(M(r)) for all r. Thus we

obtain the following corollary for the dimension of g(MC)) by combining Theorem 2 with

Theorem 5.

Corollary 9. When m = m for all j.

dim (g(M())) = 2 - rank(MI'(r)) - (q - rank(MC'))) - rank(M('))

-I ( n - 1)r

r'=O

=dim(g) - ( (m - 1) - 1 (m - 1)r (3.110)

3.4.3 M (r)-separability

In Theorem 5, the rank of I) is given in terms of r, n, and m. From the discussion

leading up to Theorem 5, it should be evident that M(r)-separability is an example of

regular separability. Consequently, we can apply Theorem 3 to determine the dimension of



the matrices exhibiting MA( separability:

dim (g(ME())) =/2 - - rank( I(1)) - 1) (r - rank(M(l))

- (rank(M (r)- rank (Mr 1) (r/ - rank (Mr)

= -r2 - - n(m - 1)( - 1 -rn(m- 1))

r~

r'~

The following corollary summarizes this result.

Corollary 10. When m = m for all j,

dim (g(M(T)) - - 1 - (n)(m -1)r (TI (m 1)(T )
r=o r=

= dim(G) -(n ( ) -1)

r=1 (T nr/=0

dim (G(M(r)) ) - (mr - 1) (mr-(1) . (3.112)

3.5 The evolving dimension of separability

In this section, we will focus on the evolving dimension of the set of matrices exhibiting Mr)
and M(7) -separability. Our focus will be limited to cases where all automata have the same
number of possible statuses, (my = m for all j); consequently, the parameters to be varied
are r (or T), n, and m. Up to this point, our notation for M(r)-separability has hid the fact
that our discussions are always in regards to particular values for n and n. Because all
three parameters r (or T), n, and n will be varied as we analyze the evolving dimension of
separability, we wish to incorporate Tm and n into our notation for M)-separability. Hence

in this section only, we write M_'"'")-separability and M ,"')-separability to indicate the

particular values of n and n.

3.5.1 Variation of dim (g(MI"'"n)) with r, for fixed n and m

In this section, we consider the variation in the dimension of the matrices exhibiting
M("')-separability, as r varies. In essence, we are investigating how the dimension changes

when we assume that higher-order marginals can be propagated (r increasing). We begin

with a simple case when n = 2 (all automata have only two possible statuses), developing

some intuition. We then proceed to the general m case. As n is fixed, our analysis involves
varying r between 1 and n.



Special case: m = 2

Consider Corollary 9, and the analytical expression it provides for the dimension of g(M.A1,")):

dim (g(M(rn"))) 2 ( ) (m - 1) (m - 1)r

(m-/)r (3.113)

in the m = 2 case. The first term on the right hand side of (3.110) can be ignored, as it

does not depend on r, and for the moment, let's also ignore the third term. Because the two

factors of the middle term must sum to rq = m" = 2', the middle term is symmetric about

r = " as a function of r (this is due to the binomial identity (n) =(k)) Moreover,
when the leading '-' sign is considered, the middle term as a function of r attains a unique

minimum at r = when n is odd, or at both r = n - 1 and r = when n is even.
The reintroduction of the final term does not appreciably change this characterization.
Although it destroys the exact symmetry about r n 2 1, there is still rough symmetry in

a neighborhood around r = - that expands as n grows; in addition, when n is even,
2the inium a r g bcoms unque(and thus in general for both even and odd m,

dim (g(M(r))) attains its minimum at r = [-J).9
This may be a bit counterintuitive. One may be lead to believe that in going from an

assumption that the univariate marginals propagate, M( 1)-separability., to one where the

bivariate marginals propagate, M(21) -separability, we would be assuming a 'richer' model.

For our purposes, "richness' corresponds to the number of free parameters of a probabilities
model. This intuition would be supported by the growth in the size of the matrix propa-

gating the partial information (H') would be a nm x nn matrix, while H(2) would be a

(nm)2 x (nm)2 matrix). Yet such intuition is countered by the fact that AM -separability
is a richer model than A(2)-separability. This becomes obvious by comparing the size of

the block of Os in (3.3) that is necessitated by each of the two instances of separability. In
fact, MJ(" )-separability is a richer model than M(rl)separability for all r < g (when

m = 2). By assuming that there is more information to propagate, one does not necessary

obtain a model with more freedom. Rather, the dimension of g(M(rrin)) (and hence the
richness of our model) is roughly symmetric about r = "2. For example, when m = 2 and

n = 11, there are roughly the same number of free parameters in assuming M 3 ) -separability
as M 7 ) -separability (see Fig. 3-8). Examples illustrating some of this interesting behavior
are illustrated in Figures 3-7, 3-8, and 3-9 for the cases of n = 4, n = 11, and n = 30,
respectively. Note that when r = 0 or when r = n, we have effectively assumed nothing,
and hence in these cases the dimension of g(M(n"m)) is the same as the dimension of g.

General case

When m > 2, we cannot simply use the binomial identity, (") ( "), to determine the

value of r for which dim (g(M(rn"))) will be minimized. Let's look at this general case

more rigorously, focusing first on determining the value of r for which dim (g(M(rnm))) is
minimized (for fixed n and m), which will be denoted as r*. We must minimize (3.110) as

9This analysis will be made more rigorously in the general setting when we consider values m greater
than or equal to 2.



Figure 3-7: Variation of dim (g(M(nn))) as a function of r (m = 2, n = 4).
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Figure 3-8: Variation of dim (g(MCrn,"))) as a function of r (m = 2, n = 11).
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Figure 3-9: Variation of dim (g(M(n"")) as a function of r (m = 2, n = 30).
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a function of r, which can be best visualized as minimizing

dim (g (M rn"))) r/2 - (/ -- p(r))p(r) - p(r)

where p(r) is the rank of MI"'"l derived in Theorem 5 as

p(r) =3 (m -1)' . (3.115)

As (3.115) is only defined at integer r, it is convenient to extend p(r) into a strictly
increasing differentiable function over [0, n] by interpolation, and then utilize calculus to
find a minimum. We denote this extended function defined over [0, n] as j(r),10 and proceed
by minimizing

712 (7- p(r))p(r) - p(r) . (3.116)

Any value of r E (0, n) for which (3.116) is minimized must satisfy

-(1±+r/)-p(r) + 2p(r)k(r) - 0 .(3.117)

As 2p(r) > 0 by construction, it follows that there is a unique minimum, which we denote
by r*, for which

1 1
( + r
2 2

1 1
= + -p(n)
2 2

(3.118)

Much as we did in the m = 2 case, we now wish to relate the integer r that minimizes

'0 We do not state how the interpolation is performed, as such details are irrelevant, only insisting that
the resulting extended function be strictly increasing and differentiable. The gamma function would suffice.

0o0 00 O -OO

0 0

00

0 0

0 0

0 0

0

20 25 30

(3.114)



(3.116) (r*), to something that is more tractable: the integer value of r that minimizes only
the middle term on the right hand side of (3.116). In pursuit of this objective, we attempt
to find the unique integer ro at which

P(ro - 1) < Ip(n) < p(ro) , (3.119)

and first relate such a value to T*. Note that ro or ro - 1 must be the integer that minimizes
the middle term of the right hand side of (3.114).

By definition, ro must satisfy (3.119), and therefore,

p(ro + 1) = + (m - 1)ro+1 + p(ro)

1
> +p(ro)

1 1
> + -p(n)

22

(3.120)

and in addition,

1
p(ro - 1) < p(I)

2
1 1
2 + I p(n)<2 2

P(T*) , (3.121)

where * is the unique minimum of the extended function p(r) characterized in (3.118).

By (3.120) and (3.121) and the fact that p(-) is strictly increasing by construction, we
conclude that

ro - 1 < r* < ro + 1 . (3.122)

Because the extended function of (3.116) has a unique minimum, the integer at which
(3.114) is minimized (and thus the value of r corresponding to the least rich instance of
A("")-separability), must be [f*] or [-*j. As ro is itself integer, it then follows from
(3.122) that

ro - 1< r* < ro + 1.(3.123)

Bounds on the value of r for which dim (g(MErn"))) is minimized are given in (3.123) in
terms of ro. Although it may not seem immediately obvious, ro can be determined in terms
of the parameters m and n. The key is to relate ro to the median of a binomial random
variable with parameters n and p m " As is well known, the mean of such a binomial
random variable is np; what may not be as well known is that the median of a binomial
random variable always coincides roughly with the mean, and in particular is always either
[np] or [np] [46]. Let's denote the median of a binomial random variable by ko, and by
definition of being the median, ko must satisfy

1
F(ko - 1) < - < F(ko) , (3.124)

2 F

where F(-) is the cumulative distribution function for the binomial random variable, or



equivalently,

ko-1 n m 1 11 ko )I -11

-(n) (-n-1)'(<)E (o (m-1 (3.125)E m m 2 1 m m

If we multiply all terms in (3.125) by m' = R (n)(mn - 1)', we obtain

ko-1 ko

(m - 1) 2(m -) ('M - 1 (3.126)
l=O 1=0 l=O

However, the alternative definition for ko given in (3.126) is precisely the definition of ro

as the value of r satisfying (3.119). Consequently, ro = ko, and as ko equals [nmlj or

Fnm,' by [46], the following theorem can be deduced.

Theorem 6. For fixed n and m. the dimension of g(M("n"m)), or equivalently, the number

of parameters necessary to specify uniquely any transition matrix of a M(nm')separable

model, decreases monotonically as r increases, until attaining a minimum at r*, after which

it increases monotonically. The value r* at which dim (g(M(r"n"))) attains its minimum

(as a function of r) can be bounded in terms of in and n as follows:

K r1- 1 r* 11 + 1 . (3.127)

Note that when m = 2, Theorem 6 is in agreement with our earlier conclusion that

dim (g(MCE"n")) attains its minimum at .

For general m, we conclude that M( "nm)-separability is a richer model than M(rHI

separability for all r < [n j - 1. Again this is interesting, as it says that in the case

of general m, by assuming that higher order marginals propagate rather than lower order

marginals, we are assuming a model with less freedom, provided that such higher-order

marginals involve a fraction of automata that is less than "f. When m > 2, there

does not seem to be a straightforward means to argue symmetry about the minimum r'.

Hence the only claim we can make in the general case of the behavior of dim (Q( ","0))

as r varies (for fixed n and n). is in regards to the value of r at which g(M"(rn")) is of
minimal dimension. When n is large, however, there does still appear to be rough symmetry

about the minimum; this fact will be discussed rigorously in Section 3.5.5. Figures 3-10, 3-
11, and 3-12 illustrate the evolution of the dimension of M(r,") -separability as a function

of r for m = 3, and n = 4. rn = 12 and n = 40, respectively. Fig. 3-13 does the same for

m =5 and n =30.

3.5.2 Variation of dim (g(Mr'")) with n, for fixed r and m

We now analyze the variation in the dimension of the set of matrices exhibiting M(rnm)

separability, as n grows. Effectively, we consider how the dimension of models with rth-

order marginals propagating changes as we consider larger numbers of automata. As the

dimension of such models will grow without bound as n grows (exponentially, in fact, as will

soon be clear), the real interest lies in comparing its growth to the otherwise unconstrained

Markovian case.



Figure 3-10: Dimension of 9 M n ) as a function of r (m = 3, n = 4).
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Figure 3-12: Dimension of g (M(rn,m)) as a function of r (m = 3, n = 40).

1.35 F

1.25

1.15F

0 5 10 15 20
T

Figure 3-13: Dimension of g ( Mr"m)

25 30 35 40

as a function of r (m = 5, n = 30).

x 10"

0 5 10 15

)OOOOGOOOOOOOOOOOo0

0 0

0 -

0
0

0

0

0

0

0

.0

).00000000 00 000 00 00 .

0

00

0

0

>o o o o o -o o o 0 .0

O

O~

20 25 30

x 10 3



In order to analyze the asymptotic behavior of dim (g(MCrn'")) as n increases, we
need to develop asymptotic equivalences for some terms that appear in the expression for
dim (g(ME"n4))) given in Corollary 9. As shown in (B.6), (") = 0(nk) when k is fixed.

As the rank of M(",n") (given in Theorem 5) consists of a sum of r such binomial terms, it
is straightforward to argue that

rank (M- ""m ) (nr) (3.128)

when r and m are fixed.
Applying this asymptotic result to Theorem 2, we derive an asymptotic version of Corol-

lary 9:

dim (g=(M ""?))= m"(, - 1) (e(nr) - 1) (in - (nr))

= m(m" - - - e(nr) (mn0(1/n)

= mn(r - 1) - mn+O(logn)

= m 2n-0(1/n) (3.129)

where we have used (B.17) and (B.15) to obtain the final expression. Evidently by (3.129).,
the dimension of g(M"(r"n.n?)) grows exponentially as a function of n. Of particular interest,
however, is how the dimension of g(Mr"")) changes relative to the dimension of the
otherwise unconstrained Markovian case. In the past, we have denoted the set of otherwise
unconstrained transition matrices as g; however to emphasize n and m as parameters, we
now denote the set of otherwise unconstrained rn x m" stochastic transition matrices as
g("-". Using the third equality of (3.129) to evaluate the difference between the dimensions
of 9('"') and g(M"(r")), we produce the following theorem.

Theorem 7. The difference in the number of parameters necessary to uniquely specify an
otherwise unrestricted Markovian network and one that satisfies MI,"r")-separability grows
exponentially with n, and in particular,

dim (g(n1"0)) - dim (g(Mdin"))) = rnn+O(logn) (3.130)

Nevertheless, the number of free parameters in both cases is asymptotically equal, i.e.,

dim ( "")~dim (g(ME'"0 'M)) ,(.131)

and not only does the ratio of dimensions converge to 1, but it converges exponentially fast
at an asymptotic rate of ln i.

The fact that the number of free parameters is equal asymptotically, whether or not
MEn4"n-separability is assumed, is clear by considering the relative difference between the
dimensions of g(n"") and g(M(rnm)):

dim (g(nm)) - dim (g(M,","))) mn±O(log n)

dim (g(nr)) ~nm(mn - 1)

= rn-(n-e(log "))

- 0 as n-+o00 . (3.132)



Figure 3-14: Fraction of free parameters for M(n),)-separability, relative to the uncon-

strained case, as a function of n (r 1).
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Note from (3.132) that not only does the relative difference converge to 0, but it converges

exponentially fast at an asymptotic rate of

1 dimt(~i) dini((Irm ~ n)
nlm In hm r (3.133)

ni-+oo n dim (g(nrn))

After the rank of Mtefl) was derived in Section 3.4.1, the evolution of the dimension of

g(mLn~m)was illustrated for various values of n (m fixed) in Tables 3.1 and 3.2. The tables

suggested that the ratio of the dimensions of l. and () converged rapidly to

Sas ra increased. In fact, as illustrated in (3.132), such convergence is exponential, for all

values of r. Figures 3-14 and 3-15 illustrate this exponential convergence as a function of

n for several values of mn simultaneously, in the r = 1 and r =2 cases, respectively. As

corroborated by (3.132), the rate of exponential convergence is greater for larger values of

m. Interestingly, for small values of m in both the r 1 and r ,2 cases, the ratio of the

dimensions of g(iu(ralm)) and (nin) drops initially.

The rather interesting conclusion to make from this analysis is that as n increases, net-

works exhibiting M(rnw) -separability approach the generality of otherwise unconstrained

networks, having at their disposal a fraction of the parameters of the unconstrained models

that rapidly approaches 1. This is because the constraints of M(rn) separability (consult

Section 3.3 for a visualization) increasingly become negligible relative to the total number

of free parameters. This generality in probabilistic models exhibiting M(rn")-separability

is intriguing, considering that M -"n")separable models offer substantial computational

advantages, especially when n is large. M(,","-separable models have the ability to prop-

agate partial information with computations of complexity polynomial in n, rather than

exponential in n. When n is large, the loss of generality in assuming M(rn)-separability



Figure 3-15: Fraction of free parameters for M )-separability, relative to the uncon-
strained case, as a function of n (r 2).
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is relatively minimal, while the computational tractability that is gained is substantial.
When one has the advantage of being able to engineer or design a probabilistic system,
it becomes increasingly less restrictive, in a relative sense, to ensure M(rr")-separability
when n is large. But one should not take this too far. Should there exists an M(n"7n)-
separable system that matches a high percentage of constraints for an arbitrary Markovian
network of stochastic automata (Section 3.6 will explain this possibility further), one can-
not conclude that the given network is M "(,,n,,) -separable. One must check the specific
constraints that permit the propagation of partial information, the number of which is
increasing exponentially with n.

3.5.3 Variation of dim (g(MErn"))) with 7, for fixed n and m

Consider the variation in the dimension of the set of transition matrices exhibiting M("'rm-
separability, as f varies between 1 and n. In spirit, this is similar to the variation discussed
in Section 3.5.1, except as we increase 7, it is assumed that not only do the 7th-order.
marginals propagate, but the rth-order marginals, for all r < T, still propagate, too. Because
constraints accumulate as 7 grows, the dimension of M r -separability will monotonically
decrease with increasing T.

Figures 3-16 and 3-17 illustrate this decrease in dimension of the set of matrices exhibit-
ing Mrnm")-separability, as a function of 7, for different values of m and n. The figures
suggest that the dimension is relatively constant until a transition region where it makes
a sharp transition downward to roughly half its original level, before once again becoming
relatively constant. The figures suggest that the transition region from relatively high di-
mension to relatively low dimension is complete at 7 m -n, which one should recall from

m
Section 3.5.1 corresponds to the value at which the dimension of _/rnm))is minimized



Figure 3-16: Dimension of g( M(N "m) a

as a function of r, for fixed m and n. This argument will be made rigorous in Section 3.5.6

for large values of n.

3.5.4 Variation of dim (g(MA4(rAnrn))) with n, for fixed 7 and m

When r and m are fixed, and n grows, the dimension of g(M(nm)) will grow exponentially,

which is straightforward to show using Corollary 10 and following techniques similar to those

illustrated in Section 3.5.2:

dim (g(M(rn,m))) i) (M n

r-0 r'=O
(m -1)r)

r2n n 0(m 
1r=o

= m2,n -m'n-0(1/n)O(nT)

- m2n-o0(1/1n) (3.134)

where we have used (B.6), (B.14),(B.15), and (B.17).

Naturally, it is more illuminating to consider the number of free parameters under

M(.n)-separability in comparison to the otherwise unconstrained Markovian case. As

dim (g(M(Tn'm))) ,3

x 1014

0 0 00 0- *.

0

0

0

0

0.
.00. 0.

as a function of T (m = 3, n = 15).

dim (g (MA(-rn,nd)) )< (3.135)



Figure 3-17: Dimension of g (M as a f
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it can be concluded from (3.130) that

dim (g("'n)) - dim (g(M>l"'n"))) ; mn+O(logn)

meaning that the absolute difference in the number of free parameters is growing exponen-
tially. For the relative difference, we apply the third equality of (3.134) and find that

dim (g(M+r))

dim (g(nm))

enr)mn-0(1/n)

m2n-O(1/n)

- (n (logn))

-- as n --+oo(31)

These results are consolidated into the following theorem resembling Theorem 7. In
fact, Theorem 8 can be directly deduced from Theorem 7 upon realizing (3.135) in addition

dim (gn'm)) - dim (g(M( nm))) < E (dim (g(nm)) - dim (Q(M(r.nm))))
r=1

(3.138)

Theorem 8. The difference in the number of parameters necessary to uniquely specify an
otherwise unrestricted Markovian network and one that satisfies M r07")"separability grows
exponentially with n, and in particular,

dim (g(MrEnm))) > m(n+E(log3n)

dim (g(n"M))

(3.136)

as a function of r (m = 5, n = 25).

(3.137)

dim (Q C"''") ) (3.139)



Figure 3-18: Fraction of free parameters under M ,"-separability, relative to the uncon-

strained case, as a function of n (T = 2).

0.95 F

0.85F

0.75F

4 6 8
n

10 12 14

Nevertheless, the number of free parameters in both cases is asymptotically equal, i.e.,

(3.140)dim (g(nn)) ~, dim (g(MV "-" )) )

and not only does the ratio of dimensions converge to 1. but it converges exponentially fast

at an asymptotic rate of in m.

Figures 3-18 and 3-19 illustrate the exponential convergence of the ratio of dimensions for

several values of m simultaneously, in the T = 2 and r = 3 cases, respectively. The figures

affirm the increase in the rate of exponential convergence as m increases, as claimed by

Theorem 8. Qualitatively, the figures are similar to those illustrated in Figures 3-14 and 3-

15.

3.5.5 Variation of dim (g(M(rr,"))) with n and r = Lan], for fixed m, a

As was stated in Theorems 7 and 8, as n increases, the relative fraction of free parameters

under M(rnnm)-separability (or M (fn,")-separability) compared to the unrestricted case,

approaches 1, regardless of the choice of r (or T). Suppose that r increases with n, meaning

that progressively higher-order marginals are assumed to propagate as n increases. Let

r = [anj with a E (0,1). In order for the relative dimension of g(M(Lann,m)) to not

approach 1, it is necessary that rank(M(Lan~n,m)) = e(m"), as only then would it be

ensured that the block of Os in (3.51) would have 0(m2n) entries, on order with the number

of entries of G. Knowing that rank(M(Lantn,m)) = O(no") does not definitely answer this

question; hence, we require the exact equation for rank(M(rnn-)), as given in Corollary 9.
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Figure 3-19: Fraction of free parameters under M -separability, relative to the uncon-
strained case, as a function of n (T = 3).

0.95 -0,

0.85-

0.8-

0.75

0 ... 2
In3

m=4
m=5

4 6 8 10 12
n

14 16 18 20

Using Corollary 9, we derive an equation for the relative difference in the dimensions of
the set of transition matrices exhibiting M([an'nm) -separability and the set of transition
matrices otherwise unconstrained:

dim (g(m)) - dim (g(M(LanIn,)))
dim

m"n(mn - 1) m(m -1) + (()(m - 1) - 1 () (M - 1)

r=0 r=[anj+l

m",(m2 
- 1)

(3.141)

The key to understanding the asymptotic behavior of (3.141) as n increases is to realize
that the partial sums of the terms of a binomial expansion can be directly related to the
cumulative distribution function of a binomial random variable; this technique was first
previewed in Section 3.5.1. Upon making such a connection, standard results for random
variables, e.g., Chernoff bounds [47] and the central limit theorem [48], can be applied to
illuminate the asymptotic behavior of (3.141).

Proceeding, divide both the numerator and denominator of the right hand side of (3.141)



by m2n:

dim (g(nm) dim

dim (g(",0)

[anJ

r=0 r=Lanj+1 .4
mn-1 , (3.142)

and note that the partial sums can be related to a binomial random variable zn with

parameters n and m" 1m

dim (g(nm) -dim (g(M"i")) ((z _ cn) (z > an )) (3143)

dim (g(nm) ("n-"

Because z, is a sum of n independent and identically distributed Bernoulli random

variables with parameter " .,by the central limit theorem, it follows that

lim P ( z, < an) - 1 (3.144)
-4 ~ 2

for a
Otherwise, for a f i, we can derive the following Chernoff bounds [471:

P (zn < an)< D("I m 1) for a < - (3.145)
m

m-1 m - 1
P (z. an ) < eD(a|| m)f for a> 1 (3.146)

In

where D (a||"li) is the Kullback-Leibler divergence [49] between two Bernoulli random

variables with parameters a and i, respectively.

By incorporating (3.144), (3.145), and (3.146) into (3.143), we obtain the following
theorem.

Theorem 9.
dim (IM n"n"in)) 1 fa 1

lim = { m (3.147)
"n-+ooc dim (g(n'"0) if a =m1-4 3M1

Moreover, when a # m 1,the convergence of the ratio of the dimensions is exponential, at

an asymptotic rate of at least D (al M1).

Although we do not demonstrate this, one can obtain exponential lower bounds on the

probabilities of (3.145) and (3.146) to show that D (all" ) is in fact the asymptotic rate
of convergence when a n- 1 , not just an upper bound.

Intuitively, the reason why only a - "n- results in a fractional drop in relative dimen-

sion is that all mass of a binomial random variable with parameters "g' and n becomes

concentrated about " in + O(v ) for large n. The central limit theorem in a rough sense

states this fact, and Chernoff bounds definitively state this fact. Consequently, only when
a m 'is the rank of MLninm)) = O(m"); visually, all blocks of (3.51) are roughly of



Figure 3-20: Fraction of free parameters for M([ nnm)separability, relative to the uncon-
strained case, as a function of n (a = rn-i m =3).
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equal size, each having 2m" + o(m") rows and columns. When a f "m , as n increases.
the block of Os ini (3.51) becomes negligible.

Figures 3-20, 3-21, and 3-22 illustrate such convergence of the ratio of dimensions as
a function of ni for different values of a, when m= 3. Because the rate of exponiential
convergence is governed by D (a||"mi) and D (~II() > D ( |) the convergence of the
ratio of dimenisions appears to be faster in Fig. 3-20 when a = I, than in Fig. 3-21, when

0. -

The takeaway from Theorem 9 is that even when r = [anj, the relative difference in the
dimensions of the sets of transition matrices that are ME"r"m)-separable, and those other-
wise unconstrained, will be asymptotically equal, provided that a f "n . Such behavior
was suggested in the progression from Fig. 3-11 (n 12) to Fig. 3-12 (n 40), where it is
evident that the relative drop in dimension, becomes relatively more concentrated for larger
values of n about the minimum at r, (Theorem 6),"i

nm - 1 - 1 <*<;[m -1 1 +1  . (3.148)

m m

Moreover, one can argue from (3.143) and the central limit theorem that for large n, there
should be symmetry in the plot of the relative dimension of g(M"f"m) as a function of r

(for fixed mn and n) centered about "n 1n, when viewed over intervals of r on the order of
n. Figures 3-11 and 3-12 suggest such symmetry for relatively moderate values of ns.

"Note that from our results in this section, we could have ascertained that for large n, re r-i npo(n),
a result clearly weaker than Theorem 6, which identifies r as being in a fixed-length interval for any value
of n.



Figure 3-21: Fraction of free parameters for M(Lni"'")-separability, relative to the uncon-

strained case, as a function of n ( a = 5 M m = 3).
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Figure 3-22: Fraction of free parameters for MI(["I","')-separability, relative to the uncon-

strained case, as a function of n (a = = , m = 3).
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3.5.6 Variation of dim (g(ME"'"))) with n and T= [an], for fixed m, a

This next section continues the story of last section where r = Lan] for M(r, n, m))-
separability. A specific case of interest is when a = 1, i.e., M)-separability. Hence, the
results of this section will provide insights into the evolving dimension of models for which
rth-order marginals can be propagated, for all values of r.

Before proceeding to the derivations, we would like to offer some visual intuition into
the relative dimension of Mr1'")-separability when r = [an] and a e (0,1) (m fixed).
In Section 3.5.5, we showed that when a < "n-1, as n grows large, the relative dimension

of g(Mr'n)) compared to the unrestricted case approaches 1: equivalently, the relative
number of entries in the block of Os in (3.51) compared to the number of entries in the
entire matrix converges to 0. Let's consider M"(n)-separability from the perspective
of first assuming Mr/"nm)-separability, and then introducing the additional constraints to

ensure M",')separability. By comparing the middle matrix on the right hand side of

(3.51) with (3.68), it should be clear that the additional constraints to ensure ME"'I

separability only affect H(, requiring that it be block upper triangular. When a < " 1

clearly H(lalJ) will have a relative size approaching 0 as na -0 c. Consequently, when
a < i , much like g(M(lcri"I")), the relative dimension of g(M(LanIn,7n)) approaches 1

as na -c. On the other hand, when a > " , the size of H(lo"I will approach 1 relativem
to G, and consequently the relative dimension of 9(M(lo""")) will be roughly j, because

of the imposed upper block diagonal structure on H(la") under M4(laninm)-separability.
By a similar argument, when a = "I, the relative dimension of g(MA4(laninn)) should be
roughly 5, as each block in (3.51) will be relatively the same size, with one block consisting

of all Os. and a second block being upper block triangular.

With this visual intuition, the following the arguments should be easier to follow. Evi-
dently,

dim (g(nm) dim (g(Ma*ninmn))

dim (g(nn'")

dim g(nm) - dim (g(MlL "'"0 ))

dim (g(4m)

dim (g(M(anjnm)) dim (g(M(lanojn,mn)
+- dim gdi~m ) (3.149)

dm(g(n'"m)

where the second equality follows by rearranging the terms. Using Corollary 10, we obtain an
equation for the difference of the dimensions of g(M(LanInm)) and g(M([lonjnm)) relative



to the dimension of g(nin), that is, the second term on the right hand side of (3.149):

dim (g(M(LanJ,n,m))) - dim (g(M(LanJ,n,m)))

dim (g(n,m)

( n) 1)r

[anJ

k=r+1
()(m- 1)k)

dim (g(n,M )

lan( (>n- 2

1) 
)

r=1
( n ( T _ r J ~ r'

r2

dim (g(nm")

P( Zn < an))

2 1lanJ

2 E P(z'
r=1

=r))

(3.150)

172 dim (g("m)

where the second equality follows from the first by expanding out both expressions as a

sum, and z, is a binomial random variable with parameters "-i and n.

Now consider the two terms in the numerator of the right hand side of (3.150), for each

of the three cases, a < "--i a

lim 1P ( z <

1, and a > "-i. For the first term, we have

0
azn )2 = 1}

if a < mi

if az = m

if a> "M1

where the convergence to 0 and to 1 is exponential at an asymptotic rate of 2D (al " I), as

evident from our Chernoff bounds (3.145) and (3.146). The convergence to when a = 1

is due to the central limit theorem.

For the second term, we note that when a < "ii ,

YP ( z7
r=1

=r)2 < IP (zn = r)
r=1

- PE(z, < an)

< eD(al|"i n , (3.152)

meaning that the second term converges to 0 exponentially at a rate of at least D (a|l nI i).

When a > m1 let's assume without loss of generality that n is a whole number

multiple of m. By (B.10), we would be ensured that the mode of zn will be at "-in, and

Lan]

r=1

(3.151)



consequently,

[anj [anJ

E P(z -r)
2  P ( - 1n) IP(Zn r)

r=1 r=1

P zn m n

1
, (3.153)

27rn 

where the final inequality is from (B.12).

The upper bound on the second term in the numerator of the right hand side of (3.150)
in the case when a > "n can be complemented with a lower bound:

[anJ 2>

[n P(z, =r)2 > P zn m 1n
r=1

1
> m12. (3.154)

27rn 77

Evidently by (3.153) and (3.154), the second term in the numerator of the right hand side

of (3.150) converges to 0 at a slow rate (not exponential) when a > "-1: no faster than

0 (h), but at least as fast as

Hence, combining (3.147), (3.149). (3.150), (3.151), (3.152), (3.153), and (3.154), we

obtain the following theorem.

Theorem 10.
Theor m 10.dim (9 Q [at nin ))) f a < m1 -

lim = if a m-1 . (3.155)
ne dimn (>(M"-)

Moreover, when a < '%'. the convergence of the ratio of the dimensions is eixponential,
with an asymptotic rate of D (a||I ). When a > " -, the conve'rgence is at least as fast

as 0 , but no faster than 0 (s). When a = "Q the convergence is no faster than

As evident from Theorem 10, M(" -separability has an asymptotic relative dimension of

1/2.
Figures 3-23, 3-24, and 3-25 demonstrate the changes in the relative dimension of

g(M([annn)) as n increases, illustrating the three different possible behaviors. Note the

apparent slow convergence in the a = n-1 and a > "1 cases (Figures 3-24 and 3-25).
m mn

3.6 Interpreting the dimension of separability

This chapter has illustrated many interesting geometric and algebraic properties of separa-
bility in general, as well as specific properties exhibited by the canonical examples, M( )-

separability and M(rWseparability. One of the more interesting results regarding separa-
bility is the evolution of the dimension of models of M(r)-separability or M(-separability,



Figure 3-23: Fraction of free parameters for M(La" "m-separability, relative to the uncon-

strained case, as a function of n (a = < 1 m = 3).
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Figure 3-24: Fraction of free parameters for M"([an]" -separability, relative to the uncon-

strained case, as a function of n (a 2 m 3).3 TO
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Figure 3-25: Fraction of free parameters for M "["Jnn)-separability, relative to the uncon-

strained case, as a function of n (a = > m-1 m 3).
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both for fixed r and r increasing with n. As claimied in Theorems 7, 8, 9, and 10, such
models (with some limitations on the growth rate for A(r)separability) attain a relative
fraction of 1 of the dimension of the unrestricted Markovian models, and do so at an ex-
ponential rate. The implication is that such higher relative dimension would be suggestive
of more generality. This would be an advantage as far as being able to model and capture
more general dynamics. On the other hand, one mistakenly may be led to believe that
models which are not separable are in fact separable, because of the ability to fit a high
percentage of the parameters of a general Markovian model with an A()separable model
when n is large. This section seeks to illustrate the potentially advantageous implications
of MM -separable models having high relative dimension, while simultaneously serving as a
warning regarding the potential traps of high relative dimension.

If nonnegativity could be ignored, the implications of high relative dimension are clear.
It would allow separable models to match a higher percentage of linear constraints. In
this sense, they would be more general. For example, suppose that g(M,) is of relative
dimension d, d E (0, 1), meaning that

dim (g(M1)) d - dim(g) . (3.156)

Ignoring nonnegativity, this would imply that g(M,) is an affine subspace of dimension

d - dim(g). On the other hand, suppose that one wishes to impose a set of (d - E) dim(g)

independent linear constraints 12 on the transition matrix of a Markov chain, where 0 < c <
1. We will refer to such constraints as model-imposed constraints. When d ~ 1, one can

12 In order for the constraints on a row-stochastic matrix to be linearly independent, no more than r - 1
constraints can be imposed on each row.



think of such a set-up as imposing a number of independent linear constraints nearly equal

to the number of entries in the model's transition matrix, e.g., specifying nearly all of the

transition probabilities (except we are ignoring nonnegativity for the moment). Ignoring

nonnegativity, the set of transition matrices satisfying the (d - e) dim(g) model-imposed

constraints will be an affine subspace of dimension (1 - d + e) dim(g). The intersection of the

affine subspace of transition matrices satisfying the model-imposed constraints and the affine

subspace of matrices satisfying A-separability, which we will refer to as the intersection

affine subspace, will be of dimension e - dim(g), provided that all such constraints are

independent. There will exist an M-separable model satisfying all of the (d - E) dim(g)

model-imposed constraints, provided that the intersection affine subspace of dimension e-

dim(g) intersects the nonnegative orthant.

Hence we have two concerns regarding the existence of /I,-separable models satisfying

a set of (d - e) dim(g) model-imposed constraints. First, when one adds the model-imposed

constraints to the linear constraints of M-separability, is the resulting set of linear con-

straints independent? Second, provided that all linear constraints are independent, will the

intersection affine subspace of matrices intersect the nonnegative orthant? It is seemingly

difficult to characterize general conditions to ensure that both concerns will be met. Never-

theless we can build some insight, discussing each concern separately. We will then follow

up the discussion with some empirical results.

3.6.1 Ensuring consistent constraints

If all model-imposed constraints are chosen 'uniformly at random, 13 then almost surely

all constraints will be linearly independent (simultaneously considering the model-imposed

constraints and the constraints of A separability). However, the given example of model-

imposed constraints-specifying particular values for a fraction of the entries of the tran-

sition matrix-are far from 'uniformly at random' linear constraints. For example, if one

wishes to constrain the (i, j) entry of G to be aj, such a constraint can be expressed as

eGej = ai , (3.157)

or equivalently,

(e' 0 e')vec(G) = ai . (3.158)

Note that e' 0 e' has only one nonzero entry. The vector e' e' is referred to an orthogonal

direction (for a constraint AG = b, each row of A is referred to as an orthogonal direction).

We refer to any constraint involving only a few14 of the entries of G as a sparse constraint.

The entry-wise constraint of the example is an extreme sparse constraint.

Recall the linear constraints of M.-separability given in (3.48). The matrix on the left

hand side of (3.48) is reproduced below:

* (3.159)

The rows of (3.159) are the orthogonal directions corresponding to the constraints of MJr-

13For a linear constraint a'x - b, we refer to a' as an orthogonal direction. Choosing linear constraints
'uniformly at random' corresponds to selecting the orthogonal directions uniformly over the surface of a
hypersphere.

14What constitute 'a few' will change depending on the contexts.



separability. Inconsistency induced upon incorporating the model-imposed constraints is
only possible if the row space of the orthogonal directions corresponding to the additional
model-imposed constraints intersects with the row space of (3.159). When one is considering
entry-wise constraints uniformly at random, such inconsistency is only possible if all of the
nonzero entries corresponding to a vector in the row space of (3.159) are randomly chosen
and given entry-wise constraints.

In order to assure consistency, we would like to show that the probability that entry-wise
constraints will be imposed on all of the nonzero entries of some vector in the row space of
(3.159) will vanish for large n. This may seem like a intractable task, as we would need to
characterize all the possible patterns of 0 and nonzero entries for vectors in its row space.
For example, if in the row space of (3.159) there exists a vector

V = (*, *, 0, 0, . . . , 0, *) , (3.160)

where '*' indicates a nonzero entry, then we could have inconsistency in our linear constraints
if our model-imposed entry-constraints assigned values to all entries of (G) that correspond
to the nonzero entries of v.

Before proceeding, we feel it is helpful to define some terms. Let a vector indicating a
particular pattern of Os and nonzeros be referred to as a sparse vector, e.g., v in (3.160). A
sparse vector's count is its number of nonzero entries, and denoted as ||v||. If we envision
a sparse vector v as a pattern of Os and Is. its counts is equivalent to its 1-norm. We say
that one sparse vector covers another sparse vector if its 0 entries are a subset of the other
vector's 0 entries. We introduce the notion of covering as it substantially simplifies our
task: when inconsistency is not induced for a particular sparse vector, it is not induced for
all sparse vector that cover our particular sparse vector. Note that we can specify a sparse
vector that corresponds to the entries of G to which entry-wise constraints are imposed;
we denote this (random) sparse vector as c. This sparse vector c will have a count of
(d - E)dim(g).

We consider the idea of defining a subspace's sparse-basis. The sparse-basis is a set of
sparse vectors in the subspace, such that for every vector in the subspace, it covers some
sparse vector in the sparse-basis. The motivation behind a sparse-basis is that it offers a
necessary and sufficient means of checking inconsistency. If we can define a sparse-basis for
the row space of (3.159), there is inconsistency induced by the model-imposed constraints
if and only if c covers a sparse vector in the sparse-basis. If we represent such a sparse-basis
as V, what we would want to show is that

P ( UEvE c covers v ) - 0 (3.161)

as n -± oc, meaning that the probability of inconsistency converges to 0 as n grows large.
From this point forward, we will limit our focus to instances where M" = M(). Recall

that we have illustrated the block Kronecker structure of a matrix with the same rank as
M() (recall (3.97), (3.98), and (3.99)). We will base our subsequent arguments on this
representation of RI(M)).

Before we attempt to characterize all of the sparse vectors in the row space of (3.159) for

-, = M('), we first make some observations regarding M(r) and [M(r)]I, whose columns

determine the row space of (3.159). As n becomes large, the number of columns in [M(r)]

(exponential in n) dominates the number of columns in M(r) (polynomial in n). As [M(r)]'

is nearly a square matrix, it will have relatively sparse vectors in its column space. Con-



sequently, we relax our problem and consider whether or not c covers any vector in the

sparse-basis of the row space of

[MC I 15 (3.162)

which itself reduces to determining a sparse-basis for the column space of M(r). For each

sparse vector in M(r), there are r1 distinct sparse vectors in the row space of (3.162).

Each column of M(r) consists of Os and Is, and provides the marginal probability of

r random variables (automata) assuming particular values. We begin by considering the

columns of M(r) as the sparse-basis for its column space, and then consider linear combina-

tions of its columns to identify additional sparse vectors that should be in its sparse basis.

Note that M(r) has (mn)' columns, each with a count of at least m, r (this can be argued

upon considering the Kronecker structure of M(') deduced from (3.99)).
If there should exist sparse vectors in the column space of M(r) with a smaller count

(fewer nonzero entries) than its own columns, this would suggest that by taking the proper

linear combination of the entries of any partial information vector 7r(r) (the sequence of rth-

order marginals), once could obtain finer information about the joint distribution than that

which is provided by the rth-order marginals (obviously sometimes finer information in the

form of higher-order marginal distributions can be deduced from the rth-order muarginals,
such as when ir(') is composed of indicator vectors, just not always). Although this argu-

ment is not rigorous, it suggests that all other sparse vectors in the column space of AI(r)

should have a count of at least n--r

The hope is to define a sparse-basis for the column space of M(r) that contains a number

of sparse vectors that is polynomial in r = m". The reasoning is as follows: if f is the

fraction of entries given entry-wise constraints, a particular entry is given an entry-wise

constraint with probability f. 1\oreover, by repeated conditioning, we can derive the upper

bound
P ( k specific entries are given entry-wise constraints ) < fk . (3.163)

By applying the union bound to (3.161) and accepting the claim that HvHl < m"r for all

v E V, we obtain

P (inconsistency) = P ( Uvcv{ c covers v

< P (c covers v)
vV

< |Vlf m " nr (3.164)

As long as the number of sparse vectors in the sparse-basis, i.e., lVi, is polynomial in r),
then (3.164) converges to 0 as n increases. Although we have been unable to prove this, we

conjecture that this is indeed the case.

3.6.2 Ensuring nonnegativity

The second concern, whether or not the c - dim(g)-dimensional affine subspace embodying
both the model-imposed constraints and the linear constraints of A-sufficiency intersects

15 We have not made a rigorous argument that we do indeed have a relaxation by considering (3.162) in

place of (3.159). If one considers any sparse vector in the row space of (3.159), one should be convinced
that it covers some sparse vector in the row space of (3.162).



the nonnegative orthant, is even less clear. As in the previous case when discussing the
possibility of linear dependence when accumulating together all linear constraints, suppose
that the affine subspace is' chosen uniformly at random. 16 In particular, let S, c R1<r be
a subspace chosen uniformly at random of dimension c - dim(g) = eq(q - 1). As discussed
in Appendix C, S, will almost surely intersect

e (T-1) (2) 
(3.165)

j=0

orthants, out of total of 2Ti2 orthants. As there is no preference towards selecting particular
orthants,

( 1 2)

+ 2TIX~i

(2 )j ( j (3.166)

3=0

Invoking results for the concentration of binomial probabilities, cf. (3.145) and (3.146), we
conclude

P (S, n R" o 0 ( as q -+o0 . (3.167)+ 0 if c < 1/2

Hence, if we were to specify a fraction of (d - c) < 1 of the entries of the transition
matrix, and the intersection affine subspace was typical of random affine subspaces, then,
as n -+ oc with probability 1 there will exist a nonnegative transition matrix exhibiting

ML-separability and all of the model-imposed constraints.

However, the intersection affine subspace is likely not well characterized as a typical
random affine subspace, at least in the cases of MN-separability. In these cases, the two
affine subspaces whose intersection is of interest exhibit several interesting properties. Recall
that the affine subspace of matrices exhibiting A(')-separability includes the transition
matrix with all of its entries equaling q, which is a point along the central ray of the

nonnegative orthant in RTX>. Moreover, the model-based constraints are always chosen so
that there exist nonnegative matrices satisfying such constraints. Evidently both subspaces
intersect the convex set of stochastic transition matrices, with one subspace intersecting its
centroid. This suggests that it is rather possible that the intersection of these subspaces
will be close to these two points in the set of stochastic transition matrices that each
subspace is known to include, and thus more likely that the intersection passes through the
nonnegative orthant. Naturally, the orientations of the two affine subspaces relative to one

16Choosing a subspace uniformly at random is similar to choosing linear constraints uniformly at random.
The dimension of the subspace is fixed, and then its basis vectors are chosen uniformly over a hypersphere, i.e.,
with equal preference to all directions. Thus a random subspace is defined via a random matrix representing
its basis vectors. An affine subspace chosen uniformly at random can be obtained from a subspace chosen
uniformly at random by then shifting the subspace by an amount drawn from a rotationally symmetric
probability density function (such as a multivariate Gaussian composed of IID Gaussian random variables).
The idea is that there is no preference to any directions.



another determines how far away such an intersection may occur.

To motivate this idea-that the intersection of two affine subspaces known to intersect

will often be close to a region where the affine subspaces are known to be close to one

another-consider the simple example in R 2, where two 1-dimensional affine subspaces

(lines) are known to pass through points A and B, respectively, which are at a distance of

r from one another. If it is assumed that the angle corresponding to each line is chosen

independently and uniformly at random, then by a simple geometric exercise, one can show

that with probability , the intersection will occur at a point that is at a distance of r

or less from point A. Naturally, this idea can be generalized to random affine subspaces

of higher dimension, however, it appears as though the mathematics become substantially

more complicated in higher dimensions.

3.6.3 Empirical results

Having discussed these issues at a theoretical level, we feel it is imperative to explore them

computationally. To this end, we explore the following scenario. We randomly generate

an mn x mn stochastic transition matrix; we will discuss shortly two sampling methods

that were considered. Next, we select a fraction f of the entries of the matrix uniformly at

random. The values of these entries of the randomly chosen matrix constitute the model-

based constraints. Then, we check to see if there exists a matrix satisfying the model-based

constraints that is M()-separable. Computationally this is checking the feasibility of a

linear program, which can be evaluated for relatively small values of n. We note whether

infeasibility is due to inconsistent linear constraints (which would almost surely be the

case whenever f exceeds the relative dimension of M)-separability), or it is due to the

constraints of nonnegativity. Naturally, we wish to see the behavior of the empirical proba-

bilities for there existing an M()-separable model satisfying the model-based constraints as

f and n are varied (but only up to a certain threshold for which solving the linear program

is tractable).

Randomly sampling stochastic matrices

We consider two different approaches to generating a random stochastic transition matrix.

In both cases, each row of the randomly generated stochastic transition matrix is obtained

independently, meaning that the problem reduces to generating random probability vectors.

One approach is to sample the probability vectors along a hypersphere that can be inscribed

in the simplex. Note that the maximum radius of a hypersphere that can be inscribed in

the simplex for an alphabet of size q is I .17 The motivation for this approach is that
V/1 (/ 1)

the distance of a randomly generated matrix to the centroid of the polytope of transition

matrices, the stochastic transition matrix with constant entries that is known to be M(")-
separable, will be constant. This would ensure that the two affine subspaces (the matrices

exhibiting A(0)separability, and the matrices satisfying the model-imposed constraints)

1 7One may be misled to believe that the maximum radius that can be inscribed in the simplex is }:
the centroid probability vector (1/I, 1/1, 1/r) can be disturbed by a vector of length 1/l with only a

single nonzero entry and upon adding such a disturbance to the centroid probability vector, the resulting
disturbed vector will have an element that equals 0. Although this is true, the only concern are disturbances
within the affine subspace that contains the simplex, and the hence the disturbances of interest must have
their entries sum to 0 (for the disturbed vector to lie in the affine subspace). The result as stated is
easily derived by geometry or calculus; one finds that the intuitive disturbance vector of minimal length is

(1/77, -1/(7(,q - 1)), . . . , -1/(0(n - 1)).



would pass through points of a known distance apart, akin to the 2-dimensional example
discussed earlier. This random sampling can be accomplished by generating a vector of
independent and identically distributed samples from a Gaussian distribution (which will
have no preference for particular directions), transforming it so that it sums to 0,18 scaling
such a vector, and then adding it to the constant probability vector to generate a new
probability vector that is a known distance from the constant probability vector. When
n was varied, we elected to impose a constant average squared deviation on each entry of
the transition matrices as n increased. This was after considering two other approaches
that could be interpreted as being biased to larger values of n. One of these abandoned
approaches was to sample probability vectors along the largest inscribed hypersphere for a
given value of n. By following such an approach, as n increased, the distance (as calculated
in increasingly higher dimensions) of the randomly sampled matrices to the centroid would
be decreasing as 7- 1/2 _ m n/2. In a second approach that was also eventually abandoned,
we considered maintaining a hypersphere of constant radius for each probability vector

(row of the randomly generated matrix) in increasingly higher dimensions as n increased.
Although in this approach the distance of the randomly sampled matrices to the centroid
was increasing as ij = mn/2, we felt that such an approach could still be biasing our results
to appear more favorable for large n, as such larger distances as n increased were achieved
via matrices with rj2 entries, and thus, the average squared deviation of a given entry in a
matrix was decreasing as 7- 1 - mn as n increased. Hence we converged on the approach
of maintaining constant average squared deviation in the entries of the randomly generated
matrices as n increased.

Alternatively we consider generating probability vectors uniformly at random over the
simplex. This can be accomplished by drawing independent exponential random variables
with parameter A = 1 and then scaling [51]. This approach has the disadvantage of not
maintaining constant distances of the randomly generated matrices to the centroid matrix.
On the other hand, it has the advantage of sampling from all probability vectors, and not
being limited to those along the hypersphere. Note that as the length of the probability
vector, r/, becomes large, the radius of the largest inscribed hypersphere, , converges

Vr(n-1)
to 0, while the distance from the centroid to the furthest probability vector approaches
1. Furthermore, the ratio of the hypervolume of the largest inscribed hypersphere to the
hypervolume of the simplex approaches 0 [52). Thus, when sampling over an inscribed
hypersphere, as the length of the probability vector increases, the distance from the centroid
of the sampled probability vectors decreases, and the proportion of probability vectors of
such a distance or less converges to 0. Now we proceed to some results.

Figures 3-26 and 3-27 offer a comparison of the two sampling methods. In both figures,
only the n = 5, m = 2 case of M( 1 -separability is considered. The x-axis variable in the
figures is f, the fraction of entries that are constrained. As computed in Table 3.1, the
relative dimension of M(l)-separability, for n = 5 and m = 2 is 0.87. We know that for

18Note that we require an q x 1 random vector that has no preference for any particular directions within
the subspace of vectors that sum to 0. To generate such a vector, we generate an (7 - 1) x 1 within the
subspace's coordinate system that has no preference for individual directions, i.e., an (T - 1) x 1 vector of
IID Gaussian random variables. Next, the vector is augmented with a 0 to be represented in a coordinate
system in q-dimensions (with the last coordinate being the normal to the subspace). Note that such a vector
can still be thought of as a degenerate multivariate normal consisting of independent random variables.
When the multivariate normal is transformed to Cartesian coordinates, because of the properties of linear
transformations of multivariate normal random variables [50], the transformed random vector in Cartesian
coordinates that sums to 0 is still multivariate Gaussian.
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Figure 3-26: Empirical infeasibility of matching with an M(')separable model a fraction

f of the entries of a random stochastic matrix whose rows are sampled over the largest

hypersphere inscribed in the simplex (50 trials for each value of f, n=z5, m= 2).

f > 0.87, with probability 1 we will have infeasibility due to inconsistency. For f < 0.87, we

expected that when randomly generating matrices with rows on the largest inscribed hyper-

sphere, i.e., a fixed distance to the centroid (a matrix known to exhibit M(1 )separability),
that we would be able to match constraints with higher values of f than in the case when

matrices were uniformly sampled. Indeed this hypothesis was corroborated empirically. In

Fig. 3-26, when the sampling is done at a fixed distance, for both f =0.74 and f =0.75,
in 100% of the trials (50/50) the random entry-wise constraints could be satisfied with

an M~1kseparable model. As f increases towards 0.87, the probability of infeasibility em-

pirically grows, initially dominated by infeasibility due to nonnegativity, and eventually
infeasibility is wholly accounted for by inconsistency of the constraints. In Fig. 3-27, when
the sampling is performed uniformly, infeasibility due to an inability to guarantee nonneg-
ativity is small at f =0.56, but at f =0.64, all 20 trials resulted in infeasibility due to
nonnegativity. Evidently without any guarantees that the affine subspace corresponding
to the model-imposed constraints would be some minimum distance to a matrix satisfying
M(1 )separability, a nonnegative solution is less likely to be assured.

What is clear is that our intersection affine subspace is, as expected, more likely to
intersect the nonnegative orthant than a random affine subspace of the same relative di-

mension: in the case when matrices are sampled uniformly, with f =0.56, which would

correspond to the intersection affine subspace having a relative dimension of 0.33 (and a

relative dimension of 0.32 relative 1R32 x 3 2) with high empirical probability it intersects the

nonnegative orthant (meaning a feasible solution exists). If our intersection affine subspace
was a random affinie subspace, it would require a relative dimension of 0.5 relative to R32x 32

to intersect the nonnegative orthant with high probability.

Figures 3-28 and 3-29 illustrate how the empirical probability of infeasibility changes for
increasing values of ni, with f fixed, m= 2, and r =1, for each of our two sampling methods.

In both cases, there were 20 trials for each value of ni. As given in Table 3.1 and analyzed in

Section 3.5, the relative dimension of MM1 -separability is increasing towards 1 as n increases.
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Figure 3-27: Empirical infeasibility of matching with an M -separable model a fraction

f of the entries of a random stochastic matrix whose rows are sampled uniformly over the

simplex (20 trials for each value of f, n=5, m = 2).

One would expect that as the relative dimension increases, matching a fixed percentage

of constraints (f) becomes more likely as n increases. Empirical results corroborate this

hypothesis. As shown in Fig. 3-28, for f = 0.8, infeasibility due to consistency in the

linear constraints occurs with high empirical probability for n = 3 and n = 4 (the relative

dimensions in these cases are d = 0.79 and d = 0.82). Rather surprisingly, for n = 3 it

was possible to achieve feasibility in 3/20 trials. Note that because it was not possible to

constrain exactly 0.8 of the entries, for n = 3, we constrained a number entries equal to

the largest integer yielding a faction less than 0.8, which happened to be exactly equal the

dimension of the set of matrices exhibiting M(1)-separability. For n = 5 (relative dimension

0.87) and n = 6 (relative dimension 0.92), 20/20 trials were feasible when matching a

fraction of 0.8 of the entries of a random matrix. Note that for each trial, we generate

a random stochastic matrix with each row independently and uniformly sampled from a

hypersphere inscribed in the simplex. As n increases, we maintain a constant average

square error for each entry (with the average over the entries in a given row). We select this

average entry error to be such that for n = 6, we sample each row of our random matrix

from from the largest hypersphere that can be inscribed in the simplex. Fig. 3-29 tells

a similar story, except we illustrate the empirical likelihood of infeasibility when trying to

match a fraction of f = 0.63 random entry-wise constraints. For the particular f illustrated,
empirically we have feasibility with high probability when n = 6; for n < 6 feasibility is

unlikely.

These results suggest that the increased relative dimension of MH -separability as n

increases, at least in the n = 1 case, does permit one to match an increasingly large

percentage of entry-wise constraints. In this relative sense, MM-separability becomes more

general as n increases.



Figure 3-28: Empirical infeasibility as n varies of matching with an M(1 )-separable model a
fraction f = 0.8 of the entries of a random stochastic matrix whose rows are sampled over
a hypersphere inscribed in the simplex (20 trials for each value of f; m = 2).

Figure 3-29: Empirical infeasibility as n varies of matching with an M(1)-separable model
a fraction f = 0.63 of the entries of a random stochastic matrix whose rows are sampled
uniformly over the simplex (20 trials for each value of f; m. = 2).
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3.7 Conclusions

This chapter completes a thorough analysis of the properties of separable models. It illus-

trated how the notion of separability offers an alternate perspective to invariance in linear
systems. We showed the algebraic relationships between the eigenvalues and eigenvectors
of the matrix that propagates partial information, H, and the underlying Markov chain's

transition matrix G. In Section 3.3, we offered an intuitive visualization of the constraints
imposed by separability. The subsequent sections were focused on determining exact equa-
tions for the rank of M(r), to then analyze the evolving dimension (and generality, in a sense)
of M(r)- and M(r)-separability. In Section 3.5, we illustrated many interesting results about
the evolving dimension of separability for varying r and n. The final section illustrated what
high relative dimension could offer for our canonical examples of separability, which could
prove useful in an engineering or design application.



Chapter 4

The Generalized Influence Model

We have introduced separability and illustrated its many algebraic and geometric properties.

The constraints that must be satisfied to ensure separability are clear. For the canonical

examples of separability, the evolution of such constraints as the model parameters vary-n,
the number of random variables/automata, and r, the order of the propagating marginals-

has been characterized and the potential generality of modeling with separability has been

illustrated. What is missing are meaningful parametric models exhibiting separability. Re-

call the block triangular form first appearing in (3.3), and note that it essentially offers a

parametrization:

G 'in. trains. H, (4.1)
0*

Although we have given meaning to H5 , the other block matrices composing such a parametriza-

tion have been ignored. There is not much to meaning to extract from such a parametriza-

tion, and more importantly, it will not be tractable. Under any form of separability, there

will be a constant fraction of the number of free parameters as in the unrestricted case,
meaning the number of parameters will be exponential in n. This fact follows upon realiz-

ing that the block of Os in (4.1) cannot dominate the r x q matrix: the sum of its rows plus

columns must equal r/.

The hope would be to specify a tractable parametrization that exhibits separability.

Such parametric models would allow one to generate synthetic data for separable models-

something that is not possible by propagating partial information via H,. In order to be

tractable, such parametric models must introduce additional assumptions.

For the case of M )-separability, which propagates the univariate marginals, one's first

thought may be to define a parametric model that updates as follows: after propagating a

sequence of indicator vectors su) via the HM' matrix, one receives a sequence of univariate

PMFs, and to generate a new sample, i.e., a new sequence of indicator vectors, one indepen-

dently realizes each of these PMFs. Indeed, what results is an MG'-separable model that is

fully parameterized by HO), i.e., a representation that requires 9(n 2 ) storage. By assum-

ing independent updates for each random variable, we obtained a tractable representation.

This model is precisely the influence model (IM) introduced in [12, 13]. Although the IM

may illustrate many interesting behaviors (see the cited references for several examples), it

has its limitations. There can be no coordination among the random variables in how they

update. This chapter introduces the generalized influence model (GIM), which introduces

conditionally dependent updates to the parametric structure of the influence model. Like

the IM, the GIM is M -separable. It is a scalable parameterization; a GIM may defined



in as few as 0(n 2 ) parameters; however more complex GIMs may require up to the number

of free parameters under M (n)-separability, 0(c").

4.1 Definition

The GIM will be introduced as satisfying a particular form for the probabilistic update of

its network state, paralleling the approach used for the IM in [12, 13]. We shall later show

that the GIM can be defined in several other equivalent ways.

A GIM is a time-homogeneous, jointly Markovian network of stochastic automata that

updates from time t - 1 to t as follows:

At time t, automaton j (for all j = 1, 2, ... n) probabilistically chooses an au-

tomnaton (possibly itself) as its influencer, denoted by ij[t] (but we shall simply

write ij when the time t is understood). Automaton j then uses the influencer's

previous status indicator vector s, [t - 1] to update itself via a probabilistically

chosen selector matrix Aj[t] (but we again simply write Aj when the time t is

understood):
sj [t]' = sij [t - 1]'Aj . (4.2)

The choices of ij and Aj by automaton j are made independently of all past

updates, but not necessarily independently of the current choices of the other

automata (and this is the key distinction from the IM).

The random mn1 x m selector matrix Ag is a row-stochastic matrix consisting of only O's

and l's-which assures that the current status indicator vector for automaton j using (4.2)

is indeed again an indicator vector. The random variables {Ij} and random matrices {Aj}
are governed by a time-invariant joint probability distribution that characterizes the GIM
and fixes its joint transition matrix G. Note that when we write si3 , we do not mean the

indicator vector for the random variable ij; rather we mean the indicator random variable

for xi,. It is as though we are employing the shorthand notation si for i= i. As most

indicator vector notation in this chapter is of the shorthand form, subsequent instances

should be clear.

4.1.1 MMk-separability from the perspective of Pfeffer

Because of the GIM's particular update structure, it exhibits M("')-separability. This will

be illustrated in Section 4.3. By being M ()-separable, any GIM must be M -separable,
and as noted in Section 2.2.1, MM -separability can be equivalently characterized as local

instances of Pfeffer's separability (without any assumptions of a Bayesian network). To de-

scribe 3IM '-separability from the perspective of Pfeffer's separability, we must consider the

equation for the probabilistic update of each random variable (automaton) of the network:

E [ sj [t]' I sx[t - 1]] sx[t - 1)'GAj , (4.3)

which is obtained by marginalizing the Markov equation (2.5) ,i.e., multiplying by Mg, to

obtain the conditional PMF for the update of automaton j.
The conditional PMF in (4.3) is considered separable according to Pfeffer [30] when it

can be written as a sum of structured terms, each involving only a single status indicator



vector:

E [ s [t1' I s,[t - 1] ] djk (S [t - 1]'Ajk) , (4.4)
k=1

for some nonnegative scalars {djk}, Ek djk - 1, and row-stochastic matrices {Ajk}. Note

that the state indicator vector on the right of (4.3) has been replaced in the separable form

of (4.4) by its constituent status indicator vectors. As will be demonstrated in Section 4.3.1,
the djk and Agk of (4.4) have meaning related to the probabilistic GIM update given in

(4.2): djk is the probability that automaton j selects automaton k as its influencer, and Agk
is the conditional expected value of Aj, given that automaton j selects automaton k as its

influencer. The influence matrix D is defined as the n x n matrix whose (j, k) entry is djk
and whose transpose is the weighted adjacency matrix of an influence network graph, F(D').
Each node in the influence network graph corresponds to an automaton, and for each node

j in F(D') (which is associated with automaton j), the weight of an arc terminating at the

node is the probability that this automaton j will.pick as influencer the automaton at which

the arc originates.

The individual separability conditions in (4.4) for each automaton j can be assembled

into the matrix equation

E [sM [t]' Isx [t -- 1] =s(1 [t - 1]'H N , (4.5)

where the matrix H can be expressed in block form in terms of the djk and Ajk as follows:

dn AnI d21A21  ... - dn 1
H( 1 d12A1 2  d22 A22  ... dn 2 A 2  (4.6)

d1 nA 1 n d2nA 2n . .. d In Ann

Note that the sparsity structure of the influence network graph impacts the sparsity of the

matrix HM. By taking an expectation over sx[t - 1] and invoking Markovianity, we obtain

our definition of AIM'-separability (2.28).

4.1.2 GIM relationship to IM

One can think of an IM as a GIM with the following additional constraints at each time t:

" the influencers i1, i2, ... in are mutually independent;

" the selector matrices A1 , A2 ... A, are conditionally independent, given the influ-

encers.

These constraints ensure that the updated statuses of all automata are conditionally inde-

pendent, given the current network state, i.e., the automata independently update. Such

a conditional independence property holds if and only if the conditional probability vector

for the updated network state, given the current network state, has the following Kronecker



factorable form:

E [sx[t]'Isx[t - 1]] =E sj[t]'-sx[t -
j=1

n

= E [sj[t]' sx [t - 1] ] (4.7)
j=1

where the first equality follows from the definition of the state indicator vector as given in
Section 2.1.3, and the second equality from the conditional independence assumption.

In (2.5) we used the joint transition matrix G to represent this conditional PMF for
the updated network state given its current state. Consequently, under the conditional
independence assumption,

n

E [ sj[t]' I sx [t - 1]] sx [t - 1 ]'G .(4.8)
j=1

The term on the right side of (4.8) is simply the row of G selected by the indicator vector
s2[t - 1], so (4.8) shows that each row of G in this case must have the Kronecker factorable
form of the term on the left. More specifically, combining (4.8) with (4.3) shows that the
entries of G for an IM satisfy polynomial equalities. This conditional independence property
satisfied by any IM thus imposes a significant restriction on the form of the joint transition

matrix G. The GIM relaxes this conditional independence property of the IM, thereby
permitting more complex behavior.

4.2 Some GIM examples

We now present three examples of a GIM. The first illustrates the richer behavior possible
by modeling the weather in four cities as a GIM instead of an Id. The second example
shows how a collection of gamblers betting at the same roulette table under some general
conditions can be modeled as a GIM. This example is an instance of a special class of GIMs
that we refer to a GIMs of coupled Markov chains. A third example is shuffling a deck of
cards, an instance of a Markov chain over permutations, which we graciously borrow from
[9). This special class of GIMs is referred to as permutation GIMs. Markov chains over
permutations have been investigated at length in both [9] and [10], from the perspective of
representation theory for the symmetric group. More on this connection will be developed
in Section 4.5. Two additional examples will be presented in Section 4.6 after introducing
some further properties of the GIM.

4.2.1 Weather in four cities

We return to the example of Chapter 1 of the weather in four cities. Over each 24 hour
period, four cities in relatively close proximity experience weather interactions. Suppose (for
the purposes of our example) that each day one of possibly hundreds of weather patterns
randomly comes into being, independently of all previous weather patterns. The weather
pattern specifies for each city an upwind city (possibly itself) as its influencer, and specifies
the city's future weather as a function of the influencer city's current weather. Fig. 4-1



Figure 4-1: Example of a weather pattern and cities' influencers.

illustrates a possible weather pattern, and its corresponding pattern of influencers, with the
arrows pointing from the influencers.

This weather example illustrates the interesting global behavior that is possible in a GIM
but not in an IM. If modeled as an IM, the influencers could not be chosen in a coordinated
way-they would have to be chosen independently for each city. Because the GIM permits
automata to update themselves in a dependent fashion, cities may choose their influencers
in a coordinated way, and may also collectively warm or cool in relation to their influencers'
weather.

The weather dynamics in this example illustrate a necessary element of any GIM: that
new information received at an automaton from an influencer (the influencer's current
weather) overrides any other current information (e.g., the city's own current weather).
As each automaton can only choose a single influencer in any realization of the stochastic
process's update, a GIM prohibits combining information from multiple sources when an
automaton updates. The GIM only exhibits a combining of information in an averaged or
probabilistic sense, not realization by realization.

The example also highlights another necessary aspect of a GIM: the presence of an inde-
pendent and identically distributed (IID) master process, the sequence of weather patterns.
This process defines the pattern of influencers as well as the evolution of each automaton's
status, given its influencer's current status. A realization of this IID process along with an
initial network state defines a realization of a GIM.

4.2.2 Roulette table

We use a GIM now to model the winnings (or losses) of several gamblers at the same roulette
table, under a particular set of restrictions. In this example, each automaton corresponds
to a player, and each automaton's status is the total value of that gambler's chips. The set
of possible statuses for each player is assumed finite. The GIM iterates upon each spin of
the roulette wheel.

Our model assumes that before each spin of the wheel, the gamblers agree upon a
collective but randomly chosen gambling policy. The chosen policy is independent and
identically distributed at each spin, and independent of all past outcomes of the roulette
wheel. The gambling policy determines each gambler's bets as a function of his or her chip



total.

For example, Mike, Mark and Jon are all gambling together at the same roulette table.

Under one gambling policy, they all bet on black, and each bets half of his chip total, not
exceeding $100. Under another gambling policy, Mike bets $10 on on black (or his chip
total of it is less than $10), Mark bets half of his chips on 00, and Jon plays only a $1 on

4, 5, 7, 8. Other joint behaviors correspond to other gambling policies, each of which occurs
with some known probability. It is the chosen gambling policies together with the spins of
the roulette wheel that constitute the IID master process of this GIM. An outcome of this
process at a given time determines the influencers and selector matrices of an iteration.

An interesting aspect of this example is that each gambler always chooses itself as its

influencer, and consequently the time evolution of a single gambler's chip total is itself a

time-homogeneous Markov chain. However, these Markov chains are coupled-two gamblers
who almost always place similar bets will typically win and lose in tandem. A GIM in which
each automaton always chooses itself as its influencer is a natural structure for modeling a set

of coupled, time-homogeneous Markov chains that transition as a function of a common IID
process. As noted in the introduction of this section, the class of GIMs where the automata
always choose themselves as influencers is referred to as a GIM of coupled Markov chains.

Besides being Markovian, each automaton's updated status given its current status is
always conditionally independent of all other automata's current and past statuses. This
additional property ensures that we have MI-separability for all automaton j. Recall from
Section 2.2.4 that a network satisfying such instances of separability is referred to as A-
separable.

4.2.3 Deck of cards

A third example of a GIM is a standard deck of 52 cards being repeatedly shuffled. The
state of the deck is the particular permutation of the cards in the deck. However, in our
context of networks of stochastic automata, we wish to represent the state of the deck of
cards as a set of random variables. We associate a random variable with each position in the
deck, i.e., a random variable is associated with the first position, a second random variable
with the second position, and so on. The random variable (automaton) indicates the current
card in the respective position. If the top card in the deck is the seven of diamonds, then
the first automaton exhibits the status corresponding to the seven of diamonds. We can
think of repeatedly shuffling a deck of cards as a discrete-time stochastic process on these

52 random variables, each assuming values in an alphabet of size 52.

Each shuffle randomly changes the state of the deck, and as long as the act of shuffling
each time is an IID process, we have a Markov chain. This Markov chain is also a GIM with
special structure. The realization of the IID process at a given time specifies a particular
shuffle. This shuffle determines an influencer for each random variable. If position j chooses
position i as its influencer, and position i at time t - 1 indicates the queen of spades, then
the updated status of position j at time t indicates the particular card in position i at time
t - 1, i.e., the queen of spades. The set of influencers is always a permutation. Note that
for this example, the A3 matrices are identities, as each position receives (copies) the card

of its influencer. In Section 4.5, the algebraic structure of permutation GIMs is developed,
and its connection to representation theory for the symmetric group is explained.



4.3 Illustrating the GIM's M)-separability

The tractability of the GIM is twofold: it exhibits M("-separability, while potentially

admitting a tractable representation. Here we demonstrate its separability; we will discuss

in Section 4.4 the potential complexity of GIM representations.

By nature of being Mn)separable, the (") rth-order marginal PMFs can be propagated

linearly, for each r, 1 < r < n. We illustrate this fact for general r in what follows.

4.3.1 Linear propagation of r(r)[t]

Consider any block of the current 2nd-order state array vector, which we will denote by sj [t],
with j = (J1,j2, ,jr). By (4.2) and the mixed-product property of Kronecker products

(A.3), we can express this current 2nd-order status indicator vector as

s [t]' sijt] 0 si 2 [t]' 0 . - .0 Sir[t]'

(s;21 [t - 1]'Aj) 0 (S 2 ft - 1]'Ai 2 ) 0 ... 0 (si, [t - 1]'Aj,)

= (si 2  [t - 1]' 0 s 2 [t - 1]' 0 . .. 0 'jr [t - 1]') (A l 0 A 2  0... 0 Ai,)

= st - 1]'Aj (4.9)

where we have further extended our vector subscript notation by writing

i i .i - i i ,~ ... , ii,) , (4.10)

Aj AA(jAJ2 - - Ail 0 ... 0 A . (4.11)

Note that A3 is a random selector matrix, as it is a Kronecker product of random selector

matrices, and that s,[ t - 1] is a block of the rth-order state array vector at time t - 1. We

now observe that (4.9) has the same form as the random update equation (4.2), with the

scalar subscripts j and ij replaced by the vector subscripts j and ij.

Conditioned both on the previous network state, represented by s() ft - 1], and on having

automata j choosing automata ij as their respective influencers, we take the expected value

of (4.9) to obtain

E s [t]' s(r)[t - 1], ij E [s;i[t - 1]'Aj s(r)[t - 1], ij

- si [t - 1]'E A s(r) [t - 1], ij

- si.[t - 1]'E [ Aj | ij ]

= i ft - 1]'Aj;j , (4.12)

where A denotes the row-stochastic matrix E [Aj I ij]. Note that we have not expressed

the conditional expectation of sgIt] as 7r [t], so as to maintain clarity in the conditioning.



By taking an expectation with respect to ij in (4.12), we find

E s [t]' s(r) [t - 1] Zsi [t - 1]'Ai . P -i = i sM [t - 1]

=Zsi[t - 1]'Aidj . (4.13)

where dji denotes P (ij = i). Note that as sj [t] is an rth-order status indicator vector, it
is a block of the current rth-order state array vector. Because (4.13) holds for all j, the
expected value of the rth-order state array vector conditioned on the previous network state
can be expressed as follows:

E [shr [t]' sh [~)t - 1] =sdr [t - 1]'HM , (4.14)

for all times t, with

dk 1kAk1 k ... dkr k, Akrkir 1
H kk 2 Akk 2  . .knrk2 Aknrk 2  (4.15)

dk 1kg, Akike. - kr kkrAkr kr

where the {k, } are ordered lexicographically, so ki (1, 1. 1), k2  (1. 1,. 1,2)., etc.
From (4.14) one can show, as a consequence of joint Markovianity of the automata that

F [ t(r) ]' sr [r] s( []' H(r) (4.16)

for all integer times t > T. By taking a final expectation with respect to S(r)[r], we have

r ) [t]' = g(r) [T]' [H(rIj (4.17)

which holds for any initial condition 7rx[r].
In (4.14), (4.16), and (4.17), we have demonstrated M(r)-separability according to Corol-

lary 1, Corollary 5, and Corollary 4, respectively. By exhibiting M('-separability, the GIM
offers a scalable framework that allows one to analyze the stochastic network by choosing
a level r that is sufficient for one's needs.

4.4 Geometric perspective on IM, GIM, and M()-separability

When the IM was originally introduced [12, 131, it was defined as following a particular para-
metric update. Similarly, the GIM is defined as updating itself in a parametric way. These
parametric probabilistic models stand in contrast to M,-separability and M-separability,
which are probabilistic models that satisfy some particular constraints (e.g., some marginal
information can be propagated). As would be of immediate interest to one with an algebraic
perspective [531, and especially to those interested in algebraic statistical models [54, 55], we
would like to understand the relationships between our parametric probabilistic models and

100



our constraint-based probabilistic models. As Markovianity of the network state is always

assumed, our algebraic statistical models are fully-specified by the transition matrix for the

network state (technically there is also an initial probability vector, but we will ignore it as

it is irrelevant). The primary tool that we will use to analyze these relationships is geom-

etry, and in particular, the geometry of the sets of transition matrices that compose these

classes of probabilistic models. As the case in Chapter 3, we will always fix our model size

when developing the relationships among the parametric and constraint-based probabilistic

models, and by model size we mean a fixed network configuration, i.e., a fixed number

of n automata, with the jth automaton having a fixed number of my possible statuses,
1 <j < n.

4.4.1 g: the otherwise unconstrained transition matrices

We begin with a simple case that will motivate our understanding of the more complex

models: the otherwise unconstrained set of q x q transition matrices. The other classes of

algebraic statistical models that we will consider will be associated with subsets of tran-

sition matrices contained within this set of otherwise unconstrained transition matrices.

Transition matrices must be stochastic, that is, each row must be nonnegative and sum to

1. Hence, the set of otherwise unconstrained i; x 71 transition matrices is the intersection of

the the nonnegative orthant, R'", with the affine subspace of appropriately-sized matrices

with all rows summing to 1, i.e., the affine subspace of matrices G satisfying

GIL = I . (4.18)

The affine subspace of i x 1 matrices satisfying (4.18) is an ri(rq-1)-dimensional set. An affine

subspace's intersection with the nonnegative orthant may not necessarily be of the same

dimension as the affine subspace, but for our case this will be assured, because the affine

subspace of matrices satisfying (4.18) intersects the interior of the nonnegative orthant. For

example, the positive matrix with constant entries 1 iA1' is in this intersection.

This intersection is a bounded convex set, characterized by the intersection of an affine

subspace with a polyhedral cone, R'"', and thus, must be finitely-generated. To identify the

matrices that are the extreme points of the set of transition matrices (if such extreme points

are not immediately obvious), note that each row of a transition matrix is a probability

vector of length 71. A probability vector can be thought of as the expected value of the

random indicator vector for the underlying random variable, where the indicator vector

is a vector of all Os with a single 1 whose random position indicates the particular value

in its alphabet being assumed by the random variable in a realization. Thus, the set of

probability vectors of length ij is a (il - 1)-dimensional convex set that is generated by the

T1 row vectors consisting of all Os except for a single 1. Note that because this convex set's

dimension (q - 1) and its number of extreme points (I) differ by 1, any probability vector

in this convex set has a unique expansion in terms of extreme points.

If each row of a stochastic matrix can be generated by the appropriately sized indicator

vectors, it should be clear that the T1 x 71 stochastic matrices can be generated by the

matrices that are composed of 1 x q indicator vectors as their rows, i.e., q x q selector

matrices. There are a total of ql selector matrices that serve as the extreme points of this

(7 - 1)-dimensional set of stochastic transition matrices. Note that a particular expansion

of a transition matrix as a convex combination of selector matrices can be thought of as

a specification of a joint PMF on q random variables, each with alphabet size q (think of
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each row of a given selector matrix as corresponding to an indicator vector for a different
random variable, with the weight associated with a given selector matrix in the expansion
as the probability of the random variables assuming the combination of values specified by
the selector matrix). Provided that a transition matrix has at least two rows with entries
in the open unit interval, its expansion in terms of selector matrices is not unique. Or
from a probabilistic perspective, when one is provided a sequence of r marginal PMFs
with at least two being nondeterministic, the joint PMF that can generate such marginal
PMFs is not unique. An obvious expansion of a stochastic matrix in terms of the extreme
points (the selector matrices) can always be obtained by selecting the coefficients of the
expansion to correspond to what would be independent random variables. Such a convex
combination would involve all r extreme points for a matrix with positive entries. However,
compact convex expansions exist, as by Carath6odory's theorem, any stochastic matrix can
be expressed as a convex combination of no more than Q(r - 1) + 1 selector matrices [45],
i.e., the dimension of the convex set plus 1.

Although this example of characterizing the otherwise unconstrained transition matrices
was somewhat pedantic, the concepts developed offer much intuition into the less familiar
cases that we will henceforth consider.

4.4.2 g(M ( )): the transition matrices exhibiting M (")-separability

In Chapter 3, the set of transition matrices exhibiting M(")-separability, g(M(4)), was
thoroughly characterized and analyzed. The linear constraints satisfied by 9(M4( 0) include
(4.18). in addition to

[[A(r 'GM( = 0 , (4.19)

for all 1 < r < n. Like the unconstrained stochastic matrices, g(A4( )) is an intersection
of an affine subspace with R'". The only difference is that the affine subspace is of lower
dimension because of the additional linear constraints that must be satisfied.

4.4.3 g01 Ax: the GIM transition matrices

We demonstrated in Section 4.3 that any GIMI exhibits M(4)-separability. One may then
wonder if A4 ()-separability for a network implies that it must be a GIM. This is not true,
it can be shown that the set of GIM joint transition matrices, which we denote by gINry
is a strict subset of the convex set of row-stochastic matrices exhibiting M('-separability.
It has additional structure that we subsequently develop.

The influencers {i} and status update matrices {Aj} of the GIM update equation (4.2)
determine the update of the network state. For every possible combination of values for
these random quantities, there is a corresponding random selector matrix that describes
how the state indicator vector updates. In other words, for a given automata configuration,
there exists a function f mapping the random influencers and status update matrices to
some random selector matrix G,

G f (i 1 , . . . i, A 1, ... An) , (4.20)

such that

sx[t]'e sx [t - g1]'G .2 (4.21)

The GIM's special update structure defines the range of the function f in (4.20). This
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range, a set of selector matrices from which G assumes values, is determined by the associ-

ated automata configuration, and is a strict subset of all selector matrices of the appropriate

size, as evident from the linear constraints (4.19) satisfied by any matrix in g(M(n)). A

particular GIM, which is characterized by a joint PMF over the influencers {ij} and status

update matrices {Aj}, can be equivalently characterized by its PMF for G-implicitly de-

fined by (4.20)-which assigns a probability to each selector matrix in the range of f. A

GIM's joint transition matrix is accordingly the expected value of G.

Any joint transition matrix G that can be expressed as a convex combination of selector

matrices in the range of f in (4.20) corresponds to a GIM. In particular, each selector matrix

in the range of f itself corresponds to a GIM. Therefore, the set of all transition matrices

of GIMs sharing a particular automata configuration is indeed convex, with its extreme

points being the selector matrices in the range of f. The set of GIM transition matrices is

generated by a subset of the extreme points of g, all of which must also be extreme points

of g(M(n)).

We now revisit a question that was previously raised. Does the set of GIM joint transi-

tion matrices coincide with the set of joint transition matrices exhibiting M(n)-separability?

In other words, does g(M(")) have extreme points in addition to those defining the set of

GIM transition matrices? Although both sets are convex, the answer is no. The set of GIM

joint transition matrices with respect to a particular automata configuration can be defined

by its extreme points, all of which are selector matrices. On the other hand., g(M(4)
has additional extreme points. It can be shown, however, that all of the extreme points

of g(M(")) that are selector matrices are also extreme points of 9Grju (this will be easily

argued once we introduce the set of IM transition matrices). Thus, QGcsr can be envisioned

as formed from the extreme points of g(M(4) as follows: consider the strict subset of its

extreme points that are selector matrices and form its convex hull.

4.4.4 glAf: the IM transition matrices

The transition matrix of an IM is characterized by (i) being row-stochastic, (ii) satisfying

the linear constraints imposed by AM)-separability (the r = 1 version of (4.19) ), and

(iii) satisfying the polynomial constraints imposed by (4.8) and (4.3), a consequence of the

independent updates of the automata. Thus the set of all transition matrices of IMs, denoted

as gr], is a real algebraic variety intersected with the nonnegative orthant. This means

that the IM is an algebraic statistical model [54, 55]. Yet more can be said regarding the

structure of gru1 , and in particular, its connection to gGru. Recall that the extreme points

of GIA are selector matrices, and thus correspond to deterministic GIMs. The automata of

a deterministic GIM are (trivially) updated independently, and thus any deterministic GIM
is also an IM with the same automata configuration (recall Section 4.1.2). Consequently,
the convex hull of gi is 9GIM. By nature of the automata updating independently in an

IM, clearly gru is a strict subset of QGIAI.
We already claimed without proof that all extreme points of 9(M(n)) that are selector

matrices are also extreme points of gGII. It follows that such extreme points must also

be in g 1 M. This can be argued as follows: consider any selector matrix G E g(M(")).

Obviously, G is an extreme point of g(M(n)). As a consequence of G's membership in

g(M(n)), it must be M(')-separable. Furthermore, its automata update independently, by

nature of being a selector matrix. It follows that G must be an IM, and thus in both grY
and 9GIM-

Fig. 4-2 attempts to evoke the relationships of the four sets of interest (g, G(M(n)),
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QGIM, and QIm), using a three-dimensional picture.

Example

A jointly Markovian network of stochastic automata with the simplest non-degenerate au-

tomata configuration (two automata, each with two statuses) has a 4 x 4 transition matrix.
The otherwise unconstrained 4 x 4 row-stochastic matrices form a 12-dimensional convex
set. The linear constraints imposed by M(")-separability are given by (4.19) (as n = 2.
only the r = 1 version applies):

[11 [911 912 913 914 1 0 1 0

921 9 22 923 924 1 0 10 (4.22)
-1 931 932 933 934 0 1 1 0 'J L41 942 943 944 0 1 0 1

or equivalently,

911 + 912 + 941 + 942 - (921 + 922 + 931 + 932) = 0

913 + 914 + 943 + 944 - (923 + 924 + 933 + 934) = 0

911 + 913 + 941 + 943 - (921 + 923 + 931 + g33) = 0

912 + 911 + g42 + 944 - (922 + 924 + 932 + 934) = 0 (4.23)

The second and fourth equations in (4.23) follow from the first and third equations, in
conjunction with the linear constraints on the entries of the row-stochastic matrix G, namely
that each of its rows sum to 1 (4.18). As A4(",)-separability imposes only two additional
linear constraints, g(A4(")) forms a 10-dimensional convex set.

Among the extreme points of this 10-dimensional convex set are the selector matrices
that are the extreme points of QGIM. Simply scanning the 256 possible selector matrices of
this 4 x 4 case for those that satisfy the two independent linear constraints in (4.23) yields

the 36 selector matrices whose convex hull defines gGIM. In this example, the dimension
of GJA equals the dimension of g(M(")). In fact, we have empirically found that the

dimensions of these two sets are equal for all network configurations satisfying n < 5 with
my < 5, but no general result has been established. Yet the two sets do not coincide. The
4 x 4 joint transition matrix

01
0 0

G = (4.24)
011 2 2

0 0

corresponds to a network of stochastic automata that is not a GIM but M(")-separability,
thereby demonstrating that gJCIM is a strict subset of g(M(")), which is true for other

automata configurations as well. In addition, for a network with the transition matrix G as
given in (4.24), each automaton will be individually Markovian, with degenerate transition
matrices

1/2 1/2 (.5~ ~j~](4.25)
1/2 1/2 '

and furthermore, the network will exhibit MA-separability (for n = 2). Evidently, this
example also shows that Ma-separability does not imply of GIM of coupled Markov chains.
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For an IM with the same automata configuration, the additional polynomial constraints
imposed by having independent updates of the automata (combining (4.8) and (4.3) ) require
that

9k1 (9k1 + gk2)(9k1 + 9k3 )

9k2 (9k1 + 9k2)(9k2 + 9k4)

9k3 = (9kI + gk3)(gk3 + 9k4)

k4 = (9k2 + 9k4) (9k3 - 9k4) , (4.26)

for all k E {1, 2, 3, 4}. Thus, the IM transition matrices consist of the joint transition
matrices satisfying M" -separability along with the constraints embodied in (4.26).

(a) g is the convex hull (b) g((n)) is the in- (c) Red curves (d) GIM is the convex
of all selector matrices tersection of a subspace schematically gi. hull of gim or equiva-
(black dots). (plane) with g. This set is an algebraic lently, the convex hull

variety in R" . of the selector matrices
in g(M(n)) (red dots).

Figure 4-2: Schematic illustration of the geometric relationships of the IM and GIM tran-
sition matrices for a given automata configuration.

4.4.5 Products of transition matrices

Because the joint transition matrices of GIMs with a common automata configuration form
a convex set whose extreme points are selector matrices, one can show that such a set of
transition matrices is closed under matrix multiplication, provided that its extreme points
are closed under matrix multiplication. We will use this style of argument to show that
the set of all GIM transition matrices sharing a common automata configuration is closed
under matrix multiplication.

Consider any two deterministic GIMs sharing the same automata configuration, with
respective transition matrices GM) and G(2 ) (note that a GIM is deterministic when, and
only when, its joint transition matrix G is a selector matrix). We can distinguish between

the influencers and status update matrices of the two GIMs using superscripts (i.e., i1) and

AM ; i and A , respectively). Because both GIMs are deterministic, we can represent
the influencers and status update matrices as functions, that is,

.(k) - (k

A(k) = A(k)(j) . (4.27)

The transition matrix GG G() is a selector matrix, and can be shown to be the transition

matrix of a deterministic GIM whose influencers i and status update matrices A(
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are deterministic and can be expressed in terms of the functions for the influencers and
status update matrices of the two constituent GIMs of (4.27) as follows:

2) = (1) i((2) -)

A = A (1 zi (j) A (2 (j) (4.28)

Therefore, the transition matrices of deterministic GIMs are closed under matrix multiplica-
tion, and consequently the set of transition matrices of all GIMs with a common automata
configuration is itself closed under matrix multiplication (forming a multiplicative semi-
group). An open question is whether or not the set of transition matrices of GIMs is the
closure under multiplication of the set of IM transition matrices with a common automata
configuration. Under additional assumptions, a subset of the GIM transition matrices sat-
isfy the additional structure of a multiplicative group, i.e., there always exists an inverse
and identity. This will be discussed in the subsequent section.

4.5 The GIM and the symmetric group: their connection

Recall the example of shuffling the deck of cards from Section 4.2. As explained within
the example, shuffling a deck of cards can be conceived of as a GIM. However, we feel it is
valuable to digress briefly and explain this same model from the perspective of symmetric
group theory. We will introduce this alternate perspective for permutation GIMs without
requiring any prior knowledge of representation theory for the symmetric group. This
perspective bridges a connection between representation theory of the symmetric group
and the propagation of partial information of GIMs.

Before shuffling a deck of cards, the deck has a particular state. Each of the n unique
cards has a particular position. If the cards are identified by the integers 1 to n, a state of
the deck could be specified by noting that card 1 is in position 12, card 2 in position 19,
card 3 in position 22, and so forth, with the positions corresponding to the ordering of the
cards if the cards were flipped over one-by-one from the top of a face-down deck. Note that
the state of the deck can be recognized as a permutation on n integers.

Upon each shuffle, the order of the cards is (possibly) changed, but the new state remains
a permutation. The interesting fact of card shuffling is that without looking at the cards
face up, one can describe the particular shuffle itself as a permutation on the integers 1
to n, e.g., the top card becomes the 22nd card, the 2nd card becomes the 19th card, etc.
Therefore, a shuffle defines its own permutation on the cards that, when applied to the state
of the deck (itself a permutation), defines a new state (a new permutation). This process
is governed by group theory for the symmetric group of order n, the set of permutations
on the integers 1 to n [7]. By definition, a group consists of a set of elements and a binary
operation that allows one to take two elements and define a third element, with an identity
element and inverse always existing. The shuffling of a card deck illustrates the symmetric

group's operation, which is composition: the permutation associated with the shuffle is
composed with the permutation of the initial card ordering to define a new permutation

(a new card ordering). Repeated shuffling of a card deck can be envisioned as repeatedly
composing permutations.

Group representation theory [6, 7], and in particular, representation theory for the sym-
metric group [11, 9], is concerned with identifying the elements of the symmetric group as
invertible matrices, that is, defining a function that maps each permutation (an element in

106



the symmetric group) to a square invertible matrix, such that the group operation (compo-

sition of permutations) can be represented as multiplication of the corresponding matrices.

Such a mapping is called a homomorphism, as it is a structure-preserving mapping from

one group, in our case the symmetric group, to a second group, in our case the general

linear group, a multiplicative group of matrices. By representing a group as matrices with

matrix multiplication becoming the group operation, linear algebra can offer many insights

into the group. This concept may seem rather abstract; however, we will show that the

propagation of partial information under M(" -separability for permutation GIMs is, in

effect, a representation for the symmetric group. This will be explained shortly. But first

we must discuss the two representations of permutation GIMs.

4.5.1 The two representations of permutation GIMs

In the language of automata and networks, Section 4.2 suggests that one conceive of each

automaton as corresponding to a different position in the deck, with the automaton indicat-

ing the unique card in the particular position, i.e., si indicates the card in the ith position.

We refer to this representation as the positions representation. For Markov chains on per-

mutations, there is a rather important square matrix composed of these status indicator

vectors as its columns:

S[t] A [sI[t] s2 [t] ... s [t]] . (4.29)

When the network state corresponds to a permutation, S is a permutation matrix. Con-

sequently, there is always an alternate perspective for such models, where the rows of S

are thought of as the status indicator vectors. In this alternate perspective for shuffling,
the automata correspond to unique cards that indicate their particular positions; denote

automaton i's status indicator vector for this alternate representation as I7. We refer to

this representation as the cards representation. Evidently,

[si S2 ... Sn] = S : (4.30)

and the state array vector for each of the representations is obtained by either column-

vectorization or row-vectorization of S:

s(1) = vec(S)

) = rvec(S) , (4.31)

where SO) is the 1st-order state array vector for the positions representation, and g(1) is the

1st-order state array vector for the cards representation.

When the automata are associated with positions, as described in Section 4.2, the in-

fluencers chosen by the automata form a permutation. Put in another way, the influencers

at time t can be represented via a random permutation matrix D[t), which we refer to as

the random influence matrix. The jth row of D[t] equals ej when ij i, that is, the jth

row of D[t] is an indicator vector for the random variable ij (at time t), the influencer

of automaton j. By time-homogeneity, the expected value of D[t] is the influence matrix

introduced in Section 4.1.1. As described in Section 4.2, for the positions representation,
the random selector matrices Aj are always identities.
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For the positions representation, we can express updates of the status indicator vectors

using only the random influence matrices. In particular,

s1iT] S2 [ r] ... sn[T] -D[r+1]'.D[r+2]'...-D[t]' = s1[t] s2[t] ... sn t] (4.32)

On the other hand, for the dynamics of the cards representation to be captured as a

GIM, each automaton must always choose itself as an influencer, i.e., we have a GIM of
coupled Markov chains. The random selector matrix Aj describes how the positions of the

cards are rearranged. In particular, the kth row of Aj indicates the new position of the
card that was formerly in the kth position before current shuffle. As this description of the
rearrangement of the cards is the same for each card j, at each time t all random selector
matrices Aj ft] must be equal; hence all random selector matrices can be collectively denoted

as A[t]. By this cards representation, we have an alternate description of permutation GIMs:

as GIMs of coupled Markov chains with the special property that at each time t, all Aj t]
are equal.

Analogously to what we demonstrated in (4.32) for the positions representation, we can
express the updates of the status indicator vectors for the cards representation using only

the random selector matrices A[t]:

I1[T]' 1 1t]'
-A[r +1] -A[T+2] .. A[t] . (4.33)

IT[]' _' Int]'

Note that (4.33) simultaneously captures each status vector update equation, (4.2) for all
j, as the automata always choose themselves as influencers.

4.5.2 The 1st-order permutation representation of the symmetric group

Both (4.32) and (4.33) are the same update equation. This becomes obvious by recalling

(4.30) in addition to recognizing that D[t]' of the positions representation equals A[t] of
the cards representation. In representation theory of the symmetric group, this equation,
(4.32) or equivalently (4.33), is referred to as the 1st-order permutation representation [10].
We have represented a succession of composition of permutations as a product of invertible

matrices-which is the idea of representation theory for groups.

As evident in both (4.32) and (4.33), the 1st-order permutation representation begins

with a permutation matrix S{T] that captures the initial arrangement of the deck at time T.

Then a succession of random n x n permutation matrices describe the random rearrange-

ments of the cards for each shuffle. The product of these matrices is a permutation matrix

S[t] that describes the state of the deck at time t after (t - T) shuffles.

For example, if n - 3, we may have the realized product of permutation matrices

0 0 1 1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1 0 0 (4.34)1 0 ] 0 1 0 1 0 0 0 1

state of deck 1st shuffle 2nd shuffle state of deck
at time T at time r + 2
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which would indicate an initial state at time T followed by two shuffles. Initially, card 3 is

in the top position, card 2 in the middle and card 1 on the bottom. Upon the first shuffle,
represented by the second matrix, the cards in the 2nd and 3rd positions swap. On the

second shuffle, the cards in the 1st and 3rd positions swap. What results is a state of a deck

represented by the matrix on the right hand side of (4.34): card 1 is in the middle of the

deck, card 2 at the top, and card 3 at the bottom.

4.5.3 Propagating partial information

The 1st-order state array vector for the cards representation can be obtained from S by row-

vectorization (4.31). Using this fact, we can use the 1st-order permutation representation

of the symmetric group (4.33) to derive our update equations for the 1st-order state array

vector, namely,

j1[t]' ~1 I1[]'

rvec :. = rvec :) A[r + 1]A[+ 2] ... A [t]

[t]' = rvec ItT [ -A[r + 1]A[r + 2] ... A t]K L s~~[T]' AT.. )
= §(

1 )[rT]' (I A[T + 1]) (I 9 A[r + 2]) ... (I D A [t]) . (4.35)

We can then take an expectation of §(1) [t] conditioned on s )[r] to obtain our familiar

update equation,

IE [ [;1 t]'l s/ [r = S(1 [r ]' (I10 E [ A ])t- , (4.36)

where we have followed the same probabilistic arguments detailed in Section 4.3.1 as well

as used the distributive property of Kronecker products (A.2) to show that E [Io Al -

I 0 E [A].

From (4.36), it is evident that for the cards representation,

)7(1 = I (9 E [A] .(4.37)

Evidently, the 1st-order permutation representation of the symmetric group is simply the

realization representation of M1-separability for permutation models, but in matrix form

as opposed to vector form! Note that both representations require the same computation,
as HM is a block diagonal matrix.

Using the same arguments and a little more Kronecker algebra, we can show that the

matrix that propagates the partial information in the form of univariate marginals for the

positions representation must be

H = E [ D'] I , (4.38)

where E [A] = E [ D'].

Reassuringly, 71 and HM are similar, i.e., they share the same eigenvalues, as evident

by the properties of eigenvalues of Kronecker products as described in Section A.1, or more

simply, by realizing from (4.30) that §1 is a permutation of s(1).
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4.5.4 Additional representations of the symmetric group

The parametric form of the GIM automatically permits one to recognize additional repre-
sentations of the symmetric group. For example, we have

S1 [r]' (9 S1[T]'

S1[T]' 9 S2[T]'
(A[r + 1) @ A[r + 1]) -(A[r + 2] (9 A[r + 2]) -...- (A[t] (9 A [t])

sr, [r)' 0 sn [T]'

s1 [t]' S, s[t]'

s1[t]' s2 [t]'
= . (4.39)

sn [t]' osn [t]'

which is a somewhat more redundant version of the 2nd-order permutation representation
of the symmetric group [10]. Under expectations and row-vectorization, this redundant
2nd-order permutation representation becomes the A 2) -separability equation.

The representations that we have mentioned and their extensions derived from the Mr-
separability equations are considered reducible representations for the symmetric group.
We refer the reader to [11, 9, 10] for a discussion of irreducible representations for the
symmietric group. The irreducible representations for the symmetric group are obtained by
decomposing the reducible representations via a process that is more extensive, but similar
in spirit to how redundant partial information vectors like -r(r) are represented in more
compact forms by using marginalization matrices of full rank.

4.5.5 Analyzing the eigenvalues of G

Using H (or equivalently, H M ) to analyze the eigenvalues of G, the underlying transition
matrix, is tricky on two fronts: HM has irrelevant eigenvalues', and secondly, the underlying
transition matrix G is not irreducible. Let's first consider the latter of these two issues.
There is a recurrent class for the states corresponding to permutations, as well as several
other recurrent classes for states that are not permutations (it can be easily argued that there
are no transient classes). Our interest lies only in the eigenvalues of G that correspond to
the recurrent class of states that are permutations-and not the eigenvalues corresponding
to the other recurrent classes. However, one can argue that the convergence to steady-state
for the recurrent class consisting of states that are permutations must be as slow as, if not
slower, than the convergence to steady-state for any of the other recurrent classes (provided
that we have a steady-state, which is ensured when the shuffling technique gives rise to
an aperiodic recurrent class on permutation states; this is always assumed). One way to
show this is that the dynamics in any of the other recurrent classes can be thought of as
the output of a hidden Markov model (HMM) [56 whose underlying Markov chain is on
the recurrent class of permutation states. The idea is that several of the unique cards are
indistinguishable as the outputs of the HMM that captures the dynamics in any of the

other recurrent classes. We can then claim that H(1),s second largest relevant eigenvalue
by modulus must be a lower bound on the modulus of the eigenvalue of G that determines

Relevant eigenvalues are eigenvalues that can be excited by partial information vectors 7r(1), which lie
in a particular subspace as MP fails to have full column rank.
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the speed of convergence to steady-state.

As stated in Section A.1, the eigenvalues of the Kronecker product of two matrices are

the pairwise products of the constituent matrices' eigenvalues. The particular form of H

as given in (4.37) indicates a rather special fact regarding the eigenvalues of H : they are

the eigenvalues of E [ A ]. Because of the freedom offered by having a Kronecker product with

the identity matrix, moreover, one can argue that the second largest eigenvalue by modulus

in E [ A ] will be a relevant eigenvalue in 71(). Hence, E [ A ] can be used to derive lower

bounds on the eigenvalues of G that determine the speed of convergence to steady-state. As

the cards representation allow us to conceive of card shuffling as a GIM of coupled Markov

chains, we have M--separability for each automaton i under the cards representation. By

(4.33), E [ A ] is the matrix that propagates the partial information 7ri under Mi-separability.

Thus, rather than using the n 2 x n2 matrix R to obtain lower bounds on the speed of

convergence for permutation GIMs, we can obtain an equivalent lower bound by using the

n x n matrix E [A].
Lastly, we note that by following the approach in Section 4.3.1 and making use of the

mixed-product property of Kronecker product (A.3), one can show that the underlying

transition matrix G for the cards representation can also be expressed in terms of A:

G = E [A@" . (4.40)

However, (4.40) does not seem to be particularly useful for determining the eigenvalues of

G, as in general, E [A]" o E [ A@" ].

We close this discussion on the connections between the GIM and Markov chains that

preserve permutations by noting that one may consider other multiplicative groups consist-

ing of a larger subset of GIM than the subset preserving permutations. For example, if we

consider the GIMs with the restriction that each random influencer matrix D and random

selector matrices A1 ,..., A, are all permutation matrices, we have a multiplicative group

(as an inverse always exists). In fact, one can show that the GIMs with this description con-

stitute the largest subset of QGIA that is a multiplicative group-as permutation matrices

are the only selector matrices that are invertible.

4.6 Additional GIM examples

The first example in this section illustrates how under specific conditions, a sampled IM

can be analyzed as several separate GIMs of smaller order. The second example establishes

that a different IM extension presented in [57] is itself a GIM.

4.6.1 IM with periodic influence network graph

The dynamics of an IM are partially captured by the influence network graph F(D') and its

corresponding influence matrix D = [djk], whose (j, k) entry is the probability of automaton

j choosing automaton k as its influencer (see Section 4.1.1 for a discussion of the dyk).
Whenever the influence network graph F(D') is bipartite (i.e., has period 2, see [2]),

there must exist a partition of the automata into two sets, S1 and S2, such that automata

in Si always choose automata in S2 as their influencers, and vice-versa. For example, an IM

modeling the spread of a virus has an influence matrix D with such a periodic structure. One

subset of automata corresponds to people, and the other subset of automata corresponds
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Figure 4-3: Periodic F(D') (with statuses shown).

to locations where they might mingle, or to intermediary disease hosts (vectors) [58], [59].
Each automaton exhibits one of two statuses, either susceptible or infected (with respect
to the virus). The periodic structure of D demands that for the spread of infection, an
infected person first must infect a location, with a susceptible person then being infected

by the infected location. An example of such a periodic D is illustrated in the bipartite

influence network graph of Fig. 4-3.
Whenever the influence network graph F(D') of an IM is periodic with period T, we

can define a sampled model with joint transition matrix GT, such that the dynamics of

the sampled model mirrors that of our original IM (with its joint transition matrix G)
sampled every T iterations. Because the transition matrices of GIMs are closed under matrix
multiplication, GT is the joint transition matrix of a GII, but not necessarily of an JIM. In
the sampled model, the automata within a periodic class (a partition of automata induced

by the periodicity of the influence network graph) are always influenced only by other
automata within the class. Therefore, each class of automata constitutes its own lower-

order GIM. Because our original unsampled model is an IM and consequently assumes
conditional independence of automata updates, each of these lower-order GIMs updates
independently.

In our example of a spreading virus, the sampled model with transition matrix G2

consists of two independently-updating GIMs, one for the locations and another for the
people. For any IM with an influence network graph F(D') that is periodic with period 7,

the corresponding sampled model can be analyzed as r independently-updating GIMs, each
of smaller order than the original IM.

4.6.2 IM extension allowing same-time influencers

An extension of the IM introduced in [57] has the same flavor as the influence model, except

that same-time influencers are permitted. This extension can be visualized graphically.
Consider the influence network graph F(D'): an arc from node (automaton) j to node

(automaton) k exists when automaton j can choose automaton k as its influencer for its
update. For an IM, because its automata update independently, a Bayesian network [41]
encoding these conditional independence relationships can be derived from the influence
network graph as follows. Two instances of each automaton are drawn, one at time t - 1
and another at time t. If dyk > 0, that is, if the arc from k to j exists in the influence
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network graph F(D'), then an arc from automaton k at time t - 1 to automaton j at time t
is drawn in the Bayesian network. Contrary to the custom for Bayesian networks, the arcs
in our Bayesian network are labeled with weights inherited from the corresponding arcs in
the influence network graph. As will soon be evident, when an IM is given, such arc weights
are informative.. This new graph is referred to as the IM-update Bayesian network for time
t. An example of an IM's influence network graph F(D') and its corresponding IM-update

Bayesian network is illustrated in Fig. 4-4. For an IM, the influence network graph is a

more compact means to represent the conditional independence relationships encoded by
the IM-update Bayesian network.

tiline t - 1 tine t

auto niatonl 1. auitomlatonl I

iatif1 1 diit( iiiatoti 2 iitoiliat( i 2 atitoinatoil 2

mtoniaton 4 atonaton 4

(a) Influence network graph F(D'). (b) IM-update Bayesian network
for time t.

Figure 4-4: Comparing F(D') and its corresponding Bayesian network for an IM.

The Bayesian network governing updates in the extended IM (or EIM) of [571 allows
arcs between automata at time t. An automaton with such "same-time" arcs indicates that
for its update from t - 1 to t, it can choose an automaton's status at time t to serve as its
influencer in contrast to the IM, where each automaton chooses an automaton's status at
time t - 1 as its influencer.

The same-time influencers in an EIM can be incorporated in an influence network graph

by allowing two arc types. A solid arc indicates that an automaton can be influenced by
the status at time t - 1 of the automaton from which the arc originates; a dashed arc
indicates that it can be influenced by the status at time t. We require that the same-time
subgraph, which comprises just the dashed arcs, be acyclic. The arc weights, as in an IM's
influence network graph, indicate the probabilities of choosing as an influencer the respective
automata at which the arcs originate, and the arc type (solid or dashed) indicates whether
it iterates based on its influencer's current or immediately preceding status. The weights
of a node's incoming arcs of all types must sum to 1. An example of an EIM's influence
network graph and corresponding EIM-update Bayesian network is illustrated in Fig. 4-5.

The EIM-update Bayesian network is acyclic, because of our restriction that the same-
time subgraph be acyclic. Consequently, the automata can be partitioned into subsets that
can be considered as updating sequentially, whereby each automaton updates only after
all other automata that it could choose as a same-time influencer have updated. In the
example of Fig. 4-5, the automata can update in the following order: {1}, {2, 3}, {4}.
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(a) Influence network graph. (b) EIM-update Bayesian network
for time t.

Figure 4-5: Comparing I(D') and its corresponding Bayesian network in an EIM.

Because same-time influencers are allowed in an EIMI. row-stochastic matrices Z k must
be defined that specify the conditional PMF of the current value of automaton j, given its
choice of automaton k at the current time as its influencer. This is analogous to the familiar
row-stochastic matrices Ajk of the IM, specifying the conditional PMF of the current value
of automaton j given its choice of automaton k at the immediately preceding time as its
influencer.

The extension in [57] of the IM to allow same-time influencers is a specific example of
a GIM. This can be demonstrated by construction: a model equivalent to the EIM will be
defined in terms of probabilistically chosen influencers and selector matrices, in a manner
analogous to how the GIM was defined in Section 4.1. A GIM will subsequently be derived
from such a random-update characterization.

Consider an EIM-update Bayesian network, and for each automaton j at time t, draw
independent random influencers ij according to the marginal PMFs specified by the weights
of the incoming arcs. When the influencer of automaton j at time t is another automaton
k at the same time, ij = k[t] is written. On the other hand, if the influencer of automaton
j at time t is automaton k at the previous time t - 1, ii = k[t - 1] is written. By adopting

this notation, previous-time and same-time influencers can be differentiated.

A particular set of realized values for i1 , i2 ,. .. in induces a subgraph of the EIM-update

Bayesian network, and for each automaton j, there exists a unique path, denoted as nj,
terminating at the automaton j's instance at time t and originating at some automaton's

instance at time t - 1. Such a path is unique, as each automaton at time t has exactly one

arc terminating at it in such a realized subgraph. This random path nj can be characterized

by the instances of the automata at time t at which its arcs terminate. An example of such

a realized subgraph is illustrated in Fig. 4-6. For the realization illustrated in Fig. 4-6,
T4 ={4,2, 1} and n3 = {3}

Similarly, probabilistically chosen selector matrices, Ay, can be defined, which are con-
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Figure 4-6: Realization of influencers in an EIM.

ditionally independent given i1 , i2, ... . in and satisfy

E [ Aj I i = k[t] ] Zyk (4.41)

E[ ( h |I = k[t - 1] Aik. (4.42)

Consider a process defined using this formulation and updated sequentially, much as the
EIM from which it is defined, as follows:

s [t]' = Sk [ttAj when ii = k[t]

sj[t' = S[t - 1]'Aj when ig = k[t - 1] . (4.43)

It should be clear by its construction that such a process has the same probabilistic dynamics
as the EIM.

Furthermore, a GIM can be defined in terms of this process with its random-update
formulation. Probabilistically chosen influencers and selector matrices will be specified for
the GIM, and as a consequence of substitution and associativity of matrix multiplication,
the GIM will exhibit identical dynamics. Specifically, automaton j's influencer in the GIM,
ij, can be defined as the automaton at which the random path nj originates, and the random
selector matrices A3 of a GIM can be defined as

A = A . (4.44)
keng

Note that the joint PMF over the influencers ij and update matrices Aj, which is the key
to defining a GIM, is implicitly defined via the specified joint PMF over the ij and Aj.

4.7 Conclusions

We have introduced the GIM as a generalization of the IM that maintains many of its
beneficial properties-namely that expected values of many different state vectors can be
propagated linearly in time. This enables efficient asymptotic analysis of GIMs via marginal
(e.g., pairwise) characterizations of the joint PMF for the network state, with algorithms of
complexity only polynomial in the network size. A few examples of GIMs have been illus-
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trated that make use of the more interesting behavior made possible by this generalization.
Some of the algebraic and geometric relationships of the joint transition matrices of GIMs
have also been described.

Markov chains over permutations were shown to be a special case of the GIM, thereby
bridging a connection between the GIM and representation theory for the symmetric group.
Furthering the connections of the GIM to group theory could be potentially valuable. It
may be possible to leverage some of the power of group theory, e.g., the convergence bounds
of [8], to simplify the analysis of GIMs in special cases.

One of the utilities of the IM is that parameter estimation algorithms have been devel-
oped, and the success of these algorithms in a variety of problems has been shown [60, 61, 62].
The utility of GIMs would be similarly enhanced by efficient algorithms for estimating un-
known parameters from both complete information (a sequence of network states) as well
as incomplete information (a non-injective function of a sequence of network states, i.e..
a sequence of outputs of a hidden Markov model [63] whose underlying Markov process
is a GIM). The next chapter offers a solution to this problem in the general setting of

AI-separability.
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Chapter 5

Parameter Learning under

Separability

This chapter focuses on learning the parameters of an Me-separable stochastic network

based on an observed realization. Maximum likelihood (ML) estimation of G, the under-

lying Markov chain's transition matrix, is the natural problem to first consider. Although

estimating G is intractable when n is large, discussing this problem prepares the reader

for the primary focus of this chapter -learning H,, the matrix that propagates the partial

information vector 7r,. A proposal to modify the algorithm for the ML estimate of G by

replacing Kullback-Leibler (KL) divergences in an objective function with Euclidian (2)

distances motivates our algorithm that estimates H*.

At the computational core of this algorithm to estimate H* is linear least-mean-squares

estimation. Because of this, our proposed algorithm offers familiarity and tractability. The

algorithm to estimate H, has computational complexity that is polynomial in the length

of the partial information vector 7r, meaning that it is polynomial in n for our canonical

examples of M()-separability.

Our estimates of H* exhibit several desirable properties. We show that our estimate of

H* is strongly consistent, i.e., it converges almost surely to its true value, provided that the

underlying Markov chain is ergodic. Despite that fact that characterizing the feasibility set

for H* is intractable for many of our interesting examples of M-separability-necessitating

that we ignore feasibility when computing an estimate of H*-iterative estimates of H*

based on observing an ever-increasing trajectory will almost surely become feasible and

remain feasible provided that the underlying transition matrix G is strictly positive.

In two computational examples we illustrate the ability to learn H, for networks whose

size forbids traditional analysis. Our experiments demonstrate known results regarding the

the rate of mixing of a deck of cards under some standard shuffling techniques, without any

reliance on the theory of the symmetric group. In addition, we illustrate our parameter

learning algorithm on a more general second example. In each case, our computational

experiments require a relatively short trajectory before our estimate is feasible for subse-

quent observations and is close to the true H* by a reasonable measure of distance. Lastly,
we suggest a criterion that offers a rough measure of how reasonable it may be to assume

AL,-separability.
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5.1 Parameter estimation for Markov chains

It is instructive to review parameter learning for time-homogeneous finite-state Markov
chains before proceeding to the special case of parameter learning under separability. Let
x[t] denote the scalar state of our Markov chain at time t, and assume that its finite al-
phabet is the positive integers from 1 to T1. Because of the constraints imposed by the
Markov property, the statistical model is fully parameterized by the initial probabilities
og = IP (x[0] i) and the transition probabilities gij, the probability that the Markov
chain transitions to state j at the next time-step, given that its current state is i, i.e.,
Yij L P (x[t] j x[t - 1]= i). Note that the probability of any event over a finite-time
horizon can be expressed as a polynomial expression in terms of the parameters {gij} and
{ a}. Equivalently, a Markov chain is an algebraic statistical model [54, 55].

We will often represent all parameters by a single vector 0, and denote E as the set of all
parameter configurations, i.e., the set of all possible values for 0. The parameter estimation
problem for Markov chains reduces to the problem of estimating gij and og for all states i, j,
based on observing a trajectory (sequence of states) from time 0 to time t, i.e., we observe
that x[0] = x[0], x[1] =x1]. . . x[t] = x[t], which is expressed compactly as xt = 4.

The likelihood of observing the trajectory x0 can be expressed in terms of the parameters
as:

t

(X = ; 0) - OX[0j 1 9X[ -1]X[r]
T=1

= ax[0] Hg ij (5.1)
i~j

where nij(x) is the count of the number of transitions from i to j over the trajectory 4,
and we have used the shorthand notation 0 to represent all parameters, i.e.,

0 [U1 02 ... O7 911 912 ... 9 ], ' . (5.2)

Our parameter vector 6 can be simplified by defining the il x 1 probability vector

U- = [ J1 2 -.. - J- ' ,(5.3)

and rj x q row-stochastic matrix

911 912 . .. 9 in

G 922 ... .2, (5.4)

L gI 9r2 ... gin _

We express our parameter vector as 0 = (0, G).

Typically, the approach in parameter estimation is to find the values of the parameters

that maximize the likelihood, the probability of observing the trajectory x0 as expressed

in (5.1). Such parameter estimates, denoted as &i and gij, are called maximum likelihood
(ML) estimates, and are found as

O=arg max P ( xto = x;) . (5.5)
OEO
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Up to this point we have not discussed how the parameter space e is specified. In

the Markov chain case, defining 8 is straightforward as our parameters o-i and gij are

probabilities. Thus a possible parameter combination 6 =(o-, G) E 0, must be nonnegative

and satisfy the linear constraints

c-'1 =l1 (5.6)

or equivalently, a- must be a probability vector, and G a row-stochastic matrix.

Returning to the computation of ML estimates, by inspection of (5.1), one should set

&g=1 for j such that x[0] =j, and &2 0 for all i f j (we use a 'hat' ^to denote the

estimate of a parameter that is computed from an observed trajectory). Because of the

factorable form of the likelihood in (5.1) and the constraints on our parameter space 0,

the estimated transition probabilities can be computed separately for each row of G. In

particular, by denoting
gi =[ g1 gi - - gn ](5.8)

as the ith row of C, it follows from the factorable form of (5.1) that

si=arg max QgJx)(5.9)

where A9 is the set of probability vectors of length rj. We have reduced our ML estimation

problem into r smaller estimation problems for each state i.
It may be intuitively obvious that the ML estimate g1iJ (x6) can be found via frequency

counting:

g(i ) (z j() (5.10)

where ni:(Xh) A >& nig (x{). The intuition is that ij~(zi) should be the fraction of timnes

when in state ithat the Markov chain immediately transitions to state j over the trajectory

xi, i.e. the empirical transition probability from i to j. To argue this fact rigorously, one

can compute the log-likelihood from (5.1) (implicitly ensuring nonnegativity), introduce

Lagrange multipliers to enforce the linear constraints on each row of G, and take derivatives

[64]. However, we feel that this approach is best understood as minimizing a KL divergence

(see Lemma 3.1 in [65]). This perspective will be explained in what follows.

The factors of the likelihood given in (5.9) involving transitions out of state ican be

interpreted as the likelihood that over ni:(Xi) independent and identically distributed sam-

ples of a random variable js, which denotes the next state of the Markov chain whenever

it is in state i, ji assumes the value j a total of nig (x6) times. The true distribution of

the random variable ji would be determined by the probability vector gi. In observing the

trajectory x6, we obtain an empirical distribution for the random variable j, namely

that is, the fraction of observed transitions out of i that go immediately to j. The notation

px(; y) denotes an empirical PMF for x as obtained from observing y. The empirical distri-

bution expressed as j&j (-; x4) is a random function that depends on the observed trajectory

x4. Note that the random variable ji has nothing in common with the influencer random
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variables ij of the GIM of Section 4.1.

From Lemma 3.1 of [65], the ML estimate i (x) of (5.9) can be equivalently determined
from the empirical distribution fi(j; x) as follows:

(x') = arg min D(jyj, (-; x) II q() (5.12)

where D(p(.) |q(-)) is the KL divergence between distributions p(.) and q() [49]. We will
shortly derive (5.12) in detail.

Minimizing the KL divergence as in (5.12) with respect to its second element is referred
to as the reverse I-projection of ' (; 4) onto A, [65). This offers us a geometric perspective
to ML estimation. One begins by computing the empirical distribution from the observed
trajectory xt for the next state of the Markov chain whenever it is in state i, i.e., (
The ML parameter estimates of the transition probabilities out of state i are given by the
reverse I-projection of the empirical distribution onto the probability simplex, A.

At this point, we feel it is important to comment on the two ways of representing a
discrete random variable's distribution: a probability vector p of length rI, or a probability
mass function (PMF) p(-) defined on an alphabet of size q. We will primarily employ
probability vectors, but at times when it is necessary to discuss concepts that are most
commonly defined in terms of PMFs, e.g., KL divergence (5.12), we will alternate between
notations. Note that a probability vector will be bolded, while a PMF will not be bolded
(as it is a scalar-valued function), and for a probability vector p, its associated PMF will be
represented as p(-) and expressed in terms of its probability vector as p(j) = pj, where pj is
the jth entry of p. 1 With this warning, hopefully the occasional blurring of the distinctions
between probability vectors and PMFs should be straightforward to follow, and will not
confuse the reader when our notation requires implicit conversions between PMFs and
probability vectors, such as in (5.12). when a PMF on the right hand side is assigned to a
probability vector on the left hand side.

The geometric picture of KL divergence and reverse I-projections is made possible by the
implicit cost imposed on parameter estimates by an objective function that maximizes the
likelihood. This relationship is important to highlight, and by doing so, we will derive the
equivalence between reverse I-projections and ML estimates derived from IID observations,
Lemma 3.1 of [65].

As log(-) is a strictly increasing function, the ML estimate for the ith row of G must
maximize the log of the likelihood (5.9), that is

g arg max nij (x) log gij

argmax (j; 4) log gij
g1 EA7 i

arg min Ej [-log g(ji)]
9( .) GA r

arg min E3 [CLL (ji, g())] , (5.13)
g(.)EA

The alphabet of a finite valued random variable that assumes l possible values is always assumed to
be the integers from 1 to il. This convention eliminates the complications one would otherwise encounter as
the probability vector p would be indexed by a set not equal to the domain on which the associated PMF
p(.) is defined.
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where in the third equality, we have switched our maximization over probability vectors to

a minimization over PMFs, with our dummy variable changing from the probability vector

gi to the PMF g(.). The final equality of (5.13) equates our objective to determining the

distribution that minimizes the expected log-loss cost CLL(j, q(-)) defined as

CLL(j,q(-)) A -log q(j) . (5.14)

The interested reader is encouraged to consult [66] for a complete explanation and treatment

of cost criteria for distributions. The idea of such cost criteria is to specify the penalty for

using a distribution q(-) to represent a random variable j. In an information theoretic

sense, the expected log-loss cost, E [CLL(j, q(-)) ], computed using a base 2 logarithm, is

the expected number of bits necessary to represent a random variable j, when using the

code designed for a random variable with distribution q(-) [47]. Intuitively, it should be

evident that such a cost is minimized when using the code designed for the underlying

random variable's distribution (this is half of Gibbs' inequality [47], a fundamental result

in information theory [47]), and hence we can always consider the nonnegative quantity

that is the expected number of additional bits necessary to represent the random variable

j when using the code designed for a random variable with distribution q(-), instead of j's
underlying distribution, that is,

Epj [CLL (,q(-)) - CLL (j,pj)) pj(j)( log pj(J) log q(i)

± D(pj(-)| q(-)) , (5.15)

which is the definition of the KL divergence [49]. The KL divergence is obviously nonnega-

tive, and Gibbs' inequality further ensures that D(p(.) 1q(-)) 0 if and only if p(-) = q(-).

However, the KL divergence is not a metric. In general it is not symmetric in its arguments,
i.e.. D(p(-) |q(-)) # D(p(.) q(-) ), although it is roughly symmetric in its arguments when

p(.) and q(-) are very close to one another. In some special circumstances the KL divergence

does satisfy a triangular inequality, but in general it does not. It is often referred to as a

measure of distance [67], an example of the larger class of f-divergences [68, 69]. Minimizing

the KL divergence with respect to one of its elements is called a projection, and in our case,

a reverse I-projection when the minimization is with respect to the second element.

By combining (5.13) with (5.15), it should be clear that ML estimates can be obtained by

a reverse I-projection (5.12). Summarizing, ML estimation imposes a log-loss cost criterion,
and consequently, information geometry offers an intuitive perspective into how ML esti-

mates are obtained: as the reverse I-projection of the measured empirical distribution onto

probability simplex A. In our case, as our feasibility set AT is otherwise unconstrained,
such a reverse I-projection is degenerate: the KL divergence between the measured em-

pirical distribution pj, (.; x') and a distribution in A., can be minimized to 0, yielding the

observed empirical distribution as the ML parameter estimates:

- j(xO) for all i, j , (5.16)
ni: (xt)

where gij(xt) is the ML estimate for the jth element of the probability vector gi (5.8).

Consequently, the intuitive ML estimates suggested in (5.10) are valid.
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5.1.1 Alternate perspective on ML parameter estimates

The notion of deriving the ML estimates of G via empirical distributions can be extended
further to provide an alternate perspective in terms of linear least-mean-squares estimation.
This new perspective motivates our suggested procedure for efficient parameter learning
under the assumption of separability.

As in the original development of ML parameter estimates for Markov chains, an em-
pirical distribution is defined via the observed trajectory x'. For each state i, we defined
an empirical distribution for ji, the next state of the Markov chain when its current state
is i. Each of these empirical distributions can be thought of as a conditional empirical dis-
tribution, given that the Markov chain is in some state i. Thus the subscript on ji denotes
the conditioning event, and upon dropping the subscript, we can use the trajectory xt to
define a joint empirical distribution for random variables i and j as follows:

A'. (. ' t # times r : x[r]=i, x[ 1= (5.17)pij 1z, ;xO) = (517t

>1{x[T]=ix[r+1]=j} , (5.18)
T=o

where we have employed standard indicator random variable notation, with 1 A being the
indicator random variable for the event A. The idea is that each transition of the Markov
chain provides a realized sample of the pair of random variables (i,j). Note that FAJ(-|i =
i; z() derived from (5.17) is equal to )j, (.; z) of (5.11). We will henceforth represent yj,
using the clearer conditional probability notation Fjp(-i= i; x).

To introduce linear least-mean-squares estimation, we define the random indicator vec-
tors corresponding to (i,j):

si = ei when i = i (5.19)

sj = ej when j j . (5.20)

In an ergodic Markov chain, the conditional expectation of sj given i i with respect to

the true joint distribution of (i, j) 2 is the ith row of G, i.e.,

E [sj I i e'G , (5.21)

or equivalently,

E [ sj I si ]=s G .(5.22)

Following directly from (5.22). it is evident that the Bayesian least-mean-squares (BLS)
estimator for sj given si [48) is

JiBLS(Si) =sG, (5.23)

and because the BLS estimate is linear, the linear least-mean-squares (LLS) estimator for

2The true distribution of (i,j) should be thought of as the distribution of the random variables when
the Markov chain is in steady-state, or equivalently, the limiting empirical distribution obtained as t -4 coo

(such a limiting distribution exists by renewal theory under the assumption of egodicity [40]). Hence, the
true distribution is defined as pij(i, j) = Tigij, where Wf is the steady-state probability of state i.
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sj given si is

LLS(i sssisj (5.24)

= =BLS(s) sIG , (5.25)

where R, A E [yz'] is the cross correlation of y and z. Note that we mean linear in the

strict sense, i.e., not the more familiar affine linear least-means-squares estimator of [48].
Hence it should be apparent why we introduced indicator vectors s, and sj-because the

transition matrix G is part of the linear least-mean-squares estimate of sj given si.

Suppose that we substitute the empirical distribution ij in place of the true distribution

for our analysis in (5.21)-(5.25). It follows that

sJLLS(5)(S i s(sss sj (5.26)

where the expectations in Rs, and Rss are computed with respect to the empirical distri-

bution fixj, ; zi). It is straightforward to show that

-{nk:(xo) if k = l
si k1 0 otherwise

L $sisj] k1 - nkl(Xo) , (5.27)

and thus by (5.27), we can rewrite our linear least-mean-squares estimate (5.26) as

L LS()(S') s$O(xl) , (5.28)

where G(xo) is the ML estimate of G based on observing the trajectory xO as given in

(5.10).3

Hence, we have an alternate method to compute the ML estimate for G, albeit by

means convoluted in relation to frequency counting: compute the linear least-mean-squares

estimate of sj given s; with respect to the empirical distribution fsj(, ; xt) obtained via the

observed trajectory xz. In doing so, we compute

O(z) = N-,sj s , (5.29)

which holds by (5.28) as si ranges over all of RI. We refer to this indirect method of

computing the ML estimate of G as the linear least-mean-squares approach.

A cautious reader will note that Nsis will be invertible if and only if the trajectory x4

contains a transition out of every state. However, this limitation is easily overcome by taking

a Moore-Penrose generalized inverse [39] in (5.29). In doing so, the transition probability

estimates out of the unobserved states are set at 0, and should be interpreted as arbitrary.

Similarly, the estimates of the transition probabilities j as obtained via frequency counting

when there are no observed transitions out of state i are not uniquely defined.

3 The astute reader will note that such a linear estimate developed from an empirical distribution can be

directly computed via linear least squares regression; however, we feel that the random variable perspective

via empirical distributions is useful as a comparison to the KL divergence perspective for ML estimates.
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5.1.2 Resolving the equivalence of the two approaches

It may seem surprising that linear least-mean-squares estimation with respect to empirical
distributions provides an alternate means of computing the ML estimate of G. Probing
why this is so will provide the reader with a valuable perspective on various approaches
to estimation in general. The equivalence can best be understood as linear least-mean-
squares estimation imposing a quadratic cost criterion. The fact that both the log-loss
and quadratic cost criteria are proper, a property that we will soon define, ensures that
both approaches, reverse I-projection and linear least-mean-squares estimation, yield the
ML parameter estimates of G.

Recall from (5.13) that the direct approach to ML parameter estimation of Markov
chains, one minimizes the expected log-loss cost:

=i(zi) = arg min Eg.1, [CLL (j, q())= ]. (5.30)
q(-)Cdl

As suggested already, we can envision the linear least-mean-squares approach as min-
imizing an expected cost with a different cost criterion. In determining the linear least-
mean-squares estimator of sj as a function of si under the empirical distribution xt,. ),
we obtain:

iLLS(g(si) s () (5.31)

where G(x) is the estimate of G via the least-mean-squares approach (5.29). Because si is
an indicator vector, i, the ith row of C, is precisely the Bayes least-mean-squares estimate
of sj given that si ei under the empirical distribution Aj(- x-z), that is,

JXz) =J LLS(jig(ei)

= sBLS(J5) (ei)

= argmin Is _ g =i 11
1 2r

= arg in E [(sj - g)'(sj - g)|i I i

=lEg, [sj | i = i] . (5.32)

The notation || -|2 denotes the E2-norm for random vectors, defined as ||x|12  E [x'x] I 2 .
We can define a quadratic cost criterion CQ(j, q(-)) [66] as

CQ(j, q() ) ± Z(11j ~} - q(j)) 2  . (5.33)

Recognizing the equivalence between the quadratic cost in (5.33) and the expression inside
the expectation in the fourth equality of (5.32), evidently the estimate of G via the linear
least-mean-squares approach is minimizing an expected quadratic cost:

Wi(es) = arg min Et, [Cq(j, g(-) )|i = row (5.34)

We can also illustrate our least- mean-squares estimate of the ith row of G without the
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overhead of empirical distributions, as

-i(z) =arg min |S Ie - gJ| (5.35)
gA T: X[TF 1] =i

We should note here that in all such derivations, there is an implicit dependence on the

observed trajectory x4 that we have omitted in most cases for notational simplicity.

Notice how (5.30) and (5.34) are the equivalent, except for the particular cost criteria

being employed. When the feasibility set is otherwise unconstrained, the distribution that

minimizes the expected cost in both cases is the observed empirical conditional distribution

of j given i = i:

arg min E 1 , [CLL (j, 9)) i = arg min Efi1, [CQ(j, g))fi i]
g (-)E A7 g( )EA

= y)1 (j i; 0), (5.36)

that is to say, both cost criteria are proper. Gibbs' inequality assures that the log-loss cost

criteria is proper, and the quadratic cost criteria is proper as it is associated with a metric.

This fact explains why the ML estimates are equivalent to the estimates obtained under

the least-mean-squares approach, which we will henceforth refer to as LS estimates.

Evidently, we can envision our parameter estimates of the ith row of G, i. as obtained

by minimizing the expected log-loss cost (5.30) with a reverse I-projection, or by minimizing

the expected quadratic cost (5.34) with a Euclidian projection. The ML estimation problem

motivates the use of expected log-loss costs; however, when the minimization is performed

over all distributions, any proper cost function can be considered, and thus both approaches

are consistent. If there are constraints known a priori on the parameter space 0, only the

log-loss criterion would necessarily yield the ML estimate.

As this investigation has shown, ML estimation motivates the use of log-loss costs. More-

over, there is an axiomatic defense of log-loss cost criteria when dealing with nonnegative

quantities like probability distributions [67].4 However, if one were to consider the problem

without posing the objective of maximizing the likelihood, one may argue that it may not

be immediately obvious that log-loss costs are preferred. Arguably the primary value of

ML estimation is that the ML estimate for our ergodic Markov chain will converge to the

true G as the duration of the observed trajectory increases, i.e., it is an asymptotically

consistent estimate. However, the same holds true for an estimate derived via any proper

cost criteria, even in the case when e is restricted. As we will show in the next section,
an estimate derived from quadratic cost criterion often may be preferable when it can be

solved via a quadratic program or potentially even better, a closed form solution. Because

estimates derived from quadratic cost criterion share the same asymptotic properties as the

ML estimate, we argue that it can be a reasonable alternative to ML estimation.

5.2 Learning G under M,-separability

We now consider the parameter learning problem under M,-separability. It is assumed

that an M-separable network of stochastic automata produces the observed trajectory zt
of the network state, with M, being known. As we have a time-homogeneous Markov

4 In constrained cases, minimizing an expected quadratic cost criterion may yield solutions with negative
entries.
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chain, the parameters to be estimated include the joint transition matrix G and the initial
probability vector o-. Much as in the unrestricted case, our focus will be on estimating
G. As discussed at length in Section 3.4, the transition matrix of a network exhibiting
A,-separability can be represented by a number of parameters equal to the dimension of
g(M), i.e., the number of free parameters of the linear transformed G (3.3). However, it is
seemingly easier to estimate G in our original untransformed space by imposing its simple
nonnegativity constraints with the linear constraints of Mt-separability.

When AI-separability is assumed, we compute the ML estimate of G as

GML arg max g (5.37)

with 9(M) being defined by a collection of linear equality and inequality constraints. This
computation of the ML estimate of G reduces to solving the following convex program in
terms of the log likelihood:

maxZ nj (x) log gij

s.t. GI1

M1 GM* = 0
G> 0 (5.38)

where G > 0 denotes that each entry of G must be nonnegative. Because of the linear
constraint [M]' GM = 0, the estimates of each row of G do not decouple as they do in
the otherwise unrestricted Markovian case.

The objective, which is maximizing a likelihood, can be manipulated into an expression
that minimizes a convex combination of expected log-loss costs:

GML (XO) = arg max n1j (x) log gij
Geg(AI ) ij

= arg max ni( (Zix) log gi)

=arg max ni :( ( (zn() log ij

= arg max y (i; X) (y 1(j i; Xt) log gij
CG ( M,) \ ~

= arg min 3, (i;Xo) E(1K1 [ CLL(,9i(-))| i = i] , (5.39)
G cE(M.) /

where in the last line, gi(-) must be conceived as the PMF associated with the probability
vector gi, the ith row of G.

For those with an intuitive understanding of KL divergences, it may be helpful to ma-
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nipulate the penultimate equality of (5.39) into a convex sum of KL divergences,

GAML (X0) = rg( max ix0 0 ) log gij - jixx 0 lOgi ji~k; t)

=arg min ii;x')DO y p( -Ii; xto)|11gi (5.40)
Gcg(M.)

where several constant terms in the form of entropies are introduced in the first equality to

manipulate the expression to the form of a KL divergence. The probability vector gi that

appears in the final equality should be thought of as a probability mass function.

We can derive an expression for the ML estimate solely in terms of a reverse I-projection,
but only after first defining the matrix

C - diag(%1;x ),yij(2;x),...,i(i;xto))G , (5.41)

where diag(-) denotes a diagonal matrix with the given entries on the diagonal. Evidently,
G and G share a linear bijection. Note that G represents a joint distribution on two

variables: all of its entries are nonnegative and sum to 1. The first equality of (5.40) can

be manipulated into a reverse I-projection involving G:

g~~ ~ ~ mi i;xOo Al(ji zo)yiVi; zo)
AIL(Xt) argmin E x )i xt) log (

Gcg(k) 0 9iji ) 0

y U (j i; zO)y (1; Xz0)arg min fi(i; Zx p(j i; 4) log ( .
GEO(M1.) iiji 0

arg minD(-, - ) ) , (5.42)

where the matrix G, defined in terms of G in (5.41), must be envisioned as a joint PMF

indexed by its rows followed by its columns. Operationally, the form of (5.42) offers the

simplest method of deriving the ML estimates. Effectively it is a reverse I-projection with

linear constraints. First determine

dML = arg min D (y,j(-, - ) ) (5.43)

where the feasibility set g(A,) can be characterized by the linear constraints obtained

by substituting (5.41) into the constraints characterizing g(M,) as given in (5.38). Then

compute

GML(X'O) = diag , I ,..., I )) ML . (5.44)
y;l(1; zt)' pi,(2; zt) p(n; z o)

The form of (5.43), a reverse I-projection over a linear family, is a standard problem, yet

this author is not aware of algorithms to solve such a problem efficiently apart from general

'hill-climbing' techniques, e.g., Newton-Ralphson. If the feasibility set was an exponential

family, or if the optimization involved an I-projection over a linear family (not a reverse

I-projection), an iterative alternating projections algorithm [70, 71, 72] could be employed,
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of which the efficient and ubiquitous EM algorithm is a special case [73].

5.2.1 A quadratic approach

Suppose that one estimates G indirectly via a constrained Bayesian least-mean-squares
estimation technique, the constrained counterpart to the approach outlined in Section 5.1.1.
In particular, one estimates G by developing the linear least-mean-squares estimate for
the next state of the Markov chain given its current state, under the constraints that the
operator satisfy the linear constraints of M,-separability (5.38). In the language of quadratic
costs, we wish to define our alternative estimate GLS, which we refer to as the least squares
estimate, as

GLS(XO) = arg min Is - s('G||
Ccg(A.)

= arg min E, (sj - s G)(sj - sG)']
Geg(M.)'?

= arg n> (i; xz)E3j, [(sj - sG)(sj - s G)' i i]

arg min (i;xz)sj - giJi =
o 79(AI.)

arg in i(t; zi)Ei J [Cq(jgi) i = 1] .(5.45)
C; 9(AI)

Comparing the last equality of (5.39) to the last equality of (5.45), the objective of iinimiz-
ing a convex combination of log-loss costs has been transformed into a convex combination
of quadratic costs.

As an alternative, one can compare the two approaches-the ML and LS estimates of
G-on the basis of KL divergences and Euclidian (f2) distances. The Cauchy-Schwartz
equality for random vectors [50] assures that

Hsj - It i +| - g -i i = -s - gi - i=l , (5.46)

because E [sj I I = i] j(I i ). Substituting (5.46) into the penultimate equality of (5.45)
and simplifying, we obtain

GLS(XO) = arg min 0ji; ) S Ii + -- gi
GX ) Q( ,)

arg min Y (i; Ii i - I - i . (5.47)

Upon comparing (5.40) to (5.47), it should be evident that by replacing the KL divergences
in the objective function for our ML estimate of G (5.40) with f2 distances, we obtain the
LS estimate of G.

There are fundamental reasons to favor log-loss costs and the associated KL divergences
as the appropriate measure of distance for nonnegative quantities like distributions; these
reasons extend beyond the setting of maximum likelihood estimation [671. Nevertheless, for
computational reasons alone, it is reasonable to consider quadratic costs. Solving (5.45) is a
rather tractable convex program with a quadratic objective function. Moreover, as the goal
is to estimate the true parameters on the basis that the estimator is consistent, meaning
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that it converges to the true value in some probabilistic sense when the underlying Markov

chain is ergodic, either quadratic costs or log-loss costs suffice.

Our estimate of G derived from minimizing a quadratic cost can be made even more

tractable. If the nonnegativity constraint is relaxed when computing the LS estimate of G,
what results is a linear least-mean-squares problem subject to linear equality constraints,
which has a closed-form solution [74]. Moreover, an iterative updating form for the estimate

when additional observations arrive is straightforward to derive. Provided that the true G

is in the interior of the nonnegative orthant, after observing a sufficiently long trajectory,
such estimates would eventually satisfy the relaxed nonnegativity constraint.

5.3 Learning H, under M,-separability

Up to this point, we have avoided discussing the complexity of the computations to estimate

G under the assumption of A,-separability. Recall that the dimension of the feasibility space

g(M,) will be a constant fraction of the dimension of the feasibility space in the otherwise

unrestricted case: M-separability enforces a block of Os in the linear transformation of G

illustrated in (3.3), but this block of Os cannot dominate the matrix, as the sum of the

rows and columns of such a block of Os must be 71, the number of rows or columns of G.

Consequently, the dimension of the feasibility space g(M,) will grow exponentially with n,
regardless of how M, evolves with n. Even regular M-separability faces these issues of the

exponential growth of Q(M) as n increases.

In Sections 3.5 and 3.6, the increasingly large relative dimension of A(')-separability

and M(0)-separability as n increases was deemed favorable, as it offers substantial relative

generality in our probabilistic model for large n. When learning G, however, such exponen-

tial growth of the parameter space as n increases is a hindrance. When n is large, learning

G by either of the suggested approaches-maximum likelihood or least squares will be

intractable. From the perspective of learning G, there is no significant computational ad-

vantage to assuming A,-separability when n is large, which we remind the reader, is the

scenario that motivates separability. This is not to say that learning in general will be in-

tractable, or that the previous discussions of learning G are useless; in fact, CLS, the least

squares approach to estimating G, motivates the subsequent approaches to learning.

We wish to develop a learning algorithm under the assumption of M-separability that

can be tractable for large n. At the very least, this requires estimating a set of parameters

that is polynomial in n. The logical choice is to estimate H, the matrix that propagates the

partial information vector 7r,. Provided that A, has column rank O(nk) (which is satisfied

by MN with k = r), then estimating H, requires estimating O(nk) parameters, and has the

potential of being tractable. By nature of being a much smaller matrix, learning H, may

be more robust than learning G. Although H, does not provide the full information that G

provides, it can be used to tractably propagate partial information when n is large (provided

H, 's size is polynomial in n), which is the value to assuming M,-separability. As discussed

in Section 3.1.2, H, offers substantial insight into G's spectral properties. Hopefully we

have sufficiently motivated the idea of estimating H,.

Before developing algorithms for estimating H, we need to characterize 7(N(M,), the set

of possible H, that propagate partial information under M,,-separability, much as we did

for g(M,) in Section 3.2.

129



5.3.1 The feasibility set 'H(Mf)

If we are to estimate H,, we should understand the feasible set of H* that one may encounter
under Mt-separability. In this section, we characterize the set of H* matrices that solve
(3.1) for fixed M, and any row-stochastic G, a set that will be denoted as R (A,). From an
alternate perspective, R(M,) consists of the matrices H* that propagate partial information
when MI,-separability is satisfied.

When M has full column rank, N(MVI,) can be defined as the image of a function with
9(M,*) as its domain:

'HL(M,) {M- LGM : G E g(M)} . (5.48)

As the function M--L GAI is linear in G, W-(M,) must be finitely-generated whenever 9(M,)
is finitely-generated. As g(AI) is the intersection of a polyhedral cone [29] (the nonnegative
orthant) with an affine subspace and in addition is bounded, it must be a finitely-generated
convex set, and consequently 7-1(M,) must also be a finitely-generated convex set. Note
that I E -(MI), just as I E g(M,), for all MI. The linear constraints satisfied by matrices
in g(M,) can be converted to constraints on 7(M,) by elimination. Similarly, the cone
membership condition (nonnegativity) can be transformed into a cone membership condition
in the transformed space. This procedure would have the benefit of describing 'H(M) in
terms of a set of linear equalities and inequalities that must be satisfied, which can then be
used to verify membership of a matrix in 7(MI).

When MJ fails to have full column rank, consisting of p columns with rank p < p,
characterizing -(M,) in terms of g(A,) is a bit more complicated. Because A has a null
space, for a given G, there is an affine subspace of matrices H, that satisfy (3.1). As has
been discussed in Section 3.1.2, for a given G exhibiting A-separability, one can solve (3.1)
for the matrix HO of minimal Frobenius norm:

H o = Ml . (5.49)

The affine subspace of solutions, for a given Mt-separable G, can then be specified as

H*(Z) = Ho + NZ , (5.50)

where N* is a matrix whose columns serve as a basis for V(A), and Z (E R P)xp param-
eterizes the affine subspace.

If we define the subspace of p x P matrices with columns in N(M,) as

N() {N*Z: Z E Riy P)xP} (5.51)

and define the finitely-generated convex set of possible minimal Frobenius norm matrices
for any G in g(A):

Wo(ML) = {MGM : G E 9(M*)} , (5.52)

we can then express R-(Mk) as

N(M) = No(M*) c&A(Mk) (5.53)

where G indicates a direct sum.

There also is a rather simple and intuitive way to characterize 'H(M*), without invoking
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G(M,). Note (3.1), and reverse the typical roles of G and H,. Suppose that M, and H, are

given. Under what conditions does there exist a row-stochastic matrix G satisfying (3.1)?

A row-stochastic matrix G exists if and only if H, leaves the polytope defined as the convex

hull of the rows of M, left-invariant. Why? Because by (3.1), the ith row of M" times H,

must equal the ith row of G multiplied by A4, which is a convex sum of the rows of M.
For M(r), we refer to such a polytope as the rth-order marginal polytope.

Sets defined in terms of the rows of M, and the convex hull of its rows were introduced

informally in Section 3.3. Recall that S is the set of indicator vectors for the network (3.71).

Let S, be the image of S under the linear transformation given by M., i.e.,

S* {e'kM, : ek E S} . (5.54)

In simple terms, S, consists of the rows of M. Let A, be the convex hull of S, that is, the

set of potential partial information vectors that may be encountered under AI-separability.

Such notation does not indicate the appropriate size of vectors in such sets, as it is assumed

that the appropriate sizes can be ascertained from M,.

5.3.2 Verifying membership in '-(M,)

Recall that 7(M,) is the set of matrices that leaves A, left-invariant. Determine the

half space constraints and linear constraints defining A,. Represent these constraints with

matrices A, B, and vectors c, d as follows

m'A = c' V m EA (5.55)

m'B > d' Vm E A* . (5.56)

It then follows that H* E N(AI) if and only if

M2 H*A = 1c' (5.57)

MH*B > lId' . (5.58)

We can make a few important observations. Suppose that M, has p columns, and rank

p < T. Naturally, A* C RP. There are only two possibilities for the dimension of A*: it

must be either p or p - 1 (depending on whether or not 1 C 7Z(M*)), meaning that A must

have either p - p or P - p + 1 columns, i.e., O(f) columns. As p - p of the constraints on

A* must be strict linear equality constraints stemming from the null space of Ms, we can

always choose A and c such that c consists of all Os with the possible exception of a single

1. Only when IL E R(M) is it possible for c to have a nonzero entry (otherwise we would

have a contradiction in (5.57)).

If M* has full column rank, then there are no equality constraints due to M* having a

null space. Consequently, A will consist of a single column if 1 E R.(M*), and otherwise

there will be no equality constraints characterizing 7-(M,).

These observations have implications on verifying (5.57), which characterizes the affine

hull of 'H (M*). As A* has dimension p or p - 1, one can choose p + 1 (or in some cases only

p) rows of A, (elements of S*) whose affine hull contains A*. Let M, be the matrix with

these p + 1 rows of M., and note that verifying (5.57) for a candidate H, is equivalent to

verifying
M* H* A = 1c' . (5.59)
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As all matrices in (5.59) have no more than ip rows/columns, evaluating such an expres-
sion requires computation of 0(p3 ) complexity, which may be tractable provided that P is
polynomial in n (assured for our canonical cases of MM-separability). This does assume
that M is 'preprocessed,' meaning that p + 1 rows have been identified whose affine hull
contains A,. For our canonical examples, such processing is tractable because the rank of
M) is analytically known in advance. Hence, verifying that a candidate H, satisfies the
linear equality constraints of 7-(M,) may well be tractable.

On the other hand, verifying the linear inequality constraints (5.58) may prove difficult.
There are no obvious limits on the number of columns of B; furthermore, one cannot reduce
M, to A., when inequalities are involved. However, one could lessen the computational de-
mands of checking membership in R(A(M) by replacing AI in (5.58) with a matrix consisting
of only a subset of the rows of M, the rows that are the extreme points A,. A potential
algorithm to accomplish this is given in [75]. If all q rows of M, are extreme points, then
the computational complexity of evaluating (5.58) will be Q(q), i.e., at least exponential
in n (this seemingly weak lower bound considers the potential computational advantages
stemming from sparsity). On the other hand, if B has order O(p) columns and A, has
p extreme points, then evaluating (5.58) is of O(P3) complexity. Thus the computational
bottleneck in checking membership in 7(A,) is the linear inequality constraints. At one
extreme, the computational demands of checking membership in N(M,) will be no worse
than polynomial in P, and at the other extreme, it will be at least exponential in n.

Recognizing that separability is defined with respect to a subspace (Corollary 3), one
may think to choose M., judiciously to minimize the number of extreme points in the
convex hull of its rows, thereby reducing the potential computation of checking mei-
bership in N(M,). This is futile, as evident by linear algebra. For example, suppose
that the jth row of M, can be expressed as a convex combination of the other rows of
Al, meaning that the jth row of AL, is not an extreme point of A,. Define the vector
A = (A,..., Aj_1, -1. Agi,...A,,), where for i f j, Ai > 0 are the weights in the convex

combination associated with the jth row of As. Evidently, A'M, = 0, meaning that A is
in the left null space of ML,. Any other matrix _M# such that R(MA) R(M#) must have
A in its left null space, and consequently, its jth row will not be an extreme point of the
convex hull of its rows.

We note that for M(r)-separability, each row of M(r) is an extreme point of A(r). Con-
sequently, checking the linear inequality constraints of 7(M(r)) via (5.58) requires compu-
tations that are at least exponential in n. Even though the matrices in N(M(r)) are of size
O(nr), they are the set of matrices that leave a convex polytope invariant that is generated
by 0(c') extreme points, which is makes checking membership in 7-(A,) intractable for
large n.

Note that the complexity of checking membership in N(M,) may be very different from
the complexity of checking membership in A,. For r = 1, membership of 7r(1) E A 1 ) is
straightforward to check: each partition of r(1) that corresponds to a probability vector
must sum to 1 and be nonnegative, i.e., 0(n) constraints. When r = 2, the bivariate
marginal probability vectors composing the vectors in A(2) must be nonnegative and sum
to 1, but in addition they must be consistent, i.e., the bivariate marginal for (x1 , x2 ) and
the bivariate marginal for (x2 , x3 ) must both specify the same univariate marginal for x2 -
Each univariate marginal is implicitly defined in 0(n) bivariate marginals; consequently,
verifying consistency is of 0(n 2) complexity when r = 2. For general r, we can argue that
the computational complexity of checking consistency is Q(nr), which includes checking
consistency of the (r - 1)-variate mnarginals, followed by the (r - 2)-variate marginals, and
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so forth. What we have failed to show, however, is whether or not nonnegativity and

consistency of marginals is sufficient for characterizing the rth-order marginal polytope
A(r).

For r = 1, the answer is yes, but for r > 1, the answer is no. When r > 1, we refer to the

polytope of nonnegative vectors composed of a sequence of consistent marginal probability

vectors as the relaxed rth-order marginal polytope, which is a strict superset of AM. When

r > 1, there exist pseudo rth-order marginal vectors exhibiting consistency, but for which

there does not exist a joint distribution that produces such consistent marginals.

The explanation as to why nonnegativity and consistency are not sufficient to character-

ize the rth-order marginal polytope for r > 1 is explained in Vorob'ev's and Kellerer's work

on extension of consistent probability measures [42, 43, 44]. There is a graphical approach

to check when consistency and nonnegativity are sufficient to characterize a marginal poly-

tope, which can be explained as follows: associate a node which each marginal distribution

given. Next, draw an edge connecting each pair of nodes that define a common lower-order

marginal (and hence would need to be checked for consistency). If the resulting graph is

a tree, i.e., no cycles, then nonnegativity and consistency are sufficient to characterize the

marginal polytope. Obviously this explains why we have sufficiency for r = 1 (no edges

would be drawn) but not for r > 1 (for any pair of connected nodes, there exists a third

node connected to each that completes a 3-cycle). We note that this characterization of a

junction tree is equivalent what we refer to as the common orthonormal basis assumption,
which is discussed in Appendix A.2, and offers a linear algebraic perspective of such ideas.

Readers familiar with graphical models may note the similarities of our graphical con-

struction to junction trees for Markov random fields [41]; in fact these ideas are equivalent.

As shown in [76], when one has a junction tree of marginal information, a joint distribution

producing such marginals can be specified as the product of the marginals associated with

each node, divided by the common lower-order marginals associated with each edge. In the

language of graphical models, these would be the clique mnarginals and separator marginals,
respectively. The joint distribution defined in terms of these clique and separator marginals

would the the joint distribution of maximum entropy that satisfies such marginals [70], and

equivalently, the unique joint distribution that satisfies the given marginals and exhibits

the conditional independence relationships encoded by the Markov random field that can

be 'backed out' from the junction tree (each of the Markov random field's cliques, maximal

fully-connected subsets of nodes, would correspond to a node in the junction tree) [76].

Summarizing our observations, it is evident that checking membership in 'H(M) will

be of computational complexity that is polynomial in the number of extreme points of

A*, meaning that for the canonical examples of separability that we often consider, M(r)

or M ()-separability, this complexity is exponential in n. On the other hand, checking

membership in the the relaxed rth-order marginal polytope is only polynomial in n. This

realization motivates the suggested approach of ignoring the inequality constraints of the

feasibility set from which we estimate H, but then concerning ourselves with maintaining

membership in A* (or its relaxation) when propagating partial information vectors via a

potentially infeasible estimate of H,.

5.3.3 Approaches to estimating H*

By estimating H, one is estimating linear functions of the transition probabilities of an

M,-separable Markov chain. The mapping from G to H, is not injective, meaning that

in general, H* cannot characterize G. In general, to associate a unique G E g(M*) with
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a given H., E 7(M ), one must know the values of the two additional matrices H(12)
and H( 2 2) represented in (3.3). In most instances, for a particular H, there is a set of
transition matrices G E g(M,) all associated with the same H". This may create a problem
for maximum likelihood estimation. One wishes to find the parameters that maximize a
likelihood that is not fully defined in terms of the parameters one is considering. If we use
(3.3) to express the likelihood (5.1) in terms of H,, H( 12), and H( 2 2), we do not obtain a
likelihood that factors into two terms, one involving H, and the other involving H( 12) and
H( 22) (nor do the constraints decouple). This fact presents a challenge as to how to proceed
with estimating H,.

One could find the H., H( 12), and H(22) that maximize the probability of the observed

trajectory. Equivalently, one can compute GAIL and then report

HIL = MAMLM* . (5.60)

As suggested by our notation, we refer to HML in (5.60) as the ML estimate of H. However,
such a computation would be undesirable, on account of having first to determine GIL.

Alternatively, one may consider a Bayesian formulation, since a convex set of row-
stochastic matrices G may produce the same H,. One could define a measure on
and thereby implicity a measure on 7(M). 5 One could compute the maximum a posteriori
(MAP) estimate from such a formulation. Again, this would seemingly not be tractable for
large n, as it would again require computations involving G.

These two approaches to estimating H, will not be computationally feasible when n.
the number of automata, is large. Hence, we must develop an alternative approach to
estimating H,. Our motivation lies in the observation that under AI-separability, H* is
the matrix that propagates the expected value of the linear transformation of the state
indicator vector, recall (2.32), i.e.,

E [ s* [t]' I s [t - 1]] s, t - 1]'H, . (5.61)

Similar to the approach in Section 5.1.1, define random variables s1, and sp jointly
distributed according to our time-homogeneous stochastic process as follows:

Psi.,s* (s,(i), S*(2)) ± P ( s[t - 1] = s,(i), s,[t] = S*(2) ) (5.62)

for s*(i), s*(i) E S,. Such a joint probability distribution is well-defined whenever the the
underlying Markov chain is ergodic and initialized in steady-state.

Evidently from (5.61),

arg min Is' - f(ss) Isa |2 =E [sj| sa ]
f(-)EB

= sti'H (5.63)

where in the first equality, B is the set of measurable functions. By the second equality in

5 Recall that if M fails to have full column rank, there is a subspace of matrices H* associated with
a particular G (3.24). To simplify matters, we only consider the H, matrices of minimal Frobenius norm
(3.20), so as to always associate a unique H* with a given G c g(MI).
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(5.63), it follows that if one were to restrict B to only linear functions, we would have

H = arg min ||sB - s, H1| 2
H ERP xP

= R-12 Rs,, , (5.64)

as long as S* does not lie in a strict subspace of RP (this assured when M* has full col-

umn rank). Our (5.64) states that H* can be obtained via a linear least-mean-squares

minimization between sj, and linear functions of sis.

Least squares estimator HLS

At this moment, our approach to estimating H* should be clear. By observing a trajec-

tory x0, we receive a sequence of samples of sj* and s*. Although the samples are not

independent, as long as we have an ergodic chain, by renewal theory [40], the empirical

distribution
i t

psi* sjs (S*(i) , S*(2); x" 1{.r 1]sm t*r~- (5.65)
T=1

will converge almost surely to the true distribution given in (5.62). It follows that the

empirical cross correlation matrices computed from the empirical distribution will converge

almost surely to the true cross correlation matrices. In doing so, we can compute an estimate

of H, that will be strongly consistent, that is, will converge almost surely to the true H, as

t, the length of the trajectory, increases. 6 This is summarized in the following theorem.

Theorem 11. When M* has full column rank, define

t

LS(X) A argmin> S* T]' - s* [T - 1]'H |
HERPxP T 1

= arg min Ei [ (s - s, H)(sj, - s, H)'
HCIRPxP

- * R s', j. (5.66)

where the expectations in second and third equalities are with respect to the empirical dis-

tribution on si, and sj, defined as in (5.65).

Provided that the underlying Markov chain's transition matrix G is ergodic, by renewal

theory, it follows that

HLS(XO) -+ H* almost surely as t - oo (5.67)

meaning that HLS(x4) is a strongly consistent estimator.

We refer to HLS(xo) as the least squares estimator of H*. Note that determining HLS(Xt)
requires computation of 0(p 3 ) complexity.

6In order for linear least mean squares estimates to be well conditioned, which is necessary as matrix

inverses must be computed, the values of si* should span R". This can be assured with high probability for

a sufficiently large number of samples when A has full column rank p.
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Constrained least squares estimator HLS

One may think to improve our estimator by taking into consideration the linear equality
constraints characterizing 7(M,). Recall that when M, has full column rank, there exist
such linear equality constraints if and only if 1 - 7Z(M,). For this special case, define the

set of matrices satisfying such linear equality constraints as

1=(M,) A {H : AIHa = lc} , (5.68)

with a = A and c = c from (5.55) (because M, has full column rank, A has at most one
column, which we represent as the vector a and c is a scalar, which we represent by c).
Note that N-(M,) is the affine hull of 7(M,). We can then define an alternate estimator
as

t
HLS(xO) A arg min s,[r]' - s,[ - 1]'H 1 . (5.69)H E'-H =(A.)T

As mentioned in the context of estimating G, linearly constrained linear least-mean-squares
problems have closed-form solutions [74]. Because such linear equality constraints can be
expressed in terms of matrices with 0(p) rows/columns, the computational complexity of

computing constrained solutions is 0(p3 ). By the same renewal theory arguments, the

constrained estimator HLS (x) is also asymptotically consistent.

The reader may wonder: why a quadratic cost and not a log-loss cost? As explained in
Section 5.2.1, when nonnegative quantities are concerned, log-loss costs and KL divergences
are the only cost functions that satisfy some rather reasonable properties [67). One may
note that under M(r)-separability, all vectors being propagated are indeed nonnegative (they
are probability distributions). Apart from the complication that Ml(r) does not have full

column rank, it would seem that KL divergences would be the preferred measure of distance

to minimize when estimating H(r). However, should one attempt to pose the problem in
terms of minimizing KL divergences, one will see that it is not possible to pose the problem
as such, at least not involving a form analogous to (5.66). Should one condition on a
particular value of i, the cost function of (5.66) does not involve a single row of the H.
This property was essential for expressing the ML estimate of G as a minimization problem
involving KL divergences, c.f. (5.39), (5.40). There are additional reasons for our departure
from log-loss costs. Our definition of separability does not require that A, be in the positive
orthant. When A. g' RP, log-loss costs will be undefined for nonpositive values.

The choice of quadratic costs is partially based on tractability: the estimate of H,
in (5.66) is straightforward to compute. But moreover, should one not be restricted to
considering nonnegative quantities, quadratic costs themselves are the only cost functions
that satisfy some reasonable properties [67], the most important of which is being proper,
which assures that our estimator of H, is strongly consistent.

5.4 Additional considerations for estimators

At this point, there are several lingering questions regarding HLS and HLS. For example,
how does one estimate H, when M, does not have full column rank? Secondly, are there any
guarantees that these estimators will be feasible for finite t? Thirdly, if one is uncertain as
to whether or not the underlying Markov chain is M,-separable, is there an efficient means
of determining whether or not such an assumption is reasonable? These questions will be
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considered over the following sections.

5.4.1 Estimating H, when M, does not have full column rank

As was suggested at the end of Section 3.1.2, there is no disadvantage to tracking the dy-

namics of the partial information expressed in a space of minimal dimension. Thus, one

should always consider M, with full column rank. Nevertheless, one may feel compelled to

solve the linear least-mean-squares problem in the more natural space, e.g. in the space

propagating univariate marginals under MM'-separability. In general, this can be accom-

plished in a lower dimensional space defined by a matrix M, with full column rank p such

that RI(M,) = R(M*). The idea is as follows: when an rj x P matrix M, fails to have full

column rank, there is redundancy in the representation of the partial information vectors

in the form of linear constraints that are satisfied. One wishes to work in p-dimensional

space, compute a linear least-mean-squares estimate HLS in RP, that when transformed

into a matrix propagating partial information in RP, is a linear least-mean-squares estimate

HLS in RP. The key is for f2 distances to be invariant under the transformation from RP

to RP and vice-versa. This is easily accomplished. For the q x P matrix M* with rank p,
represent an orthonormal basis for the row space of A as the columns of a p x p matrix

V. Define the r x p matrix
A* A- MV (5.70)

and note that the column spaces of M, and f, are equal. As V is orthonormal, one can

easily verify that 2-norms and £2 -distances are invariant under the transformation by V.

Naturally, HLS, the estimate for H* with respect to A,, can be derived from HLS, the

estimate of the matrix propagating partial information with respect to ML calculated via

(5.66), because

HLS VHLSV' . (5.71)

The same process can be mirrored in the linearly constrained case for the estimator HLS.
It is straightforward to show that by respecting the linear equality constraints characterizing

N_(MI,), we will automatically respect all of the linear equality constraints characterizing

N-(M) when HLS is derived from HLS via (5.71).

5.4.2 Feasibility of HLS(X8)

Theorem 11 argues that a sequence of estimators HLS(x4O), HLs(x4+1), HLSg-), ... will

converge almost surely to the true H* under fairly general conditions. Obviously H* E

N(M,). But is it possible that all of our estimates HLs(x4) for finite times t will be

infeasible?
Although the answer may be unclear in the case of HLs(xt), it should be clear for

HLS(xt), as summarized by the following theorem.

Theorem 12. When H* is in the relative interior of N(MI), almost surely, our constrained

estimator HLS(Xt) will eventually become feasible and remain feasible, i.e., there exists a

time i such that SLS(xt) E N(M) for all t > 1.

Theorem 12 follows based on an analysis argument that considers the following: N(M*)

is a finitely-generated convex set, HLS(4x) is always in the affine hull of N(M*), and HLS(x)
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converges almost surely to H,, a point in the relative interior of -(M,). Can the same be
said for HLS(x0), when it cannot seemingly be assured that HLS(x) will converge to H, in
the affine hull of 7-(M,)?

Indeed, we will show that any least-mean-squares estimator HLS(x4) will almost surely
satisfy the linear equality constraints characterizing 7-(M,) for sufficiently large t, even
though such an estimator is computed without regard to such linear equality constraints

(note that when I R(M,), there are no linear equality constraints characterizing 7-(M,)
as M, is assumed to have full column rank). This ensures that the sequence of estimators
HLS(x4), HLS(XO t+2) LS( 0  ) also approaches H, in the affine hull of 7(Mf). If one
knew the distance of H, from the relative boundary of 7-(M,) in the affine subspace and
the speed of convergence of HLs(x0) to H, one could develop probabilistic guarantees for

the feasibility of HLS(x0).
Our argument relies on a key fact: affine linear least-mean-squares estimators must

satisfy all linear equalities satisfied by the random variables that they estimate. This is
summarized in the following theorem.

Theorem 13. Suppose that a1w 1 + C2w2  b for random variables w1 , w2 and scalars

a1, a 2 , b. It follows that a1l .. s(Y) + a2W2ALLS(y) = b, where WiALLS( is the affine
linear least-mean-squares estimator of wi given y.

Proof. Let z - a 1 w1 + a 2w2 . Consider the form of the affine linear least-mean-squares
estimator of z given y [48]:

iLLS (Y) E [Iz + cov (z, Y) (y - E [yD] (5.72)
cov(y, y)

By linearity of expectation,

zLLS(Y) alwlLLS(y) + a2W2LLS(Y) (5.73)

As z = b, evidently zLLS(Y) b.

We can use this theorem to show that almost surely, HLs(x'O) will eventually satisfy all
of the linear equalities of 7(M,) (which only exist when I E R(A,)). First, define S'(x0)
as the subset of S, (recall (5.54)) that is observed as samples of si, over the trajectory x,
i.e..

S'(x') ={Sxr]'M* : T E [0, t - 1]} . (5.74)

We wish to invoke Theorem 13 for the linear least-mean-squares estimator of sjp given ss,
as computed from the empirical distribution over i, j that is specified by x. This estimator

can be expressed in terms of HLS(x0) as

sJLS (Si* x0)' = s'*HLS(Xo) . (5.75)

Such an estimator must satisfy

sJ*LLS(si* xo)'a = c

m'HLS(x0)a = c Vm E S(xi), (5.76)

where a = A and c = c are from (5.55), and characterize the linear equality constraints of

-H(MII) (5.57).
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Figure 5-1: Sequence of estimators must converge to H, in the affine hull of 7Rt(M.) (the

pentagon represents H(M,))

X(M

We argue that (5.76) must be satisfied as follows: when 1 E R(M,), the linear least-

mean-squares estimate of sj* given s-, is equivalent to the affine linear least-mean-squares

estimate. This fact follows from Corollary 6, thereby allowing us to invoke Corollary 13 to

ensure (5.76).
Examining (5.57), (5.59), and (5.76), HLS(x) satisfies all linear equalities characterizing

-(MI,) if the affine hull of S'(x') equals the affine hull of S*. This will occur almost surely

when G is ergodic, for an observed trajectory x with as short of a duration as t = p. For

this particular time [ (existing almost surely) whereby the affine hull of St(xt) equals the

affine hull of S,, HLS(x4) for all t > i will satisfy the linear equalities characterizing 7(A*).

This allows us to claim the following corollary that relies on Theorem 13.

Corollary 11. When IL ( R(M)), HLS(x) = LS(x) for all times t.

When 1 e R(M ), there exist linear equality constraints characterizing '(M. which

are only considered when computing HLS(xt). Nevertheless, provided that the underlying

transition matrix G is ergodic, almost surely there exists a stopping time7 t determined by

x; such that NLS(X4) = HLS(x) for all t > t. At this time t, the affine hull of Si(x)

equals the affine hull of S., or equivalently., Rss, of (5.66) is invertible.

When R lacks full rank, we can compute LS estimates of H, by evaluating (5.66) using

a Moore-Penrose pseudoinverse. However, such estimates of H, are poor, in the sense that

they map partial information vectors in unobserved subspaces to 0 (it is known that partial

information vectors span all of RP whenever Mf has full column rank). Hence, estimates

of H* are only deemed reasonable when Rs,, has full rank, assuring by Corollary 11 that

HLS(X4) = HLS(x)- Thus, we argue that it is unnecessary to consider the linear equality

constraints of -ll(M,) when computing an LS estimate, as such equality constraints will

automatically be satisfied for reasonable estimates. Lastly, we have the following corollary

following from Theorem 12 and Corollary 11.

Corollary 12. When H* is in the relative interior of 7-(MA1I*), almost surely there exists a

time t such that for all t > f, SLS(X4) will be feasible.

Thus, for either estimator, we are assured the set-up schematically illustrated in Fig. 5-1,
where the sequence of estimators converges to H* in the affine hull of -(M*).

7As defined in {37), a random variable i is a stopping time with respect to the stochastic process xo if
the event {t = T} can be determined by x6, i.e., it is in the --field generated by x'.
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5.4.3 Validating MrM-separability

Suppose that we estimate H, via (5.66) for a stochastic network that is not necessarily
Mt-separable. In computing the estimate of H, is it possible to affirm or invalidate the
assumption of M,-separability? We first note two observations limiting our assertions.

When there exist strictly positive transition matrices in g(M,), it is possible to observe
any sequence of states. Therefore, in these cases, which include M(")-separability, one
cannot invalidate the assumption of A,-separability based on an observed trajectory. On the
other hand, one could characterize typical trajectories that occur with high probability, and
with high confidence rule out A,-separability based on the observed trajectory. However,
because the number of states is exponential in n and A,-separability has the same order
of parameters as the unconstrained case, maintaining a catalogue of typical trajectories
or properties characterizing typical trajectories from Mt-separable networks is seemingly
intractable.

As an alternative approach, when the estimator HLs(x) has seemingly converged, which
will be the case even when A-separability does not hold, one verifies whether or not it is
feasible or close to feasible. If the estimate is far from feasible, this would suggest that M-
separability fails to hold. Checking the linear equality constraints characterizing N(MJ) is
tractable, and by the same arguments given in Section 5.4.2, such linear equality constraints
characterizing -(A(M,) will eventually be satisfied by the estimator HLS(xi) even when A-
separability fails to hold (our arguments never relied on an assumption of M.-separability.
But as verifying the linear inequality constraints of '(Mk) is intractable for large n, this
approach to evaluating the appropriateness of an assumption of M-separability, in general,
will be intractable.

To consider what is tractable, let's examine the process of computing the estimate HLS.
Recall from Section 3.3 the visual perspective on A,-separability. The LS estimate of H,,
independently for each coordinate function (an entry of the partial information vector),
fits, in a least squares sense, a linear function to the observed data. In the case of M-(r)
separability, all of the observed data is in the form of Os or Is. Schematically, we have a
picture as illustrated in Fig. 5-2 for each coordinate function. If A,-separability holds, then
the true mean for the binary observations at each element of the domain (a state of the
network) passes through a plane. However, in order for the LS estimate of H, to converge
to the true H, it is not necessary that the empirical mean for each of these binary random
variables, one associated with each state, to have already converged. Because the deviations
from the true mean for each observation are independent (when considered on the basis of
a single coordinate function), when p < rl, the estimate (the least squares linear fit) may
well converge without observing a transition out of every state.

The pictures of Fig. 5-2 suggest attempting to track the reduction in the mean square
error offered by the linear least-mean-squares estimate of sj, given si, relative to the unin-
formed estimate E [sj, ], which can be conceived as a level plane. We would like to compute
such errors with respect to the true distributions of s,. and sj, as it is the true mean square
errors that are informative. In practice, however, one computes mean square error estimates
based on the empirical distribution for si, and sj, derived from the observed trajectory xt,

which will almost surely converge to the true mean square errors by renewal theory for an
underlying Markov chain that is ergodic.

For simplicity, we assume that 1 E R(A,), thereby ensuring that a 'level' plane can
obtained as the linear estimator of sj, given si, (as only when 1 E R.(M,) are the linear and
affine linear estimators equivalent). The reduction in mean-square error gauges the degree
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(a) All observed samples (dots) are binary, either 0 (b) Independently for each coordinate function, a
(lower plane) or 1 (upper plane) best-fit plane in the least-squares sense is fit to the

observed data

Figure 5-2: Schematic illustration of the linear fitting by a coordinate function of the LS

estimate of H, (consult Section 3.3 for a explanation of such visualizations)

of 'tilt' of the planes for each coordinate function. The intuition is that when there is no

reduction in mean-square error (all planes are level), then assuming M-separability and

computing an estimate of H, is uninformative.

Of course, it is possible for MI,-separability not to hold, but there be a reduction in

mean-square error. On the flip side, there will be no reduction in mean-square error under

M-separability, if the updated partial information at the next time step from all states is

unchanged. In such an instance, however, estimating H, is of little use (a rank 1 matrix

with identical columns). By considering the reduction in the mean square error, we do not

have an absolute certificate for M,-separability, but one that is useful, nonetheless.

This measure will be tractable provided that estimating H, is tractable; it can be

estimated from the familiar expression for the error covariance of the affine linear least-

mean-squares estimator,

mean square error reduction estimate = trace As, AS ss , (5.77)

where As. A [ssjj - E [s.*]j [sj*] is the empirical cross-covariance of s. and sj*

obtained from the observed trajectory x0.

Reduction in mean-square error is only informative when there is no reduction. It does

not invalidate the possibility of M*-separability being satisfied, but rather pronounces it

irrelevant. What would be more desirable is a measure that could actually invalidate A-

separability. The following theorem motivates one possible approach.

Theorem 14. Assume a network is M*-separable. Then for any M# such that R'(M,) C

R(M*), the reduction in mean-square error of sj* given si* must equal the reduction in mean-

square error of sj* given s, 8 where such reductions in expected square-error are calculated

8 The true joint distribution of si# and sj would be given by the joint distribution of s#[r]' A S2[T'M#
and s. [-r - 1]' s,[r + 1]'Al. for a well-mixed, time-homogeneous, ergodic Markov chain.
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from the true distributions. Equivalently,

trace As A-' Ass, = trace As s1 A-' Assp) . (5.78)

This theorem follows from the definition of M sufficiency (Definition 2), which by Theo-
rem 1 is equivalent to M,-separability.

In practice one can use Theorem 14 to invalidate M*-separability in a way that may often
be tractable. For example, suppose one wishes to see if an assumption of M()-separability
is invalid. After computing the estimate in the reduction of the mean square error for the
linear least-mean-squares estimate of S(r) [r +1] given s(r) [r], as calculated from the observed

trajectory x, one then estimates the reduction of the mean square error for the linear least-
mean-squares estimate of S(r)[r + 1] given s(r+1)[r] (note that R(M(r)) c RI((r+1))) Jf
the estimated reduction is greater in the latter case, and the trajectory x' is sufficiently long
such that the estimates computed from the empirical distribution are fairly accurate, then
Theorem 14 suggests that M(r)-separability is not satisfied. Note that such a test offers
sufficient conditions for MIf(r)-separability to be invalid, but not necessary conditions.

5.5 Computational examples

We will consider two examples, the first being card shuffling. This example permits us to
draw comparisons to results that can be derived from symmetric group theory. A second
more general example involves a generalized influence model. Both examples illustrate
the tractability of ,(1) -separability when traditional analysis of the underlying transition
matrix G is intractable.

5.5.1 Shuffling a deck of cards

We consider a shuffling technique referred to as random transpositions:

* choose two cards uniformly and independently at random, and

" swap the positions of the two cards.

Note that with probability }, where n is the number of cards in the deck, a realized shuffle
will not rearrange any of the cards.

As is often the case when shuffling a deck of cards, we are interested in the number of
shuffles necessary until the deck is well shuffled. It is easy to argue that the underlying
transition matrix must be symmetric, and consequently, the steady-state probability vector
is uniform. We consider a deck as being well-shuffled after a sequence of random transpo-
sitions when the probability that the deck is in any of its n! arrangements is roughly ,

regardless of the initial arrangement of the cards. Although there are several approaches to
analyzing the convergence of Markov chains to steady-state [40], we will limit our focus to
the second largest eigenvalue of the underlying transition matrix G.

We will consider the representation of the deck of cards as n automata, each correspond-
ing to different position in the deck, i.e., the positions representation where each automaton
indicates the particular card in the given position. As explained in Section 4.5, shuffling a
deck of cards is a GIM, and hence exhibits M(r)separability for all 1 < r < n. Alternatively,
this can be argued on the basis of symmetric group theory [11, 9]. Our initial goal will be
to estimate the transition matrix HM) that propagates the univariate marginal PMFs.
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Figure 5-3: Convergence of the second largest eigenvalue of H( 1) for random transpositions

shuffling (n = 12).
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For our specific example, we consider a deck of n 12 cards. With permutations being

maintained, there are 12! ~ 4.79 x 108 possible states. The matrix HM is 144 x 144, and

hence tractable. We randomly generate a trajectory xt with t = 3 x 106 -more than two

orders of magnitude less than the size of the state space. We then iteratively compute

estimates of HM, based on x', where r varies up to t = 3 million. For the card shuffling

example., we plot the second largest relevant eigenvalue 9 of our estimate , and note its

apparent convergence (this is computed by defining a matrix with the same range space as

Mi with full column rank). Because eigenvalues are continuous functions, we know that

the 2nd largest relevant eigenvalue of HC') will converge almost surely to the second largest

relevant eigenvalue of HO, by Theorem 11 (using the full rank matrix M').

By our arguments in Section 3.1.2, we know that the second largest relevant eigenvalue

of S' will converge to an eigenvalue of G that will be less than or equal to its second largest

eigenvalue. By symmetric group theory [9], one can show that the second largest eigenvalue

of G for random transpositions shuffling is n2. As our simulation results illustrate in Fig. 5-

3, the second largest eigenvalue of our estimates HS1' appears to converge to n 2 - 1

0.83, which is illustrated as the horizontal line. Naturally this approach can be applied

to any shuffling technique, however the approximate lower bound on the second largest

eigenvalue that we compute will not necessarily be tight, as appears to be the case for

random transpositions shuffling.

By taking a deeper look at the representations of shuffling as a GIM as discussed in

Section 4.5, it should be evident that estimates of the second largest eigenvalue of HM can

be obtained even more easily. From (4.37), recall that 1 of the cards representation, can

be represented as

R(1 =@1 E [ A ],(5.79)

9Relevant eigenvalues are eigenvalues that can be excited by partial information vectors r0, which lie
in a particular subspace as M(') fails to have full column rank.
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Figure 5-4: Convergence of the second largest eigenvalue of Hi for random transpositions
shuffling (n 12).
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which is similar to our HM' of the positions representation.

As argued in Section 4.5, H'O's second largest relevant eigenvalue by modulus is the

second largest eigenvalue by modulus of E [ A ]. The n x n matrix E [ A] is the matrix that

propagates 7ri under the cards representation, for any automaton i-recall that under the

cards representation, the card shuffling GIM can be thought of as a GINI of coupled Markov

chains that is Mi-separable for all i, with Hi = E [A ] being the matrix that propagates the

partial information iri.

Rather than estimating the n2 x n2 matrix HO), we can estimate the n x n matrix

Hi and obtain an approximate lower bound for the second largest eigenvalue by modulus
of G. Moreover, as each Hi = E [A], we can use the updates of the status vectors for
all automata to construct an empirical distribution for si[T] and si [r + 1] that will be
used to estimate Hi. In Fig. 5-4 we do just that, plotting H's second largest eigenvalue

by modulus as derived from an observed trajectory x with t varying up to 3 x 1 a
trajectory with two orders of magnitude fewer samples than illustrated in Fig. 5-3. The
apparent convergence to the second largest eigenvalue of G is improved in Fig. 5-3, when
the estimated bound is computed from Hi of the cards representation rather than H5') of

the positions representation. Although our results only assure that we are computing an

approximate lower bound, symmetric group theory assures us that our lower bound is tight

[8]. Naturally, it would be desirable to understand analytically when such an approximate

lower bound will be tight.

5.5.2 General GIM example

We consider a second simulated example of estimating the HO') matrix of a GIM. The GIM
is generated as a random convex combination of three IMs, thereby offering it a compact

representation even when n is large. The size of the model considered involved n = 20

automata, each with m = 2 statuses. Note that such a stochastic network has over 1
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Figure 5-5: Convergence of H(M for general GIM example.
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million states, and thus is intractable by traditional analysis.

We computed progressive estimates of H(, as obtained from a trajectory x' with t

varying up to 4 million-the same order of magnitude as the number of states in the Markov

chain. We ran several simulations, and all such runs exhibited the same general behavior.

Fig. 5-5 illustrates the convergence of the estimate of HM1 for one such simulation run. The

duration of the observed trajectory from which estimates of HM' are computed varies along

the t-axis. The dependent axis provides the average relative error between our estimate

H(1)(x) and the actual HC, calculated as follows:

average relative error between HNl) and k(M(x) 0 m 2 HH(10m 2 n

(5.80)

For the examples that we consider (n moderately large), the majority of the entries of HM

are rather small, and hence failing to normalize the error can be misleading; consequently,
we feel relative error is a fair measure of error. For completeness, we should add that we

restricted ourselves to HM matrices of minimal Frobenius norm, so as to avoid the issues

of H(1) not being unique in the case of M'-separability (as MNI fails to have full column

rank). As evident from Fig. 5-5, the convergence of our estimate H(l to HM is pretty

good, even after having only observed a number of transitions roughly equal to the size of

the state space.

5.6 Conclusions

This chapter offers many insights into parameter learning under the assumptions of M-

separability. Initially, this chapter focuses on the problem of estimating G under assump-

tions of M.-separability. Although estimating G is intractable for the interesting cases of

Mt-separability, the discussion is valuable, as it motivates our proposed algorithm for esti-
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mating H, under assumptions of AL-separability. We argue that this proposed algorithm
is tractable: it has computational complexity that is polynomial in nm whenever the size of
H, is polynomial in n. Moreover its computational routine, linear least-means-squares esti-
mation, is familiar and well-understood. We prove several interesting properties regarding
our tractable estimator under some fairly general conditions, namely that it will eventually
be feasible, and that it will converge to the true H, i.e., it is asymptotically consistent. In
addition, we offer a general, approach for verifying the appropriateness of assumptions of
A,-separability. We closed the chapter by illustrating the performance of our parameter
learning algorithm on two examples.

Arguably, Markov chains have achieved their greatest successes as HMMs, made possible
by the powerful algorithms to solve the standard HMM estimation problems [77, 78, 79,
80, 81, 82, 83]. The usefulness of M,-separability could be similarly bolstered by tractable
algorithms to solve these same problems, in regimes when the standard algorithms are
intractable. Proposed in [14] is a tractable approach to determine the state trajectory
of an MLSS (in many cases equivalent to separability) based on observed outputs. In
this chapter. a tractable parameter learning algorithm is proposed. Ideally, there would
be a way to combine these methods and solve both estimation algorithms simultaneously,
in a way analogous to what is possible in HMMs, but tractable for large values of n.
However, as only a subset of the model parameters are estimated in the parameter learning
algorithm herein proposed, and as the algorithm to estimate the state in [14] is not an
ML estimation algorithm, there are additional complications for the special case of M1-
separability. Possibly these complications could be resolved in a more restricted problem
setting.
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Chapter 6

Spatial perspectives on separability

Thus far, we have focused on stochastic networks evolving as time-homogeneous Markov

chains. As has been shown, separability offers substantial computational advantages by

permitting the propagation of partial information. However, it is possible to consider more

general Markov models than Markov chains. The focus of this chapter is to extend the idea

of separability to general Bayesian networks. Separability in the case of time-homogenous

Markov chains was aimed at propagating partial information forward in time. For general

Bayesian networks, however, we will be interested in the reduction in complexity of the

parameterizations of conditional PMFs induced by algebraic forms similar to those encoun-

tered under separability. The conditions that emerge in our development below are very

similar to what we obtained in the context of M,-separability, and we therefore refer to the

associated property by the label "spatial separability." We shall point out the distinctions

from our previous use of the term "separability" at the appropriate points in the chapter. 1

6.1 Model description

As before, we have a collection of random variables. There need not be any notion of

time; hence we refer to these general models as spatial. The joint PMF of r finite-valued

random variables is specified, in general, by a number of parameters (joint probabilities)
that is exponential in r. Consequently, large models are intractable without assuming ad-

ditional structure. A common approach to simplify the representation of such models is

to assume conditional independence relationships among the random variables. Obviously,
time-homogeneous Markov chains are an example of a specific form of conditional indepen-

dence relationships that permit a joint distribution of random variables over any interval of

time to be parameterized by the joint transition matrix (representing the conditional PMF

for the updated values of the random variables given their values in the immediate past)
and an initial distribution of such random variables.

Assumptions of more general forms of conditional independence are seemingly appro-

priate in a wide-variety of problems, as evident by the widespread application of graphical

models, primarily Markov random fields and Bayesian networks. For the models considered

in this chapter, it will be assumed that there exists an underlying Bayesian network that

encodes the conditional independence relationships of the random variables. We will not

provide a tutorial or background on Bayesian networks; we encourage the reader to consult

Our notion of separability should also be distinguished from various notions of graph separation asso-

ciated with the literature on Bayesian networks and graphical models.
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Figure 6-1: Basic building block of directed acyclic graphs: parents with children.

Pi P2 P3 P4

C1  C2  C3  C4  C5

[41] or [84] for excellent introductory treatments of the material. In brief, Bayesian net-
works use a directed acyclic graph to encode conditional independence relations among a
set of random variables. Each node of the graph corresponds to a unique random variable,
and the pattern of directed arcs encodes the conditional independence relationships. The
connection between conditional independence and graphs exists because of the ability for
a graph to represent a consistent set of conditional independence relations among a set of
random variables. This ability is a consequence of the parallels between the axioms of con-
ditional independence relations and separation among sets of nodes in a graph, as detailed
in [85] and discussed in [41].

Fig. 6-1 illustrates a basic example of a directed acyclic graph encoding conditional in-
dependence relations. In this example, each node corresponds to a random variable pi (a
parent) or c- (a child). Provided that all of the parents illustrated in Fig. 6-1 d-separate
the children., the children c1 , c2 , ca, c4 , c5 are conditionally independent given the parents

Pi, P2, p3, p4. Such an assumption of conditional independence imposes a factorable struc-
ture on the local conditional PMF. In our example,

5

P ( ci, c2, c3, c4, c5 I p1, p2, p3, p4 ) J P (ci 1 pI, P2, p3,p) , (6.1)
i=1

where the lowercase arguments of the conditional PMFs clarify the identity of each condi-
tional PMF (we will employ the same shorthand notation in subsequent conditional PMFs).
After assuming conditional independence relations, only the conditional PIF of each child
given its parents must be defined. If we assume that the alphabet size for each of the
random variables is m, the representation of the conditional PMF of the children given
the parents has been reduced by conditional independence from an m 4 x n 5 table to five
m x m 3 tables (since each child has three parents). Moreover, because of the factorable
form of the joint PMF for the parents and children, distributed algorithms can be used to
perform inference computations. This factorable form is the 'structure' that conditional
independence imposes on the conditional PMF of several children given their parents.

Evidently, such assumptions of conditional independence permit the joint distribution
on the random variables to be expressed as a product of conditional distributions, with
each conditional distribution corresponding to a different subgraph consisting of a node and
its parents. As clear in our example, the complexity of the representation of a Bayesian
network is exponential in the size of the largest subgraph corresponding to a conditional
PMF for a child given its parents. In addition, the computational complexity of performing
inference upon such a Bayesian network is at least exponential in the size of the largest
such subgraph. 2 There may be instances where the number of parents of a given node is so

2The computation complexity for inference will be exponential in the size of the largest clique of the
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large that such a Bayesian network is intractable. Imposing additional structure on these

conditional PMFs of a child given its parents can bring tractability to such probabilistic

models. If assuming additional conditional independence relations is inappropriate, one

must consider an alternate methodology to lend such conditional distributions tractability.

There are many approaches one may follow; we consider an approach based on the notion

of separability, which offers a general methodology. Conditional independence relations can

be thought of as imposing macro-structure on the probabilistic model, while separability

can be thought of as imposing micro-structure. We motivate the idea of separability by first

discussing Fisher sufficiency (which shares much in common beyond its name with the notion

of sufficiency/separability defined for time-homogeneous Markov chains in Section 2.2.2;
these connections will be made clear in Section 6.2).

6.1.1 Fisher sufficiency

Fisher sufficiency, also known as statistical sufficiency, is a property defined in [27] for

classical statistics. Fisher sufficiency imposes additional structure on the conditional PMF

of a child given its parents. Its natural analog in Bayesian statistics is discussed in [86] as an

example of conditional independence. Although the typical inference set-up where Fisher

sufficiency is invoked involves estimating the parents based on observations of the children

(inferring upwards in our graphical model), for simplicity we'll illustrate Fisher sufficiency

in the context of inferring the children given the parents.

Fisher sufficiency in the Bayesian case can be explained by considering the following:

the conditional PMF of ci given its parents P1 P2, P3 can be represented as a function

with arguments ci, pi, p2, p3, representing the possible values for ci, Pi, P2, P3, respectively.

Suppose that this function P( c1 I P1, P2, p3) can be expressed as a function of only two

arguments: ci and a function of P1, P2, P3:

P(ci I pi, p2, p3) = g(ci, f (i, p2, p 3 )) .3 (6.2)

In such cases, we can define a new random variable qi = f(pI, P2, P3) and introduce it into

our graphical model as shown in Fig. 6-2, where we have used multi-line arrows to denote

that the random variable qi is a function of its parents and thus uniquely determined by

its parents (in contrast to ci, which probabilistically depends on qi). The random variable

qi is said to be sufficient (in the sense of [27]) for inferring ci, meaning that q1 contains

all the information necessary for inferring ci from the parents P1, P2, P3. As evident from

the graphical model of Fig. 6-2(b), qi being statistically sufficient is equivalent to ci being

conditionally independent of its parents P1, P2, P3 when qi is given. Thus Fisher sufficiency

equates to the existence of the conditional independence relationships encoded in Fig. 6-2(b),
whereby qi is a function of its parents. Fisher sufficiency can be interpreted as assuming

additional forms of conditional independence with the introduction of a new random variable

q1.
It may seem that introducing qi into the graphical model only introduces additional

complexity-an additional random variable. However, assume that the cardinality of qi

(denoted by mq) is much less than m. By expanding the graphical model to consider

moralized (edges made undirected, parents married) and triangulated graph [76]. The size of the largest

clique will be at least as large as the greatest number of parents of a given node.
3Naturally this is always the case when the function f is invertible; the interesting cases (when Fisher

sufficiency actually imposes additional structure) are for functions f that are not invertible.
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Cl Cl

(a) (b)

Figure 6-2: When qi is sufficient for ci given its parents, the subgraph in (a) can be modified
to include qi, as illustrated in (b).

grandparents (assumed to be of cardinality m), the advantages offered by Fisher sufficiency
become evident. Consider Fig. 6-3(a), which includes the grandparents. Because of Fisher
sufficiency, the parents Pi, P2, P3 can be exchanged for qI, without changing the probabilistic
relationship between the child ci and its grandparents gi, g2. What results from such an
exchange, as illustrated in Fig. 6-3(b), is a graphical model with a potentially simpler
representation. Without Fisher sufficiency, the graphical model of Fig. 6-3(a) would require
tables of sizes m 3 x m 2 and m x m-3 to represent the conditional PMF of the child given the
grandparents. On the other hand, the graphical model in Fig. 6-3(b) can be represented
by two tables of respective sizes nq x m 2 and n x inq, which is a reduction in complexity
provided that mq is much less than m3.

1 92 1 92

P1 P2 P3 q1

Ci clCl rl

(a) Expanded graphical model includ- (b) Because of Fisher sufficiency, the
ing grandparents. parents can exchanged in favor of qi.

Figure 6-3: Simplifying a graphical model when a sufficient random variable is identified.

The reduction in complexity of the representation of the conditional PMF of the child
given its parents can be analyzed with linear algebra. The random variable qi, which is
sufficient for performing inference on the children, is defined as some function of the parents
P1, P2, P3. Consequently, its PMF is a linear transformation of the joint PMF of the parents
Pi, P2, P3. This holds regardless of the form of the function f defining qi. To see this,
consider the mapping of an indicator vector 4 for PI, P2, P3 to an indicator vector for q1;
this mapping is a representation of the function f. The mapping between indicator vectors

4An indicator vector is a vector consisting of Os and a single 1 whose position indicates the value of
PI, P2, p3; the length of the vector is the cardinality of the set of possible values for p1, P2, P3, So m3 in our
example.
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necessarily must have a representation as a matrix, denoted as Mg,. This matrix Mq1 is a

selector. matrix, a row-stochastic matrix consisting of only Os and Is. This selector matrix

Mq, is the matrix-the linear transformation-that maps a probability vector for P1, P2, P3
to a probability vector for qi, that is,

r'I = gr' Mg . (6.3)qi P1,P2,P3 ~

This linear transformation Mq1 is a representation of the conditional PMF for qi given

P1, P2, P3 that corresponds to the subgraph in the upper section of Fig. 6-2(b).
Returning to the conditional PMF for ci given P1, P2, P3 [Fig. 6-2(a)], this conditional

PMF is the relation that produces the PMF of ci when the joint PMF of P1, P2, P3 is known.

When these PMFs are represented as probability vectors irc, and 7rPi,P2,P3, respectively, the

conditional PMF can be represented by a row stochastic matrix denoted as Bc1 piP2,P3 and

updating the PMF for ci given a PMF for its parents reduces to matrix multiplication:

7rc = gr' pBc (6.4)

That qi is sufficient for ci given P1, P2, P3 is equivalent to the fact that when using the

joint PMF of pi, P2, P3 to update a PMF for ci, as illustrated in (6.4), such an update is

unchanged for any joint PMF 7rp1p2,p3 that produces the same PMF irg, for qi. This neces-

sitates that the left null space of Mq, is contained within the left null space of B C g ,
or equivalently,

M' 'Bi lpiP2,p3 = 0 . (6.5)

By (6.5), Fisher sufficiency imposes a linear constraint on Bcip1,P2,P3 , the conditional PMF

of the child ci given its parents. Our generalized notion of separability for spatial models is

when, as in this example, the conditional PMF of a child given its parents satisfies a linear

constraint. Note that this characterization resembles M, -separability for time-homogeneous

Markov chains, with the exception that separability in the spatial case is defined with

respect to a single random variable, and not the collection of random variables defining the

network state. Fisher sufficiency offers one form of a linear constraint, namely (6.5), with

the restriction that M., be a selector matrix. The notion of spatial separability that we will

introduce for Bayesian networks (though "sufficiency" would have been a viable alternative,

and perhaps more appropriate in the current setting) will admit linear constraints like (6.5)

with the relaxation that A, need not be a selector matrix.

6.1.2 General example of spatial separability

Suppose that the parents and children of Fig. 6-1 represent a pride of lions. Two of the

parent nodes (p2, P3) are associated with male adults and two with female adults (pI, P4).

The child nodes (ci, C2, C3, C4, C5) correspond to the offspring of the four parents over a

period of several years. Suppose that each random variable represents the associated lion's

genotype for a particular trait (a more realistic graphical model would have additional off-

spring nodes corresponding to observed random variables, the phenotypes). Considering

the structure of the graphical model as illustrated in Fig. 6-1, each cub's mother is known,

but each cub's father is undetermined. If there were to exist a model of the unconditional

likelihood for each male adult being each cub's father (say, based on observations of sexual

contact), then as suggested by nature, it is reasonable to assume the conditional indepen-

dence relations encoded by the graphical model of Fig. 6-1, namely, that the cubs' genotypes
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are conditionally independent given the genotypes of the adult lions.

In order to define the Bayesian network of Fig. 6-1, one must determine the conditional
PMFs for each cub's genotype given the genotypes of its mother and the two adult males
in the pride. In order to be fully defined, such a conditional PMF needs to be specified for
every combination of possible genotypes for the three relevant parents (its mother lion and
both adult males). However, for this example, it should be evident that in updating a cub's
genotype based on some joint PMF over the genotypes of the three relevant adults, it should
only depend on the two bivariate marginal PMFs over the genotypes of the mother and the
potential father. The full joint PMF for the genotypes of the three relevant adults is more
information than what is necessary; a linear transformation of the full joint PMF in the
form of two pairwise joint PMFs is sufficient. Notice that in this example we have something
rather different from Fisher sufficiency; it is not a random variable qi that is sufficient, but
rather some partial information in the form of bivariate marginals PMFs. Under Fisher
sufficiency, such partial information assumes the form of a univariate marginal PMF for qi.

Focusing on the conditional PMF corresponding to the subgraph of Fig. 6-2(a), then for
any given bivariate marginal PMFs for the genotypes of each possible parent pair, 7rp1p2

and rP1 P3, the child's genotype,

7r 7r' Bci p (6.6)

must be unchanged for any joint PMF of PI, P2, P3 producing such bivariate marginal PMFs.
All such joint PMFs over p, p2, P3 producing such bivariate marginal PMFs must satisfy
the linear equation

P1P2 SPIP31 = p2p3 , (6.7)

where M, maps the joint PMF of the genotypes of the three relevant adults to the par-
tial information in the form of the given bivariate marginal PMFs 7rPIp 2 and 7rpiip. For
consistency with our notation for time-homogeneous Markov chains, let

7r' I [ Prp1p2 7P1,P3] . (6.8)

denote the partial information vector.

The invariance in the update of the child given only partial information about the full
joint PMF of its parents imposes a linear constraint on the conditional PMF of the child
given its parents, namely that

R(BcIlp1,p2,P3 R(M) , (6.9)

or equivalently,

m* Blp1,p2,p3 =0 . (6.10)
Note that (6.10) generalizes the Fisher sufficiency condition (6.5), in that M, is not a
selector matrix.

When the linear transformation Al maps the full joint PMF for the parents to partial
information of the form of a sequence of marginal PMFs, as is the case in the lion example,
the conditional PMF takes a special additive form. Concretely, expressing the conditional
PMF of the child given its three parents as

P (c1|piP,P2, P3)
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the linear constraint imposed by this example of separability (6.10) entails that there exist

functions gi and 92 such that

P (ci Pl, p2, p3) = 91 (cl, Pi, p2) + g 2 (cl, pi, p3) , (6.11)

where each function gi and 92 has as its arguments a strict subset of the arguments of

the conditional PMF of the child given its parents. This additive decomposition5 is a

consequence of the form of M.. To see this, note that by (6.9), there must exist a matrix

H, such that

Bc Ilp1,P2,P3 = MH*

= [MpIp2 MyP1,]3 H*'M -[H*(l)

= Mp 1,p2 H*(1) + Ap 1 ,p3 H,( 2) (6.12)

from which the claim of such an additive form (6.11) follows.

6.1.3 Defining separability for spatial networks

When separability was defined for time-homogeneous Markov chains, it was defined with

respect to a network of random variables characterizing the state of the Markov chain. In

the spatial setting, separability will be defined with respect to a random variable.

Definition 4. A random variable c in a Bayesian network is spatial A-separable with

respect to its parents p = (PI,.. Pn) provided that its updated distribution, as calculated

from any valid joint distribution on its parents,

7r'/ = 7rB (6.13)

can be erpressed as a linear function of only the partial information -r', 7r',A,.

Note that by Definition 4, a random variable c is spatial Mi-separable with respect to

its parents p if and only if pi is Fisher sufficient for inferring c. Within this relatively new

setting of Bayesian networks, Mi is defined analogously to how it was defined for networks

of stochastic automata, with the exception that the set of parents p (usually implicitly

specified) now serves the role of the network state x, i.e., 7r', = 7r'Ai. We will similarly use

other shorthand notation for A matrices originally developed in Sections 2.1.5 and 2.1.8

with respect to some parents p.

In the case of spatial separability, note that Mt-separability implies M#-separability

when R(A,) C Ri(M#). This was not the case with network separability.

There are many equivalent ways to characterize when c is spatial M-separable. Several

of these characterizations are given in the following corollaries, which mirror the original

development of equivalences to M-separability for networks of automata (Section 2.2).

Corollary 13. A random variable c in a Bayesian network is spatial M-separable if and

only if the matrix representing the conditional distribution of c given its parents p, Belp can

5 A variation on this additive decomposition for a conditional PMF is referred to in [30] as separability.

The linear algebra connection to the notions in [30] was demonstrated in [31], but without a direct discussion

of the linear constraints imposed by separability.
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be expressed as
BI p -- MH, (6.14)

for some matrix H,.

From Corollary 13, it follows that some specific instances of spatial Mk-separability
induce an additive form for the conditional distribution of c given p. This is summarized
in the following corollary.

Corollary 14. Suppose that M/, is a matrix that maps the joint PMF over the parents, ,r,
to a partial information vector 7r, that is a sequence of marginal distributions. Equivalently,
assume that A, is a horizontal concatenation of selector matrices. Under the assumption of
spatial A-separability, the conditional distribution of c given its parents p can be expressed
as a summation of functions, one associated with each marginal distribution 7rRPy.,Pi in
-7r, whose only arguments are c,pi1 ,p ,. ..- ,pi,, which correspond to possible values of the
random variables c, pi, Pi2 , - - Pir,' respectively.

To illustrate an example of the spatial A-separability described in Corollary 14, suppose
that

7r = rlM,

= [7r' 1 
7rP 7rpp (6.15)

where p are the parents of some random variable c. Then by Corollary 14, spatial Mk-
separability for c, with A, characterized as in (6.15), ensures that the conditional distribu-
tion of c given p can be expressed as

P (c Ip ) = fi(c,pi) + f 2 (c,p 2 ,p 3 ) + f 3(c, p 3,p 4 ) (6.16)

for some functions fi (-), f2(.), f3(.).

Next we define spatial A-sufficiency, a notion seemingly more general than spatial Ak-
separability. Spatial M-sufficiency is characterized by a family of constraints that must be
satisfied. As will be claimed in Theorem 15, a random variable c being spatial A-sufficient
is actually equivalent to it being spatial Ak-separable.

Definition 5. In a Bayesian network, a random variable c is spatial Aksufficient if the
distribution for c, as calculated by total probability from the conditional distribution for c
given its parents p and some joint distribution over the parents 7rp, will be unchanged for
all joint distributions 7r that produce the same partial information 7r' = ,r'A.

The next theorem claims that if the conditional distribution for c given p can be ex-
pressed in terms of 7r,, then it can be done so as a linear function of 7r*. The proof of
this follows the same arguments equating -separability and M sufficiency for networks
of automata evolving as time-homogeneous Markov chains (Theorem 1).

Theorem 15. In a Bayesian network, a random variable c is spatial M-sufficient if and
only if it is spatial A-separable.

6.1.4 Relating spatial M,-separability to past research

We have already discussed how spatial M-separability for Bayesian networks is intimately
connected to Fisher sufficiency. Our notion of spatial separability is also related to Pfeffer's
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notion of separability [30], as well as the influence model [12, 13]. Let us begin with the

former.
Pfeffer's idea of separability is equivalent to our spatial notion of M(1)-separability.

Note that we previously discussed Pfeffer's separability in the context of MM1 -separability

for networks evolving as time-homogeneous Markov chains (Section 2.2.1), as well as with

respect to the specific case of a GIM (Section 4.1.1). However, it is in the current setting

of Bayesian networks that Pfeffer originally defined his notion of separability (which was

defined with respect to a particular random variable).

Compare the definition of M1(l)-separability for networks evolving as time-homogeneous

Markov chains (Definition 1) to the definition of spatial M(1 )-separability for a particular

random variable c in a Bayesian network (Definition 4). In making such a comparison,

one may be misled to believe that network MM-separability is equivalent to each random

variable being spatial M(')-separable (in the Bayesian network sense). However, for a

set of random variables evolving over discrete time (a stochastic network), if we assume

that the instance of each random variable at any given time is spatial MM-separable,
we are inherently assuming a particular structure for the Bayesian network encoding the

conditional independence relations among the instances of the random variables at different

times. In particular, we would be assuming that all the random variables at a given time

are conditionally independent, given their values in the immediate past.

Such conditional independence is not assumed in general for our Markovian stochas-

tic networks. Assuming spatial I 1 -separability for each instance of a random variable

amongst a set that is collectively evolving as a Markov chain is more restrictive than the

network exhibiting M1 ) -separability. However, the reader may recognize that the addi-

tional assumptions of conditional independence transform an M(-Mseparable network into

an influence model. This fact is argued in [31].

6.2 Interpretations of spatial MM-separability

As clear from Corollary 14, spatial M( 1)-separability with respect to a random variable c

induces a special additive parametrization for the conditional distribution of c given its

parents p. This particular parametrization, spatial M(1 )-separability, can be related to two

familiar notions: Fisher sufficiency and conditional independence. These connections will

be developed in what follows.

Recall our discussion in Section 6.1.1 and the particular form of the conditional density

of c given p that is induced under Fisher sufficiency. Suppose that p1 is sufficient for

inferring c given its parents, or equivalently, c and all parents except pi are conditionally

independent, given p1. If this holds, it follows that

P(cIp) = P(clpi,p2,-- ,pl) =P(cpi) , (6.17)

i.e., the conditional distribution of c given p is simply the conditional distribution of c given

pi, a function of only two variables.

Suppose one considers a mixture model, i.e., a convex combination of probability models,
consisting of Fisher sufficient models such as (6.17). The resulting conditional distribution

of c given p would have the following form:

n

P ( c lp) = :as f#, pi) ,(6.18)
i=1
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which should be recognized as an instance of spatial M( 1)-separability. Conversely, it can
be shown that any instance of spatial M(' -separability can be expressed in the form of
the right hand side of (6.18), i.e., as a convex combination of nonnegative functions fi that
produce a PMF for c when pi is fixed.6 A proof of this fact is given in [31].

Can such a claim be extended? Is c being spatial M(2)-separable also equivalent to a
mixture model of Fisher sufficient models? Consider a mixture model of instances where
two of c's parents are together Fisher sufficient:

P (c p ) = ai fig(c, pi, p3 ) . (6.20)

By Corollary 14, the mixture of Fisher sufficient models as given in (6.20) is spatial A(2)_
separable. However, it is unclear whether or not every spatial M( 2 )-separable model (or
every MO-separable model, r > 1) can be expressed as a mixture of Fisher sufficient models.
The apparent difficulty is assuring the existence of a nonnegative mixture when spatial
M(2)-separability is assumed. Evidently, spatial M(r)-separability is closely associated with
mixtures of Fisher sufficient models.

The connection that we wish to draw between spatial M( 1 -separability and conditional
independence is more abstract. Consider a peculiar instance of conditional independence:
that all of the parents Pi, ... P. are conditionally independent given the child c. Such an
instance of conditional independence is equivalent to the conditional distribution of the
parents p given the child c having the following factorable form

n

P(pi..,p nc) =7Jgi(pic) . (6.21)
i1

By comparing the abstract forms of (6.18) and (6.21), we see that spatial M')-separability is
the additive analogue to the product forms of conditional independence. Many additive pa-
rameterizations of conditional densities correspond to instances of spatial Mr)-separability
and its irregular generalizations, e.g., (6.16).

6.3 Advantages for inference

In many respects, the primary advantage of Bayesian networks and Markov random fields
is not their potentially tractable representations via product forms, but rather the tractable
inference that their product forms admit. We would briefly like to discuss how incorpo-
rating spatial Mt-separability into a Bayesian network may offer substantial computational
benefits for inference, beyond the advantages of the structure of the Bayesian network

6In creating a mixture of Fisher sufficient models, each of the form of (6.17), one may be tempted to
write

P(clp) aiP(lcpi) , (6.19)
*-=1

which would be misleading, as the probability law on the left hand side would not be the same as the
probability laws governing the conditional PMFs on the right hand side. In particular, on the left hand side,
we have the conditional PMF for the child after forming the mixture; each of the terms on the right hand
side is a conditional PMF for the child given a single parent, prior to forming the mixture. To be expressed
using the same probability law, each conditional PMF on the right hand side needs to be further conditioned
on the event that the ith mixture is chosen.
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alone. However, in other instances, additional assumptions of spatial Mt-separability for

the micro-structure of the Bayesian network seemingly fail to offer any computational gains.

In a sense, there are two kinds of inference problems in Bayesian networks: the simple

inference problems, where some evidence at the nodes of the oldest ancestors is propagated

through the network using the conditional PMFs for each child given its parents, and those

inference problems that are not so simple, e.g., some evidence regarding the children is

observed, which one wants to use to update the probabilities on the ancestors. Typically

only the difficult problems are referred to as inference. The simple inference problem for

Bayesian networks is a generalization of information propagation that has been discussed

extensively in the setting of stochastic networks evolving as a Markov chain. Hence, we

can consider in the general setting of Bayesian networks many of the same examples of

M--separability that were introduced for networks, including the propagation of moments,
cross-correlations, etc. What we have not discussed thus far are the difficult inference

problems.

Inference problems involve computing conditional probabilities; any conditional prob-

ability that one would like to compute can be expressed as a ratio of two probabilities

obtained by summing specific arguments of the joint PMF over all of their possible val-

ues. In essence, difficult inference computations involve summing the joint PMF over its

arguments. Belief propagation or the sum-product algorithm [87], [761, [32], the common

names for a specific inference algorithm on graphical models, is essentially an efficient dis-

tributed method to compute sums over arguments of the joint PMF, that simultaneously

computes probabilities conditioned on some observed evidence via the passing of messages

(or 'beliefs') between neighboring nodes.

The computational complexity of belief propagation is equivalent to the computational

complexity of summing over all arguments of the joint PMF. For an arbitrary joint PIF on r

random variables x 1, .. ., xr each with an alphabet of size m, this computational complexity

is e(mr), as there are mr possible terms to sum.

If, however, xl,..., x, constitute a Markov chain, the task of summing over the argu-

ments of the joint PMF is simplified:

P (XI1 ,.. Xr ) = P (Xr rI 1) >3 P (Xr 1l Ir-2) .. .Y P (X2 Xi ) P (Xi
1--T.Xr Xr.r-1 Xr-2 X1

(6.22)

Because of the factorable form of the Markov chain, evaluating the right hand side of (6.22)

requires computation of complexity only 0(rm 2 ), i.e., only exponential in the maximum

number of arguments in the factors of the joint PMF in product form.

This fact-that the computational complexity of belief propagation is exponential in

the maximum number of arguments for any of the factors of the joint PMF-holds true

for general Bayesian networks, provided that the summations over the arguments of the

joint PMF can be done in a chain-like, or more generally, tree-like manner (the running-

intersection property of junction trees [41]). Otherwise, the network must be triangulated

[41], and the computational complexity of belief propagation is exponential in the largest

clique of the triangulated graph.

Suppose that we have a Bayesian network on random variables z, where there is one

particular large factor in the joint PMF: the conditional PMF for c given its r parents

p (pi, . . . , pr) (a function with r + 1 arguments), and all other factors involve < T

arguments, with r > T. The computational complexity for inference on such a Bayesian

network is exponential in r, as the maximum number of arguments in the factors is r + 1.
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If the random variable c is spatial M(2 )-separable, meaning that P ( cIp ) can be ex-
pressed as

IP (c|p)= fi (c, pi, pj) , (6.23)

then the joint PMF over all random variables z (inclusive of both c and p) can be expressed

as

P ( z) P (c p)g(z)

f ( pi(c, Pj )) g(z)

= fi (c, pi, pj)g (z) , (6.24)

where g(z) includes all the factors remaining in P ( z ) after P ( cIp ) is factored out.

From (6.24). summing over all possible values of z in the joint PMF can be accomplished
by individually summing each of the (') terms of the right hand side of (6.24). By assuming

that c is spatial M(2 -separable, and provided that T < r, the computational complexity
for inference has been reduced from (7nr) to O(r 2 mT).

6.3.1 Limitations to the benefits of spatial separability

As illustrated in the last example, when a node with a large number of parents exhibits
spatial A( 2)-separability, the computational gains for inference can be substantial. However,
in the next example. assuming spatial M(1)-separability for all nodes with a large number
of parents offers no additional tractability.

We consider a Bayesian network with nodes organized into different generations. Let d
and p be parameters that specify the size and connectivity of the Bayesian network. Within

generation i. there are d' nodes. Each node in the ith generation has p'-' parents in the
(I - 1)th generation, with p < d. We do not consider finer descriptions of the connectivity
of the Bayesian network graph.

If we consider g generations, the computational complexity for inference on such a graph
will be Q(d9m?" 1), as there are d9 factors of the joint PMF with p9 -1 arguments (corre-

sponding to the random variables in the gth generation), before any necessary triangulation.
Suppose that spatial AIM()-separability is assumed for each of the d9 random variables in
the gth generation. Proceeding as we did in the previous example and expanding the addi-
tive forms induced by spatial MM -separability for each of the random variables in the gth
generation, what results will be an expanded expression for the joint PMF over all random
variables that is a sum of (pg-1)d" terms. As we assume that d > p for our model to be
reasonable, the number of terms after assuming spatial M M-separability and expanding
exceeds the original complexity. This failure in obtaining tractability by assuming spatial
M-separability stems from the fact that the number of terms in the expansion will be
exponential in the number of random variables for which spatial A'MM-separability is as-
sumed. Thus, assuming spatial M() -separability, or spatial M()-separability for any value
of r, only offers computational benefits for inference if the number of random variables for
which spatial M(')-separability is assumed is minimal.
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6.4 Conclusions

This chapter offers a brief introduction to spatial separability, which extends our notion of

separability to the context of general Bayesian networks. The Bayesian network specifies

the macro-structure of a set of random variables, while spatial separability imposes micro-

level structure, assuming special parameterized forms for the conditional PMFs that serve

as the factors of the joint PMF. The connections to Fisher sufficiency, Pfeffer's separability,
and the influence model were highlighted. Furthermore, we illustrated connections with

mixtures of Fisher sufficient models, as well as conditional independence. An unsolved

problem is the potential equivalence of spatial M()-separability with mixtures of Fisher

sufficient models of varying degrees.

We closed by discussing the problem of inference in the context of spatial separability.

There are prototypical examples of graphical models assuming a particular parameterized

form for the conditional PMFs-Boltzmann machines [88], Ising models [89], and the noisy-

OR model [90], to name a few. However, general approaches for parameterizations apart

from finer factorable forms (graphical models that are more sparse)-a common approach in

variational methods [91]-are seemingly lacking. In a sense the parameterizations discussed

in [92] do extend beyond finer factorable forms, but only as mixtures of fully-factorable forms

(note that spatial M(')-separability can be conceived of as an extension of such mixture

models). Spatial separability offers one alternative approach with substantial generality.

The are many interesting future directions for extending spatial separability. Exploring

the connections between mean field theory [93] and spatial separability, particularly the

instances involving the propagating of means, could potentially be beneficial. Integrating

with spatial separability the approximate and optimization-based approaches to inference,
e.g., variational methods, may be of value.
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Chapter 7

Conclusion

7.1 Summary

This thesis introduces separability, a general modeling approach for large finite-state prob-

abilistic models described in terms of a set of evolving random variables. Separability en-

compasses any instance where partial probabilistic information about the state of a Markov

chain can be propagated, e.g., moments or marginal characterizations of the distribution of

the state. Separability is intended for situations where the probabilistic description of the

state of the Markov chain is intractable due to the exponential explosion in the size of its

state space. As many examples of meaningful partial information are only polynomial in n

(the number of random variables characterizing the state), such partial information can be

tractable even when n is large. Separability offers a potentially tractable modeling paradigm

in the large-n regime; we illustrated examples of separability that permit efficient represen-

tation, analysis, simulation, and inference. We connected separability with several models

present in the literature, including Pfeffer's separability [30], the influence model [12, 13],

moment-linear stochastic systems [14, 15], Fisher sufficiency [27], probabilistic models on

the symmetric group [9], and mass action kinetics [38).
After formally defining separability, we derived several important equivalences regard-

ing separability, including the fact that whenever partial information can be propagated

exactly, it can be done so linearly. Without loss of generality, we could focus on the lin-

ear propagation of partial information and use the tools of linear algebra to characterize

separability. We followed this path in Chapter 3, deriving many interesting insights into

separability based on linear algebra. It was demonstrated that the spectral characteristics

of the matrices propagating partial information are inherited from the transition matrices of

the underlying Markov chain. Separability was shown to be an instance of subspace invari-

ance for linear systems, but relating to invariance in a nonstandard way. In Section 3.3, we

offered a valuable visualization of the constraints of separability. The remainder of Chap-

ter 3 was focused on determining the dimension of canonical instances of separability, that

is, the number of free parameters necessary to specify a particular separable model. In doing

so, we developed several interesting techniques for analyzing matrices composed of blocks

of Kronecker products, as well as offered a linear algebraic perspective on the constraints

of the running-intersection property of graphical models. It was shown that in many cases,

separability is a relatively general modeling formulism for large n. We illustrated that as a

consequence of this, in many cases, a high percentage of imposed constraints can be matched

with separable models when n is large.
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Chapter 4 introduced the generalized influence model (GIM), a parametric model that
includes as special cases both the symmetric group and the influence model. Being a para-
metric model, the GIM offers general, tractable representations for a specific instance of
separability. Proofs of many of the properties of the symmetric group and the influence
model were simplified in the general setting of the GIM. Many interesting geometric rela-
tionships of the IM, the GIM, and separability were derived and illustrated. We offered
many examples of GIMs beyond influence models and the symmetric group, which take
advantage of the additional modeling generality offered by the GIM.

The problem of tractable learning for separable models was considered in Chapter 5.
We began by developing approaches for estimating the transition matrix of the underlying
Markov chain. Even though such estimation algorithms are intractable for interesting in-
stances of separability, the approaches for solving the full parameter learning problem were
valuable, as they motivated the approach for estimating the matrices that propagate the
partial information. Our proposed learning algorithm, of computational complexity polyno-
mial in n, was motivated by replacing Kullback-Leibler divergences with 2-norms, ensuring
that the core computational routine of the learning algorithm would be both tractable and
familiar-linear least-mean-squares estimation. We established that our learning algorithm
would be asymptotically consistent, that iterative estimates would almost surely eventually
become and stay feasible, and we offered several ways to evaluate the appropriateness of
assumptions of separability, computed as part of our learning algorithm.

The final chapter of significance extended the notions of separability to general Bayesian
networks. After discussing how spatial separability is related to mixture models of Fisher
sufficiency, and also serves as an additive analog to the product forms of conditional in-
dependence, we briefly discussed the potential benefits for inference when separability is
assumed.

7.2 Future research

" Identify additional models where assumptions of separability are appro-
priate For many years, Markov had only two examples of Markov chains. We hope
that our examples of separability can be similarly augmented over time, offering new
opportunities and problems for applying the rich theory of separability.

" Existence of nonnegative H(r) / Potential equivalence of MCr)-separability
in Bayesian networks with mixtures of Fisher sufficient models, for r > 1
Although there was little discussion of this fact, one can guarantee the existence
of a nonnegative H(1) under the assumption of M(1)-separability (a proof of this is
given in [31]). Guarantees for the existence of nonnegative H(') for r > 1, under
the assumption of M()-separability, is an open question. Similarly, the existence of
nonnegative additive forms under M(r)-separability in Bayesian networks, for r > 1,
is also an open question. These problems are closely connected to the existence of
nonnegative realizations in linear systems theory [94], realizations of hidden Markov
models (HMMs) [95, 96], and the existence of nonnegative matrices that leave cones
invariant [29, 97].

" Relationship between the GIM and M( -separability Empirically, the dimen-
sion of the set of transition matrices that are GIMs and those that exhibit M(nk
separability are equal for all cases that have been evaluated. The sets themselves are
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not equal, however; the set of matrices exhibiting M W-separability has additional

extreme points. Is there a way for such additional extreme points to be incorporated

into a simple parametrization that generalizes the GIM?

" Separability's connections to the symmetric group The first connections be-

tween the GIM and the symmetric group were demonstrated in Section 4.5. We be-

lieve such connections can be developed further. There are many powerful results from

group theory; furthering or extending such results in potentially more general settings,
such as general GIMs or general instances of Mt-separability, could be rather benefi-

cial. On the other hand, the linear algebraic perspectives offered by Mt-separability

offer many new interpretations of standard results from the symmetric group. Our

discussions on parameter learning may yield much insight into parameter learning for

the symmetric group, which is briefly mentioned in [10]. Furthermore, the structure

of M,-separability may also offer new insights into the Fourier based approximations

pursued in [101. At the very least, M,-separability offers the natural generalization to

the propagation of such partial information in cases beyond the symmetric group.

* Parameter learning of M,-separable models under more general settings

In Chapter 5 we proposed a solution to the parameter learning problem under the

assumption of M,-separability, when given full observations of the state. Extending

this learning algorithm to situations with only partial state information would be

valuable. Theoretically, this could be achieved by imposing additional restrictions

on algorithms for learning HMMs, i.e., Baum-Welch [56]; however, practically, it is

essential that such learning algorithms be tractable for the interesting instances of

A,-separability that are intractable under traditional methods of analysis.

" Connecting instances of separability involving the propagation of expec-

tations to mean field theory As evident in the specific examples of mass action

kinetics, and the more general mean field theory, laws of large numbers permit the close

approximation of propagating expectations in a variety of models. Specific instances

of M-separability precisely characterize when such expectations can be propagated.

Evidently, these models become roughly separable upon reaching a sufficiently large

size. It would be interesting to detail the evolution of the algebraic structure of such

models as they increase in size and become roughly separable. For a general class of

models, one may be able to show how laws of large numbers push such models towards

the approximate propagation of moments.

" Developing variational methods for separability We have briefly discussed in-

stances where separability is approximately satisfied. In addition to developing ap-

proximation techniques for models that are roughly separable, it would be valuable

to use variational methods to leverage the structure of separability and develop tech-

niques for bounding probabilities. This approach would be analogous to how finer

factorable forms for the joint PMF are used in [91, 90] to obtain bounds on proba-

bilities via substantially less complex inference computations. In our case, we would

consider the additive parameterizations of separability rather than the product param-

eterizations associated with assuming additional conditional independence relations.
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Appendix A

Kronecker Products

We begin by defining the Kronecker (scalar) product and mentioning some of its key prop-

erties. We proceed to develop some of the key theorems for Kronecker products. Much of

the content here can be found in [28], however, our approach to the material focuses only

on those concepts that are pertinent to our discussions.

Definition 6. The Kronecker product of A (a p x q matrix) and B (an r x s matrix),

denoted as A D B, is defined as the following pq x qs matrix represented in block form:

antB a12 B ... a1qB

A B a2B a22B ... a2qB(A)

aL1B ap2 ... apqB

where aj is the (i,j) element of A.

The definition above is what is also used to define Kronecker products involving vec-

tors and scalars (simply degenerate matrices). Occasionally. A 0 B is referred to as A

Kroneckered with B.

Remark 1. A 3 B contains every distinct product of an element in A with an element in

B.

Remark 2. Each column of A S B consists of a Kronecker product of a column of A with

a column of B. All such Kronecker products involving a column of A Kroneckered with a

column of B are represented as columns of A ® B.

Remark 3. Each row of A 0 B consists of a Kronecker product of a row of A with a row

of B. All such Kronecker products involving a row of A Kroneckered with a row of B are

represented as rows of A 0 B.

We now state as fact some basic properties of Kronecker products.

A.1 Properties of Kronecker products

1. No Commutative Property: In general A 0 B f B 0 A. However, by Remark 1,
each entry in A 0 B appears as an entry in B 0 A.
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2. Associative Property:

A 0 (B 0 C) ( (A 0 B) 0 C

3. Distributive Property:

(A + B) @ C =(A B)+ (B 0 C)

A 0 (B C) = (A 0 B)+(A 0 C)

A 9 (B+C) 0 D =A B & D + A @ C 0 D (A.2)

The distributive property of Kronecker products over addition follows directly from
the distributive property of multiplication over addition.

4. Mixed-product Property:

(A1 & B1 )(A 2 ® B 2)= A1 A2 ® B 1 B 2  (A.3)

for appropriately-sized matrices A1, A 2 , B 1, B 2.

5. Identity: A 9 1 = 1 0 A = A (note that we have a scalar 1, not a vector of all Is (1)

6. Eigenvalues and Eigenvectors: Suppose A and B are square matrices. Let A and
x be an eigenvalue and associated eigenvector of A. Let a and v be an eigenvalue
and associated eigenvector of B. Then Ao- and x 0 v is an eigenvalue and associated
eigenvector of A @ B. In fact, all eigenvalues and associated eigenvectors of A 0 B
can be composed as such from the eigenvalues and eigenvectors of A and B.

7. Transpose:
(A 0 B)' = A' 0 B' (A.4)

8. Vectorization:
vec(ABC) = (C' O A)vec(B) (A.5)

where vec(-) is the linear operation that converts a p x q matrix into a pq x 1 vector,
with the first column of the matrix serving as the first p entries of the vector, the
second column as the next p entries of the vector, and so forth.

9. Row Vectorization:
rvec(ABC) = rvec(B)(A'O C) (A.6)

where rvec(.) is the linear operation that converts a px q matrix into a 1xpq row vector,
with the first row of the matrix serving as the first q entries of the vector, the second
row as the next q entries of the vector, and so forth. Note that vec(A)' rvec(A').

Theorem 16. If R(A) = R(A) and R(B) = R(B) then R(A 0 B) = R(A ® B).

Proof. We will only prove that R(A 9 B) = R(A 0 B) when R(A) = R(A); the full
statement follows by similarly proving that R(A 0 B) = R(A 0 B) when R(B) = R(B).
It will be sufficient to show that any column in A 0 B, say ii 0 bk, can be expressed as a
linear combination of the columns of A 0 B.
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As R(A) = R(Z), it follows that hj can be expressed as a linear combination of the

columns of A:
>j aai , (A.7)

for some coefficients aj. By the distributive property (A.2) and the definition of the Kro-

necker product (Definition 6), it follows that

a3 o b (= aiai) bk

r ai (a b) , (A.8)

which proves that any column in A 0 B can be expressed as a linear combination of the

columns of A @ B. E

Corollary 15. If R(A) C R(A) and R(B) c R(B) then R(A 0 B) C R(A 0 B).

Proof. By our assumptions, we can always construct matrices A and B such that

AA [A *],(A.9)

A[B *],(A. 10)

where 7Z(A) = R(Z) and R(b) = R(5), and * denotes additional columns (unspecified for

our purposes). By Theorem 16, it follows that

R(A B) = R(A B) . (A.11)

Moreover, by Remark 2, all columns in A 0 B appear as columns of A C B. The claim

follows. D

Theorem 17. Let A and B each have individually orthogonal columns, i.e. for columns

aj, aj of A,

Ka(A) # 0 if Ij
(ai, a) a'aj = z fi0 ifi j

and similarly for the columns of B. It follows that A 0 B has orthogonal columns.

Proof. Consider any two columns of A 0 B: ai 0 bk and aj 0 bz. By the mixed-product

property of Kronecker products (A.3), it follows that

(a 2 0 bk, aj 0 bi) a'aj 9 b'b

6 (A) B) # 0 if i jand k l

0 otherwise (A.12)

By following the proof above but specifying that 6 (A) = = 1 for all i, k, we can make

the following more specific claim.
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Corollary 16. If A and B each have individually orthonormal columns. it follows that
A & B has orthonormal columns.

The next two corollaries follow by combining Theorem 16 with Theorem 17.

Corollary 17. Let VA = {v(a) a),...} be a set of basis vectors for R(A), and let VB

{vb), V (b) .} be a set of basis vectors for R(B). Then

VA9B {Vi & V2 :V Vi E VA, V2 E VB} (A.13)

is a set of basis vectors for R(A D B).

Corollary 18. If A has rank IA and B has rank qB, then A ® B has rank r/Ar/B.

Our theorems and corollaries, up to this point, have involved the Kronecker product of a
pair of matrices. Many examples will force us to consider Kronecker products of a sequence
of more than two matrices. Induction and the associative property for Kronecker products
can be used to generalize these theorems and corollaries for sequences with an arbitrary
number of matrices. For completeness, we list each of these generalizations.

Theorem 16b. If R(A) R(A), R(B) = R(B), ... R(Z) =R(Z), then

R(A (9 B @... Z) = R(A 0 B @ .. . @Z) .(A.14)

Corollary 15b. If R(A) c R(A), R(B) c R(B), ... R(Z) c R(Z), then

-R(A g B S .... Z)cZ(A j3;.. o Z) . (A.15)

Theorem 17b. If A. B, ... , Z each have individually orthogonal columns, then

A (g B c ... F Z ,(A.16)

will have orthogonal columns.

Corollary 16b. If A, B, ... , Z each have individually orthonormal columns, then

A 3 B &..Z ,(A.17)

will have orthonormal columns.

Corollary 17b. Let VA be a set of basis vectors for R(A), let VB be a set of basis vectors
for R(B), and so forth, with Vz be a set of basis vectors for R(Z). Then

VAE...z Z- {vi S v 2 : V Va E VA, Vb E VB, ... , Vz E Vz,} (A.18)

is a set of basis vectors for R(A 0 B 0 ... 0 Z).

Corollary 18b. If A has rank /A, B has rank r/n, ... , Z has rank rz, then A& B 0 ... S Z
has rank T/IArB ... rIz.
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A.2 Computing the rank of block Kronecker matrices

We have shown in Corollary 18b that for a matrix specified in terms of Kronecker products

of smaller matrices, one can determine its rank in terms of the constituent matrices' ranks.

Many of our problems require determining the rank of block matrices, in which each block

is expressed as a Kronecker product of matrices; such matrices are referred to as block

Kronecker matrices. This particular problem arises when trying to determine the rank of

Mr (Sections 3.4.1 and 3.4.2), as well as when attempting to calculate the number of free

parameters in specifying the transition matrix of an M,-separable model (Section 3.2.1), or

an M-separable model (Section 3.2.2). We describe here an analytical approach to derive,

under specific conditions, a mathematical expression for the rank of a matrix in block

form, where each block is expressed as a sequence of Kronecker products, in terms of the

constituent matrices' ranks.

A.2.1 General approach

Consider the p x q matrix

A 1  A 2  Ar
0 @ 0

B 1  B 2  Br
0 ... 0 , (A.19)

Z1  Z 2  Zr

where each constituent matrix Ai has 7A rows, each matrix Bi has riB rows, and so on,

meaning that p = Bs ... riz (we express chains of Kronecker products vertically, in part

to conserve space, but also to emphasize the perspective that each column of the resulting

matrix is a Kronecker product of columns of the constituent matrices). It is assumed that

there is a constant upper bound on the number of rows and columns of each constituent

matrix, i.e., there are O(logp) matrices in each Kronecker product, and a total of r

O(log q) blocks.

Common Orthonormal Bases Assumption: The set of matrices {Aj}' each with TIA

rows satisfies the common orthonormal basis assumption provided that there exists an

orthonormal basis VA for RTIA such that for every i, R(Aj) can be expressed as the span of

a subset of the basis vectors in VA

If the orthonormal basis assumption individually holds for the set of matrices {Aj }i ,
for the set of matrices {A}Q , ... , and for the set of matrices {Zi}r 1, then there is always

an O(q(log q)(log p)) algorithm to determine the rank of the matrix in (A.19). For many of

the examples that we will consider when such an assumption holds, one can also derive a

simple analytical expression for such a matrix's rank in terms of the ranks of the constituent

matrices. The approach is as follows:

1. Replace each Ai with a matrix Ai, whose columns consist of the subset of basis vectors

from VA that ensures RI(Ai) = R(A1 ). Do the same for each Bi, and so forth, up to

and including Zi. In this modified matrix, each constituent matrix, e.g., A2 or Z, will

have individually orthonormal columns. By Theorem 16b, this new matrix has the
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same range (and rank) as the original matrix. This step will require O((log q)(log p))
operations.

2. By composing the matrix as described, the columns in each block will be orthonormal

(see Theorem 16b). Moreover, as each column can be expressed as

VA VB -... VZ , (A.20)

with VA E VA, VB G VB, ... , VZ 6 VZ, the columns in different blocks will either
be either equal or orthonormal. Therefore, the rank of the matrix in (A.19) will
equal the number of unique columns in the modified matrix. To count the number of
unique columns in the modified matrix, build a list of the columns in the new matrix,
identifying each column by its constituent basis vectors, i.e., by a length r vector that
indicates the particular basis vector in VA, the particular basis vector in VB, and so
on, which generate the column as represented in the form of (A.20). Building this list
requires O(q log p) operations (and also storage of size O(q log p)).

3. Sort the list and remove duplicates, thereby determining the number of unique columns
in the modified matrix and consequently the rank of the matrix of (A.19). This would
require O(q(log q)(log p)) operations.

Remark 4. In order to ensure that the aforementioned common orthonormal bases assuip-
tions is satisfied, a sufficient condition is for there to exist a nesting of the range spaces for
the Aj, a nesting of the range spaces of the Bi, and so forth. Specifically, there should exist
a permutation 7A(-) on the integers 1 through n, such that

R(A,,(i)) C R(A, a(2)) C ... c R(A'A(n)) . (A.21)

This ensures a common orthonormal basis in R'1^4 for each of the Ai that can be constructed
as follows: first find an orthonormal basis for R(AWAM)), then augment this basis to form
a (potentially) larger orthonornal basis for R(AA(2)), and continue repeating this process
while iterating through the nested range spaces. A common orthonormal basis is possible
because of the nesting of the range spaces.

Similarly, there should exist a permutation iTB(-) on the integers 1 through n such that

R(BCrB1) C R(BB(2)) c ... c 7R(BB(,n)) , (A.22)

which would permit one to construct an orthonormal basis that can be used to represent
R(Bj) for each i. Similarly, there should exist permutations from which one can define a
nesting of the range spaces for all constituent matrices of a common level in different blocks,
up to and including the Zi matrices.

Remark 5. The common orthonormal basis assumption is closely related to extensions of
consistent probability measures, which themselves share an equivalence to Markov random
fields. From the perspective of linear algebra, the common orthonormal basis assumption
characterizes the running intersection property of Markov random fields [41], as well as the
sufficient conditions for the extendability of measures /42, 43, 44]. A Markov random field
can be transformed into a junction tree, whose nodes correspond to the cliques in the original
Markov random field, and any two nodes in the junction tree are connected if they share the
same random variables (as single nodes in the original Markov random field could belong
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to several cliques). We identify each node in the junction tree with a clique in the Markov

random field. Let C denote the set of cliques in the Markov random field, and equivalently,

the set of nodes in the junction tree. Each node in the junction tree C E C has an associated

clique marginal #c, which for the case of finite alphabet random variables, can be obtained

by a marginalizing operation from the joint probability vector via a matrix MC. We have a

junction tree (i.e., no cycles) if and only if the set of matrices M1c for C E C satisfies the

common orthonormal basis assumption.

From the perspective of extending measures, suppose for a set of random variables

x1, ... ,xn, one is given a set of consistent marginal distributions, #j for i C I, over specified

random variables. For example, #1 may be a marginal distribution for x1 and x2 , while #2
may be a marginal distribution for x2 , x3 , and x5 , and so forth. In order to be consistent,

marginal distributions over common random variables must specify the same marginals.

For example, under the proposed forms for $1 and $2 just given, both marginal distribu-

tions must specify the same marginal distribution for x2 in order to be consistent. Both

Vorob'ev and Kellerer sought to identify necessary and sufficient conditions such that for

any consistent marginals of the form $h, i C I, there exists a joint distribution with such

specified marginals. We say that the marginal information pj, i e I can be extended. What

they discovered is that such marginals $i for i E I must correspond to clique marginals in

a junction tree. Again, from the perspective of linear algebra, if MI is the marginalizing

matrix that provides the marginal distribution pj, then the set of marginals 0i for i G I

can always be extended if and only if Ai for i e I satisfy the common orthonormal basis

assumption. Markov random fields offer a direct means to represent one such joint distribu-

tion that satisfies such marginals (the one of maximum entropy): the product of the clique

marginals, divided by the product of the separator marginals [76J.

A.2.2 Analytical expressions for special cases

There a few specific theorems to introduce regarding the rank of block Kronecker matri-

ces that in essence follow the outlined approach. These theorems will be helpful when

trying to calculate the dimension of the set of stochastic transition matrices exhibiting

M,-separability or M-separability.

Theorem 18. For any matrices A 1 , A 2 , B 1 , B 2 , each with q rows, such that R(A 1 ) C

R(A 2 ), the matrix
A 1  B1 A 2 9 B 2 ] (A.23)

will have rank pA 1 (PBI + PB 2 - JB1,B 2 ) + (PA 2 - PA 1 )PB 2 , where px = rank(X) and pxy =

pyx is the dimension of R(X) n R(Y) (the intersection of the column spaces of X and Y).

Equivalently, its left null space will be of dimension q2 -(PA 1 (PB 1 + PB 2 - pB1 ,B2 ) + (PA 2 -

PA 1 )PB 2 )-

Proof. By considering Theorem 16, we can assume that A1 and B 2 each individually have

orthonormal columns, and also because of Theorem 16, in the place of (A.23), we can

equivalently compute the rank of

Ai ® B 1  [A1 A 2 1 1] 9 B 2 ] , (A.24)

where

R ([A1 A2_1] R(A2) .(A.25)
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Because of the assumed nesting R.(A 1) C R(A2), there exists such a matrix A 21 satisfying
(A.25), and moreover, we can define it to be a matrix with orthonormal columns such that

R(A 21 1 ) = R(A 2) n R(A1 ) (A.26)

We can rearrange (A.24) and again invoke Theorem 16 to construct the following matrix
with the same range space as (A.23):

[ A1 ® B 1,2 A 21 1 9 B 2 ] , (A.27)

where B1,2 is a matrix with orthonormal columns, satisfying R([B 1 B 2]) = R(B 1,2 ). As
A1, B 1 ,2, A 21 1 , and B 2 each have individually orthonormal columns, by Theorem 16, each
block of (A.27) has individually orthonormal columns. Moreover, as each column in A1
is orthogonal to each column in A 21 1 by design (A.26), it follows that all columns in the
matrix of (A.27) are orthonormal. Hence, its rank, and consequently the rank of (A.23)
must be its number of columns, which can be counted as:

PA 1 (PBI + pB 2 - PB 1 ,B2 ) + (pA 2 - PA 1 )PB 2  (A.28)

A similar claim (with a slightly different resulting expression for the rank) can be de-
veloped for when 7Z(B 1 ) c 7Z(B 2).

Corollary 19. For any matrices A 1, A 2 , B1 , B 2 , each with r/ rows, such that 7Z(B 1 ) c
7(B 2 ), the matrix

[ A1 ®B 1  A 2 ®B 2 ] (A.29)

will have rank pB, (p A1 + PA2 - PA, A2) + (PB 2 - PB1 )PA 2 - Equivalently, its left null space
will be of dimension r)2 

- (PB1 (PA, + PA 2 - PA1 ,A2 ) + (PB 2 - PB1 )PA2 )-

As the proof is so similar to that of Theorem 18, it is omitted.
Theorem 18 and Corollary 19 require a nesting of the range spaces for the matrices at

one level. i.e., either 7Z(B 1 ) c R(B 2 ) or 7Z(A 1 ) C 7Z(A 2 ), but not both. Recall that the

general approach outlined for determining the rank of block Kronecker matrices depends
on the common orthonormal bases assumption, which was discussed in Section A.2.1. This
common orthonormal bases assumption required a nesting of the range spaces at all levels.
However, as is evident in Theorem 18 and Corollary 19, such nesting is technically required
at all levels but one, provided that the dimension of the intersections of the range spaces
at the final level are known.

We have a last theorem to share for a final special case, which will be useful when trying
to determine the dimension of the set of transition matrices exhibiting M-separability.

Theorem 19. If RI(A 1 ) c R(A 2 ) c ... c Z(Ar) c R", and R(Br) c R,(Br_1) C ... C
R(B1 ) C R'7, then

~ A1  A2  Ar
0 0 ... 0 (A.30)

B1  B 2  Br

will have rank PAIPB, + Zi=2 (pA, - PA- 1 )PBI. Equivalently, its left null space will be of
dimension r - (PA, PB + -2(pAi - pAi_1OpBI -
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Proof. We follow an approach similar to Theorem 18, where, motivated by Theorem 16, we
will define a new matrix with the same range space and orthonormal columns. First, define
A 1 as a matrix with orthonormal columns such that

R(AI) = R(A 1 ) . (A.31)

Next, for each i > 2, define Ai [Ai 1 Aii_1] as a matrix with orthonormal columns

such that
R(Aj) = R(A) . (A.32)

This is possible because of the nesting, i.e., R(Ai_1) c R(A 2 ). Note that the columns of
each matrix Ai are a subset of the orthonormal columns of Ar.

Similarly, define B, as a matrix with orthonormal columns such that

R(Br) = R(Br) . (A.33)

For each i < r, define 3i [BS+ 1 B-ilj+1 as a matrix with orthonormal columns such that

R(Bj) = R(Bj) .(A.34)

Note that the columns of each matrix B2 are a subset of the orthonormal columns of B 1 .
By Theorem 16, the matrix

A1  [A 1 Z21 1 ] Z2 A31 2  [Ar-I Arr-I[ ... (A.35)
B 1  32 B 3  BrS

has the same range space as (A.30). As A ® B = Ai Si11+1 t+1-- contains as its columns

all of the columns of Ai 0 Bi+1, such duplicate columns in (A.35) can be removed for each
i, to define a new matrix with the same range:

A1  A21 1  A31 2  Arir_1 1
0 (3 (9 ... 9 . (A.36)
Bi B 2  B3 Br j

The matrix of (A.36) has orthonormal columns, which is easily verified. Therefore, the rank
of the matrix illustrated in (A.36), which equals the rank of the matrix of (A.30), is simply
its number of columns:

r
PA 1 pBI + (,pAI - PAI_ 1 )PB, (A-37)

l=2

D-
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Appendix B

Asymptotic Equalities

B.1 Asymptotic notation definitions

There are several asymptotic equivalences invoked in Section 3.5 that we be carefully proved

here. We begin with the definition of big 0 notation, big 0 notation, and asymptotic

equality (~):[98]

Definition 7. A function g(n) = 0(f(n)) if there exist constants N and A such that

(B.1)

Definition
that

8. A function g(n) = 0(f(n)) if there exist constants N, Mo > 0, M 1 such

Mo f (n)| I <g(n)| < Mi f (n)| V n > N (13.2)

Definition 9. For functions f(n) and g(n), f(n) ~g(n) if

lif f(n)
-ccg(n)

(13.3)

B.2 Bounds on binomial coefficients and binomial probabil-
ities

Our first focus will be on binomial coefficients, ("), for fixed r. An upper bound on (4) is
straightforward,

n) _n(n -1).. (n - r +
r r!

= 0(nr) ,
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|g(,n)| < Mllf (n)l V n > N .



as is a lower bound,

(n) n(n - 1) ... (n - r + 1)

r r!

(n - r + I)'

-r!
= 8(nr) , (B.5)

and thus for fixed r,

(n) (n). (B.6)

Next, consider a binomial coefficient (), with r permitted to vary with n. In order to

bound (n), we consider bounds for factorials. The familiar form of Stirling's formula states

that [50]
n! ~ V2-7. (B.-7)

However, as we require bounds on n!, we need to understand the rate of convergence in

(B.7). By [991, we learn that

2, e12 +1 < n! - vwr e<i . (B.8)

Using (B.8), the following upper bound on (7), when r varies with n, can be derived.

(n) < (in2) _n n

v/2w7n~ Ce12n,

2 n/2

- 2 rv 221 ( )" ei

2"2 r 2 (iL - 1 J) log2 e

-2n2~O(/n) .(B.9)
rn

In addition to bounds on binomial coefficients, we wish to derive a bound for binomial

probabilities. Consider a random variable zo, which is a binomial random variable with

parameters p E (0, 1) and in. We wish to bound mnaxk IP ( z. k ) as a function of in. As

the distribution of zo can he expressed as the convolution of the distribution of za, with

that of a Bernoulli random variable with parameter p, clearly maxk IP ( zr = k ) must be a

decreasing function in in. Without loss of generality, we assume that pin is an integer.

A fairly standard result is that the mode of a binomial random variable with parameters

p and in will be [p(in + 1)] (in some cases the mode will not be unique, but this is irrelevant
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for our purposes) [46]. Consequently,

max P (z, = k) ( p(n+)J (I _ )n-Lp(n+l)J
k [p(n +13

= (lpPn(1 p)(1 -P)n (B.10)
pn1-p

Using (B.8), we can upper bound (, ) as

(n < 1 Ppn(I - P)-(1-p)n , (B.11)
\pu I 27np(1 - p)

and introducing this bound into (B.10), we obtain

maxP(z = k) < 1 p fp(1  p)-(1 -p)npn(1 p)(1 p)n

k V2-7np(1 - p)
1 I ~(B. 12)

27np(l - p)

meaning that maxk P (zn=k) 0 ). We can similarly upper bound (P",) to show that

maxIP(z = k) = 8 . (B.13)

This result seems reasonable, considering that Chernoff bounds for binomial random vari-

ables [47] indicate that an interval of length O(fn) around the mean pn can include any

fraction a E (0, 1) of the mass of the random variable z,.

B.3 Asymptotic equalities for expressions with n in the ex-
ponent

In Section 3.5, our concern is showing that various expressions are mn+(n), where g(n) is
sufficiently small asymptotically for our purposes. We catalogue for quick reference several

such equalities in the following theorem.

Theorem 20. The following asymptotic equalities hold, where m > 1, m > 1, k, and

a E [0, 1) are constants, with m < m:

mn + 6(nk) - mn+0(1/n) (B.14)

m n + m = mn+0(1/n) (B.15)

mn + m" = mn+0(1/n) (B.16)

0(nk)mn - mn+e(logn) if k > 0 (B.17)

m' + E(nk)mn - mn+(nk) (B.18)

Proof. The techniques to prove the asymptotic equalities (B.14)-(B.18) are similar. One
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fundamental result that we will use repeatedly in our derivations is that

log(1 + X) < x .

For many of the derivations, it suffices to settle for weak bounds. Proof of (B.15):

m I + Man -- M(1 + m-Ian

-- mo m l"1gm(1-(1-)n)
T nl+7Tm(1±ma 1 Qn l

= mn+O(1/n)

It should be evident that (B.14) follows from (B.15). Moreover, as

mn" + m" = m + mO log- M

where log,, m E [0, 1), it should also be clear that (B.16) also

Proof of (B.17):
follows from (B.15).

8(nk) " -- mnmlog, e(1 k)

S mmlogm(O(n))

= mn+O(log n)

Proof of (B.18):

m " + e(nk) " -- m" (1 + -(nk)

m m 
)in

= mn+O(nk)
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Appendix C

Random Affine Subspaces

Before discussing the number of orthants that a random affine subspace may intersect, we

first must define what it means to select an affine subspace uniformly at random. First,
one draws a subspace uniformly at random, by independently drawing the orthogonal di-

rections for the subspace from a rotationally symmetric distribution, e.g., choosing the

orthogonal directions uniformly over a hypersphere. Then, to obtain an affine subspace

chosen uniformly at random, the chosen subspace must be shifted according to a rota-

tionally symmetric probability density function (so that any particular shift occurs with

measure 0). A multivariate Gaussian composed of independent and identically distributed

scalar Gaussian random variables is rotationally symmetric, and thus provides all of the

necessary machinery to specify an affine subspace drawn uniformly at random. From this

point onwards, it will be assumed that all affine subspaces are drawn uniformly at random.

To build some intuition into the question we pursue here, consider R2, and a 1-dimensional

affine subspace (a line). Almost surely, a line will intersect three out of the four orthants.

In R3 , however, a 1-dimensional affine subspace will intersect 4 out of the 8 orthants almost

surely. On the other hand, a 0-dimensional affine subspace (a point) will intersect 1 orthant,
almost surely, regardless of the underlying dimension. Can this be generalized?

Indeed, we can generalize this idea to any d-dimensional subspace in R'. Let's begin by

considering the 1-dimensional affine subspaces (lines). Let z be a Cartesian coordinate in

R"l, and note that the orthants can be divided into 2"1 pairs, with each pair of orthants
being neighbors whose signatures (how an orthant is identified, i.e., the characteristic posi-

tive/negative sequence for coordinates of points in the orthant) are the same except differing

at z. For example, in R with z being the vertical coordinate direction, the orthants 'on

top of one another' would correspond to a pair. Consider the slice of R' corresponding to

z = 0, which divides R" into two half spaces, with each half space containing one orthant

in each pair. Obviously, such a slice is a subspace isomorphic to R" 1 . A line in R' will

intersect this slice in one point almost surely. Such a point will be a member of both or-

thants for a particular pair (if orthants are considered closed). On the other hand, for all

other orthant pairs, the line will pass through only one orthant of the pair (almost surely).

If we consider the projected line in R"-' by simply dropping the z coordinate, it should be

evident that we have defined a 1-dimensional affine subspace chosen uniformly at random in

R" . By projecting down into R"1, each pair of orthants in R" becomes a single orthant

in R". The number of orthants that the projected line passes through in R"-1 is exactly

the number of orthnat pairs in R' through which the unprojected line passes. Hence, the

number orthants that the unprojected line in R' passes through must equal the number of
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xy

Figure C-1: Illustrating a 1-dimensional affine subspace in R3. The orthants that the affine

subspace intersects are colored, and the line segments of the affine subspace within each

orthant are colored appropriately. Note the two paired orthants through which the line

passes as its z coordinate goes from negative to positive. The projected 1-dimensional

affine subspace in R2 is also shown.

orthants that the projected line passes through in R4-" plus one (as the line passes through

both orthants of a particular pair in R"). This gives us the following recursion

o"= 1±1 , (C.1)

where o" is the number of orthants that a d-diuiensional affine subspace chosen uniformly
at random almost surely intersects. As ol = 2, evidently,

o" = n + 1.(C.2)

Fig. C attempts to illustrate these relationships in R3

The idea for higher-dimensional affine subspaces is effectively the same. Consider a d-
dimensional affine subspace in R'. Again, consider a coordinate z and the induced orthant

pairs. Taking the slice of R" at z = 0 defines a (n - 1)-dimensional subspace, and the

intersection of the d-dimensional affine subspace with the (n - 1)-dimensional slice is almost

surely a (d - 1)-dimensional affine subspace, that can be thought to be chosen uniformly at

random in R4'. The only orthant pairs in R" for which the d-dimensional affine subspace

will intersect both, correspond to the orthants in R'-1 intersected by the uniformly chosen

(d - 1)-dimensional affine subspace. We can now count the total number of orthants that

the d-dimensional subspace in R' intersects by simply counting the orthant pairs that

it intersects. To accomplish this, we consider the projection of the d-dimensional affine

subspace into R"-1 by eliminating the z-coordinate. Such a projection will itself be a d-

dimensional subspace almost surely, and can be thought of as a d-dimensional subspace in

R"-1 chosen uniformly at random. The number of orthants intersected by the projection of
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the d-dimensional subspace into R"-1 will be equal to, almost surely, the number of orthant

pairs in R" that the d-dimensional affine subspace intersects. Evidently,

1 = "_~ + o"1 (C.3)

Given the initial conditions to this recursion, o = 1 for all n, it can be verified (but

probably is not immediately obvious) that

o = . (C.4)
k=0
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Appendix D

Cone Theory

Many of the topics of this appendix, as well as its notation, are borrowed from [29]. The

proofs of most theorems are omitted.

Definition 10. A cone K is a nonempty subset of R" such that for all x, y c K and

aI, a2 ;> 0, aIx + a 2y E K.

For any nonempty set S C R', we can define the cone SG as the cone generated by

S, consisting of all nonnegative linear combinations of the elements of S. Note that by

definition, cones are convex sets, and that extreme cases of cones include both {0} and R.

A cone that we will repeatedly encounter is the nonnegative orthant in n-dimensional space,
denoted as R' .

D.1 Cone properties

We now cover some of the important properties for cones.

Theorem 21. Cones are closed under intersections.

Definition 11 (reworded 2.4 from Ch. 1 of [29]). A cone K; is polyhedral if there exists a

finite set S such that the cone generated by S is K.

Note that any polyhedral cone K must be closed.

Theorem 22 (2.5 from Ch. 1 of [29]). A cone K is polyhedral if and only if it is the inter-

section of a finite number of closed half-spaces, each containing the origin on its boundary.

Corollary 20. Polyhedral cones are closed under intersections.

Definition 12 (2.6 from Ch. 1 of [29]). A cone K is pointed, provided that K n-K= {0}.

Definition 13 (2.6, 2.7 from Ch. 1 of [29]). A cone is solid, provided that the interior of

K is nonempty, or equivalently, K - K = R" (sometimes referred to as reproducing).

Definition 14 (2.10 from Ch. 1 of [29]). A cone is proper, if it is pointed, solid, and

closed.
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The cones R', R ", and {0} are all polyhedral. The ice cream cone, defined as {x e

R|I(x2 + x + ... + x2)1/ 2 < x 1} is not polyhedral. In three dimensions, polyhedral cones

can be thought of as the cones with flat boundary surfaces, while those which are not

polyhedral have 'curved' boundary surfaces.

The cone R n is obviously not pointed, while the nonnegative orthant R" is pointed. A

cone k is pointed if and only if C contains no subspace C C R', apart from the subspace

Theorem 23. A cone is solid if and only if for every subspace £ C R" with L R', the

subspace L does not contain the cone k.

Thus a cone C defined with respect to the vector x E R" as { y I y = ax, a > 0} is not

solid for n > 1, as such a cone would be contained in the one-dimensional subspace E f R"

with the basis {x}.
The nonnegative orthant R' and the ice cream cone are both proper, while R' is not

(it fails to be pointed).

D.2 Extremal vectors and extremal rays

Definition 15 (generalizes 2.11 from Ch. 1 of [29]). Consider a closed cone k. A vector

x E /C is an extremal vector of k provided that when it is expressed as a linear combination

of two vectors x 1 , x 2 E IC it follows that x 1 and x 2 must be linear combinations of one

another.

By Def. 12, a closed cone k has extremal vectors if and only if it is pointed.

Theorem 24 (generalizes 2.12 from Ch. 1 of [29]). A closed, pointed cone is generated by

its extremal vectors.

Naturally, there exists a finite set of extremal vectors that generate a pointed polyhedral

cone 1C.
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