Total Synthesis of Class II and Class III Galbulimima Alkaloids

| by |
| :---: | :---: |
| Meiliana Tjandra |
| MASSACHUSETSINSTITUTE
 OF TECHWOLOSY
 B.S., Chemistry
 AUS 202010 |

Submitted to the Department of Chemistry
In Partial Fulfillment of the Requirements for the Degree of ARCHNES
DOCTOR OF PHILOSOPHY
IN ORGANIC CHEMISTRY
at the
Massachusetts Institute of Technology
June 2010
© 2010 Massachusetts Institute of Technology
All rights reserved

	N1 0
Signature of Author	
	Department of Chemistry April 27 ${ }^{\text {th }}, 2010$
	, / 7
Certified by.	
	Professor Moharmmad Movassaghi Associate Professor of Chemistry
	Thesis Supervisor
Accepted by...	
	Professor Robert W. Field ent Committee on Graduate Students

This doctoral thesis has been examined by a committee in the Department of Chemistry as follows:

To my parents, Mardjuki Tjandra and Julianti Bianto, to my brothers, Yuhanes Tjandra and Asming Tjandra, to my sister, Selviana Tjandra, and to my fiancé, Erfan Gunawan

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Mohammad Movassaghi for his advice, support, and guidance over the last six years. I am grateful to him for giving me the opportunity to work on challenging and rewarding projects in my graduate study. I would also like to thank members of my thesis committee, Professor Tim Jamison (thesis chair) and Professor Steve Buchwald.

I would like to thank past and present Movassaghi group members. Thanks to Dr. Diana Hunt for collaboration in the first project. I am very grateful to Dr. Jun Qi who has been amazing collaborator and good friend over the last few years. Many thanks to Dr. Bin Chen, Omar Ahmad, Dr. Cristina Nieto Oberhuber, Alison Ondrus, and Yuki Nakamura for being great friends and for fruitful discussion in the lab. I would also like to thank Dustin Siegel, Kate Woodin and Aaron van Dyke for being great classmates. I am grateful to Dr. Tony Bielecki for his guidance on 2D NMR experiments.

I am indebted to my undergraduate advisors and mentors at UC Berkeley. I would like to thank Dr. Ahamindra Jain and Professor Andrew Streitweiser for their support and guidance, and also for encouraging me to pursue a graduate study in organic chemistry. Thanks to Dr. Arlene Mckeown for being a great mentor and friend.

I am very grateful to Dr. Ronald Zuckermann and Dr. Deborah Charcyh for being awesome supervisors at Chiron, and for giving me a good environment to work at. I learned a lot about combinatorial chemistry and how to synthesize peptoids.

I would also like to thank Helen Tengkawan, Oktarina Kam, Jessica Tanuwidjaja, Lam Raga Markely, Rezy Pradipta, Fritz Simeon, Rhea Patricia Liem, Hendrata Dharmawan, and Andy Wijaya for great friendship.

Most importantly, I owe my deepest gratitude to my family. I would like to thank my parents for giving me the opportunity to come to the US to pursue my undergraduate and graduate study. Without their support and guidance, I would not be here. I am also grateful to my brothers and sisters, and my fiancé Erfan Gunawan for their encouragement.

Preface

Portions of this work have been adapted from the following articles that were co-written by the author and are reproduced in part with permission from:

Movassaghi, M.; Hunt, D. K.; Tjandra, M. "Total Synthesis and Absolute Stereochemical Assignment of (+)- and (-)-Galbulimima Alkaloid 13." J. Am. Chem. Soc. 2006, 128, 8126.

Movassaghi, M.; Tjandra, M.; Qi, Jun. "Total Synthesis of (-)-Himandrine." J. Am. Chem. Soc. 2009, 131, 9648-9650.

Total Synthesis of Class II and Class III Galbulimima Alkaloids

by
Meiliana Tjandra
Submitted to the Department of Chemistry on April $27^{\text {th }}, 2010$ in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in
Organic Chemistry

ABSTRACT

I. Total Synthesis of All Class III Galbulimima Alkaloids

We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima alkaloid 13 is revised to $2 S$. Sequential use of catalytic cross-coupling and cross-metathesis reactions followed by an intramolecular Diels-Alder reaction provided the required trans-decalin AB-ring system and masked the C16-carbonyl as an N -vinyl carbamate for late stage unveiling in the form of the necessary C16-enone. A vinyl-radical cyclization secured the C-ring while successful execution of our strategy for introduction of the CDE-ring system in complex galbulimima alkaloids provided the target pentacycle with complete diastereoselection.

II. Total Synthesis of (-)-Himandrine

We describe the first total synthesis of (-)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective DielsAlder reaction in the rapid synthesis of the tricycle ABC-ring system in enantiomerically enriched form, the use of a formal [3+3] annulation strategy to secure the CDE-ring system with complete diastereoselection, and successful implementation of our biogenetically inspired oxidative spirocyclization of an advanced intermediate. The successful and direct late-stage formation of the F-ring in the hexacyclic core of himandrine drew on the power of biogenetic considerations and fully utilized the inherent chemistry of a plausible biosynthetic intermediate.

Table of Contents

I. Total Synthesis of All Class III Galbulimima Alkaloids
Introduction and background 12
Hypothesis of the Biosynthesis of Galbulimima Alkaloids 12
Review of Prior Synthetic Studies of class III Galbulimima Alkaloids 15
Results and Discussion 19
Conclusion 25
Experimental Section 27
II. Total Synthesis of (-)-Himandrine
Introduction and background 69
Hypothesis of the Biosynthesis of (-)-Himandrine 69
Previous Synthetic Study of class II Galbulimima Alkaloids 70
Results and Discussion 71
Conclusion 76
Experimental Section 78
Appendix A: Spectra for Chapter I 127
Appendix B: Spectra for Chapter II 223
Curriculum Vitae 295

Abbreviations

\AA
[α]
Ac
AIBN
anis
aq
atm
br
brsm
Bu
${ }^{\circ} \mathrm{C}$
calcd
CAM
cm
cm^{-1}
COSY
d
d
δ
DEAD
diam
DMAP
DMF
DMSO
DTBMP
dr
ee
EI
equiv
ESI
Et
FT
g
g
GB
GC
h
ht
hv
HMBC
HPLC
HRMS
HSQC
Hz
angstrom
specific rotation
acetyl
2,2'-azobisisobutyronitrile
anisaldehyde
aqueous
atmosphere
broad
yield based on recovered starting material
butyl
degree Celcius
calculated
ceric ammonium molybdate
centimeter
wavenumber
correlation spectroscopy
doublet
deuterium
parts per million
diethyl azodicarboxylate
diameter
4-dimethylaminopyridine
N, N-dimethylformamide
dimethylsulfoxide
2,6-di-tert-butyl-4-methylpyridine
diastereomeric ratio
enantiomeric excess
electron ionization
equivalent
electronspray ionization
ethyl
Fourier transform
gram
gradient
galbulimima
gas chromatography
hour
height
photochemical irradiation
heteronuclear multiple bond correlation
high performance liquid chromatography
high resolution mass spectroscopy
heteronuclear single quantum correlation
Hertz

i	iso
IBX	2-iodoxybenzoic acid
IR	infrared
J	coupling constant
kcal	kilocalorie
KHMDS	potassium hexamethyldislylamide
L	liter
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LHMDS	lithium hexadislylamide
lit.	literature value
m	medium
m	multiplet
M	molar
μ	micro
Me	methyl
mg	milligram
MHz	megahertz
min	minute
mL	mililiter
mm	millimeter
mmol	millimole
$\mu \mathrm{mol}$	micromole
mol	mole
MS	mass spectrometry
m / z	mass to charge ratio
n	normal
NBS	N-bromosucinnimide
NCS	N -chlorosucinnimide
nm	nanometer
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect
NOESY	nuclear Overhauser effect spectroscopy
o.d.	outer diameter
p	para
Ph	phenyl
PMA	phosphomolybdic acid
ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
Pr	propyl
Pyr	pyridine
q	quartet
$\mathrm{R} f$	retention factor
ROESY	rotating frame Overhauser effect spectroscopy
s	singlet
S	strong

str	stretch
t	triplet
TBAF	tetra- n-butylammonium fluoride
TBS	tert-butyldimethylsilyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethyl silyl
UV	ultraviolet
W	weak
Z	benzylcarbamate

Chapter I.

Total Synthesis of All Class III Galbulimima Alkaloids

Introduction and Background

The galbulimima alkaloids are a family of structurally fascinating polycyclic compounds isolated from the bark of Galbulimima belgraveana, a tree native to northern Australia and Papua New Guinea (Figure 1). ${ }^{1}$ These alkaloids are classified into three distinct groups (classes I-III) based on the amount of alkaloids isolated from the bark of trees with class I compounds as the most dominant and class III compounds as the most rare (class I:III, $\sim 100: 1$). The biological activity 2 of himbacine (1), a potential treatment for Alzheimer's disease, has prompted several inventive syntheses of in this area. ${ }^{3,4}$ Our laboratory is interested in the class II and class III galbulimima alkaloids because of their molecular complexity. In this chapter, we describe the total synthesis of all class III galbulimima alkaloids: $(+)$ - and (-)-GB 13 (2), ${ }^{5}$ (-)-himgaline (3) and (-)-himbadine (4), allowing revision of their absolute stereochemical assignment.

Galbulimima Alkaloid 13 (2)

Himgaline (3)

Figure 1. Representative galbulimima alkaloids. ${ }^{\text {ta }}$

Hypothesis for the Biosynthesis of Galbulimima alkaloids:

A compelling hypothesis by Mander, Ritchie and Taylor in 1967 linked various galbulimima alkaloids to a common polyacetate derived precursor: nine-acetate unit, a pyruvate, and $\mathrm{NH}_{3} 5$ (Scheme 1). ${ }^{\text {Id }}$ They postulated that bicycle 6 could be the point of divergence to the

Scheme 1. Carbon mapping of Galbulimima alkaloids proposed by Mander, Ritchie and Taylor.

10

12, $\mathrm{R}=\mathrm{H}$ or Me
$\downarrow \underset{\substack{\text { imine } \\ \text { reduction }}}{ }$

galbulimima alkaloid 13 (2)

oxohimgaline (21)

carbony
 reduction

22

23
galbulimima alkaloids

Scheme 2. Our biosynthetic hypothesis of class II and class III galbulimima alkaloids.
class II (himandrine and himandridine) and class III (galbulimima alkaloid 13, himbadine, and himgaline). Conversion of bicycle 6 to pentacycle 7 would provide access to the class III galbulimima alkaloids. Oxidation at C13 followed by N-C9 bond formation of pentacyclic ester 8 would afford the class II GB alkaloids.

Based on Mander, Ritchie and Taylor's consideration on the biosynthesis of galbulimima alkaloids described above, ${ }^{\text {ld }}$ we developed a unified biosynthetic hypothesis of Class II and Class III galbulimima alkaloids specifying stereochemical control and timing of events (Scheme 2). ${ }^{5}$ In particular, we envisioned the pentacyclic amino ketoester 16 to be the point of divergence to access class II and class III galbulimima alkaloids. We postulated that intramolecular conjugate addition of the enol tautomer of the C20-ketone of $\mathbf{1 1}$ to the unsaturated iminium ion would result in formation of tetracycle $\mathbf{1 2}$ that would be subject to rapid C6-enamine addition to the C20-carbonyl giving the pentacyclic imine 14. Imine reduction followed by enone formation to give pentacyclic aminoketoester 16 would then set the stage for decarboxylation for the Class III alkaloids (GB 13, himbadine and himgaline). Alternatively, tautomerization of pentacyclic amino ketoester 16 and C17-hydroxylation, followed by an intramolecular allylic displacement by the amine would give the $\mathrm{N}-\mathrm{C} 9$ bond present in Class II alkaloids (see chapter II). This refined biosynthetic hypothesis guided the first enantioselective total syntheses of both class II and class III alkaloids as described in the remainder of this thesis.

During our studies directed toward the synthesis of Class II and Class III alkaloids, Baldwin and co-workers reported the total synthesis of himbacine and himandravine, members of the Class I alkaloids, employing their independent biomimetic route that was distinct from

Scheme 3. Baldwin's biosynthetic hypothesis of galbulimima alkaloids.
ours. ${ }^{3 \mathrm{~d}, \mathrm{e}}$ In their report, they also proposed the biosynthetic hypothesis of class II and class III Gb alkaloids starting from the tricycle 24 derived from intramolecular Diels Alder reaction of the tetraene precursor (Scheme 3). Conjugate addition of enol tautomer of methyl ketone 24 to the iminium moiety would give the tetracycle 25 . Tautomerization of the enamine $\mathbf{2 5}$ followed by double bond migration produced enone 26 which would undergo Michael addition first to give the spirocycle 27 . At this point, 1,2 addition of the enamine 27 provided the hexacyclic 28 , which upon imminium reduction was proposed to give the hexacyclic amino alcohol 29 , their speculated intermediate in the biosynthesis of class II and III galbulimima alkaloids. However, our mechanistic and methodological studies did not support the sequence of events described in conversion of $\mathbf{2 5}$ to $\mathbf{2 8}$.

Review of Prior Synthetic Studies of Class III Galbulimima alkaloids:

An overview of the literature concerning the class III galbulimima alkaloids is presented in this section. Mander reported the first total synthesis of (\pm)-GB 13 in 2003. ${ }^{4 a}$ The key steps in the synthesis involved a Diels-Alder cycloaddition and elaboration of the benzenoid moiety to

Scheme 4. Mander's total synthesis of (\pm)-GB 13. Conditions: (a) AcOH, $\mathrm{H}_{2} \mathrm{O}, 89 \%$. (b) MOM-Cl, DMAP, ${ }^{i} \mathrm{PrNEt}$, DCM, 97%. (c) NaH , EtOCHO; $\mathrm{NEt}_{3}, \mathrm{CH}_{3} \mathrm{CN}, p \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{~N}_{3}$; h v, THF, ($\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)_{2} \mathrm{NH}, 0{ }^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{O}^{+}, 68 \%(3$ steps). (d) $\mathrm{Cl}_{3} \mathrm{CCOCl}, \mathrm{NEt}_{3}, 98 \%$. (e) $\mathrm{KDA}, \mathrm{Ph}_{2} \mathrm{Se}_{2} ; \mathrm{H}_{2} \mathrm{O}_{2}$, THF, 74%. (f) 33, $\mathrm{Yb}(\text { thd })_{3}, 110{ }^{\circ} \mathrm{C}, 87 \%$. (g) TBAF, THF, 74%. (h) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 94 \%$. (i) MOM-Cl, DMAP, ${ }^{i} \mathrm{PrNEt}$, DCM, 96%. (j) Li, $\mathrm{NH}_{3} ; \mathrm{HCl}, \mathrm{MeOH}, \mathrm{THF}, 55 \%$. (k) LiAlH_{4}, THF; MCPBA, DCM; DMP, $\mathrm{NaHCO}_{3}, 77 \%$ (3 steps). (l) $p \mathrm{NO}_{2} \mathrm{ArSO}_{2} \mathrm{NHNH}_{2}, \mathrm{py}$, EtOH, THF, 76%. (m) $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}, \mathrm{py}, 10{ }^{\circ} \mathrm{C}$. (n) $\mathrm{ZrCl}_{4}, \mathrm{NaBH}_{4} ; \mathrm{Zn}, \mathrm{AcOH}, \mathrm{Et}_{2} \mathrm{O}$; TFAA, $\mathrm{NEt}_{3}, \mathrm{DCM}, 32 \%$ (4 steps). (o) dil. HCl ; DMP, DCM; MOM-Cl, DMAP, ${ }^{i}$ PrNEt, DCM, 57% (3 steps). (p) LDA, TMSCl, THF; $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DMSO}, \mathrm{CH}_{3} \mathrm{CN}$, 82% (2 steps). (q) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{C}, 90 \%$. (r) dil. HCl , acetone, 37%.
afford the piperidine ring of GB 13 (Scheme 4). The synthesis began with [3.3.1]bicyclononane 30 which underwent decarboxylation of β-keto acid followed by protection of alcohol, and Wolff ring contraction ${ }^{6}$ of the corresponding diazoketone to provide amide 31. At this point, dehydration of the amide moiety of $\mathbf{3 1}$ provided the corresponding nitrile in high yield followed by selenoxide elimination to afford alkene 32, which underwent Diels-Alder reaction with diene 33 in the presence of ytterbium tris(2,2,6,6-tetramethyl-3,5-heptane-dionate) $\left(\mathrm{Yb}(\mathrm{thd})_{3}\right)$ at 110 ${ }^{\circ} \mathrm{C}$ to provide the desired endo adduct 34 in excellent yield. Hydrolysis of silyl enol ether 34, followed by reduction of the resulting ketone, protection of the corresponding alcohol as the methoxymethyl ether, and Birch reduction ${ }^{7}$ afforded the desired enone 35. Enone 35 then underwent a 3-step sequence to provide the corresponding epoxy ketone 36, which was subjected to Eschenmoser fragmentation ${ }^{8}$ to afford the alkynyl ketone 37. Treatment of alkynyl ketone 37 with excess hydroxylamine in pyridine gave bis-oxime 38, which was subjected to reductive cyclization in the presence of zirconium tetrachloride and sodium borohydride to provide the corresponding N-hydroxypiperidine, which, upon reduction and protection, produced the pentacylic amine 39 with the desired all-cis-piperidine ring stereochemistry required for the synthesis of GB 13. Introduction of enone moiety on the B-ring via Saegusa oxidatian, ${ }^{9}$ followed by global deprotection completed the total synthesis of (\pm)-GB 13 .

At that time. the absolute streochemical assignment of GB 13 remained ambiguous, and in 2006, our laboratory reported the first total syntheses of both (+)- and (-)-GB 13 (2), allowing unequivocal revision of their absolute stereochemical assignment. ${ }^{5}$ The first enantioselective total synthesis of $(+)$ - and $(-)$-GB $13(2)$ is outlined in the following page of this chapter. We reported our first total syntheses of $(+)$ - and (- -)-galbulimima alkaloid 13, 2-epi-galbulimima alkaloid 13, (-)-himbadine, 2-epi-oxohimgaline, 2-epi-himgaline, oxohimgaline, and (-)himgaline in the Organic Syntheses symposium at MIT on May $18^{\text {th }}, 2006$. Subsequent to our reports, our structural revision was further supported by total syntheses from Shah, ${ }^{10}$ Evans, ${ }^{11}$ in addition to further X-ray analysis by Mander. ${ }^{12}$

In 2006, Shah and co-workers reported the total synthesis of (-)-GB 13 which involved diastereoselective Diels-Alder reaction, radical cyclization, reductive amination, and azaMichael reaction as the key steps in their synthesis (Scheme 5). ${ }^{10}$ The synthesis started with the previously reported alkene 40^{13} (synthesized in 10 steps from (R)-3-butyn-2-ol) which underwent lactone reduction, protection and oxidation to give the corresponding methyl ketone, followed by

 $(-)-2 \quad 1$

Scheme 5. Shah's total synthesis of (-)-GB 13. Conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{THF} ; \mathrm{Et}_{3} \mathrm{~N}, \mathrm{TIPSOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}$; Dess-Martin, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$ (3 steps). (b) $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{AcOH}$, cat. $\mathrm{AgNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{BnOCOCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$, NaHMDS, THF, 78\% (2 steps). (c) TMSOTf, Et ${ }_{3} \mathrm{~N}$; NBS, THF; ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhH}$, reflux, 56% (3 steps). (d) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, EtOAc; DCC, DMAP, Meldrum's acid; $\mathrm{BnOH}, \mathrm{PhH}$, reflux, 74% (3 steps). (e) HCl (aq.), THF, 85%. (f) $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{CHCl}_{3}$, reflux, 82%. (g) Methyl vinyl ketone, NaOEt , toluene, $0^{\circ} \mathrm{C} ; \mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$; $\mathrm{EtOH}, \mathrm{H}_{3} \mathrm{O}^{+}, 65{ }^{\circ} \mathrm{C}, 77 \%(2$ steps). (h) (R)- α-methylbenzylamine, $\mathrm{MeOH} ; \mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}, \mathrm{MeOH}, \mathrm{AcOH} ; \mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{MeOH}, \mathrm{Pd}(\mathrm{OH})_{2}$, reflux; $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}, \mathrm{MeOH}, \mathrm{AcOH}$; $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 61 \%$ (5 steps). (i) $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}: \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$, 86%. (j) LHMDS, THF, $0^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{~S}_{2}$; NaIO4, MeOH; toluene, $100^{\circ} \mathrm{C}$, 65% (3 steps). (k) NBS, AIBN, $\mathrm{CCl}_{4}, 80^{\circ} \mathrm{C}$; $\mathrm{AgOCOCF}_{3}, \mathrm{DMF} ; \mathrm{NaHCO}_{3}$ (aq.), THF; Dess Martin, 77% (4 steps). (l) $\mathrm{HCl}(6 \mathrm{~N})$, microwave, $1 \mathrm{~h}, 80 \%$.
ozonolysis and Horner-Wadsworth-Emmons reaction to provide alkene 41. Methyl ketone 41 was subjected to α-bromination followed by highly diastreoselective radical ring closure to afford tricyclic ketone 42 (ABC ring system). Formation of the D ring was achieved through Lewis acid catalyzed intramolecular cyclization of β-keto ester $\mathbf{4 3}$ followed by conjugate addition with methyl vinyl ketone to provide diketone 44. At this point, selective reductive amination, protection of the amine, and ruthenium oxide mediated oxidation provided the hexacylic amino lactone $\mathbf{4 5}$. Introduction of enone moiety on the B ring was achieved through sulfoxide elimination, allylic bromination and displacement, followed by hydrolysis and oxidation to afford enone 46. Decarboxylative unraveling of lactone 46 completed the total synthesis of (-)-GB 13.

In 2007, Evans and co-workers disclosed an elegant total synthesis of (+)-GB 13. ${ }^{11}$ Their key transformations included the asymmetric intramolecular Diels Alder reaction, Michael and Aldol reaction (Scheme 6). The synthesis began with the Horner-Wadsworth-Emmons olefination of trans decalin aldehyde 48 (synthesized via intramolecular Diels Alder reaction)

Scheme 6. Evan's total synthesis of (+)-GB 13. Conditions: $\mathrm{LiClO}_{4},{ }^{i} \mathrm{Pr}_{2} \mathrm{Net}, \mathrm{CH}_{3} \mathrm{CN}, 50{ }^{\circ} \mathrm{C}, 85 \%$. (b) DIBAL-H, PhMe, $-90^{\circ} \mathrm{C}$. (c) TBAF, HOAc, THF, 87% (2 steps). (d) TBSOTf, 2,6-lutidine; NaH, BnBr; TBAF 85% (3 steps). (e) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (f) allyldiazoacetate, SnCl_{2}. (g) $\mathrm{LiOMe}, \mathrm{LiClO}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \rightarrow 23^{\circ} \mathrm{C}, 62 \%$ (3 steps). (h) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, morpholine, THF, 86%. (i) DBU, PhH. (j) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$, THF. (k) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%$ (3 steps). 1) $20 \% \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, aq. NaHCO_{3} workup; $4 \AA \mathrm{MS}$, PhH. (m) HOAc, THF, $0^{\circ} \rightarrow 23{ }^{\circ} \mathrm{C}$. (n) $\mathrm{NaBH} \mathrm{N}_{3} \mathrm{CN}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}$. (o) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (p) benzyl chloroformate, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \rightarrow 23^{\circ} \mathrm{C}$, 39% (5 steps). (q) IBX, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, DMSO/PhH, $65^{\circ} \mathrm{C}$. (r) TMS-I, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; HCl ; $\mathrm{NaOH}, 23^{\circ} \mathrm{C}, 81 \%(2$ steps).
using the previously reported (R)- β-ketophosphonate $47^{3 \mathrm{e}}$ to afford the corresponding unsaturated ketone followed by reduction and deprotection to give the allylic alcohol 49. Diol 49 was oxidized, and the resulting aldehyde was selectively subjected to Roskamp reaction ${ }^{14}$ to introduce the necessary β-ketoester for the planned Michael reaction; however, under the reaction condition, the isolated product was enol ester $\mathbf{5 0}$. The undesired formation of enol ester 50 can be reversed under basic condition followed by decarboxylation to afford the tricyclic ketone 51. The C16 ketone was introduced through DBU promoted elimination of the acetonide, hydrogenation and oxidation of the corresponding alcohol. The E ring of $\mathbf{5 2}$ was formed through deprotection of the amine under acidic condition and dehydration to the corresponding imine. Under acidic condition, imine 52 underwent aldol addition to give the desired pentacycle as its imminium ion 53 . Reduction of imminium 53 followed by regeneration of the $\mathrm{C} 16-\mathrm{ketone}$ and protection of amine provided the corresponding pentacyclic amino alcohol. At this point, we were delighted to see application of the final stages strategy in our synthesis was used in this solution. Unsaturated ketone on the A ring was introduced through IBX oxidation ${ }^{15}$, and the benzyl carbamate was removed with TMS-I ${ }^{16}$ to afford (+)-GB 13.

In 2009, Sarpong and co-workers reported another total synthesis of galbulimima alkaloid-13 in racemic form which involved the $\mathrm{Rh}(\mathrm{I})$-catalyzed ketone hydroarylation reaction

Scheme 7. Sarpong's total synthesis of (\pm)-GB 13. Conditions: (a) LDA, THF, $78{ }^{\circ} \mathrm{C}, \mathbf{5 6} ; \mathrm{HCl}, \mathrm{THF} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}$; $\mathrm{K}_{2} \mathrm{CO}_{3}, 23{ }^{\circ} \mathrm{C}, 58 \%$ (2 steps). (b) $\mathrm{SO}_{3}{ }^{\circ}$ pyr, DMSO, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}$; $\mathrm{KHPO}_{4} / \mathrm{NaOH}$ buffer, $60^{\circ} \mathrm{C}, 55 \%(2$ steps). (c) H_{2}, cat. $\mathrm{PtO}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{EtOAc}, 0{ }^{\circ} \mathrm{C}, 93 \%$. (d) (Bpin) $)_{2}$, cat. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{\circ} \mathrm{CHCl}_{3}$, cat. $\mathrm{Pcy}_{3} \mathrm{HBF}_{4}, \mathrm{KOAc}$, DMF, $80^{\circ} \mathrm{C}, 65 \%$. (e) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{Et}_{3} \mathrm{~N}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$ (2 steps). (f) cat. [$\left.\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})_{2}\right]^{+} \mathrm{BF}^{-}, \mathrm{Et}_{3} \mathrm{~N}$, PhMe, $80{ }^{\circ} \mathrm{C}, 77 \%$. (g) NaSEt, DMF, $120^{\circ} \mathrm{C}$; Tf 2 O , pyridine, $0^{\circ} \mathrm{C}$; AlMe ${ }_{3}$, cat. $\left.\mathrm{Pd}^{(} \mathrm{Ph}_{3}\right)_{4}$, THF, 54% (3 steps). (h) cat. $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{H}_{2}(1000 \mathrm{psi})$, EtOH ; BnOCOCl , aq. $\mathrm{NaHCO}_{3} / \mathrm{PhMe}$; $\mathrm{IBX}, \mathrm{TsOH}, \mathrm{DMSO} / \mathrm{PhH}, 6{ }^{\circ} \mathrm{C}, 60 \%(3$ steps). (i) TMS-I, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; \mathrm{HCl}, \mathrm{NaOH}, 79 \%$.
(Scheme 7). ${ }^{17}$ The synthesis started with coupling between cyclopentenone 56 and lithioanion of bromomethoxypicoline 55 to provide allylic alcohol 57. 1,3 Allylic transposition of 57 could be accomplished using modified Parikh-Doering Swern conditions ${ }^{18}$ followed by selective hydrogenation to give alcohol 58. Introduction of boronic ester moiety proceeded in good yield to provide intermediate $\mathbf{5 9}$. Oxidation of alcohol 59, epimerization to the cis [6-5] ring fusion, treatment of the corresponding pinacolboronic ester with the $\mathrm{Rh}(\mathrm{I})$ catalyst to undergo 1,2 addition, and installation of the pyridinyl methyl group provided the desired pentacycle $\mathbf{6 0}$. Hydrogenation of the pyridine ring provided the desired piperidine moiety. At this point, application of the final stages strategy in our synthesis was used to complete the total synthesis of (\pm)-GB-13. Cbz protection, and IBX oxidation ${ }^{15}$ afforded the desired enone 61. Removal of the Cbz group with TMS-I ${ }^{16}$ gave (\pm)-GB 13.

Results and Discussion

Our goals in the study and total synthesis of galbulimima alkaloids were to develop the first enantioselective synthesis of (+)- and (-)-GB 13 (2) and to confirm the absolute streochemical assignment of class II and III GB alkaloids. Furthermore, we wanted to explore our own biosynthetic hypothesis of class II and III GB alkaloids and to chemically validate our proposal for their biogenesis. Guided by our original biosynthetic hypothesis, ${ }^{5}$ we envisioned a

Scheme 8．Retrosynthetic analysis of（－）－GB 13.
strategic C5－C20 bond disconnection to greatly simplify the structure of 2 to the tetracyclic precursor 62 （Scheme 8 ）．We expected to obtain the imino－ketone 62 from the unsaturated imine 63，in turn prepared by condensation of the iminium chloride 64 with aldehyde 65 ．Given the uncertainty in the absolute stereochemistry of natural（－）－GB 13 （2），the coupling of the readily available $(+)$－or（ - ）－iminium chloride 64 with (\pm)－aldehyde 65 provided an expedient route to both enantiomers of advanced intermediates and alkaloid 2.

An efficient synthesis of trans－decalin aldehyde $\mathbf{6 5}$ is outlined in Scheme 9．Suzuki cross－ coupling ${ }^{19}$ of readily available dibromide 66 and vinyl boronic acid 70 using thallium carbonate ${ }^{20}$ provided cis－vinyl bromide 68 in 75% yield．Efforts to substitute thallium carbonate

66
（ \pm ）－67
（土）－68
（土）－69

entry	$\mathrm{T}_{2} \mathrm{CO}_{3}$（equiv）	KOH （equiv）	yield	ratio（ \pm ）－68：（土）－69
1	1	none	70%	$3: 1$
2	0.5	1.5	59%	$2: 1$
3	0.25	1.75	39%	$1: 1$
4	0.1	1.9	19%	$1: 1$
5	0.1	4	38%	$1: 1$

${ }^{a}$ Ratio determined by crude ${ }^{1} \mathrm{H}$ NMR．
Table 1．Optimization of Suzuki coupling for reduction of thallium carbonate

Scheme 9. Diastereoselective synthesis of (\pm)-aldehyde 65. Conditions: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Tl}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$, 75%. (b) $\mathrm{CuI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, oxazolidin-2-one, $\left(\mathrm{MeNHCH}_{2}\right)_{2}$, toluene, $110^{\circ} \mathrm{C}, 95 \%$. (c) 1. TBAF, THF, 95%. $2 . \mathrm{MnO}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$. 3. TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 93 \%$. (d) $4,5-\mathrm{DihydroIMesCl}_{2} \mathrm{Ru}=\mathrm{CH}(o-\mathrm{PrO}) \mathrm{Ph}(10 \mathrm{~mol} \%)$, acrolein, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 85 \%$. (e) toluene, $90^{\circ} \mathrm{C}, 82 \%$, ($\geq 20: 1$, endo:exo).
with potassium hydroxide were unsuccessful, resulting in no improvement in the yield. In addition, unwanted dimerization of the boronate 69 ocurred when less $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ was used (Table 1). Use of palladium acetate and SPhos ligand developed by Buchwald ${ }^{21}$ produced 1:1 mixture of the desired vinyl bromide 68 and dimer 69 .

Subsequent copper-catalyzed coupling of bromodiene 68 with oxazolidin-2-one afforded the desired triene 71 in excellent yield ${ }^{22}$ and proved an effective strategy for masking the C16carbonyl. Conversion of the C20-silyl ether of triene $\mathbf{7 1}$ to the C20-silyl enol ether gave tetraene 72 (Scheme 9). Selective functionalization of the C9-C10 alkene of 72 to the corresponding unsaturated aldehyde 73 (C9-E:Z, $>20: 1$) was achieved via an olefin cross-metathesis reaction with acrolein using the 4,5 -dihydroIMesCl ${ }_{2} \mathrm{Ru}=\mathrm{CH}(o-\mathrm{PrO}) \mathrm{Ph}^{23}$ catalyst. Heating a solution of tetraenal 73 in toluene at $90^{\circ} \mathrm{C}$ afforded the desired trans-decalin aldehyde $\mathbf{6 5}$ in good yield ($82 \%,>20: 1$, endo:exo).

Having access to the trans-decalin aldehyde $(\pm)-65$, we proceeded to the synthesis of enantiomerically enriched iminium salt (S)-64 and (R)-64 in multi-gram scale (Scheme 10). Amino alcohol 74 derived from L-alanine was iodinated to provide alkyl halide 75. Radical addition with methyl vinyl ketone afforded the desired amino ketone (+)-76. Deprotection of the Boc group under acidic conditions resulted in cyclization to give the desired iminium salt (-)-(S)64. The enantioselecitivity of the iminium salt (-)-(S)-64 was measured to be $>\mathbf{9 9 \%}$ ee by chiral HPLC analysis of the corresponding benzylated derivative. The corresponding enantiomer, iminium chloride $(+)-(R)-64$ was prepared using the same route, starting with amino alcohol ent-

Scheme 10. Synthesis of iminium salt (-)-(S)-64 and (+)-(R)-64. Conditions: (a) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, Imidazole, THF, $0^{\circ} \mathrm{C}$. (b) methyl vinyl ketone, ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$, AIBN , toluene, reflux. (c) HCl (aq.), $23^{\circ} \mathrm{C}$.

74 derived from D-alanine.

Deprotonation of the (-)-iminium chloride 64 ($>99 \%$ ee, Scheme 11) with ${ }^{n}$ butyl lithium gave the corresponding lithiated enamine, ${ }^{24}$ which upon addition to a cold solution of aldehyde 65 provided the corresponding β-hydroxy imines in 85% yield. Dehydration using the Martin sulfurane reagent ${ }^{25}$ afforded the desired ($7 E$)- α, β-unsaturated imine 63 (Scheme 11) and the corresponding 2-epi-enantiomer (not shown in Scheme 11) as a 1:1 mixture of inseparable

Scheme 11. Concise total synthesis of (-)-GB 13 (2). Conditions: (a) ${ }^{n} \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 85 \%$. (b) Martin sulfurane, benzene, $23{ }^{\circ} \mathrm{C}, 81 \%$. (c) $\mathrm{NBS}, \mathrm{NaHCO}_{3}$, THF, $0^{\circ} \mathrm{C}$; ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene, $60 \rightarrow 90{ }^{\circ} \mathrm{C}$, $55 \%(2-$ steps). (d) $\mathrm{Et}_{3} \mathrm{~N} \cdot(\mathrm{HF})_{3}, \mathrm{THF}, 23^{\circ} \mathrm{C}$; $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 70 \%$ (2 steps). (e) $\mathrm{ClCO}_{2} \mathrm{Bn}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$. (f) IBX, TsOH ${ }^{\bullet} \mathrm{H}_{2} \mathrm{O}$, benzene, DMSO, $65^{\circ} \mathrm{C}, 10 \mathrm{~h}, 80 \%$. (g) TMSI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; $\mathrm{HCl} ; \mathrm{NaOH}, 23{ }^{\circ} \mathrm{C}$, 89%. For brevity, the corresponding ent-2-epi-isomer of compounds 63 and 77-80 are not shown.
diastereomers in 81% yield. The diastereomers were chromatographically separated after the next two steps. Diastereoselective introduction of the C21-C8 bond in tetracycle 79 was accomplished via a 5-exo-trig vinyl-radical cyclization. ${ }^{26}$ Conversion of silyl enol ether $\mathbf{6 3}$ to the vinyl bromide 77 (Scheme 11, ~1:1.5 mixture of C20-olefin isomers), followed by heating of the crude vinyl bromide 77 with excess tributyltin hydride and AIBN provided the desired tetracycle 79 along with the C2-epi-enantiomer in 55% yield. Treatment of enol ether 79 with triethylamine-trihydrofluoride resulted in C5-C6 enamine addition to the unmasked C20 carbonyl, directly providing the corresponding pentacyclic imine. Removal of the volatiles under reduced pressure and introduction of sodium borohydride in ethanol resulted in diastereoselective C6-imine reduction, affording the corresponding stable pentacyclic amine in a one-pot process (Scheme 11). Optically active pentacyclic amine (-)-81 (36\%) and the corresponding 2-epi-enantiomer, amine (+)-82 (34\%), were readily separated by flash column chromatography. Remarkably, formation of the C 8 stereocenter during the radical cyclization as well as the introduction of the three contiguous stereocenters (C20, C5, and C6) in the conversion of silyl enol ether 79 to pentacyclic amine (-)-81 occur with a high level of diastereoselection. To date, no other diastereomers have been detected. Introduction of the enone was accomplished by treatment of N-vinyl carbamate (-)-83 with excess $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and IBX ${ }^{15}$ in benzene-DMSO at $65{ }^{\circ} \mathrm{C}$ for 10 h to provide carbamate $(-)-\mathbf{8 4}$ in 80% yield. Subsequent deprotection of $(-)-N-C b z$ GB 13 (84) with trimethylsilyl iodide (TMSI) ${ }^{16}$ followed by an aqueous work-up provided synthetic GB 13 (2) in 89% yield (Scheme 11). All spectroscopic data for our enantiomerically enriched (-)-2 matched literature data. ${ }^{1,4 \mathrm{a}}$ The sign of rotation for our synthetic $2\left([\alpha]^{22}{ }_{\mathrm{D}}=-64\left(c 0.06, \mathrm{CHCl}_{3}\right)\right)$, was consistent with that reported for the natural enantiomer $\left([\alpha]=-84\left(\mathrm{CHCl}_{3}\right)^{1 \mathrm{~b}}\right)$, unambiguously securing the absolute stereochemistry. Synthesis of $(+)$-GB $13\left(e n t-2,[\alpha]^{22}{ }_{\mathrm{D}}=+66\left(c \quad 0.07, \mathrm{CHCl}_{3}\right)\right.$) using (+)-64 ($>99 \%$ ee) via the route described above confirmed our absolute stereochemical assignment. Interestingly, intramolecular amine conjugate addition at C 19 was observed upon N-deprotection of 84 and acidic treatment. This conjugate addition was subject to reversion on mild base treatment $\left(1 \mathrm{~N} \mathrm{NaOH}_{\mathrm{aq}}, 1 \mathrm{~h}\right)$.

With access to pentacyclic amines (+)- and (-)-81 (Scheme 11), we explored the synthesis of optically active 2 -epi-GB 13 (2-epi-2) (Scheme 12). Interestingly, removal of the

Scheme 12. Synthesis of (-)-2-epi-16-oxohimgaline (2-epi-21). Conditions: (a) $\mathrm{ClCO}_{2} \mathrm{Bn}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 54%. (b) IBX, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, benzene, DMSO, $65^{\circ} \mathrm{C}, 10 \mathrm{~h}, 59 \%$. (c) TMSI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; $\mathrm{HCl} ; \mathrm{NaOH}, 23{ }^{\circ} \mathrm{C}, 93 \%$.
nitrogen-protective group of (-)-2-epi-N-Cbz GB 13 (2-epi-84, Scheme 12), under identical conditions to those described for $N-\mathrm{Cbz}$ GB 13 (84), led to exclusive isolation of (-)-2-epi-16oxohimgaline (2-epi-21, Scheme 12, $[\alpha]^{22}{ }_{\mathrm{D}}=-24\left(c 0.085, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$) even after treatment with base. Similarly, (+)-2-epi-16-oxohimgaline $\left([\alpha]^{22}{ }_{\mathrm{D}}=+24\left(c 0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$) was prepared from $(+)-2-e p i-84$. The more facile conjugate addition observed with 2-epi-GB 13 (2-epi-2), compared to that seen with GB 13 (2, Scheme 11) is likely due to decreased steric interactions between the C2-substituent and the C17-methine in the 2-epi series. This observation further supports the hypothesis for the biosynthesis of himgaline (3) via sequential conjugate addition and carbonyl reduction of GB 13 (2).

Immediately after we completed the total synthesis of (+)- and (-)-GB 13 (2), in Spring 2006, we synthesized (-)-himgaline (3) by converting (-)-galbulimima alkaloid 13 (2) to (-)himgaline (3) in the presence of sodium triacetoxyborohydride and acetic acid (Scheme 13). In the event, intramolecular conjugate addition of the nitrogen onto the C17-C19 alkene occurred rapidly in the presence of acetic acid to provide the oxohimgaline intermediate $\mathbf{8 5}$. Subsequent reduction with sodium triacetoxyborohydride ${ }^{27}$ effected C 16 carbonyl reduction diasteroselectively through intramolecular hydride delivery to give the (-)-himgaline (3) in 73\% yield. All spectroscopic data for our enantiomerically enriched (-)-himgaline matched literature data. ${ }^{1}$ The sign of rotation of our synthetic (-)-himgaline $[\alpha]^{22}{ }_{\mathrm{D}}=-82\left(c 0.11, \mathrm{CHCl}_{3}\right)$, was

Scheme 13. Total Synthesis of (-)-himgaline. Conditions: (a) $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{AcOH}, 23{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 73 \%$.
consistent with that reported for the natural enantiomer $[\alpha]=-76\left(\mathrm{CHCl}_{3}\right) .{ }^{1}$
Conversion of (-)-galbulimima alkaloid 13 (2) to (-)-himbadine (4) was achieved via reductive methylation in the presence of formalin and sodium triacetoxyborohydride. All spectroscopic data for our enantiomerically enriched (-)-himbadine matched literature data. ${ }^{1}$ The sign of rotation of our synthetic (-)-himbadine $[\alpha]^{22} \mathrm{D}=-47\left(c 0.045, \mathrm{CHCl}_{3}\right)$, was consistent with that reported for the natural enantiomer $[\alpha]=60\left(\mathrm{CHCl}_{3}\right) .{ }^{1}$

Scheme 14. Total synthesis of (-)-himbadine. Conditions: Formalin, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{NaBH}(\mathrm{OAc})_{3}, 50 \%$ (2 steps).

Conclusion

The total synthesis of all class III galbulimima alkaloids: (+)- and (-)-GB 13 (2), (-)himgaline (3), and (-)-himbadine (4) has been described. The absolute stereochemistry of natural $(-)-\mathbf{2}$ is revised to $2 S$. Noteworthy features of this chemistry include a vinyl-radical cyclization strategy to secure the C-ring and the successful execution of our biomimetically inspired strategy for introduction of the CDE-ring system in $2(79 \rightarrow 81$, Scheme 11$)$.

[^0]${ }^{3}$ (a) Hart, D. J.; Wu, W.-L.; Kozikowski, A. P. J. Am. Chem. Soc. 1995, 117, 9369. (b) Chackalamannil, S.; Davies, R. J.; Aserom, T.; Doller, D.; Leone, D. J. Am. Chem. Soc. 1996, 118, 9812. (c) Takadoi, M.; Katoh, T.; Ishiwata, A.; Terashima, S. Tetrahedron Lett. 1999, 40, 3399. (d) Tchabanenko, K.; Adlington, R. M.; Cowley, A. R.; Baldwin, J. E. Org. Lett. 2005, 7, 585. (e) Tchabanenko, K.; Chesworth, R.; Parker, J. S.; Anand, N. K.; Russell, A. T.; Adlington, R. M.; Baldwin, J. E. Tetrahedron 2005, 61, 11649.
${ }^{4}$ (a) Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400. (b) Unpublished Xray data of himandrine hydrogen bromide has suggested a reversal of its originally assigned absolute stereochemistry; see reference 2 in O’Connor, P. D.; Mander, L. N.; McLachlan, M. M. W. Org Lett. 2004, 6, 703.
${ }^{5}$ (a) Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126. (b) Please see SI of ref 5a (page S4, Scheme S2) for a detailed unified biosynthetic hypothesis for class II and III galbulimima alkaloids.
${ }^{6}$ Wolff, L. Liebigs Ann. Chem. 1902, 325, 129.
${ }^{7}$ Birch, A. J. Am. Chem. Soc. 1944, 430.
${ }^{8}$ Eschenmoser, A.; Felix, D.; Ohloff, G. Helv. Chim. Acta. 1967, 708.
${ }^{9}$ Ito, Y.; Hirao, T.; Saeugsa, T. J. Org. Chem. 1978, 43, 1011.
${ }^{10}$ Shah, U.; Chackalamannil, S.; Ganguly, A. K.; Chelliah, M.; Kolotuchin, S.; Bulevich, A.; McPhail, A. J. Am. Chem. Soc. 2006, 128, 12654.
${ }^{11}$ Evans, D. A.; Adams, D. J. J. Am. Chem. Soc. 2007, 129, 1048.
${ }^{12}$ Willis, A. C.; O’Connor, P. D.; Taylor, W. C.; Mander, L. N. Aust. J. Chem. 2006, 59, 629.
${ }^{13}$ Chackalamannil, S, et al. J. Med. Chem. 2005, 48, 5884.
${ }^{14}$ Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258.
${ }^{15}$ Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596.
${ }^{16}$ Jung, M. E.; Lyster, M. A. J. Chem. Soc., Chem Comm. 1978, 315.
${ }^{17}$ Kimberly, K. L.; Sarpong, R. J. Am. Chem. Soc. 2009, 131, 13244.
${ }^{18}$ Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505.
${ }^{19}$ (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972. (b)
Uenishi, J.-i.; Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756. (c) Hoshino, Y.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1988, 61, 3008.
${ }^{20}$ (a) For rate enhancement with TlOH, see Uenishi, J.-i.; Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756. (b) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990, 31, 6509. (c) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.
${ }^{21}$ Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871.
${ }^{22}$ Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
${ }^{23}$ (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
${ }^{24}$ (a) Stork, G.; Dowd, S. J. Am. Chem. Soc. 1963, 85, 2178. (b) Wittig, G.; Frommeld, H. D.; Suchanek, P. Angew. Chem. Int., Engl. Ed. 1963, 2, 683. (c) Whitesell, J. K.; Whitesell, M. A. Sythesis 1983, 517.
${ }^{25}$ Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327.
${ }^{26}$ (a) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321. (b) Stork, G.; Mook, R., Jr. J. Am. Chem. Soc. 1983, 105, 3720.
${ }^{27}$ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc., 1988, 110, 3560.

Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried round bottomed flasks or modified Schlenk (Kjeldahl shape) flasks. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column chromatography was performed as described by Still et al. using silica gel ($60-\AA$ pore size, $32-63 \mu \mathrm{~m}$, standard grade, Sorbent Technologies). ${ }^{1}$ Where necessary (so noted), silica gel was neutralized by treatment of the silica gel prior to chromatography with the eluent containing 1% triethylamine. Analytical thin-layer chromatography was performed using glass plates precoated with $0.25 \mathrm{~mm} 230-400$ mesh silica gel impregnated with a fluorescent indicator (254 nm). Where necessary (so noted), silica gel plates were neutralized by treatment with a solution of 5% triethylamine in dichloromethane followed by heating on a hot plate $\left(\sim 250{ }^{\circ} \mathrm{C}\right)$. Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an ethanolic phosphomolybdic acid (PMA), an acidic solution of p-anisaldehyde (anis), an aqueous solution of ceric ammonium molybdate (CAM), an aqueous solution of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ or an ethanolic solution of ninhydrin followed by heating ($<1 \mathrm{~min}$) on a hot plate ($\sim 250{ }^{\circ} \mathrm{C}$). Organic solutions were concentrated on Büchi R-200 rotary evaporators at ~ 20 Torr at $25-35^{\circ} \mathrm{C}$, then at ~ 1 Torr unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions: dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, and toluene were purchased from J.T. Baker (Cycletainer ${ }^{\mathrm{TM}}$) and were purified by the method of Grubbs et al. under positive argon pressure. ${ }^{2}$ Triethylamine, diisopropylethylamine, and benzene were distilled over calcium hydride immediately before use. Acrolein was distilled over calcium sulfate immediately before use. Methyl vinyl ketone was distilled over potassium carbonate and calcium chloride immediately prior to use. Martin sulfurane was purchased from Aldrich and stored in a glove box under nitrogen atmosphere. N-Bromosuccinimide (NBS) was recrystallized from boiling water prior to use. 2-Iodoxybenzoic acid (IBX) was prepared according to literature procedure. ${ }^{3}$ Activated γ-manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ was prepared according to literature procedure. ${ }^{4}$ The molarity of n-butyllithium solutions was determined by titration using diphenylacetic acid as an indicator (average of three determinations). ${ }^{5}$ Ammonia saturated dichloromethane was obtained by agitation of dichloromethane in the presence of ammonium hydroxide followed by drying over anhydrous sodium sulfate. Where necessary (so noted) solutions were deoxygenated by alternate freeze (liquid nitrogen)/evacuation/argonflush/thaw cycles (FPT, three iterations) or degassed by purging with argon for several minutes.

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} N \mathrm{NR}$) spectra were recorded with a Varian 300 Mercury or a Varian inverse probe 500 INOVA spectrometer or a Bruker inverse probe 600 Avance spectrometer. Chemical shifts are recorded in parts per million from internal

[^1]tetramethylsilane on the δ scale and are referenced from the residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}: \delta 7.27, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta 7.16\right.$). Data is reported as follows: chemical shift [multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, app = apparent, $\mathrm{br}=$ broad), coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Varian 500 INOVA spectrometer or a Bruker 400 spectrometer with a Magnex Scientific superconducting magnet and are recorded in parts per million from internal tetramethylsilane on the δ scale and are referenced from the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}: \delta 77.2\right.$, benzene- $\left.d_{6}: \delta 128.4\right)$. Infrared data were obtained with a Perkin-Elmer 2000 FTIR and are reported as follows: [frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, intensity of absorption ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{br}=$ broad), assignment]. Gas chromatography was performed on an Agilent Technologies 6890N Network GC System with a HP-5 5\% Phenyl Methyl Siloxane column ($50^{\circ} \mathrm{C}, 6 \mathrm{~min} ; 25^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C} ; 250^{\circ} \mathrm{C}, 6 \mathrm{~min}$). We are grateful to Dr . Li Li for obtaining the mass spectroscopic data at the Department of Chemistry's Instrumentation Facility, Massachusetts Institute of Technology. High-resolution mass spectra (HRMS) were recorded on a Bruker APEX 4.7 Tesler FTMS spectrometer using electronspray ion source (ESI) or electronspray (ES).

Compound Numbering. For compounds $2,63,65,79,81,82,83,84,2$-epi-83, 2-epi-21, the atom numbering system used is consistent with correlated atoms in the final product as numbered in the isolation papers of the natural alkaloids. ${ }^{6}$

[^2]

(\pm-trans-2-[3-(tert-Butyl-dimethyl-silanyloxy)-but-1-enyll-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane

 (67):Terminal alkyne $\mathbf{S 1}^{7}$ ($4.70 \mathrm{~g}, 25.5 \mathrm{mmol}, 1$ equiv) was added dropwise via syringe to a solution of freshly prepared pinacolborane ${ }^{8}$ in dichloromethane ($5 \mathrm{M}, 10 \mathrm{~mL}, 50.2 \mathrm{mmol}, 2.00$ equiv) at $0^{\circ} \mathrm{C}$. The solution was stirred and allowed to warm to ambient temperature. After 24 h , the solution was partitioned between diethyl ether (300 mL) and saturated aqueous ammonium chloride solution (150 mL). The aqueous phase was extracted with diethyl ether ($2 \times 150 \mathrm{~mL}$) and the combined organic phases were washed with saturated aqueous ammonium chloride solution (100 mL), were washed with brine (80 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting oil by flash column chromatography (silica gel: diam. 9 cm , ht. 10 cm ; eluent: hexanes:EtOAc [95:5] to hexanes:EtOAc [80:20]) provided boronate $(\pm)-67(5.40 \mathrm{~g}, 68 \%)$ as a colorless oil.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):	$6.60(\mathrm{dd}, J=18,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHB}), 5.63$ (dd, J $=18,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHB}), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}\right), 1.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{BOC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right)$, $1.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{BOC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & 157.2(\mathrm{BC}=\mathrm{C}), 83.3(\mathrm{BC}=\mathbf{C}), 70.0\left((\mathrm{Me})_{2} \mathrm{C}\right), 26.1, \\ & 25.0,24.9,23.9,18.5,-4.5\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right) . \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2929 \text { (m), } 1996 \text { (w), } 1611 \text { (w), } 1370 \text { (w), } 1337 \text { (w), } \\ & 1146 \text { (w). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{BNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 335.2184$, found: 335.2177 .
$\mathrm{GC}, t_{\mathrm{R}}$:	11.73 min
TLC (20\% EtOAc in hexanes), $R f$:	$0.63\left(\mathrm{KMnO}_{4}\right)$

[^3]

1,1-Dibromo-octa-1,7-diene (66):

Triphenylphosphine ($6.34 \mathrm{~g}, 24.2 \mathrm{mmol}, 2.40$ equiv) was added in three portions to a solution of carbon tetrabromide ($4.00 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.20$ equiv) in dichloromethane (30 mL) at $0^{\circ} \mathrm{C}$ in an ice bath to produce a yellow-orange solution. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . A solution of aldehyde $\mathbf{S 2}^{9}(1.12 \mathrm{~g}, 10.0 \mathrm{mmol}, 1$ equiv) in dichloromethane (6 mL) was introduced via cannula to the cold reaction mixture. The transfer was completed using a second $4-\mathrm{mL}$ portion of dichloromethane and the mixture was vigorously stirred at $0^{\circ} \mathrm{C}$. The solution became dark orange and white solid precipitated. After 1 h , excess dibromophosphorane was quenched by sequential addition of triethylamine ($3.4 \mathrm{~mL}, 24 \mathrm{mmol}, 2.4$ equiv) and methanol ($1.0 \mathrm{~mL}, 25 \mathrm{mmol}, 2.5$ equiv). The solution was allowed to warm to room temperature, transferred to a separatory funnel and added dropwise to a solution of ${ }^{n}$ pentane-diethyl ether ($5: 1,300 \mathrm{~mL}$), resulting in precipitation of triphenylphosphine oxide. The resulting light brown solid was removed by filtration and washed with "pentane (100 mL). The combined organic filtrate was concentrated and purified by flash column chromatography (silica gel: diam. 5 cm , ht .10 cm ; eluent: hexanes:EtOAc [90:10]) to yield dibromide 66 as a colorless oil ($2.21 \mathrm{~g}, 82 \%$).

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):	$6.40\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Br}_{2} \mathrm{C}=\mathrm{CH}\right), 5.85-5.76(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{HC}=\mathrm{CH}_{2}$), 5.02 (app-dq, $J=17,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans $-\mathrm{HC}=\mathrm{CH}_{2}$), $4.97\left(\mathrm{~m}, 1 \mathrm{H}\right.$, cis- $\mathrm{HC}=\mathrm{CH}_{2}$), 2.14$2.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Br}_{2} \mathrm{C}=\mathrm{CHCH}_{2}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$, 1.47$1.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):	$\begin{aligned} & \text { 138.9, 138.7, 114.9 }\left(\mathrm{HC}_{\mathrm{C}} \mathrm{CH}_{2}\right), 88.9\left(\mathrm{Br}_{2} \mathbf{C}=\mathrm{CH}\right) \text {, } \\ & \text { 33.6, 33.0, 28.4, 27.4. } \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2928(\mathrm{~s}), 2857(\mathrm{~m}), 1641(\mathrm{~m}), 911(\mathrm{~s}), 804(\mathrm{~m}), 780 \\ & (\mathrm{~m}) . \end{aligned}$
HRMS-EI (m / z):	calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 265.9300$, found: 265.9324.
GC, t_{R} :	10.16 min
TLC (40\% EtOAc in hexanes), $R f$:	$\begin{aligned} & \text { S2, } 0.64\left(\mathrm{KMnO}_{4}\right) \\ & \mathbf{6 6}, 0.75\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right) \end{aligned}$

[^4]

(\pm)-(2E,4Z)-(4-Bromo-1-methyl-undeca-2,4,10-trienyloxy)-tert-butyl-dimethyl-silane (68):

To a solution of boronate $(\pm)-67(0.94 \mathrm{~g}, 3.0 \mathrm{mmol}, 1$ equiv) in acetone and water (30 $\mathrm{mL}, 2: 1$) was added sodium metaperiodate ($2.0 \mathrm{~g}, 9.4 \mathrm{mmol}, 3.1$ equiv) and ammonium acetate ($0.71 \mathrm{~g}, 9.2 \mathrm{mmol}, 3.0$ equiv). The resulting cloudy solution was stirred at ambient temperature. After 48 h , the reaction mixture was placed under reduced pressure to remove acetone, was diluted with ethyl acetate (100 mL) and the phases separated. The aqueous layer was extracted with ethyl acetate (100 mL) and the combined organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to provide boronic acid (\pm)-70 as a light brown oil ($0.66 \mathrm{~g}, 95 \%$). Dibromide 66 (150 $\mathrm{mg}, 0.56 \mathrm{mmol}, 1$ equiv) and crude boronic acid (\pm)-70 ($160 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.2$ equiv) were combined, dissolved in THF-water ($3: 1,11 \mathrm{~mL}$), and the solution was degassed thoroughly (FPT). Tetrakis(triphenylphosphine)palladium ($33 \mathrm{mg}, 0.028 \mathrm{mmol}, 0.050$ equiv) was added as a solid, light was excluded, and the resulting clear yellow solution was stirred for 5 min . Thallium carbonate ($0.53 \mathrm{~g}, 1.1 \mathrm{mmol}, 2.0$ equiv) was added as a solid, and the resulting heterogeneous yellow-white mixture was stirred in the dark. After 25 h , the light tan reaction mixture was diluted with ethyl acetate and passed through a silica plug and the clear solution was concentrated. The resulting brown oil was purified by flash column chromatography (silica gel: diam. 2.5 cm , ht. 4 cm ; eluent: hexanes:EtOAc [98:2] to hexanes:EtOAc [96:4]) to provide triene (\pm)-68 as a yellow oil ($156 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :
$6.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCCH}=\mathrm{CH}), 6.03(\mathrm{dd}, J$
$=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCCH}=\mathrm{CH}), 5.91-5.75(\mathrm{~m}$,
$\left.2 \mathrm{H}, \mathrm{BrC}=\mathrm{CH} ; \mathrm{CH}_{2}=\mathrm{CH}\right), 5.06-4.93(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 4.44(\mathrm{~m}, 1 \mathrm{H}$, TBSOCHCH 3$), 2.35-2.28$
$\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{BrC}=\mathrm{CHCH}_{2}\right), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 1.49-1.43\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.25(\mathrm{~d}$,
$\left.J=6.4 \mathrm{~Hz}_{3} 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08$
$\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$.
$138.9,138.3,133.7,127.5,125.2,114.7,68.5$
(TBSOCH), 33.8, 31.6, 28.7, 28.1, $26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.8,18.5,-4.4\left(\mathrm{SiCH}_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right)$.

2955 (s), 2929 (s), 2857 (s), 1472 (w), 1462 (w), 1255 (m), 1149 (m), 1089 (m), 835 (s), 776 (s).

HRMS (ESI):

TLC (40% EtOAc in hexanes), $R f$:
calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NaBrOSi}[\mathrm{M}+\mathrm{Na}]^{+}: 395.1376$, found: 395.1365 .

70, $0.26\left(\mathrm{KMnO}_{4}\right)$
68, 0.83 (UV, KMnO4)

(\pm)-3-\{(1Z)-1-[(E)-3-(tert-Butyl-dimethyl-silanyloxy)-but-1-enyll-octa-1,7-dienyl\}-oxazolidin-2-one (71):

Vinyl bromide (\pm)-68 ($3.10 \mathrm{~g}, 8.30 \mathrm{mmol}, 1$ equiv) was transferred in dry toluene to a flame-dried Schlenk pressure vessel, the solvent was removed under reduced pressure, and the vessel filled with argon. Oxazolidin-2-one ($869 \mathrm{mg}, 9.96 \mathrm{mmol}, 1.20$ equiv), copper iodide (790 $\mathrm{mg}, 4.15 \mathrm{mmol}, 0.500$ equiv), and potassium carbonate ($2.29 \mathrm{~g}, 16.6 \mathrm{mmol}, 2.00$ equiv) were added under argon, and the vessel was evacuated and back-filled with argon three times. Dimethylethylenediamine ($2.23 \mathrm{~mL}, 20.8 \mathrm{mmol}, 2.50$ equiv) and toluene (33 mL) were added. The reaction vessel was sealed under argon atmosphere and the green-gray heterogeneous mixture was heated to $110^{\circ} \mathrm{C}$. The solution turned slate-blue after five minutes, then light yellow-green. After 21 h , the solution was cooled to ambient temperature and partitioned between ethyl acetate $(200 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The blue aqueous layer was extracted with ethyl acetate ($3 \times 150 \mathrm{~mL}$), and the combined yellow organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting brown oil was purified by flash column chromatography (silica gel: diam. $7 \mathrm{~cm}, \mathrm{ht} .10 \mathrm{~cm}$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [99:1] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [96:4] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [85:15]) to provide triene (\pm)-71 as a light yellow oil ($2.98 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$)

FTIR (thin film) cm^{-1} :

HRMS (ESI):
6.09 (dd, $J=15.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$,
(TBSO) $\mathrm{CHCH}=\mathrm{CH}$), $5.77-5.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$,
5.63 (dd, $J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$,
(TBSO)CHCH=CH), $5.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$,
$(\mathrm{N}) \mathrm{C}=\mathrm{CH}), 5.04-4.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.27$ (app-
$\mathrm{p}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$, (TBSO)CH), $3.55-3.51(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.02-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$),
2.04-1.98 (m, 2H, CH ${ }_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.94-1.90 ($\mathrm{m}, 2 \mathrm{H}$,
$\left.(\mathrm{N}) \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.28-1.24\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.21(\mathrm{~d}$,
$J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{TBSOCHCH} 3), 1.01(\mathrm{~s}, 9 \mathrm{H}$,
$\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.10(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
$156.2(\mathrm{O}=\mathrm{C}), 139.2,134.5,134.1,134.0,125.6$,
$115.1,69.5,61.9,46.2,34.3,29.3,28.8,28.3,26.5$,
$\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2,18.8,-4.0\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right)$.

2928 (w), 2856 (w), 1758 (s), 1414 (m), 1251 (w), 834 (m).
calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NaNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 402.2435$, found: 402.2444.

TLC (3% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $R f$:
68, 0.89 (UV, CAM)
71, 0.54 (UV, CAM)

(\pm)-3-[(1Z)-1-((E)-3-Hydroxy-but-1-enyl)-octa-1,7-dienyll-oxazolidin-2-one (S3):
A solution of tetrabutylammonium fluoride in THF ($1 \mathrm{M}, 1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}, 1.5$ equiv) was added to a solution of silyl ether (\pm) $\mathbf{- 7 1}(487 \mathrm{mg}, 1.28 \mathrm{mmol}, 1$ equiv) in THF (10 mL) at 0 ${ }^{\circ} \mathrm{C}$. The resulting light yellow solution was vigourously stirred and allowed to warm to ambient temperature. After 3.5 h , the reaction mixture was diluted with ethyl acetate (50 mL), water (5 mL), and saturated aqueous ammonium chloride solution (25 mL). The aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$), and the combined organic layers were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting yellow oil was purified by flash column chromatography (silica gel: diam. 2.5 cm , ht. 6.5 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [$95: 5$] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [80:20] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [50:50]) to provide the alcohol (\pm)-S3 as a clear oil ($321 \mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$:
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC (10% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Rf :
$5.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeC}(\mathrm{OH}) \mathrm{CH}=\mathrm{CH})$, $5.81-$
$5.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.64$ (dd, $J=15.6,5.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{MeC}(\mathrm{OH}) \mathrm{CH}=\mathrm{CH}), 5.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $(\mathrm{N}) \mathrm{C}=\mathrm{CH}), 5.07-4.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.24$ (br$\mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}$), $3.67-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 2.97 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.36-2.18 (brs, OH), 2.03-1.91 (m, 4H, (allylic CH_{2}), 1.32-1.25 $\left(\mathrm{m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}, 1.23\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\right.$.
$156.7(\mathrm{O}=\mathrm{C}), 139.2(\mathrm{C}=\mathrm{CN}), 134.5,134.1,128.7$, 126.1, $115.1\left(\mathrm{HC}=\mathrm{CH}_{2}\right), 68.3,62.2,46.2,34.3$, 29.3, 28.9, 28.2, 24.0.

3421 (br-m, OH), 2973 (w), 2927 (m), 2857 (w), 1741 (s, C=O), 1419 (s), 1247 (m), 1037 (m).
calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 288.1572$, found: 288.1572.

71, 0.75 (UV, CAM)
S3, 0.16 (UV, CAM)

(土)-3-[(1Z)-1-((E)-3-Oxo-but-1-envl)-octa-1,7-dienyll-oxazolidin-2-one (S4):
γ-Manganese dioxide ($1.21 \mathrm{~g}, 13.9 \mathrm{mmol}, 11.7$ equiv) was added under an argon atmosphere in one portion to a solution of alcohol (\pm)-S3 ($317 \mathrm{mg}, 1.20 \mathrm{mmol}, 1$ equiv) in dichloromethane (6 mL) and the mixture was stirred at ambient temperature. After 19.5 h , the reaction mixture was diluted with dichloromethane and passed through celite. The resulting solution was concentrated under reduced pressure to provide spectroscopically clean ketone (\pm)$\mathbf{S 4}$ as a clear oil ($289 \mathrm{mg}, 92 \%$). If desired, purification of ketone (\pm)-S4 could be achieved via flash column chromatography (silica gel, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [98:2] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [90:10]).

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$6.77(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCOCH}=\mathrm{CH}), 6.00(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCOCH}=\mathrm{CH}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{N}) \mathrm{C}=\mathrm{CH})$, 5.06-4.99 (m, 2H, CH=CH2), 3.47 (app-t, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.73 (app-t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.94-1.90 (m, 7 H , allylic- CH_{2}, allylic- $\left.\mathrm{CH}_{2}, \mathrm{Me}\right), 1.21-1.20\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$\begin{aligned} & 196.6(\text { ketone-C=O), } 156.1 \text { (carbamate-C=O), } \\ & 143.7,140.2,139.0,134.1,126.6,115.3,62.2 \\ & \left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 34.2,29.3,28.8 \text {, } \\ & 28.3,27.9 . \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2924 \text { (m), } 1754 \text { (s, C=O), } 1746 \text { (s, C=O), } 1666 \text { (m), } \\ & 1631 \text { (m), } 1599 \text { (m), } 1414 \text { (s), } 1251 \text { (m). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 286.1414$, found: 286.1421 .
TLC (10% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Rf:	S3, 0.16 (UV, CAM) S4, 0.42 (UV, CAM)

3-\{(1Z)-1-[(Z)-3-(tert-Butyl-dimethyl-silanyloxy)-but-1,3 dienyll-octa-1,7-dienyl\}-oxazolidin-2-one (72):

Triethylamine ($860 \mu \mathrm{~L}, 6.12 \mathrm{mmol}, 1.50$ equiv) was added to a solution of ketone (\pm)-S4 $\left(1.07 \mathrm{~g}, 4.08 \mathrm{mmol}, 1\right.$ equiv) in dichloromethane $(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, followed by dropwise addition of TBSOTf ($1.12 \mathrm{~mL}, 4.89 \mathrm{mmol}, 1.20$ equiv). After 15 min , the excess silylating agent was quenched by the addition of saturated aqueous sodium bicarbonate solution (5 mL) and allowed to warm to ambient temperature. The reaction mixture was diluted with ethyl acetate $(80 \mathrm{~mL})$ and washed with saturated aqueous sodium bicarbonate solution $(30 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($4 \times 75 \mathrm{~mL}$), and the combined organic layers were washed with brine (20 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was purified by flash column chromatography (neutralized silica gel: diam. 5 cm , ht. 9 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone [97:3]) to provide the silyl enol ether 72 as a white solid ($1.44 \mathrm{~g}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
6.80 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCOTBS}), 6.06$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCOTBS}$), $5.76-5.68$ (m, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{N}) \mathrm{C}=\mathrm{CH})$, 5.03-4.96 (m, 2H, CH=CH2), $4.42(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{CH}_{2}=$ CHOTBS $), 4.33$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=$ CHOTBS), 3.51 (app-t, $J=7.6 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.89 (app-t, J $\left.=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.03-1.99(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.95-1.85\left(\mathrm{~m}, 2 \mathrm{H},(\mathrm{N}) \mathrm{C}=\mathrm{CHCH}_{2}\right)$, 1.24-1.21 (m, 4H, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right), 1.02(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
156.3, 155.6, 139.2, 136.1, 134.8, 127.3, 126.5, $115.1,97.4,62.1,46.3,34.2,29.3,28.7,28.6,26.4$, 18.9,-4.2.

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC, $R f$:
(10% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, neutralized plates): $\mathbf{S 4}, 0.58$ (UV, CAM) 72, 0.79 (UV, CAM)

(2E,8Z,10E)-12-(tert-Butyl-dimethyl-silanyloxy)-9-(2-oxo-oxazolidin-3-yl)-trideca-2,8,10,12-tetraen-1-al (73):

To a solution of silyl enol ether $72(500 \mathrm{mg}, 1.32 \mathrm{mmol}, 1$ equiv) in dichloromethane (6.6 $\mathrm{mL})$ was added freshly distilled acrolein $(354 \mu \mathrm{~L}, 5.30 \mathrm{mmol}, 4.00$ equiv, no stabilizer present), followed by 4,5 -(DihydroIMES) $\mathrm{Cl} 2 \mathrm{Ru}=\mathrm{CH}\left(o-\mathrm{O}^{i} \operatorname{Pr}\right) \mathrm{Ph}^{10}(82 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.10$ equiv $)$. The green solution was stirred at ambient temperature for 10 minutes, then purified immediately without concentration via flash column chromatography (neutralized silica gel: diam. 5 cm , ht. 8 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: $\mathrm{NEt}_{3}[98: 1: 1]$) to provide the tetraene 73 as a tan solid (455 mg , 85\%).

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$:	$9.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 6.71(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathbf{H C}=\mathrm{CHCOTBS}) 6.07$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HC}=\mathrm{CHCOTBS}$), 6.01 (dd, $J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCHO}), 5.90(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCHO}), 5.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{N}) \mathrm{C}=\mathrm{CH})$, 4.43 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHOTBS}$), 4.34 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=$ CHOTBS), 3.55 (app-t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.90 (app-t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.93 (app-q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.67 (app-q, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.(\mathrm{N}) \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.11-0.94\left(\mathrm{~m}, 13 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right.$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & 193.2 \text { (CHO), } 157.5,156.4,155.5,135.5,135.0 \text {, } \\ & 133.6,127.0,126.8,97.5,62.2,46.3,32.6,28.5 \text {, } \\ & 28.3,27.9,26.3,18.8,-4.2 . \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2951 \text { (s), } 2930 \text { (s), } 2858 \text { (m), } 1753 \text { (s), } 1689 \text { (s), } \\ & 1414 \text { (m), } 1253 \text { (m), } 840 \text { (m). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NaNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 428.2228$, found: 428.2226 .
TLC, Rf: (3% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, neutralized plates)	$\begin{aligned} & \text { 72, } 0.63 \text { (UV, CAM) } \\ & \mathbf{7 3}, 0.30 \text { (UV, CAM) } \end{aligned}$

[^5]

(\pm)-($9 S, 10 R, 15 R, 19 S$)-trans-Decalin aldehyde (65):

A flame-dried Schlenk flask was charged with tetraene 73 ($279 \mathrm{mg}, 0.688 \mathrm{mmol}, 1$ equiv) and toluene (34 mL) and sealed under argon atmosphere. The vessel was heated to $90^{\circ} \mathrm{C}$. After 13 h , the solvent was removed under reduced pressure and the resulting oil was purified by flash column chromatography (neutralized silica gel: diam. 2.5 cm , ht. 8 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: NEt_{3} [94:5:1]) to provide the (\pm)-trans-decalin aldehyde $\mathbf{6 5}$ as a yellow oil (228 $\mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

$$
\begin{aligned}
& 9.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 5.01 \text { (dd, } J=5.2 \text {, } \\
& 2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC}=\mathrm{CH}), 4.37(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H} \text {, } \\
& \mathrm{C}=\mathrm{CH}_{2} \text {), } 4.34\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.42- \\
& 3.33 \text { (m, 2H, OCH2CH2N), 2.98-2.95 (m, 1H, } \\
& \text { CHCOTBS), } 2.79\left(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right. \text {), } \\
& \text { 2.50-2.45 (} \mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N} \text {), 2.33-2.28 (m, } 1 \mathrm{H} \text {, } \\
& \mathrm{HCC}(\mathrm{~N}) \mathrm{CH}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCH}), 2.04- \\
& 1.97 \text { (m, 2H, CHOCHCH), 1.67-1.62 (m, 2H, } \\
& \left.\left(\mathrm{CH}_{2}\right)_{4}\right), 1.54-1.52\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 1.26(\mathrm{qt}, J= \\
& \left.13.2,3.8 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H} \text {, } \\
& \left.\left(\mathrm{CH}_{2}\right)_{4}\right), 1.03-0.92\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 0.97(\mathrm{~s}, 9 \mathrm{H} \text {, } \\
& \left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.83\left(\mathrm{qd}, J=3.8,12.6 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right) \text {, } \\
& 0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \text {. } \\
& 203.6 \text { (CHO), } 158.2 \text { (carbamate-C=O), 156.2, } \\
& \text { 140.8, 117.8, 95.4, } 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 53.9,46.7 \\
& \left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 44.4,42.7,37.4,30.9,27.2,27.0 \text {, } \\
& 26.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, 18.8,-3.9\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right)\right. \text {. }
\end{aligned}
$$

nOe data ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :
2929 (s), 2857 (m), 1756 (s), 1724 (s), 1408 (m), 1255 (m), 1220 (m), 837 (s).

HRMS (ESI):
calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 406.2408, found: 406.2403.

TLC, $R f$:
(30% acetone in hexanes, neutralized plates) 73, 0.26 (UV, CAM) 65, 0.33 (CAM)

(S) -75

$(+)-(S)-76$ reflux

(+)-(S)-(1-Methyl-5-ox0-hexyl)-carbamic acid tert-butyl ester (76):

A solution of alkyl iodide (S)-75 ${ }^{11}(5.10 \mathrm{~g}, 17.7 \mathrm{mmol}$, 1 equiv) in toluene (95 mL) was treated sequentially with methyl vinyl ketone ($9.40 \mathrm{~mL}, 115 \mathrm{mmol}, 6.50$ equiv) and diisopropylethylamine ($10.0 \mathrm{~mL}, 88.5 \mathrm{mmol}, 3.00$ equiv). The reaction mixture was heated to reflux and a solution of tributyltin hydride ($7.5 \mathrm{~mL}, 28 \mathrm{mmol}, 1.6$ equiv) and AIBN ($0.40 \mathrm{~g}, 2.4$ mmol, 0.15 equiv) in toluene (30 mL) was added via cannula. After heating at reflux for 1 h , the reaction mixture was cooled to ambient temperature and triethylamine (10 mL) was added. Excess tributyltin hydride was quenched by dropwise addition of a solution of iodine in toluene $(0.2 \mathrm{M}, 0.5 \mathrm{~mL})$ until an orange color persisted. The orange solution was stirred for 10 min , then a solution of potassium fluoride $(5.2 \mathrm{~g})$ in water (40 mL) was added, and the resulting suspension was stirred for 1.5 h . The reaction mixture was filtered through celite, and the filtrate was partitioned between diethyl ether $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether $(3 \times 100 \mathrm{~mL})$ and the combined organic layers were washed sequentially with saturated aqueous sodium bicarbonate solution (20 mL) and brine (20 mL). The organic phases were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure. Purification of the yellow residue by flash chromatography (silica gel: diam. 7, ht. 15 cm ; eluent: hexanes:EtOAc [1:1]) afforded the ketone $(+)-(S)-76$ as a brown solid ($2.2 \mathrm{~g}, 53 \%$, $[\alpha]^{22}=+3(c 0.5, \mathrm{EtOAc})$).

The corresponding enantiomer, ketone $(-)-(R)-76\left(6.9 \mathrm{~g}, 59 \%,[\alpha]^{22} \mathrm{D}=-3(c 0.5\right.$, EtOAc)), was prepared using the same procedure and starting with alkyl iodide (R)-75.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):	4.33 (br-s, 1H, NHBoc), 3.65 (br-s, 1H, $\left.\left(\mathrm{CH}_{3}\right) \mathrm{CHNH}\right), 2.52-2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.14$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}), 1.66-1.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$, $\left.\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.45$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.44 $1.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)$).
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & \text { 209.1, 155.6, 79.2, 46.3, 43.4, 36.7, 30.2, 28.6, 21.4, } \\ & \text { 20.3. } \end{aligned}$
FTIR (thin film), cm^{-1} :	$\begin{aligned} & 3351(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 2975(\mathrm{~m}), 1710(\mathrm{br}-\mathrm{s}, \mathrm{C}=\mathrm{O}), 1523 \\ & (\mathrm{~m}), 1172(\mathrm{~m}) . \end{aligned}$
HRMS (EI):	calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$230.1751, found: 230.1752 .
TLC (50\% EtOAc in hexane):	75, 0.73 (ninhydrin, UV) 76, 0.52 (ninhydrin, anis)

[^6]

(-)-(2S)-2,6-Dimethyl-2,3,4,5-tetrahydro-pyridinium chloride (64):

The N-Boc ketone $(+)-(S)-76(3.40 \mathrm{~g}, 14.9 \mathrm{mmol}, 1$ equiv) was dissolved in aqueous hydrochloric acid $(10 \mathrm{M}, 60.0 \mathrm{~mL})$. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure (1 Torr) to give a dark brown oil. This residue was triturated from THF $(2 \times 10 \mathrm{~mL})$ to provide the iminium chloride $(-)-(2 S)-64$ as a beige solid $\left(1.5 \mathrm{~g}, 69 \%,[\alpha]_{\mathrm{D}}^{22}=\right.$ $-19(c 0.5$, EtOAc $)$) and vigorously dried. ${ }^{12}$ The optical activity of (-)-64 was measured to be $>99 \%$ ee by chiral HPLC analysis of the corresponding benzylated derivative ${ }^{13}$ [(S,S)-Whelk-O; $3.0 \mathrm{~mL} / \mathrm{min} ; 13 \%{ }^{i} \mathrm{PrOH}$ in hexanes; $t_{\mathrm{R}}($ major $)=19.53 \mathrm{~min} ; t_{\mathrm{R}}($ minor, not seen $\left.)=17.64 \mathrm{~min}\right]$.

The corresponding enantiomer, iminium chloride $(+)-(2 R)-64\left(0.4 \mathrm{~g}, 81 \%,[\alpha]^{22}{ }_{\mathrm{D}}=+19\right.$ (c 0.5 , EtOAc)), was prepared using the same procedure and starting with N-Boc ketone $(-)-(R)-$ 76. The optical activity of $(+)-64$ was measured to be $>99 \%$ ee by chiral HPLC analysis of the corresponding benzylated derivative ${ }^{13}\left[(S, S)\right.$-Whelk-O; $3.0 \mathrm{~mL} / \mathrm{min} ; 13 \%{ }^{i} \mathrm{PrOH}$ in hexanes; $t_{\mathrm{R}}($ major $)=17.64 \mathrm{~min} ; t_{\mathrm{R}}($ minor, not seen $\left.)=19.53 \mathrm{~min}\right]^{14}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
FTIR (thin film), cm^{-1} :

HRMS (EI):
$15.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{NH}^{+}\right), 3.97(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}$, $\left.\mathrm{NH}^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 2.64$ (br-s, $5 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{CNH}^{+}=\mathrm{C}$, $\mathrm{CH}_{3} \mathrm{CCH}_{2}$), 2.08-2.02 (m, $\left.1 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{CCH}_{2}\right), 1.97-$ $1.90\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{CCH}_{2}\right), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{HN}^{+}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$, $1.58-1.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HN}^{+}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$.
186.6, 51.9, 31.6, 27.5, 24.4, 20.1, 16.0.

3406 (br-s, N-H), 2936 (m), 2839 (m), 1686 (m), 1457 (w), 1386 (w).
calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}-\mathrm{Cl}]^{+}: 112.1121$, found: 112.1120.

[^7]

3-\{3-[1-tert-Butyl-dimethyl-silanyloxy)-vinyl]-4-[2-(6-methyl-3,4,5,6-tetrahydro-pyridin-2-yl)-vinyl]-3,4,4a,5,6,8,8s-octahydro-naphthalene-1-yl\}-oxazolidin-2-one (63):

To a suspension of iminium chloride (-)-(2S)-64 (101 mg, $0.68 \mathrm{mmol}, 2.00$ equiv) in THF at $-78{ }^{\circ} \mathrm{C}$ and sealed under argon ${ }^{15}$ was added a solution of n-butyllithium in hexanes (2.53 $\mathrm{M}, 520 \mu \mathrm{~L}, 1.32 \mathrm{mmol}, 3.87$ equiv). The resulting brown solution was maintained at $-78{ }^{\circ} \mathrm{C}$ for 30 min , was warmed to $0^{\circ} \mathrm{C}$ for 10 min , then cooled to $-78^{\circ} \mathrm{C}$. A sample of aldehyde (\pm)- 65 ($137 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ equiv) in a round-bottomed flask was azeotropically dried from toluene $(2 \times 4 \mathrm{~mL})$, the flask was evacuated and backfilled with argon three times, charged with THF $(700 \mu \mathrm{~L})$, and cooled to $-78^{\circ} \mathrm{C}$. The lithiated enamine solution was transferred cold via cannula to the cold aldehyde solution. After ten minutes excess anion was quenched at $-78{ }^{\circ} \mathrm{C}$ by the addition of saturated aqueous ammonium chloride solution (2 mL) and the reaction mixture was allowed to warm to room temperature. The reaction mixture was diluted with ethyl acetate (40 mL) and saturated aqueous ammonium chloride solution (15 mL) and the layers separated. The aqueous layer was extracted with ethyl acetate ($2 \times 40 \mathrm{~mL}$) and the combined organic layers were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting yellow oil was purified by flash column chromatography (neutralized silica gel: diam. 2.5 cm , ht. 10 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: NEt_{3} [98:1:1] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: NEt_{3} [97:2:1] to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: NEt_{3} [96:3:1]) to provide β-hydroxyimine $\mathbf{S 5}$ ($168 \mathrm{mg}, 85 \%$, equal mixture of 4 diastereomers) as a light yellow oil. Additionally, the starting aldehyde (\pm)- 65 was recovered ($8.1 \mathrm{mg}, 6 \%$).

A solution of Martin sulfurane ($219 \mathrm{mg}, 0.326 \mathrm{mmol}, 1.18$ equiv) in benzene (2 mL) under argon atmosphere, ${ }^{15}$ was transferred via cannula to a solution of β-hydroxyimine $\mathbf{S 5}$ (153 $\mathrm{mg}, 0.276 \mathrm{mmol}, 1$ equiv) in benzene (4 mL) at $23^{\circ} \mathrm{C}$. After 25 min , the reaction mixture was concentrated under reduced pressure, and the resulting oil was purified by flash column chromatography (neutralized silica gel: diam. 5 cm , ht. 18 cm ; eluent: hexanes:acetone:NEt ${ }_{3}$ [89:10:1] to acetone:hexanes: NEt_{3} [84:15:1] to acetone:hexanes: NEt_{3} [74:25:1] to acetone:hexanes: $\mathrm{NEt}_{3}[64: 35: 1]$) to provide the α, β-unsaturated imines ($119 \mathrm{mg}, 81 \%, 63:$ ent-2-epi-63, $\sim 1: 1$) as a yellow oil.

The corresponding enantiomers of the β-hydroxyimine ($203 \mathrm{mg}, 70 \%$, equal mixture of 4 diastereomers) and the α, β-unsaturated imine ($167 \mathrm{mg}, 85 \%$, ent-63:2-epi-63, $\sim 1: 1$) were prepared using the same procedure and the imine salt $(+)-(2 R)-64$.

[^8]${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$, equal mixture of two diastereomers, 63:ent-2-epi-63, $\sim 1: 1$): $6.46(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 6.43(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}$), 6.13-6.05 (m, 2H, C8-H, C8-H), 5.145.11 (m, 2H, C17-H, C17-H), 4.29 (br-s, 2H, C21H, C21-H), 3.62-3.52 (m, 2H, C2-H, C2-H), 3.463.41 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.95-2.89 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.79-2.75 (m, $2 \mathrm{H}, \mathrm{C} 19-\mathrm{H}, \mathrm{C} 19-\mathrm{H}$), 2.65-2.60 (m, 2H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.40-2.31 (m, 4H, C5H, C5-H, C15-H, C15-H), 2.19-2.07 (m, 6H, C5-H, C5-H, C9-H, C9-H, CH2, CH2), 2.01-1.94 (m, 2H, $\mathrm{C} 10-\mathrm{H}, \mathrm{C} 10-\mathrm{H}), 1.86-1.71\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2}\right)$, 1.57-1.49 (m, 8H, C3-H, C3-H, C4-H, C4-H), 1.39 (br-s, 3H, C1-H), 1.38 (br-s, 3H, C1-H), 1.36-1.21 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2}$), 0.97 (br-s, $18 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$), 0.19 (br-s, $3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$), 0.18 (br-s, $\left.3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 0.17 (br-s, $\left.3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.17$ (br-s, $\left.3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$, equal mixture of two diastereomers, 63:ent-2-epi-63, $\sim 1: 1$): $163.99,163.98,159.64,159.63,156.01,155.99$, 140.46 (br-s, 2 carbons), 137.99 (C8), 137.95 (C8), 136.26 (C7), 136.19 (C7), 119.44 (C17), 119.25 (C17), 94.39 (C21), 94.34 (C21), 61.80 (br-s, 2 carbons, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 54.53, 54.41, 48.05 (C19), 48.04 (C19), $46.82\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $46.78\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.63$ (C9), 46.60 (C9), 43.21 (C15), 43.16 (C15), 40.39 (C10), 40.36 (C10), 31.74 (C11), 31.67 (C11), 30.65 (C14), 30.61 (C14), 30.42, 30.37, 27.39, 27.36, 27.11 (br-s, 2 carbons), 26.31, 26.29, 25.88, 25.85, 24.30, 24.26, 19.66, 19.47, $18.69\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.03$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-4.05\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-4.17\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-4.23\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

FTIR (thin film, equal mixture of two diastereomers, 63:ent-2-epi-63, ~1:1) $\mathrm{cm}^{-1}: 2929$ (s), 2856 (m), 1756 (s), 1615 (m), 1406 (m), 1259 (m), 1215 (m), 839 (s).

HRMS (ESI, S5):
calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 517.3456, found: 517.3464.

HRMS (ESI, 63:ent-2-epi-63, ~1:1): calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}: 499.3351$, found: 499.3354 .

TLC Rf (neutralized plates):
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:acetone: NEt_{3} [96:3:1])
(hexanes:acetone: NEt_{3} [69:30:1])

65, 0.59 (CAM)
S5, 0.21 (CAM)
S5, 0.40 (UV, CAM)
63 and ent-2-epi-63, 0.44 (UV, CAM)

3-[3-(tert-Butyl-dimethyl-silanyloxy)-1-(6-methyl-3,4,5,6-tetrahydro-pyridin-2-ylmethyl)-3a,5a,6,7,8,9,9a,9b-octahydro-1H-cyclopenta[alnaphthalen-5-yl]-oxazolidin-2-one (79 and ent-2-epi79):

A solution of α, β-unsaturated imine $\mathbf{6 3}(119 \mathrm{mg}, 0.238 \mathrm{mmol}, 1$ equiv, equal mixture of 63 and ent-2-epi-63) in THF (12 mL) was degassed via an argon purge. To this solution was added solid sodium bicarbonate ($106 \mathrm{mg}, 1.26 \mathrm{mmol}, 5.29$ equiv) under argon. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, light was excluded, and NBS ($50.5 \mathrm{mg}, 0.284 \mathrm{mmol}, 1.19$ equiv) was added as a solid. The reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for ten minutes, then diluted with hexanes:acetone: NEt_{3} ([50:50:1], 10 mL), was filtered cold through a silica plug (diam. 1 $\mathrm{cm}, \mathrm{ht} .2 .5 \mathrm{~cm}$) and the filtrate was concentrated under reduced pressure to produce an orangebrown foam. This residue was dissolved in benzene and filtered to remove excess insoluble succinimide. It was then concentrated and placed under reduced pressure (~ 0.5 Torr) for 1 h . The resulting brominated product was used crude for the cyclization step.

The crude vinyl bromide was dissolved in benzene- $d_{6}{ }^{16}(4.8 \mathrm{~mL})$, was degassed via an argon purge, and was charged with tributyltin hydride ($192 \mu \mathrm{~L}, 0.722 \mathrm{mmol}, 3.00$ equiv). A solution of AIBN in benzene- $d_{6}(0.30 \mathrm{M})$ was prepared in a flame-dried flask, degassed via bubbling argon, and a portion ${ }^{17}$ ($200 \mu \mathrm{~L}, 0.060 \mathrm{mmol}, 0.25$ equiv) was transferred to the reaction mixture. The reaction solution was placed in a pre-heated $60^{\circ} \mathrm{C}$ oil bath and heated to $90^{\circ} \mathrm{C}$ over 20 min . After 30 min , the reaction mixture was cooled, an additional portion of AIBN was added ($200 \mu \mathrm{~L}, 0.060 \mathrm{mmol}, 0.25$ equiv), and the mixture was returned to $90^{\circ} \mathrm{C}$. After a subsequent 20 min , the solution was cooled, additional tributyltin hydride ($96 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 1.5 equiv) and AIBN ($400 \mu \mathrm{~L}, 0.030 \mathrm{mmol}, 0.50$ equiv) were added, and the reaction was returned to $90^{\circ} \mathrm{C}$. After 20 min , the reaction was cooled, a final portion of AIBN was added ($400 \mu \mathrm{~L}, 0.030 \mathrm{mmol}, 0.50$ equiv), and the mixture was returned to $90^{\circ} \mathrm{C}$. After an additional 20 \min at $90^{\circ} \mathrm{C}$, the reaction appeared complete by direct ${ }^{1} \mathrm{H}$ NMR spectral analysis. The reaction solution was cooled, triethylamine (1 mL) was added to neutralize adventitious hydrobromic

[^9]acid, and the solution was concentrated to $\sim 400 \mu \mathrm{~L}$ under reduced pressure. The resulting brown oil was purified via flash column chromatography (neutralized silica gel: diam. 2.5 cm , ht. 10 cm ; eluent: hexanes:acetone: NEt_{3} [97:2:1] to acetone:hexanes: NEt_{3} [95:4:1] to acetone:hexanes: NEt_{3} [92:7:1] to acetone:hexanes: NEt_{3} [84:15:1]) to provide an equal mixture of two diastereomeric tetracycles 79 and ent-2-epi-79 as a \tan foam ($65.7 \mathrm{mg}, 55 \%$ (two steps)). The corresponding enantiomers, tetracycles ent-79 and 2-epi-79 ($90 \mathrm{mg}, 54 \%$ (two steps), $(\sim 1: 1))$ were prepared using the same procedure and starting with α, β-unsaturated imines ent-63:2-ерi-63, ($\sim 1: 1)$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$, equal mixture of two diastereomers, 79:ent-2-epi-79, $\sim 1: 1$): 5.66-5.63 (m, 2H, C17-H, C17-H), 4.83 (app-t, $J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 21-\mathrm{H}$), 4.70 (app-t, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} 21-\mathrm{H}$), $3.46-3.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 19-\mathrm{H}, \mathrm{C} 19-\mathrm{H}\right), 3.11-$ $3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 2.99-2.94 (m, 1H, C8-H), 2.94-2.88 (m, 1H, C8-H), 2.74-2.69 (m, 2H, OCH ${ }_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.50-2.44 (m, $2 \mathrm{H}, \mathrm{C} 15-\mathrm{H}, \mathrm{C} 15-\mathrm{H}$), 2.21-2.15 (m, 4H, C7-H, C7$\mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2}$), 2.15-2.09 (m, 2H, $\mathrm{CH}_{2}, \mathrm{CH}_{2}$), 2.092.02 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2}$), 1.79-1.65 (m, $8 \mathrm{H}, \mathrm{C} 9-\mathrm{H}$, C9-H, $\mathrm{CH}_{2}, \mathrm{CH}_{2}$), 1.56-1.43 (m, 4H, $\mathrm{CH}_{2}, \mathrm{CH}_{2}$), 1.43-1.26 (m, 4H, C10-H, C10-H, CH2, CH2), 1.36 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$), $1.35(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, C1-H), 1.24-1.11 (m, 4H, $\mathrm{CH}_{2}, \mathrm{CH}_{2}$), 1.01 (br-s, $\left.18 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.99-0.83$ (m, $8 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2}$), $\left.\left.0.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)_{2}\right), 0.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)_{2}\right), 0.19$ $\left.\left.\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)_{2}\right), 0.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$, equal mixture of two diastereomers, 79:ent-2-epi-79, $\sim 1: 1$): 167.31, 167.16, 156.35 (br-s, 2 carbons), 155.48, 155.24, 139.62 (br-s, 2 carbons), 128.93 (br-s, 2 carbons), 118.02, 117.96, 105.25, 104.82, 61.89 (brs, 2 carbons), 53.97, 53.84, 47.27, 47.24, 46.95, $46.82,44.87,44.76,43.99,43.95,43.63$ (br-s, 2 carbons), $32.10,32.01,30.36$ (br-s, 2 carbons), $30.29,30.24,30.14,30.05,27.38$ (br-s, 2 carbons), 27.36, 27.34, 26.34, 26.32, 24.42, 24.38, 19.84, 19.67, 18.76, 18.73, $-4.17,-4.18,-4.20,-4.21$.

FTIR (thin film, equal mixture of two diastereomers, 79:ent-2-epi-79, ~1:1) $\mathrm{cm}^{-1}: 3397$ (br-w), 2928 (s), 2856 (m), 1758 (s, C=O), 1650 (m), 1408 (m), 1254 (m), 1212 (w), 865 (m), 841 (m), 782 (w).

HRMS (ESI):
calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 499.3351$, found: 499.3357.

TLC, $R f$:
(30% acetone in hexanes, neutralized plates) 79, 0.44 (UV, CAM) ent-2-epi-79, 0.51 (UV, CAM)

Pentacyclic amines (-)-81 and (+)-82:

To a solution of tetracycle 79 ($65.7 \mathrm{mg}, 0.132 \mathrm{mmol}, 1$ equiv, equal mixture of 79 and ent-2-epi-79) in THF (13 mL) at $23{ }^{\circ} \mathrm{C}$ was added triethylamine trihydrogen fluoride ($107 \mu \mathrm{~L}$, $0.660 \mathrm{mmol}, 5.00$ equiv). After 3 h , the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and the volatiles were removed under reduced pressure on a manifold and allowed to warm to ambient temperature (3 h). The crude reaction mixture was dissolved in ethanol $(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. A suspension of sodium borohydride ($10 \mathrm{mg}, 0.26 \mathrm{mmol}, 2.0$ equiv) in ethanol (2 mL) was added dropwise to the cold reaction mixture under an argon atmosphere. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for ten minutes, then excess hydride was quenched at $0{ }^{\circ} \mathrm{C}$ by the addition of ethanolic hydrochloric acid ($0.5 \mathrm{M}, 1.5 \mathrm{~mL}$) and the solution was vigorously stirred for five minutes. The reaction mixture was neutralized by the addition of triethylamine (2 mL), was stirred for five minutes, and the volatiles were removed under reduced pressure on a manifold (1 h). The resulting white solid was dissolved in ethyl acetate (50 mL), saturated aqueous sodium bicarbonate solution (25 mL) and water $(5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (neutralized silica gel: diam. 1 cm , ht. 10 cm ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:methanol [95:5] to ammonia saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:methanol [92:8]) afforded the readily separable pentacyclic amines $(-)-81\left(18.4 \mathrm{mg}, 36 \%,[\alpha]^{22}{ }_{\mathrm{D}}=-29\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$ and $(+)-82\left(17.3 \mathrm{mg}, 34 \%,[\alpha]_{\mathrm{D}}^{22}=+65(c\right.$ $\left.0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$).

The corresponding enantiomeric amines, (+)-81 and (-)-82 (20.0 mg and 25.0 mg , respectively, 66%), were obtained using the same procedure and starting with a mixture of ent-79 and 2-epi-79 (~1:1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
Pentacyclic amine (-)-81: 6.09 (br-s, 1H, C17-H), $3.85-3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 19-\mathrm{H}), 3.50(\mathrm{app}-\mathrm{q}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.44 (app-q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.02-2.91 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$),
2.79-2.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.42-2.33 ($\mathrm{m}, 1 \mathrm{H}$), $2.13(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (ddd, $J=14.0,6.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.71-1.61 (m, 2H), 1.56-1.46 (m, 2H), 1.44-1.31 (m, $3 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 6 \mathrm{H}), 0.98-0.88(\mathrm{~m}, 2 \mathrm{H}) 0.85(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H})$.

Pentacyclic amine (+)-82: 6.00 (br-s, 1H, C17-H), $3.70-3.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 19-\mathrm{H}), 3.56-3.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.26(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 3.07$ (app-q, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$), 3.04-2.96 (m, 1 H ,
$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.77 (app-q, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.07-1.67(\mathrm{~m}, 11 \mathrm{H}), 1.30-1.09(\mathrm{~m}$, $6 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Cl}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

FTIR (thin film) cm^{-1} :

HRMS (ESI):

HRMS (ESI):

TLC, Rf:
($10 \% \mathrm{MeOH}: \mathrm{NH}_{3}$ satd $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

Pentacyclic amine (-)-81: 157.4 (carbamate $\mathrm{C}=\mathrm{O}$), 137.5 (C16), 128.9 (C17), 80.6 (C20), 61.7 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.2,53.8,47.8,47.6,46.3,45.8$, 45.1, 42.1, 40.6, 40.1, 38.1, 33.8, 31.6, 29.4, 27.1, 26.9, 24.0, 23.4 .

Pentacyclic amine (+)-82: 157.5 (carbamate $\mathrm{C}=\mathrm{O}$), 138.0 (C16), 128.9 (C17), 81.1 (C20), 61.9 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 48.6,48.0,47.3,46.2$, 44.0 (br), 40.9, 40.6, 40.0 (br), 37.6, 33.9, 29.7, 28.2, 27.3, 27.1, 21.1, 20.6.

Pentacyclic amine (-)-81: 3430 (br-s, OH), 2926 (s), 2855 (m), 1748 (s), 1662 (m), 1481 (w), 1447 (w), 1413 (m), 1279 (w), 1101 (m), 735 (m).

Pentacyclic amine (+)-82: 3424 (br-s, OH), 2926 (s), 2856 (m), 1743 (s), 1666 (w), 1482 (w), 1446 (w), 1416 (m), 1280 (w), 1101 (w), 734 (m).

Pentacyclic amine (-)-81: calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 387.2642$, found: 387.2635.

Pentacyclic amine (+)-82: calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 387.2642$, found: 387.2636.
$(-)-\mathbf{8 1}, 0.63\left(\mathrm{KMnO}_{4}\right)$
$(+)-\mathbf{8 2}, 0.26\left(\mathrm{KMnO}_{4}\right)$

Carbamate (-)-83:

A solution of sodium carbonate ($21 \mathrm{mg}, 0.19 \mathrm{mmol}, 10$ equiv) in water ($475 \mu \mathrm{~L}$) was added to a solution of amine (-)-81 ($7.5 \mathrm{mg}, 0.019 \mathrm{mmol}, 1$ equiv) in dichloromethane ($600 \mu \mathrm{~L}$) at $23{ }^{\circ} \mathrm{C}$. The heterogeneous mixture was stirred vigorously and cooled to $0{ }^{\circ} \mathrm{C}$. Benzylchloroformate ($8.2 \mu \mathrm{~L}, 0.057 \mathrm{mmol}, 3.0$ equiv) was added dropwise and the resulting mixture was warmed to room temperature for 15 minutes. Two additional portions of benzylchloroformate ($8.2 \mu \mathrm{~L}, 0.057 \mathrm{mmol}, 3.0$ equiv each) were added over 30 minutes, followed by dilution of the reaction mixture with dichloromethane (10 mL) and saturated aqueous sodium bicarbonate solution (5 mL). The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (silica gel: diam. 1 cm , ht. 2.5 cm ; eluent: hexanes:acetone [90:10] to hexanes:acetone [80:20] to hexanes:acetone [75:25] to hexanes:acetone [70:30]) provided the carbamate $(-)-83\left([\alpha]^{22}{ }_{D}=-62\left(c 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$ as a clear film ($6.6 \mathrm{mg}, 65 \%$).

The corresponding enantiomer, carbamate (+) $\mathbf{- 8 3}(17.0 \mathrm{mg}, 63 \%$), was obtained using the same procedure and starting with amine $(+)-\mathbf{8 1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
(C8), 33.0, 30.2 (C3), 29.6, 27.1, 27.0, 20.7 (C1), 17.8 (C4).

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC, $R f$:
(50\% acetone:hexanes)

3427 (br-s, OH), 2928 (s), 2855 (w), 1733 (s), 1688 (s), 1415 (s), 1316 (s), 1093 (s).
calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NaN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 543.2829$, found: 543.2808.

81, $<0.05\left(\mathrm{KMnO}_{4}\right)$
83, $0.31\left(\mathrm{KMnO}_{4}\right)$

NOESY correlations ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): Additional data: H2-H3, H3-H4, H4-H5, H4-H19, H3-H5, H5-H6, H6-H7a, H6-H21a, H7a-H8, H7bH9, H9-H19, H17-H19, H19-H4a,b. Key correlations are shown in bold.

Carbamate (+)-2-epi-83

A solution of sodium carbonate ($62 \mathrm{mg}, 0.58 \mathrm{mmol}, 10$ equiv) in water $(1 \mathrm{~mL})$ was added to a solution of pentacyclic amine (+)-82 ($22.5 .0 \mathrm{mg}, 0.0580 \mathrm{mmol}, 1$ equiv) in dichloromethane $(1.2 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. The heterogeneous mixture was stirred vigorously and cooled to $0{ }^{\circ} \mathrm{C}$. Benzylchloroformate ($25 \mu \mathrm{~L}, 0.18 \mathrm{mmol}, 3.0$ equiv) was added dropwise and the resulting solution was warmed to room temperature for 15 minutes. The reaction mixture was diluted with dichloromethane (15 mL) and saturated aqueous sodium bicarbonate solution $(10 \mathrm{~mL})$, and water $(3 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with dichloromethane (4 $\times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (silica gel: diam. 1 cm , ht. 7.5 cm ; eluent: hexanes:acetone [90:10] to hexanes:acetone [80:20] to hexanes:acetone [75:25] to hexanes:acetone [70:30]) provided the carbamate $(+)-2-$ epi- $83\left([\alpha]^{22}{ }_{\mathrm{D}}=+63\right.$ (c 0.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)) as a clear film ($22.4 \mathrm{mg}, 74 \%$).

The corresponding enantiomer, carbamate (-)-2-epi-83 (18.2 mg, 54\%), was obtained using the same procedure and starting with amine (-)-82.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	7.28 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.08 (app-t, $J=8.1$ $\mathrm{Hz}, \mathrm{ArH}$), 5.69 (br-s, 1H, C17-H), 5.21 (d, $J=12.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 5.11(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 4.13$ (app-q, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-$ H), 4.05 (app-q, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$), 3.53-3.43 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.96 (app-q, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.85-2.80 (m, $1 \mathrm{H}, \mathrm{C} 19-\mathrm{H}$), 2.73-2.67 (m, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.30-2.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 15-\mathrm{H}$, C5-H), 2.01-1.97 (m, 3H, C8-H, C10-H), 1.87-1.85 (m, 2H, C9-H, C4-H), 1.79 (br-d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$, C7-H), 1.68-1.61 (m, 3H, C3-H), 1.58-1.53 (m, 2H, C4-H, C21-H), 1.38 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 21-\mathrm{H}$), 1.27-1.24 (m, 2H), 1.16-1.14 (m, 2H), 1.15-1.13 (m, $3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 1.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 0.86-0.85(\mathrm{~m}, 2 \mathrm{H}$, C7-H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	157.3 (carbamate- $\mathrm{C}=\mathrm{O}$), $156.4\left(\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right)$, $139.2(\mathrm{Cl} 6), 138.3\left(\mathrm{HC=}=\mathrm{CCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 129.1$ (Ar-C), 128.9 (Ar-C), 128.7 ($\mathrm{Ar}-\mathrm{C}$), 123.3 (br, C17), 81.3 (C20), $67.1\left(\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 62.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 49.2$ (C2), 49.1 (C9), 48.8 (C6), 47.6 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.9(\mathrm{Cl} 5), 43.5,40.9$ (C10), 39.1

(C19), 34.2 (C5), 33.6 (C8), 32.4 (C7), 29.8, 29.7, 28.9 (C3), 27.1, 27.0, 20.1, 18.9 (C4).

FTIR (thin film) cm^{-1} :
3423 (br-s, OH), 2927 (s), 2855 (w), 1734 (s), 1691 (s), 1407 (m), 1297 (m), 1095 (w), 1039 (w).

HRMS (ESI):
calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NaN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 543.2829, found: 543.2817.

TLC, $R f$:
82, $<0.05\left(\mathrm{KMnO}_{4}\right)$
(50\% acetone:hexanes)
2-epi-83, $0.31\left(\mathrm{KMnO}_{4}\right)$
NOESY correlations ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): Additional data: H1-H6, H5-H6, H9-H19, H17Hb, H17-H19, H19-H4, H15-H9, H4-H2, H4-H6.
Key correlations are shown in bold.

(-)- N -Cbz-Galbulimima alkaloid 13 (84):

p-Toluenesulfonic acid monohydrate ($12 \mathrm{mg}, 60 \mu \mathrm{~mol}, 4.0$ equiv) and IBX ($47 \mathrm{mg}, 0.16$ $\mathrm{mmol}, 11$ equiv) were added to a solution of vinyl oxazolidinone (-)-83 ($8.0 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1$ equiv) in benzene- $d_{6}(300 \mu \mathrm{~L})$ and DMSO- $d_{6}{ }^{18}(400 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$. The resulting suspension was sonicated (1.5 h) until it became homogeneous, then heated to $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectral analysis of the reaction mixture was used to monitor conversion to product. After 10 h , the solution was diluted with ethyl acetate (10 mL), saturated aqueous sodium bicarbonate solution (5 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow residue via flash column chromatography (silica gel: diam. 0.5 cm , ht. 3.5 cm ; eluent: hexanes:acetone [85:15] to hexanes:acetone [70:30]) provided enone $(-)-84\left(5.5 \mathrm{mg}, 80 \%,\left([\alpha]_{\mathrm{D}}^{22}=-71\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)\right.$.

The corresponding enantiomer, enone (+)-84 ($3.5 \mathrm{mg}, 67 \%$) was obtained using the same procedure and starting with vinyl oxazolidinone (+)-83.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	7.32 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.20-7.15$ (m, 2H, ArH $7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.99(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 17-\mathrm{H}$), 5.23 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right)$, 4.69 (app-q, $J=8.5 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}$, C2-H), 2.67-2.52 (m, 2H), 1.97-1.90(m, 1H), 1.75$1.64(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 3 \mathrm{H})$, 1.21-1.13 (m, 2H), 1.12-1.04 (m, 5H, C1-H), 1.04$0.85(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.61$ (app-dq, $J=12.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}$) .
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	199.0 (C16), 172.5 (C19), 155.8 ($\left.\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right)$, 138.1 ($\left.\mathrm{HC}=\mathrm{CCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 129.1$ ($\mathrm{Ar}-\mathrm{C}$), 128.7 (Ar-C), 128.5 (Ar-C), 119.3 (C17), 81.1 (C20), 67.5 ($\left.\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 56.7,52.6,47.4,47.3,46.2,45.2$, 36.1, 35.7, 31.7, 30.3, 30.2, 26.9, 26.5, 25.9, 20.4, 19.3.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 3428 \text { (br-s, OH), } 2924 \text { (s), } 2852 \text { (m), } 1687 \text { (m), } \\ & 1666 \text { (s), } 1412 \text { (w), } 1314 \text { (w). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 450.2639$, found: 450.2639 .

[^10]TLC, $R f$:
(50% acetone:hexanes) $\quad \mathbf{8 3}, 0.31\left(\mathrm{KMnO}_{4}\right)$
84, 0.57 (UV, CAM)

(+)-N-Cbz-2-epi-Galbulimima alkaloid 13 (84):

p-Toluenesulfonic acid monohydrate ($8.0 \mathrm{mg}, 42 \mu \mathrm{~mol}, 4.6$ equiv) and IBX ($31 \mathrm{mg}, 0.11$ $\mathrm{mmol}, 12$ equiv) were added to a solution of vinyl oxazolidinone (+)-2-epi-83 ($4.8 \mathrm{mg}, 9.2 \mu \mathrm{~mol}$, 1 equiv) in benzene- $d_{6}(300 \mu \mathrm{~L})$ and DMSO- $d_{6}{ }^{19}(450 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$. The suspension was sonicated (1 h) until it became homogeneous, then heated to $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture was used to monitor conversion to product. After 10 h , the solution was diluted with ethyl acetate (8 mL), saturated aqueous sodium bicarbonate solution (8 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3×8 mL). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow residue via flash column chromatography (silica gel: diam. $1 \mathrm{~cm}, \mathrm{ht} .2 \mathrm{~cm}$; eluent: hexanes:acetone [85:15] to hexanes:acetone [80:20]) provided enone (+)-2-epi-84 (2.3 $\mathrm{mg}, 56 \%,\left([\alpha]^{22}{ }_{\mathrm{D}}=+70\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$.

The corresponding enantiomer, enone (-)-2-epi-84 ($4.8 \mathrm{mg}, 59 \%$) was obtained using the same procedure and starting with vinyl oxazolidinone (-)-2-epi-83.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	7.30-7.27 (m, 2H, ArH), 7.15-7.12 (m, 2H, ArH), 7.09-7.05 (m, 1H, ArH), 5.99-5.96 (m, 1H, C17-H), 5.18 (d, $\left.J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 5.14$ (d, $J=$ $\left.12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 4.50($ app-q, $J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}$), 3.71-3.64 (m, 1H, C2-H), 2.64-2.59 (m, $1 \mathrm{H}), 2.30(\mathrm{dt}, J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.36-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 1.18-$ $1.04(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.86(\mathrm{~m}, 2 \mathrm{H})$, $0.74-0,65(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	199.0 (C16), 173.3 (C19), 156.6 ($\left.\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right)$, $138.1\left(\mathrm{HC=}=\mathrm{CCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{N}\right), 129.1$ ($\mathrm{Ar}-\mathrm{C}$), 128.7 (Ar-C), 128.5 (Ar-C), 119.6 (C17), 82.0 (C20), 67.3 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.4,52.4,49.1,48.5,47.4,43.1$, $39.3,35.6,31.8,30.6,29.9,27.0,26.5,26.0,21.1$, 21.0.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 3423 \text { (br-s, OH), } 2929 \text { (m), } 2857 \text { (w), } 1687 \text { (m), } \\ & 1662 \text { (s), } 1300 \text { (m), } 1154 \text { (w). } \end{aligned}$

[^11]HRMS (ESI):

TLC, $R f$:
(50\% acetone:hexanes)
calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 450.2639$, found: 450.2644 .

2-epi-83, $0.31\left(\mathrm{KMnO}_{4}\right)$
2-epi-84, 0.57 (UV, CAM)

(-)-Galbulimima alkaloid 13 (2): ${ }^{20}$

N-Cbz enone (-)-84 ($2.7 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1$ equiv) was azeotropically dried from toluene (3 $\times 1 \mathrm{~mL}$), was dissolved in dichloromethane (1.0 mL), and was cooled to $0{ }^{\circ} \mathrm{C}$. Trimethylsilyliodide (TMSI, $1.2 \mu \mathrm{~L}, 9.0 \mu \mathrm{~mol}, 1.5$ equiv) was added to the cooled solution, and the resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$. Additional portions of TMSI were added at 20 minute intervals until complete consumption of (-)-84 was observed by TLC analysis (70 min). The reaction mixture on completion was a cloudy yellow solution, with a brown residue. Excess silylated products were quenched at $0^{\circ} \mathrm{C}$ by the addition of aqueous hydrochloric acid solution $(1 \mathrm{~N}, 1.5 \mathrm{~mL})$ and the mixture was allowed to warm to ambient temperature. The reaction mixture was diluted with hexanes (10 mL) and aqueous hydrochloric acid solution ($1 \mathrm{~N}, 2 \mathrm{~mL}$) and the layers were separated. The organic layer was extracted with aqueous hydrochloric acid solution ($1 \mathrm{~N}, 4 \mathrm{~mL}$). The combined acidic aqueous layers were washed sequentially with hexanes ($2 \times 10 \mathrm{~mL}$), dichloromethane (10 mL), and hexanes (10 mL). The aqueous layer was then basified to pH 13 with aqueous sodium hydroxide solution ($1 \mathrm{~N}, 10 \mathrm{~mL}$). The resulting solution was stirred at ambient temperature for 1 h . The aqueous solution was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed sequentially with water (18 mL) and brine (20 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to provide (-)-galbulimima alkaloid $13\left(2,[\alpha]^{22}{ }_{D}=\right.$ $\left.-34\left(c 0.045, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{21}\right)$ as a white film ($1.7 \mathrm{mg}, 89 \%$).

The corresponding enantiomer, $(+)$-galbulimima alkaloid $13\left(2,1.4 \mathrm{mg}, 58 \%,[\alpha]^{22}{ }_{\mathrm{D}}=\right.$ $\left.+34\left(c 0.090, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{21}\right)$, was obtained using the same procedure and starting with $N-\mathrm{Cbz}$ amine ent-84.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$:

$$
\begin{aligned}
& 6.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 17-\mathrm{H}), 3.28(\mathrm{dt}, J=11.4 \text {, } \\
& 2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 2.88(\text { app-t }, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6- \\
& \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.15 \\
& \text { (app-qd, } J=6.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}, \\
& \mathrm{OH}), 1.91(\operatorname{app-t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 1.84-1.81 \\
& (\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 1.78(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 15- \\
& \text { H), } 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.55
\end{aligned}
$$

[^12](app-dq, $J=13.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{Ha}$), 1.53-1.47 (m, 1H), 1.40 (ddd, $J=10.8,5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 21-$ Ha), 1.26 (dd, $J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 21-\mathrm{Hb}), 1.23-$ $0.90(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C} 10-\mathrm{H}, \mathrm{C} 7-\mathrm{Hb}), 0.77(\mathrm{~m}, 1 \mathrm{H}), 0.75$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

HRMS (ESI):
199.4 (C16), 178.9 (C19), 119.2 (C17), 79.7 (C20), 55.4 (C6), 53.3 (C15), 53.2 (C2), 51.2 (C9), 48.2 (C21), 47.6 (C10), 46.6 (C5), 41.0 (C7), 33.1 (C8), $31.9,30.6,27.3$ (C3 or C 4$), 26.7,26.1,25.0$ (C3 or C4), 23.6 (C1).

3403 (br-s, OH), 2921 (s), 2851 (m), 1708 (w), 1646 (s), 1447 (m), 1261 (m). (Literature values: $3406,2929,2854,1705,1646,1446) .{ }^{20}$
calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{1} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 316.2271$, found: 316.2280 .

NOESY correlations ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): Additional data: H1-H2, H2-H6, H5-H6, H5H21b, H6-H7a, H6-H21b, H7a-H8, H7a-H6, H8H2 la, H9-H15. Key correlations are shown in bold.

Comparison of our assignments for (-)-galbulimima alkaloid 13 (2) with prior assignments for (\pm)-

 2:| Assignment | $\begin{gathered} \text { Mander's report }^{20} \\ (\pm)-\mathrm{GB} 13(\mathbf{2}) \\ \left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$ | This report $(-)$-GB 13 (2) $\left({ }^{\prime} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ | This report $(-)$-GB $13(2)$ $\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ | This report $(-)-\mathrm{GB} 13(2)$ ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| C1 | $0.89,(\mathrm{~d}, J=6.2 \mathrm{~Hz})$ | $0.89,(\mathrm{~d}, J=6.1 \mathrm{~Hz})$ | $0.75,(\mathrm{~d}, J=6.1 \mathrm{~Hz})$ | 23.6 |
| C2 | | | $\begin{gathered} 2.15,(\text { app-qd, } J=6.1,2.3 \\ \mathrm{Hz}) \end{gathered}$ | 53.2 |
| C3,C4 | | | $\begin{aligned} & 2.72-2.66(\mathrm{~m}) ; 2.60-2.55 \\ & (\mathrm{~m}) \\ & \hline \end{aligned}$ | 27.3, 25.0 |
| C5 | | | 1.91 (app-t, $J=4.4 \mathrm{~Hz}$) | 46.6 |
| C6 | $3.34,(\mathrm{t}, J=5.1 \mathrm{~Hz})$ | 3.34, (t, $J=5.1 \mathrm{~Hz}$) | 2.88 , (app-t, $J=5.1 \mathrm{~Hz}$) | 55.4 |
| C7 | | | $\begin{gathered} 1.55(\mathrm{app}-\mathrm{dq}, J=13.9,2.9) ; \\ 1.02(\mathrm{~m}) \end{gathered}$ | 41.0 |
| C8 | | | 1.84-1.81 (m) | 33.1 |
| C9 | $\begin{gathered} \hline 3.47,(\mathrm{dt}, J=11.3,2.2 \\ \mathrm{Hz}) \\ \hline \end{gathered}$ | 3.47 , (dt, $J=11.2,2.1 \mathrm{~Hz})$ | 3.28 , (dt, $J=11.4,2.3 \mathrm{~Hz})$ | 51.2 |
| C10 | | | $\sim 1.13, \mathrm{~m}$ | 47.6 |
| C11-C14 | | | | 31.9, 30.6, 26.7, 26.1 |
| C15 | | | $1.78, \mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}$ | 53.3 |
| C16 | - | - | - | 199.4 |
| C17 | 5.92 , (d, $J=2.0 \mathrm{~Hz}$) | 5.93 (d, J=2.1 Hz) | 6.07 , (d; $J=2.2 \mathrm{~Hz})$ | 119.2 |
| C19 | - | - | - | 178.9 |
| C20 | - | - | - | 79.7 |
| C21 | | | $\begin{gathered} 1.40(\mathrm{ddd}, J=10.8,5.6,2.1 \\ \mathrm{Hz}) ; 1.26(\mathrm{dd}, J=5.6,2.4 \\ \mathrm{Hz}) \end{gathered}$ | 48.2 |

(+)-2-epi-16-Oxohimgaline (2-epi-21):

$N-\mathrm{Cbz}$ enone (+)-2-epi-84 ($2.1 \mathrm{mg}, 4.7 \mu \mathrm{~mol}, 1$ equiv) was azeotropically dried from toluene ($3 \times 1 \mathrm{~mL}$), was dissolved in dichloromethane $(800 \mu \mathrm{~L})$, and was cooled to $0{ }^{\circ} \mathrm{C}$. Trimethylsilyliodide (TMSI, $1.5 \mu \mathrm{~L}, 11 \mu \mathrm{~mol}, 2.2$ equiv) was added to the cooled solution, and the resulting yellow solution was stirred at $0^{\circ} \mathrm{C}$. Additional portions of TMSI were added at 20 minute intervals until complete consumption of (+)-2-epi-84 was observed by TLC analysis (50 min). The reaction mixture on completion was a cloudy yellow solution, with a brown residue. Excess silylated products were quenched at $0^{\circ} \mathrm{C}$ by the addition of aqueous hydrochloric acid solution ($1 \mathrm{~N}, 1.5 \mathrm{~mL}$) and the reaction mixture was allowed to warm to ambient temperature. The reaction mixture was diluted with hexanes (10 mL) and aqueous hydrochloric acid solution $(1 \mathrm{~N}, 3 \mathrm{~mL})$ and the layers were separated. The organic layer was extracted with aqueous hydrochloric acid solution ($1 \mathrm{~N}, 4 \mathrm{~mL}$). The combined acidic aqueous layers were washed sequentially with hexanes $(2 \times 10 \mathrm{~mL})$, dichloromethane (10 mL), and hexanes (10 mL). The aqueous layer was then basified to pH 13 with aqueous sodium hydroxide solution ($1 \mathrm{~N}, 11 \mathrm{~mL}$). The resulting solution was stirred at ambient temperature for 1 h . The aqueous solution was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed sequentially with water (18 mL) and brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to provide (+)-2-epi-oxohimgaline $\left((+)\right.$-2-epi-21, $\left.[\alpha]^{22}=+24\left(c 0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$ as a white film ($1.4 \mathrm{mg}, 93 \%$).

The corresponding enantiomer, (-)-2-epi-oxohimgaline ((-)-2-epi-21, $2.8 \mathrm{mg}, 82 \%$, $\left.[\alpha]^{22}{ }_{\mathrm{D}}=-24\left(c 0.085, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$, was obtained using the same procedure and starting with $\mathrm{N}-\mathrm{Cbz}$ enone (-)-2-epi-84.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

$$
\begin{aligned}
& 3.08-3.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 6-\mathrm{H}), 3.02(\mathrm{~d}, J=13.5 \\
& \mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 17-\mathrm{Ha}), 2.55(\mathrm{br}-\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 17- \\
& \mathrm{Hb}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 9-\mathrm{H}, \mathrm{OH}), 1.91-1.88(\mathrm{~m}, \\
& 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}, \\
& \mathrm{C} 15-\mathrm{H}, \mathrm{C} 21-\mathrm{Ha}), 1.68-1.48(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, \mathrm{C} 21-\mathrm{Hb}, \\
& \mathrm{C} 7-\mathrm{Ha}), 1.43-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{br}-\mathrm{d}, J=12.7 \mathrm{~Hz}, \\
& 1 \mathrm{H}, \mathrm{C} 7-\mathrm{Hb}), 1.14(\mathrm{qd}, J=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 10- \\
& \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 1.02-0.89(\mathrm{~m}, \\
& 3 \mathrm{H}), 0.79(\mathrm{dd}, J=13.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.73-0.63(\mathrm{~m}, \\
& 1 \mathrm{H}) . \\
& 212.3(\mathrm{C} 16), 87.4(\mathrm{C} 20), 75.7(\mathrm{C} 19), 60.5(\mathrm{C} 9), \\
& 57.3(\mathrm{C} 6), 55.0(\mathrm{C} 5), 52.8(\mathrm{C} 15), 50.6(\mathrm{C} 2), 47.9 \\
& (\mathrm{C} 21), 44.4(\mathrm{C} 10), 40.9(\mathrm{C} 17), 37.1(\mathrm{C} 7), 36.2(\mathrm{C} 8), \\
& 32.5,30.3,26.4,25.7,24.1,22.4,20.7(\mathrm{C} 1) .
\end{aligned}
$$

FTIR (thin film) cm^{-1} :

HRMS (ESI):

3302 (br-m, OH), 2929 (s), 2853 (w), 1706 (m, $\mathrm{C}=\mathrm{O}$), 1314 (w), 1300 (w), 1182 (w).
calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{1} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 316.2271$, found: 316.2270.

NOESY correlations ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): H6-H7b, H8-H7a, H8-H7b, H9-H15, H5-H21b, H5-H7b, H10-H21a. Key correlations are shown in bold.

(+)-2-epi-16-oxohimgaline
(2-epi-21)

(-)-Himbadine (4):

A solution of crude (-)-galbulimima alkaloid $13(1.4 \mathrm{mg}, 4.4 \mathrm{mmol}, 1$ equiv) in acetonitrile (0.75 mL) was treated sequentially with formaldehyde, $37 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL}, 0.60$ $\mathrm{mmol}, 50$ equiv) and sodium triacetoxyborohydride ($19 \mathrm{mg}, 88 \mathrm{mmol}, 20$ equiv) at $23{ }^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 1 h , a mixture of saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution ($1: 1,8 \mathrm{~mL}$) was added, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 $\times 5 \mathrm{~mL}$). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification via flash column chromatography (silica gel: diam. 0.5 cm , ht. 5.5 cm ; eluent: 1% NEt_{3} in [$1 \%{ }^{i}$ propanol in dichloromethane] to $1 \% \mathrm{NEt}_{3}$ in [1% methanol in dichloromethane] to $1 \% \mathrm{NEt}_{3}$ in [2% methanol in dichloromethane] to $1 \% \mathrm{NEt}_{3}$ in [4% methanol in dichloromethane] afforded (-)-himbadine ($4,0.7 \mathrm{mg}, 50 \%$, two steps) $\left([\alpha]^{22}{ }_{\mathrm{D}}=-47\left(c 0.045, \mathrm{CHCl}_{3}\right)\right.$). Complete assignment was possible with the aid of additional information from gCOSY, HSQC, HMBC, and ROESY.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$6.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{17} \mathrm{H}\right), 3.18-3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}\right), 2.70-$ 2.67 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{HH}^{\prime}$), 2.49-2.46 (m, 1H, C4 ${ }^{2} \mathrm{HH}^{\prime}$), 2.21 (app-t, $J=9.3 \mathrm{~Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}$), 2.03-1.96 (br-s, 3H, $\mathrm{C}_{5} \mathbf{H}, \mathrm{~N}^{2} \mathrm{CH}_{3}, \mathrm{C}_{7} \mathbf{H H}$ '), 1.82-1.77 (m, 2H, $\mathrm{C}_{15} \mathbf{H}, \mathrm{C}_{8} \mathrm{H}$), 1.74-1.71 (m, 1H, CH2), 1.67-1.64 (m, $\left.2 \mathrm{H}, \mathrm{C}_{11} \mathbf{H H}, \mathrm{C}_{2} \mathrm{H}\right), 1.57-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-$ $1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 1.25-1.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right)$, 1.21-0.96 (m, 7H, C7 $\mathrm{HH}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathbf{H}^{\prime}$, $\left.\mathrm{CH}_{2}\right), 0.86\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 0.85-0.78(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & 199.7\left(\mathbf{C}_{16}\right), 179.5\left(\mathbf{C}_{19}\right), 119.2\left(\mathbf{C}_{17}\right), 80.3\left(\mathbf{C}_{20}\right), \\ & 63.3\left(\mathbf{C}_{6}\right), 59.8\left(\mathbf{C}_{2}\right), 53.1\left(\mathbf{C}_{15}\right), 49.7\left(\mathbf{C}_{9}\right), 48.7 \\ & \left(\mathbf{C}_{21}\right), 48.1\left(\mathbf{C}_{5}\right), 47.5\left(\mathbf{C}_{10}\right), 40.0\left(\mathrm{~N}_{3} \mathrm{CH}_{3}\right), 34.7 \\ & \left(\mathbf{C}_{7}\right), 33.2\left(\mathbf{C}_{8}\right), 32.2\left(\mathbf{C}_{11}\right), 30.9\left(\mathbf{C H}_{2}\right), 27.2\left(\mathbf{C}_{3}\right), \\ & 26.6\left(\mathbf{C H}_{2}\right), 26.1\left(\mathbf{C H}_{2}\right), 24.8\left(\mathbf{C}_{4}\right), 22.9\left(\mathbf{C}_{1}\right) . \end{aligned}$
FTIR (neat) cm^{-1} :	$\begin{aligned} & 3407 \text { (br-s, OH), } 2923 \text { (s), } 2853 \text { (m), } 2774 \text { (w), } \\ & 1737 \text { (w), } 1648 \text { (s), } 1447 \text { (w). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 330.2428$, found: 330.2425 .

TLC ($1 \% \mathrm{NEt}_{3}$ in $\left[4 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$) $R f 0.25$ (UV, CAM).
Comparison of our assignments for (-)-himbadine (4) with literature:

Assignment	Isolation paper 2$(-)$-himbadine$(4)$$\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right.$,$\left.\mathrm{CDCl}_{3}\right)$	This report (-)-himbadine (4) (${ }^{1} \mathrm{H}, 500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$)	This report $(-)$-himbadine (4) $\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\begin{gathered} \text { This report } \\ \text { (-)-himbadine (4) } \\ \left({ }^{13} \mathrm{C}, 125 \mathrm{MHz},\right. \\ \left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{gathered}$
C_{17}	5.95 (d, 1H)	5.91 (d, 1H)	6.06 (s, 1H)	119.2
C_{9}	-	-	3.18-3.15 (m, 1H)	49.7
C_{3}	-	-	2.70-2.67 (m, 1H)	27.2
C_{4}	-	-	2.49-2.46 (m, 1H)	24.8
C_{6}	${ }^{-}$	-	$\begin{array}{r} 2.21(\text { app-t, } J=9.3 \\ \mathrm{Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}) \\ \hline \end{array}$	63.3
$\begin{gathered} \mathrm{C}_{5}, \\ \mathrm{~N}-\mathrm{CH}_{3}, \mathrm{C}_{7} \end{gathered}$	$\begin{gathered} 2.2(\mathrm{br}-\mathrm{s}, 3 \mathrm{H}, \mathrm{~N}- \\ \left.\mathrm{CH}_{3}\right) \end{gathered}$	$\begin{gathered} 2.17(\mathrm{br}-\mathrm{s}, \\ \left.3 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{3}\right) \end{gathered}$	2.03-1.96 (br-s, 3H)	$\begin{gathered} 48.1(\mathrm{C} 5), 40.0(\mathrm{~N}- \\ \left.\mathrm{CH}_{3}\right), 34.7(\mathrm{C} 7) \end{gathered}$
$\mathrm{C}_{15}, \mathrm{C}_{8}$	-	-	$1.82-1.77$ (m, 2H)	$\begin{gathered} 53.1 \text { (C15), } 33.2 \\ \text { (C8) } \\ \hline \end{gathered}$
CH_{2}	-	-	1.74-1.71 (m, 1H)	26.6 (CH_{2})
$\mathrm{C}_{11}, \mathrm{C}_{2}$	-	-	$1.67-1.64$ (m, 2H)	$\begin{gathered} 32.3 \text { (C11), } 59.8 \\ (\mathrm{C} 2) \\ \hline \end{gathered}$
CH_{2}		-	1.57-1.49 (m, 2H)	$30.9\left(\mathrm{CH}_{2}\right)$
C_{21}	-	-	1.36-1.32 (m, 1H)	48.7
$\mathrm{C}_{21}{ }^{\prime}$	-	-	$1.25-1.23(\mathrm{~m}, 1 \mathrm{H})$	48.7
$\begin{gathered} \mathrm{C}_{7}, \mathrm{C}_{3}, \mathrm{C}_{4}, \\ \mathrm{C}_{10}, \mathrm{CH}_{2} \end{gathered}$	-	-	$1.21-0.96$ (m, 7H)	$\begin{gathered} 34.7(\mathrm{C} 7), 27.2 \\ (\mathrm{C} 2), 23.8(\mathrm{C} 4), \\ 47.5\left(\mathrm{C}^{2} 0\right), 26.1 \\ \left(\mathrm{CH}_{2}\right) \\ \hline \end{gathered}$
C_{1}	0.93 (d, 3H)	0.92 (d, 3H)	$\begin{gathered} 0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	22.9
C_{11}	-	-	0.85-0.78 (m, 1H)	32.2

${ }^{22}$ Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem., 1967, 20, 1473.

(-)-Himgaline (3):

A solution of (-)-galbulimima alkaloid $13(1.4 \mathrm{mg}, 4.4 \mathrm{mmol}, 1$ equiv) in acetonitrile $(0.75 \mathrm{~mL})$ was treated sequentially with acetic acid ($14 \mathrm{~mL}, 0.24 \mathrm{mmol}, 50$ equiv) and sodium triacetoxyborohydride ($19 \mathrm{mg}, 88 \mathrm{mmol}, 20$ equiv) at $23^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 30 min , aqueous potassium carbonate solution ($1 \mathrm{M}, 2 \mathrm{~mL}$) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 $\times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification via flash column chromatography (silica gel: diam. 0.5 cm, ht. 1 cm ; eluent: 10% methanol in dichloromethane to $3 \% \mathrm{NH}_{3}$ in $[10 \%$ methanol in dichloromethane] afforded (-)-himgaline (3, $1.1 \mathrm{mg}, 73 \%$) ($[\alpha]^{22}{ }_{\mathrm{D}}=-82$ (c 0.11 , CHCl_{3})). Complete assignment was possible with the aid of additional information from gCOSY , HSQC, HMBC, and ROESY.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$:	3.20-3.24 (m, 1H, C 16 H), 3.07 (br-s, $1 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}$), 2.96 (br-s, $1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}$), $2.40(\mathrm{dd}, J=12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{17} \mathbf{H}$), $2.16\left(\mathrm{br}-\mathrm{d}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 2.12-2.08(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{14} \mathbf{H H}^{\prime}, \mathrm{C}_{8} \mathbf{H}$), 2.03-1.99 (m, 2H, $\left.\mathrm{C}_{5} \mathbf{H}, \mathrm{C}_{4} \mathbf{H H}^{\prime}\right)$, 1.95-1.85 (m, 2H, C ${ }_{7} \mathrm{H}, \mathrm{C}_{17} \mathrm{H}$), 1.81 (br-d, 1 H , $\left.\mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 1.77-1.68$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}$, $\mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{9} \mathbf{H}$), 1.61-1.54 (m, 3H, $\mathrm{C}_{3} \mathbf{H H}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}$, $\mathrm{C}_{7} \mathrm{H}$), $1.50-1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{HH}^{\prime}\right), 1.28(\mathrm{~d}, J=6.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 1.20-1.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right)$, 1.03-1.01 (m, 1H, $\left.\mathrm{C}_{15} \mathbf{H}\right), 0.91-0.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{10} \mathbf{H}\right.$, $\left.\mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{14} \mathrm{HH}^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$):	$\begin{aligned} & 86.8\left(4^{\circ}\right), 74.2\left(4^{\circ}\right), 72.4\left(\mathbf{C}_{16}\right), 68.5\left(\mathbf{C}_{6}\right), 61.5\left(\mathbf{C}_{2}\right), \\ & 60.0 .55 .0\left(\mathbf{C}_{5}\right), 48.0\left(\mathbf{C}_{21}\right), 47.6\left(\mathbf{C}_{15}\right), 42.7\left(\mathbf{C}_{10}\right), \\ & 37.3\left(\mathbf{C}_{17}\right), 36.8\left(\mathbf{C}_{7}\right), 35.9\left(\mathbf{C}_{8}\right), 32.3\left(\mathbf{C}_{11}\right), 29.9 \\ & \left(\mathbf{C}_{1}\right), 28.8\left(\mathbf{C}_{14}\right), 27.1\left(\mathbf{C}_{3}\right), 26.5\left(\mathbf{C}_{12}\right), 25.9\left(\mathbf{C}_{13}\right), \\ & 25.4\left(\mathbf{C}_{4}\right) . \end{aligned}$
FTIR (neat) cm^{-1} :	$\begin{aligned} & 3340 \text { (br-s, OH), } 2919 \text { (s), } 2850 \text { (m), } 1738 \text { (w), } \\ & 1448 \text { (w), } 1261 \text { (w). } \end{aligned}$
HRMS (ESI):	calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 318.2428$, found: 318.2438.

TLC $\left(3 \% \mathrm{NH}_{3}\right.$ in $\left[10 \% \mathrm{MeOH}\right.$ in $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]\right) R f 0.1$ (CAM).

Comparison of our assignments for (-)-himgaline (3) with literature:

Assignment	Chackalamannil's report ${ }^{23}$ $(-)$-himgaline (3) $\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This report $(-)$-himgaline $(\mathbf{3})$ $\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This report (-)-himgaline (3) $\left({ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right)$
C16	3.34 (m, 1H)	3.23-3.27 (m, 1H)	-
C6	3.05 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	3.10 (br-s, 1H)	68.5
C2	2.98-2.89 (m, 1H)	2.99 (br-s, 1H)	61.5
C17	$\begin{gathered} 2.46(\mathrm{dd}, J=12.3,3.5 \\ \mathrm{Hz}, 1 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 2.43(\mathrm{dd}, \mathrm{~J}=12.2,2.9 \mathrm{~Hz}, \\ \mathrm{lH}) \end{gathered}$	37.3
$\begin{gathered} \text { C21, C14, } \\ \text { C8 } \end{gathered}$	2.25-2.12 (m, 3H)	$\begin{gathered} 2.19 \text { (br-d, 1H, C21-H') } \\ 2.15-2.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 14-\mathrm{H}, \\ \mathrm{C} 8-\mathrm{H}) \end{gathered}$	$\begin{aligned} & 48.0(\mathrm{C} 21), 28.8 \\ & \text { (C14), } 35.9 \text { (C8) } \end{aligned}$
$\begin{aligned} & \mathrm{C} 5, \\ & \mathrm{C} 4 \end{aligned}$	2.09-2.03 (m, 2H)	2.06-2.02 (m, 2H)	55.0 (C5), 25.4 (C4)
$\begin{gathered} \text { C7, C17ax, } \\ \text { C21' } \\ \text { C11, C12, } \\ \text { C13, C9 } \\ \text { C3 } \end{gathered}$	1.96-1.48 (m, 11H)	$\begin{gathered} 1.98-1.88(\mathrm{~m}, 2 \mathrm{H}) \\ 1.84(\mathrm{br}-\mathrm{d}, 1 \mathrm{H}) \\ 1.80-1.71(\mathrm{~m}, 4 \mathrm{H}) \\ \\ 1.53-1.47(\mathrm{~m}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 36.8(\mathrm{C} 7), 37.3(\mathrm{C} 17) \\ 48.0 \\ 32.3(\mathrm{C} 11), 26.5 \\ (\mathrm{C} 12), 25.9(\mathrm{C} 13) \\ 27.1(\mathrm{C} 3), 25.4(\mathrm{C} 4), \\ 36.8(\mathrm{C} 7) \end{gathered}$
C1	1.34 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$	$1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$	29.9
C13', C12'	$1.32-1.15$ (m, 2H)	$1.23-1.15$ (m, 2H)	25.9 (C13), 26.5 (C12)
C15	1.11-1.03 (m, 1H)	1.06-1.04 (m, 1H)	47.6 (C15)
$\begin{gathered} \text { C10, C11', } \\ \text { C14ax } \\ \hline \end{gathered}$	0.99-0.88 (m, 3H)	$0.94-0.85$ (m, 3H)	$\begin{gathered} \hline 42.7(\mathrm{C} 10), 32.3 \\ (\mathrm{C} 11), 28.8(\mathrm{C} 14) \\ \hline \end{gathered}$

[^13]
Chapter II.

Total Synthesis of (-)-Himandrine

Introduction and Background

The galbulimima alkaloid (-)-himandrine (3) is a topologically fascinating compound isolated from the bark of Galbulimima belgraveana, a tree indigenous to Papua New Guinea and northern Australia. ${ }^{1}$ The promise that natural and synthetic derivatives of galbulimima alkaloids have shown for treatment of human ailments ${ }^{2}$ has resulted in substantial attention in both academia and industry. In chapter 1, we reported the first enantioselective total synthesis of (-)galbulimima alkaloid 13 (2, class III) $)^{3}$ and revised the absolute stereochemical assignment of the class II and III derivatives. ${ }^{4}$ As continuation of this program, we describe the total synthesis of class II alkaloid 3 guided by our previously disclosed hypothesis for its biogenesis, ${ }^{3}$ featuring a final stage oxidative spirocyclization to secure the BCF ring juncture. ${ }^{5}$

Galbulimima Alkaloid 13 (2)

(-)-himandrine (3)

Figure 1. Representative galbulimima alkaloids.

Hypothesis for the Biosynthesis of (-)-Himandrine:

Based on our biomimetic hypothesis for the biogenesis of class II and III galbulimima alkaloids, ${ }^{3}$ we identified aminoketoester 4 (Scheme 1) as a plausible point of divergence en route to more complex alkaloids. We envisioned that aminoketoester 4 would tautomerize to form the conjugated enol 5. At this point, enol 5 could undergo a C17-oxidation (or a synthetic

$9\left(\mathbf{R}^{\mathbf{1}}, \mathbf{R}^{\mathbf{3}}, \mathrm{R}^{\mathbf{4}}=\mathrm{H}, \mathbf{R}^{\mathbf{2}}=\mathrm{Bz}\right)$

Class II GB alkaloids

Scheme 1. Our biosynthetic hypothesis of (-)-himandrine.
equivalent) to give the hydroxy ketoester 6, followed by an intramolecular allylic displacement by the amine to give the $\mathrm{N}-\mathrm{C} 9$ bond present in the Class II galbulimima alkaloids (himandrine and himandridine).

Previous Synthetic Study of class II Galbulimima alkaloids:

While there have been several outstanding syntheses of himbacine 1, class I (Figure 1$)^{6}$ and class III 7 galbulimima alkaloids, no total synthesis of the class II galbulimima alkaloids possessing the unique $\mathrm{N}-\mathrm{C} 9$ spirofused polycyclic framework has been reported. In 2004, Mander and co-workers disclosed an intriguing synthesis of the himandrine skeleton (Scheme 2). ${ }^{8}$ The key steps in the synthesis included a Diels Alder reaction, Curtius rearrangement, Birch reduction, an intramolecular nucleophilic amination, and a palladium mediated alkene amination. The synthesis began with cycloaddition between dienophile 10 and diene 11 to give the corresponding endo product, which was subjected to hydrolysis of the resulting enol ether followed by thiolate-mediated cleavage of the corresponding ester to afford carboxylic acid $\mathbf{1 2}$. Generation of methyl carbamate moiety of $\mathbf{1 3}$ was achieved by refluxing the corresponding acyl

Scheme 2. Mander's synthesis of himandrine skeleton. Conditions: (a) 10, $48 \mathrm{~h}, 100{ }^{\circ} \mathrm{C}$; AcOH, THF, $\mathrm{H}_{2} \mathrm{O}, 87 \%(2$ steps). (b) HMPA, $\mathrm{NaH}, \mathrm{EtSH}, 97 \%$. (c) $(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{py}, \mathrm{D} ; \mathrm{NaN}_{3}, \mathrm{RT}, \mathrm{THF}, 5 \mathrm{~h}, 77 \%$. (d) Δ, toluene, 20 min , $\sim 100 \%$. (e) $\mathrm{MeOH}, \mathrm{NaOMe}, \sim 100 \%$. (f) $\mathrm{Li}, \mathrm{NH}_{3}, \mathrm{MeOH} ; \mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O} ; \mathrm{MOM}-\mathrm{Cl},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{DMAP} ; \mathrm{HCl}$, $\mathrm{CHCl}_{3}, 32 \%$ (4 steps). (g) $9-\mathrm{BBN}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 87 \%$. (h) $\mathrm{OsO}_{4}, \mathrm{py}, \mathrm{THF}, \sim 75 \%$. (i) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{MeOH}, 2 \mathrm{~h}, 0$ ${ }^{\circ} \mathrm{C}, \sim 70 \%$. (j) $(\mathrm{MeO})_{2} \mathrm{POC}\left(\mathrm{N}_{2}\right) \mathrm{COMe}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 4 \mathrm{~h}, 0 \mathrm{C}, 91 \%$. (k) Li/ $\mathrm{NH}_{3}, \mathrm{MeOH}, 20 \mathrm{~s}, \sim 95 \%$. (l) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0 \mathrm{C}, 2 \mathrm{~h}, 93 \%$ (m) $\mathrm{NaH}, \mathrm{DMF}, 97 \%$. (n) $\mathrm{NaH}, \mathrm{HMPA}, \mathrm{EtSH}, 90 \%$. (o) $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2},{ }^{n} \mathrm{Bu}_{4} \mathrm{NCl}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \Delta, 16 \mathrm{~h}, 85 \%$. (p) $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{H}_{2},\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}, 95 \%$. (r) Dowex ${ }^{\circledR} 50 \mathrm{~W}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 5: 1, \Delta, 8 \mathrm{~h}$, $\sim 60 \%$.
azide in toluene followed by methanolysis. At this point, Birch reduction ${ }^{9}$ reduced the aromatic ring and the decalone functionality, followed by hydrolysis of the methyl enol ether and isomerization to provide unsaturated ketone 13 in moderate yield. Oxidative cleavage of the E ring was accomplished in a 3-step sequence. First, selective 1,2-reduction of enone $\mathbf{1 3}$ followed by OsO_{4} oxidation of the resulting allylic alcohol gave triol 14 . Ring cleavage of triol 14 afforded the corresponding ketoaldehyde, that was converted to alkyne $\mathbf{1 5}$, which contained all the requisite carbon atoms to construct the remaining pyrrolidine and piperidine rings. Ring closure to form the pyrrolidine 17 was accomplished in excellent yield by treatment of mesylate 16 with NaH in DMF followed by thiolate-mediated carbamate cleavage. Final ring closure was achieved via oxidative amination to afford hexacycle 18, followed by hydrogenation and deprotection to provide the himandrine skeleton 19 in racemic form.

Results and Discussion

Guided by our biosynthetic hypothesis, ${ }^{3}$ we envisioned formation of the N-C9 bond by a late stage oxidative spirocyclization of the pentacyclic aminoketoester 21 (Scheme 3). We envisioned that oxidation of 21, potentially facilitated by dienol formation, would afford allylic alcohol 20, which is poised for the critical condensative spirocyclization. We expected that application of our annulation methodology ${ }^{10}$ to enone 22 and iminium chloride 23 would convergently assemble a pentacycle primed for our proposed biomimetic oxidative spirocyclization.

Scheme 3. Retrosynthetic analysis of (-)-himandrine (3).

Our enantioselective synthesis of a tricyclic enone $\mathbf{2 2}$ mimic is illustrated in Scheme 4.

Scheme 4. Enantioselective synthesis of tricyclic enone (-)-31. Conditions: (a) TBSCI, imidazole, DMAP, DMF, 0 ${ }^{\circ} \mathrm{C}, 94 \%$. (b) $4 \AA \AA-\mathrm{MS}$, Proton Sponge ${ }^{\circledR}$, $\mathrm{Me}_{3} \mathrm{O}^{\circ} \mathrm{BF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 93 \%$. (c) $\mathrm{HCl}, \mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 98 \%$. (d) DMSO, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{SO}_{3} \bullet$ pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}$. (e) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 65 \%$ (2-steps). (f) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Tl}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 23$ ${ }^{\circ} \mathrm{C}, 97 \%$. (g) 2-azetidinone, $\mathrm{CuI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, $\left(\mathrm{MeNHCH}_{2}\right)_{2}$, $\mathrm{PhMe}, 120^{\circ} \mathrm{C}, 85 \%$. (h) TBAF, THF, $0 \rightarrow 23^{\circ} \mathrm{C}$. (i) DMSO, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{SO}_{3} \cdot \mathrm{pyr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 80 \%$ (2-steps). (j) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 82 \%$. (k) acrolein, 4,5dihydrolMesCl ${ }_{2} \mathrm{Ru}=\mathrm{CH}\left(2-{ }^{i} \mathrm{PrO}\right) \mathrm{Ph}(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 85 \%$. (l) BHT, N, N-diethylaniline, $\mathrm{MeCN}, 95{ }^{\circ} \mathrm{C}$, 75%, 5:1 dr. (m) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$. (n) Martin sulfurane, $\mathrm{PhH}, 23^{\circ} \mathrm{C}, 57 \%$ (2-steps).

The C14-stereochemistry, introduced through the use of MacMillan's D-proline-catalyzed α oxidation ${ }^{11}$, of hept-6-enal, afforded the enantiomerically enriched diol (-)-24 ($>98.5 \%$ ee). ${ }^{12}$ The C14-methyl ether was then secured by etherification ${ }^{13}$ of alcohol $(+)-25$ to provide the methoxyalcohol (+)-26, setting the stage for the substrate-directed synthesis of the trans-decalin AB-ring system. Oxidation ${ }^{14}$ of alcohol (+)-26 followed by conversion of the corresponding aldehyde to dibromoolefin provided (-)-27. A highly efficient Suzuki cross-coupling reaction ${ }^{3,15}$ involving boronic acid 28 and dibromide (-)-27 afforded the cis-vinyl bromide 29 in 97% yield. A copper-promoted coupling ${ }^{16}$ of vinyl bromide 29 with 2-azetidinone followed by conversion of the C20-silyl ether to the corresponding C20-silyl enol ether gave the desired tetraene (-)-30. The 2-azetidinone group at C16 was strategically introduced to serve a dual role in facilitating the planned Diels-Alder reaction by providing a $2-\mathrm{N}$-acylaminodiene with greater preference for s-cis C16-C17 conformation, and masking the C16-carbonyl for subsequent transformations. A Ru-catalyzed olefin cross-metathesis reaction ${ }^{17}$ with acrolein enabled selective functionalization of the acid sensitive tetraene (-)-30 to the corresponding unsaturated aldehyde (-)-31 in 85% yield. Heating a solution of tetraenal (-)-31 in acetonitrile at $95{ }^{\circ} \mathrm{C}$ afforded the desired trans-
decalin aldehyde (-)-32 as the major endo Diels-Alder product $(75 \%, \mathrm{dr}=5: 1$) as supported by nOe studies. Treatment of aldehyde (-) $\mathbf{- 3 2}$ with titanium tetrachloride provided the corresponding Mukaiyama aldol ${ }^{18}$ product, which upon exposure to Martin sulfurane ${ }^{19}$ afforded the oxygen and acid sensitive enone (-)-33 in 57% yield over two steps (Scheme 4).

Lithiation of the readily available iminium chloride (-)-23 ${ }^{3}$ followed by copper-promoted conjugate addition ${ }^{10}$ to the enantiomerically enriched enone (-) $\mathbf{- 3 3}$ afforded the highly air sensitive pentacyclic iminoalcohol 34 (Scheme 5). Importantly, blocking of the si-face of the enone by the trans-decalin AB-ring system imposed exquisite stereochemical control during the C7-C8 bond formation. Rapid tautomerization of the transiently formed iminoketone 34 enabled nucleophilic addition of C 5 to the C 20 -ketone of $\mathbf{3 5}$, consistent with our biosynthetic hypothesis for the D-ring formation. ${ }^{3}$ Addition of sodium borohydride to crude imino alcohol 36 resulted in completely diastereoselective C6-imine reduction, at which point benzyloxycarbonylation of the resulting aminoalcohol 37 provided the desired product (-)-38 (Scheme $5, Z=$

Scheme 5. Enantioselective total synthesis of (-)-himandrine (3). Conditions: (a) ${ }^{n} \mathrm{BuLi}, \mathrm{THF},(-)-23,-78 \rightarrow 0{ }^{\circ} \mathrm{C}$; $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$; (-)-33, $-78 \rightarrow-10^{\circ} \mathrm{C}$. (b) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}$. (c) $\mathrm{ClCO}_{2} \mathrm{Bn},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 50 \%$ (3steps). (d) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{PhH}, 23^{\circ} \mathrm{C}, 81 \%$. (e) $\mathrm{POCl}_{3}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 23{ }^{\circ} \mathrm{C}, 71 \%$. (f) DDQ, $\mathrm{SiO}_{2}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 23$ ${ }^{\circ} \mathrm{C}$. (g) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 2$-methyl-2-butene, ${ }^{\mathrm{B}} \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$. (h) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 61 \%$ (3-steps). (i) TMS-I, 2,6-di- ${ }^{-} \mathrm{Bu}-4-\mathrm{Me}-\mathrm{Pyr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 66 \%$. (j) $\mathrm{Et}_{3} \mathrm{~N} \cdot(\mathrm{HF})_{3}$, THF, $23{ }^{\circ} \mathrm{C}, 90 \%$. (k) NCS, $\mathrm{MeCN}, 23^{\circ} \mathrm{C}, 45 \mathrm{~min}$, 89%. (l) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 90 \%$. (m) BzCl , pyridine, $23^{\circ} \mathrm{C}, 7 \mathrm{~d}, 87 \%$.
benzyloxycarbonyl) in 50% yield over three steps. Importantly, the formal cycloaddition between iminium chloride (-)-23 and enone (-)-33 and subsequent C6-reduction of imine 36 secured four stereogenic centers and expediently assembled the pentacyclic substructure of $(-)$ himandrine (3) as a single diastereomer.

Mild hydrolysis of N-vinyl-carbamate (-)-38 with p-toluene sulfonic acid monohydrate in benzene afforded the key intermediate ketone (-)-39 in 75% yield. The mild reaction conditions used in hydrolysis of the C16 N-vinyl lactam circumvent the competing acid catalyzed β elimination of the C14-methyl ether in ketone (-)-39. ${ }^{20}$ At this juncture, we required a mild method for introduction of the C17-methoxycarbonyl group in order to access the aminoketoester 21. After exploring a variety of strategies, we found that treatment of ketone (-)-39 with Vilsmeier's reagent ${ }^{21}$ provided the vinyl ether (+)-41 in 71% yield, likely occurring through nucleophilic addition of enol 40 (Scheme 5) followed by trapping with the C20-alcohol. Exposure of vinyl ether (+)-41 to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) ${ }^{22}$ furnished the corresponding unsaturated β-ketoaldehyde 42. Immediate oxidation of the acid sensitive C18-aldehyde 42 to the corresponding carboxylic acid 43 followed by treatment with diazomethane provided the desired β-ketoester (-)-44 in 61% yield over three steps (Scheme 5). Sequential treatment of carbamate (-)-44 with trimethylsilyliodide (TMS-I) ${ }^{3,23}$ and triethylamine trihydrofluoride provided pentacyclic aminoketoester (-)-21, our proposed common biosynthetic intermediate to the class II and class III galbulimima alkaloids.

With the key intermediate in hand, we were able to evaluate the feasibility of our postulated biomimetic late stage N - C 9 bond formation. We expected that β-ketoester 21 might undergo rapid tautomerization to the electron rich dienol 45 , enabling facile C 17 oxidation as a prelude to intramolecular allylic displacement by the amine to give the $\mathrm{N}-\mathrm{C} 9$ spirocycle. Deuterium labeling studies were employed in monitoring H/D exchange at C9 (Scheme 6). Compellingly, simple dilution of aminoketoester (-)-21 in methanol- d_{4} resulted in immediate and quantitative deuterium incorporation at C 9 in the form of aminoketoester 21-d d_{3} (Scheme 6). ${ }^{24}$ Dissolution of aminoketoester 21- d_{3} in methanol returned aminoketoester (-)-21, indicating the exchange of C9-methine occurs with retention of C9-stereochemistry. ${ }^{25}$ Cumulatively, our results are consistent with the amino group being intimately involved in facilitating C9deprotonation. ${ }^{26,27}$ The preservation of the C9-stereochemistry is consistent with intramolecular
protium/deuterium delivery by the corresponding ammonium ion from the more sterically hindered face of the C19-C9 tetrasubstituted alkene of 45.

Scheme 6. Key observations relevant to N-C9 bond formation.

Guided by our biosynthetic hypothesis and with evidence for rapid dienol formation from aminoketoester (-)-21, we wished to capitalize on the inherent chemistry of this plausible biosynthetic intermediate. In the event, treatment of aminoketoester (-)-21 with N chlorosuccinimide (NCS) in acetonitrile at $23{ }^{\circ} \mathrm{C}$ over 45 min afforded the desired spirofused hexacyclic enone $(+)-46$ in 89% yield. The structure of $(+)-46$ was supported through detailed 2D NMR analysis. ${ }^{28}$ Treatment of ketone (+)-46 with sodium borohydride in ethanol effected completely diastereoselective C16-reduction to the desired diol (+)-47 in 90% yield. Benzoylation of the C16-hydroxyl group of diol $(+)-47$ proceeded to give the first synthetic sample of (-)-himandrine (3) in 87% yield $\left([\alpha]^{22}{ }_{D}=-21\left(c, 0.12 \mathrm{CHCl}_{3}\right)\right.$; Lit. ${ }^{\text {1a }}([\alpha]=-38(c$ $\left.1.22, \mathrm{CHCl}_{3}\right) .{ }^{29}$ All spectroscopic data for synthetic $(-)-3$ matched those reported for the natural compound. ${ }^{1}$ The structure of our synthetic (-)-3 was unequivocally confirmed by X-ray crystallographic analysis.

Intrigued by the high efficiency in the conversion of aminoketoester (-)-21 to hexacyclic enone (+)-46, we sought to gain further mechanistic insight into this transformation. Close monitoring of the reaction mixture indicated that exposure of aminoketoester (-)-21 to NCS in acetonitrile resulted in concomitant formation of hexacycle $(+)-46$ and the light-sensitive N chloro pentacycle 48 (Scheme 6) that would disappear by the end of the reaction. Use of benzene as solvent for this transformation reduced the overall rate of hexacycle (+)-46 formation
and allowed for the isolation of N-chloro pentacycle $48 .{ }^{30}$ Importantly, dissolution of N-chloro pentacycle 48 in acetonitrile for 12 h did not result in formation of any hexacycle (+)-46 and completely returned 48. ${ }^{31,32}$ Additionally, when the deuterium incorporation studies described above were conducted with 48 , there was no evidence for formation of the corresponding dienol, suggesting the nitrogen of 48 is not basic enough to enable deprotonation at C9. Interestingly, exposure of aminoketoester (-)-21 to samples of N-chloro pentacycle 48 in acetonitrile resulted in formation of hexacycle (+)-46 and (-)-21. ${ }^{33}$ This result is consistent with an intermolecular N to C halogen transfer from N-chloro pentacycle 48 to aminoketoester (-)-21 (likely via 45). A plausible mechanism for conversion of aminoketoester (-)-21 to spirofused hexacycle (+)-46 is halogenation of the dienol $\mathbf{4 5}$ to give α-chloroester $49,{ }^{34}$ followed by intramolecular allylic displacement by the amine. Significantly, this mechanism is consistent with our proposed biomimetic hypothesis for the advanced stage oxidative spirocyclization of aminoketoester (-)$21{ }^{3 \mathrm{~b}}$

Conclusion

We have described the first total synthesis of all class II galbulimima alkaloid (-)himandrine (3), a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include the diastereoselective Diels-Alder reaction for rapid synthesis of the transdecalin containing tricycle (-)-33 in enantiomerically enriched form, the formal [3+3] annulation strategy to secure the CDE-ring system with complete diastereoselection, and successful implementation of our biogenetically inspired oxidative spirocyclization in converting 48 to $(+)$ 46. The successful and direct conversion of $(-)-21$ to $(+)-46$ drew on the power of biogenetic considerations and fully utilized the inherent chemistry of this plausible biosynthetic intermediate.
${ }^{1}$ (a) Binns, S. V.; Dustan, P. J.; Guise, G. B.; Holder, G. M.; Hollis, A. F.; McCredie, R. S.; Pinhey, J. T.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1965, 18, 569. (b) Guise, G. B.; Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1967, 20, 1029. (c) Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1967, 20, 1473. (d) Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E. Taylor, W. C. Aust. J. Chem. 1967, 20, 1705.
${ }^{2}$ For SCH-530348, a galbulimima alkaloid derived antiplatelet agent, in Phase-III clinical trials for acute coronary syndrome, see (a) Chackalamannil, S.; Wang, Y.; Greenlee, W. J.; Hu, Z.; Xia, Y.; Ahn, H.-S.; Boykow, G.; Hsieh, Y.; Palamanda, J.; Agans-Fantuzzi, J.; Kurowski, S.; Graziano, M.; Chintala, M. J. Med. Chem. 2008, 51, 3061. (b) Malaska, M. J.; Fauq, A. H.; Kozikowski, A. P.; Aagaard, P. J.; McKinney, M. Bioorg. Med. Chem. Lett. 1995, 5, 61.
${ }^{3}$ (a) Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126. (b) Please see SI of ref 3a (page S4, Scheme S2) for a detailed unified biosynthetic hypothesis for class II and III galbulimima alkaloids.
${ }^{4}$ (a) The direct stereochemical and structural relationship between (-)-galbulimima alkaloid 13 (class III) and (-)-himandrine (3, class II) was established through instructive chemical degradation studies in the context of the isolation work (ref. 1c). (b) For revision of the stereochemical assignment based on new X-ray analysis, see Willis, A. C.; O’Connor, P. D.; Taylor, W. C.; Mander, L. N. Aust. J. Chem. 2006, 59, 629.
${ }^{5}$ Movassaghi, M.; Tjandra, M.; Qi, J. J. Am. Chem. Soc. 2009, 131, 9648.
${ }^{6}$ For prior syntheses of class I galbulimima alkaloids, see (a) Hart, D. J.; Wu, W.-L.; Kozikowski, A. P. J. Am. Chem. Soc. 1995, 117, 9369. (b) Chackalamannil, S.; Davies, R. J.; Aserom, T.; Doller, D.; Leone, D. J. Am. Chem. Soc. 1996, 118, 9812. (c) Tchabanenko, K.; Adlington, R. M.; Cowley, A. R.; Baldwin, J. E. Org. Lett. 2005, 7, 585
${ }^{7}$ For prior syntheses of class III galbulimima alkaloids, see (a) Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400. (b) Shah, U. Chackalamannil, S.; Ganguly, A. K.; Chelliah, M.; Kolotuchin, S.; Bulevich, A.; McPhail, A. J. Am. Chem. Soc. 2006, 128, 12654. (c) Evans, D. A.; Adams, D. J. J. Am. Chem. Soc. 2007, 129, 1048.
${ }^{8}$ O’Connor, P. D.; Mander, L. N.; McLachlan, M. M. W. Org. Lett. 2004, 6, 703
${ }^{9}$ Birch, A. J. Am. Chem. Soc. 1944, 430.
${ }^{10}$ Movassaghi, M.; Chen, B. Angew. Chem. Int., Engl. Ed. 2007, 46, 565.
${ }^{11}$ Brown, S. P.; Brochu, M. P.; Sinz, C. J. MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808.
${ }^{12}$ Diol (-)-24 is prepared in 3-steps from commercially available 7-octene-1,2-diol on greater than 8 -g scale.
${ }^{13}$ Meerwein, H. Methoden Org. Chem. (Houben-Weyl) 1965, 6, 325.
${ }^{14}$ Parikh, J. P.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505.
${ }^{15}$ (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972. (b)
For rate enhancement with TlOH, see Uenishi, J.-i.; Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756. (c) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990, 31, 6509. (d) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.
${ }^{16}$ Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
${ }^{17}$ (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
${ }^{18}$ Mukaiyama, T.; Marasaka, K.; Banno, K. Chem. Lett. 1973, 1011.
${ }^{19}$ Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327.
${ }^{20}$ The more forcing reaction conditions needed for hydrolysis of an N-vinyl oxazolidinone (ref. 3) derivative of $\mathbf{3 8}$ led to competing b-elimination of the C14-methyl ether.
${ }^{21}$ Fischer, O.; Muller, A.; Vilsmeier, A. J. Prakt. Chem. 1925, 109, 69.
${ }^{22}$ (a) Liu, H. J.; Tran, D. D. P. Tetrahedron Lett. 1999, 40, 3827. (b) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
${ }^{23}$ Jung, M. E.; Lyster, M. A.J. Chem. Soc., Chem Comm. 1978, 315.
${ }^{24}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 21- d_{3} was the same as the starting aminoketoester (-)-21 with the exception of the C9-methine spin systems.
${ }^{25}$ Similar results were obtained using a C20 O-trimethylsilylated derivative of (-)-21.
${ }^{26}$ Attempts at intermolecular C9 deprotonation were unsuccessful; the proximity of the amine to C9-methine seems to facilitate tautomerization.
${ }^{27}$ Use of derivatives of aminoketoester 21 not possessing a basic amine (i.e., N - $\mathrm{Cbz}, \mathrm{N}-\mathrm{Cl}$) resulted in no C9-deuterium incorporation over 24 h .
${ }^{28}$ Key HMBC correlations between $\mathrm{C} 9 / \mathrm{C} 2-\mathrm{H}$ and C9/C6-H confirmed the $\mathrm{N}-\mathrm{C} 9$ bond connectivity.
${ }^{29}$ The C14-methyl ether and the C17-methoxycarbonyl substituents greatly shield the C16 alcohol leading to slow benzoylation.
${ }^{30}$ The reaction had to be stopped within 10 min otherwise significantly more hexacycle (+)-46 would be generated.
${ }^{31}$ Addition of succinimide does not lead to conversion of 48 to (+)-46.
${ }^{32}$ While the sensitivity of $\mathbf{4 8}$ precluded its derivatization, use of its more stable C20-O-
trimethylsilyl derivative under basic, acidic, or photo-chemical conditions predominantly led to elimination and decomposition.
${ }^{33}$ Complete mass balance was observed and the amount of hexacycle (+)-46 formed was exactly proportional to amount of $\mathbf{4 8}$ used.
${ }^{34}$ While C9 halogenation cannot be ruled out, C17 halogenation is consistent with the lack of product formation using the C20-O-trimethylsilyl derivative of $\mathbf{4 8}$ with significantly blocked access to C17.

Experimental Section

General procedure. All reactions were performed in oven-dried or flame-dried round-bottomed flasks, modified Schlenk (Kjeldahl shape) flasks, or glass pressure vessels. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column chromatography was performed as described by Still et al. using silica gel ($60 \AA$ pore size, $40-63 \mu \mathrm{~m}, 4-6 \% \mathrm{H}_{2} \mathrm{O}$ content, Zeochem). ${ }^{1}$ Where necessary (so noted), silica gel was neutralized by treatment of the silica gel prior to chromatography with the eluent containing 1% triethylamine or 1% ammonium hydroxide. Analytical thin-layer chromatography was performed using glass plates pre-coated with $0.25 \mathrm{~mm} 230-400$ mesh silica gel impregnated with a fluorescent indicator (254 nm). Where necessary (so noted), silica gel plates were neutralized by treatment with a solution of 1% triethylamine or 1% ammonium hydroxide in dichloromethane followed by heating on a hot plate $\left(\sim 250{ }^{\circ} \mathrm{C}\right)$. Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an ethanolic phosphomolybdic acid (PMA), an acidic solution of p-anisaldehyde (anis), an aqueous solution of ceric ammonium molybdate (CAM), an aqueous solution of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ or an ethanolic solution of ninhydrin followed by heating ($<1 \mathrm{~min}$) on a hot plate $\left(\sim 250^{\circ} \mathrm{C}\right.$). Organic solutions were concentrated on Büchi R-200 rotary evaporators at ~ 20 Torr at $25-35^{\circ} \mathrm{C}$ unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions: dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, and toluene were purchased from J.T. Baker (Cycletainer ${ }^{\mathrm{TM}}$) and were purified by the method of Grubbs et al. under positive argon pressure. ${ }^{2}$ Triethylamine, diisopropylethylamine, and benzene were distilled over calcium hydride immediately before use. Acrolein was distilled over calcium sulfate immediately before use. Methyl vinyl ketone was distilled over potassium carbonate and calcium chloride immediately prior to use. Martin sulfurane was purchased from Aldrich and stored in a glove box under nitrogen atmosphere. N-Chlorosuccinimide (NCS) was recrystallized from benzene prior to use. Phosphorus oxychloride was distilled under reduced pressure before use. The molarity of n-butyllithium solutions was determined by titration using diphenylacetic acid as an indicator (average of three determinations). ${ }^{3}$ Ammonia saturated dichloromethane was obtained by agitation of dichloromethane in the presence of ammonium hydroxide followed by drying over anhydrous sodium sulfate. Where necessary (so noted) solutions were deoxygenated by alternate freeze (liquid nitrogen)/evacuation/argon-flush/thaw cycles (FPT, three iterations) or degassed by purging with argon for several minutes.

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian 300 Mercury or a Varian inverse probe 500 INOVA spectrometer or a Bruker 400 spectrometer or a Bruker inverse probe 600 Avance spectrometer. Chemical shifts are recorded in parts per million on the δ scale and are referenced from the residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}: \delta 7.27, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta 7.16\right)$. Data is reported as follows: chemical shift [multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{app}=$ apparent, $\mathrm{br}=$ broad $)$,

[^14]coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Bruker 600 Avance spectrometer, a Varian 500 INOVA spectrometer or a Bruker 400 spectrometer with a Magnex Scientific superconducting magnet and are recorded in parts per million on the δ scale and are referenced from the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}: \delta 77.2\right.$, benzene- $\left.d_{6}: \delta 128.4\right)$. Infrared data were obtained with a Perkin-Elmer 2000 FT-IR and are reported as follows: [frequency of absorption (cm^{-1}), intensity of absorption ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{br}=$ broad), assignment]. Optical rotations were measured on a Jasco-1010 polarimeter. We are grateful to Dr . Li Li for obtaining the mass spectroscopic data at the Department of Chemistry's Instrumentation Facility, Massachusetts Institute of Technology. High-resolution mass spectra (HRMS) were recorded on a Bruker APEX 4.7 Tesler FTMS spectrometer using electronspray ion source (ESI) or electronspray (ES). The structure of (-)-himandrine was obtained with the assistance of Dr. Peter Muller at the X-ray diffraction facility of Department of Chemistry, Massachusetts Institute of Technology, and Justin Kim of the Movassaghi group.

Additional Notes. Positional numbering system: For ease of direct comparison, particularly from trans-decalin (-)-32 to himandrine (-)-3, the numbering scheme used by Taylor and coworkers in the isolation paper ${ }^{4}$ is used in this supporting document. In key instances the products are accompanied by the numbering system as shown below for this document.

[^15]

(-)-(S)-2-(N-Phenyl-aminooxy)-hept-6-en-1-0l (S2):

Nitrosobenzene ($9.7 \mathrm{~g}, 0.090 \mathrm{mmol}, 1$ equiv) was added as a solid to a suspension of Dproline ($0.46 \mathrm{~g}, 4.0 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$) in chloroform $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was sealed under an argon atmosphere. After 15 min , hept- 6 -enal ${ }^{5}(11.2 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.10$ equiv) was added drop-wise via additional funnel to the bright green solution. After 3 h , the resulting brown reaction mixture was added dropwise via additional funnel to a suspension of sodium borohydride ($14.2 \mathrm{~g}, 0.375 \mathrm{~mol}, 4.17$ equiv) in methanol $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , saturated aqueous sodium bicarbonate solution (100 mL) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed with brine (200 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was purified by flash column chromatography (silica gel: diam. 7 cm , ht. 7 cm ; eluent: 33% EtOAc in hexanes) to afford alcohol (-)-S2 (18.1 g, 91\%) as a yellow oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=-26.4\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. This compound was determined to be of $>98.5 \%$ ee by chiral HPLC analysis (Chirapak AD-H, 95% hexanes / 5% iso-propanol, $3 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm} \mathrm{t}_{\mathrm{R}}$ (major) $=18.03 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ minor $\left.)=22.15 \mathrm{~min}\right)$.

The corresponding enantiomer, $(+)-(R)-2-(N$-Phenyl-aminooxy)-hept-6-en-1-ol (3.22 g , $80 \%,[\alpha]^{22}{ }_{\mathrm{D}}=+26\left(c 0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$), was prepared according to the same procedure using Lproline as the catalyst. This compound was determined to be of $>98.5 \%$ ee by chiral HPLC analysis (Chirapak AD-H, 95% hexanes $/ 5 \%$ iso-propanol, $3 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}_{\mathrm{R}}$ (minor) $=$ $18.12 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ major $\left.)=22.02 \mathrm{~min}\right)$. Structural assignment utilized additional information from gCOSY and HSQC.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

7.29-7.23 (m, 2H, ArH), 7.03 (br-s, 1H, NHPh), 7.00-6.94 (m, 3H, ArH), 5.90-5.72 (m, 1 H , $\mathrm{CH}=\mathrm{CH}_{2}$), $5.07-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.00-3.91$ (m, 1H, CHONHPh), 3.88-3.71 (m, 2H, CH2OH), 2.60 (br-s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.13-2.02 (m, 2H, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$), 1.72-1.43 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). $148.5(\mathrm{ArC}), 138.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 129.3(\mathrm{ArCH})$, $122.8(\mathrm{ArCH}), 115.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 115.0(\mathrm{ArCH})$, $84.0(\mathrm{CHNHPh}), 65.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 34.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2} \mathrm{CHNHPh}\right), 25.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$.	

3385 (br, s), 3273 (s), 3076 (w), 2939 (s), 1641 (m), 1602 (s), 1494 (s), 1460 (w), 1241 (m), 1028 (s), 997 (m), 911 (s), 767 (m), 693 (m).

[^16]HRMS (ESI):

TLC (17\% EtOAc in hexanes), $R f$:
calc'd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 244.1308$, found: 244.1308.
0.20 (UV, CAM).

(-)-(S)-Hept-6-ene-1,2-diol (24):

Zinc powder ($8.89 \mathrm{~g}, 136 \mathrm{mmol}, 2.00$ equiv) was added as a solid to a solution of alcohol (-)-S2 ($15.1 \mathrm{~g}, 68.0 \mathrm{mmol}, 1$ equiv) in a mixture of ethanol and acetic acid ($3: 1,340 \mathrm{~mL}$) at 23 ${ }^{\circ} \mathrm{C}$. After 2 h , the resulting mixture was filtered through a plug of celite (diam. $8.5 \mathrm{~cm}, \mathrm{ht} .2 \mathrm{~cm}$), and the residue was washed with ethanol $(3 \times 150 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure at $30^{\circ} \mathrm{C}$. The residue was dissolved in ethyl acetate (400 mL), was washed with saturated aqueous sodium bicarbonate solution (100 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting light yellow oil was purified via flash column chromatography (silica gel: diam. 5 cm , ht. 25 cm ; eluent: 5% EtOAc in hexanes to 75% EtOAc in hexanes) to afford diol (-)-24 ($7.1 \mathrm{~g}, 80 \%$) as a yellow oil $\left([\alpha]^{22}=-21(c 0.44, \mathrm{EtOH})\right)$. The spectroscopic data was consistent with the literature. ${ }^{6}$ Structural assignment utilized additional information from gCOSY and HSQC.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$): $\quad 5.83-5.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.04-4.87(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$), 3.65 (br-s, $1 \mathrm{H}, \mathrm{CHOH}$), 3.59 ($\mathrm{app}-\mathrm{d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$ 'OH), 3.43-3.34 (m, 1 H , CHH'OH), 3.33-3.12 (br-s, 2H, OH, OH), 2.08-1.99 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.57-1.34 (m. 4 H , $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right): \quad 138.6\left(\mathrm{CH}_{2}=\mathbf{C H}\right), 115.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 72.4(\mathrm{CHOH})$, $66.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 33.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

3364 (br, s), 1641 (m), 1064 (m), 908 (m), 666 (w).
FTIR (thin film) cm^{-1} :
calc'd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 153.0886 , found: 153.0892.

TLC (75\% EtOAc in hexanes), $R f$:
$0.40\left(\mathrm{KMnO}_{4}, \mathrm{CAM}\right)$.

[^17]

(+)-(S)-1-(tert-Butyl-dimethyl-silanyloxy)-hept-6-en-2-ol (25):

tert-Butylchlorodimethylsilane ($6.4 \mathrm{~g}, 42 \mathrm{mmol}$, 1 equiv) was added as a solid to a solution of diol (-)-24 ($6.10 \mathrm{~g}, 47.0 \mathrm{mmol} .1 .05$ equiv), 4-dimethylaminopyridine ($229 \mathrm{mg}, 1.90$ $\mathrm{mmol}, 4.00 \mathrm{~mol} \%$), and imidazole ($4.1 \mathrm{~g}, 60 \mathrm{mmol}, 1.5$ equiv) in N, N-dimethylformamide (230 mL) at $0^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 3 h , the reaction mixture was diluted with diethyl ether (300 mL) and brine $(150 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with diethyl ether ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed with brine (250 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (silica gel: diam. 5 cm , ht. 17 cm ; eluent: $10 \% \mathrm{EtOAc}$ in hexanes) to provide silyl ether $(+)-25(9.6 \mathrm{~g}, 94 \%)$ as a pale yellow oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=+3.5\left(c 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$.

${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$:	5.82-5.72 (m, 1H, CH2 $=\mathrm{CH}$), 4.99-4.91 (m, 2 H , $\mathrm{CH}_{2}=\mathrm{CH}$), 3.61-3.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHOH}, \mathrm{CHH}^{\prime} \mathrm{OTBS}$), 3.37-3.34 (m, 1H, CHH'OTBS), 2.45 (br-s, 1 H , $\mathrm{CHOH}), 2.08-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 1.58-$ $1.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}^{\prime} \mathrm{CH}_{2}\right), 1.44-1.33(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CHH}^{\prime} \mathrm{CH}_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & 138.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 114.8(\mathbf{C H}=\mathrm{CH}), 71.8,67.4,34.1, \\ & 32.3,26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1,18.6,-5.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) . \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 3446(\mathrm{br}, \mathrm{~s}), 3078(\mathrm{~m}), 2859(\mathrm{~s}), 1642(\mathrm{~m}), 1463 \\ & (\mathrm{~m}), 1472(\mathrm{~m}), 1362(\mathrm{w}), 1257(\mathrm{~m}) . \end{aligned}$
HRMS (ESI):	calc'd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 267.1751, found: 267.1750.
TLC (10\% EtOAc in hexanes), Rf:	$0.55\left(\mathrm{KMnO}_{4}\right)$.

(-)-(S)-tert-Butyl-(2-methoxy-hept-6-enyloxy)-dimethyl-silane (S3):

Oven-dried $4 \AA$ molecular sieves ($19.6 \mathrm{~g}, 2: 1$, wt/wt), Proton Sponge ${ }^{\circledR}$ ($25.5 \mathrm{~g}, 118 \mathrm{mmol}$, 3.00 equiv), and trimethoxyl oxonium tetrafluoroborate ($14.5 \mathrm{~g}, 98.0 \mathrm{mmol}, 2.51$ equiv) were added sequentially to a solution of alcohol (+)-25 ($9.6 \mathrm{~g}, 39 \mathrm{mmol}, 1$ equiv) in dichloromethane $(392 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 3 h , the reaction mixture was filtered through a plug of celite (diam. $8.5 \mathrm{~cm}, \mathrm{ht} .3 \mathrm{~cm}$), and the residue was washed with dichloromethane ($3 \times 100 \mathrm{~mL}$). The filtrate was concentrated under reduced pressure. The residue was dissolved in a mixture of hexanes and ethyl acetate ($1: 1,400$ mL), and the residual insoluble light brown solid was removed by filtration, and was washed with a mixture of hexanes and ethyl acetate ($1: 1,2 \times 100 \mathrm{~mL}$). The filtrate was washed with saturated aqueous copper sulfate solution (150 mL) and brine (150 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (silica gel: diam. 5 cm , ht. 17 cm ; eluent: 3\% EtOAc in hexanes) to afford methyl ether (-)-S3 (9.3 g, 93\%) as a colorless oil $\left([\alpha]^{22}=-11\left(c \quad 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. Structural assignment utilized additional information from gCOSY and HSQC.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$): $\quad 5.83-5.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.01-4.88(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 3.60(\mathrm{dd}, J=6.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}$, CHH'OTBS), 3.52 (dd, $J=4.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}$, CHH'OTBS), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.19-3.16(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 2.04-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, 1.53-1.46 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45-1.36 (m, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$:

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC (3\% EtOAc in hexanes), Rf:
$139.0\left(\mathrm{CH}_{2}=\mathbf{C H}\right), 114.8(\mathrm{CH}=\mathrm{CH}), 82.1\left(\mathrm{OCH}_{3}\right)$, $65.4,58.2,34.1,31.0,26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.9,18.4$, $-5.1\left(\mathrm{Si}\left(\mathbf{C H}_{3}\right)_{2}\right)$.

2929 (s), 2859 (s), 1642 (w), 1472 (m), 1463 (m), 1256 (s), 1107 (s), 837 (s), 776 (s).
calc'd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 281.1907$, found: 281.1918.
$0.63\left(\mathrm{KMnO}_{4}\right)$.

(+)-(S)-2-Methoxy-hept-6-en-1-ol (26):

Thionyl chloride ($0.495 \mathrm{~mL}, 13.6 \mathrm{mmol}, 0.400$ equiv) was added dropwise to methanol $(340 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. After 5 min , the resulting methanolic hydrochloric acid solution $(0.04 \mathrm{M})$ was added to a solution of silyl ether (-)-S3 ($8.6 \mathrm{~g}, 34 \mathrm{mmol}, 1$ equiv) in methanol (340 mL) at $23^{\circ} \mathrm{C}$. After 15 min , the reaction solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (silica gel: diam. 3 cm , ht. 10 cm ; eluent: 33% EtOAc in hexanes) to afford alcohol $(+)-26(4.9 \mathrm{~g}, 98 \%)$ as a pale yellow oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=+22(c\right.$ $0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC (33\% EtOAc in hexanes), $R f$:
5.80-5.67 (m, 1H, CH $\left.{ }_{2}=\mathrm{CH}\right), 5.00-4.87(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$), 3.64-3.57 (m, 1H, $\mathrm{CH}_{2} \mathrm{OH}$), 3.45-3.39
$\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.23-3.16$
($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}$), 2.56-2.53 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.05-1.98 (m, 2H, CH $2=\mathrm{CHCH}_{2}$), $1.55-1.44(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHH}^{\prime} \mathrm{CH}_{2}$), 1.44-1.32 (m, 3H, CHH'CH2).
$138.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 114.9(\mathrm{CH}=\mathrm{CH}), 81.7\left(\mathrm{OCH}_{3}\right)$, 63.9, 57.2, $33.9\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 29.8$, 24.7.

3421 (br, s), 2935 (s), 1641 (w), 1458 (w), 1093 (s), 910 (m).
calc'd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 167.1043, found: 167.1040.
$0.60\left(\mathrm{KMnO}_{4}\right)$.

(-)-1,1-Dibromo-3-methoxy-octa-1,7-diene (27):

Dimethyl sulfoxide ($24.2 \mathrm{~mL}, 340 \mathrm{mmol}, 10.0$ equiv), diisopropylethylamine (30.5 mL , $170 \mathrm{mmol}, 5.00$ equiv) and sulfur trioxide pyridine complex ($16.2 \mathrm{~g}, 102 \mathrm{mmol}, 3.00$ equiv) were added sequentially to a solution of alcohol (+)-26 (4.9 g, $34 \mathrm{mmol}, 1$ equiv) in dichloromethane $(170 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 15 min , the reaction mixture was diluted with diethyl ether (250 mL) and water (100 mL), and the layers were separated. The aqueous layer was extracted with diethyl ether ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed sequentially with aqueous hydrochloric acid solution (1 M , 100 mL), saturated aqueous sodium bicarbonate solution (100 mL), and brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (silica gel: diam. 3 cm , ht. 10 cm ; eluent: 33% diethyl ether in hexanes) to afford aldehyde $\mathbf{S} 4$ as a colorless oil.?

Triphenylphosphine ($21.4 \mathrm{~g}, 81.6 \mathrm{mmol}, 2.40$ equiv) was added as a solid to a solution of carbon tetrabromide ($13.5 \mathrm{~g}, 40.8 \mathrm{mmol}, 1.20$ equiv) in dichloromethane at $0^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 15 min , the solution of aldehyde $\mathbf{S} 4$ in dichloromethane (10 mL) was added dropwise via cannula to the resulting orange reaction mixture. After 15 min , excess dibromophosphorane was quenched by sequential addition of triethylamine ($11.5 \mathrm{~mL}, 81.6 \mathrm{mmol}, 2.40$ equiv) and methanol ($3.5 \mathrm{~mL}, 81.6 \mathrm{mmol}, 2.40$ equiv). The reaction mixture was added dropwise to a mixture of hexanes and ethyl acetate (5:1, 400 mL). The resulting light brown solid was removed by filtration, and was washed with a mixture of hexanes and ethyl acetate $(5: 1,100 \mathrm{~mL})$. The filtrate was concentrated, and the residue was purified by flash column chromatography (silica gel: diam. 5 cm , ht. 17 cm ; eluent: 10% diethyl ether in hexanes) to provide dibromide (-) $\mathbf{- 2 7}(6.1 \mathrm{~g}, 65 \% 2$-steps $)$ as a colorless oil ($[\alpha]^{22}{ }_{\mathrm{D}}=$ $-19\left(c 2.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$). Structural assignment utilized additional information from gCOSY .

```
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\) ): \(\quad 6.30\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CBr}_{2}=\mathrm{CH}\right), 5.83-5.72(\mathrm{~m}\),
\(\left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.03-4.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)\), 3.89-
\(3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CBr}_{2}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)\),
2.08-2.03 ( \(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\) ), 1.65-1.57 (m, 1 H ,
\(\mathrm{CHH}^{\prime} \mathrm{CH}_{2}\) ), 1.53-1.37 (m, 3H, \(\mathrm{CHH}^{\prime} \mathrm{CH}_{2}\) ).
```

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

$$
\begin{aligned}
& 6.30\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CBr}_{2}=\mathrm{CH}\right), 5.83-5.72(\mathrm{~m}, \\
& \left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.03-4.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 3.89- \\
& 3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CBr}_{2}\right), 3.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), \\
& 2.08-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}, \\
& \text { CHH'CH} \left._{2}\right), 1.53-1.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}^{\prime} \mathrm{CH}_{2}\right) .
\end{aligned}
$$

$140.1\left(\mathrm{CH}_{2}=\mathbf{C H}\right)$, 138.7, $115.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 91.4, $81.5\left(\mathrm{OCH}_{3}\right), 57.2,33.9,33.8,24.3$.

2931 (s), 2822 (w), 1641 (m), 1617 (m), 1458 (m), 1105 (s), 912 (s), 782 (s).

[^18]Elemental Analysis:

TLC ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes), $R f$:
calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C}, 36.27 ; \mathrm{H}, 4.74$, found: C, 35.98; H, 4.70.
0.78 (UV, CAM).

(4-Bromo-6-methoxy-1-methyl-undeca-2,4,10-trienyloxy)-tert-butyl-dimethyl-silane (29):

Tetrakis(triphenylphosphine)palladium ($1.54 \mathrm{~g}, 1.30 \mathrm{mmol}, 8.00 \mathrm{~mol} \%$) and thallium carbonate ($15.7 \mathrm{~g}, 33.0 \mathrm{mmol}, 2.00$ equiv) were added sequentially to a degassed solution of dibromide (-)-27 ($4.99 \mathrm{~g}, 17.0 \mathrm{mmol}, 1$ equiv) and boronic acid $\mathbf{2 8}^{8}(4.04 \mathrm{~g}, 17.6 \mathrm{mmol}, 1.10$ equiv) in a mixture of tetrahydrofuran and water ($2: 1,68 \mathrm{~mL}$) at $23^{\circ} \mathrm{C}$ in the dark, and the reaction mixture was sealed under an argon atmosphere. After 10 h , the pale yellow heterogeneous reaction mixture was diluted with ethyl acetate, was filtered through a plug of silica gel (diam. $5 \mathrm{~cm}, \mathrm{ht} .3 \mathrm{~cm}$), and the residue was washed with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The filtrate was washed with saturated aqueous sodium bicarbonate solution (100 mL) and brine (100 mL), was dried over anhydrous sodium sulfate, was filtered and was concentrated under reduced pressure. The resulting oil was purified by flash column chromatography (silica gel: diam. 5 cm , ht. 10 cm ; eluent: 33% EtOAc in hexanes) to afford vinyl bromide 29 ($6.7 \mathrm{~g}, 97 \%$) as a $1: 1$ mixture of two diastereomers. Structural assignment utilized additional information from gCOSY.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$, one diastereomer noted by *): 6.23-6.19 (m, 1 H , $\left.\mathrm{CH}=\mathrm{CH}-\mathrm{CBr} ; 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CBr}^{*}\right), ~ 6.12-6.08(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CBr} ; 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CBr}^{*}\right), 5.83-5.73$ (m, $2 \mathrm{H}, \mathrm{CBr}=\mathrm{CH}, \mathrm{CH}_{2}=\mathrm{CH} ; 2 \mathrm{H}, \mathrm{CBr}=\mathrm{CH}^{*}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}^{*}\right), 5.03-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH} ; 2 \mathrm{H}\right.$, $\mathrm{CH}_{2}=\mathrm{CH}^{*}$), 4.47-4.40 (m, 1H, CHOTBS; 1H, CHOTBS*), 4.22-4.15 (m, 1H, CHOCH $3 ; 1 \mathrm{H}$, $\mathrm{CHOCH}_{3}{ }^{*}$), $3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}{ }^{*}$), 2.06 (app-q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ; 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 1.67-1.40(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} ; 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{*}$), 1.24 (d, $J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOTBS} ; 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOTBS}^{*}$), 0.89 (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3} ; 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 0.05(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}{ }^{*}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$): $\quad 140.5,140.4,138.8,138.8,134.2,134.1,127.0$, $126.9,126.9,126.8,114.9,80.5,77.4,68.3,56.9$, 34.4, 33.9, 26.1, 24.6, 18.5, -4.5.

FTIR (thin film) cm^{-1} :
2929 (s), 1470 (m), 1368 (w), 1253 (s), 1147 (s), 1093 (s), 835 (m), 776 (m).

HRMS (ESI):
calc'd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{BrNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 425.1482$, found: 425.1491.

[^19]TLC (10% EtOAc in hexanes), $R f: \quad 0.65(\mathrm{UV}, \mathrm{CAM})$.

1-\{1-[3-(tert-Butyl-dimethyl-silanyloxy)-but-1-enyl]-3-methoxy-octa-1,7-dienyl\}-azetidin-2one (S5):

2-Azetidinone ($1.16 \mathrm{~g}, 16.3 \mathrm{mmol}, 2.50$ equiv), copper iodide ($1.58 \mathrm{~g}, 8.30 \mathrm{mmol}, 50.0$ $\mathrm{mol} \%$), potassium carbonate ($5.74 \mathrm{~g}, 41.5 \mathrm{mmol}, 2.50$ equiv) and N, N-dimethyl ethylene diamine ($4.50 \mathrm{~mL}, 41.5 \mathrm{mmol}, 2.50$ equiv) were added sequentially to a solution of vinyl bromide 29 ($6.72 \mathrm{~g}, 16.6 \mathrm{mmol}, 1$ equiv) in anhydrous toluene $\left(16 \mathrm{~mL}\right.$) at $23{ }^{\circ} \mathrm{C}$ in a $50-\mathrm{mL}$ schlenk flask. The reaction vessel was sealed under an argon atmosphere, and it was heated to $120^{\circ} \mathrm{C}$. After 16 h , the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and filtered through a plug of silica gel (diam. 3 cm , ht .3 cm), and the residue was washed with ethyl acetate ($3 \times 200 \mathrm{~mL}$). The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (silica gel: diam. 3 cm , ht. 15 cm ; eluent: 33% EtOAc in hexanes) to afford triene S5 ($5.4 \mathrm{~g}, 85 \%$) as a $1: 1$ mixture of two diastereomers. Structural assignment utilized additional information from gCOSY.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$, one diastereomer noted by *): 6.02 (app-dt, $J=4.0,15.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CN} ; 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CN}^{*}\right), 5.83-5.65$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}, \mathrm{CH}=\mathrm{CHCN} ; 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}^{*}$, $\mathbf{C H}=\mathrm{CHCN}^{*}$), 5.30 (app-dd, $J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NC}=\mathrm{CH} ; 1 \mathrm{H}, \mathrm{NC}=\mathrm{CH}^{*}\right), 5.00-4.89(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH} ; 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}^{*}\right), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}$, CHOTBS; 1H, CHOTBS*), 3.95-3.85 (m, 1H, $\left.\mathrm{CHOCH}_{3} ; 1 \mathrm{H}, \mathrm{CHOCH}_{3}{ }^{*}\right), 3.50-3.39(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O} ; 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}^{*}$), 3.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{*}\right), 3.11-3.05$ (app-t, $J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N} ; 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{*}$), 2.06 (app-q, $J=6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ; 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right)$, 1.65-1.33
(m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} ; 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{*}$), 1.23 (d, $J=6.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOTBS} ; 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOTBS} *\right), 0.87$ (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3} ; 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 0.04(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}{ }^{*}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$): $\quad 166.1,166.0,138.9,138.8,136.9,136.9,135.1$, $135.0,130.1,130.1,124.1,124.1,114.8,114.7$, 77.1, 77.1, 68.6, 68.5, 56.7, 56.7, 41.7, 41.7, 36.7, $34.8,34.7,33.9,26.1,24.8,24.6,18.4,-4.5$.

FTIR (thin film) cm^{-1} :
2929 (s), 1761 (s), 1640 (w), 1472 (w), 1396 (m), 1252 (w), 1093 (s), 966 (m), 909 (m), 834 (m), 777 (m).

HRMS (ESI):

TLC (33\% EtOAc in hexanes), Rf: 0.50 (UV, CAM).

(-)-(S)-1-[3-Methoxy-1-(3-ox0-but-1-enyl)-octa-1,7-dienyl]-azetidin-2-one (S7):

Tetrabutylammonium fluoride solution in tetrahydrofuran $(1.0 \mathrm{M}, 21 \mathrm{~mL}, 21 \mathrm{mmol}, 1.5$ equiv) was added via syringe to a solution of triene $\mathbf{S 5}(6.9 \mathrm{~g}, 17.6 \mathrm{mmol})$ in tetrahydrofuran (176 mL) at $0^{\circ} \mathrm{C}$ under an argon atmosphere, and the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was diluted with diethyl ether (400 mL) and brine (150 mL), and the layers were separated. The aqueous layer was extracted with diethyl ether ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel: diam. 3 cm , ht. 8 cm ; eluent: 75\% EtOAc in hexanes) to afford alcohol $\mathbf{S 6}(4.6 \mathrm{~g}, 95 \%)$ as a pale yellow oil, which was used directly in the following oxidation step.

Dimethyl sulfoxide ($12.5 \mathrm{~mL}, 175 \mathrm{mmol}, 10.0$ equiv), diisopropylethylamine (15.7 mL , $87.5 \mathrm{mmol}, 5.00$ equiv), and sulfur trioxide pyridine complex ($8.40 \mathrm{~g}, 52.5 \mathrm{mmol}, 3.00$ equiv) were added sequentially to a solution of alcohol $\mathbf{S 6}$ ($4.62 \mathrm{~g}, 16.6 \mathrm{mmol}, 1$ equiv) in dichloromethane (176 mL) at $23{ }^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 15 min , the reaction mixture was diluted with diethyl ether (250 mL) and brine (100 mL), and the layers were separated. The aqueous layer was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (200 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was purified by flash column chromatagraphy (silica gel: diam. 3 cm , ht. 10 cm ; eluent: $75 \% \mathrm{EtOAc}$ in hexanes) to afford ketone (-)-S7(3.9 g, 83\%) as a pale yellow oil ($[\alpha]^{22}{ }_{\mathrm{D}}$ $=-29\left(c 0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$). Structural assignment utilized additional information from gCOSY and HSQC.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$:

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC (75\% EtOAc-hexanes), $R f$:

2932 (s), 1756 (s), 1692 (w), 1673 (m), 1603 (m), 1401 (m), 1361 (w), 1256 (m), 1101 (m), 977 (w), 911 (w), 779 (w).
calc'd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1570$, found: 300.1579 .
0.65 (UV, CAM).

(-)-(S)1-\{1-[3-(tert-Butyl-dimethyl-silanyloxy)-buta-1,3-dienyll-3-methoxy-octa-1,7-dienyl\}-

 azetidin-2-one (30):Triethylamine ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 1.5$ equiv) and tert-butyldimethylsilyl trifluoromethanesulfonate ($2.9 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv) were added sequentially to a solution of ketone (-)-S7 ($2.77 \mathrm{~g}, 10.0 \mathrm{mmol}, 1$ equiv) in dichloromethane (100 mL) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. After 2 h , saturated aqueous sodium bicarbonate solution (40 mL) was added, and the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting oil was then purified by flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [49% EtOAc in hexanes], diam. 3 cm , ht. 10 cm ; eluent: 1% of NEt_{3} in [49\% EtOAc in hexanes]) to afford silyl enol ether $(-)-30(3.4 \mathrm{~g}, 86 \%)$ as a pale yellow oil $\left([\alpha]^{22}=-28\left(c 0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. Structural assignment utilized additional information from gCOSY and HSQC.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$6.67(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCN}), 6.19(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCN}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC}=\mathrm{CH}), 5.04-$ $4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 4.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHH}^{\prime}=$ COTBS $), 4.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}=\mathrm{COTBS}\right)$, 4.09-4.04 (m, 1H, CHOCH_{3}), $3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.87 (app-q, $\left.J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{N}\right), 2.80$ (app-q, $\left.J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{N}\right), 2.45(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NC}=\mathrm{O}$), 2.00 (app-t, $J=6.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH} \mathrm{H}^{\prime} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.74-1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.98\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & \text { 165.3, 155.4, 139.4, 135.9, 131.5, 129.2, 126.6, } \\ & 115.1,98.0,77.6,56.8,41.8,37.1,35.5,34.4,26.3 \\ & 25.6,18.8,-4.2,-4.2 \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2930(\mathrm{~m}), 1760(\mathrm{~s}), 1622(\mathrm{w}), 1583(\mathrm{w}), 1396(\mathrm{~m}) \\ & 1318(\mathrm{~m}), 1254(\mathrm{~m}), 1102(\mathrm{~m}), 1028(\mathrm{~m}), 840(\mathrm{~m}) \\ & 782(\mathrm{~m}) . \end{aligned}$
HRMS (ESI):	calc'd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 414.2435, found: 414.2436.

TLC ($1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]), Rf: 0.55 (UV, CAM).

(-)-(S,2E,8Z,10E)-12-(tert-Butyl-dimethyl-silanyloxy)-7-methoxy-9-(2-ox0-azetidin-1-yl)-trideca-2,8,10,12-tetraenal (31):

Acrolein ($0.80 \mathrm{~mL}, 12 \mathrm{mmol}, 5.0$ equiv) and the Grubbs-Hoveyda catalyst (150 mg , $0.240 \mathrm{mmol}, 10.0 \mathrm{~mol} \%)$ were added sequentially to a solution of silyl enol ether $(-)-30(0.95 \mathrm{~g}$, $2.4 \mathrm{mmol}, 1$ equiv) in dichloromethane (8 mL) at $23^{\circ} \mathrm{C}$, and the reaction vessel was sealed under an argon atmosphere. After 1 h , the reaction mixture was directly loaded onto and purified by flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes], diam. 5 cm , ht. 15 cm ; eluent: $1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]) to afford tetraenal (-)-31 $(855 \mathrm{mg}, 85 \%)$ as a pale yellow oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=-70(c 0.20\right.$, benzene $)$). The starting material $(-)$-30 ($140 \mathrm{mg}, 15 \%$) was also recovered.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$9.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}), 6.68(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCN}), 6.19(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCN}), ~ 6.14-6.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CH})$, $5.99-5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CH}), 5.47(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}=\mathrm{CH}), 4.44$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}=\mathrm{COTBS}$), 4.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}=\mathrm{COTBS}$), $4.08-4.02(\mathrm{~m}, 1 \mathrm{H}$, CHOCH_{3}), $3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.92-2.89(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHH}^{\prime} \mathrm{C}=\mathrm{ON}\right), 2.76-2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}{ }^{\prime} \mathrm{C}=\mathrm{ON}\right), 2.43$ (t, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NC}=\mathrm{O}$), $1.87-1.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$), 1.61-1.57 (m, 2H, CH2 $), 1.53-1.38$ (m, 2H), 0.99 (s, $\left.9 \mathrm{H} \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.15(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):	$\begin{aligned} & \text { 193.1, 165.3, 157.6, 155.3, 135.9, 133.8, 130.7, } \\ & \text { l29.5, 128.9, 128.7,126.3, 98.2, 77.5, 56.8, 41.5, } \\ & 37.0,35.3,32.8,26.3,24.3,18.6,-4.2,-4.2 \end{aligned}$
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2931 \text { (s), } 1756 \text { (} \mathrm{s}), 1694(\mathrm{~s}), 1628(\mathrm{~m}), 1466(\mathrm{~m}), \\ & 1398(\mathrm{~m}), 1097(\mathrm{~m}), 840(\mathrm{~m}), 782(\mathrm{~m}) . \end{aligned}$
HRMS (ESI):	calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 442.2384$, found: 442.2381.

TLC ($1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]), Rf: 0.33 (UV, CAM).

trans-Decalin aldehyde (-)-32:

2,6-Di-tert-butyl-4-methylphenol ($10 \mathrm{mg}, 45 \mu \mathrm{~mol}, 0.56 \mathrm{~mol} \%$) and N, N-diethyl aniline $(0.13 \mathrm{~mL}, 0.81 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added sequentially to a solution of tetraenal (-) - $\mathbf{3 1}(3.4 \mathrm{~g}$, $8.1 \mathrm{mmol}, 1$ equiv) in acetonitrile (800 mL). The resulting solution was degassed thoroughly by passage of a stream of argon. The resulting pale yellow solution was partitioned into two $500-\mathrm{mL}$ pressure vessels. The vessels were sealed under an argon atmosphere and heated to $95^{\circ} \mathrm{C}$. After 7 h , the reaction vessels were allowed to cool to $23{ }^{\circ} \mathrm{C}$, and the combined mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [32% EtOAc in hexanes], diam. 5 cm , ht. $10 \mathrm{~cm} ; 1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]) to afford the desired trans-decalin aldehyde $(-)-32(2.1 \mathrm{~g}, 63 \%)$ as a pale yellow oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=-39\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$). The minor diastereomer (+)- $\mathbf{S 8}(420 \mathrm{mg}, 13 \%)$ was also isolated $\left([\alpha]^{22}{ }_{\mathrm{D}}=+66\left(c \quad 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. Structural assignment utilized additional information from gCOSY, HSQC, and HMBC.

Data for the major and desired diastereomer (-)-32:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$9.62\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}\right), 5.70(\mathrm{dd}, J=2.0,5.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{17} \mathrm{H}\right), 4.63\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right)$, 4.39 (d, $\left.J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHH}^{\prime} \mathrm{C}=\mathrm{ON}$), $3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.92(\mathrm{dt}, J=2.0$, $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14} \mathrm{H}\right), 2.71-2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH} \mathrm{C}=\mathrm{ON})$, 2.58-2.43 (m, 2H, CH ${ }_{2} \mathrm{NC}=\mathrm{O}$), 2.17-2.08 (m, 1H, $\left.\mathrm{C}_{9} \mathrm{H}\right), 2.05-1.94\left(\mathrm{~m}, \mathrm{C}_{10} \mathrm{H}\right), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{13} \mathbf{H H}^{\prime}$), 1.73 (app-tt, $J=2.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{15} \mathbf{H}$), $1.50-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathbf{H H}\right.$), 1.05-0.90 (m, $2 \mathrm{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime}, \mathrm{C}_{13} \mathrm{HH}$ '), $0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.64$ (app-dq, $\left.J=6.6,18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right), 0.15(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), $0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):	$202.8\left(\mathbf{C}_{8}\right), 165.8,157.1,137.6,124.8\left(\mathbf{C}_{17}\right), 96.2$ $\left(\mathbf{C}_{21}\right), 82.3\left(\mathbf{C}_{14}\right), 56.3\left(\mathrm{CHOCH}_{3}\right), 53.4\left(\mathbf{C}_{9}\right), 47.4$ $\left(\mathbf{C}_{15}\right), 44.4\left(\mathbf{C}_{19}\right), 42.1\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{ON}\right), 37.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{ON}\right), 35.2\left(\mathrm{C}_{10}\right), 32.1\left(\mathrm{C}_{13}\right), 29.8\left(\mathbf{C}_{11}\right)$, $26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.0\left(\mathrm{C}_{12}\right), 18.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.0$ $\left(\mathrm{SiCH}_{3}\right), 4.6\left(\mathrm{SiCH}_{3}\right)$.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2929 \text { (s), } 2863 \text { (m), } 1750 \text { (s), } 1723 \text { (m), } 1628 \text { (w), } \\ & 1383 \text { (m), } 1093 \text { (m), } 832 \text { (m). } \end{aligned}$

HRMS (ESI):
calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 442.2384, found: 442.2361 .

TLC ($1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]), Rf: 0.25 (UV, CAM).

Data for the minor diastereomer (+)-S8:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$:
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

HRMS (ESI):
$9.69\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}\right), 4.74(\mathrm{dd}, J=1.8,5.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{17} \mathrm{H}\right), 4.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 4.41(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{21} \mathrm{HH}^{\prime}$), 4.23 (br-s, 1H, $\mathrm{C}_{14} \mathrm{H}$), 3.10 (s, 3H, OCH_{3}), 3.04-3.01 (m, 1H, $\mathrm{C}_{19} \mathbf{H}$), 2.75 (app-dq, $J=2.4,12.0$ $\mathrm{Hz}, \mathrm{C}_{10} \mathbf{H}$), 2.67-2.65 (m, 1H, CHH'C=ON), 2.49$2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}^{\prime} \mathrm{C}=\mathrm{ON}, \mathrm{C}_{15} \mathbf{H}\right), 2.37-2.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHH}^{\prime} \mathrm{NC}=\mathrm{O}$), 2.23-2.19 (m, 1H, C9H), 2.16-2.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHH}{ }^{\prime} \mathrm{NC}=\mathrm{O}$), 1.89-1.87 (m, $1 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}$), $1.65-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 1.32-1.27(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 0.98\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.84$ (app-dq, $\left.J=3.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right), 0.14(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
$203.6\left(\mathrm{C}_{8}\right), 164.1,158.3,139.8,109.4\left(\mathbf{C}_{17}\right), 95.4$
$\left(\mathrm{C}_{21}\right), 76.6\left(\mathrm{C}_{14}\right), 56.8\left(\mathrm{OCH}_{3}\right), 53.9\left(\mathrm{C}_{9}\right), 47.0$
$\left(\mathrm{C}_{15}\right)$, $44.1\left(\mathrm{C}_{19}\right), 37.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{ON}\right), 35.1$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{ON}\right)$, $30.4\left(\mathbf{C}_{11}\right)$, $29.7\left(\mathbf{C}_{10}\right)$, $28.4\left(\mathbf{C}_{13}\right)$, $26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.2\left(\mathrm{C}_{12}\right), 18.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.1\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right)$.

2931 (s), 2858 (m), 1750 (s), 1723 (m), 1629 (w), 1363 (m), 1254 (m), 1224 (s), 1094 (m), 1002 (w), 837 (m), 781 (m).
calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 442.2384, found: 442.2383.

TLC ($1 \% \mathrm{NEt}_{3}$ in [32\% EtOAc in hexanes]), Rf: 0.40 (UV, CAM).

$(-)-32$

57\% (2-steps)

(-)-33

Tricyclic Enone (-)-33:

A freshly prepared solution of titanium tetrachloride in dichloromethane ($1.0 \mathrm{M}, 0.36$ $\mathrm{mL}, 0.36 \mathrm{mmol}, 2.0$ equiv) was added in one portion via syringe to a suspension of trans-decalin aldehyde (-)- $\mathbf{3 2}$ ($75 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv) and oven-dried $4 \AA$-molecular sieves (100 mg) in dichloromethane (8.9 mL) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. After 2 min , saturated aqueous sodium chloride solution (10 mL) was added in one portion via syringe. The resulting mixture was allowed to warm to $23^{\circ} \mathrm{C}$, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure to afford the desired crude intramolecular aldol addition product as an oil. The residue was dried by concentration from anhydrous benzene $(2 \times 5 \mathrm{~mL})$ and was directly used in the following dehydration step.

A solution of the Martin sulfurane reagent ($133 \mathrm{mg}, 0.198 \mathrm{mmol}, 1.10$ equiv) in anhydrous benzene (3.6 mL) was added via cannula to the crude solution of aldol product in anhydrous benzene (3.6 mL) at $23^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was directly loaded onto and purified via flash column chromatography (silica gel: diam. $1.5 \mathrm{~cm}, \mathrm{ht} .4 \mathrm{~cm}$; eluent: 75% EtOAc in hexanes) to afford enone (-) $\mathbf{- 3 3}\left(30 \mathrm{mg}, 57 \%\right.$) as an oil $\left([\alpha]^{22}{ }_{\mathrm{D}}=-18(c 0.65\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)). Structural assignment utilized additional information from gCOSY, and HSQC.

${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 2{ }^{\circ} \mathrm{C}\right)$:	$6.89\left(\mathrm{dd}, J=3.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8} \mathbf{H}\right), 6.13$, (app-t, $J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{17} \mathrm{H}$), $5.84(\mathrm{dd}, J=1.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{21} \mathrm{H}\right), 3.47-3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{14} \mathrm{H}\right), 3.14(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.11-3.08 (m, 1H, CHH'C=ON), 2.76-2.74 (m, 1H, $\mathrm{CHH}^{\prime} \mathrm{C}=\mathrm{ON}$), 2.52-2.41 (m, 3H, $\mathrm{C}_{19} \mathbf{H}$, $\left.\mathrm{CHH}^{\prime} \mathrm{NC}=\mathrm{O}, \mathrm{CHH}^{\prime} \mathrm{NC}=\mathrm{O}\right), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{13} \mathbf{H H}^{\prime}\right)$, 1.99-1.93 (m, 1H, C9 ${ }_{9}$), 1.79-1.73 (m, $1 \mathrm{H}, \mathrm{C}_{15} \mathbf{H}$), 1.43-1.35 (m, 2H, $\left.\mathrm{C}_{12} \mathbf{H H}^{\prime}, \mathrm{C}_{11} \mathbf{H H}^{\prime}\right)$, $0.89-0.76$ ($\left.\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathrm{H}^{2}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 0.48(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}\right)$:	$\begin{aligned} & 205.7\left(\mathbf{C}_{20}\right), 166.1,164.5\left(\mathbf{C}_{8}\right), 139.9,132.7\left(\mathbf{C}_{21}\right), \\ & 125.2\left(\mathbf{C}_{17}\right), 78.6\left(\mathbf{C}_{14}\right), 55.4\left(\mathrm{OCH}_{3}\right), 48.1\left(\mathbf{C}_{15}\right), \\ & 47.4\left(\mathbf{C}_{9}\right), 46.7\left(\mathbf{C}_{19}\right), 43.8\left(\mathbf{C}_{10}\right), 42.9\left(\mathbf{C H}_{2} \mathrm{C}=\mathrm{ON}\right), \\ & 36.7\left(\mathbf{C H}_{2} \mathrm{NC}=0\right), 30.8\left(\mathbf{C}_{11}\right), 30.7\left(\mathbf{C}_{13}\right), 23.0 \\ & \left(\mathbf{C}_{12}\right) . \end{aligned}$
FTIR (thin film) cm^{-1} :	2931 (s), 1741 (s), 1710 (s), 1384 (m), 1083 (m).

HRMS (ESI):

TLC (75\% EtOAc in hexanes), $R f$:
calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 310.1414$, found: 310.1421 .
0.35 (UV, CAM).

Hydroxycarbamate (-)-38:

A solution of n-butyl lithium in hexanes ($2.5 \mathrm{M}, 0.80 \mathrm{~mL}, 2.0 \mathrm{mmol}, 4.0$ equiv) was added dropwise via syringe to a degassed suspension of the iminium chloride $(-)-23^{9}(145 \mathrm{mg}$, $0.980 \mathrm{mmol}, 2.00$ equiv) in tetrahydrofuran $(1.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. After 15 min , the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Complete dissolution of the iminium chloride was detected after 15 min at which time the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. The brown solution of the lithioenamine was transferred via cannula under positive argon pressure to a degassed suspension of copper bromide dimethyl sulfide ($101 \mathrm{mg}, 0.490 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran $(0.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to gradually warm to -40 ${ }^{\circ} \mathrm{C}$ over 1 h . The resulting brown reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and a degassed solution of enone (-) $\mathbf{- 3 3}$ ($150 \mathrm{mg}, 0.520 \mathrm{mmol}, 1.05$ equiv) in tetrahydrofuran (0.5 mL) was added via cannula. The resulting reaction mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ over 1.5 h . A solution of degassed thiophenol ($0.11 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.2$ equiv) in absolute ethanol (200 proof, 1 mL) was added to the reaction mixture. The resulting mixture was diluted with a degassed aqueous ammonium hydroxide in a saturated aqueous ammonium chloride solution ($1: 5,2.4 \mathrm{~mL}$), and the reaction was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1.5 h of vigorous stirring, the reaction mixture was diluted with degassed dichloromethane (8 mL), and the layers were separated under an argon atmosphere. The organic layer and the aqueous layer were partitioned, and the aqueous layer was extracted with degassed dichloromethane ($3 \times 8 \mathrm{~mL}$) under an argon atmosphere. The combined organic layers were concentrated under reduced pressure, and the residue was dried by concentration from degassed anhydrous benzene ($2 \times 5 \mathrm{~mL}$) and was directly used in the following reduction step.

Sodium borohydride ($59 \mathrm{mg}, 1.6 \mathrm{mmol} 3.2$ equiv) was added as a solid to a degassed solution of the crude pentacylic imine in ethanol (8 mL) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. After 30 min , aqueous sodium carbonate solution ($1.0 \mathrm{M}, 10 \mathrm{~mL}$) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with aqueous sodium carbonate solution ($1.0 \mathrm{M}, 15 \mathrm{~mL}$), and were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue was filtered through a plug of silica gel (silica gel, treated with $1 \% \mathrm{NH}_{3}$ in [$3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$], diam. 1.5 cm , ht. 3 cm ; eluent: $1 \% \mathrm{NH}_{3}$ in [3\% methanol in dichloromethane]) to afford crude pentacyclic compound (-)-37 and was directly used in the following step.

Benzyl chloroformate ($0.32 \mathrm{~mL}, 2.2 \mathrm{mmol}, 4.5$ equiv) was added via syringe to a heterogeneous mixture of crude pentacyclic amine (-)-37, a solution of potassium carbonate (1.3 $\mathrm{g}, 9.4 \mathrm{mmol}, 19$ equiv) in water (9.2 mL), and diisopropylethyl amine ($1.3 \mathrm{~mL}, 7.4 \mathrm{mmol}, 15$ equiv) in tetrahydrofuran $(9.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction vessel was sealed under an argon atmosphere, and the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. Additional portions of benzyl chloroformate ($2 \times 0.32 \mathrm{~mL}$) were added at $0^{\circ} \mathrm{C}$ at 30 min intervals. Morpholine (0.58

[^20]$\mathrm{mL}, 6.7 \mathrm{mmol}, 14$ equiv) was added to quench excess benzyl chloroformate. The reaction mixture was diluted with dichloromethane (50 mL), and the layers were separated. The aqueous layer was extracted with dichloromethane ($2 \times 35 \mathrm{~mL}$). The combined organic layers were washed with aqueous sodium carbonate solution ($1.0 \mathrm{M}, 20 \mathrm{~mL}$), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [5% acetone in hexanes], diam. 1.5 cm , ht. 4 cm ; eluent: $1 \% \mathrm{NEt}_{3}$ in [5% acetone in hexanes] to $1 \% \mathrm{NEt}_{3}$ in [35% acetone in hexanes]) to afford hydroxy carbamate (-)-38 ($132 \mathrm{mg}, 50 \%$) as a white solid $\left([\alpha]^{22}{ }_{\mathrm{D}}=-22\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. Structural assignment utilized additional information from gCOSY, HSQC, HMBC, and NOESY.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	7.33-7.28 (m, 2H, ArH), 7.16-7.12 (m, 2H, ArH), 7.08-7.04 (m, 1H, ArH), 6.18 (app-t, $J=2.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{17} \mathbf{H}\right), 5.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCHH}{ }^{\prime} \mathrm{OC}=\mathrm{ON}\right), 5.21(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}$, PhCHH'OC=ON), 4.57-4.50 (m, 1H, $\left.\mathrm{C}_{6} \mathbf{H}\right)$, 4.444.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}$), $3.50-3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{14} \mathrm{H}\right), 3.29-$ 3.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHH} \mathrm{C}=\mathrm{ON}$), $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.84-2.77 (CHH'C=ON), 2.55-2.34 (m, 4H, $\left.\mathrm{CH}_{2} \mathrm{NC}=\mathrm{O}, \mathrm{C}_{19} \mathbf{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{13} \mathbf{H H}^{\prime}\right), 2.03-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathbf{H}\right), 1.78-1.72(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 1.66-1.23 (m, 9H, C ${ }_{8} \mathrm{H}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}$, $\left.\mathrm{C}_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{3} \mathbf{H H}^{\prime}, \mathrm{C}_{21} \mathbf{H H}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right)$, $1.17\left(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}\right), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}^{2}, \mathrm{C}_{1} \mathbf{H}\right), 1.02-0.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathbf{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right.$, $\left.\mathrm{C}_{13} \mathrm{HH}^{\prime}\right), 0.68$ (app-q, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	166.7 ($\mathbf{C}_{\text {amide }}$), 155.9 ($\mathbf{C}_{\text {carbamate }}$), 139.4 ($\left.\mathbf{C}_{16}\right), 138.3$ (ArC), $129.5\left(\mathrm{C}_{17}\right), 129.0(\mathrm{ArCH}), 128.9(\mathrm{ArCH})$, $128.6(\mathrm{ArCH}), 80.2\left(\mathrm{C}_{20}\right), 79.5\left(\mathbf{C}_{14}\right), 67.4$ $\left(\mathrm{PhCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 54.8\left(\mathbf{C}_{9}\right), 48.3\left(\mathbf{C}_{5}\right), 47.8$ $\left(\mathbf{C}_{6}\right), 47.0\left(\mathbf{C}_{15}\right), 46.4\left(\mathbf{C}_{2}\right), 44.6\left(\mathbf{C}_{10}\right), 43.5$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{ON}\right), 39.7\left(\mathbf{C}_{19}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{NC}=\mathrm{O}\right), 34.7$ $\left(\mathbf{C}_{4}\right), 34.4\left(\mathbf{C}_{7}\right), 34.6\left(\mathbf{C}_{13}\right), 32.5\left(\mathbf{C}_{8}\right), 31.2\left(\mathbf{C}_{11}\right)$, $30.3\left(\mathbf{C}_{21}\right), 23.6\left(\mathbf{C}_{12}\right), 20.5\left(\mathbf{C}_{1}\right), 17.8\left(\mathbf{C}_{3}\right)$.
FTIR (thin film) cm^{-1} :	3414 (br, s), 2932 (s), 1742 (s), 1722 (s), 1689 (s), 1454 (m), 1391 (s), 1315 (s), 1084 (s), 978 (w), 666 (m).
HRMS (ESI):	calc'd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 535.3166, found: 535.3175 .
TLC (40\% acetone in hexanes), $R \mathrm{ff}$	0.50 (UV, KMnO_{4}, CAM).

Ketoalcohol (-)-39:

p-Toluenesulfonic acid monohydrate ($8.3 \mathrm{mg}, 0.043 \mathrm{mmol}, 30 \mathrm{~mol} \%$) was added as a solid to a solution of hydroxy carbamate (-)-38 ($77 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv) in benzene (15 mL) at $23^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. Because of the sensitivity of the product to acid, aqueous work-up was avoided. After 1.5 h , the reaction mixture was directly loaded onto and purified via flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [35% acetone in hexanes]: diam. 1.5 cm , ht. 4 cm ; eluent: $1 \% \mathrm{NEt}_{3}$ in [35% acetone in hexanes]) to afford ketone (-)-39 ($54.8 \mathrm{mg}, 81 \%$) as a white solid ($[\alpha]^{22}{ }_{\mathrm{D}}=-62$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)). Structural assignment utilized additional information from gCOSY, HSQC, HMBC, and NOESY.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :

$$
\begin{aligned}
& \text { 7.32-7.29 (m, 2H, ArH), 7.16-7.13 (m, 2H, ArH), } \\
& \text { 7.07-7.04 (m, 1H, ArH), } 5.23 \text { (br-s, 2H, } \\
& \mathrm{PhCH}_{2} \mathrm{OC}=\mathrm{ON} \text {), } 4.54 \text { (br-s, 1H, C }{ }_{6} \mathbf{H} \text {), } 4.43 \text { (br-s, } \\
& \left.1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H} \text {, } \\
& \left.\mathrm{C}_{14} \mathbf{H} \text {), 2.45-2.36 (m, 2H, } \mathrm{C}_{17} \mathrm{HH}^{\prime}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right), \text { 2.13- } \\
& 1.98 \text { (} \mathrm{m}, 4 \mathrm{H}^{2}, \mathrm{C}_{17} \mathrm{HH}^{\prime}, \mathrm{C}_{8} \mathbf{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{19} \mathbf{H} \text {), } 1.82 \\
& \text { (dd, } \left.J=9.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}\right), 1.61-1.56(\mathrm{~m}, 1 \mathrm{H} \text {, } \\
& \left.\mathrm{C}_{5} \mathbf{H} \text {), 1.47-1.36 (m, 3H, } \mathrm{C}_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{21} \mathbf{H H}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right) \text {, } \\
& \text { 1.35-1.20 (m, 3H, C } \left.{ }_{12} \mathbf{H H}^{\prime}, \mathrm{C}_{3} \mathbf{H H}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}\right), ~ 1.16- \\
& 1.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}\right), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz} \text {, } \\
& \left.3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 1.02\left(\text { app-t, } J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}\right), 1.00- \\
& \left.0.94 \text { (} \mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right), 0.80-0.71(\mathrm{~m}, 1 \mathrm{H} \text {, } \\
& \mathrm{C}_{12} \mathrm{HH}^{\prime} \text {), } 0.67 \text { (app-dq, } J=3.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10} \mathbf{H} \text {), } \\
& 0.52-0.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{H} \mathbf{H}^{\prime}\right) \text {. } \\
& 210.8\left(\mathbf{C}_{16}\right), 156.0\left(\mathbf{C}_{\text {carbamate }}\right), 138.1(\mathrm{ArC}), 133.3 \\
& (\mathrm{ArCH}), 130.4(\mathrm{ArCH}), 129.9(\mathrm{ArCH}), 80.6\left(\mathrm{C}_{20}\right) \text {, } \\
& 78.0\left(\mathrm{C}_{14}\right), 67.5\left(\mathrm{PhCH}_{2}\right), 57.2\left(\mathrm{OCH}_{3}\right), 56.7\left(\mathrm{C}_{15}\right) \text {, } \\
& 56.0\left(\mathbf{C}_{9}\right), 48.9\left(\mathbf{C}_{5}\right), 47.8\left(\mathbf{C}_{6}\right), 46.4\left(\mathbf{C}_{2}\right), 41.1 \\
& \left(\mathbf{C}_{10}\right), 39.3\left(\mathbf{C}_{17}\right), 39.2\left(\mathbf{C}_{8}\right), 37.1\left(\mathbf{C}_{19}\right), 34.9\left(\mathbf{C}_{7}\right. \text {, } \\
& \left.\mathbf{C}_{21}\right), 32.5\left(\mathbf{C}_{11}\right), 31.7\left(\mathbf{C}_{13}\right), 30.4\left(\mathbf{C}_{3}\right), 23.3\left(\mathbf{C}_{12}\right) \text {, } \\
& 20.4\left(\mathbf{C}_{1}\right), 18.4\left(\mathbf{C}_{4}\right) . \\
& 3429 \text { (br, s), } 2933 \text { (s), } 1739 \text { (s), } 1690 \text { (s), } 1440 \text { (m), } \\
& 1347 \text { (m), } 1317 \text { (s), } 1245 \text { (w), } 1188 \text { (w), } 1114 \text { (m), } \\
& 1088 \text { (s), } 741 \text { (w), } 697 \text { (m). }
\end{aligned}
$$

HRMS (ESI):

TLC (50% acetone in hexanes), $R f$:
calc'd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 504.2720, found: 504.2721.
0.63 (UV, CAM).

Vinyl ether (+)-41:

Freshly distilled phosphorus oxychloride ($13 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 2.0$ equiv) was added dropwise via syringe to N, N-dimethylformamide ($450 \mu \mathrm{~L}, 5.61 \mathrm{mmol}, 81.0$ equiv) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After 30 min , a solution of ketone (-)-39 ($33.3 \mathrm{mg}, 69.0 \mu \mathrm{~mol}, 1$ equiv) in dichloromethane (1.4 mL) was added dropwise via cannula to the reaction mixture at $0^{\circ} \mathrm{C}$, and the resulting yellow solution was allowed to warm to $23^{\circ} \mathrm{C}$. After 30 min , saturated aqueous sodium bicarbonate solution (4 mL) was added to quench excess acid, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (silica gel: diam. 1.5 cm , ht. 3 cm ; eluent: 40% EtOAc in hexanes then 50% acetone in hexanes afforded the vinyl ether (+)-41 ($24 \mathrm{mg}, 71 \%$) as a white film $\left([\alpha]^{22}{ }_{D}=+19\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$. Structural assignment utilized additional information from gCOSY, HSQC, HMBC, and NOESY.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):
7.29 (app-d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.16-7.13 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.07 (app-t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.89 (app-d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{18} \mathbf{H}$), 5.20 (br-s, 2 H , $\mathrm{PhCH}_{2} \mathrm{OC}=\mathrm{ON}$), 4.52 (br-s, 1H, $\mathrm{C}_{6} \mathbf{H}$), 4.26 (br-s, $\left.1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}\right)$, $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{14} \mathrm{H}\right), 3.00\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{19} \mathrm{H}\right), 2.33$ (br-s, $1 \mathrm{H}, \mathrm{C}_{5} \mathbf{H}$), 2.27 (br-s, 1H, C $\mathrm{C}_{7} \mathrm{HH}^{\prime}$), 2.11 (app-d, $J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{13} \mathrm{HH}^{\prime}$), 1.89 (app-dd, $1 \mathrm{H}, J=9.0$, $12.0 \mathrm{~Hz}, \mathrm{C}_{15} \mathbf{H}$), 1.49-1.44 (m, 4H, $\mathrm{C}_{8} \mathbf{H}, \mathrm{C}_{21} \mathbf{H H}^{\prime}$, $\mathrm{C}_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{12} \mathbf{H H}^{\prime}$), 1.30 (app-dd, $J=3.6,11.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 1.27-1.07$ (m, 6H, $\mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}$, $\left.\mathrm{C}_{4} \mathbf{H H}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{9} \mathrm{H}\right), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right), 0.82-0.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right.$, $\left.\mathrm{C}_{10} \mathrm{H}\right), 0.59$ (app-q, $\left.J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right)$.
194.7 (\mathbf{C}_{16}), 155.7 ($\mathbf{C}_{\text {carbamate }}$), $151.0\left(\mathbf{C}_{18}\right), 138.0$ (ArC), $129.1(\mathrm{ArCH}), 128.9(\mathrm{ArCH}), 128.7$ (ArCH), $119.4\left(\mathbf{C}_{17}\right), 102.7\left(\mathbf{C}_{20}\right), 77.1\left(\mathbf{C}_{14}\right), 67.5$ $\left(\mathrm{PhCH}_{2} \mathrm{OC}=\mathrm{ON}\right), 57.4\left(\mathrm{OCH}_{3}\right), 56.9\left(\mathrm{C}_{15}\right), 55.6$ $\left(\mathbf{C}_{9}\right), 47.6\left(\mathbf{C}_{6}\right), 46.9\left(\mathbf{C}_{2}\right), 42.0\left(\mathbf{C}_{19}\right), 41.1\left(\mathbf{C}_{10}\right)$, $40.1\left(\mathbf{C}_{5}\right), 35.4\left(\mathbf{C}_{7}\right), 34.5\left(\mathbf{C}_{8}\right), 32.4\left(\mathbf{C}_{11}\right), 32.0$ $\left(\mathbf{C}_{21}\right), 31.3\left(\mathbf{C}_{13}\right), 29.1\left(\mathbf{C}_{4}\right), 23.1\left(\mathbf{C}_{12}\right), 20.8\left(\mathbf{C}_{1} \mathrm{H}\right)$, $18.0\left(\mathbf{C}_{3}\right)$.

FTIR (thin film) cm^{-1} :

HRMS (ESI):

TLC (50\% EtOAc in hexanes), $R f$:

2932 (s), 1693 (s, C=O), 1596 (s), 1312 (w), 1120 (m).
calc'd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 492.2744, found: 492.2745.
0.49 (UV, CAM).

Ketoester (-)-44:

A solution of vinyl ether (+)-41 ($7.5 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1$ equiv) in mixture of acetonitrile and water ($5: 1,150 \mu \mathrm{~L}$) was treated sequentially with silica gel (1.7 mg) and 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ, $3.5 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1.1$ equiv) at $23^{\circ} \mathrm{C}$, and the reaction vessel was sealed under an argon atmosphere. After 6 h , the reaction mixture was filtered through a plug of cotton to remove the silica gel and the filtrate was partitioned between water (1 mL) and dichloromethane (8 mL). The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude ketoaldehyde 42. The ketoaldehyde was directly used in the following oxidation step.

To a solution of the crude ketoaldehyde 42 in tert-butanol ($380 \mu \mathrm{~L}$) at $23{ }^{\circ} \mathrm{C}$ was added 2-methyl-2-butene ($16 \mu \mathrm{~L}, 0.15 \mathrm{mmol} 10$ equiv) and a solution of sodium phosphate monohydrate monobasic ($21 \mathrm{mg}, 0.15 \mathrm{mmol}, 10$ equiv) in water ($150 \mu \mathrm{~L}$) followed by a solution of sodium chlorite ($14 \mathrm{mg}, 0.15 \mathrm{mmol}, 10$ equiv) in water ($150 \mu \mathrm{~L}$) via syringe. After 1 h , saturated aqueous sodium thiosulfate solution (1 mL) was added to quench excess oxidant, and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude ketoacid that was directly used in the following methylation step.

Freshly prepared diazomethane solution in ether ($1.50 \mathrm{~mL}, 1.60 \mathrm{mmol}, 100$ equiv) was added to a solution of the crude sample and acetic acid ($31 \mu \mathrm{~L}, 61 \mu \mathrm{~mol}, 4.0$ equiv) in THF (100 $\mu \mathrm{L})$ at $0^{\circ} \mathrm{C}$. After 30 min , a tetrahydrofuran solution of acetic acid ($2 \mathrm{M}, 0.5 \mathrm{~mL}$) was added to quench excess diazomethane and the volatiles were removed under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (silica gel: diam. 1.5 cm , ht. 2 cm ; eluent: 50% EtOAc in hexanes to $75 \% \mathrm{EtOAc}$ in hexanes then 50% acetone in hexanes afforded the ketoester (-)-44 ($5 \mathrm{mg}, 61 \%$) as a clear film ($[\alpha]_{\mathrm{D}}^{22}=-64$ (c 0.42, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)). Structural assignment utilized additional information from gCOSY, HSQC, and HMBC.

[^21]| | ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{3} \mathbf{H H}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}, \mathrm{C}_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}$), 1.13-0.87 (m, 5H, $\mathrm{C}_{13} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{7} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathrm{H}$), $1.02\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}_{3}\right), 0.75-0.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 0.48-0.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right)$. |
| :---: | :---: |
| ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): | $195.1\left(\mathbf{C}_{16}\right), 168.4\left(\mathbf{C}_{18}\right), 167.9\left(\mathbf{C}_{19}\right), 155.8$
 ($\mathrm{C}_{\text {carbamate }}$), 138.1 (ArC), 129.1 (ArCH), 128.9
 $(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 128.3\left(\mathbf{C}_{17}\right), 82.5\left(\mathbf{C}_{20}\right)$,
 $77.1\left(\mathrm{C}_{14}\right), 67.6\left(\mathrm{PhCH}_{2} \mathrm{OC}=\mathrm{ON}\right), 58.3\left(\mathrm{C}_{9}\right), 58.1$
 $\left(\mathrm{C}_{15}\right), 57.6\left(\mathrm{OCH}_{3}\right), 52.4\left(\mathrm{COOCH}_{3}\right), 47.0\left(\mathrm{C}_{6}\right)$,
 $46.4\left(\mathbf{C}_{5}\right), 46.2\left(\mathbf{C}_{2}\right), 46.1\left(\mathbf{C}_{10}\right), 35.8\left(\mathbf{C}_{7}, \mathbf{C}_{21}\right), 31.8$
 $\left(\mathbf{C}_{13}\right), 30.2\left(\mathbf{C}_{8}\right), 30.1\left(\mathbf{C}_{3}, \mathbf{C}_{11}\right), 22.6\left(\mathbf{C}_{12}\right), 20.3$
 $\left(\mathbf{C}_{1}\right), 19.1\left(\mathbf{C}_{4}\right)$. |
| FTIR (thin film) cm^{-1} : | $\begin{aligned} & 3440 \text { (br, s, OH), } 2928 \text { (s), } 2856 \text { (m), } 1733 \\ & \text { (COOMe), } 1675 \text { (C=O), } 1316 \text { (w), } 1111 \text { (w). } \end{aligned}$ |
| HRMS (ESI): | calc'd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 538.2799$, found: 538.2803. |
| TLC (50% acetone in hexanes), Rf: | 0.75 (UV, CAM). |

Amino Ketoester (-)-S9:

Iodotrimethylsilane ($26 \mu \mathrm{~L}, 0.18 \mathrm{mmol}, 14$ equiv) was added via syringe to a solution of keto ester (-)-44 ($7.1 \mathrm{mg}, 13 \mathrm{mmol}, 1$ equiv) and 2,6-di-tert-butyl-4-methyl-pyridine (670 mg , 3.25 mmol , 250 equiv) in dichloromethane ($500 \mu \mathrm{~L}$) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. Additional portions of iodotrimethylsilane ($8 \times 26 \mu \mathrm{~L}$)were added at 1 h intervals until complete consumption of (-)-44 was observed by TLC analysis ($\sim 8 \mathrm{~h}$). Isopropanol ($300 \mu \mathrm{~L}$) and aqueous sodium carbonate solution ($1 \mathrm{M}, 6 \mathrm{~mL}$) were added, and the biphasic reaction mixture was stirred vigorously at $23^{\circ} \mathrm{C}$. After 2 h , the organic layer and the aqueous layer were separated. The aqueous layer was extracted with dichloromethane $(4 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting yellow oil via flash column chromatography (silica gel, treated with $1 \% \mathrm{NEt}_{3}$ in [35% EtOAc in hexanes], diam. 1.5 cm , ht. 4 cm ; eluent: $1 \% \mathrm{NEt}_{3}$ in [$5 \% \mathrm{EtOAc}$ in hexanes] to $1 \% \mathrm{NEt}_{3}$ in [$35 \% \mathrm{EtOAc}$ in hexanes] then 5% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the pentacyclic amino ketoester (-)-S9 (4.1 mg, 66\%) as a clear film $\left([\alpha]^{22}{ }_{\mathrm{D}}=-4.7(c\right.$ $0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)). Structural assignment utilized additional information from gCOSY, HSQC, and HMBC.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):

FTIR (thin film) cm^{-1} :
3.75 (app-d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 9 \mathrm{H}$), 3.64 (s, 3 H , COOCH_{3}), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.19-3.11$ (m, 1 H , $\mathrm{C}_{14} \mathbf{H}$), 2.93 (app-t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}$), 2.50 (app$\left.\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4} \mathbf{H}^{\prime}\right), 2.22-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}\right.$, $\mathrm{C}_{2} \mathrm{H}$), 2.00-1.91 (m, 2H, $\left.\mathrm{C}_{21} \mathrm{HH}^{\prime}, \mathrm{C}_{13} \mathrm{HH}^{\prime}\right), 1.88-$ $1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right), 1.75-1.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{HH}^{\prime}\right)$, 1.57-1.49 (m, 1H, C7H), 1.46-0.97 (m, 8H, C $\mathrm{C}_{12} \mathrm{HH}^{\prime}$, $\mathrm{C}_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}, \mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathbf{H}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{13} \mathrm{HH}^{\prime}$, $\left.\mathrm{C}_{7} \mathrm{HH}^{\prime}\right), 0.72\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 0.77-0.62$ ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right), 0.21$ (br-s, $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
$195.6\left(\mathbf{C}_{16}\right), 171.7\left(\mathbf{C}_{19}\right), 167.1\left(\mathbf{C}_{18}\right), 127.9\left(\mathbf{C}_{17}\right)$, $82.8\left(\mathbf{C}_{20}\right), 77.5\left(\mathbf{C}_{14}\right), 58.7\left(\mathbf{C}_{2}\right), 57.7\left(\mathrm{OCH}_{3}\right), 55.4$ $\left(\mathrm{C}_{6}\right), 53.3\left(\mathrm{C}_{15}\right), 51.4\left(\mathrm{COOCH}_{3}\right), 50.6\left(\mathrm{C}_{9}\right), 48.2$ $\left(\mathbf{C}_{5}\right), 47.2\left(\mathbf{C}_{21}\right), 46.2\left(\mathbf{C}_{10}\right), 41.0\left(\mathbf{C}_{7}\right), 33.6\left(\mathbf{C}_{8}\right)$, $32.2\left(\mathbf{C}_{13}\right), 31.0\left(\mathbf{C}_{3}\right), 30.4\left(\mathbf{C}_{11}\right), 24.8\left(\mathbf{C}_{4}\right), 23.7$ $\left(\mathbf{C}_{1}\right), 22.7\left(\mathbf{C}_{12}\right), 2.6\left(\mathrm{Si}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.$.

2927 (s), 2855 (m), 1741 (s, COOMe), 1673 (s, $\mathrm{C}=\mathrm{O}$), 1251 (w), 1113 (w), 842 (m).

HRMS (ESI):

TLC (5\% Methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $R f$:
calc'd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 476.2827$, found: 476.2820.
0.33 (UV, CAM).

Pentacyclic amino alcohol (-)-21:

Triethylamine trihydrogen fluoride ($0.114 \mathrm{~mL}, 0.700 \mathrm{mmol}, 82.0$ equiv) was added via syringe to a solution of pentacyclic amine (-)-S9 ($4.0 \mathrm{mg}, 8.4 \mu \mathrm{~mol}, 1$ equiv) in tetrahydrofuran $(100 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$ under an argon atmosphere. After 4 h , aqueous sodium carbonate solution (1 $\mathrm{M}, 5 \mathrm{~mL}$) was added to quench excess acid. The reaction mixture was diluted with dichloromethane $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with dichloromethane $(4 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting residue via flash column chromatography (silica gel: diam. 1.5 cm , ht. 3 cm ; eluent: 2% to 5% to 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the pentacyclic amino alcohol (-)-21 ($3 \mathrm{mg}, 90 \%$) as a clear film $\left([\alpha]^{22}{ }_{\mathrm{D}}=-24\left(c 0.080, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$. Structural assignment utilized additional information from gCOSY, HSQC, and HMBC.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$):	$3.69\left(\mathrm{dd}, J=1.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9} \mathbf{H}\right), 3.55(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{COOCH}_{3}, \mathrm{OCH}_{3}$), 3.28-3.19 (m, 1H, C ${ }_{14} \mathbf{H}$), 2.93$2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}, \mathrm{OH}\right), 2.57$ (app-d, $J=12.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{4} \mathbf{H H}^{\prime}\right), 2.21-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{15} \mathbf{H}, \mathrm{C}_{2} \mathrm{H}\right), 1.97$ (app-dd, $J=4.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{13} \mathbf{H H}$ '), 1.89 (app-t, $\left.J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right), 1.76\left(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}\right), 1.73-$ $1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 1.57$ (app-dd, $J=3.8,11.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{HH}$ '), 1.50 (ddd, $J=3.2,6.1,14.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right)$, , $.45-1.17\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right.$, $\left.\mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{10} \mathrm{H}\right), 1.17-1.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{13} \mathrm{HH}^{\prime}$), 0.97 (app-d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}$), $0.85-0.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 0.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{C}_{1} \mathbf{H}_{3}$), 0.62 (app-dq, $\left.J=3.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):	$195.7\left(\mathbf{C}_{16}\right), 174.9\left(\mathbf{C}_{19}\right), 169.1\left(\mathbf{C}_{18}\right), 127.3\left(\mathbf{C}_{17}\right)$, $80.4\left(\mathbf{C}_{20}\right), 77.6\left(\mathbf{C}_{14}\right), 58.8\left(\mathbf{C}_{2}\right), 57.6\left(\mathrm{OCH}_{3}\right), 55.2$ $\left(\mathrm{C}_{6}\right), 53.2\left(\mathrm{C}_{15}\right), 52.3\left(\mathrm{C}_{9}\right), 52.1\left(\mathrm{COOCH}_{3}\right), 48.1$ $\left(\mathbf{C}_{21}\right), 47.8\left(\mathbf{C}_{5}\right), 46.3\left(\mathbf{C}_{10}\right), 40.9\left(\mathbf{C}_{7}\right), 32.7\left(\mathbf{C}_{8}\right)$, $32.1\left(\mathbf{C}_{13}\right), 30.9\left(\mathbf{C}_{3}\right), 30.3\left(\mathbf{C}_{11}\right), 24.9\left(\mathbf{C}_{4}\right), 23.6$ $\left(\mathbf{C}_{1}\right), 22.9\left(\mathbf{C}_{12}\right)$.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 2921(\mathrm{~s}), 2850(\mathrm{~m}), 1734(\mathrm{~m}, \mathrm{COOMe}), 1671(\mathrm{~m}, \\ & \mathrm{C}=\mathrm{O}), 1460(\mathrm{~m}), 1261(\mathrm{w}), 1111(\mathrm{w}) \end{aligned}$
HRMS (ESI):	calc'd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 404.2431, found: 404.2432.

TLC ($8 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Rf: 0.38 (UV, CAM).

(+)-Hexacyclic ketoester (46):

Freshly recrystallized N-chlorosuccinimide ($1.6 \mathrm{mg}, 12 \mu \mathrm{~mol}, 2.0$ equiv) was added as a solid to a solution of amino alcohol (-)-21 ($2.5 \mathrm{mg}, 6.2 \mu \mathrm{~mol}$, 1 equiv) in acetonitrile (0.3 mL) at $23^{\circ} \mathrm{C}$, and the reaction mixture sealed under an argon atmosphere. After 45 min , the reaction solvent was removed under reduced pressure. The residue was immediately purified by flash column chromatography (silica gel: diam. 1.25 cm , ht. 2 cm ; eluent: 3% methanol in dichloromethane) to afford hexacyclic ketoester $(+)-46(2.2 \mathrm{mg}, 89 \%)$ as a white solid $\left([\alpha]^{22}{ }_{\mathrm{D}}=\right.$ $+20\left(c 0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$). Structural assignment utilized additional information from gCOSY , HSQC, HMBC, ROESY, and NOESY.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):	$3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.37$ (br-s, $1 \mathrm{H}, \mathrm{OH}$), 3.24-3.18 (m, $1 \mathrm{H}, \mathrm{C}_{14} \mathrm{H}$), 3.13-3.04 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathbf{H}, \mathrm{C}_{15} \mathbf{H}\right), 2.88\left(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}\right), 2.39-$ $2.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{HH}^{\prime}\right), 2.07-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{3} \mathbf{H H}^{\prime}\right.$, $\mathrm{C}_{13} \mathbf{H H}^{\prime}$), 1.80 (br-s, $1 \mathrm{H}, \mathrm{C}_{5} \mathbf{H}$), $1.77-1.73$ (m, 1 H , $\left.\mathrm{C}_{21} \mathbf{H H}^{\prime}\right)$, , $.65-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{8} \mathbf{H}, \mathrm{C}_{7} \mathbf{H H}^{\prime}\right), 1.55-1.46$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right), 1.40-1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}\right.$, $\left.\mathrm{C}_{11} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}\right), 1.23-1.14$ (m, 1 H , $\left.\mathrm{C}_{13} \mathrm{HH}^{\prime}\right), 1.11\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 1.07$ (appd, $\left.J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right), 0.97-0.78$ (m, 2H, $\left.\mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}$):	$195.8\left(\mathbf{C}_{16}\right), 171.9\left(\mathbf{C}_{19}\right), 169.5\left(\mathbf{C}_{18}\right), 123.0\left(\mathbf{C}_{17}\right)$, $81.0\left(\mathbf{C}_{20}\right), 78.2\left(\mathbf{C}_{14}\right), 69.9\left(\mathbf{C}_{6}\right), 66.0\left(\mathbf{C}_{9}\right), 57.6$ $\left(\mathrm{OCH}_{3}\right), 56.3\left(\mathrm{C}_{2}\right), 52.7\left(\mathrm{COOCH}_{3}\right), 52.6\left(\mathrm{C}_{15}\right)$, $49.9\left(\mathbf{C}_{5}\right), 49.9\left(\mathbf{C}_{8}\right), 46.2\left(\mathbf{C}_{10}\right), 45.0\left(\mathbf{C}_{21}\right), 37.5$ $\left(\mathbf{C}_{7}\right), 32.1\left(\mathbf{C}_{13}\right), 27.9\left(\mathbf{C}_{3}\right), 27.3\left(\mathbf{C}_{11}\right), 26.4\left(\mathbf{C}_{4}\right)$, $25.0\left(\mathbf{C}_{1}\right), 23.8\left(\mathbf{C}_{12}\right)$.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 3373 \text { (br, s), } 2923 \text { (s), } 1771 \text { (m), } 1712 \text { (s), } 1664 \text { (s) } \\ & 1461 \text { (m), } 1348(\mathrm{~m}), 1269(\mathrm{~m}), 1180(\mathrm{~m}), 1091(\mathrm{w}) \\ & 802(\mathrm{w}) \end{aligned}$

HRMS (ESI):
calc'd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 402.2275$, found: 402.2290 .

TLC ($15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $R f$:
0.56 (CAM).

(+)-16-Debenzoyl-himandrine (47):

Sodium borohyride ($4.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 10$ equiv) was added as a solid to a solution of hexacyclic ketoester $(+)-46\left(4.0 \mathrm{mg}, 9.9 \mathrm{mmol}, 1\right.$ equiv) in ethanol $(150 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was sealed under an argon atmosphere. After 30 min , aqueous sodium carbonate solution ($1 \mathrm{M}, 0.5 \mathrm{~mL}$) was added, and the layers were separated. The aqueous layer was extracted with dichloromethane ($4 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. Purification of the resulting residue via flash column chromatography (silica gel: diam. 1.25 cm , ht. 1.5 cm ; eluent: 5% methanol in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the hexacyclic diol $(+)-47(3.6 \mathrm{mg}, 90 \%)$ as a single diastereomer $\left([\alpha]^{22}{ }_{\mathrm{D}}=+28\left(c 0.035, \mathrm{CHCl}_{3}\right)\right.$. Structural assignment utilized additional information from $\mathrm{gCOSY}, \mathrm{HSQC}$, and HMBC.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$):	4.53 (app-d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{16} \mathbf{H}$), 4.22 (br-s, 1 H , $\mathrm{C}_{20} \mathrm{OH}$), 3.84 (s, $3 \mathrm{H}, \mathrm{COOCH}_{3}$), 3.86-3.80 (br-s, $1 \mathrm{H}, \mathrm{C}_{16} \mathrm{OH}$), 3.43-3.37 (m, 1H, C ${ }_{2} \mathrm{H}$), $3.40(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.31 (br-s, $1 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}$), $3.08(\mathrm{dt}, J=4.2,10.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{14} \mathbf{H}$), 2.27-2.12 (m, 5H, $\mathrm{C}_{4} \mathbf{H H}^{\prime}, \mathrm{C}_{13} \mathbf{H H}^{\prime}$, $\mathrm{C}_{15} \mathbf{H}, \mathrm{C}_{3} \mathbf{H H}^{\prime}, \mathrm{C}_{8} \mathbf{H}$), 1.94 (br-s, $1 \mathrm{H}, \mathrm{C}_{5} \mathbf{H}$), 1.90-1.68 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime}, \mathrm{C}_{7} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}, \mathrm{C}_{4} \mathrm{HH}^{\prime}$), 1.65-1.56 (m, 2H, C ${ }_{11} \mathbf{H H}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime}$), 1.52 (app-d, $J=10.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right), 1.46$ (app-dq, $J=3.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{11} \mathrm{HH}^{\prime}\right), 1.34\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 1.38-1.30$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}\right), 1.29-1.08\left(\mathrm{~m}, \mathrm{C}_{3} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime}\right.$, $\mathrm{C}_{13} \mathrm{HH}^{\prime}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):	$170.7\left(\mathbf{C}_{18}\right), 158.8\left(\mathbf{C}_{19}\right), 118.2\left(\mathbf{C}_{17}\right), 87.5\left(\mathbf{C}_{14}\right)$, $80.7\left(\mathbf{C}_{20}\right), 72.3\left(\mathbf{C}_{16}\right), 69.5\left(\mathbf{C}_{6}\right), 67.6\left(\mathbf{C}_{9}\right), 56.4$ $\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{C}_{2}\right), 52.5\left(\mathrm{COOCH}_{3}\right), 49.6\left(\mathrm{C}_{5}\right), 49.3$ $\left(\mathbf{C}_{8}\right), 48.4\left(\mathbf{C}_{15}\right), 44.9\left(\mathbf{C}_{21}\right), 42.9\left(\mathbf{C}_{10}\right), 37.6\left(\mathbf{C}_{7}\right)$, $30.4\left(\mathbf{C}_{13}\right), 27.3\left(\mathbf{C}_{3}\right), 27.0\left(\mathbf{C}_{11}\right), 25.7\left(\mathbf{C}_{4}\right), 24.3$ $\left(\mathbf{C}_{12}\right), 24.0\left(\mathbf{C}_{1}\right)$.
FTIR (thin film) cm^{-1} :	$\begin{aligned} & 3496(\mathrm{br}, \mathrm{~s}), 2930(\mathrm{~s}), 2858(\mathrm{~m}), 1733(\mathrm{~m}), 1689 \\ & (\mathrm{~m}), 1459(\mathrm{~m}), 1281(\mathrm{~m}), 1262(\mathrm{~m}), 1080(\mathrm{~m}) \end{aligned}$
HRMS (ESI):	calc'd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 404.2431, found: 404.2428.
TLC (10\% Methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Rf:	0.19 (UV, CAM).

Comparison of our assignments for (+)-16-debenzoyl-himandrine (47) with literature data:

Assignment	Original report ${ }^{10}$ $(+)$-16-Debenzoyl- himandrine (47) $\left({ }^{1} \mathrm{H}, 60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This report $(+)-16$-Debenzoyl- himandrine (47) $\left({ }^{1} \mathrm{H}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	This report (+)-16-Debenzoyl-himandrine (47) $\left({ }^{13} \mathrm{C}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Cl	1.33 (d, $J=7 \mathrm{~Hz}$)	1.34 (d, $J=7.2 \mathrm{~Hz}$)	24.0
C2	3.30 (br)	3.43-3.37 (m) ${ }^{11}$	55.9
$\begin{gathered} \text { C3, C4, C8, } \\ \text { C13, C15 } \\ \hline \end{gathered}$	-	2.27-2.12 (m)	$\begin{gathered} 27.3(\mathrm{C} 3), 25.7(\mathrm{C} 4), 49.3 \\ (\mathrm{C} 8), 30.4(\mathrm{C} 13), 48.4(\mathrm{C} 15) \end{gathered}$
C5	-	1.94 (br-s)	49.6
C6	3.30 (br)	3.31 (br-s)	69.5
$\begin{gathered} \mathrm{C} 4, \mathrm{C} 7, \\ \mathrm{C} 12, \mathrm{C} 21 \\ \hline \end{gathered}$	-	1.90-1.68 (m)	$\begin{gathered} 25.7(\mathrm{C} 4), 44.9(\mathrm{C} 21), 24.3 \\ (\mathrm{C} 12) \end{gathered}$
C7	-	1.52 (app-d, $J=10.2 \mathrm{~Hz}$)	37.6
C9	-	-	67.6
C10	-	1.38-1.30 (m)	42.9
C11, C21		1.65-1.56 (m)	27.0 (C11), 44.9 (C21)
C11	-	1.46 (app-dq, $J=3.6,12.6 \mathrm{~Hz}$)	27.0
$\begin{gathered} \mathrm{C} 3, \mathrm{C} 12, \\ \mathrm{C} 13 \end{gathered}$	-	1.29-1.08 (m)	$\begin{gathered} 27.3(\mathrm{C} 3), 24.3(\mathrm{C} 12), 30.4 \\ (\mathrm{C} 13) \\ \hline \end{gathered}$
C14	3.10 (br)	3.08 (dt, $J=4.2,10.2 \mathrm{~Hz})$	87.5
C1	4.60 (d, $J=8.0 \mathrm{~Hz})$	4.53 (app-d, $J=7.2 \mathrm{~Hz}$)	72.3
C17	-	-	118.2
C18	-	-	170.7
C19	-	-	158.8
C20	-	-	80.7
C20-OH	4.20 (s)	4.22 (br-s)	-
C16-OH	3.80 (s)	3.86-3.80 (br-s)	-
COOCH_{3}	3.88 (s)	3.84 (s)	52.5
OCH_{3}	3.43 (s)	3.40 (s)	56.4

[^22]

(-)-Himandrine (3):

Freshly distilled benzoyl chloride (0.1 mL) was added to a solution of alcohol (+)-47 (2.0 $\mathrm{mg}, 4.9 \mu \mathrm{~mol}$, 1 equiv) in pyridine (0.12 mL) at $23^{\circ} \mathrm{C}$ under an argon atmosphere. After 7 d , the reaction mixture was diluted with dichloromethane (5 mL) and aqueous sodium carbonate solution ($1.0 \mathrm{M}, 2 \mathrm{~mL}$). After 30 min , the layers were separated, and the aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica gel: diam. $0.5 \mathrm{~cm}, \mathrm{ht} .5 \mathrm{~cm}$; eluent: 3% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford (-)-himandrine ($\mathbf{3}, 2.0 \mathrm{mg}, 87 \%$) ($[\alpha]^{22}{ }_{\mathrm{D}}=-21(c 0.12$, $\left.\mathrm{CHCl}_{3}\right)$). ${ }^{12}$ Structural assignment utilized additional information from gCOSY, HSQC, HMBC, and ROESY. Crystals suitable for X-ray diffraction were obtained from dichloromethane-hexanes (5:1). For a thermal ellipsoid representation of (-)-himandrine (3) see page 119
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$):
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right):$

$$
\begin{aligned}
& 7.94 \text { (app-d, } J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH} \text {), } 7.49 \text { (app-t, } J= \\
& 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH} \text {), } 7.39 \text { (app-t, } J=7.2 \mathrm{~Hz}, 2 \mathrm{H} \text {, } \\
& \mathrm{ArH}), 6.18\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{16} \mathrm{H}\right), 4.54 \text { (br-s, } \\
& 1 \mathrm{H}, \mathrm{C}_{20} \mathrm{OH} \text {), } 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.53-3.44(\mathrm{~m} \text {, } \\
& \left.1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}\right), 3.35\left(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 3.12(\mathrm{~s}, 3 \mathrm{H} \text {, } \\
& \mathrm{OCH}_{3} \text {), } 3.05 \text { (dt, } J=4.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14} \mathbf{H} \text {), 2.44- } \\
& 2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{15} \mathbf{H}\right), 2.34-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathbf{H H}^{\prime}\right) \text {, } \\
& \text { 2.23-2.08 (m, 3H, C }{ }_{8} \mathbf{H}, \mathrm{C}_{13} \mathbf{H H} \text { ', } \mathrm{C}_{3} \mathbf{H H} \text { '), } 2.03 \text { (br-s, } \\
& 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H} \text {), 1.91-1.75 (m, 4H, } \mathrm{C}_{7} \mathrm{HH}^{\prime}, \mathrm{C}_{12} \mathrm{HH}^{\prime} \text {, } \\
& \mathrm{C}_{4} \mathrm{HH}^{\prime}, \mathrm{C}_{21} \mathrm{HH}^{\prime} \text {), 1.68-1.62 (m, 2H, C } \mathrm{C}_{11} \mathrm{HH}^{\prime} \text {, } \\
& \left.\mathrm{C}_{21} \mathrm{HH}^{\prime} \text {), } 1.57 \text { (app-d, } J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7} \mathrm{HH}^{\prime}\right) \text {, } \\
& 1.45\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1} \mathbf{H}\right), 1.45-1.42(\mathrm{~m}, 2 \mathrm{H} \text {, } \\
& \left.\mathrm{C}_{10} \mathbf{H}, \mathrm{C}_{11} \mathrm{HH}^{\prime}\right), 1.41-1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{HH}^{\prime}\right), 1.33- \\
& \left.1.27 \text { (} \mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{12} \mathrm{HH}^{\prime} \text {), 1.13-1.04 (m, 1H, } \mathrm{C}_{13} \mathrm{HH}^{\prime}\right) \text {. } \\
& 169.6\left(\mathbf{C}_{18}\right), 165.7(\mathrm{ArC}=\mathrm{O}), 163.2\left(\mathbf{C}_{19}\right), 132.7 \\
& \text { (} \mathrm{ArCH} \text {), } 131.4(\mathrm{ArCH}), 129.6(\mathrm{ArCH}), 128.6 \\
& (\mathrm{ArCH}), 116.6\left(\mathbf{C}_{17}\right), 85.5\left(\mathbf{C}_{14}\right), 81.1\left(\mathbf{C}_{20}\right), 72.9 \\
& \left(\mathrm{C}_{16}\right), 69.5\left(\mathrm{C}_{6}\right), 67.7\left(\mathrm{C}_{9}\right), 56.7\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{C}_{2}\right) \text {, } \\
& 52.3\left(\mathrm{COOCH}_{3}\right), 50.2\left(\mathrm{C}_{5}\right), 49.4\left(\mathrm{C}_{8}\right), 45.9\left(\mathrm{C}_{15}\right) \text {, } \\
& 44.8\left(\mathbf{C}_{21}\right), 43.4\left(\mathbf{C}_{10}\right), 37.4\left(\mathbf{C}_{7}\right), 30.8\left(\mathbf{C}_{13}\right), 27.7 \\
& \left(\mathbf{C}_{3}\right), 27.3\left(\mathbf{C}_{11}\right), 25.7\left(\mathbf{C}_{4}\right), 24.6\left(\mathbf{C}_{1}\right), 23.8\left(\mathbf{C}_{12}\right) .
\end{aligned}
$$

[^23]FTIR (thin film) cm^{-1} :

HRMS (ESI)

TLC ($15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $R f$:

3429 (br, s), 2919 (s), 2852 (s), 1727 (s), 1687 (m), 1450 (w), 1276 (m), 1268 (s), 1097 (m), 1066 (w), 709 (w).
calc'd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 508.2694, found: 508.2694.
0.60 (UV, CAM)

Comparison of our assignments for (-)-himandrine (3) with literature:

Assignment		$\begin{gathered} \text { This report } \\ (-) \text {-Himandrine }(3) \\ \left({ }^{(} \mathrm{H}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$	This report ${ }^{14}$ $\left({ }^{(-)-H i m a n d r i n e ~(3)}\right.$ $\left.{ }^{(3},, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
C1	1.48 (d, $J=7 \mathrm{~Hz})$	1.45 (d, $J=6.6 \mathrm{~Hz})$	24.6
C2	3.38(br)	3.53-3.44 (m) ${ }^{15}$	55.8
C3	-	1.41-1.33 (m)	$\begin{gathered} 27.7(\mathrm{C} 3), 23.8(\mathrm{C} 12), 30.8 \\ (\mathrm{C} 13) \end{gathered}$
C3, C8, C13	-	2.23-2.08 (m)	$\begin{gathered} 27.7(\mathrm{C} 3), 49.4(\mathrm{C} 8), 30.8 \\ (\mathrm{C} 13) \\ \hline \end{gathered}$
C4		2.34-2.27 (m)	25.7
C5	-	2.03 (br-s)	50.2
C6	3.38 (br)	3.35 (br-s)	69.5
$\begin{gathered} \hline \mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 12, \\ \mathrm{C} 21 \\ \hline \end{gathered}$	-	1.91-1.75 (m)	$\begin{gathered} 25.7(\mathrm{C} 4), 44.8(\mathrm{C} 21), 23.8 \\ (\mathrm{C} 12) \end{gathered}$
C7	-	1.57 (app-d, $J=11.4 \mathrm{~Hz}$)	37.4
C9	-	-	67.7
C10, C11	-	1.45-1.42 (m)	43.4 (C10), 27.3 (C11)
C11, C21		1.68-1.62 (m)	27.3 (C11), 44.8.(C21)
C12		1.33-1.27 (m)	23.8 (C12)
C13		1.13-1.04 (m)	30.8 (C13)
C14	3.10 (br)	3.05 (dt, $J=4.2,10.8 \mathrm{~Hz}$)	85.5
C15		2.44-2.37 (m)	45.9
C16	6.20 (d, $J=8 \mathrm{~Hz})$	6.18 (d, $J=7.8 \mathrm{~Hz})$	72.9
C17	-	-	116.6
C18	-	-	169.6
C19	-	-	163.2
C20	-	-	81.1
$\mathrm{C} 20-\mathrm{OH}$	4.50	4.54 (br-s)	-

${ }^{13}$ The original structure of himandrine was based on X-ray crystallographic analysis of the corresponding hydrobromide salt of 3; see (a) Guise, G. B.; Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem., 1967, 20, 1029, and (b) Willis, A. C.; O’Connor, P. D.; Taylor, W. C.; Mander, L. N. Aust. J. Chem., 2006, 59, 629.
${ }^{14}$ We confirmed the structure of our synthetic (-)-himandrine (3) by both X-ray crystallographic analysis and extensive 2D NMR data,
${ }^{15}$ Our assignment of the C2 methine is supported by our gCOSY, HSQC, HMBC, and ROESY data. Based on the isolation paper, the C 2 and C 6 methines correspond to the signal at 3.38 ppm (br). Our 2D data reveals the C 2 methine is actually at $3.53-3.44 \mathrm{ppm}(\mathrm{m})$, while C 6 methine alone corresponds to the signal at $3.35 \mathrm{ppm}(\mathrm{br}-\mathrm{s})$.

COOCH_{3}	-	$3.58(\mathrm{~s})$	52.3
OCH_{3}	$3.15(\mathrm{~s})$	$3.12(\mathrm{~s})$	56.7
Bz	$7.5(\mathrm{~m}), 8.0(\mathrm{~m})$	$7.94(\mathrm{app-d}, J=7.8 \mathrm{~Hz})$,	$165.7(\mathrm{ArC}=\mathrm{O}), 163.2,132.7$,
		$7.49(\mathrm{app-t}, J=7.2 \mathrm{~Hz})$,	$131.4,129.6,128.6(\mathrm{ArCH})$
		$7.39(\mathrm{app}-\mathrm{t}, J=7.2 \mathrm{~Hz})$	

Crystal Structure of (-)-Himandrine (3).

View 1:

View 2:

Table S1. Crystal data and structure refinement for (-)-himandrine (3).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=68.74^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
d8_09005
C30 H37 N O6
507.61

100(2) K
$1.54178 \AA$
Triclinic
P1
$a=8.3136(2) \AA \quad a=78.8230(10)^{\circ}$.
$b=8.7575(2) \AA \quad b=67.4340(10)^{\circ}$.
$\mathrm{c}=10.6508(3) \AA \quad \mathrm{g}=62.0950(10)^{\circ}$.
$632.72(3) \AA^{3}$
1
$1.332 \mathrm{Mg} / \mathrm{m}^{3}$
$0.746 \mathrm{~mm}^{-1}$
272
$0.30 \times 0.25 \times 0.03 \mathrm{~mm}^{3}$
4.50 to 68.74°.
$-10<=\mathrm{h}<=10,-8<=\mathrm{k}<=10,-12<=\mathrm{l}<=12$
11853
$3819[\mathrm{R}(\mathrm{int})=0.0157]$
95.4 \%

Semi-empirical from equivalents
0.9780 and 0.8072

Full-matrix least-squares on F^{2}
3819 / 374 / 340
1.050
$\mathrm{R} 1=0.0268, \mathrm{wR} 2=0.0704$
$R 1=0.0273, w R 2=0.0707$
0.12 (12)
0.160 and $-0.149 \mathrm{e} . \AA^{-3}$

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for (-)-himandrine (3). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x		y	z
l				
			$\mathrm{U}(\mathrm{eq})$	
$\mathrm{O}(1)$	$9286(2)$	$-3433(2)$	$-3435(1)$	$24(1)$
$\mathrm{O}(2)$	$6909(2)$	$3613(2)$	$906(1)$	$25(1)$
$\mathrm{O}(3)$	$10744(1)$	$-1800(1)$	$-2501(1)$	$19(1)$
$\mathrm{O}(4)$	$10437(2)$	$1690(2)$	$-759(1)$	$25(1)$
$\mathrm{O}(5)$	$10469(2)$	$1605(2)$	$-2855(1)$	$24(1)$
$\mathrm{O}(6)$	$11133(2)$	$-1066(2)$	$-4733(1)$	$25(1)$
$\mathrm{N}(1)$	$5882(2)$	$-875(2)$	$1922(1)$	$20(1)$
$\mathrm{C}(1)$	$9013(2)$	$-3652(2)$	$1181(2)$	$23(1)$
$\mathrm{C}(2)$	$7830(2)$	$-2051(2)$	$2058(2)$	$21(1)$
$\mathrm{C}(3)$	$9083(2)$	$-1168(2)$	$1986(2)$	$22(1)$
$\mathrm{C}(4)$	$7936(2)$	$497(2)$	$2808(2)$	$25(1)$
$\mathrm{C}(5)$	$5954(2)$	$1601(2)$	$2634(2)$	$23(1)$
$\mathrm{C}(6)$	$4864(2)$	$465(2)$	$2972(2)$	$23(1)$
$\mathrm{C}(7)$	$2890(2)$	$1421(2)$	$2799(2)$	$25(1)$
$\mathrm{C}(8)$	$3544(2)$	$1824(2)$	$1278(2)$	$23(1)$
$\mathrm{C}(9)$	$5574(2)$	$207(2)$	$662(2)$	$20(1)$
$\mathrm{C}(10)$	$5535(2)$	$-649(2)$	$-444(2)$	$20(1)$
$\mathrm{C}(11)$	$4371(2)$	$-1710(2)$	$141(2)$	$24(1)$
$\mathrm{C}(12)$	$4213(2)$	$-2404(2)$	$-996(2)$	$26(1)$
$\mathrm{C}(13)$	$6223(2)$	$-3455(2)$	$-1982(2)$	$25(1)$
$\mathrm{C}(14)$	$7374(2)$	$-2392(2)$	$-2581(2)$	$21(1)$
$\mathrm{C}(15)$	$7549(2)$	$-1665(2)$	$-1466(2)$	$19(1)$
$\mathrm{C}(16)$	$8698(2)$	$-584(2)$	$-2059(2)$	$18(1)$
$\mathrm{C}(17)$	$8412(2)$	$634(2)$	$-1068(2)$	$19(1)$
$\mathrm{C}(18)$	$9843(2)$	$1376(2)$	$-1511(2)$	$20(1)$
$\mathrm{C}(19)$	$6985(2)$	$1007(2)$	$139(2)$	$19(1)$
$\mathrm{C}(20)$	$6117(2)$	$2420(2)$	$1172(2)$	$21(1)$
$\mathrm{C}(21)$	$4089(2)$	$3327(2)$	$1048(2)$	$24(1)$
$\mathrm{C}(22)$	$11947(2)$	$2234(2)$	$-3369(2)$	$28(1)$
$\mathrm{C}(23)$	$9405(3)$	$-3736(3)$	$-4732(2)$	$34(1)$

$\mathrm{C}(24)$	$11671(2)$	$-2049(2)$	$-3856(2)$	$20(1)$
$\mathrm{C}(25)$	$13481(2)$	$-3698(2)$	$-4122(2)$	$20(1)$
$\mathrm{C}(26)$	$14848(2)$	$-4000(2)$	$-5428(2)$	$24(1)$
$\mathrm{C}(27)$	$16546(2)$	$-5528(2)$	$-5694(2)$	$26(1)$
$\mathrm{C}(28)$	$16881(2)$	$-6760(2)$	$-4668(2)$	$25(1)$
$\mathrm{C}(29)$	$15491(2)$	$-6478(2)$	$-3377(2)$	$25(1)$
$\mathrm{C}(30)$	$13799(2)$	$-4961(2)$	$-3103(2)$	$22(1)$

Table S3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for (-)-himandrine (3).

$\mathrm{O}(1)-\mathrm{C}(23)$	$1.4142(19)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$1.537(2)$
$\mathrm{O}(1)-\mathrm{C}(14)$	$1.4284(19)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.528(2)$
$\mathrm{O}(2)-\mathrm{C}(20)$	$1.412(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.526(2)$
$\mathrm{O}(3)-\mathrm{C}(24) 0.0$	$1.3541(17)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.525(2)$
$\mathrm{O}(3)-\mathrm{C}(16)$	$1.4605(16)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.533(2)$
$\mathrm{O}(4)-\mathrm{C}(18)$	$1.2153(19)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.535(2)$
$\mathrm{O}(5)-\mathrm{C}(18)$	$1.3318(19)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.522(2)$
$\mathrm{O}(5)-\mathrm{C}(22)$	$1.453(2)$	$\mathrm{C}(17)-\mathrm{C}(19)$	$1.340(2)$
$\mathrm{O}(6)-\mathrm{C}(24)$	$1.2094(19)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.495(2)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.482(2)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.531(2)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.5048(19)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.539(2)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.5195(19)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.493(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.523(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.395(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.535(2)$	$\mathrm{C}(25)-\mathrm{C}(30)$	$1.397(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.534(2)$	$\mathrm{C}(27)-\mathrm{C}(27)$	$1.391(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.536(2)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.390(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.547(2)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.390(2)$
$\mathrm{C}(5)-\mathrm{C}(20)$	$1.566(2)$	$\mathrm{C}(23)-\mathrm{O}(1)-\mathrm{C}(14)$	$1.383(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.521(2)$	$\mathrm{C}(24)-\mathrm{O}(3)-\mathrm{C}(16)$	$117.26(13)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$\mathrm{C}(18)-\mathrm{O}(5)-\mathrm{C}(22)$	$115.22(12)$	
$\mathrm{C}(8)-\mathrm{C}(21)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	$107.31(12)$	
$\mathrm{C}(8)-\mathrm{C}(9)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(9)$	$101.81(12)$	
$\mathrm{C}(9)-\mathrm{C}(19)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	$124.53(11)$	
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.532(2)$		

$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	115.50(13)	$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(16)$	122.44(14)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.94(13)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	115.91(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.01(13)	$\mathrm{O}(4)-\mathrm{C}(18)-\mathrm{O}(5)$	122.83(15)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	113.00(13)	$\mathrm{O}(4)-\mathrm{C}(18)-\mathrm{C}(17)$	125.03(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.15 (14)	$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(17)$	112.10(13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	108.71(13)	C(17)-C(19)-C(9)	123.37(15)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(20)$	112.62(13)	$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	132.98(15)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(20)$	110.63(13)	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{C}(20)$	102.82(12)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	100.94(13)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(19)$	118.91(13)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	108.84(12)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	110.00(13)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	113.24(14)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	96.65(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	98.68(12)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(5)$	111.34(13)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(21)$	108.84(14)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(5)$	109.96(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	104.54(12)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(5)$	108.76(12)
$\mathrm{C}(21)-\mathrm{C}(8)-\mathrm{C}(9)$	103.48(12)	$\mathrm{C}(8)-\mathrm{C}(21)-\mathrm{C}(20)$	102.03(12)
$\mathrm{C}(19)-\mathrm{C}(9)-\mathrm{N}(1)$	108.05(12)	$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{O}(3)$	125.12(14)
$\mathrm{C}(19)-\mathrm{C}(9)-\mathrm{C}(10)$	113.70(12)	$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{C}(25)$	124.37(14)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	117.25(13)	$\mathrm{O}(3)-\mathrm{C}(24)-\mathrm{C}(25)$	110.49(12)
C(19)-C(9)-C(8)	102.83(13)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)$	119.63(15)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	102.66(11)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	118.99(14)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$110.85(12)$	$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{C}(24)$	121.35(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	112.54(13)	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	119.79(15)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	112.64(13)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	120.36(15)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	113.45 (12)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	119.70(15)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	110.84(13)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	120.32(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	110.31(13)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(25)$	120.15(15)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.64(14)		
$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	110.51(13)	Symmetry transformations used to generate equivalent atoms:	
$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	107.72(12)		
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	111.57(13)		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.97(12)		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	110.17(12)		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(10)$	112.27(13)		
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	107.10(12)		
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(15)$	106.85(12)		
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	115.20(12)		
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(18)$	121.64(15)		

Table S4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for (-)-himandrine (3). The anisotropic
displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$27(1)$	$25(1)$	$22(1)$	$-4(1)$	$-8(1)$	$-12(1)$
$\mathrm{O}(2)$	$26(1)$	$19(1)$	$30(1)$	$-4(1)$	$-7(1)$	$-10(1)$
$\mathrm{O}(3)$	$18(1)$	$17(1)$	$21(1)$	$-2(1)$	$-6(1)$	$-7(1)$
$\mathrm{O}(4)$	$24(1)$	$27(1)$	$27(1)$	$-3(1)$	$-9(1)$	$-13(1)$
$\mathrm{O}(5)$	$28(1)$	$24(1)$	$22(1)$	$-1(1)$	$-5(1)$	$-16(1)$
$\mathrm{O}(6)$	$28(1)$	$21(1)$	$22(1)$	$1(1)$	$-6(1)$	$-9(1)$
$\mathrm{N}(1)$	$21(1)$	$20(1)$	$20(1)$	$-1(1)$	$-6(1)$	$-9(1)$
$\mathrm{C}(1)$	$23(1)$	$20(1)$	$26(1)$	$1(1)$	$-11(1)$	$-7(1)$
$\mathrm{C}(2)$	$21(1)$	$20(1)$	$20(1)$	$1(1)$	$-7(1)$	$-8(1)$
$\mathrm{C}(3)$	$22(1)$	$22(1)$	$23(1)$	$1(1)$	$-9(1)$	$-10(1)$
$\mathrm{C}(4)$	$28(1)$	$23(1)$	$26(1)$	$-1(1)$	$-11(1)$	$-11(1)$
$\mathrm{C}(5)$	$25(1)$	$21(1)$	$22(1)$	$-6(1)$	$-6(1)$	$-8(1)$
$\mathrm{C}(6)$	$23(1)$	$22(1)$	$18(1)$	$-2(1)$	$-3(1)$	$-9(1)$
$\mathrm{C}(7)$	$22(1)$	$23(1)$	$26(1)$	$-4(1)$	$-4(1)$	$-8(1)$
$\mathrm{C}(8)$	$20(1)$	$20(1)$	$26(1)$	$-1(1)$	$-7(1)$	$-6(1)$
$\mathrm{C}(9)$	$18(1)$	$17(1)$	$22(1)$	$0(1)$	$-6(1)$	$-7(1)$
$\mathrm{C}(10)$	$20(1)$	$18(1)$	$23(1)$	$0(1)$	$-8(1)$	$-8(1)$
$\mathrm{C}(11)$	$20(1)$	$23(1)$	$30(1)$	$0(1)$	$-8(1)$	$-10(1)$
$\mathrm{C}(12)$	$25(1)$	$22(1)$	$37(1)$	$-1(1)$	$-13(1)$	$-12(1)$
$\mathrm{C}(13)$	$27(1)$	$22(1)$	$32(1)$	$-3(1)$	$-12(1)$	$-12(1)$
$\mathrm{C}(14)$	$25(1)$	$17(1)$	$24(1)$	$-1(1)$	$-12(1)$	$-8(1)$
$\mathrm{C}(15)$	$20(1)$	$16(1)$	$22(1)$	$0(1)$	$-10(1)$	$-8(1)$
$\mathrm{C}(16)$	$19(1)$	$16(1)$	$20(1)$	$0(1)$	$-7(1)$	$-6(1)$
$\mathrm{C}(17)$	$19(1)$	$16(1)$	$22(1)$	$0(1)$	$-9(1)$	$-6(1)$
$\mathrm{C}(18)$	$19(1)$	$13(1)$	$25(1)$	$-3(1)$	$-7(1)$	$-4(1)$
$\mathrm{C}(19)$	$22(1)$	$14(1)$	$22(1)$	$1(1)$	$-12(1)$	$-6(1)$
$\mathrm{C}(20)$	$21(1)$	$16(1)$	$24(1)$	$-4(1)$	$-5(1)$	$-8(1)$
$\mathrm{C}(21)$	$22(1)$	$18(1)$	$26(1)$	$-3(1)$	$-7(1)$	$-5(1)$
$\mathrm{C}(22)$	$26(1)$	$28(1)$	$30(1)$	$1(1)$	$-3(1)$	$-16(1)$
$\mathrm{C}(23)$	$43(1)$	$38(1)$	$24(1)$	$-5(1)$	$-13(1)$	$-17(1)$

$\mathrm{C}(24)$	$23(1)$	$20(1)$	$20(1)$	$-1(1)$	$-7(1)$	$-13(1)$
$\mathrm{C}(25)$	$22(1)$	$20(1)$	$24(1)$	$-3(1)$	$-8(1)$	$-12(1)$
$\mathrm{C}(26)$	$28(1)$	$22(1)$	$24(1)$	$0(1)$	$-7(1)$	$-14(1)$
$\mathrm{C}(27)$	$25(1)$	$26(1)$	$25(1)$	$-6(1)$	$-2(1)$	$-13(1)$
$\mathrm{C}(28)$	$24(1)$	$19(1)$	$33(1)$	$-8(1)$	$-9(1)$	$-7(1)$
$\mathrm{C}(29)$	$29(1)$	$21(1)$	$28(1)$	$1(1)$	$-14(1)$	$-12(1)$
$\mathrm{C}(30)$	$23(1)$	$23(1)$	$23(1)$	$-4(1)$	$-6(1)$	$-12(1)$

Table S5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (-)-himandrine (3).

	x	y	z	U(eq)
$\mathrm{H}(2 \mathrm{O})$	8110(20)	3030(30)	640(20)	30
$\mathrm{H}(1 \mathrm{~A})$	8143	-4058	1096	35
H(1B)	9910	-4563	1606	35
H(1C)	9746	-3367	277	35
H(2)	7524	-2517	3011	25
H(3A)	10141	-1984	2333	27
H(3B)	9677	-892	1024	27
H(4A)	8691	1182	2511	29
H(4B)	7748	194	3783	29
H(5)	5198	2559	3302	28
H(6)	4761	-69	3902	27
H(7A)	2059	2484	3344	31
H(7B)	2211	677	3027	31
H(8)	2579	2029	848	28
$\mathrm{H}(10)$	4816	319	-979	24
H(11A)	5010	-2688	693	28
H(11B)	3059	-977	743	28
H(12A)	3524	-3143	-599	32
H(12B)	3459	-1428	-1491	32
H(13A)	6933	-4483	-1499	30
H(13B)	6095	-3862	-2728	30

$\mathrm{H}(14)$	6709	-1411	-3134	26
$\mathrm{H}(15)$	8282	-2670	-962	23
$\mathrm{H}(16)$	8361	97	-2865	22
$\mathrm{H}(21 \mathrm{~A})$	3174	4219	1749	29
$\mathrm{H}(21 \mathrm{~B})$	4127	3867	136	29
$\mathrm{H}(22 \mathrm{~A})$	11418	3381	-3004	43
$\mathrm{H}(22 B)$	12362	2309	-4364	43
$\mathrm{H}(22 \mathrm{C})$	13058	1435	-3086	43
$\mathrm{H}(23 \mathrm{~A})$	8788	-4491	-4635	51
$\mathrm{H}(23 B)$	10767	-4294	-5306	51
$\mathrm{H}(23 \mathrm{C})$	8744	-2634	-5154	51
$\mathrm{H}(26)$	14619	-3166	-6134	29
$\mathrm{H}(27)$	17482	-5729	-6582	31
$\mathrm{H}(28)$	18055	-7790	-4847	31
$\mathrm{H}(29)$	15703	-7331	-2680	30
$\mathrm{H}(30)$	12852	-4778	-2220	27

Table S6. Hydrogen bonds for (-)-himandrine (3) [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(2)-H(2 O) \ldots O(4)$	$0.834(15)$	$1.922(17)$	$2.6693(16)$	$148.7(19)$

Symmetry transformations used to generate equivalent atoms:

Appendix A.

Spectra for Chapter I

).

143

SAMPLE		DEC. \& VT		
		dfrq	125.677	
solvent	benzene	dn	C13	
		dpwr	34	
		dof	1498.1	
		dm	nnn	
	ACQUISITİA		dmm	w
			dmf	10000
sfrq	499.757	dseq		
tn	H1	dres	1.0	
at	3.278	homo	n	
np	40960		ING	
sw	6248.0	wtfile		
fb	not used	proc	$f \mathrm{t}$	
bs	4	¢	65536	
tpwr	56	math	1	
pw	8.2			
d1	4.000	wer r		
tof	358.1	wexp		
nt	128	whs		
ct	16	wnt		
$\begin{aligned} & \text { alock } \\ & \text { gain } \end{aligned} \operatorname{mLAGS}^{\text {not used }}$				
11	n			
1 n	n			
dp	y			
hs DIS	ay nn			
sp	-250.7			
wp	6247.9			
vs	161			
sc	0			
wc	250			
hzmm	24.99			
is	33.57			
rfi	250.9			
rfp	0			
th	7			
ins	1.000			
nm cde				

152

	SAMPLE		dec. \& Vt
	solvent	cDC13	dfrq did 125.674 c13
			dowr ${ }_{\text {di }}$
			dof 1498.1
			dm mim
	ACQui	Ition	$\mathrm{dmm}^{\text {dimf }} 10000$
	sfrq	499.749	dseq
	$t{ }_{\text {tn }}$	H1	dres ${ }^{\text {drem }}$
	at np dit	3.277 $\mathbf{6 5 5 3 6}$	homo processing ${ }^{n}$
	sw	9998.8	wtfile
	fb	not used	
	bs	${ }_{56}^{1}$	
	pw	8.2	
	d1		werr
	tof	1498.1	wexp
	nt		wbs
			wnt
	a lock	${ }^{\text {n }}$	
	gain	not $^{\text {not }}$ used	
	11	n	
	in	n	
	${ }_{\text {dp }}$	y	
		nn	
	wp	6246.8	
	vs		
	sc	0	
∞	wc	250	
	hzmm	24.93	
	is	33.57	
	${ }_{\text {rff }}$	4638.1	
	th	${ }^{3633} 7$	
	ins	1.000	
	nm cdc	ph	

Injection Date Sample Name	:	Seq. Line : 1 Location : Vial 51		
	:			
Acq. Operator	:	Inj	1	
		Inj Volume	$1 \mu 1$	
Acq. Method Last changed	:			
Analysis Method				
Last changed				


```
    Area Percent Report
```



```
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: MWD1 A, Sig=220,16 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	Area [mAU*s]	Height [mAU]	Area q
1	19.526	PB	0.7477	504.22922	8.01823	100.0000
Total	S :			504.22922	8.01823	

Results obtained with enhanced integrator!
 *** End of Report ***


```
Area Pexcent Report
```



```
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: MWD1 A, Sig=220.15 Ref $=360.100$

Results obtained with enhanced integrator!

*** End of Report ***

Acq. Method :

Last changed :
Analysis Method :
Last changed :
R, R Whelk-O

Area Percent Report

Sorted By
Multiplier
Dilution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=220,16 Ref=360,100

Peak \# RetTime [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%	
1	20.335 VV	0.8630	3016.49365	42.44931	100.0000

Results obtained with enhanced integrator!

*** End of Report. ***

Acq. Method
Last changed
Analysis Method :
Last changed
R, R Whelk-O

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: MWD1 A, Sig=220,16 $\operatorname{Ref}=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	19.389	VB	0.8069	537.40503	8.15439	100.0000
Totals	s :			537.40503	8.15439	

Results obtained with enhanced integrator!

 *** End of Report ***

$(-)-81,36 \%$

	SAmple		DEC. \& VT	
	solvent	Benzene		
		Benzene	${ }_{\text {dpwr }}$	30
			tof	0
			dm	nnn
	acquisititon		${ }_{\text {dmf }}^{\text {dmm }}$	10000
	sfra	499.748	dseq	
	tn	H1 3	dres	1.0
	at	37494	${ }_{\text {PR }}$	Ing
	sw	6247.6	wtfile	
	fb	not used	proc	
	bs		${ }^{\text {fn }}$	13107
	tpwr	56	math	
	${ }^{\text {p/ }}$	8.9		
	dif	2.000	werr	
	tof	358.6	wexp	
	nt	128	wbs	
	ct	32	wnt	wft
	in	n		
	${ }_{\text {dp }}$	n ${ }_{\text {y }}$		
		lay		
	sp	-250.4		
	${ }_{\text {wp }}$	624350		
	sc			
J	wc	250		
	hzmm	24.99		
	is	33.57		
	${ }_{\text {rfo }}$	250.4		
	th			
	ins	1.000		
	nm cdc	ph		

(+)-82, 34\%

(+)-82, 34\%

Pulse Sequence: gCos Solvent: Benzene Ambient temperature
INOVA-500
PULSE SEQUENCE: gCOSY Relax delay 1.000 sec Acq time 0.238 sec
Width 4293.7 Hz 20 Width 4293.7 Hz 26 repetitions
128 increments
OBSERVE H1, 499.7446815 MHz

Sq. sine bell 0.119 sec
F1 DATA PROCESSING
Sq. Sine bell 0.030
Sq. sine bell 0.030 sec
FT size 2048×2048
Total time $0 \mathrm{~min},-1 \mathrm{sec}$

2 - Acquisition Parameters
Date_
20060124
$\begin{array}{ll}\text { Time } & 17.45 \\ \text { INSTRUM } & \text { spect }\end{array}$
PROBHD $5 \mathrm{~mm} \mathrm{CPTXI} \mathrm{Z}-\mathrm{G}$
roesyph
TD
NS
DS
SWH
FIDR
AQ
RG
DW
DE
TE
d0
D1
d12
INO
MCRE 1024

16
6
4807.692 Hz 4.695012 Hz 0.1066500 sec
104.000 usec
6.00 use 295.0 K 0.00009433 sec 0.80000001 sec .00002000 sec 0.00020800 sec
0.00000000 sec 0.00000000 sec
0.80000001 sec

NUC1	1H
P1	8.90 usec
P15	400000.00 usec
PL1	-6.00 dB
PLI1	15.20 dB
SFO1	600.4674019 MHz
FI - Acquisition parameters	
ND0	1
TD	512
SFO1	600.4674 MHz
FIDRES	9.390024 Hz
SW	8.007 ppm
FnMODE	TPPI

F2 - Processing parameters	
SI	2048
SF	600.4650000 MHz
WDW	SINE
SSB	2
LB	0.00 Hz
GB	0
PC	1.00
F1 - Processing parameters	
SI	1024
MC2	TPPI
SF	600.4650000 MHz
WDW	SINE
SSB	2
LB	0.00 Hz
GB	0

Pulse Sequence: gCosy Solvent: Benzene Ambient temperature
INOVA-500
PULSE SEQUENCE: gCOSY Relax. delay 1.000 sec Acq. time 0.241 sec $\begin{array}{ll}\text { Width } \\ 20 & 4247.2 \mathrm{~Hz} \\ 4247.2\end{array}$ 20 Width 4247.2
24 repetitions
24 repetitions
128 increments
OBSERVE H1, 499.7446814 MHZ DATA PROCESSING
Sq. sine bell
F1 DATA PROCESSING
Sq. sine bell 0.030 sec FT size 2048×2048
Total time 0 min, -1 sec

(+)-2-epi-83

(+)-2-epi-83

Acquisition Parameters	
Date_	20060127
Time	19.54
INSTRUM	spect
PROBHD	5 mm CPTXI $\mathrm{Z}-\mathrm{G}$
PULPROG	roesyph
TD	1024
SOLVENT	C6D6
NS	24
DS	16
SWH	4807.692 Hz
FIDRES	4.695012 Hz
AQ	0.1066500 sec
RG	128
DW	104.000 usec
DE	6.00 usec
TE	295.0 K
do	0.00009433 sec
D1	0.69999999 sec
d12	0.00002000 sec
IN0	0.00020800 sec
MCREST	0.00000000 sec
MCWRK	0.69999999 sec
======== CHANNEL fl ($========$	
NUCI	1H
P1	8.90 usec
P15	400000.00 usec
PL1	-6.00 dB
PL11	15.20 dB
SFO1	600.4674019 MHz

	SAMPLE		dec. a
			dfrq 500.233
	solvent	Benzent	${ }_{\text {dn }}{ }_{\text {diow }}$
			dpwr dof
		,	dm dmm
	acqui	ition	dmf 10000
	sfra	125.798	dseq
	tn at	c13 1.737	dres
	at	103480	homo processing
	sw	29795.2	1 l
	fb	not used	wtfile
	bs		
	${ }_{\text {ctow }}^{\text {ss }}$	5_{5}^{1}	${ }_{\text {math }}^{\text {fn }}$ (131072
	pw	6.9	
	${ }^{\text {d1 }}$	0.763	werr
	tof	2763.3	wexp
	nt	${ }_{1}^{17+06}$	wbs
		17464	wnt
	$\underset{\text { alock }}{\text { gain }}$	not used ${ }^{\text {n }}$	
9		S	
	11	n	
	1 n	n	
	dp	y	
	dISPLAY		
	wp	29794.7	
	vs	7375	
	sc		
	wc	250	
	hzmm	119.18	
		500.00	
	rfl	16272.8	
	rfp	16151.4	
	${ }_{\substack{\text { in } \\ \text { ins }}}^{\text {chen }}$		
	ins	1.000	
	ai ph		

(-)-galbulimima alkaloid 13 (2)

PULSE SEQUENCE: gCOSY Relax delay i.000 sec Acq. time 0.213 sec
Width 4801.9 Hz Width 4801.9 Hz
2 D Width 4801.9 Hz 16 repetitions
OBSERVE H1, 499.7446819 MHz DATA PROCESSİNG
Sq. Sine bell 0.107 sec $F 1$ DATA PROCESSING
Sq-sine bell 0.027 sec
FT size 2048×2048
Total time $0 \mathrm{~min},-1 \mathrm{sec}$

Pulse Sequence: HSQC Solvent: Benzene Ambient temperature
IIspr:
$1-14-87$

ULSE SEQUENCE: HSQC Relax. delay 1.000 sec Acq. time 0.100 sec
Width
4542.4 Hz Width $4542.4 . \mathrm{Hz}$
20 Width 26490.1 Hz 36 Wrepetitions. 36 repetitions
2×300 increments OBSERVE H1, 499.7446838 MHZ OECOUPLE C13, 125.6740716 MHZ on during acquisition
Off during delay
GARP-1 modulated
OATA PROCESSING Gauss apodization
F DATA PROCESSING
Sq-: sine bell 0.019 se
Shifted by -0.019
FT $51 z e 2048 \times 2048$
Total time $9 \mathrm{hr}, 2 \mathrm{~min}, 7 \mathrm{sec}$

(-)-galbulimima alkaloid 13 (2) in CDCl_{3}

SAMPLE		DEC. \& VT		
solvent	Benzene	${ }_{\text {dfra }}^{\text {di }}$	500.233	
		dowr	37 -500.0	
		${ }_{\text {dma }}^{\text {dof }}$	-500.0	
ACQUISITION		${ }_{\text {dmm }}$		
		dmf	0000	
$t \mathrm{n}$	${ }^{\text {c13 }}$	dres	1.0	
at	1.736	homo	n	
np	97624		Ing	
sw	28119.5	16	0.30	
fb	not used	wtfile		
bs		proc		
ss	53	${ }_{\text {fn }}$	$13107{ }_{\text {f }}$	
tpwr	53	math		
pw	6.9			
d1	0.763	werr		
tof	2069.0	wexp		
ct	(18056	wnt		
${ }_{\text {gain }}^{\text {glags }}{ }^{\text {not used }}$				
$\begin{aligned} & 11 \\ & \text { in } \\ & \text { dp } \\ & \text { hs } \end{aligned}$	n			
	y			
	Sp DISPLAY 22.6			
wp	28119.1			
vs	10530			
Sc				
hzmm	112.48			
is	500.00			
rfi	16129.2			
rfp	16151.4			
th				
ins	1.000			
ai ph				

(+)-2-epi-16-oxohimgaline (2-epi-21)


```
    M2-Acquisition parameters (20020)
    (-)-Himbadine (4)
```

12376.237 Hz 0.188846 Hz
2.6477044 sec 2.6477044 sec
40.3 40.400 usec
6.00 usec 6.00 usec
305.0 K 1.00000000 sec

```

```

F2 - Processid 137060 MHz $\begin{array}{lc}\text { SI } & \text { corameters } \\ \text { SF } & 600.1300277 \\ \text { WDW } & \text { EM } \\ \text { SSB } & \end{array}$ $\begin{array}{ll}\text { SSB } & 0.30 \\ \text { LB } & 0 . \\ \text { GB } & 0 \\ \text { PC } & 1.00\end{array}$
て

```


223






\section*{Appendix B.}

\section*{Spectra for Chapter II}


Current Data Parameters NAME
EXPNO PROCNO

F2 - \({ }^{\text {Date_ }}\)
Time-
INSTRUM
PROBHD
Pmm QNP
spect
1H/13
\(\begin{array}{lr}\text { PROBHD } & 5 \mathrm{rm} \text { QNP 1H/13 } \\ \text { PULPROG } & \text { 2gpg } 30 \\ \text { TD } & 65536\end{array}\)
\(\begin{array}{lr}\text { TD } & 65536 \\ \text { SOLVENT } & \text { CDC13 } \\ \text { NS } & 128 \\ \text { DS } & 2 \\ \text { SWH } & 23980.814 \mathrm{~Hz}\end{array}\)
\(\begin{array}{lr}\text { SWH } & 23980.814 \mathrm{~Hz} \\ \text { FIDRES } & 0.365918 \mathrm{~Hz}\end{array}\)
\(\begin{array}{lr}\text { FIDRES } & 0.365918 \mathrm{~Hz} \\ \text { AQ } & 1.3664756 \mathrm{sec} \\ \text { RG } & 2580.3\end{array}\)
\(\begin{array}{lr}\text { DW } & 2580.3 \\ \text { DE } & 20.850 \text { usec } \\ & 6.00 \text { usec }\end{array}\)
DE
TE \(\quad \begin{array}{r}6.00 \\ \mathrm{D}\end{array} \quad \begin{aligned} 294.2 \mathrm{k}\end{aligned}\)
\(\begin{array}{ll}\text { D1 } & 2.00000000 \mathrm{sec} \\ \mathrm{d} 11 & 0.03000000 \mathrm{sec}\end{array}\) \(\begin{array}{ll}\text { DELTA } & 0.03000000 \mathrm{sec} \\ \text { TDO } & 1.89999998 \mathrm{sec}\end{array}\)
\(=======\) CHANNEL \(f 1\) ========
\(\begin{array}{lr}\text { NUC1 } & \text { Channel } 13 \mathrm{C} \\ \text { P1 } & 9.38 \mathrm{usec} \\ \text { PL1 } & 0.00 \mathrm{~dB}\end{array}\) SFO1 \(\quad 100.6228298 \mathrm{MHz}\)
\(========\) CHANNEL \(f 2=x======\)
CPDPRG2 waltz16
NUC2
N
PL2
PL12
Pl 13
90.00 usec
0.00 dB
0.00 dB
16.10 dB
\(\begin{array}{ll}\mathrm{SFO} & 400.1316005 \mathrm{MHz}\end{array}\)
F2 - Processing parameters
\begin{tabular}{lc} 
SI & 65536 \\
SF & 100.6127509 MHz \\
WDW & no \\
SSB & 0 \\
LB & 0.00 Hz \\
GB & 0 \\
PC & 1.40
\end{tabular}





Area Percent Report

\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: MWD1 E, Sig=215,16 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 18.029 & MM & 1.3433 & 4183.07324 & 51.89904 & 99.4174 \\
\hline 2 & 22.153 & MM & 1.0577 & 24.51239 & \(3.86262 e-1\) & 0.5826 \\
\hline Total & & & & 4207.58564 & 52.28530 & \\
\hline
\end{tabular}

Results obtained with enhanced integrator!
 Summed Peaks Report

Signal 1: MWD1 E, Sig=215,16 Ref=360,100


MWD1 E, Slg \(=215,16\) Ref \(=360,100\)


```

Area Percent Report

```

```

Sorted By
Multiplier
Signal
Dilution
Use Multiplier \& Dilution Factor with ISTDs

```

Signal 1: MWD1 E, Sig=215,16 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{aligned}
& \text { RetTime } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} \mathrm{~s} \text { ] }}
\end{gathered}
\] & Height [mAU] & \[
\begin{gathered}
\text { Area } \\
\text { \% }
\end{gathered}
\] \\
\hline & 18.118 & MM & 0.5225 & 65.04629 & 2.07490 & \\
\hline 2 & 22.017 & MM & 0.9094 & 1.19103 e 4 & 218.27008 & \[
\begin{array}{r}
0.5432 \\
99.4568
\end{array}
\] \\
\hline \multicolumn{4}{|l|}{Totals :} & 1.19753 e 4 & 220.34498 & \\
\hline
\end{tabular}

Results obtained with enhanced integrator!
 Summed Peaks Report

Signal 1: MWD1 E, Sig=215,16 Ref=360,100


Current Data Parameters
NAME
EXPNO
PROCNO
F2 - Acquisition Parameters
Date_
Time
INSTRUM 5 mm spect
\begin{tabular}{l} 
PULPROG \\
TD \\
2gpg \\
\\
\hline
\end{tabular}
\begin{tabular}{lr} 
SOLVENT & 65536 \\
NS & CDC13 \\
DS & 64 \\
SWH & 4
\end{tabular}
FIDRES \(\quad 0.365918 \mathrm{~Hz}\)

292.2 usec 2.00000000 sec 1.03000000 sec
1.89999998 sec
DELTA 1.8999998
====== CHANNEL
E1 ======== \(=5=====\)
13 C 13 C
9.38 usec
0.00 dB 100.6228298 MHz
\(======\) CHANNEL \(f 2========\)
\(======\)
\(\begin{array}{lr}\text { CPDPRG2 } & \text { waltz16 } \\ \text { NUC2 } & 1 \mathrm{H}\end{array}\)
PCPD2 90.00 usec \begin{tabular}{ll} 
PL2 & 0.00 dB \\
\hline
\end{tabular} PL13 \(\quad 16.10 \mathrm{~dB}\) SFO2 400.1316005 MHz
\begin{tabular}{lc} 
F2 & - Processing parameters \\
SI & 32768 \\
SF & 100.6127520 MHz \\
WDW & EM \\
SSB & 0 \\
LB & 1.00 Hz \\
GB & 0 \\
PC & 1.00
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 \\
\hline
\end{tabular}


Date_-
Time
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Time} \\
\hline INSTRUM & spect \\
\hline PROBHD & 5 mm CPTXI 1H- \\
\hline PULPROG & zg30 \\
\hline TD & 65536 \\
\hline SOLVENT & CDC13 \\
\hline NS & 16 \\
\hline DS & 2 \\
\hline SWH & 12376.237 Hz \\
\hline FIDRES & 0.1888 .46 Hz \\
\hline AQ & 2.6477044 sec \\
\hline RG & 4 \\
\hline DW & 40.400 usec \\
\hline DE & 6.00 usec \\
\hline TE & 293.0 K \\
\hline D1 & 1.00000000 sec \\
\hline TD0 & 1 \\
\hline \multicolumn{2}{|l|}{======= CHANNEL fl ========} \\
\hline NUC1 & 1H \\
\hline P1 & 11.00 usec \\
\hline PL1 & 4.00 dB \\
\hline SFO1 & 600.1337060 MHz \\
\hline \multicolumn{2}{|l|}{F2 - Processing parameters} \\
\hline SI & 65536 \\
\hline SF & 600.1300281 MHz \\
\hline WDW & EM \\
\hline SSB & 0 \\
\hline LB & 0.30 Hz \\
\hline GB & 0 \\
\hline PC & 1.00 \\
\hline
\end{tabular}


Current Data Parameters EXPNO
PROCNO

22 - Acquisition Parameters Date_-
Time
\begin{tabular}{lr} 
INSTRUM & spect \\
PROBHD & mm BBO BB-1H \\
PULPROG & 2gpg 30 \\
TD & 65536 \\
SOLVENT & CDC13 \\
NS & 615 \\
DS & 2
\end{tabular}

SWH \(\quad 23980.814 \mathrm{~Hz}\)
\(\begin{array}{ll}\text { AQ } & 0.365918 \mathrm{~Hz} \\ 1.3664756 \mathrm{sec}\end{array}\)
1.3664756 sec
18390.4
18390.4
20.80
\[
\begin{aligned}
& 20.850 \text { usec } \\
& 6.00 \text { usec } \\
& 294.2 \mathrm{~K}
\end{aligned}
\]
\[
\begin{array}{r}
294.2 \mathrm{~K} \\
2.00000000 \mathrm{se}
\end{array}
\]
\[
\begin{array}{lr}
\text { D1 } & 2.00000000 \mathrm{sec} \\
\text { d11 } & 0.03000000 \mathrm{sec} \\
\text { DELTA } & 1.89999998 \mathrm{sec} \\
\text { TD0 } & 1
\end{array}
\]
\[
\begin{aligned}
& ========\text { CHANNEL } \mathrm{f1}======== \\
& \text { NUC1 } \\
& \text { P1 } \\
& \text { PL1 } \\
& \text { SFO1 } \\
& \text { SFO } \\
& \text { 8.75 usec } \\
&
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline CPDPRG2 & waltz16 \\
\hline NUC2 & 1H \\
\hline PCPD2 & 90.00 usec \\
\hline PL2 & -1.00 dB \\
\hline PL12 & 14.52 dB \\
\hline PL13 & 18.00 dB \\
\hline SFO2 & 400.1316005 MHz \\
\hline F2-Pro & ing parameters \\
\hline SI & 65536 \\
\hline SF & 100.6127478 MHz \\
\hline WDW & no \\
\hline SSB & 0 \\
\hline LB & 0.00 Hz \\
\hline GB & 0 \\
\hline PC & 1.40 \\
\hline
\end{tabular}




```

 Current Data Parameters
 NAME
 PROCNO
 F2 - Acquisition Parameters.
Date_
lr
lr
NS
FIDRES }\quad0.126314 Hz
AQ (r)
lr
======== CHANNEL f1 ========
======== CHANNEL f1 ========
NUC1 14 1H
P1 14.00 u
SFO1 400.1324710 MHz
F2 - Processing parameters
24

```

```

SF	400.1300175
WDW	6535
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

```





245
\begin{tabular}{|c|c|c|c|}
\hline \multirow{6}{*}{date solvent} & & \multicolumn{2}{|c|}{DEC. \& VT} \\
\hline & CDC13 & dif \({ }_{\text {di }}\) & \[
\begin{array}{r}
199.744 \\
H 1
\end{array}
\] \\
\hline & & dpwr & 34 \\
\hline & & dof & 0 \\
\hline & & dm & yyy \\
\hline & & dmm & \\
\hline \multicolumn{2}{|l|}{ACQUIŞITION} & dmf & 10000 \\
\hline \(\mathbf{s f r q}\) & 125.672 & dseq & \\
\hline tn & C13 & dres & 1.0 \\
\hline at & 2.000 & homo & \\
\hline np & 125588 & \multicolumn{2}{|c|}{PROCESSING} \\
\hline sw & 31397.2 & 1b & 1.00 \\
\hline fb & not used & wtfile & \\
\hline bs & & proc & \(f t\) \\
\hline tpwr & 58 & \(f{ }^{\text {f }}\) & 131072 \\
\hline pW & 6.7 & math & f \\
\hline d1 & 3.000 & & \\
\hline tof & 0 & werr & \\
\hline nt & 256 & wexp & \\
\hline ct & 160 & whs & \\
\hline \multirow[t]{2}{*}{alock} & & wnt & \\
\hline & \multicolumn{3}{|l|}{FLAGS} \\
\hline 11 & \(n\) & & \\
\hline in & n & & \\
\hline dp & y & & \\
\hline hs & nn & & \\
\hline \multicolumn{2}{|r|}{DISPLAY} & & \\
\hline sp
\(\mathbf{w p}\) & \[
\begin{aligned}
-1329.0 \\
27683.3
\end{aligned}
\] & & \\
\hline vs & 172 & & \\
\hline sc & 0 & & \\
\hline WC & 250 & & \\
\hline hzmm & 110.73 & & \\
\hline is & 500.00 & & \\
\hline rfi & 13468.0 & & \\
\hline rfp & 9704.7 & & \\
\hline th & 68 & & \\
\hline ins & 100.000 & & \\
\hline ai cdc & & & \\
\hline
\end{tabular}






Current Data Parameters NAME
EXPNO
PROCNO
F2 - Acquisition Parameters Date
\(\begin{array}{lrr}\text { Time } & & \\ \text { INSTRUM } & & \text { spect } \\ \text { PROBHD } & 5 \mathrm{~mm} \text { QNP } & 1 \mathrm{H} / 13 \\ \text { PG30 } \\ \text { PULPROG } & & 65536 \\ \text { TD } & & \end{array}\)
\(\begin{array}{lr}\text { PULPROG } & 2 \mathrm{zg30} \\ \text { TD } & 65536 \\ \text { SOLVENT } & \text { CDC13 } \\ \text { NS } & 16 \\ \text { DS } & 2\end{array}\)
\begin{tabular}{|c|c|c|}
\hline DS & 16 & \\
\hline SWH & 8278146 & Hz \\
\hline FIDRES & 0.126314 & Hz \\
\hline AQ & 3.9584243 & sec \\
\hline RG & 101.6 & \\
\hline DW & 60.400 & usec \\
\hline DE & 6.00 & usec \\
\hline TE & 293.2 & K \\
\hline D1 & 1.00000000 & sec \\
\hline TD0 & 1 & \\
\hline \multicolumn{3}{|l|}{===n==== CHANNEL fl ======} \\
\hline NUC1 & 1H & \\
\hline P1 & 14.00 & usec \\
\hline PL1 & 0.00 & dB \\
\hline SFO1 & 400.1324710 & MHz \\
\hline \multicolumn{3}{|l|}{F2 - Processing parameters} \\
\hline SI & 65536 & \\
\hline SF & 400.1300173 & MHz \\
\hline WDW & no & \\
\hline SSB & 0 & \\
\hline LB & 0.00 & Hz \\
\hline GB & 0 & \\
\hline PC & 1.00 & \\
\hline
\end{tabular}


Current Data Parameters
EXPNO
PROCNO
F2 - Acquisition Parameters
Time
INSTRUM
PROBHD 5 mm ONP
\(\begin{array}{lr}\text { PROBHD } & 5 \mathrm{~mm} \text { QNP } 1 \mathrm{H} / 13 \\ \text { PULPROG } & \text { 2gpg } 30 \\ \text { TD } & 65536 \\ \text { SOLVENT } & \text { CDC13 }\end{array}\)
NS
DS
SWH
\(\begin{array}{lr}\text { FIDRES } & 23980.814 \mathrm{~Hz} \\ & 0.365918 \mathrm{~Hz}\end{array}\)
\(\begin{array}{lr}\text { FIDRES } & 0.365918 \mathrm{~Hz} \\ \text { AQ } & 1.3664756 \mathrm{sec} \\ \text { RG } & 8192\end{array}\) \({ }_{20} 8192\) usec 20.850 usec
6.00 usec 6.00 us
293.2 K .00000000 K 2.00000000 sec
0.03000000 sec 1.89999998 sec 1
\(\qquad\) ======
13C 9.38 usec
\(\begin{array}{rr}9.38 \\ 0 & 0.00 \mathrm{dBec} \\ & 100.6228298 \mathrm{MHz}\end{array}\)
\begin{tabular}{lc}
\(=======\) & CHANNEL \(f 2=======\) \\
CPDPRG2 & waltz16 \\
NUC2 & 1 H \\
PCPD2 & 90.00 usec \\
PL2 & 0.00 dB \\
PL12 & 16.10 dB \\
PL13 & 19.00 dB \\
SFO2 & \\
& \\
&
\end{tabular}


0
1.40
















\(\left.\begin{array}{ll}\text { Current Data Parameters } \\ \text { NAME } \\ \text { EXPNO } \\ \text { PROCNO }\end{array}\right]\)
\begin{tabular}{lc} 
F2 - Processing parameters \\
SI & 65536 \\
SF & 600.1300679 MHz \\
WDW & EM \\
SSB & 0 \\
LB & 0.30 Hz \\
GB & 0 \\
PC & 1.00
\end{tabular}





12376.237 Hz 2.188846 Hz
32 sec
40.400 usec
6.00 usec
293.0 K
1.00000000 sec
\(=======\) CHANNEL \(f 1 \quad=======\) 11.00 usec 600.1337060 MHz
F2 - Processing parameters
\begin{tabular}{lc} 
SI & 65536 \\
SF & 600.1300681 MHz \\
WDW & EM \\
SSB & 0 \\
LB & 0.30 Hz \\
GB & 0 \\
PC & 1.00
\end{tabular}





\begin{tabular}{|c|c|c|c|}
\hline \multirow{6}{*}{date solvent} & & \multicolumn{2}{|l|}{dfra DEC. \& VT \({ }_{\text {V00.229 }}\)} \\
\hline & Benzene & dn & 500.229 \\
\hline & & dpwr & 37 \\
\hline & & dof & -500.0 \\
\hline & & dm & y \\
\hline & & dmm & w \\
\hline \multicolumn{2}{|l|}{ACQUISITION} & dmf & 10000 \\
\hline sfrq & 125.795 & dseq & \\
\hline tn & C13 & dres & 1.0 \\
\hline at & 1.736 & homo & \\
\hline np & 131010 & \multicolumn{2}{|l|}{PROCESSING} \\
\hline sw & 37735.8 & 16 & 0.30 \\
\hline fb & not used & wtfile & \\
\hline bs & 8 & proc & ft \\
\hline Ss & 1 & fn & 131072 \\
\hline tpwr & 53 & math & f \\
\hline pw & 6.9 & & \\
\hline d1 & 0.763 & werr & \\
\hline tof & 631.4 & wexp & \\
\hline nt & 12800 & wbs & \\
\hline ct & 1808 & wnt & \\
\hline \multirow[t]{2}{*}{alock gain} &  & & \\
\hline & flags \({ }^{\text {not used }}\) & & \\
\hline 11 & n & & \\
\hline in & n & & \\
\hline dp & y & & \\
\hline \multirow[t]{2}{*}{hs DI} & \multirow[t]{2}{*}{DISPLAY} & & \\
\hline & & & \\
\hline sp & -1887.0 & & \\
\hline wp & 28932.4 & & \\
\hline vs & 147 & & \\
\hline sc & 0 & & \\
\hline wc & 250 & & \\
\hline hzmm & 115.73 & & \\
\hline is & 500.00 & & \\
\hline rff & 18876.7 & & \\
\hline rfp & 12651.0 & & \\
\hline th & 20 & & \\
\hline ins & 1.000 & & \\
\hline ai ph & & & \\
\hline
\end{tabular}
















\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{date \({ }_{\text {datent }}^{\text {solvent }}\)} & & \multicolumn{2}{|l|}{dfra DEC. \& VTT \({ }_{\text {V }}\)} \\
\hline & \multirow[t]{4}{*}{Benzene} & dfrq & 500.229 \\
\hline & & dpwr & \\
\hline & & dof & -500.0 \\
\hline & & \({ }_{\text {dm }}\) & \\
\hline \multicolumn{2}{|l|}{acquisition} & dmm & \(1000{ }^{\text {w }}\) \\
\hline sfrq & 125.795 & diseq & \\
\hline tn & \({ }^{\text {c13 }}\) & dres & 1.0 \\
\hline at & 1.735 & homo & \\
\hline np & 91936 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {d }}\) Processing 0.30}} \\
\hline sw & 26490.1 & & \\
\hline \({ }^{\text {fb }}\) & not used & wtfile & \\
\hline bs & & & \\
\hline ss & \(5{ }_{5}^{1}\) & fn & \({ }^{131072}\) \\
\hline pw & 6.9 & & \\
\hline d1 & 0.763 & werr & \\
\hline tof & 1250.7 & wexp & \\
\hline nt & 100000 & & \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{alock not us}} \\
\hline & & & \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
& 11 \\
& \text { in } \\
& \text { dp } \\
& \text { hs }
\end{aligned}
\]} & & & \\
\hline & n & & \\
\hline & n & & \\
\hline & y & & \\
\hline & OISPLAY & & \\
\hline sp & & & \\
\hline \({ }_{\text {ws }}^{\text {wi }}\) & 26489.7
1857 & & \\
\hline vs & 18 & & \\
\hline wc & 250 & & \\
\hline hzmm & 105.96 & & \\
\hline is & 500.00 & & \\
\hline rf1 & 16132.5 & & \\
\hline rfp & 16151.2 & & \\
\hline th & & & \\
\hline ins & 1.000 & & \\
\hline ai ph & & & \\
\hline
\end{tabular}


NAME
EXPNO
PROCNO
F2 - Acquisition Parameters
Time-
 TD
DS
SWH
FIDRES

\(\begin{array}{lr}\text { FIDRES } & 0.188846 \mathrm{~Hz} \\ \text { AQ } & 2.6477044 \mathrm{sec} \\ \text { RG } & 507 \mathrm{use} \\ \text { DW } & 40.400 \mathrm{use} \\ \text { DE } & 6.00 \mathrm{use} \\ \text { TE } & 293.0 \mathrm{~K}\end{array}\) 1.00000000
TD0










(+)-47



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & ppm \\
\hline
\end{tabular}



\title{
Meiliana Tjandra \\ Curriculum Vitae
}

\section*{EDUCATION}

EXPERIENCE
2004-present

2003-2004

2002-2003

Massachusetts Institute of Technology, Cambridge, MA
Ph.D. Candidate, Organic Chemistry. Graduation: June 2010
Thesis title: "Total Synthesis of Class II and Class III Galbulimima Alkaloids."
Advisor: Professor Mohammad Movassaghi
University of California, Berkeley, Berkeley, CA
BS Chemistry, 2003

\section*{Massachusetts Institute of Technology}

Department of Chemistry, Advisor: Professor Mohammad Movassaghi Graduate Research Assistant
- Completed the enantioselective total synthesis of all class III galbulimima alkaloids: galbulimima alkaloid 13, himbadine, and himgaline.
- Completed the enantioselecitve total synthesis of himandrine (class II).

CHIRON, Research and Development
Dr. Ronald Zuckermann and Dr. Deborah Charych
Research Associate.
- Performed a solid phase peptoid/peptide synthesis and combinatorial chemistry.
- Developed methods for on-bead high-throughput screening in a biological assay.

University of California, Berkeley
Department of Chemistry, Advisor: Professor Andrew Streitwieser
Undergraduate Research Assistant
- Performed a multistep synthesis of a chiral metal complex.

Department of Chemistry, Advisor: Dr. Ahamindra Jain June 2002-August 2002
- Performed a multistep organic synthesis to prepare fluorobenzyl ether analogs of Tamiflu®.

\section*{AWARDS \& HONORS}

2009

Roche Excellence in Chemistry Awards (MIT, 2009).
Bristol-Myers Squibb Graduate Fellowship in Organic Chemistry (MIT).
Novartis Graduate Fellowship in Organic Chemistry (MIT).
Merck Index Award (UC Berkeley).
International Student Scholarship Award (2001).

\section*{PUBLICATIONS}
- Movassaghi, M.; Tjandra, M.; Qi, Jun. "Total Synthesis of (-)Himandrine." J. Am. Chem. Soc. 2009, 131, 9648-9650.
- Movassaghi, M.; Hunt, D. K.; Tjandra, M. "Total Synthesis and Absolute Stereochemical Assignment of (+)- and (-)-Galbulimima Alkaloid 13." J. Am. Chem. Soc. 2006, 128, 8126.
- Paulick, M. G.; Hart, K. M.; Brinner, K. M.; Tjandra, M.; Charych, D. H.; Zuckermann, R. N. "Cleavable Hydrophilic Linker for One-Bead-OneCompound Sequencing of Oligomer Libraries by Tandem Mass Spectrometry." J. Comb. Chem. 2006, 8, 417.

\section*{PRESENTATIONS}
- "Total Synthesis of Galbulimima Alkalodis" Oral presentation, Roche award symposium, Nutley, NJ, 2009.
- "Total Synthesis of Galbulimima Alkaloids" Oral presentation, Bristol-Myers Squibb award symposium, Lawrenceville, NJ, 2009.
- "Total Synthesis of Galbulimima Alkaloids" Oral presentation, Massachusetts Institute of Technology Graduate research symposium, Cambridge, MA, 2008.
- Movassaghi, M.; Tjandra, M.; Hunt, D. K. "Total Synthesis of Galbulimima Alkaloids" Oral presentation, ACS \(234^{\text {th }}\) National Meeting, Boston, MA, 2007.
- Tjandra, M.; Hunt, D. K.; Movassaghi, M. "Total Synthesis of Galbulimima Alkaloids" Poster presentation, Novartis, Cambridge, MA, 2007.

\section*{TEACHING EXPERIENCE \& SKILLS}

Teaching assistant for an undergraduate level second semester organic chemistry course (MIT, Professor Mohammad Movassaghi).
Teaching assistant for a graduate level second semester organic synthesis course (MIT, Professor Mohammad Movassaghi).
Teaching assistant for an undergraduate level first semester organic chemistry course (MIT, Professor Sarah E. O'Connor and Dr. Kimberly Berkowski).
Teaching assistant for an undergraduate level organic chemistry laboratory (MIT, Dr. Janet Schrenk).
Graduate student mentor for undergraduate and visiting graduate student (MIT).
Fluent in English and Indonesian.```


[^0]:    (a) The structures for $\mathbf{2 , 3}$, and $\mathbf{4}$ shown in Figure 1 are antipodal to the originally described structures. (b) Binns, S. V.; Dustan, P. J.; Guise, G. B.; Holder, G. M.; Hollis, A. F.; McCredie, R. S.; Pinhey, J. T.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1965, 18, 569. (c) Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1967, 20, 1473. (d) Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E. Taylor, W. C. Aust. J. Chem. 1967, 20, 1705.
    ${ }^{2}$ For SCH-530348, a galbulimima alkaloid derived antiplatelet agent, in Phase-III clinical trials for acute coronary syndrome, see (a) Chackalamannil, S.; Wang, Y.; Greenlee, W. J.; Hu, Z.; Xia, Y.; Ahn, H.-S.; Boykow, G.; Hsieh, Y.; Palamanda, J.; Agans-Fantuzzi, J.; Kurowski, S.; Graziano, M.; Chintala, M. J. Med. Chem. 2008, 51, 3061. (b) Kozikowski, A. P.; Fauq, A. H.; Miller, J. H.; McKinney, M. Bioorg. Med. Chem. Lett. 1992, 2, 797. (c) Malaska, M. J.; Fauq, A. H.; Kozikowski, A. P.; Aagaard, P. J.; McKinney, M. Bioorg. Med. Chem. Lett. 1995, 5, 61.

[^1]:    ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
    ${ }^{2}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
    ${ }^{3}$ Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537.
    ${ }^{4}$ Fatiadi, A. J., Synthesis 1976, 65.
    ${ }^{5}$ Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879.

[^2]:    ${ }^{6}$ Ritchie, E.; Taylor, W. C. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1967; Vol. 9, Chapter 14.

[^3]:    ${ }^{7}$ Prepared from 3-butynol, tert-butyldimethylsilylchloride, imidazole, dimethylformamide, $23{ }^{\circ} \mathrm{C}$, 12 h ; see: Cotterill, A. S.; Gill, M.; Gimenez, A.; Milanovic N. M. J. Chem. Soc., Perkin Trans. l 1994, 22, 3269.
    ${ }^{8}$ Pinacolborane was prepared according to Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482.

[^4]:    ${ }^{9} 6$-Heptenal was prepared from 7 -octene-1,2-diol (commercially available), sodium metaperiodate, diethyl ether, water, $1 \mathrm{~h}, 93 \%$. Spectroscopic data matched published data; see: Taylor, R. E.; Galvin, G. M.; Hilfiker, K. A.; Chen, Y. J. Org. Chem. 1998, 63, 9580.

[^5]:    ${ }^{10}$ Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168. Grubbs' G1 and G2 Ru-catalysts required above ambient temperatures found to be incompatible with the sensitive tetraene product 73.

[^6]:    ${ }^{11}$ Prepared from L-alaninol; see: Caputo, R.; Cassano, E.; Longobardo, L.; Palumbo, G. Tetrahedron 1995, 51, 12337.

[^7]:    ${ }^{12}$ Iminium chloride 64 was highly hygroscopic and required handling under inert atmosphere for optimal results.
    ${ }^{13}$ Iminium chloride 64 was lithiated and acylated with benzoyl chloride to give the corresponding vinylogous amide.
    ${ }^{14}$ Additionally, to ensure elution of the major compound after the minor compound, the ( $R, R$ )-Whelk-O was also used: [ $(R, R)$-Whelk-O; $3.0 \mathrm{~mL} / \mathrm{min} ; 13 \%{ }^{i} \mathrm{PrOH}$ in hexanes; $t_{\mathrm{R}}$ (major) $=20.34 \mathrm{~min} ; t_{\mathrm{R}}($ minor, not seen $)=19.39$ $\min ]$.

[^8]:    ${ }^{15}$ Rigorous inert atmosphere and anhydrous conditions were required for optimal results.

[^9]:    ${ }^{16}$ Deuterated solvent was used to facilitate evaluation of reaction progress by direct ${ }^{1} \mathrm{H}$ NMR monitoring.
    ${ }^{17}$ Sequential addition of the reagents was necessary for optimal results.

[^10]:    ${ }^{18}$ Deuterated solvent was used to facilitate evaluation of reaction progress by direct ${ }^{1} \mathrm{H}$ NMR monitoring.

[^11]:    ${ }^{19}$ Deuterated solvent was used to facilitate evaluation of reaction progress by direct ${ }^{1} \mathrm{H}$ NMR monitoring.

[^12]:    ${ }^{20}$ a) For the prior synthesis of ( $\pm$ )-2, please see: Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400. The Supporting Information of this same report contains copies of the NMR spectra of the natural ( - )-2 along with synthetic ( $\pm$ )-2. b) For isolation and optical rotation data, see: Ritchie, E.; Taylor, W. C. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1967; Vol. 9, Chapter 14 and references therein.
    ${ }^{21}$ Literature value: $[\alpha]=-84\left(\mathrm{CHCl}_{3}\right)$; see reference 22 b . We have also measured the rotation of $(-)-2$ in chloroform (2 sources): a) chloroform passed through basic alumina (Grade I) and dried over $4 \AA$ - $\mathrm{MS},[\alpha]^{22}=-51$ (c $0.06, \mathrm{CHCl}_{3}$ ), and b) chloroform passed through basic alumina (Grade I) and distilled from $\mathrm{P}_{2} \mathrm{O}_{5},[\alpha]^{22}{ }_{\mathrm{D}}=-64$ ( $c$ $0.06, \mathrm{CHCl}_{3}$ ). Additionally, we have measured the rotation of $(+)-2$ in chloroform: a) chloroform passed through basic alumina (Grade I) and dried over $4 \AA-\mathrm{MS},[\alpha]^{22}{ }_{\mathrm{D}}=+51\left(c 0.07, \mathrm{CHCl}_{3}\right)$, and b) chloroform passed through basic alumina (Grade I) and distilled from $\mathrm{P}_{2} \mathrm{O}_{5},[\alpha]_{\mathrm{D}}^{22}=+66\left(c 0.07, \mathrm{CHCl}_{3}\right)$.

[^13]:    ${ }^{23}$ Chackalamannil, S. et. Al. J. Am. Chem. Soc., 2006, 128, 12654-12655.

[^14]:    ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
    ${ }^{2}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
    ${ }^{3}$ Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879.

[^15]:    ${ }^{4}$ Ritchie, E.; Taylor, W. C. In the Alkaloids; Manske, R. H. F., Ed.; Academic Press; New York, 1967; Vol. 9, Chapter 14.

[^16]:    ${ }^{5} 6$-Heptenal was prepared from 7 -octene-1,2-diol (commercially available), sodium metaperiodate, diethyl ether, water, $1 \mathrm{~h}, 93 \%$. Spectroscopic data matched those in the literature; see: Taylor, R. E.; Galvin, G. M.; Hilfiker, K. A.; Chen, Y. J. Org. Chem. 1998, 63, 9580.

[^17]:    ${ }^{6}$ Takahata, H.; Takahashi, S.; Kouno, S.; Momose, T. J. Org. Chem. 1998, 63, 2224.

[^18]:    ${ }^{7}$ Reduction of a sample of aldehyde $\mathbf{S 4}\left(\mathrm{NaBH}_{4}\right)$ returned the alcohol $(+)-\mathbf{2 6}$ with the same optical activity as compared to the starting alcohol $(+)-26$.

[^19]:    ${ }^{8}$ The boronic acid was prepared as described previously; see Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126.

[^20]:    ${ }^{9}$ Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126

[^21]:    ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$ ):

[^22]:    ${ }^{10}$ Chemical degradation of himandrine (3) gave (+)-16-debenzoyl-himandrine (47); see Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem., 1967, 20, 1473.
    "Our assignment of the C2 methine is supported by our gCOSY, HSQC and HMBC data. The original paper (ref. 10) listed both C 2 and C 6 methines at 3.30 ppm (br). Our 2D data reveals the C 2 methine is actually obscured by the methyl ether signal ( 3.40 ppm ), while C 6 methine alone corresponds to the signal at 3.31 ppm (br).

[^23]:    ${ }^{12}$ The magnitude of the optical rotation of $(-)$-himandrine (3) is sensitive to concentration: $[\alpha]_{\mathrm{D}}^{22}=-12(c 0.060$, $\mathrm{CHCl}_{3}$.

