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Abstract

Measurements of metabolic and cellular activity through substrate and product interactions are
highly dependent on environmental conditions and cellular metabolic state. For such experiments
to be feasible, continuous cultures are utilized to ensure consistent conditions. However, since
medium must be replenished every cell doubling time, costs can be prohibitive in large reactors.
An integrated microscale bioreactor with built-in fluid metering and environmental control will
enable programmed experiments capable of generating reproducible data routinely.

This work develops an instrument capable of supporting automated microscale continuous
culture experiments. The instrument consists of a plastic-PDMS device capable of continuous
flow reactions without volume drift. A novel bonding process is invented to fabricate devices
with chemically stable interfaces against water, acids, and bases. We introduce a direct CNC
machining and chemical bonding fabrication process for production of fluidic devices with a 1
mL working volume, high oxygen transfer rate (kLa ~ 0.025 s-1), fast mixing (2 s), accurate flow
control (± 18 nL), and closed loop control over temperature, cell density, oxygen, and pH.

Providing control over environmental parameters allows the system to perform different types of
cell culture on a single device, such as batch, fed-batch, chemostat, and turbidostat continuous
culture. Validation experiments demonstrate that cells can be grown to high optical densities
(OD = 50) and production of commercially relevant chemicals such as DNA vaccines are
comparable to large scale bench fermentations. Continuous cultures are also demonstrated
without contamination for 3 weeks in a single device and both steady state and dynamically
controlled conditions are possible, allowing observations of cell metabolic dynamics.

Thesis Supervisor: Rajeev Ram
Title: Professor of Electrical Engineering
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Chapter 1

Introduction to Continuous Culture

An understanding of cell behavior is essential in microbial physiology, genetics, ecology or

biotechnology. Growth kinetics, or the relationship between cell growth rate and nutrient supply,

plays a vital role in the understanding of cell function. While research has been focused on

understanding growth kinetics from a genomic level, there is still great difficulty in making the

leap from genetic analysis to accurate verification with controlled cell growth experiments, or

cell cultures. Most culture systems operate as batch cultures, providing a fixed amount of

nutrients and oxygenation for the initial cells and supporting cell growth until it becomes limited

by either a nutrient source or oxygen. Batch cultures are not ideal for characterizing cellular

processes since cells are constantly subjected to environmental changes which are difficult to

analyze, such as changes in acidity, oxygen content, or even increased cell population. It was

recognized that in order to study bacterial growth with precision, a constant and controllable

environment was necessary. The simultaneous development of the chemostat, a method to grow

cells with a continuous nutrient supply by Monod [1] and Novick & Szilard [2], was the first step

towards developing reliable continuous culture experiments to study growth kinetics.
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1.1 Benefits of Continuous Culture

In continuous culture, the cells are usually maintained in steady state by providing a steady

inflow of nutrients and outflow of culture from the growth chamber or fermentor as shown in

Figure 1.1. By constantly replacing the culture contents with new nutrients or medium, the cells

can be grown in their exponential phase indefinitely, maintaining a constant cell density and cell

growth rate. For chemostats specifically, control is provided by nutrient limitation, only

supplying a fixed and necessary amount of carbon from the input to enable cells to grow at a

specific rate.

Reservoir

Probes for monitoring
pH, Dissolved Oxygen

Mixer

Flow regulator

Outlet

Waste Fermentor

Figure 1.1 .Schematic of a continuous culture system implemented using a conventional bench scale

stirred tank bioreactor.

Also included in a continuous culture system are basic fermentor components such as a mixer

and probes such as those for pH and dissolved oxygen for online environmental monitoring.

With proper control, a continuous culture can maintain consistent growth conditions, allowing

subtle changes to be observed, and allowing reliable and reproducible data to be gathered.

Chemostats are successfully used in several fields of microbiology. Here we briefly mention two

areas where continuous culture is essential: Metabolic Flux Analysis (MFA) and Functional

Genomics. In MFA, the intracellular metabolism is analyzed through mass balances.

Measurements of nutrient uptake and metabolite production enable development of quantitative

metabolic network models. The application of MFA in a continuous culture system for the
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optimization of ethanol production is an instructive example of the power of this technique. In a

study of ethanol production in Saccharomyces cerevisiae, a chemostat culture was used to

investigate the influence of different carbon and nitrogen sources on growth rate. By utilizing a

chemostat, steady states could be recorded with different nutrient sources and carbon-nitrogen

ratios. Since data could be obtained in steady state conditions, carbon and nitrogen flux could be

calculated by balancing the measured input, output, and cell concentrations. Measurements

revealed that the nitrogen source affected the ability of cells to produce ethanol [3] (Aon &

Cortassa, 2001). By utilizing MFA, it was determined that amino acids provided cells with a

metabolic path to synthesize biomass and that this nitrogenous anabolic activity determined the

glucose flux threshold for ethanol production. Therefore, by supplying amino acids instead of

ammonia, glucose could be fermented into ethanol at lower growth rates. This resulted in more

efficient conversion of glucose to ethanol with lower glucose utilization for cell growth,

increasing production efficiency and reducing cost.

Functional Genomics is concerned with determining the relationships between genetic sequences

and cellular functions. Such global investigations, based on correlating gene expression with

environmental conditions using DNA analysis techniques [4], depend on well defined

experimental conditions to allow comparisons between experiments. Inherent variability exists

in batch cultures, due to variations in initial conditions such as inoculum preparation [5] and

starting cell density of the inoculum. Inoculation timing, such as time between media transfers,

also affects growth characteristics since cells take time to adjust to their environment and require

different sets of proteins to interact with their current environment. In addition, individual cells

are also different in their protein numbers and subsequently their time to start exponential growth

due to the stochastic processes of reproduction [6]. As a result, data comparisons between

different researchers are rare.

Continuous culture under steady state conditions provide results that are much less sensitive to

operator variation and lead to more reproducible microarray data. Modeling also plays a critical

role in functional genomics. For accurate system biology models of cell behavior, there is a need

to quantitatively determine rate constants related to cell behavior such as RNA transcription and

protein translation. In order to measure these rates, methods typically involve pulsing radio-
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labeled versions of nucleotides and amino acids and watching their temporal progress through

the cell [7]. The ability to run multiple continuous culture experiments under varying conditions

would allow for detailed understanding of how transcription rates are affected by external

conditions, as well as how to modify them by altering the genetic code.

1.2 Batch and Continuous Culture

To fully understand how to design and improve cell culture experiments, a review of current cell

culture processes and issues is presented. Both prokaryotic and eukaryotic cells can be cultured

in bioreactors. Bioreactors can exist in many forms, with the only requirements being the

sustainability of cell growth. In its simplest forms, a bioreactor can exist as a Petri dish filled

with gelatinized agar infused with nutrients, where cells grow on the surface, or a test tube filled

with medium where cells grow in suspension.

From the perspective of the bioreactor, the two main classes of cells are those which are

suspended in the fluid and those which are adherent to surfaces. Adherent cells are more

complicated since they must be attached to compatible substrates to promote growth. Nutrient

and oxygen delivery to adherent cells can be problematic since they are generally immobile and

unable to interact with the entire nutrient supply. Therefore most bioreactors attempt to work

with either suspended cells or cells adhered to microbeads which can then be suspended to

promote exposure to a homogenous medium [8].

The cell growth rate is expected to be constant under ideal conditions. With no limiting factors

such as nutrient depletion, accumulation of toxic products, or reduced oxygen supply, the cells

are expected to maintain an unrestricted growth given by

ax
= pX (1.1)

where X is the concentration of cells (g/L) and t is the growth rate (h-). For non-prokaryotic

cells, which can undergo apoptosis, or programmed cell death, an additional negative term can
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be added to Equation (1.1). Since an important metric is actually the doubling time for cells, we

can integrate Equation (1.1) and convert to base 2, yielding the exponential growth

X(t)= X02I" 2 (1.2)

where X0 is the cell concentration (g/L) at t=O. From Equation (1.2), we see that there is a

relationship between the growth rate and the cell doubling time tdouble (h)given by

In 2

Tdouble
(1.3)

While unrestricted growth describes cell growth under ideal conditions, typical culture

conditions cannot maintain exponential growth indefinitely due to the limitations discussed

earlier. These limitations lead to the typical growth profiles of viable as shown in Figure 1.2.

Stationary phase

Death ph

Log
(exponentia)
phase

Lag phase
tup nit,. f -c !L lh - V~ azherap sbttn a I%,wt1 0fo2i*,iN.veJpg

Time

Figure 1.2.Plot of the typical viable cell growth curve seen during cell culture showing the initial lag

phase due to cell adjustment to a new environment, log phase or unrestricted growth, stationary phase

due to loss of nutrients or accumulation of waste, and death phase when growth can no longer be

maintained.

Four phases of growth typically appear from start to finish in a culture process. Lag phase

typically occurs at the beginning of a new culture due to direct injection of cells from their initial

environment, or inoculum, into new medium. Cells require time to change their physiology and

synthesize proteins necessary to grow effectively in their new environment, either to utilize a
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new carbon source, recover from stasis, or any number of other factors different from their

previous environment. After adapting to the new environment, unrestricted growth ensues,

typically called log phase or exponential phase given by Equation (1.1). As nutrients are

depleted, oxygen transfer rates become insufficient, or toxic products accumulate to

unmanageable quantities, the cell growth rate starts to diminish. This leads to stationary phase,

where cells change their physiological mode to spend their energy on essential processes rather

than reproduction in order to survive. The energy required for critical non-growth-related

survival processes, such as DNA and RNA maintenance processes, maintaining osmotic balance,

or protection responses to environmental conditions such as heat shock or pH shock, is called the

maintenance energy. As nutrients become depleted, the cells eventually enter death phase where

they cannot find enough nutrients to even sustain their required maintenance energy.

These highly distinct phases of growth lead to the development of continuous culture systems.

For continuous culture, constant addition of nutrients and removal of waste enables continuous

cell growth in log phase with a constant cell density. As long as the input nutrients provide

enough energy for cell maintenance as well as cell division, the cell growth rate becomes

proportional to input/output flow rate or dilution rate. In mathematical terms, we alter Equation

(1.1) to include an outflow giving

8X ln(2) F(.
at rdouble V

where F is the volumetric flow rate (L/h), and V is the volume (L) of the growth chamber.

When the continuous culture system reaches steady state, it is clear that the cell growth rate must

equal the dilution rate as given

F V ln(2) (1.5)
rdouble

Two general methods of control can be used to reach steady state. The first method uses the

internal cellular system to provide feedback. For example, controlling the quantity of input
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nutrients in the flow stream, or chemostat operation, can allow cells to reach steady state. If there

are excess nutrients, cells will grow to a high enough density to utilize the excess. If there is a

shortage of nutrients, cells will die off until the cell density is low enough to utilize the nutrient

supply. In these two ways, the cell growth rate will adapt to match the flow rate. In the second

method, external control is provided to reach steady state. Instead of the cell growth rate

matching the flow rate, measurements of the cell density are taken, allowing the controller to

change the flow rate to match the growth rate. This type of system is called a turbidostat since

the cell density or turbidity is used to control the dilution rate.

1.3 Limitations of continuous culture bioreactors

Adhesion of microorganisms to the surfaces of a bioreactor is a key problem for long term

cultures since microorganism populations growing as a biofilm will have different biological

properties than freely suspended cells. Studies on marine type bacteria show that the proportion

of active bacteria differs depending on if the cells are free-living or attached to a substrate and

also that the composition of the substrate affects growth rates and cell morphologies [9]

(Fletcher, 1979). This surface fouling creates a heterogeneous population which will confound

the establishment of steady state culture conditions. In addition, it was found that cells utilize

adhesion as a survival tactic when exposed to starvation conditions in an effort to scavenge for

surface-localized nutrients [10] (Brown et al, 1977), suggesting that continuous culture systems

such as a chemostat, which reach steady state by limiting nutrients, actually increase the problem

of surface fouling. A continuous culture specific problem relating to fouling also exists. For

turbidostats, constant cell density measurements must be performed to maintain the cell density

at a constant level. Any surface fouling effects degrade the accuracy of density measurements.

Direct contamination of the medium input line is another key problem for long term cultures.

Chemotaxis, the characteristic movement or orientation of an organism or cell along a chemical

concentration gradient, occurs for motile cells. Cells such as E. coli which have flagella are

capable of independent motion within the reactor. In general, this motion is directed in the

opposite direction of chemical gradients, promoting swimming towards higher concentration
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nutrient sources. A single cell migrating back through the feed line to the nutrient mixing

reservoir which has a higher concentration of the nutrient source with respect to the growth

vessel would rapidly contaminate the medium. Prevention of contamination is thus crucial for the

successful development of a long term continuous culture.

1.3.1 Limitations of Bench-Scale Continuous Culture Bioreactors

The major difficulties with using any continuous culture system are the need to continuously

supply medium to the system and maintain a sterile environment during operation. Unlike a

batch culture which runs for a few dozen hours for bacteria, continuous cultures can run for days

at steady state. For such long experiments, factors such as the cost of medium and maintaining

sterility during medium addition become increasingly important. For example, if a 1 L

continuous culture of E. coli which doubles its population every 30 minutes is run for 10 days,
maintaining steady state would require the addition of 333 L of medium to maintain a constant

cell density. In addition, for studies requiring specialized radio labeled media or specialized

carbon sources, such as radio labeled glucose, which in the worst case for D-Glucose-6-13 C

(Sigma Aldrich) is $2200 per gram as compared to regular D-Glucose which costs $0.012 per

gram in bulk, the expense of feeding for even one generation becomes prohibitive. Sterility

issues also arise with preparing large quantities of medium and assembling large autoclaved

components. With the quantity of medium utilized and the difficulty of maintaining sterility

during set up, parallelizing experiments with multiple reactors also becomes very challenging.

1.3.2 The Case for Microscale Continuous Culture Bioreactors

Microscale systems and microfluidics offer a way to address the difficulties relating to

conventional continuous culture systems. A microscale system could run for long periods of

time consuming much less media, on the order of 1 OmL- 1 L rather than 1 OOL. For example, if

the total supply volume was restricted to 1 L, a weeklong culture of maximally doubling (20

min) E. coli would require a small culture volume of 3 ml. In addition, technologies have been

developed for microscale bioreactors which address issues regarding environmental sensing and
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control, mainly through the integration of electrical or optical transducers for measuring oxygen,

pH, cell density, and different forms of microscale pumps and mixers for injecting and

distributing fluids such as medium components, acid, and base buffers [11] (Lee et al., 2006).

Integrating all of these microfluidic components into a working continuous culture system can

provide a sophisticated level of control not available in conventional systems as well as provide

for possibilities of inexpensive parallelism which would be highly beneficial for long continuous

culture experiments.

To date, four micro-chemostat systems utilizing many of the above mentioned microfluidic

components have been reported. Balagadde et al. [12] developed a micro-chemostat in

Polydimethyl-Siloxane (PDMS) utilizing a circular peristaltic mixing channel to grow cells in a

16 nL volume. While steady state was demonstrated by direct cell counts, no measurement or

control of dissolved oxygen or pH was possible, making the system unsuitable for defining

controlled environmental conditions. In addition, end point analysis of parameters such as

glucose concentration, dry cell weight, or pH with conventional microbiology tools would also

be difficult with such small volumes of cells. A micro-chemostat was also developed by the

Zhang et al. [13] on a larger 150 p.L scale. While this chip integrated optical sensing techniques

as well as surface coatings and heaters to counteract surface fouling and chemotaxis issues, it

was limited in its oxygen transfer capabilities, and also did not provide control over pH and DO,

although measurements were available. Two other examples have also been recently published.

Luo et al. [18] developed a nano-liter scale turbidostat but had no control over environmental

parameters. In addition, cell removal was performed diffusively, with no direct connection

between the growth chamber and waste lines. Edlich et al. developed a larger scale system with a

volume of 100 ptL [19] with measurements of dissolved oxygen and optical density. However,

mixing was performed diffusively, resulting in biofilm growth rather than suspension growth,

and oxygen transfer rates were low. Other microsystems have also been developed for addressing

batch and continuous culture and a comparison of these systems is given in Table 1.1.
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Type Reference Max Cell kLa Working Par- Control Available Comments Bench
Density (s-) Volume allel Analysis Validation

(g-dew/L) (mL) -ism

Electrolytic gas Maharbiz
generation (2004) 1

0.5 0.04 0.25 8 T T, DO, pH, Printed
OD, circuit board

_.amnle interration

stirrea memorane szita Z.9 U.U4 U.1:u 4 1 1Du, pi-i, iviecnamcaiiy _N
aeration (2005)16 OD, multiplexed

samnle

Circular micro
channel

Balagadde 0.9 N.R. 16x10~6  6 T, OD Imaging No
(2005)12 monitoring,

insufficient
sample for

N

Stirred membrane Zhang
aeration (2006)13

Diffusive Luo
Removal (2010) 18

Flow Through Edlich
(2010)19

Integrated Proposed
microfluidics

0.5 0.04 0.150 1 T DO, pH, Oxygen
OD, limited

sample
N.R. N.R. 1e-6 1 T, OD Imaging Indirect cell.

removal
N.R. 0.004 8e-3 2 T OD, DO No Mixing,

HPLC
available

50 (OD) 0.013 1 1 T, pH, DO, pH, Mixing,
DO, OD OD, Integrated

sample Flow Control

Table 1.1. Batch and Continuous Microscale Bioreactors

While recently developed microscale continuous reactors address many of the problems of

conventional continuous reactors, namely measurement systems and media usage, microscale

continuous reactors still require direct addressing of continuous culture specific problems such as

control of total biomass and sterility. Biomass control, when implemented, required complicated

image processing of microscope images [12, 18]. Sterility was only possible through a variety of

innovative methods such as direct heating [13], periodic lysing [12], aragose diffusion filtering

[18], and direct 0.22 ptm filtering [19]. In addition, without direct prevention measures, smaller

N

Y
OD

Y
OD, Acid,
Product

Continuous miciwbioreactors
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continuous cultures exhibit prominent wall growth [12, 13, 19], possible back growth to the

carbon source [13], and inefficient oxygenation methods [18, 19]. A summary of the specific

limitations for conventional and microscale continuous culture systems is given in Table 1.2.

Limitations Conventional Microscale

Small volume/ medium usage -+

Negligible wall growth effect +-

Inability to independently control cell density (Turbidostat) -.

Table 1.2. Limitations of current continuous culture systems

All recent advances in microscale continuous reactors have been aimed at developing

chemostats, but as mentioned by Flegr (1997) [20] there are fundamental differences between

chemostats and turbidostats. Situations where cells need to be studied in steady state under very

high cell densities, non-nutrient limited environments, or under dynamically controllable

environmental conditions are not possible with chemostat systems since they rely on a constant

flow of constant media composition to gradually reach steady state. The first example of a need

for such a system involved studying selection of microorganisms due to toxic environments by

Bryson and Szybalski (1952) [21]. Their effort in developing a turbidostat environment grew

from the need to select antibiotic resistant mutants from a culture under increasing toxic

concentrations. In a chemostat, at low concentration of the toxic element, nutrient limitation

would inevitably add an additional source of selection, one favoring normal cells due to their

overwhelming population and ability to exhaust the nutrient supply.

In a second example, turbidostats have been useful for culturing photosynthetic cells. For culture

of photosynthetic organisms, maintaining consistent light delivery to cells requires that the cell

concentration remains constant. In addition, since the carbon source for cell growth is carbon

dioxide gas rather than a liquid input, growth rate is not a function of flow rate and chemostat

operation is not possible. As a result, turbidostats are the only way to achieve steady state

operation to study metabolic activity. Many examples of turbidostat experiments have been
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carried out to study photosynthetic bacteria, including studies in salt adaptation [22], carbon

dioxide utilization [23], and lipid accumulation [24]. In all experiments

A third example involved the production of acetone and butanol from glucose by Clostridium

acetobutylicum [25]. In this process, the cells follow a typical fermentation process producing

the acids acetate and butyrate from excess glucose. However, if sufficient glucose is available to

produce large concentrations of acetate and butyrate, a second pathway which converts the acids

into the alcohols acetone and butanol takes place. Studying the dynamics of this process in

steady state requires the generation of a high concentration of excess acid, which is only possible

if the steady state reached has an accumulation of glucose. As a result, a 500 mL turbidostat,

which grew the cells in steady state at a flow rate of 2.4 L/day and in excess of all substrates, was

required. In a chemostat, the glucose concentration would always be zero, resulting in no

accumulation of acids.

From the above examples, turbidostats are necessary for directed evolution or excess carbon

metabolism experiments where nutrient limitation is detrimental to the study. It is also useful for

studies of cells, where growth is not directly dependent on flow rate such as photosynthesis

experiments. Therefore, a fully versatile microscale continuous culture system should not only be

able to provide a sterile environment with a highly efficient oxygen transfer system, but also be

capable of fast and accurate biomass measurements and provide precise flow control necessary

for operation in chemostat or turbidostat mode under a wide range of steady state conditions.

1.4 Design Constraints

Two sets of design constraints exist for developing a microscale continuous culture system. The

first set of constraints, provided by the cells, is a list of limits on physical parameters required to

maintain cell viability. Forces exerted on cells and physical dimensions of the device will all

have an impact on cell health. The second set of design constraints results from the need to

perform measurements. In order to perform quantitative experiments, a variety of chemical

concentrations must be measured inside the reactor. Unfortunately, commercial systems capable

of performing these measurements have strict limits on the required sample volumes. Finally, in
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order to look at more interesting dynamics of cell physiology and metabolism such as rates of

transcription and translation, we need to explore constraints set by dynamic cell behavior.

Exploring these three sets of constraints will allow us to specify minimum and maximum bounds

for various parameters required in the design of the microfluidic system.

For more detailed design of a continuous culture system, emphasis must be made on designing

for required cell types as well as the desired measurements. Parameters such as growth rate, cell

size, and sustainable shear force all affect physical design constraints. We have already seen that

growth rate directly affects the necessary dilution rates in the reactor. Cell size will also have an

impact on the chip dimensions. Shear force, or differences in fluid velocity experienced by cells

spatially, will also affect dilution rates and flow rates within the chip. Cells exposed to shear

force can become mechanically stretched or experience pressure drops leading to cell wall

rupture in the worst case. As seen from Table 1.3, if growth of all three cell types is desired in

the same device, the limits on the system are very severe, with metabolic affects occurring for

CHO cells at wall shear as low as 0.8 Pa [32] and death at 415 Pa [33].

Doubling Time Cell Diameter Shear Force

Minimum Maximum (tm) (Pa)

E. coli 19.5 min26  0.830 125031

S. cerevisiae 126 min2  5.1127 277031

Chinese
27.6 hours28  7 to 1529 4153

Hamster Ovary

Table 1.3. A comparison of some key cell specific parameters that affect cell culture device design for

a few common cell types.

To grow all three cell lines in the same reactor, the reactor would have to support a maximum

continuous (volume normalized) flow rate of 5.92x10 4 S- to 6.88x10-6 s-1 for E. coli and CHO

respectively as calculated from Equation (1.5) and a minimum flow rate as required by

maintenance energy requirements. While the range of shear force is also almost an order of

magnitude, it can be argued that the required mixing speed and flow rates required for slower

growing cells such as CHO cells are lower. Slower mixing rates will result in smaller shear

forces on cells in any chip design.
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For experiments like metabolic flux analysis, the ability to take samples for storage as well as

analysis is essential since offline measurements might be the only way to determine

concentrations of certain components of the medium. These offline measurements will directly

affect the culture volume depending on the time allowed for fluid sample acquisition. For

common cell densities in chemostat cultures [12, 13] of around le9 cells per ml, 250 ng of DNA

required for state of the art microarray analysis such as the Affymetrix array requires 25 pl of

sample. For HPLC analysis, a standard Agilent 1100 HPLC system requires 5 pl samples per

column. To allow for multiple columns and samples, a minimum of 100 pl per sample should be

required. In comparison with HPLC analysis, an integrated system from Nova Biomedical is also

capable of sample analysis, providing measurements of 11 molecules/gases as well as OD and

cell viability. However, this system requires 1 ml of sample per measurement, with

measurements taking 4 minutes. With a maximum sample size of 1.1 ml, a volume of 0.76 ml

would allow for one measurement every cell doubling time. Volumes of 0.76 ml are still

considered small on the scale of week long or month long experiments and will provide an

advantage with reduced medium usage. A summary of the different offline measurements and

their required volumes and analysis times is given below in Table 1.4.

Analysis Analytes Culture

Time Volume

Agilent 1100 HPLC 15 sec Fatty acids, organic acids, 5 pL*

carbohydrates, solvents, antibiotics

* Required volume at 10 cells per ml.

**Volume per column

Table 1.4. A summary of different off-line measurements performed on cell cultures. While

microarrays require the longest analysis time, measured DNA data generally is not required in real

time.
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For experiments with online measurement capability, such as functional genomics, the response

time of the growth chamber to changes in input concentration are more relevant than absolute

culture volume. Since we are interested in determining rate constants for transcription and

translation, it is necessary to determine the system dynamics necessary to measure translation

rates. E. coli transcription and translation rates have previously been measured, with the

transcription rate of rRNA at 42 nucleotides/s [34] and the translation rate for proteins varying

from 4.2 codons/s to 21.6 codons per second [35]. For a typical fluorescent reporter protein

GFP, which contains 238 amino acids, rRNA production would take 17 seconds and protein

production would take an additional 11 seconds. In addition, both events may occur

simultaneously, making 11 seconds the fastest expected response to any changes in input

concentration. For radio-labeled pulse chase experiments, fluid delivery of radioactive pulses

would have to occur on this timescale.

If we want to perform measurements using fluorescent proteins, significant additional time is

required. First, the total translation time includes the protein that the fluorescent protein is

attached to. For instance, if we wished to couple GFP to a glucose binding protein GGBP [36],

the total length would be 570 amino acids, or a translation time of 26.4 seconds. In addition to

increased translation times, production times of the fluorescent proteins are also significant. For

GFP, protein maturation involves both folding and final oxidative modification, and while

protein folding kinetics occurs with a half-life of 11 s to 1.5 minutes [37], the reported in vivo

chromophore maturation half-life of 30 minutes to 4 hours is much slower [38]. This adds

significant time between initiating transcription and measuring an optical signal, making direct

fluorescent detection not practical for studying the dynamics of gene expression.

While fluorescent detection is not practical for measurements of dynamics, other chemical or

protein measurements with fast production or folding kinetics are still useful. In contrast to

radio-labeled pulse chase experiments, another method useful for determining transcription or

translation times from reporter proteins is to perform lock-in between the concentration-

modulated input and the output chemical signal. For example, if we were to look at a system

where the speed of protein production was unknown, we could modulate the input concentration
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of an essential nucleotide for transcription or amino acid for translation at frequency o and

expect to measure an output protein signal also at frequency o but with a delay given by.

I(t)= sinwct

S(t)= A sinw(t+td

This delay will result in a phase difference between the input modulation and the measured

protein concentration signal. It is then possible to back out the transcription or translation rate by

observing the phase shift between the two signals and the relationship between the delay and

frequency as shown in Figure 1.3.
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Figure 1.3.Illustrations of phase shift due to a time delay. (Left) The response for a direct relationship

between the input activator concentration and output fluorescence concentration with an 11 second time

delay is shown at a modulation period of 40 seconds. (Right) The relationship between phase shift and

frequency for an 11 second delay is given.

Since we will always require the production of a reporter such as a protein, the fastest translation

and folding times we will encounter in our system in the case of GFP for E. coli is 22 seconds.

Therefore the continuous culture system should be able to measure phase changes for responses

as fast as 22 seconds. On the slow side, the longest E coli protein, RNase T [39], is 1538 amino

acids requiring a translation time of 71.2 seconds and a folding time of 4500 seconds [40].

Clearly while translation times are reasonably consistent, folding times for different proteins

vary over 2 orders of magnitude and for phase measurements to be useful, the specific

characteristics of the protein of interest must be explored.
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Since we want to maintain a 1 to 1 mapping between our rate constant and our phase

measurement, we need our longest transcription time to be less than 360 degrees. From Figure

1.3, we see that to resolve a signal with a half-life of 22 seconds, we must maintain a frequency

less than 0.045 Hz. While this is much faster than the growth rate for E. coli, we also do not

require 360 degrees of phase shift for accurate measurements. If we reduce our phase shift range

to 2 degrees for 22 seconds, the shift is still resolvable with averaging [41] and would bring the

frequency down to 2.5xI0-4 Hz, or a period of 4000 seconds which is much more reasonable with

respect to the E. coli growth rate. Since our flow rate is restricted by the cell growth rate, time

scales on the order of the growth rate will be easier to implement. This fact will be explored in

more detail in Chapter 2.

A similar analysis must be performed for slower growing cells to determine if such

measurements are possible when the growth rate is much slower. This can become problematic

since protein lengths will most likely not scale with the growth rate of the cells. As a result,
determining system responses for measureable parameters such as fluorescent protein expression

will ultimately decide when a flow rate controlled continuous culture or perfusion controlled

continuous culture makes sense.

Between maintaining sustainable flow rates, providing variable shear force, taking off-line

samples, and measuring cell dynamics, we see that the specifications on the chip design are well

limited by the types of cells we wish to culture. Table 1.5 provides a summary of the necessary

ranges for these parameters. With these parameters set, we can start to look at designs for

implementing the continuous culture system.

Min Max

Flow rate NA 5.92X 10-4 n1/Ml/S-1

Shear Force <0.8 Pa 2770 Pa

Volume 0.76 ml 3 rnl
Input concentration

2.5e-4 Hz
modulation frequency

Table 1.5. Summary of minimum and maximum constraints on the design of the continuous reactor.
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Flow rate maximums are set by the desire to support maximum growth for the fastest growing

cell of interest, which in this case is K coli. For shear force, the maximum allowed shear

depends on the cell type, which under the most tolerant conditions is S. Cerevisiae and under the

most restrictive conditions is CHO cells. Volume constraints are much less variable, since we

need a minimum volume for measurements and a maximum volume to restrict total medium

consumption over a week long growth. For modulation, our maximum frequency restriction

comes from wanting to measure transcription and translation rates optically. Since the cells will

never make proteins smaller than the required fluorescent protein GFP, GFP sequence length sets

this frequency maximum.
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1.5 Thesis Overview

The scope of this thesis is to develop microfluidic devices which can be easily configured to

support the entire list of cell specific and measurement constraints. The first major step in

implementing a device which can automate the continuous culture process in a microfluidic

device is the development and implementation of the individual components necessary to support

particular cellular needs. After designing components, it will also become clear that component

implementation will require the development of novel fabrication processes. Also, due to chip

complexity associated with integration of active pressure devices commonly found in

microfluidics, control strategies and usage protocols must also be implemented to ensure long

term (week long) device reliability. Finally, proper chip operation and reliability will enable the

exploration of novel biological experiments only possible with on-line dynamic environmental

control.

Figure 1.4.Prototype device design containing the functional components necessary for enabling both

batch and continuous culture operation.
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An image of the final device design is shown in Figure 1.4. The device is made out of rigid

plastic to overcome issues with volume compliance resulting from pressurization. Included in the

device are a variety of new microfluidic components made possible by the invention of a unique

bonding process capable of integrating PDMS and plastics into a unified device. On-chip

reservoirs for pressure regulation and full volume peristaltic mixers for efficient mixing are only

possible through the incorporation of flexible membranes into plastic devices. Since the device is

made out of plastic, leak free hose barb connectors are also integrated directly on-chip to reduce

the complexity of providing macro-micro interfaces. Using this device, continuous culture in a

variety of different culture modes is possible. The data shown in Figure 1.5 for this device

demonstrates control of a variety of parameters including oxygen, flow rate, and cell density.

Long term reliability is shown by running continuous cultures for over two weeks in the device.
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Continuous Oxygen Control Turbidostat Continuous (1/2 Buffer)

W * 0.3 h'

0 50 100 150 200 250 300
Time (h)

Figure 1.5.Demonstration of a 2 week continuous culture in the microreactor. After initial batch

growth, the device is switched into a chemostat mode with a dilution rate of 0.48 h-1 without oxygen

control. At 60h, oxygen control is turned on. At 140h turbidostat mode is enabled, where the cell

density is controlled at OD=2 by varying the injection rate. At 195h growth media is switched to half

buffer capacity and run in chemostat mode at the original dilution. At 230h the dilution rate is reduced

to 0.3 h-i.

Designing and implementing the device capable of controlled continuous culture is non-trivial.

In addition to all of the design requirements and constraints restricting the implementation of the

device, supporting systems and operational procedures also need to be developed and devices

need to be validated against bench scale systems. In order to explain the operation of the device,

the remainder of the thesis is broken down into 5 chapters, Design and Implementation, Device

Fabrication, System Architecture, Biological Validation and Continuous Operation, and

Conclusions and Future Work.

In Chapter 2, Design and Implementation, the device components necessary to support cell

growth are explored. Premixers, mixers, and flow controllers are all required to support cell

growth. Without understanding how these components work, it will not be clear how to design

7
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them to most efficiently support cell growth. Therefore the first section in Chapter 2 focuses on

modeling these three devices and their potential impact on cells. After exploring the operation of

necessary device components, a brief overview of previous designs is given to discuss potential

issues which can arise from design choices. Since many different implementations exist for

mixing and flow control, an exploration of previous designs allows us to understand why certain

designs are fundamentally not suited for continuous culture operation. Finally, Chapter 2

concludes with specific designs implemented in the final device iteration as well as

measurements of their performance.

As mentioned already, many of the device components in Chapter 2 are only possible with the

integration of PDMS membranes into plastic devices. Therefore Chapter 3 focuses on how this

integration is implemented and the impact it has on device fabrication. The first step in designing

plastic devices for microfluidics is to determine which plastics are suitable for exposure to

chemicals used during growth. After selecting appropriate plastics, a bonding process must be

developed to incorporate elastic membranes. In the second section of Chapter 3, we will discuss

why current bonding processes are not suitable and develop our own process for bonding

devices. Finally, due to nature of the bonding process, device operation will also require surface

passivation. In addition to reducing biofilm formation on surfaces, surface passivation will

prevent bonding on surfaces where it is not desired.

After developing a fabrication process for plastic devices integrated with PDMS membranes, the

design is implemented and fabricated. However, in order to operate the device, a variety of

supporting systems must also be developed. In Chapter 4, the supporting system architecture will

be discussed and minimization of components and complexity is pursued. Due to the nature of

continuous culture, external fluid sources must be integrated which can provide fluid to the chip

input. Since the device operates through pneumatic actuation to control fluid flow, solenoid

switches must also be integrated. In addition to actuation, other systems must also be developed

for heating, solenoid control, and sensor integration. Even after electrical systems are

implemented, for proper device operation, algorithms for control of the integrated system are

also necessary. The second section of Chapter 4 develops algorithms for device operation, flow
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control, oxygen control, and pH control. Without these algorithms in place, the device will be

unable to operate with a defined steady state.

After demonstrating the ability to control environmental parameters, the device is applied to cell

culture and is validated against a few biological systems. Chapter 5 explores the validation of the

device in a variety of modes and organisms. The easiest form of culture, batch culture, is first

explored with the cell line F. coli DH5a [pVAX1-GFP]. As a comparison with uncontrolled

shake flasks, the chip is run open loop and only measurements are taken. After validating the

chip against batch culture, complexity is increased. Inflow, feed, and temperature control are

implemented in the next set of validation experiments, where fed-batch culture is demonstrated

using the same E. coli DH5a [pVAX1-GFP] cells. Finally, inflow/outflow control in continuous

culture experiments are performed using E. coli ATCC31883 and F. coli FB21591, with an

emphasis on sterility and novel control strategies during growth. Finally, Chapter 6 concludes

with future design changes to improve usability and robustness with the intent of providing the

device for general biological use.





Chapter 2

Design and Implementation

Cells have a few essential requirements for continuous growth: a sterile environment, a source of

oxygen, and a controlled supply of nutrients are all necessary. Since cultures will be run for long

time periods, sterility is particularly important. Cell chemotaxis for slow flow rates will

inevitably lead to contamination of the medium due to concentration gradients. This becomes an

even larger issue for a culture with concentration control, since the concentration of carbon in the

input can be drastically higher than that of the growth chamber. Providing a buffer stage where

solutions are first premixed before input into the growth chamber can help reduce concentration

gradients. For aerobic strains such as E. coli, yeast, and CHO, delivery of oxygen into the cell

culture can also be the limit to exponential cell growth. For both traditional and microscale

cultures, uniform oxygen delivery is difficult, and is usually provided by diffusion either through

membranes, high pressure gas, or bubbles [11, 14, 15, 16]. While mixers can be utilized, either

propeller or peristaltic, to increase the oxygen transfer rate, issues of foaming and increased

shear forces often arise. Controlled nutrient delivery is also an issue for continuous culture.

While chemostat cultures can be run at constant flow rates, other bioreactors which rely on

measurement feedback, such as turbidostat culture, require continual changes to flow rate to

match cell growth rate. While a pumping mechanism can help control flow, backwash from the

pump can lead to contamination and additional shear can be introduced. Table 2.1 summarizes
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the cell requirements, main device components necessary to implement the required

functionality, as well as the potential issues associated with each component.

Chemotaxis/Cell Shock Premixer Slow changes to substrate concentration

Oxygen Supply Mixer Shear, measurement variability

Nutrient Control Fluid Pump Contamination, Shear

Table 2.1. Summary of different cell requirements, microfluidic components which can alleviate the

major issues associated with the cell functions, and possible additional issues associated with the

devices themselves.

Chapter 2 covers these main device components and how they affect the microfluidic system.

The first section of the chapter explores the dynamics of the continuous culture system by

incorporating a complex model for cell metabolism into the differential equation framework for

continuous culture. By including a premixer volume explicitly into the model, volume related

dynamics can be modeled to determine the system response as well as the cellular metabolic

response in the framework of the continuous culture system. After analyzing the continuous

culture system, the mixer and fluid pump are analyzed and their affect on shear stress is

discussed.

After analyzing the effects that each device component has on the cells, a brief overview of

different device iterations leading to the final design are presented. Since there are many

different implementations for pumps and mixers, these different device iterations allow us to

explore some of the key challenges associated with implementation and integration of these

components into a working system. Then a more in-depth look at the performance of device

components in the final system is presented. A novel method for integrating a peristaltic mixer

with flow control will also be discussed.

2.1 Design and Modeling

The first step in building a microfluidic device for continuous cell culture is to develop models

for all of the key components in the system. As described in the introduction, these key features

include a premixer, mixer, and fluid pump. For the premixer, system response will be estimated

for different premixer to growth chamber ratios and a cellular metabolic flux model will be
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incorporated to look at simulated dynamics. For the mixer, a differential model will be built to

estimate fluid shear. For the peristaltic pump, discretization of the flow rate due to discrete plug

injection will be explored to determine if any differences exist between continuous and discrete

flow.

2.1.1 Premixer System Dynamics

The first major consideration for successful continuous culture is ensuring sterility of the growth

chamber and medium reservoir from foreign contaminants before and during growth

experiments. Many methods of material compatible pre-use sterilization exist, such as

autoclaving, ethylene oxide gas, and gamma irradiation. These sterilization procedures can

ensure that no viable contaminants exist before initial inoculation. While contamination of the

growth reservoir is unlikely in a closed microfluidic chip, contamination of the medium reservoir

from domestic sources is possible due to cell chemotaxis. The feed line containing the carbon

source will inevitably be highly concentrated to enable dilution and control over concentration

into the growth chamber. Certain problems can result from direct input of highly concentrated

solutions. Direct input of concentrated solutions can lead to cell shock inducing lag phase

response or lysis for cells close to the input side of the chamber. Also a large gradient in carbon

source concentration can greatly enhance chemotaxis and result in contamination of the feed

reservoir. For instance, E. coli in the presence of gradients will swim for longer periods of time

in the direction of the attractant, increasing the possibility of contamination [42]. These problems

can result in poor culture performance or even total failure.

One method to reduce the presence of chemical gradients is to artificially reduce the observed

gradient by premixing fluids to the desired concentration before contact with the cells in the

growth chamber. By providing a large enough volume premixer, gradients between the input

substrate source and growth chamber can be prevented. The premixer could incorporate a variety

of elements, such as a bent channel or a peristaltic pump. The main trade-off with the addition of

a premixer is how the additional volume affects the continuous culture input flow response.

Since the device should be able to reach multiple steady states as well as provide for modulated

input, step response and frequency response of the system must be characterized for different

premixer/growth chamber designs. Since we do not want to waste fluid, output from the
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premixer is connected directly to the input of the growth chamber. This also restricts the flow

rate through the premixer to equal the cell doubling time. An illustration of this type of two stage

culture system is shown below in Figure 2.1.

Growth
Premixer Chamber

F F

Figure 2.1.Illustration of the fluidic circuit connecting the input through the premixer, the growth

chamber, and then through the output.

Si,, Si, and S2 denote the concentration of the substrate at the input, premixer, and growth

chamber respectively, Vi and V2 are the volumes of the premixer and growth chamber

respectively, and F is the flow rate through the system. The substrate in this system could be any

liquid input to the system such as glucose, acid, base, water, or any other chemical.

With the equal flow rate constraint, we can set up differential equations for the combined

premixer/growth chamber system. Since cell dynamics occur in the growth chamber, the

premixer simply acts like a low pass filter for the inputs. We will therefore use a version of the

differential equation model to look at the system response from the inputs to the growth chamber

which ignores the cell contribution. This will allow for comparisons between the fluid system

and the cellular system.

Rate equation for substrate input to aS F
p - [Si(t)-S1(t)] (2.1)

premixer at V,

Rate equation for substrate from OS2 = F

premixer to growth chamber at V2
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To look at the response of the growth chamber substrate concentration in this system, we start

with a unit step response for Sin (g/L) and look at the corresponding change in S2 (g/L) for different

premixer to growth chamber volume ratios.
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Figure 2.2.Plot of the substrate concentration in the growth chamber due to an input concentration step

at different premixer to growth chamber ratios.

As shown in Figure 2.2, even reaching different steady states (97% response) without a premixer

requires 5 cell cycles, which is similar to results obtained from other chemostat experiments

when changing steady states [13]. Also, while a premixer of equal volume to the growth chamber

results in a large decrease in response time, a premixer of 10% the growth chamber volume does

not greatly impact the growth chamber fluid delivery performance for step responses, with both

the 10% and no premixer versions achieving 97% response in roughly 5 cell cycles.

For dynamically modulated response, we can solve the equation set to determine the frequency

transfer function from Sin to S2.

S2

Si" 1+ j.) d""ble 1, +' j ""., rd

In(2) V2 ln(2))

(2.3)

From this equation, we can define the crossover frequency as the 3 dB frequency.



CHAPTER 2 DESIGN AND IMPLEMENTATION

S2 1 1
'*(crossover - (2.4)

If we plot the ratio of the crossover frequency with and without a premixer versus volume, we

can see a trade-off between premixer volume and response time.
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Figure 2.3.Plot of the attenuation in 3 dB frequency with increasing premixer to growth chamber

volumes.

We see that there is barely any reduction in response for premixer volumes less than 10% of the

growth chamber with only a 1% reduction in the crossover frequency at a premixer volume of

10%. For modulation experiments using cells, we need to determine how the premixer affects the

system response. The first step is to determine where the desired modulation frequencies are with

respect to the two system poles. These poles are defined as the crossover frequencies for each

term in the denominator of Equation (2.3). If the required modulation frequencies are lower than

the low frequency pole, then the premixer can be made larger than the growth chamber. The low

frequency pole is proportional to the cell growth rate

fLF = ln(2) (2.5)2
7T-double

For the fastest growing E coli at a 20 minute doubling time, the low frequency pole is 9.2x10 5

Hz. It is important to note that for modulation experiments, this is the most ideal condition for
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performing modulation. For slower growth rates, the low frequency pole scales proportionally to

the growth rate. At more typical E. coli growth rates of 1 hour, the low frequency pole is reduced

by 3, giving 3.06x10~5 Hz.

From Chapter 1, we determined that for a 1 degree phase shift in the detection of F. coli GFP

production rates, we needed a maximum modulation of 2.5x1 0-4 Hz in order to resolve the fastest

protein translation rates in E. coli. We see that this frequency is nearly an order of magnitude

higher than the low frequency pole. This will result in an order of magnitude decrease in the

modulation depth. In order to reduce any further loss in the magnitude response of the system,

we must design the high frequency pole to be above the maximum modulation frequency of

2.5x10~4 Hz. By looking at the high frequency pole of Equation (2.3), we can find the crossover

frequency which occurs at

fHF = ln(2) V2 (2.6)
2

rrdouble V,

If we constrain the high frequency pole to be a minimum of 2.5x10~4 Hz, we can solve for the

maximum volume ratio

V, ln(2) (2.7)
V 2 

27rfHF double

Under optimal (20 minutes) and average (1 hour) E. coli growth conditions, the required

premixer volume ratios are 0.37 and 0.12. Since we already determined in Figure 2.3 that placing

the high frequency pole less than one decade away resulted in degradation of the step response,

the step response requirement imposes a tighter limit on the premixer volume ratio than the

modulation response.

While the premixer volume ratio is not set by the modulation response, it is important to note

that the modulation frequencies required still lie above the low frequency pole and will result in

significant attenuation. For a volume ratio of 10%, a 20 minute and 60 minute doubling time
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would result in attenuations of the input concentration magnitude to 33% and 9.3% respectively.

While the premixer can alleviate the chemical gradient issue, care must be taken to determine if

it will be detrimental to dynamic operation given the required modulation frequencies and

required premixer volume. Designs might also need to be revised if slower growing cells are

used.

While the simplified model was useful for analyzing the delivery of input fluids into the growth

chamber, the analysis did not account for cell dynamics. To look at cell behavior, we would need

to compare the expected response from the simple model with a model which includes cell

dynamics. A first pass for including cell dynamics into the fluidic system is to integrate Equation

(1.4) into the simplified model of Equations (2.1) and (2.2) [43].

Rate equation for substrate input to aS F
premxerat -- [s1 n(t)-S1(t)] (2.8)premixer at V,

Rate equation for substrate from aS2  F p1(S] ) (
[S,(t - S2t| 0 X (2.9)

premixer to growth chamber at V2  YXS

Rate equation for substrate input to X F)
premixer . = pi(S ) - X(2.10)premixer at V2

Substrate dependent Growth Rate (S, )=ln(2) (2.11)
Tdouble Ks +-S(

In this updated model, S is now specifically the concentration of the carbon source (g/L), which

could be any sugar such as glucose or glycerol, Yxs (g/g) is the amount of cell mass produced for

a unit of substrate consumed, Tdouble is the minimum doubling time (h), and Ks (g/L) is the kinetic

constant for substrate consumption assuming Michaelis-Menten kinetics. In order for the

equations to converge, the substrate consumption rate and growth rate must be co-dependent,

ensuring that the cells stop growth when they run out of food.

In reality, the parts of the differential equation that govern cell dynamics are much more

complicated, involving many more chemicals and dynamic time constants. To look at the system

step response including cell dynamics, there are a variety of models that could be used. While



2.1 DESIGN AND MODELING

genetic models would provide the most complete description for the system, they are in general

complicated and incomplete. Instead, we will integrate a metabolic mass balance model [44] into

the equation set, taking into account glucose, acetate, and oxygen consumption. This model has

been verified in batch and fed batch reactors both conventional and microscale using

experimentally verified constants collected across numerous culture experiments [44]. The full

model differential equations under abundant oxygen respiration can be expressed as

Rate equation for substrate input

to premixer

Rate equation for substrate from

premixer to growth chamber

Rate equation for acetate in

growth chamber

Rate equation for substrate input

to premixer

Rate equation for substrate input

to premixer

aS, F(t)

at V,

aS2  F(t)(S I - qS2- 3 S2  X
at V2  1+ A /k1's S2 +ks

aA = [qAp( 2 ,A)-qAc ( 2 , A)]X- F(t)'A
at V2

ax W __

at - (S2, A)X F(t) X

ao - kLa(O, -0)-100[q0(S 2,A)/32]X
at

With the acetate concentration A (g/L), oxygen O (mmol-0 2/L), and a variety of other variables

such as the acetate production rate qAp (g/g/h), consumption rate qAc (g/g/h), and ki,s (g/L) and ks

(g/L) are the associated kinetic constants for inhibition and activation of the substrate

respectively. To further complicate the system, equations governing the production and

consumption rates also depend on the current availability of nutrients. An example set of

required variables under the limit of abundant oxygen supply are given below.

qA, =0

A
qA =qA +kA

(2.17)

(2.18)

(2.19)P = S -qn Yxis, 0x + qA A YX
11+Alkis S+ks , A+kA

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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qO = qSA S 1- xox + qYxis,ox + qAY01 A lYxA (2.20)l±A/k,,s S~ks (I-1 xs C) CS Y A~k A CA

where YJ/K (g/g) is the efficiency or yield coefficient for converting chemical K into chemical J,
Cj (mol C/g-J) is the concentration of carbon in chemical J.

We see that in the abundant oxygen supply limit there is no acetate production. However, as the

cells start to run out of oxygen, a different metabolic path develops which can enable qAp,
suggesting that nonlinear responses exist within the cellular system. For a full description of

possible cell states and the associated rate constants refer to reference [44]. The model has

become more involved, with the doubling time turning into a variable rather than a constant and

many more equations to account for other system components. It is clear that non-linear

responses can develop in this system, especially at the threshold of acetate production, resulting

in longer times required to reach steady state.

As an example of the actual step response, we can run a simulation, setting the cells in

turbidostat steady state, where the flow rate is controlled in order to maintain a constant cell

population. In the simulation, the premixer volume is set to 10% and the cells are inoculated into

the growth chamber at 0.05 g/L and allowed to grow to 2 g/L before turning on control at 6.3 h.

A step response for glucose from 40 g/L to 10 g/L is then initiated at 60 h and the flow rate,

glucose, and acetic acid concentrations are observed in Figure 2.4. Simulation parameters are

given in Appendix B.
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Figure 2.4.Simulation of the full metabolic model for E. coli under a step change in glucose

concentration at t=60h. Cells are grown in batch until they reach a concentration of 2 g/L at

t=6.3h. Then turbidostat operation is enabled to maintain the cell density at 2 g/L. It is evident

from the step response simulation that the E. coli system responds slower than expected.
If we

zoom in on the acetic acid response at hour 60 from the simulation, we see that the dynamic

response is quite different from the expected nearly first order exponential response as shown in

Figure 2.5.
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Figure 2.5.A plot of the acetic acid concentration after the glucose step response. The fluidic system

response from the simplified model is also included to compare the relevant time scales for output

stabilization. An additional 6 hours are required for the cellular system in the growth chamber to reach

steady state.

If we overlay the response from the system without cells, we see almost a 5 cell doubling cycle

lag in the actual response relative to the expected step response. This indicates that under

conditions of acetate production, over 10 cell cycles are required to reach steady state conditions,
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double what we originally estimated from the fluidic differential equations. This will result in

longer wait times and more medium usage when changing steady states during an experiment.

We can also compare the simple model with the model incorporating acetic acid and overflow

metabolism. As shown in Figure 2.6, there is a fundamental difference in cell behavior to

dilution rate and the cells consume more glucose in the complex model. For the simple model,
the cell density decreases with increasing dilution and the opposite occurs for the complex

model. This could be a result of including acetate, which the cells can use for growth and is also

indirectly a function of glucose.
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2 ....... ..........

1.5
1.5 \SimpleI Complex

0.5

0 5 15
0 50 l10) 15C

0.15

0.1

0

0.05

Time (h)

D=0.2h-1  D 0.4h 1

Simple

Complex

..... .... ........

50 100 15(
Time (h)

Figure 2.6.Plots of the cell density and glucose concentrations in a continuous culture system modeled

with a simple model and a model including overflow metabolism. The behavior of the cell density

versus flow rate show opposite effects.

While we see that step responses of critical metabolic elements depend highly on cell dynamics,

modulation responses for non-metabolic inputs should not be expected to behave similarly since

cells are neither producing nor consuming those inputs. However, if we are also interested in

probing the dynamics of critical metabolic paths such as acetate for E. coli, the response is quite

slow, requiring much lower modulation frequencies to achieve any noticeable modulation in

acetate concentration. These much slower metabolic dynamics will actually be easier to measure

since we are in a regime where we are not limited by the fluidic system.

In the premixer and non-premixer implemented devices, the concentration attenuation between

the input and the growth chamber is still problematic for higher frequency modulation. This

problem can be solved by either finding better measurement techniques to improve phase

0
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resolution on slower modulation or by greatly increasing the concentration of the input solutions.

As long as the premixer can perform dilution before input into the growth chamber, increased

input nutrient concentrations will not greatly affect the rate of contamination due to cell

chemotaxis.

2.1.2 Mixer Design and Shear Modeling

Oxygenation is another major hurdle which impacts aerobic culture. Since oxygen enters the

culture medium diffusively, the only methods for increasing the oxygen transfer rate are to

increase the surface area of the liquid gas interface with bubbles or membranes and to distribute

the gas evenly by mixing to maintain a large gradient across the boundary.

Bubble based aeration is utilized in large propeller based reactors, where aeration is generated by

bubble columns at the base of the reactor and mixing is induced by propeller action. However,

bubble-cell interactions can generate shear forces which induce cell death [45]. As devices are

scaled to ml and smaller scales, bubbles also become difficult to remove from the chamber due

to surface tension effects. These stagnant bubbles can affect on-line measurements which rely on

optical methods by changing optical paths and increasing scattering. While membrane based

oxygen delivery systems can remove the issues of bubble induced shear, mixing in membrane

based systems is critical since the area of the air-liquid interface area is significantly reduced.

Three mixing strategies have been attempted to date in membrane based bioreactors, propeller

mixing, channel mixing, and peristaltic well mixing. In the propeller mixing design of Figure

2.7a [13], a magnetically driven propeller is included in the bioreactor. This mixing mechanism

is similar to larger stirred tank reactors; however, the mixing strategy requires a spinning magnet

off-chip to drive the propeller. This adds additional complexity to the system design especially if

scaling and parallelization are required. For channel mixing, Figure 2.7b, fluid flow can either be

driven by pressure or peristalsis [12]. Mixing occurs through bends which fold streamlines

during flow. Unfortunately, this method requires channel designs which can perform passive

mixing, usually resulting in long channels if large volumes are required. The last approach,

which performs peristalsis on the entire chamber [II] Figure 2.7c, generates flow and mixing
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through a series of patterned membranes which circulate flow through membrane pressurization.

a) Stir Bar

b) Bend Flow c) Peristaltic

Figure 2.7.Microfluidic mixer designs. a) A magnetic stir bar is inserted into the chamber to provide

mixing. b) The chamber is designed as a ring to circulate flow and provide bend induced passive

mixing. c) Flexible membranes above the chamber are actuated in peristaltic fashion to generate flow.

Out of the three mixing designs, the propeller and chamber peristalsis are easier to scale to larger

volumes in comparison to the channel mixer due to its lack of a bulk volume. Oxygen delivery in

both the stir bar and peristaltic designs still relies on oxygen diffusion through membranes into

liquid. Therefore, designs which have thinner membranes, larger liquid-membrane interfaces, or

can support higher oxygen partial pressures above membranes will provide more oxygenation.

While peristaltic mixers already meet this requirement by pressurizing membranes during

peristalsis, membrane pressurization in stir bar designs can lead to contact between the stir bar

and membrane. For scaling, implementation, and oxygen diffusion requirements, we will explore

the peristaltic mixer design over the stir bar mixer design.

Although bubbles are no longer present in peristaltic membrane based oxygen delivery systems,

shear is still present due to membrane pressurization and is given by [47]

r = , (2.21)
ax
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where T is the shear, il is the viscosity, U is the fluid velocity in the direction of flow, and x is

perpendicular to the direction of flow.

For the peristaltic designs, shear occurs during volume displacement when membranes are

pressurized. For fluid moving between two membranes in a multiple membrane system, we can

model this interaction as shown in Figure 2.8 where Rair is the air resistance from the pressure

source to the membrane gas chamber, R, is the resistance path of the water between the two

chambers, ni and n2 are the moles of gas, and V, and V2 are the total volumes of the membranes

between inflated and deflated states.

R. R Rair air air

V n

Figure 2.8.Illustration of the peristaltic mixer or peristaltic pump system. The connection from the last

chamber back to the first chamber is optional and depends on the specifics on the design. As illustrated,
air pressurization of the first chamber and depressurization of the second chamber forces the fluid in the

first chamber to be pushed into the second chamber through a connecting channel.

In this case, we can assume we are in Pouiselle flow between the membranes since the liquid

appears to moves through a channel located between the membrane sections. Shear in Pouiselle

flow is slightly more complicated, since the channel dimensions play a crucial role in

determining the pressure drop within the channel and subsequently the flow rate. If we solve the

equation for Pouiselle flow in two dimensions, we get two versions of the same result [47],

6t hAPr 2 Q or equivalently vr = 2 , (2.22)Wh 21
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where T) is the viscosity, w is the width, h is the height, 1 is the length of the channel, Q is the

volumetric flow rate, and P is the pressure. While these equations are equivalent, we can see that

reducing shear by channel design, for instance by varying h, depends on whether we are flow

rate limited or pressure limited in our system. As will be see in our design, neither case

dominates since there is a coupling between chamber pressurization rate and flow rate.

If we further assume that each chamber has a finite minimum and maximum volume set by

possible off chip pressure reservoirs (Vcap), which includes the capacitances of the air lines and

designed chamber volumes, we can write differential equations to determine the volumetric flow

rate of liquid through the connecting channel and calculate the associated maximum shear stress

experienced by a cell flowing through that channel

Rate equation for gas an, Pin - P1 h 1  nkT

molecules above valve 1 at Rair kT i 1 + Vcap

Rate equation for gas On2  _ Pout - P2 P2  _ __2 ___.4

molecules above valve 2 - Rair kT w 2 T (224

Rate equation for gas a v P1 - meml - P2 + mem2  (2.25)

volume above valve 1 at
Rate equation for gas 012 - P, - Pmemi - P2 + mem 2  (2.26)

volume above valve 2 at
Membrane stress for - VsdLE

valve n Pmem(n) P L= mem (2.27)

where k is the ideal gas constant, T is the temperature, n is the number of molecules in the

volume V, Rair and Rt are the air channel and water channel resistances respectively, V5 s is the

volume of the air chamber when the membrane is relaxed, Ememn is the young's modulus of the

membrane, L is the length of the membrane when relaxed, AL is the increase in length of the

membrane when stretched completely, and Pin and P0,,t are the input and output pressures of the

system respectively. It is important to note that this description of the membrane system ignores

contact adhesion between the membrane and the chamber walls which can occur under
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conditions of full deflection. Also, the description of membrane stress as a function of volume

approximates volume change as proportional strain. In addition to the differential equations,

limiting cases such as full membrane inflation and full membrane deflation must be taken into

account. These are resolved by checking if the volume is above or below the maximum or

minimum volume thresholds. In these cases, the volume for the chamber is set to either the

maximum or minimum and the volumes of the other chambers are corrected proportional to their

pressure difference.

For peristaltic valves in microchannels, typical channel dimensions after the valves in our

designs are 16 mm x 0.8 mm with a channel height of 65 pm. Valves have dimensions of 1.33

mm x 1 mm and a thickness of 0.1 mm below the membrane and 0.125 mm above the

membrane. Air channels are longer, with channel dimensions of 500 pm x 250 pm x 4 cm. From

simulations in Figure 2.9 using an actuation pressure of 15 psi above atmospheric pressure, a

Young's modulus of 1000 kPa, and the specified channel dimensions, we see that the shear force

is an order of magnitude smaller than required for E. coli cell viability.
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Figure 2.9.Simulation of the shear force associated with peristaltic valve deflection. Fluid from

chamber 1 is pushed into chamber 2 when the combined pressure from the gas above the PDMS

membrane and the internal membrane stress in chamber 1 exceeds chamber 2. Maximum shear for E.

coli viability is 1250 Pa.

Reduction in shear stress can be achieved with an increase in air resistance or air capacitance.

This will however result in a trade off with the response time for the valve, so shear can only be

reduced such that the necessary mixing or flow rates are still supported.
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The additional drawback to the peristaltic mixer design is the generation of static pressure

resulting from membrane deflections against channel walls. While a study has not been

conducted as to the effects of static pressure on the three cell types presented in Chapter 1, a

study on human breast cancer cells (MCF-7) revealed that static pressure could lead to cell lysis

at pressures greater than 25 kPa [46]. The pressure required for cell damage is most likely larger

for cells with robust cell walls, but could pose a problem for more sensitive cells such as CHO

cells. While this simulation shows that pump induced shear can be fatal for certain cells, the

pumps should only be in direct contact with input media and should not affect the cells in the

growth chambers with as much shear force as calculated. Shear force will be more critical for

mixing since the cells are constantly in contact with the mixer. Therefore shear force generated

by the mixer will also be calculated in Section 2.3.5 Mixing and Shear.

2.1.3 Flow Control

To perform flow rate control on the reactor, at least one input and one output must be provided to

and from the reactor. Traditionally, chemostat operation is performed since it requires only a

single input and output and is easier to control. For more flexible control, a continuous culture

system should have multiple inputs with accurate control over input ratios in addition to flow

rate. Flow control systems for continuous culture are generally off-chip, using a dropper to

separate the feed line and culture by an air gap. Since chip based culture systems will not have

air gaps, feed lines will be directly in contact with the culture. To perform accurate flow control,

either continuous flow pumps with regulators or discrete flow pumps can be utilized. Continuous

flow pumps are problematic in chips where feed lines and culture volume are in direct contact,

since there is no isolation between the two sections of the device. This will create an open path

for chemotaxis. Therefore, it is more beneficial to build the design around discrete flow pumps.

A typical peristaltic discrete flow pump operates as shown in Figure 2.10. A fluid plug is first

trapped in the middle valve and then pushed through the last valve before trapping another fluid

plug.
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U,,3 , 5 ~ Input

0 0 XX 0 HoId

Output
X = closed

0 = opened

Figure 2. 1O.Diagram of 3 valve peristaltic pump operation. The 5 state operation enables one valve

volume of liquid to be sent from the input to the output without loss of isolation between the input and

output port.

We see from the pump state table that the 5 state pump always maintains one closed valve and

isolates the input from the output at all times allowing us to operate our system with pressurized

inputs. However, a potential problem which could cause contamination can occur between state

5 and 1. When the input valve closes at state 1, there is one valve volume worth of backwash into

the feed line. If we plan to use a peristaltic pump to provide flow control, it is necessary to run an

experiment to determine if this pump induced backflow will promote contamination.

Since we are operating with discrete flow, we need to determine the discrete flow volume

required to maintain steady state. Under optimal growth conditions, we can treat our system as

an exponential growth of cells over the course of one pump cycle period and determine the

volume required to return the cell density to its previous value

ax X
= In(2) => X(t) = X 2d"b-6 (2.28)

rdouble

where X is the cell density, tdouble is the doubling time, and Xo is the initial cell density. We then

solve for our necessary injected volume Vmj by determining our increase in cells given our pump

period tp and chamber volume V and dividing by our current cell density.

Valves

Input

Hold

Output
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(Xt, =)-x ( Xo 0 2Pdouble

V,,,=V * X(t, ) =1- 2'""' (2.29)

Dividing our injected volume by our pump period gives the flow rate of our discrete injection

system. If we take the limit as tp approaches zero, we see that we recover our continuous flow

rate as given by Equation (1.5).

V,' a Vini
F = lim t in]

p P tp=0

_V r2 / rdouble ln(2)

Tdouble = double

We see from the plot of discrete injection flow rate versus injection period in Figure 2.11 that the

flow rate decreases as our period increases.
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Figure 2.11 .Plot of the flow rate for continuous versus discrete flow. The reduction in flow rate for long

delays results from controlling the minimum cell density at the fixed point rather than the average cell

density as would be seen from continuous flow.

This is a result of our discrete algorithm, which maintains a minimum rather than an average cell

concentration of Xo. However, even with discrete injections at 1% the doubling time, or 12

seconds for E. coli, the discrepancy in flow rate is only 0.3%. Therefore, for typical injection

periods (seconds), the average cell density resulting from discrete flow will be similar to

continuous flow.

(2.30)
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2.2 Previous Chip Designs

To make a continuous culture device, a mixer is required for oxygen delivery and fluid

homogeneity, a pump is required for flow control, and a premixing chamber is required if

multiple inputs are allowed. A variety of chip implementations are possible for the integration of

pumps and mixers. In general, all devices operate in the same way. There is a fluid input which

is sent into the growth chamber to support sustained cell growth. If there are multiple inputs, they

are mixed together before injection into the chamber. Also, after injection, the newly injected

fluid must be mixed with the chamber fluid. During this time, to maintain a constant volume, the

same quantity of fluid must be removed from the growth chamber. As a result, there have been

many design iterations leading to the final design of the chip. Before discussing in depth about

the design choices made for the final design, a brief overview of previous devices is beneficial to

discuss more general decisions made due to observed issues.

In the first design iteration shown in Figure 2.12, all of the components required for continuous

operation have been integrated into a PDMS device with a design similar to Lee et al. [11]. Some

key features of this device include a distributed peristaltic mixer to drive mixing as well as a

peristaltic pump at the input, between the premixer and mixer, and at the output. While this

design contains all of the necessary components required for continuous culture, two major flaws

makes the device almost unusable. As seen from Figure 2.12, the area of the growth chamber is

1.5 in 2. Pressurizing this large area of PDMS with only 3 psi causes the chip to inflate to 5 times

the original thickness. Sustained internal pressure caused tears after only a few actuations for

diffusion bonded PDMS. Also, the irregular shapes of the fluid chambers made filling the device

without introducing bubbles very difficult.
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Figure 2.12.Picture of the first design for the continuous culture reactor made out of PDMS. Five inputs

on the left are connected through peristaltic pumps to a premixing chamber. A peristaltic pump then

connects the premixer to the growth chamber. The growth chamber is then connected to the output

through another pump.

In order to prevent internal pressure induced chip failures, it makes sense to switch from PDMS

to a more rigid material. Unfortunately, mixers, valves, and pumps rely on the flexibility of

PDMS to operate. In order to add rigidity, a decision was made to bond PDMS membranes to

plastic devices. Development of this fabrication process is a major topic of this thesis. The

second device iteration containing flexible PDMS membranes in polycarbonate devices is shown

in Figure 2.13. Again, the device consists of 3 sets of pumps, one for the input, one from the

premixer to the mixer, and one before the output. This device also employs a tear drop shape to

decrease the probability of introducing bubbles during inoculation.
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Figure 2.13.Picture of the second design for the continuous culture reactor made out of polycarbonate
with a PDMS membrane. Multiple inputs on the left are connected through peristaltic pumps to a
premixing chamber. The premixer and mixer chambers are a tear drop shape to facilitate inoculation
with minimal bubble introduction.

Initial experiments with this device demonstrated that device designs for mixing and pumping

resulted in working components. Mixing times of less than 20 seconds were demonstrated as

shown in Figure 2.14.

'V7

15 See 2 e

Figure 2.14.Mixing time of the premixer for a 400 ms periodic actuation sequence. An injected plug of
red dye mixes homogenously in less than 20 seconds.

However, long term operation of the device results in fluid accumulation or continual fluid

removal from the mixing chambers until the mixing membranes are completely inflated or

deflated, resulting in an unmixed growth chamber. As seen in Figure 2.14, in order to induce

mixing, membranes deflect and push liquid as shown by the whiter mixer membrane sections in

each of the images. This first problem results from flow rate inconsistencies related to the

peristaltic pumps between each section and the flexibility of the membrane above the growth

chamber. Since the peristaltic pumps cannot be expected to meter volume exactly, compliance of

the membrane needs to be addressed. The second problem is again the issue of inoculation.
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Filling the chip without introducing bubbles is difficult due to the depth of the chambers.

Laminar flow profiles collapse due to the large dimensions and chips need to be tilted in order to

fill properly without introducing bubbles.

A fundamental design change is needed to fix the issues of volume control and inoculation. The

first design to address these issues is shown in Figure 2.15. Instead of a peristaltic pump at every

stage of the device, only one peristaltic pump is used for the entire chip. This removes any issues

with fabrication tolerance in the injection volume due to dimensions of the valve. Since the

hydraulic pressure inside the growth chamber is expected to be larger than ambient, the mixer is

converted into a multi-chamber system where liquid is moved between different chambers

through small channels to induce turbulence and mixing. Since each chamber of the mixer has a

freely suspended membrane, the membrane can be inflated or deflated into a state with no

compliance. For inoculation, this allows the air in the device to be fully evacuated before liquid

injection. For pumping, introduction of a pass-through channel underneath one of the mixer

sections allows for liquid to be pumped through the growth chamber without accumulating

volume. If the mixer section containing this channel is deflected into a zero volume zero

compliance state, then fluid pumped into the growth chamber will pump directly through the

pass-through channel and to the output, allowing fluid exchange without an output peristaltic

pump.
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Figure 2.15.Picture of the third test design for the continuous culture reactor made out of polycarbonate

with a PDMS membrane. This device was reduced to the minimum requirements necessary for

pumping through a multi-chamber growth chamber.

While the concept of pumping through a pass-through channel and full membrane deflection

mixing seem to work in the test device, two issues are apparent with this design. The first is

again related to the pumping mechanism. A less significant issue, but still included in earlier

designs was an issue of the peristaltic pump volume being dependent on the input fluid hydraulic

pressure. This causes an inconsistency in the injection volume over time. The second issue is

related to the mixing profile. The mixing profile is poor since the left and right chambers have no

direct path between them for fluid to move. A new design iteration shown in Figure 2.16

addresses these issues by converting the mixer from a linear design into a circular design and

also adding on-chip reservoirs to help regulate upstream fluid pressure.
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Figure 2.16.Picture of the fourth design for the continuous culture reactor made out of polycarbonate

with a PDMS membrane. This device contains all of the necessary components to support cell growth.

The first continuous culture experiments are performed in this device.

As expected, converting the full deflection mixer into a circulating structure improves the mixing

efficiency. As shown in Figure 2.17, the process for injection and mixing occurs in two steps.

First the section containing the pass-through is pressurized to remove all of the fluid from the

section. Then the input pump is opened and fresh medium, green dye in this case, fills the

channel and replaces the water which exits through the output. After injection, the pump and

output are closed and the mixer is enabled. Mixing times are exceptionally fast, with full mixing

occurring in less than 2 seconds for a mixing period of 1.5 seconds.
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Figure 2.17.Pictures of a mixing experiment using the circulating mixer. After initial injection of green

dye into the pass-through channel, the mixer mixes the fluid completely in 2 seconds.

As this device integrates all of the necessary components required for cell growth, initial growth

experiments on . coli were conducted and shown in Figure 2.18. Batch growths show that the

mixer is capable of supporting growth without excessive shear forces and the growth curve

demonstrates lag, log, and stationary phase behavior as expected from Figure 1.2. In addition

continuous culture was performed. For continuous culture, the device is split into two operating

modes, injection and mixing. During injection, the mixing membrane containing the pass-

through channel is depressed and the pump is allowed to operate by injecting fluid from the on-

chip reservoir into the pass-through channel. After sufficient injection, the inputs and output are

closed and the mixer is allowed to run again. Continuous culture data shown in Figure 2.18

demonstrate some issues with this device. Optical density is measured in the lower chamber

when the membrane is fully inflated. The two step pumping and mixing cycles required for

continuous growth were enabled between minutes 200 and 300. It is clear that during this time

the volume of the reactor is steadily being removed as indicated by the fast dilution of the cell

density. Since the injection rate is slow, the only explanation for the fast cell dilution is a

decrease in the cell density.
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Figure 2.18.Data from initial experiments utilizing the prototype microfluidic chip. Batch growth

behaves as expected showing lag, log, and stationary phase growth. Continuous culture was also

performed between 500 and 1100 minutes showing a constant cell density under a constant dilution

rate.

The main issue with this device is again related to the pumping strategy. While not noticeable in

the initial experiments, full deflation does not actually occur during pumping mode due to

increasing fluid resistance. This results in the ejection of a small quantity of fluid (15 piL)

through the waste stream every pumping cycle in addition to the dilution resulting from the

peristaltic pump injections. As shown in Figure 2.19, even pressurization of the mixer section to

7 psi leaves a layer of fluid trapped behind the pass-through channel. If the circulating mixer

design was not necessary, an additional growth chamber placed to the right of the pass-through

channel could alleviate this issue.

T -I I i
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7 psi

Figure 2.19.Trapped fluid is present behind the pass-through channel when the growth chamber section

is deflected. While increases in pressure help reduce the trapped fluid, even at 7 psi, a trapped layer still

exists.

Between minutes 300 and 500, the cells were allowed to grow in batch mode to increase the cell

density to measurable levels. After recovery, a second mode of operation was initiated with takes

advantage of the non-compliance of the fully inflated membrane. Since fluid is ejected every

deflation cycle, a compensation cycle is introduced which deflates the lower membrane as far as

possible and then opens a shunt between the fluid input and the remaining two chambers

inflating them to maximum. This ensures that regardless of how much fluid is ejected during the

deflation cycle, the volume returns to a steady state of two chambers full and one empty. Using

this new protocol, the continuous culture ran successfully between minutes 500 and 1100. This

protocol will be explored further in the final device design for other reasons.

Due to the trapped fluid resulting from locating the pass-through channel underneath the mixing

chamber, the final design iteration is introduced to create a usable pass-through channel as

shown in Figure 2.20. In this design, the pass-through channel is removed from underneath the

mixing chamber and is placed as a connector between two of the mixing chambers.
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Figure 2.20.Prototype device design containing the functional components necessary for enabling both

batch and continuous culture operation.

By using valves between the pass-through and the mixer, the peristaltic pump can be attached to

a truly zero compliance pass-through channel. In addition, decoupling the pass-through from the

mixer allows the mixer to continue operating during pumping cycles. This improves the

oxygenation and mixing rate of the growth chamber. A few other changes are noticeable in this

design. The premixer is removed completely since the pass-through acts like a pre-mixer for

fluids. Also, the on-chip reservoirs are changed from a rounded roof to a flat roof to further

reduce the membrane compliance. Also, two outputs are used to facilitate sterile inoculation and

a design for improving the interface between the chip and external components is introduced.

These changes will all be explored in detail in the next section.

2.3 Implementation

At the core of any continuous culture is the ability to provide measurements throughout the

course of the growth and accurately control based on those measurements. In order to provide

accurate control and know the normalized flow rate F in Equation (2.30), both the system
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volume and the injection volume into and out of the system must be known at all times. The first

task to generating volume control which is discussed in Section 2.3.1 Valve Design is to design

valves and pumps which can be integrated on-chip. The system volume relies heavily on the

initial inoculation volume and is usually a major source of error due to the elasticity of

microfluidic devices. Inoculation issues will be addressed in Section 2.3.2 Inoculation and

Volume Control. The injection volumes are governed by the peristaltic pump and also need to be

consistent to ensure accurate flow rates. A study of the injection volume versus various

parameters will be examined in Section 2.3.3 Peristaltic Pump Design. In addition, design of on-

chip reservoirs for pressure regulation will also be discussed to aid in pump injection consistency

in Section 2.3.4 Fluid Pressure Regulation and Reservoir Design. In Section 2.3.5 Mixing and

Shear, a mixer design will be presented which incorporates new inoculation methods and shear

forces will be analyzed. In addition to the errors involved in inoculation and fluid input, errors in

fluid output are also problematic. While macroscopic continuous cultures circumvent this issue

by having gravity mediated overflow spouts halfway between the growth media and the

headspace, microfluidic devices do not have this luxury since devices are generally two

dimensional and do not contain a headspace. Maintaining consistent and equal input and output

flow rates are essential to prevent volume removal or volume accumulation. Designs that help

maintain input output flow rate consistency will be discussed in Section 2.3.6 Flow control and

growth chamber coupling.

2.3.1 Valve Design

The valves used in microfluidic devices consist of a flexible membrane which can be depressed

using pressure into a rounded channel [48]. Operation of valves and pumps requires rounded

profile channels to enable full sealing during membrane deflection. Deflectable membrane

sections should also be much longer than they are deep to better approximate two-dimensional

membrane flexure. Controlling these on-chip valves requires the use of miniature solenoid valves

(Lee Company) with typical maximum operating pressures of 15 psi. To ensure full sealing of

the membrane during deflection at these low pressures, the channel profile should connect with

the membrane at acute angles, or equivalently the channel profile should have a large radius of

curvature. If we plan to make our rounded channel profiles using ball end mills, typical round

tool sizes are 0.03125 inch, 0.04687 inch, and 0.0625 inch diameter. For a 50 nL volume over a



CHAPTER 2 DESIGN AND IMPLEMENTATION

length of 1 mm, the dimensions (D) and membrane channel interface angles (A) for the three end

mills are shown below in Figure 2.21. As the interface angle gets larger, the pressure required to

seal the valve increases.

D = 0.0625 inches D = 0.0469 inches D = 0.0313 inches
A =29.3 degrees A =35.7 degrees A= 48.1 degrees

Figure 2.21 .Illustration of different channel geometries and associated interface angles to obtain the

same valve volume. As the radius of curvature increases, the interface angle becomes shallower,
reducing the sealing pressure.

Femlab simulations in Figure 2.22 of a PDMS membrane deflecting into round channels of

different curvatures demonstrates the behavior of the deflected membrane. Each channel is

constrained to have a constant volume. While contact between the membrane and the channel is

not simulated, we can see from the simulations that it is much more difficult for the anchor

points at the interface between the PDMS membrane and the channel to bend. If we assume that

contact and membrane deformation are not coupled, we can determine the actual membrane

profile as the minimum of the deformed membrane and the channel height. The plots on the right

of Figure 2.22 show the sealing area for the different geometries under the assumed contact

conditions.
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Figure 2.22.Femlab simulations of an unconstrained 70 parm PDMS membrane deflection at different

pressures. The drawn microchannel in bold shows what pressures would result in full sealing if the

membrane was placed above a channel. Plots on the right show the percentage area sealed under

different deflection pressures. For the 0.03125 ball mill, the sealing pressure is greater than the

maximum 15 psi that is allowed by the solenoid valves.

From the simulations, it is clear that sealing is dominated by membrane deflection at the edges

and that more acute interface angles can help reduce the required sealing pressure for valves.

With the analyzed geometries, a sealing pressure limit of 15 psi is reasonable for the larger

radius of curvature channels. However, to determine the acceptable sealing pressure, we also

need to take into account the fluid backpressure incident on the valve. It is therefore more

flexible to design valves with larger curvature to reduce the valve closure pressure and provide

more tolerance to varying input pressure. As we will show in Chapter 4, a maximum pressure of

15 psi is available from solenoid constraints, so channels machined with a 0.0625 inch diameter

will provide the most flexibility driving input pressure.

2.3.2 Inoculation and Volume Control
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One of the most difficult aspects of working with microfluidic devices is the initial inoculation.

Bubble introduction can cause great variability in initial volume as well as create bubble blocked

channels with large flow resistance. In addition, PDMS based devices are also highly elastic,

allowing for devices to bulge when inoculated. While these issues are not as problematic in small

microfluidic channels where surface tension is large and dimensions are small, this is a major

issue in devices with large wells such as previous versions of the microfluidic bioreactor [11],

especially due to the use of a peristaltic mixer.

Bubble removal has been explored previously, but removal methods rely on pressure

differentials between the fluid and air interfaces to diffuse air out of liquid channels [49]. In an

environment for cell growth, this solution is problematic. Cell growth requires constant oxygen

feed which results in a pressure difference that would introduce bubbles into the medium. Pulling

bubbles out of solution would result in an effectively increased oxygen consumption rate and

would limit the oxygen available inside the reactor.

Two innovations can help alleviate this issue. The first is to switch to a rigid material which does

not have as large of an elastic modulus as PDMS. This would ensure that a high pressure

inoculation resulted in a fixed total volume. However, this total volume could include gas and

liquid. The second is to modify the chamber design such that the full volume can be removed

during pressurized deflection of the PDMS membrane as shown in Figure 2.23. By first deflating

the entire growth chamber volume, the air can be evacuated prior to inoculation, reducing the

bubble trapping. If any bubbles are introduced into the growth chamber, actuating the membrane

to suspend the bubbles in solution and then repeating the evacuation and refill cycle can further

reduce the bubble volume. This is even less of an issue in hydrophilic channels where liquid can

wet surfaces and force bubbles into solution.

100
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Figure 2.23.Illustration of a chamber which can be fully inflated or deflated by pressurizing a PDMS

membrane in the center.

2.3.3 Peristaltic Pump Design

In order to isolate the premixer from the growth chamber and to reduce chances of static pressure

damage to cells, a 3 valve peristaltic pump is placed between the premixer and growth chamber.

Analyzing the peristaltic pump cycle in Figure 2.10, it is clear that the injected volume depends

only on the center valve of the pump. In addition, the center valve does not necessarily need to

seal to provide pumping action and can therefore be designed with a different cross section to

improve membrane deflection characteristics or increase pump volume. By designing the center

valve to hold a larger volume, the reverse flow associated with opening the third valve can be

compensated.

Two parameters that have an important effect on flow rate are the pumping rate and the

backpressure on the peristaltic pump. As the pumping rate increases, the ability for the valves to

push and pull liquid from underneath the membranes drops. From observations that the pumping

rate is non-zero for an atmospheric backpressure, it is clear that the peristaltic pump operation is

dependent on the restoring force of the PDMS membrane. If we calculate the membrane

deflection based on an energy minimization model as shown in Equation (2.31) [50],

4C1 0-th 16C2Eth3

P = L2 + L4 (2.31)

w74 (1 + n2 )
C = 64(2.32)64
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r6 9 + 2n2 + 9n4
C2 = 32(1-v2) 256

(2.33[ (4 +n-+ n 2 + 4n 3 - 3nv(1 + n))2

f2{81r2 (1 + n 2 ) + 128n + v[128n - 9r 2 (1 + n2)])_

where C1 and C2 are constants proportional to the membrane dimensions, p is the pressure, t is

the membrane thickness, W is the width, L is the length, h is the maximal membrane

displacement, n = L/W, E is the Young's modulus for PDMS, a is the residual stress, and v is the

Poisson ratio. An illustration of the membrane suspended over a microfluidic channel with

labeled variables is shown in Figure 2.24.

Fluid Channel Membrane

Flow Direction
Figure 2.24.Illustration of a membrane suspended over a fluid channel and the dimensions used for the

calculation of membrane deformation. In this example, the width is larger than the length.

The stress induced volume displacement can be calculated as shown in Figure 2.25. For the

calculation, residual stress is ignored, C2 = 1. 69, PDMS is assumed to have a Poisson ratio of 0.5,

and a Young's Modulus of 500 kPa. In addition, the dimensions of the deformable membrane are

set to the channel width (W) of 1.3 mm, length (L) of 1 mm, and a thickness (t) of 70 um.

Additional volume under the displaced membrane is calculated as LW/4h where L is the length

and W is the width of the membrane.
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Figure 2.25.Plot of the additional liquid volume underneath the deformed membrane versus pressure

for a 1.3 x I x 0.07 mm membrane and a Young's Modulus of 500 kPa.

From the calculation, membrane bulge due to backpressure can result in significant error in the

injected volume. In order to test this in an actual device, a three valve peristaltic pump shown in

Figure 2.26 was fabricated with the dimensions specified in simulation. Since the center valve is

responsible for the injected volume, the channel under the center membrane is made with

dimensions used in the simulation of membrane deformation.

To characterize the flow rate of the peristaltic pump for 10 nL volume changes, a measurement

system utilizing a triggered CCD camera (Opteon) and a 600 umn inner diameter glass capillary

(McMaster 8729K57) tube is used as shown in Figure 2.27.
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Air Channel PDMS

Center Valve-- -Fluid Channel

Figure 2.26.Schematic of the peristaltic pump. The center chamber is larger than the input and output

valves to reduce the backwash effect when the output valve opens. Uncolored background defines the

polycarbonate substrate.

From Peristaltic Pump

CCD Camera

To Waste

Glass Capillary

Figure 2.27.Flow rate measurement system. Images are taken every pumping cycle to determine the

distance traveled by the fluid plug.

To determine the volume injected per pumping cycle, images were acquired every pumping

cycle triggered to step 1 in the cycle, the last step before the output experiences a volume
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change. Neighboring images were subtracted to obtain a difference image which was then

filtered with a threshold into a binary image, removing any differences resulting from spurious

noise. The pixel farthest ahead was then stored as the leading edge of the liquid in the capillary.

An example of the image processing is shown in Figure 2.28.

Figure 2.28.Images from two neighboring frames and the processed difference image showing the

position and size of the additional fluid plug.

In order to maintain a reasonable field of view to accommodate about 50 injections, the camera

was focused on a 40 mm length of the capillary over 626 pixels. Assuming a cross-sectional area

of 0.283 mm2, the volume resolution of the measurement system is approximately 18 nL per

pixel. If each injection is 200 nL, then the measurement system can accommodate 55 full

injections before the liquid leaves the field of view of the camera.

The first test is the injection volume versus pump period. It is important to know how quickly the

pump can operate before the membranes and fluids can no longer respond completely to the

actuation pressure. In order to maintain consistency, the pressure pushing against the external

fluid source was kept at 1.5 psi and the valve pressure was set to 15 psi. From Figure 2.29(a), the

volume per injection on average seems to drop below 500 ms per period averaged over three sets

of 50 injections per run. Since the pumping cycle switches a membrane state every 40% and 60%

of the period, the fastest membrane response tolerable for full deflection is 200 ms. If we plot the

actual injections averaged over the three runs in Figure 2.29(b), we can see more clearly that the

smaller average injection volume is mostly due to the first few injections. This can be explained

by the difference between the external fluid pressure and the valve pressure. During the first few
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injections, the external driving pressure could be too weak to fully inflate the center membrane

during step 5 in the cycle, resulting in a gradual increase in volume until steady state is reached.

The second parameter to test is the effect of external fluid pressure on the injection volume.

Using the same setup, the pump period is set to 1 second and the external fluid pressure in the

feed bottle is varied between 0 and 3 psi. Interestingly, the injected volume versus external fluid

pressure matches reasonably with the volume calculated for a deflecting rectangular membrane

for larger pressure as shown in Figure 2.30. For smaller external fluid pressure, non-ideal effects

such as input flow resistance and internal membrane stress can contribute to the discrepancy.
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Figure 2.29.a) Plot of the average injected volume versus frequency for 50 injections. Pump period

refers to a 5 step pumping cycle time. b) Plot of the injected volume versus injection number for

different periods. Each curve for a given pump period is repeated three times and averaged.
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Figure 2.30.Plot of the injection volume versus external fluid pressure. As the external fluid pressure

increases, the injected volume also increases due to increased membrane deformation. The calculated

volume due to deflection is given in the dotted line for a 1.3 mm x 1 mm valve area and a 70 um PDMS

membrane with a Young's Modulus of 500 kPa with an initial volume of 130 nL. Error bars are

generated from 3 replicates of flow rate at each pressure.

It is clear that while the injected volume depends greatly on external fluid pressure, operating

without pressure can lead to the most error. As the external fluid pressure increases to 3 psi, the

differential change in injected volume versus pressure is lower and can help to reduce error from

pressure variations. Even with operation at higher pressure, more significant changes to the

external fluid pressure can still cause errors. For example, if the feed medium was placed in a

glass container filled one foot high with medium, the hydrostatic pressure from the water alone

would generate approximately 0.5 psi. This would cause significant drift in the injection volume

over time. A method to decrease or eliminate the effects of off-chip pressure variations is

necessary to improve injection reliability.

2.3.4 Fluid Pressure Regulation and Reservoir Design

The same design used for inoculation can be adapted for on-chip pressure regulation. A design is

presented in Figure 2.31 takes advantage of plastic rigidity to accomplish this goal. As the

pressurized fluid input fills the liquid reservoir, the PDMS membrane cannot bulge into the thin

gas distribution layer in response to the pressure. This results in a highly non-linear pressure



CHAPTER 2 DESIGN AND IMPLEMENTATION

volume relationship and pressure rectifying behavior. The rings shown above the gas distribution

layer are purposefully made narrow to prevent membrane deformation into the rings. These help

provide gas even during lamination of the membrane to the upper wall.

By utilizing an on-chip reservoir, we can improve injection consistency versus external fluid

pressure. By adding a reservoir on the chip, external issues of gravity, tubing, or flow resistance

can be removed. We can perform the same experiment using the reservoir membrane as the

pressure source and the external fluid line only to fill the reservoir. Even with an on-chip

reservoir, backpressure issues still exist since the peristaltic pump membrane bulges due to

pressure. As shown in Figure 2.32, pressure variations in the on-chip reservoir headspace result

in similar injection variations as compared to variations from external fluid pressure discussed

earlier.

Cross Section View

Input Gas Distribution Output

PDMS Membrane

Liquid Reservoir

Figure 2.31. Schematic of a pressure regulating reservoir. Valves at the input and output of the reservoir

allow the reservoir to be connected either as an input to the chip or an output of the fluid input. The thin

gas distribution layer does not allow for the PDMS membrane to bulge, resulting in a very small

volume change for large pressure changes.
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Figure 2.32.Comparison of injection volume versus fluid driving pressure from an external fluid source

and an on-chip reservoir headspace. The relationship between injection volume and backpressure is the

same for both pressure sources.
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Figure 2.33.a) Comparison of injection volume versus external fluid pressure with and without an on-

chip reservoir pressurized at 1.5 psi. b) Injection volume versus injection number averaged over all

regulated external fluid pressure conditions. c) A specific run with an external fluid pressure of 2.5 psi

showing that the volume variations never exceed 18 nL or 1 pixel in the analyzed image.
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While it is important to know that the on-chip reservoir can mimic the behavior of the fluid input

pressure source and does not introduce any non-ideal behavior, it is more important to test if the

pressure regulation is improved. To test pressure regulation, the on-chip reservoir pressure is

fixed at 1.5 psi and the external fluid pressure is varied from 0.5 to 3 psi. From the plots shown

in Figure 2.33, we see that both the injection volume versus pressure and the injection volume

versus injection number averaged over all external fluid pressures are very consistent. In

addition, if we look specifically at one run from the 2.5 psi external fluid pressure experiment in

Figure 2.33c, we see that the variations in injected volume never exceed the 18 nL single pixel

resolution of the measurement.

Exte nal Pressure

Microfluidic Device

Scale

External Fluid Source

Figure 2.34.Schematic of the test setup for measuring larger volume flow rates. The microfluidic device

is used to pump input fluid via the on-chip reservoir to the scale for measurement. After every 25
injections, the weight of the liquid is measured.

For testing the injection volume consistency over the full range of the 20 tL reservoir, a different

measurement setup was used as shown in Figure 2.34. Since taking camera images over the full

volume is not feasible, a scale (Mettler Toledo AL104) with 0.1 mg resolution is used. In

addition, the pump volume is reduced to 85 nL to increase the number of injections per

measurement and normalize out any discrete effects that could affect the scale. Measurements of

the weight of the output stream are taken every 25 injections until the reservoir is emptied. From

Figure 2.35, we can see that the reservoir lasts about 200 injections or 17 pL before the volume

per injection drops.
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Figure 2.35.Injection volume versus the number of injections. We see that the flow rate is consistent

over nearly 200 injections before the reservoir starts to deplete and the supplied reservoir pressure

drops.

2.3.5 Mixing and Shear

Since inoculation and volume consistency requirements necessitate the usage of PDMS

membranes, mixing can be done effectively using peristaltic bubble free mixers. As

demonstrated by Lee et al. [I1], peristaltic mixer designs can achieve high oxygen diffusion rates

and reach cell densities of 13 g-dcw/L with minimal bubble formation. By utilizing a pressurized

membrane for oxygen delivery, oxygen transfer rates can also be controlled either through gas

mixing ratios or mixing speed.

Maintaining consistent volume in a membrane actuated growth reservoir can be achieved by

modifying the peristaltic mixer into a multi-chamber full deflection system as described in

Section 2.3.2 Inoculation and Volume Control. In order for the mixer to achieve bubble free

inoculation, the design should allow for as much membrane deflection into the chambers as

possible. The design in Figure 2.36 allows each chamber to either fill completely or empty

completely into connecting chambers through membrane actuation and the only dead volume left

is located in the connecting channels.



CHAPTER 2 DESIGN AND IMPLEMENTATION

.4 . .. ..

.................... ... ................................ ...................... ................ .....

Figure 2.36.Schematic of the 3 section growth chamber. Membrane deflection results in complete

displacement of fluid from the actuated section into the previously actuated section. Coordinating

pressurization states in a circular fashion can generate circular flow in the growth chamber.

By designing growth chamber profiles to allow for conformal membrane deflection at desired

pressures, membranes can be actuated to fully displace the liquid volume in one chamber and

move it into a second chamber. In addition, this prevents the complication of membrane rupture

caused by unconstrained elastic stretching under high pressure, which can occur for freely

deflecting membranes. Connecting multiple chambers into a ring configuration creates a mixer,

allowing liquid to move circularly through chambers. As long as one chamber remains partially

empty, the liquid can be circulated through the different chambers. This mixer design is also

scalable in volume since increasing the number of chambers does not affect the ability to mix. To

enable full deflection based mixing for 3 chambers, each chamber is designed to have a fully

inflated volume of 500 pl, allowing one chamber to be fully deflated at any given time.

As discussed in Section 1.4 Design Constraints, shear stress can have a major impact on cell

metabolism and cell function. Therefore it is important to model shear in all devices where flow

rates are potentially large. We can model the shear force in this device the same way that the

peristaltic mixer was modeled earlier. For the model, a 3 psi differential between the input and

output pressure is applied and air and liquid channel dimensions of 3.15cm x 500um x 250um
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and 2.38mm x 8mm x 68.6um (LxWxH) respectively. Air channel lines totaling a volume of 1

mL are also included as upstream capacitance. Liquid channels are designed as valves with

dimensions defined by cutting with a 0.0625 inch diameter ball mill and approximated as

rectangular channels of the same area. A width of 8 mm is equivalent to a collection of 10

channels. From the simulation, membrane deflection requires 170 ms for a 90% response and

achieves a maximum driving pressure of 3.7 psi during flow when the volume per chamber is 0.5

ml and membrane stress is modeled linearly with volume displacement. This results in a

maximum shear force of 360 Pa when flow rate is stabilized during membrane deflection as

shown in Figure 2.37.
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Figure 2.37.Plots of the maximum shear force in the pass through channel and pressure in the actuated

valve over time due to a step change in membrane pressurization. Maximum shear force from this

system is 360 Pa.

Since the volume is constantly changing as the mixer is pressurizing, the pressure during flow is

never high. Therefore the shear force due to flow through the connecting channels is low and

well below the requirements necessary for growing both K coli (1250 Pa) and yeast (2770 Pa).

However, for CHO cell growth, shear values of 350 Pa are not acceptable. Since channel height

is set by the valve dimensions and length is already as short as possible, the only way to reduce

shear stress further is to slow down pressurization. This can be done in a number of ways. Air

flow rate can be restricted by reducing air channel dimensions, pressurization rate can be reduced

by adding gas capacitors, or fluid resistance can be decreased to reduce driving pressure. With a

combination of these minor modifications to the headspace volume or channel dimensions, the

mixer deflection time can be increased to allow for CHO cell growth.
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Characterization of the mixing time and mixing profile can be performed using a pH sensitive

dye to induce color shifts. For the experiment, the peristaltic pump is utilized to meter

hydrochloric acid or sodium hydroxide into the growth chamber. Initially, two sections of the

growth chamber are filled with a 0.4 mM solution of Bromothymol Blue in deionized water. An

impulse of 5 injections of 0.1 M NaOH is delivered to the mixing chamber and images are taken

every 100 ms for 50 seconds. Then a second impulse of 10 injections of 0.1 M HCl is delivered

and images are again taken every 100 ms for 50 seconds. Since bromothymol blue changes color

from yellow to blue when the pH changes from acidic to basic, images are analyzed in

monochrome by summing the intensity of the image in the mixing region and normalizing. From

the snapshots in Figure 2.38 for a mixing cycle period of 500 ms at 3 psi, we see that the mixing

time is reasonably fast and looks uniform after only 1 second or 2 mixing periods.

To find the optimal mixing speed, videos were taken under different mixing periods and the

images were analyzed. Each image is first masked to only include the mixer sections and then

the intensity is averaged to determine the mixed percentage. An exponential fit of each response

is calculated and the 99% response time is determined as the mixing time. Figure 2.39a) shows

an example curve for the 500 ms period mixing cycle and the associated exponential fit.

Extraction of the 99% time constant from each fit shows an optimum mixing time between 500

ms and 750 ms as shown in Figure 2.39b).
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Figure 2.38.Pictures of bromothymol blue mixed inside the 3 chamber peristaltic mixer at a mixer

pressure of 3 psi and a mixing cycle period of 500 ms. At 0 seconds, a basic solution in the channel on

the right is introduced into the mixing chamber. The time to mix to 90% uniformity is 700 ms.

Measured Data

,-Exponential Fit

0 1 2 3 4
Time (s)

1 2
Mixing Period (s)

Figure 2.39.a) Measured contrast versus exponential fit of mixing intensity versus time for the 500 ms

period mixer. b) Plot of the 99% time constant from the exponential fits for various mixing periods. An

optimal mixing time of 2 seconds is achieved between 500 ms and 750 ms.
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Comparing with the shear simulation, we should expect mixing efficiency to be determined by

both the amount of fluid moving per unit time and the amount of fluid moving per stroke. If the

deflection period is too slow, the average flow rate will limit the mixing speed. If the deflection

period is too fast, the amount of fluid moving per stroke will be too low to induce turbulence and

mixing. Taking these two parameters into account, we can derive a mixing efficiency which is

proportional to both the flow rate and the flow length per stroke as shown in Equation (2.34).

Dm = FavgVstroke (2.34)

Where Favg is the average flow rate through the channel when the mixer is running and Vstroke is
the volume displaced per stroke of the deflection membrane and both parameters are calculated

from shear simulations using Equations (2.23) through (2.27). Interestingly, the mixing

efficiency looks like an effective diffusion coefficient. If we normalize out the dimensions, we

can obtain a normalized mixing rate which is plotted in Figure 2.40 for different PDMS Young's

Modulus. For the mixing simulation, we assume a square membrane to easily calculate

membrane stress from differential length strain. As the membrane thickness of 70 ptm is 250

times smaller than the length of the membrane in any direction, the thickness is neglected and

pressure is determined solely from linear strain. We see that the mixing efficiency matches very

well with our measured results for a PDMS Young's Modulus of 1000 kPa, which is not

unreasonable considering our simplistic linear model for the relationship between membrane

volume and pressure.
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Figure 2.40.Measured mixing rate versus mixing period compared to simulations for an air pressure of

3 psi. Simulations are performed using the peristaltic shear model with two 0.5 mL chambers connected

by 10 fluid channels 0.09375 in x 0.03125 in x 0.0027 in. Air channels were assumed to be 31.5 mm x

0.5 mm x 0.25 mm and additional air volume was of 1 mL was added to approximate in-line piping.

2.3.6 Flow control and growth chamber coupling

Since our growth chamber always contains an empty section to accommodate mixing,

connecting the injectors to the growth chamber is also non-trivial. Flexible membranes used for

mixing introduce volume variability for a given chamber when it is neither full nor empty. To

ensure that the injection and removal of liquid to and from the chamber does not change the

volume of the chamber, injections should only occur when the growth chamber looks like a rigid

device.

Two methods can be used to accomplish rigidity, the first is to take advantage of the inoculation

design and force a membrane to either the top of the chamber or the bottom of the chamber. For

the fully inflated case, there is a pressure build up in the chamber due to the flexible membrane

being forced into an elastic state by the liquid in the chamber. In order for injectors to work in

this system, the input and output of the chamber must be individually isolated with three valve

peristaltic pumps to simultaneously inject and remove a fluid plug without the chamber
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backpressure forcing fluid out of the chamber. While this approach allows the growth chamber to

be fully isolated from the input and output through peristaltic pumps, any variability between the

injected and removed plug volumes will cause a net volume increase or decrease in the system

by forcing fluid into neighboring chambers or removing too much fluid. Therefore this design is

not suitable for sustained and repeatable flow.

For the fully deflated case as explored in a previous version of the device, two problems exist.

The first problem is finding a way to connect the input and output lines to a growth chamber of

zero volume. The solution proposed in this work is to design micro-channels underneath the

growth chamber which provide a shunt between the input and output lines. This solution is

illustrated in Figure 2.41 for both the premixer and growth chamber.

Figure 2.41.Illustration of the microchannels embedded at the base of the premixer and growth

chamber. When the membranes fully seal the chambers, the microchannels still connect the input to the

output, providing a volume stable method for fluid exchange.

With this design, only a single peristaltic pump is required, either on the input or the output side

of the chamber, removing the matched volume condition required for multiple peristaltic pumps

in the same device. When the membrane is fully depressed, the microchannel is sealed and

isolated from the growth chamber. An open shunt from the input to the output can then be

connected without the problem of growth chamber volume being steadily removed by membrane

backpressure. The fluid that is initially trapped in the microchannel comes from the growth

chamber and can be replaced by the fresh medium injected from the input. After the channel
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volume is replaced, the membrane can be re-inflated to mix the new microchannel fluid with the

existing growth chamber fluid.

The one drawback to the embedded microchannel approach is that the microchannel provides an

indirect path from the input/output to the growth chamber. This requires that the membrane be

reinflated for fluid injected from the peristaltic pump to actually mix with the growth chamber

fluid, adding additional time to the injection cycle. This is true for both the premixer fluid

injection into the growth chamber as well as the input reservoir injection into the premixer.

However, by designing the injectors to allow a flow rate higher than required, this additional

required mixing time can be included without detrimentally affecting the flow rate. Also, the

volume of the microchannel under the premixer and growth chamber limits the number of

injections that can occur before the original fluid in the premixer and growth chamber

microchannels is fully displaced. Injections after this limit will no longer result in dilution of the

growth chamber fluid.

However, the drawback of finite injection volume can be thought of as a feature as well. If the

microchannel is larger volume than the input injector, it is possible to create larger fluid plugs

before mixing them into the growth chamber, giving better resolution over the final input

concentration. If 100 injections are required to fill the microchannel, then each final injection

into the growth chamber can allow for a consistent 1 in 100 dilution of a particular input.

In practice, the fully deflated case has a second major problem. Even with significant pressure

pushing the membrane, some liquid is always trapped at the membrane chamber interface. As the

membrane pushes liquid out of the chamber, the liquid height decreases and the flow resistance

increases. At some point, the pressure supplied from above the membrane is no longer adequate

to remove the remaining fluid. As a result, there is a sheet of fluid trapped under the membrane

in addition to the fluid trapped in the microchannel. Subsequently, when the output is opened to

shunt the pump to the output, the flow resistance to move the trapped sheet through the

microchannel and out of the chip is much lower than the resistance to move it into neighboring

sections. This fluid sheet is then permanently lost through the output valve.
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A minor design change alleviates the flow resistance issues associated with the microchannel

under the mixer. This change moves the microchannel section from under one of the mixing

sections into the side of the device as a pass-through channel as shown in Figure 2.42. An

additional benefit of this design is that the growth chamber and pass-through channel are not

directly connected; allowing the mixer to continue operating even when the pass-through channel

is in use.

Figure 2.42.Illustration of the pass-through channel to the side of the growth chamber. Valves located

in the section connectors select whether the connector or the pass-through channel are used for mixing.

Since the pass-through channel does not contain a flexible membrane, long term liquid accumulation or

removal from the growth chamber is reduced.

2.4 Overall chip design

In order to assemble all of the implemented components into a working device, the first step is to

decide on an appropriate working volume. Since the system allows for offline measurements, an

important metric is the number of doubling times required to collect a sample for measurement,

with the most important being DNA microarray and HPLC analysis. From our previous analysis

of offline measurement systems, we determined that we required at least 0.76 ml of chip volume
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to allow for one measurement every cell doubling time. To further improve measurement times

and allow for more convenient initial inoculation volumes, we will set our continuous culture

growth chamber volume to 1 ml.

For the rest of our volumetric decisions, we need to look at the mixing and pumping times

required as well as the sampling rate. For an . coli cell doubling every 36.5 minutes in defined

medium [51], we need to flow 19 iL/min or 90 injections per minute at 210 nL per injection. If

we inject 2 injections per second, we can finish the injection cycle in 45 seconds, leaving plenty

of time for mixing and measurement if we perform measurements every minute. Looking back at

our previous experiments, we see that for a 20 p.L reservoir, only 17 ptL can be used before

volume consistency suffers, therefore the reservoir is expanded to 30 p.L to ensure that injections

can be consistent throughout the necessary range. Also, the pass-through channel must be able to

accommodate a 19 pL injection, so the depth is adjusted to provide a larger volume of 26 [L.

The addition of the pass-through channel makes the premixer less necessary since mixing will

occur in the pass-through and the injections can be performed in a specific order which ends with

injections of DI water to prevent positive gradients. Therefore, the premixer is reduced to the

minimal volume of 800 nL required to connect the channels together. Also, since connecting

channels between the different growth chambers are also acting as valves, they are broken up

into multiple smaller channels to improve valve sealing.

With all of the design requirements in place, the chip design presented in Chapter 1 is illustrated

in Figure 2.43 with each device component labeled. Table 2.2 also gives a summary of the

volumes of the chip.
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Growth
Chamber

Pressure
Reservoirs

Layer 1
Pass-Through

pysa Layer 1
Lsi Fluid Channels

Layer 2
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Oxygenation

Layer 3/4
Gas Channels

Figure 2.43.Illustration of the complete device, showing the input, output, on-chip reservoirs, premixer,

growth chamber, and valves.
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Component (full pressure) Volume Constraint

Table 2.2. Table summarizing the designed volumes for the continuous culture device and the

constraints that set the volumes.

The chip consists of a 3 well growth chamber with a fully inflated 500 pl per well. One set of

input injectors is located between the premixer and growth chamber to regulate flow and provide

chemotaxis isolation. In addition, 8 inputs for fluids are located at the top of the chip along with

on-chip fluid reservoirs to regulate the input pressure from each line. Also, two outputs are

provided to enable automatic switching between sample collection and waste output. Operation

details of the integrated continuous culture chip will be presented in Chapter 4. The designed

volume for the pass-through channel enables a minimum doubling time of 29 minutes if the pass-

through is filled every minute. This will easily support a maximum E. coli doubling time of 20

minutes by slightly varying the fill period. With a full pressure injector volume of 304 nL, a

realistic injection volume for moderate pressures will be around 200 nL. This will require 120

injections per minute to fill the channel, or a pump period of 0.5 seconds. We will show that this

is easily achievable when characterizing the peristaltic pump. The pressure reservoirs are also

intentionally larger in volume to easily support the full volume of the pass-through with minimal

pressure variation. With 3 growth chamber sections each having a full volume of 500 pl, the

design ensures that there will always be one empty growth chamber to support volume exchange

during mixing at a working volume of 1 ml.
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Chapter 3

Device Fabrication

Microfluidic devices have been manufactured silicon, glass, plastics, and PDMS. However, for

active devices which utilize valves, PDMS has been the only process available due to is oxygen

permeability and elasticity. With these properties, PDMS has greatly reduced the entrance barrier

for research in microfluidics based chemistry and biology. The introduction of the elastic

microvalve in PDMS has also led to the creation of highly integrated systems capable of

automated experimentation, with examples such as whole blood PCR analysis [64], microbial

cell culture [11, 12], protein crystallization [65], and multicellular manipulation and analysis

[66], and particle production [67].

However, there are many drawbacks to using elastic materials which become more pronounced

when implementing a continuous culture system. As we have mentioned for our device design,

elasticity ultimately leads to inconsistent chip volumes due either to membrane bulge or chip

bulge. This volume inconsistency will cause two major problems, errors in injected volume due

to backpressure and errors in optical density measurements due to varying inoculated volumes or

evaporation. For actuated microfluidics to overcome the challenges of volume control, a

transition must be made from elastomers to rigid materials.
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While an elastic membrane such as PDMS must be used to enable pressure active devices, the

rest of the chip should be made out of rigid optically clear materials. However, other properties

that make PDMS useful for biology must also be true of the rigid materials. For large and

complicated geometries discussed in Chapter 2, the materials must be machinable with

conventional machine processes. For optical sensors, the materials must also be easy to polish to

maintain optical clarity. To make multilayer pressure active components, the materials must also

be bondable to each other as well as to elastic membranes. Since cells will be grown in the

devices, biocompatibility and stability to sterilization procedures is also important. Finally, since

cell growth results in large changes to chemical concentrations, materials must be chemically

compatible with all chemicals used in cell growth.

Chapter 3 is organized into 4 main sections. First, materials are explored to determine suitable

plastics for device fabrication. After selecting materials, a bonding process is invented to enable

stable bond formation between the plastic and PDMS for active pressure valves. After

demonstrating reliability of the bonding process, a fabrication process encompassing machining,
polishing, and bonding will be discussed. Finally, after device fabrication, biocompatible non-

stick coating options are explored to prevent cell adhesion and valve sticking.

3.1 Material Selection

In order to meet the design requirements of the reactor, in particular a dimensionally stable 1 ml

chamber with active valves, the reactor must be fabricated out of a rigid clear material as well as

utilize PDMS membranes. Therefore reliable bonds between the rigid substrate and flexible

PDMS membranes, capable of supporting the required actuation pressures, are critical for device

functionality. Ideally, devices would also be single use, allowing for disposability and simplified

sterilization procedures.

Glass is the first logical choice for device fabrication. Glass can be bonded to PDMS irreversibly

through plasma bonding processes and is also rigid, clear, and chemically resistant. Valves

utilizing PDMS to glass bonds have also been demonstrated [52]. However, device fabrication in

glass on a millimeter scale using conventional machining is difficult due to hardness with respect
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to steel and brittleness. While processes such as etching and laser based micromachining are

capable of producing devices on the scale, such processes are very time consuming, creation of

arbitrary depth profile structures are not straightforward, and undercuts are not possible.

Lithographic mold and transfer processes also exist for the creation of microfluidic devices.

However, standard lithography processes are not amenable to fabricating molds with features of

mm thicknesses since they require multiple spin coating and exposure steps. In SU-8 processes,

layers of 100 ptm thickness already suffer from substrate delamination due to stress [53]. Also,

fabrication of rigid plastic molds from SU-8 masters will be difficult since detaching the

replicated molds will most likely break either the master or the plastic. One work around to

directly casting plastic devices from SU-8 or silicon masters is to use a process called LIGA

[54]. Originally brittle master molds are electroplated to create replica negatives out of metals

such as nickel. These metallic molds are then used as embossing tools or injection molding

shims. While this process is capable of creating plastic devices from micromachined masters, the

electroplating process is also time consuming, especially for devices with thicknesses above 1

mm.

For structures requiring dimensional stability, rigidity, and disposability, plastics have the

required properties for microfluidic chip fabrication [55]. Plastics can be manufactured using

mass fabrication technologies such as injection molding and hot embossing with established

plastic-plastic bonding processes [63], but at the cost of sacrificing active device functionality.

Plastics are also more dimensionally stable, rigid, and chemically resistant [55]. Rigidity enables

a variety of reliable external interface options, such as manifold integration, direct barbed tubing

connections, and gasket connectors. Plastics can also be machined directly for prototyping

applications, and many custom profile tools are available to create the rounded or sharp channel

features required for valve closure. Machining a part directly is fast, with engraving speeds

exceeding 100 in/min. A Computer Numerical Control (CNC) machining approach is used to

fabricate mm thick master molds. Since the machining process generates rough surfaces,

compatible and implementable polishing processes for specific plastics will also be a factor in

choosing a particular plastic.
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However, chemical resistance of plastics varies greatly depending on the material and a reliable

chemical bonding process between plastics and PDMS has not been developed and must be

explored. Integrating flexible membranes into rigid plastics will enable a variety of new devices

currently not possible in PDMS due to chip elasticity such as large area or high pressure

membrane deformation, on-chip pressure regulators, full volume pumps, and reliable square

channel membrane valve particle filters.

Given these fabrication constraints, a variety of optically clear plastics can be used including

polycarbonate, PMMA, polyester (PET), polystyrene, and cyclic olefin copolymer. Among these

options, availability from suppliers is the main limitation. Only polycarbonate, PMMA, and

polyester are readily available in sheet form with a variety of thicknesses since they are used as

window materials. Of the three plastics, PET is the least resistant to heat, with a glass transition

temperature of 75 C, which can impact the fabrication options available. Polycarbonate and

PMMA have both been shown to polish easily through solvent polishing processes [61], machine

easily, and share the common chemical feature of containing carboxylic acid groups in their

chemical structure as shown in Figure 3.1. Since carboxylic acid groups exist in proteins, many

chemicals exist for attaching molecules to carboxylic acid groups and will improve options for

bonding and surface modification.

0 0
CH 3

C O -C-O j-
CH3  n

Figure 3.1.Structure of polycarbonate (left) and PMMA (right). Polycarbonate chains are

interconnected by carbonate groups while PMMA chains are connected through carbon-carbon bonds.

(Source: Wikipedia)

In addition, both polycarbonate and PMMA can be purchased in medical grade formulations

suitable for human contact. Both materials have also been shown to be compatible with bacterial

and yeast cell growth [13, 62] in direct contact. Between the two plastics, polycarbonate is easier

to machine due to its high impact strength and fracture resistance. PMMA, being a glassy
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polymer, tends to crack and shatter easily during machining. Therefore the material of choice for

device fabrication is polycarbonate, and PMMA will only be used when necessary.

3.2 Material Stability

Plastics must be compatible with the required culture inputs. For example, pH control utilizing

highly acidic and highly basic solutions can lead to plastic etching or chemical surface

modification. Solvent compatibility is also a concern depending on the type of cell growth. Many

strains of bacteria can be engineered to produce alcohols or oils and accumulation of these

substances might also lead to device material incompatibility. While solvents are less of an issue

for polycarbonate, many concentrated acids and bases are incompatible. As shown in Figure 3.2,

the carbonate bond interconnecting Bisphenol A groups is produced using sodium hydroxide and

is just as easily degraded at the same reaction sites by many bases.

HO OH

+2 NaOH--

C sodium

H3C C H3  hydroxide

hisphprni A

~0 O

+-2Na*+H 20

H3C CH3
diphenolate ion of

bisnhenol A

0
II

)-c-CI

+ Cl-

0
II

+ Cl-C-Cl -*

phosgene

1 13C' C1 13
phenolate ion end

on bisphenol A chloroformate end on bisphenol A

Figure 3.2.Synthesis of polycarbonate from Bisphenol A and phosgene. Sodium hydroxide is used to

deprotonate the Bisphenol A in preparation for a reaction with phosgene. Phosgene then reacts with the

deprotonated Bisphenol A to form a carbonate linkage (Source: plastics.inwiki.org/Polycarbonate)
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This will limit the maximum concentration of any pH control fluid we plan to utilize for the chip.

In order to improve the compatibility of chips with acids and bases, we can also look at utilizing

PMMA as our chip material. A list of the most important chemicals for chip processing and cell

growth is given below in Table 3.1 compiled from a variety of sources as well as personal

observations. In addition to acid and base compatibility, which is important for pH control and

cell metabolism, solvent compatibility is also important. Solvents such as ethanol and

isopropanol are typically used as cleaning agents during processing. They are also diluting agents

for certain adhesive bonding processes. Therefore compatibility of materials to solvents will

influence the fabrication process. It should be noted that this list is only suggestive of the

chemical properties since many formulations of plastics exist. Just as an example, chemical

resistance between cast and extruded PMMA is compared in the table. While personal tests of

extruded PMMA demonstrate crazing, softening, and dissolution of PMMA in isopropanol after

1 hour, previous work has demonstrated cleaning of cast PMMA in isopropanol for 1 hour and

diethyl ether for 24 hours with no adverse effects, indicating differences in solvent compatibility

between extruded and cast PMMA [68]. In contrast to previous work, manufacturer specified

chemical compatibility of both extruded and cast PMMA suggest that PMMA dissolves in

diethyl ether [59, 60].

Chemical Polycarbonate PMMA PMMA
[56, 57, 58] (cast) [601 (extruded) [59]

... .. ...... . .

Hydrochloric Acid (10%) + + +

Phosphoric Acid (10%) + + +

Ammonium Hydroxide (28%) + +

Sodium Hydroxide (1%) o + +

Methanol o o

Isopropanol + +

Methylene Chloride---

Table 3.1. A list of common acids, bases, and solvents used during fabrication and cell growth and

their effects on polycarbonate and PMMA. (+): Chemically resistant, (o): slight crazing or swelling, (-):

Dissolves.
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For cell growth, the two most important chemicals which are used for pH control are sodium

hydroxide and hydrochloric acid. Therefore for proper pH control, layers wetted to cell media

must be able to handle high concentrations of both acid and bases, which leaves PMMA for such

devices. For devices which do not have to deal with large pH variations, polycarbonate can still

be used. With base materials selected for fabrication, a bonding process must be developed to

incorporate PDMS layers between the plastic layers for active devices. These bonding processes

must also be chemically compatible with aqueous solutions of sodium hydroxide and

hydrochloric acid.

3.3 Bonding Process

Few technologies exist for bonding PDMS to plastics, notably CVD processes [69, 70] or

silane/silicate coatings [71, 73]. Also, data on bond strength in aqueous and chemically harsh

environments is not available for the published processes. A bonding process which can

demonstrate bonds on low temperature plastics with long term hydrolytic stability is critical for

the creation of plastic devices with active membranes. This process would enable active

microfluidic devices inside dimensionally stable systems, merging the functionality of PDMS

with established plastic mass fabrication technologies.

Bonding between PDMS and plastics for fluidics requires interfaces which can handle high

pressure and harsh chemical environments. Typical pressures for total valve closure lie between

5 and 15 psi. Of all possible properties of bond strength, hydrolytic stability is particularly

important for reliability since cell growth, chemical synthesis, and protein crystallization, to

name a few, all rely on aqueous environments with varying chemistries.

While direct bonding between PMMA and PDMS has been explored [74], results indicated that

interfaces only withstood 2.5 psi before failure. Bond strength can be improved through an

intermediate layer, such as a deposited film of glass. A few major methods have been attempted

for intermediate layer deposition, direct deposition of glass onto the plastic surface [75], initiated

chemical vapor deposition [69, 70], and organo-functional-silane deposition [73, 77].
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Direct SiO 2 deposition processes are high temperature or plasma activated [75], which can lead

to plastic substrate breakdown. In addition, direct glass deposition onto plastic substrates leads to

carbon-oxygen-silicon (C-0-Si) bonds which hydrolyze readily upon exposure to moisture and

will be discussed in more detail below [76]. The idea of using an intermediate coating containing

an inorganic oxide or an organo-functional-silane to improve bond characteristics between

organic and inorganic substrates is also not new. In fact, multiple primer compositions for

improving adhesion already exist and are sold commercially, with one specifically for Sylgard

184 under the name Dow Coming 92-023 Primer, which contains a titanium alkoxide and

allyltrimethoxysilane. However, bond chemistry between this primer and organic surfaces is

non-ideal due again to carbon-oxygen-titanium bonds which behave similarly to carbon-oxygen-

silicon bonds. Therefore long-term hydrolytic stability is difficult in aqueous environments, with

the majority of the primer consisting of a titanium alkoxide, which readily absorbs and interacts

with water molecules [78].

More hydrolytically stable silane bonding systems have been explored for plastics, namely

APTES to Polycarbonate (PC) and PMMA surfaces to improve the adhesion of sol-gel coatings

for abrasion resistance [73]. It was shown that PC surfaces react with amine groups of

AminoPropylTriEthoxySilane (APTES) to form amide bonds on the surface directly. Since

amide bonds are hydrolytically stable over a wide pH range, from -1 to greater than 15, amine

functional silanes are excellent candidates for surface coatings. Bonding of these coatings to

PDMS have also been demonstrated [77], but hydrolytic stability was not tested. Identifying the

processes which cause hydrolytic failure in silane coatings will aid in developing silane

compositions and process conditions necessary to ensure hydrolytic resistance.

3.3.1 Bonding and Bond Stability

To understand how to design a bonding process for covalently attaching a plastic to PDMS, we

need to understand the process of hydrolytic stability. Molecular orbital theory from Wade [72]

provides the necessary background for bond stability. Organic chemistry deals mainly with

molecules in the first two rows of the periodic table. If we look at the atomic orbitals available

for electrons as shown in Figure 3.3, we see that the maximum amount of electrons in the second

row occurs for Neon, which has 10 electrons.
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Figure 3.3.Relationship of energy levels for electrons in atomic orbitals. For the second row of the

periodic table, which typically defines organic chemistry, we never exceed n = 2, and do not encounter

d orbitals.

If we fill the energy levels with 10 electrons accounting for Pauli exclusion, we notice that we

never exceed n = 2, and do not encounter molecules with d orbitals. Under these conditions,

molecules made up of atoms in the first and second rows can maximally bond to four other

atoms, simplifying the possible interactions between atoms and molecules.

To understand how bonds are formed between atoms, we need to know how the electrons

distribute spatially in the different energy levels. If we look at the energy levels in Figure 3.3, we

see that we have 5 different types of orbits, 2 's' level states which we denote Is and 2s, and 3

'p' level states which we denote 2px, 2py, and 2pz which are shown in Figure 3.4. As the energy

of the state increases, we notice that the probability of finding an electron localized in multiple

locations increases.

Z Z Z

h/c2sttp:w e a c/ s 5 r

http:/Aww.chem.ucalgary.ca/courses/350/Carey/ChOl/chl-l html

Figure 3.4.Illustration of the different electron orbits for each energy level.
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Since we are dealing with second row atoms, we are interested in bonds formed with the 2s and

2p orbitals. These energy levels are actually degenerate and form 4 similar energy levels for

bonding which are called hybridized sp orbitals. These orbitals distribute through energy

minimization into a tetrahedral structure typical of atomic structures with 4 bonds. Secondary

bonds, such as double or triple bonds, which are formed between two atoms, are made using

their original non-hybridized p orbitals and are called pi bonds. The hybridization characteristics

of fully bonded atoms in the three possible configurations of single bond (sp3), double bond

(sp2), and triple bond (sp) are shown in Figure 3.5.

Sp3-Sp3 bond sp2-sp2 bond sp-sp bond

py-py bond $ py-py bond pz-pz bond

Single Bond Double Bond Triple Bond
www.mhhe.com/physsci/chemistry/carey5e/ChO2/ch2-3- 1 html

Figure 3.5.Bonding characteristics between atoms. Initial bonds between atoms are formed using

hybridized orbitals. Any additional bonds are formed through p orbitals.

The hybridized orbitals demonstrated above are more specifically the situation for carbon, the 4

valence electron atom. For more electron rich atoms, additional electrons themselves can form a

lone pair and fill a hybridized state. In the example in Figure 3.6 for nitrogen in ammonia, this

leads to a tetrahedral sp3 configuration with only three bonds to other atoms. Since these lone

pair hybridized orbitals consist of two electrons unbound to any other atoms, they are easily

attracted to positively charged regions of molecules and can interact to initiate bond formation.

H H
H

Figure 3.6.For ammonia, sp3 hybridization still occurs when nitrogen is bonded to 3 other atoms. This

occurs because the two extra electrons of the nitrogen atom act as a lone pair fill their own sp3

hybridized orbital. (http://upload.wikimedia.org/wikipedia/commons/e/e8/Ammonia-lone-pair-2D.png)
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Now that we understand how electrons distribute energetically to form bonds with other atoms,

we need to understand how stable these bonds are to breaking from external influences such as

other molecules. A dominating factor in determining bond formation, stability, and breaking is

the electron distribution within the molecule. Many organic reactions occur due to electrostatics

and are driven by electron charge distribution and attraction of lone pairs to positive regions of

molecules. An example is hydrogen bonding between two water molecules as shown in Figure

3.7.

Negative Positive

http://avogadro.openmolecules.net/w/images/6/62NVatermoleculeswithelectrostaticpotential.png

Figure 3.7.Illustration of electrostatic potential interaction between two water molecules. The lone pairs

of electrons on the oxygen atom result in the oxygen end of water having a negative charge. The

oxygen also pulls electrons away from the hydrogen atoms, making the hydrogen end of the molecule

positively charged. The dipole of the molecule allows other molecules to electrostatically interact.

In this example, the oxygen on the water molecule has two sets of lone pairs which results in the

oxygen end of water having a large negative charge. In the case of water, the oxygen atom also

pulls electrons away from the hydrogen atoms, making the hydrogen end of the molecule

positively charged. This net dipole for water molecules allows other water molecules to interact

electrostatically and stick together. This results in the boiling point for water being much larger

than similarly sized molecules such as methane.

Since bonds between atoms rely on electron sharing, the degree of electron sharing determines

bond stability. If one atom attracts electrons strongly from another atom, for example water, a

bond between them will be polar causing a charge separation and allowing interactions with

135



CHAPTER 3 DEVICE FABRICATION

other polar molecules. For more polar molecules such as NaCl, interactions with other polar

molecules such as water can cause the bonds to dissociate. When the molecule dissociates, the

additional electron goes with the atom that strongly attracts it, in this case the chlorine atom,

leaving the sodium protonated. In an aqueous solution, the abundance of hydrogen and

hydroxide ions are able to electrostatically surround to these dissociated molecules allowing

them to move freely in solution undissociated [79]. If electrons are shared equally, such as in a

covalent bond, it is more difficult for external influences to force the electrons to one atom or the

other and break the bond. The concept of covalent or ionic bonding is more generally described

by the differences in electronegativity between the two atoms which form the bond. The concept

of electronegativity has been thoroughly quantified for each atom, with the Pauling scale shown

below in Figure 3.8. In general, an atom's ability to attract electrons is proportional to its size,

with smaller atoms having a better ability to attract electrons due to their distance from the

nucleus. It is also strongly influenced by the amount of electrons required to fill the valence shell

of the atom since energy is minimized when the shell is full.

- Atomic radius decreases , Ionization energy increases -- Electronegativity increases -
Group (vertical) 1 2 3 4 5 6 7 8 9 10 11 12 13 1:4 15 16 17 18

Period (horizontal)

1 117He

2Be NB
2

0 98 157 2o4
Na MA A

3 1 093 1 31 1 90

4 Ca Sc Ti.V.Cr Mn Fe C o Ni -u ZtY da Ge A
S8l2 1.00 1.36164 163 186155183488 1;91490 i65 1 8t22. 1 8
RT r Y Z 1 T A .;Cd S

08209 1[22 1 33 I 1 1 19 1 91 1 f6a9 17 49

0790.89 123 105 9 2 n o 6

Fr Pa **Rf Dib Sg Bh Hs 'Mt Ds Rg Cn Uut Uuq Uup Uul hx us

Larthriid *La Ce Pr Nd Pm Sm Eu Gd Tb Dly Ho Er Tm Yb Lu
11 112 113 1 13 117 12 12 11 122 123 124 126 11 27

ThPaU a uAmCm Bk fEsFm MdN Lr
Actinids 11 13 16 138 16 128 113 128 13 13 13 13 13 13 13

Figure 3 .8.Reprint of the Pauling scale for electronegativity from Wikipedia. Electronegativity is the

ability for the atom to attract electrons and increases with decreasing atomic radius and increasing

valence electron count.

136



3.3 BONDING PROCESS

From the Pauling scale for electronegativity, we can begin to understand why carbon-oxygen-

silicon bonds are prone to degradation in the presence of water. The carbon oxygen bond is much

more covalent than the silicon oxygen bond. This causes a migration of the electrons away from

the silicon atom and towards the carbon atom. With a positively charged silicon atom and lone

pairs on the oxygen atom, water is easily attracted to the silicon atom and can initiate hydrolysis.

3.3.2 Silanes and Bond Failure

Now that the mechanism for C-0-Si bond hydrolysis is understood, we are in a position to

design a bonding chemistry which is more resistant to degradation by water. Direct bonds

between carbon and silicon can remove the oxygen mediated attack by water in C-0-Si bonds.

Many molecules of this type exist, called organofunctional silanes, which have a silicon atom

with at least one direct bond to carbon to enable organic functionality as shown in Figure 3.9.

Organofunctional OR Alkoxy
Group

X-(CH 2)n-Si-OR

OR
Figure 3.9.Chemical structure of a typical silane molecule. A carbon-silicon bond allows organic

functional groups to be covalently linked to silicon.

The inorganic side of the silane molecule consists of a silicon atom bound to alkoxy groups

through Si-O-C linkages. Commercially, the hydrolytic instability of these bound alkoxy groups

are beneficial, allowing silanes to hydrolyze in the presence of water converting the bound

alkoxy groups to hydroxyl groups while liberating alcohol molecules. These hydrolyzed silanes

can then be used in sol-gel processing, condensing onto hydroxyl containing surfaces or with

each other to form substrate bound films. The inorganic bonding process is well understood and

is shown below in Figure 3.10. Since the silane matrix looks similar to glass, it is an excellent

candidate for plasma bonding to PDMS.
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Hydrolytic Deposition of Silanes

R R

61 OH OH

OH'r OH OH

3) HS d a ea bai

H -s - - i -H - s -

N~ O
Sub ~

4)BciAfc , -rit

R R

Gelest Inc

Figure 3.1 O.The typical silane deposition process is shown. The alkyl groups of the silicon atom are

first hydrolyzed and allowed to partially crosslink. They are then deposited on the hydroxylated surface

where hydrogen bonding takes place. Then through heat drying or evaporation, covalent oxane bonds

are formed.

Many organofunctional groups exist for silane molecules with a few examples shown in Figure

3.11. Since we are interested in polycarbonate and PMMA, we need an organic group to attach

to. As discussed in Section 3.1 Material Selection, the reactive group readily available on both of

these materials is the carboxylic acid group. If we look at the hydrolytic stability of different

types of carboxylic acid derivatives, we will find that amide or peptide bonds are the most

hydrolytically stable due to their electron resonance structure.

Ester C ( H Allyl OCH 3  Amine

CHCOCHi -OCH5 H2C=HCHi -OCH 3  HNCH2CH, C5

OCH5OCH3 oc2HS

Figure 3.1 .A few specific silanes are shown with their functional organic and alkyl groups. While

organic functionality is very versatile, alkyl groups typically only consist of methyl or ethyl groups.

As a result, hydrolysis in basic and acidic conditions as demonstrated in Figure 3.12 is difficult

and only occurs at pH extremes.
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H/ HH
+H16 6 0~~ :0 H :0: M

cH +R ,-0 CH 4H2-- CH NH3 t..-
ci H I NH2 :OH :OH1 CH 9H CH3  O

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch2O/ch20-3-4-1

Figure 3.12.Process for acid hydrolysis of an amide bond. In acidic environments, hydrogen is able to

react with the oxygen of the carboxyl, leaving a carbocation which can absorb water. Once water is

absorbed, hydrolysis can initiate.

With amide bonds capable of withstanding the majority of pH ranges required for cell growth,

silanes with amine functionality are excellent candidates for bonding. Three silanes in particular

are explored for bonding, AminoPropylTriEthoxySilane (APTES),

Bis(TriMethoxySilylPropyl)Amine (BTMSPA), and BisTriEthoxySilylEthane (BTESE) with

chemical structures shown in Figure 3.13.

C2H Hs (CHAO).SiCHCH2Ck 2
HNCH &FCH2 S' -()C2H C2H5  iCH-CH.Si -OC2Hs NH

C- f Hs(C
(OC-Hs OC2HS OCdHs (H30)SiCH 2 CH7CH2

APTES BTESE BTMSPA

Figure 3.13.Chemical structures of the three silanes explored for the bonding test. APTES and

BTMSPA both have amine functionality, while BTESE is hydrophobic and capable of promoting dense

crosslinking.

While amine functional silanes have been demonstrated to react directly with certain substrates

such as PC and PMMA, prolonged treatment times have been necessary to generate a reasonable

surface bond density as well as substrate selective chemistry make such a process not generally

useful [73]. In general, the electrostatic interaction between the carboxylic acid and the amine

group results in salt formation rather than covalent bonding. The dehydration into an amide

generally requires a catalyst to proceed which converts the hydrogen ion on the carboxylic acid

into a better leaving group [80]. As such, surface activation such as plasma or chemical

treatments will be required. In general, these activated organic substrates will contain bound

hydroxyl, carboxyl, or other ionic groups which promote hydrogen or ionic bonding of silanes to

the organic surface. For activated organic substrates, silane alkoxy group hydrolysis into silanols

(Si-OH) poses a major problem. While bonding between the silanol group and surface hydroxyl

groups is desired for coupling silanes to glass or oxides due to the similarity in electronegativity,
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bonds formed with organic substrates generate Si-O-C bonds, which are hydrolytically unstable

(Figure 3.14a). These are the same bonds formed between the silicon molecule and its original

alkoxy group, which are meant to hydrolyze readily in water. Any contact with water after bond

formation will result in Si-O-C bond hydrolysis and ultimately bond failure. Furthermore, Si-0-

C bonds have also been found to form directly between alkoxy groups such as methoxy and

surface hydroxyl groups via alcoholysis [81] (Figure 3.14b). In order to achieve hydrolytically

stable bonds between silanes and organic surfaces, bonds must be formed through reactions

between the organofunctional groups (nitrogen containing) of the silane molecules and the

organic surface (Figure 3.14c). Two bonding experiments will show that this bond mechanism

can be increased by attaching sterically bulky groups to the silicon atom, inhibiting alcoholysis

and hydrolysis.

a) Inorganic-Organic Bond b) Inorganic-Organic Bond c) Organic-Organic Bond
Water Evaporation Alcohol evaporation Water Evaporation

020

H20 ROH H 0
H

O H O H O H OH OH OH OH OH OH

C C C C C C C C C

Figure 3.1 4.Different methods of bond formation between organofunctional silanes and organic

substrates. Inorganic-organic bond formation can occur through water (a) or alcohol (b) evaporation,

generating Si-O-C bonds. Organic-organic bond formation can also occur through water evaporation

(c).

In addition to the organic bond between the organofunctional-silane and the organic surface,

other processes contribute to bond stability. Hydrolytic bond failure can occur at three locations

in the bonding structure, at the PC-silane interface, at the PDMS-silane interface, and in the

silane network itself as shown in Figure 3.15. While direct interface hydrolysis is unlikely due to

the stability of the amide bond, any hydrophilic groups at the interface can act as nucleation sites

for water condensation, allowing the silane network near the interface to be plasticized and
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weakened [81]. A similar process can occur at the PDMS-silane interface but with the possibility

of hydrolysis directly at the interface in addition to the weakening of the silane network. For the

silane network itself, high crosslink density can provide a major increase in resistance. However,

networks formed by typical silanes, containing three silanol groups, tend to be cyclic, decreasing

their resistance to dissolution [81, 82]. Addressing failure mechanisms in all three locations is

necessary to ensure hydrolytic stability.

Failure Modes PDMS

Hydrolytic Cleavage+# a a M

Dissolution Crosslinked Silane Network

Hydrolytic Cleavage

0 0 0 0 0 0

CH-Si -0-Si Si SO-i- C 2 HHydrolytic Cleavage 5OC S Si

H O=/ N - H

o0 0 0 OnoPolycarbonate

Figure 3.15.Different bond failure mechanisms for silane bonding between organic substrates and

PDMS. The PDMS-silane interface, the PC-silane interface, and the silane network are all vulnerable to

hydrolysis.

3.3.3 Materials and Methods

Isopropanol and titanium butoxide catalyst were purchased from Sigma Aldrich. Silane

molecules Amino-Propyl-Triethoxy-Silane (APTES), Bis-Trimethoxy-Silyl-Propyl-Amine

(BTMSPA), Bis-Triethoxy-Silyl-Propyl-Amine (BTESPA), Bis-Triethoxy-Silyl-Ethane

(BTESE), and Amino-Ethyl-Amino-Propyl Silanetriol (AEAPST), were purchased from Gelest

Inc. Preparation of silane solutions involved mixing 5% weight silane in isopropanol.

Transesterification, the process of ester exchange, of BTMSPA into BTISPA products was

prepared by mixing 5% weight silane solutions in isopropanol with or without 0.5% weight

Tetra-butyl Titanate (TBT) and aging in a dry nitrogen environment for a minimum of 2 weeks.

w -
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While partial transesterification rather than complete replacement of methoxy with isopropoxy

groups results, hydrolytic resistance is still improved [84]. Transesterification without TBT as a

catalyst also proceeds, but takes significantly longer. Since the resulting BTISPA is very

hydrophobic and uncrosslinked, a quantity of water ranging from molar ratios of 0.5:1 to 3:1 are

added to promote partial crosslinking and an increase in hydrophilicity. This improves coating

stability and coating uniformity. Larger concentrations of water result in gelation of the coating

solution. Hydroxyl modified APTES (APTHS) was prepared by mixing 5% weight APTES in

water and aging for 1 hour, generating a clear solution. Hydroxyl modified BTMSPA (BTHSPA)

was prepared following manufacturer directions, by mixing a solution of 95% ethanol and 5%

water adjusted to pH 5 with acetic acid and then adding 5% weight BTMSPA into the solution.

Due to the instability of this solution, coatings were carefully applied before precipitation.

Hydroxyl modified AEAPTES (AEAPST) was diluted to 2.5% in water. Glass coatings were

PECVD deposited on PC to 200 nm thickness.

PC samples purchased from McMaster Carr under the trade name Makrolon were first machined

using a mill to create test structures. Samples were then cleaned with isopropanol followed by

mild corona discharge (5 to 15 seconds) using a hand held corona treating wand (BD-20AC)

from Electro-Technic Products to promote surface activation. Corona discharge occurs when a

voltage larger than the breakdown voltage of air is applied by the wand and results in the

generation of ozone and ultraviolet light. Prolonged activation with corona discharge or

activation with an oxygen plasma chamber was not used due to noticeable plastic and silane

degradation and over-generation of hydrophilic groups. Mixed silane solutions were then wiped

onto the corona activated surface with a cue-tip and the solvent was allowed to evaporate. For
"monolayer" coatings, the coated surfaces were again rinsed thoroughly with isopropanol after

initial coating to remove any unbound silane molecules from the surface. A second silane coating

consisting of BTESE was then optionally applied to form the crosslinked over-coating. After

allowing for solvent evaporation, coated surfaces were placed into a high humidity environment

(>90%) at 70 C for 30 minutes to 1 hour to cure the coating. After curing, the layers were

exposed to corona again, and bonded to a corona activated cured PDMS layer. The PDMS layer

is prepared by spin coating PDMS onto a 3M high temperature transparency (PP2950) and

baking at 70 C for 4 hours. Bonded samples are cured at room temperature for 24 hours to ensure
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full siloxane bond formation without thermal stress induced delamination. Ambient cure is

necessary since the initial bonds formed between the PDMS and silane layer can be separated

[85]. Subsequent layers are then coated and bonded with the same procedure. The chip is then

baked at 70 C for 24 hours to accelerate hydrophobic recovery. A detailed illustration of the

bonding process is given in Figure 3.16. While curing and annealing steps can be shortened

significantly, 24 hours ensured bond formation without complications. Acid and base testing was

performed using 10 M HCl and 10 M NaOH subsequently diluted to reach different pH values.

1. Introduce OH groups by plasma 5. Repeat 1-3 for second layer

2. Apply silane coating for organic bond 6. Corona bond second layer cure for
24 hours at room temperature

3. Evaporate solvent and cure 1 hour
90% humidity to promote crosslinking

7. Repeat process for more layers or

4. Corona bond PDMS and cure for bake 70 C 24 hours to cure coatings.
24 hours at room temperature

Figure 3.16.Fabrication process for bonding PC to PDMS using silane coatings. Curing and annealing

steps are intentionally prolonged to ensure bond formation and hydrophobic recovery.

3.3.4 Results and Discussion

To test the effectiveness of the silanes for coupling PC to PDMS, peel test and blister test

structures were used as shown in Figure 3.17. For peel tests, PC-PDMS-PC stacks were bonded

utilizing two different coating compositions on either side of the PDMS membrane as shown in

Figure 3.17a. Peel tests were performed by pulling apart the PC pieces and observing failure

location. For blister tests, PDMS membranes are bonded between a layer of PC with 915 pLm

diameter holes and a layer of PC with 16 pL fluid reservoirs. This blister test structure simulates

a microfluidic valve deflecting into an aqueous environment. As is typical for peristaltic valves,

the critical bond interface between the PDMS membrane and the PC is separated from the fluid

by the membrane. This enables testing bond strength as seen in the device, where liquids must

diffuse through the PDMS to reach the bond interface of the actuation layer. Interface bond
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strength was first measured in air to determine bond strength. Wet strength was then tested under

different conditions to determine the effects of interface and silane chemistry on hydrolytic

resistance. Finally, peristaltic pumps are fabricated and tested for long term reliability in acidic,

basic, and neutral environments.

Polycarbonate Bond 1
Coating 1

Peel PDMS

Coating 2
Polycarbonate Bond 2

Polycarbonate

PDMS60pm
Delartinatio 500 pm

~ Pressure c n g a c ig
Input

Polycarbonate
915

prn

Figure 3.17.(a) Schematic of the bond stack used for peel tests. PC layers are bonded to a PDMS

membrane using silane coatings on either side. (b) Schematic of the aqueous blister test structure used

to test hydrolytic bond failure. Suspended PDMS membranes were 60 em thick and 915 fm in
diameter. A picture of a fabricated blister test structure with the wells loaded with green dye is shown

in the inset.

3.3.4.1 PC-Silane Interface Bond strength

In order to determine bond strength at the PC-silane interface, differential measurements of dry

bond strength for different coating compositions are compared. In general, coating 1 is a

reference coating consisting of BTISPA (BTMSPA aged for 2 weeks) which is known to have

strong adhesion. Possible failures occur either at the PC-silane interfaces, or within the PDMS,

since the plasma bonded interface between the coating and PDMS is not expected to fail in dry

environments. Cohesive failure within the PDMS would indicate that bond strength is greater

than the tensile strength of PDMS, or 1000 psi.
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Large alkoxy end groups on silane molecules are critical to achieving high bond strength. Small

end groups, such as methoxy for BTMSPA, react directly with surface hydroxyl groups to form

bonds via alcoholysis [81]. As a result, a majority of weaker Si-O-C bonds are formed in

comparison to silanes with larger alkoxy end groups. Sterically reducing alcoholysis by replacing

methoxy groups with larger alkoxy groups will preferentially select for organofunctional

bonding at the interface when silane coatings are applied. To demonstrate this process, a peel test

between a newly mixed solution of BTMSPA in isopropanol and the reference BTISPA (Figure

3.18a) is compared to a peel test for the same BTMSPA solution aged for 1 day and the reference

BTISPA (Figure 3.18b). While very difficult to peel, the BTMSPA coating from a new solution

completely delaminates, as can be seen from the rainbow appearance indicating the BTMSPA

coating is attached to the PDMS. In contrast, the BTMSPA coating aged in isopropanol for 1 day

fails cohesively within the PDMS. This is an indication that interface bond chemistry is altered

by isopropoxy transesterification of BTMSPA.

Coating 1 Coating 2
Reference BTISPA Solution BTMSPA Solution

AMA..,

Reference BTISPA Solution BTMSPA Solution (a ed 1 da )

(A

Figure 3.18.(a) A peel test (Table 3.2f) between newly mixed BTMSPA in isopropanol and a reference

solution of BTISPA (BTMSPA aged for 2 weeks). The BTMSPA layer is completely removed from the

bottom PC surface and bonded to the PDMS giving a rainbow appearance. (b) A peel test (Table 3.2i)

with the same BTMSPA solution in isopropanol aged for 1 day and the reference BTISPA solution.

Aging the BTMSPA solution for 1 day results in greatly improved bond strength. Peel tests result in

cohesive failure and PDMS bonded on both PC sides.
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Similar peel tests were performed for a variety of coatings containing BTMSPA with exchanged

end groups as well as for PECVD SiO 2 coatings. From the results shown in Table 3.2, cohesive

failure occurs for coatings as alkoxy end groups become larger, with the minimal alkoxy group

being ethoxy for cohesive failure. Tests comparing the bond strength of a non-functional silane

BTESE (Table 3.2g) versus its functional equivalent BTESPA (Table 3.2h) also confirm the

amine contribution to bond strength when large alkoxy groups are present. Bond failures for

PECVD glass coatings, hydrolyzed silane coatings, and methoxy coatings (Table 3.2b,e,f)

demonstrate the reduced strength of Si-O-C bonds. Upon exposure of methoxy, hydroxyl, and

SiO 2 coatings to water at 70 C for 2 hours, complete delamination occurs at pressures less than

45 psi (data not shown); below the membrane rupture pressure of 60 psi. These failures

demonstrate the hydrolytic instability associated with Si-O-C bonds at the interface. For

operation of valves in aqueous solutions, coatings using silanes with larger end groups are

necessary to increase the probability of interface amide bond formation.

S Coating 1 (end group)

0

b BTISPA (Isopropoxy) PECVD Si02 X
c BTISPA (Isopropoxy) APTHS (Hydroxyl) X
d BTISPA (Isopropoxy) APTES (Ethoxy) X

0 e BTISPA (Isopropoxy) BTHSPA (Hydroxyl) X
fpP
f f BTISPA (Isopropoxy) BTMSPA (Methoxy) X
h BTISPA (Isopropoxy) BTESE (Ethoxy) X
h BTISPA (Isopropoxy) BTESPA (Ethoxy) X

I_ __ ISPA (Isopropoxy) BTISPA (I soprop ) I _ ___ X

Table 3.2. Summary of bond failures for differential peel tests. S is the sample type, B1 is bond 1

failure, B2 is bond 2 failure, and C is cohesive failure as given in Figure 5a. Stronger coatings are listed

as coating 1 and the weaker coating as coating 2. Delamination at bond 2 is apparent for all coatings

with small end groups on the silane molecule. Failure at bond 2 for BTESE for sample (g) and success

for sample (h) shows that bond strength is contributed by the amine functional group.

3.3.4.2 Interface Hydrophobicity

The PDMS-silane interface is also vulnerable to hydrolytic failure. Contact angle measurements

can be used to measure the surface characteristics to determine if surfaces are vulnerable to

failure. Contact angle measurements are performed by placing a drop of water on the surface of

interest as shown in Figure 3.19 and measuring the interface angle O0. The angle between the
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drop and the surface is defined by equilibrating the surface energies at the liquid-vapor, solid-

liquid, and solid-vapor interfaces [83]. If the surface is highly charged, the energy of the solid-

vapor interface is very large, and the drop will try to maximize its area. Therefore, smaller angles

for water drops can be interpreted as surfaces being more hydrophilic.

Figure 3.19.illustration of a contact angle measurement. The angle between the drop interface and the

surface is a function of the surface energy of the solid liquid interface.

The rate of hydrophobic recovery from corona treatment in relation to curing time can be seen

from contact angle measurements shown in Figure 3.20a. After aging for 2 hours at 70 C,

samples exposed to corona treatment with longer curing times recovered their hydrophobicity

slower. This hydrophobic recovery is correlated with interface hydrolytic resistance in Figure

3.20b by measuring the delamination pressure versus curing time before corona treatment. Bonds

with longer hydrophobic recovery result in lower delamination pressures when exposed to a 2

hour aqueous bake at 70 C. In agreement with previous work [81], acidic conditions are more

resistant than neutral conditions, demonstrating that failure is caused by hydrolysis of Si-O-Si

bonds. All silane coated surfaces eventually recover their hydrophobicity as well as improve

their hydrolytic resistance, as demonstrated by both the contact angle recovery and the

delamination recovery after baking bonded samples for one week at 70 C. Interestingly, for the

coating which was cured for 15 hours before bonding, 1 week of hydrophobic recovery still did

not result in recovered hydrolytic resistance. This could be an indication that the film has not

recovered, or a small degree of hydrophilicity was permanently introduced. To prevent

premature device failure, corona treatment must be initiated before the silane layer is fully cured

and bonded chips should be aged until full hydrophobic recovery is achieved.
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80S4Aged7ays70 C 60
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'60 Before Corona 5 pH 7 (aged 7 days 70 C)

H 0 (aged 1 day
Tn40 - 25 C)

Aged 2 hours 70 C c40
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u 20-
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0  20
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Figure 3.20.(a) Water contact angles before and after corona treatment of cured silane layers.

Hydrophobic recovery is slower for samples with prolonged curing times. (b) Delamination pressure of

blisters after a 2 hour water bake at 70 C. Samples are bonded with corona treatment to PDMS after

specified silane curing times. Delamination pressure decreases for samples bonded after longer curing

times, but improves after aging bonded structures for 1 week at 70 C. Similar behaviors of contact

angle and delamination pressure suggest that interface hydrophobicity plays a major role in hydrolytic

3.3.4.3 Crosslink Density and Hydrolytic Resistance

To determine the effect of bis-silanes on hydrolytic resistance, coatings utilizing different ratios

of large alkoxy end group bis and regular silanes were explored. Monolayer coatings are not

resistant to any aqueous conditions, most likely due to the inability to recover from corona

treatment induced hydrophilicity. For thick coatings, all coatings containing bis-silanes have

improved hydrolytic stability as shown in Figure 3.21. As the concentration of BTISPA to

APTES in the coating solution is increased, hydrolytic resistance improves over a wider pH

range. This behavior saturates to hydrolytically stable bonds over a range of pH 0 to pH 15 when

BTISPA is the majority of the mixture. Increased hydrolytic resistance can be attributed to the

greater crosslink density for bis-silanes [81, 86]. Samples which fail only at pH -1 are strongly

suggestive of amide bond formation, since Si-O-C bonds would likely delaminate at milder pH.

To further demonstrate the importance of bis-silane addition, two step coatings consisting of

APTES or BTISPA as the organic-inorganic bonding layer and BTESE as the crosslink layer

also show improved hydrolytic resistance versus APTES coatings. This suggests that two step

coatings can be used when bis-silanes with appropriate organic functionality are not available.
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Figure 3.21 .Plot of the delamination pressure versus primer type at pH extremes. Dotted area shows

coatings that were stable from pH 0 to pH 15. Optimal hydrolytic stability occurs when coatings

contain a majority of BTISPA, with failure only occurring at pH -1.

3.3.4.4 Criteria for Hydrolytic Stability

Bond strength tests reveal three major conditions for hydrolytically stable bond formation. First,

dry peel tests demonstrate that strong organo-silane bonding to corona activated organic

substrates such as PC require bonding from the organo-functional side of the silane molecule.

This is accomplished by using silanes with bulky alkoxy groups bound to the silicon atoms, such

as ethoxy or isopropoxy, to inhibit siloxane bond formation and promote organic bond

formation. Second, hydrophobicity at the bond interface helps prevent bond hydrolysis and

failure by preventing nucleation sites for water condensation at the interface. Corona bonding

before the silane network is fully cured or post-baking at elevated temperature allows free

hydrophilic groups to crosslink or diffuse away from the interface. Lastly, silane crosslink

density is important for stability of the crosslinked network. Increased crosslink density is

achieved through the use of bis-silanes which contain six available silicon bonds in comparison

to three on regular silanes.
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These three conditions are met following the fabrication process in Figure 3.16 and utilizing a

coating solution of 5% wt BTISPA in isopropanol with 0.5% wt TBT. Bonds from this coating

are stable up to membrane rupture at 60 psi from pH 0 through pH 15. Interestingly, while NaOH

even at concentrations as low as 1 M etched PC on the liquid side of the device during blister

testing, the silane-PDMS layer protected the valve interface from similar attack, even at 10 M

NaOH concentrations. Therefore, PC-silane-PDMS stacks could be used for improved resistance

to NaOH solutions.

3.3.4.5 Reliability Testing

This process allows for bonding an arbitrary number of plastic layers separated by PDMS

membranes, making multiple active layers in a single device possible. Since bonds are stable to

high pressure, direct integration of manifolds and fluidic interfaces are also possible. To test the

reliability in a working microfluidic system, a test chip consisting of three valve peristaltic

pumps is fabricated as shown in Figure 3.22. External lines are connected with PTFE tubing and

epoxy to prevent chemical reactions with interface materials.

Control Lines

Fluid Channel......

Pneumatic Valves

I mm

Figure 3.22.Schematic and picture of the test device fabricated in PC utilizing a 60 ttm PDMS

membrane to provide pressure based actuation valves. Control lines are 500 pm wide and 250 pm high.

The fluid channel is 125 to 150 pm deep with a radius of curvature of 400 pm with a 1.6 mm valve

length. Variation in depth results from machining inaccuracies.

Reliability testing is performed by monitoring flow rate for each pump over the course of 2

weeks continuous operation at room temperature and 1 M HCl (pH 0), DI water (pH 7), and 1 M

NaOH (pH 14). Higher concentrations of acid and base were not attempted since bond

experiments showed that 10 M HCl resulted in interface bond failure and 10 M NaOH readily
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etched PC. The pumps were cycled with 5 states, (OOX, XOX, XOO, XXO, OXX), where X is a

closed valve and 0 is an open valve, at a cycle period of 500 ms and a pressure of 18 psi to

generate one unit of flow. Flow rates were measured by weighing the collected outflow with a

scale for every 50 injection cycles. The plot of average flow rate for 1000 cycles versus time

shown in Figure 3.23 demonstrates peristaltic pump reliability in high molarity acidic and basic

conditions for 2 weeks. Variations in actual flow rates are caused by stagnant bubbles introduced

through valve pressurization. While DI water and 1 M HCl are stable for 2 weeks, NaOH at 1 M

leads to device failure after 115 hours. As observed for blister tests, this failure occurs at the

fluid layer PC-silane interface and has no effect on the control layer bond interface. Failure could

result from either dissolution of the silane in contact with NaOH, or etching of the PC.

Therefore, other plastic materials or measures to reduce direct contact between NaOH solutions

and the PC-silane interface are necessary if long term exposure to NaOH is required.

250
DI Water (pH 7)

200

50 1 M HC1 (pH 0)

150
.1 M NaOH (pH 14) _

0 - ~ - ' ~ . '

0 50 100 150 200 250 300 350
Time (h)

Figure 3.23.Plot of the flow rate versus time for three different peristaltic pumps flowing different pH

solutions at 18 psi. Pumping rate is 1 cycle every 500 ms. Marginal decrease in flow rate over the

course of the experiment demonstrates long term bond reliability.

3.3.5 Bonding Process Improvements

While the reliability testing shows stable operation for acid and DI water, it is clear that water in

direct contact with the bonding interface still causes issues. During chip testing for devices

containing a large number of valves, valve yield was not 100%, with systematic failure of 3

specific valves out of 24 anchored by small regions of polycarbonate. In general, bond strength
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at the silane-PDMS interface tends to suffer most as shown from Figure 3.24. It is clear that

PDMS is still bonded to the polycarbonate but the contact area has been reduced.

V t V

Figure 3.24.Microscope image at 5x showing reduced bond strength due to water hydrolysis. Bond

areas in contact with the water chamber show signs of hydrolysis and bond degradation.

The most likely reason for this the degradation of the silane surface during plasma bonding.

Since PDMS-glass bonds do not experience this hydrolytic decay, the only reason for

degradation must be defects in the silane layer. As we have shown in Figure 3.20, hydrophobic

recovery also indicates that damage occurs initially on the silane layer. Since we are activating

the layer using corona treatment, it can be concluded that oxidation of the silane layer into a

partially water soluble layer is responsible for the hydrolytic instability.

Since hydrolytic instability has been observed on both the polycarbonate and silane surfaces, one

approach to permanently improve hydrolytic stability is to remove the corona treatment process

from all organic materials. For the polycarbonate to silane bond, polycarbonate can be activated

with carboxyl groups through etching with sodium hydroxide [87]. In the same way that

polycarbonate is synthesized, sodium hydroxide attacks the carbonate group, breaking it from the

Bisphenol A and generating carboxyl groups. The process change for polycarbonate surface

activation is given below.
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First, the substrate is submerged in 3M NaOH at 70 C for 15 minutes. This is the threshold

before macroscopic etch marks start to form on the surface. Then the substrate is neutralized in

3M HCI and washed in isopropanol to remove ionically and loosely bound etched species.

Finally, the substrate is submerged in 3M HCl at 70 C for 15 minutes to remove trace NaOH and

hydrolyze any sodium carboxylate to carboxylic acid. For all tests, a BTISPA silane solution

aged in a nitrogen environment for 1 month and then mixed 4:1 molar water to BTISPA and

aged another 2 weeks was used. This solution appeared hydrophilic immediately after coating.

Figure 3.25 shows the differential bond strength between an NaOH treated and untreated

polycarbonate substrate coated with BTISPA and bound to PDMS. For the test, surfaces are also

not corona treated after silane deposition to remove any potential issues associated with

oxidation species diffusing through the silane surface and attacking the polycarbonate. Instead,

the silane surfaces are baked dry for 10 hours at 70 C and then submerged in water for 10

minutes at 70 C to increase hydrophilicity prior to bonding to corona treated PDMS. Devices are

submerged in water for 24 hours at 70 C before testing.

Figure 3.25.Microscope image at 5x showing PDMS-silane-PC bond strength for an (left) untreated PC

substrate and a (right) NaOH treated PC substrate. The untreated PC substrate does not bond to the

silane. After silane deposition, both substrates are baked dry for 10 hours and then submerged in water

for 10 minutes before bonding PDMS to the surfaces.

For the silane to PDMS bond, water can be used for activation of silanol groups. This can be

accomplished by submerging the silane coated substrates in DI water. A few parameters need to

be explored to determine the optimal water submersion conditions. If water submersion can be
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separated from silane curing then processing can be performed with less time-constrained

conditions. To test this hypothesis, silane coatings are cured dry at 130 C for 2 hours before

surface activation water submersion tests. Results under different water submersion conditions

are shown in Figure 3.26. Again, devices are allowed to dry at 50 C for 24 hours and then

submerged in water for 24 hours at 70 C after assembly to allow bond formation and test

hydrolytic stability.

10 min 30 min

1.5 h

Figure 3.26.PDMS-silane-PC bond images at 5x showing bond strength for different water submersion

surface treatment times. While results are mixed, all surfaces fail at 50 psi at the PDMS-silane

interface.

Tests under all water submersion conditions fail the 50 psi test. From prior experiments relating

to the hydrophobic recovery of the silane interface, it can be concluded that the silane surface is

no longer mobile due to the thermal anneal and that it is difficult to reorient hydroxyl groups

towards the surface, even with a water submersion bake.

While all of the treatment times resulted in bond failure at 50 psi, it is interesting to note that all

failures occur at the PDMS-silane interface and that the PC-silane interface remains intact. A

possible explanation of this observation is that the annealing temperature of 130 C is high

enough to promote thermal activation of amide bond formation through water evaporation. If this

is true, then very hydrophilic solutions such as the 4:1 molar BTISPA, which normally fail the

bonding test due to an excess of silanol groups competing with amine groups for surface bonds,

can be bonded correctly through a thermal anneal. To test this hypothesis, two devices are bound,
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but one is thermally annealed after the entire bonding process is completed. The fabrication

process involves the NaOH surface treatment protocol followed by silane deposition, a 15 minute

dry bake, 10 minutes of water submersion for surface activation, and another 15 minute dry bake

to remove surface water. Then the corona treated PDMS is bonded to the surface and the device

is either baked dry at 50 C or annealed at 130 C for 1 day. Device testing was performed by

baking the devices in water for 3 days followed by blister pressurization at 50 psi. Results of this

experiment shown in Figure 3.27 show that while excessively hydrolyzed silane solutions

typically fail at the PC-silane interface, thermal annealing is able to repair the bond interface

completely.

PC Side (No Anneal) PDMS side (No Anneal) Annealed (Scratch Test)

Figure 3.27.Comparison of hydrolytic resistance for a 4:1 water to BTISPA solution with and without a

130C thermal anneal after the bonding process is completed. The PC-silane bond interface

hydrolytically fails when the solution is too hydrophilic. However, after a thermal anneal, the interface

bond strength is repaired.

Since thermal anneal has been demonstrated to improve silane bonding characteristics to the

polycarbonate surface, we would like to explore different combinations of the bonding process

utilizing thermal annealing to see when the annealing step can be performed. If thermal

annealing can be performed prior to PDMS bonding, integration of heat sensitive elements such

as optical sensors into the device can be simplified. All processing up through silane deposition

is the same as previously described. Steps after silane deposition are varied in their order of

processing steps as described in Table 3.3.
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Sample Water Anneal Corona PDMS Bond Anneal

A - 1 - 2
B - 1 2 3
C 1 2 3 4
D 1 2 - 3
E 1 - - 2 3

Table 3.3. Summary of process conditions tested for determining the benefits of thermally annealing

devices. The numbers refer to the order of operations during fabrication. Dashed lines indicate that the

specific step in the process was not performed.

Results of the experiment after 3 days submerged in water are shown in Figure 3.28. From

Sample A, annealing the coating on the polycarbonate seems to decrease the surface reactivity of

the silane coating enough for corona treated PDMS to not bond to the surface. Sample B then

explores if we can reintroduce surface reactivity using corona treatment after annealing. Since

residual PDMS is still attached after delamination, it is clear that corona is capable of

reintroducing reactive groups; however, the introduced groups are not hydrolytically stable.

Since this could result from poor crosslinking rather than corona induced degradation, Sample C

first incubates the coating in water to crosslink the coating before annealing. The similar failure

of Sample B and C demonstrate that the failure mechanism is corona induced degradation and

not reduced crosslinking. Since corona induces hydrolytic failure at the silane-PDMS interface,

Sample D explores if we can increase the reactive group density on the surface prior to annealing

by incubating the coating in water. The successfully torn blister test demonstrates that water

incubation can increase and stabilize reactive groups to the surface. However, the delamination

at the edges indicates that reactivity increase can easily be non-uniform either due to the

incubation or the anneal. While the results of Samples A, B, C, and D demonstrate that annealing

before bonding PDMS can reduce silane surface reactivity and silane-PDMS bond strength, the

results also demonstrate that increased silane reactivity and silane-PDMS bond strength can be

introduced by incubation of the coating in water. Therefore, as shown in Sample E, the

combination of water incubation to improve silane-PDMS bond strength and annealing after

PDMS bonding to improve polycarbonate-silane bond strength results in a hydrolytically stable

bond that resists degradation even at edges.
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Figure 3.28.50 psi blister tests for different processing conditions including a 130C annealing step. A)

Annealing, PDMS bonding B) Annealing, Corona, PDMS bonding C) Water submersion, Annealing,

Corona, PDMS bonding D) Water submersion, Annealing, PDMS bonding E) Water submersion,

PDMS bonding, Annealing. Conditions for sample E result in the most robust coating where direct

water contact edges are still fully bonded after 3 days underwater.

While annealing after PDMS bonding provides a major increase in hydrolytic resistance, a 130C

anneal is not possible for layers containing temperature sensitive components such as optical

sensors. Fortunately, the layers requiring the most resistance to bond degradation are gas valve

layers, which are not in contact with growth media or optical sensors.

3.3.6 PMMA Bonding

As we have seen from the chemical resistance charts for polycarbonate and PMMA,

polycarbonate has much lower base resistance than PMMA. Figure 3.29 shows the results of

using 1M NaOH in a polycarbonate chip for 24 hours. The prolonged reaction of sodium

hydroxide with polycarbonate cleaves too many carbonate groups from Bisphenol A molecules

and causes the polycarbonate to turn into powder. The process also causes stress induced crack

propagation which can lead to leaks.
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Figure 3.29.Examples of PC failure modes for exposure to IM sodium hydroxide. In the top picture,

sodium hydroxide initiates crack propagation which leads to a chip leak. In the bottom picture, sodium

hydroxide etches away the barbed tube fitting resulting in a tubing disconnect.

Due to the fast reaction rate of polycarbonate with sodium hydroxide, chips requiring pH control

will need bottom layers made from PMMA. Two types of PMMA are considered: cast and

extruded. For cast PMMA, solvent resistance is acceptable, as observed by the long polishing

times and ability to wash devices with isopropanol. Therefore cast PMMA can withstand the

bonding process. Unfortunately, the thickness tolerance for cast PMMA is poor for thin

materials. For instance, cast acrylic from McMaster Carr with a nominal thickness of 0.08 in. has

a thickness tolerance over a 1 square foot sheet from -0.02 in. to +0.014 in., resulting in a

thickness variation of 42.5%. This is unacceptable for mass fabrication since volumes of

channels and wells will vary greatly with pieces. Extruded PMMA generally has better thickness

tolerance. From McMaster Carr, a 1 square foot extruded PMMA sheet 0.08 in. thick has a

tolerance of 0.008 in. in either direction. While this is still a 10% variation in either direction, in

general the variation over a small area is smaller and tolerable. Unfortunately, as explored in

Section 3.2 Material Stability, solvent resistance of extruded PMMA is poor and cracks and

dissolves in mild solvents such as isopropanol.

For bonding, PMMA has one major benefit over polycarbonate. While corona treatment of

polycarbonate results in a nearly zero degree receding contact angle surface that is not
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hydrolytically stable, corona treatment or oxygen plasma treatment of PMMA only maximally

reduces the contact angle to 52 degrees [88] and introduces carbonate and carboxyl groups

without destroying the polymer backbone. An example comparison between corona treated

PMMA and polycarbonate is shown in Figure 3.30 by measuring contact angle hysteresis.

Contact angle hysteresis results from a variety of factors such as surface roughness or surface

heterogeneity. Both of these will cause the advancing contact angle to increase due to either the

inability to wet microscopic trenches or wetting inhibition by low surface energy molecules.

They will also cause the receding contact angle to decrease due to interactions with already

wetted microscopic trenches or high surface energy groups such as low molecular weight

oxidized species. The contact angle hysteresis exhibited by polycarbonate is reflective of the

decreased bond strength due to the increase in mobile species at the surface [89].

PMMA Polycarbonate

Figure 3.30.Advancing and receding contact angles for 30 second corona treated PMMA and

polycarbonate samples. Contact angle hysteresis in the polycarbonate sample is indicative of a
highly mobile surface and could contribute to the reduced hydrolytic resistance for corona
treated polycarbonate bonds.

As PMMA is inherently resistant to sodium hydroxide, containing an all carbon polymer

backbone which is not easily hydrolyzed, chemical treatments using base and acid to activate the

surface do not work easily. In order to safely bond silane groups to the surface, the process

utilized submerges the PMMA substrate into an aqueous solution of pre-hydrolyzed AEAPTES

called AEAPST. As purchased from Gelest, this solution has already been filtered of hydrolyzed

ethanol, which from Table 3.1, has been shown to dissolve extruded PMMA, and is a safer

solution to place in contact with the extruded PMMA sheet.
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To deposit the silane on the surface, a stock 25% solution of AEAPST is diluted to 2.5% in DI

water and the corona treated PMMA substrate is submerged in the solution. The sample is then

placed in an ultrasonic bath for 30 minutes at 50C. After the reaction, the PMMA substrate is

placed in a second ultrasonic bath for 30 minutes in DI water to remove any loosely bound

AEAPST. Afterwards, the sample is baked dry and bonded to corona treated PDMS. Blister

hydrolysis tests are shown in Figure 3.31. While it is clear that this bonding process is not ideal

for supporting membranes that must be pressurized, the bond strength equilibrates to 20 psi even

at 2 weeks and should be suitable for low pressure fluid layers.
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Figure 3.31 .Blister tests for PMMA-AEAPST-PDMS bonds. Initial bond strength is good enough to

fracture the blister instead of delaminating the membrane but the hydrolysis profile follows a trend

similar to a hydrolytically unstable bonding process. However, the bond strength equilibrates at 20 psi,

which is suitable for low pressure applications.

3.4 Fabrication process

With a plastic CNC machining process and a reliable chemical bond between the plastic and

PDMS membrane, a chip fabrication process can be developed and is illustrated in Figure 3.32.

The steps involved before and after surface treatment and silane coating will be described in

detail. Since the silane bonding process is complex, it is only used on layers containing actuated

valves. Other layers which only act as manifold layers are bonded using double sided pressure

sensitive adhesive tape (Adhesives Research Inc. AR-clad 7876).
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1 Machine Features 2,Vapor Polish 3. Anneal at 130 C
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Too Laver Bondina (Polvcarbonate)

4. Activate Surface using NaOH/HCI .Apply silane coating (wipe) 6.Dry bake 50 C until. water resistant

7. Submerge in water 5 C to tosstink
and activate surface (10 min)

8.Ory bake 50 C 15 min or until dry 9. Plasma bond PDMS and anneal at
130 C for 2 hours using a 18 h ramp

10. Peel backing and poke holes

Bottom LaygrLoaingl Ppyarbonatg
11. Activate Surface using NaOI/HO

12. Apply silane coating (wipe)

13. Submerge in water 50 C to crossink
and activate surface (10 min)

Bottom, Layer-Coating (P-MMA)
11 Activate Surface using Corona

12. Apply sdtane coating (submerge)

13, Ultrasonic clean in water So C to
remove looselv bound silane arouns

B 4Qm Laye qiding
14. Dry bake 50 C 15 min or until dry

15. Plasma treat POMS of top layer and bond. Clamp in vice
for 4 hours at room temperature or until bond forms.

99 Pjr L yg0Q9
16.Apply silicone PSA double sided tape

17.Drill through holes through tape
and remove backing

18. Bond adhesive tape layer to the
back of the PDMS bound top layer,

Figure 3.32.Features are first CNC machined to provide the necessary channel and well profiles. Then

the substrate is vapor polished and annealed, followed by deposition of a silane coating. A PDMS

membrane is then bonded to the silane layer. Non-valve layers are bonded with double sided silicone

pressure sensitive adhesive tape.
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Channels, wells, through ports, and all other features are first directly machined into

polycarbonate blanks using a CNC milling machine, Minitech Minimill 4 (step 1). Alignment

pins are drilled into corners to provide easy registration between layers. All layers and channels

are automatically deburred by machining a 50 im bevel on all edges with a ball mill. Channel

and chamber profiles are rounded using ball mills and drill mills and fluid barbs are integrated

using keyseat cutters. This fabrication process also allows features to be created on both sides of

a layer, reducing the number of layer interfaces and through holes required between layers.

Details of the fabrication process, tool changes, and g-code are given in Appendix D.

Roughness due to milling is then reduced through solvent vapor polishing where a vapor of

methylene chloride diffuses into the plastic surface and causes reflow [61] (step 2). A few

plastics can be polished in this way such as PMMA and polycarbonate. The degree of polishing

can be controlled by varying the solvent pressure or also by varying the exposure time. Under

optimal polishing conditions, the roughness average (Ra) from sanded polycarbonate samples is

reduced from 1000 nm to 70 nm as shown in Figure 3.33.

Figure 3.33.Polished polycarbonate samples under different polishing conditions. Left) 10% saturation

pressure results in no polishing. Middle) 75% saturation pressure results in excellent polishing. Right)

95% saturation pressure results in over polishing and is seen as a developing haze. Samples are still

very smooth when overpolished but optical quality decreases.

For PMMA, as discussed in Section 3.2 Material Stability, different grades of PMMA have

different resistances to solvents. In fact, depending on the annealing conditions and processing

conditions such as cast versus extruded, the polishing rate can vary from 10 seconds to 10

minutes and polishing quality can vary from optically clear to completely crazed. An example

shown in Figure 3.34 compares the polishing characteristics of machined extruded PMMA

polished with and without annealing the sample at 95 C for 4 hours. The sample that is not

annealed clearly experiences crazing due to machining.
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Figure 3.34.Machined PMMA samples polished under different conditions. Left) Polished after

annealing samples for 4 hours at 95 C. Right) Polished without annealing results in major crack

propagation and crazing.

By combining vapor polishing with CNC milling, this method becomes viable for both optical

and microfluidic mold fabrication. After polishing, polycarbonate samples are annealed at 130 C

in a programmable oven using a 10 C/hour ramp profile and a soak at 130 C for 2 hours to

remove residual solvent and remove any stress resulting from solvent induced reflow (step 3).

Without annealing the vapor polished plastic, silane deposition can increase stress resulting in

substrate cracking as shown in Figure 3.35. A similar process is performed for PMMA, except

that the annealing temperature is reduced to 90 C and is held for 8 hours due to the lower glass

transition temperature of PMMA. Solvent vapor induced stress increases with machining induced

stress, with the highest density of cracks occurring on machined bottom surfaces. These types of

cracks can eventually propagate through the entire chip thickness and result in fluid and air line

leaks.

Figure 3.35.Silane coating immediately after polycarbonate vapor polishing. Stress cracks are

noticeable on the piece and occur in higher density around machined edges and surfaces.
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After annealing, surface activation is carried out using a chemical treatment with sodium

hydroxide and hydrochloric acid (step 4) and a silane coating is applied to the surface which

allows the plastic substrate to bond to PDMS irreversibly (step 5). After solvent evaporation, the

silane layer is cured in water and crosslinked (steps 5-8) following the bonding process described

in the previous section. While the silane surface is still active with a large density of OH groups,
the PDMS membrane is corona treated and bonded (step 9). Corona treatment times ranging

from 5 seconds to 1 minute all result in strong bonds independent of water contact angle.

PDMS membranes are made by spin-coating PDMS (10:1 Sylgard 184) onto flexible

transparencies. If PDMS is spin coated onto a rigid substrate instead of a flexible substrate, it

becomes very difficult to remove the substrate from the PDMS after bonding the PDMS to the

rigid plastic mold. Spin coated membrane thicknesses are monitored in real time using an

interferometer to achieve thicknesses very close to 70 Im. Layers are then baked at 70 C in a

convection oven until fully cured.

Many problems arise when trying to spin coat PDMS onto plastic surfaces. Static electricity

effects can easily cause PDMS to aggregate, introducing waves and pinholes in the membrane

surface. Transparencies made for copiers prevent static build up by coating the surfaces with a

film to prevent static charge. Unfortunately, generic use high temperature transparencies (3M

PP2200) have a water soluble coating which also dissolves into the PDMS film during spin

coating. While this film effectively prevents static build up on all surfaces, most likely by
shedding a layer of coating from the transparency surface, the water soluble layer is unknown

and diffusion into the PDMS membrane can potentially interfere with further bonding steps, as

well as introduce biocompatibility issues. Therefore, a different transparency film, Polymex

PR172, double-sided antistatic hard coated polyester (PET) transparency, was used for spin

coating. When testing both the PP2200 and the PR172 transparencies for coating stability, the

PR172 remained hydrophilic after repeated exposures to water, while the PP2200 became

hydrophobic only after 2 exposures.

While the PR172 is considered antistatic, the nature of the hard coating still results in some static

build up. The effects of static are most prominent when the backside of the transparency is
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peeled from a hydrophobic surface, inducing a wave effect not seen when using the PP2200

transparencies. In addition to large scale aggregation, small aggregation also occurs due to static

charge. These bumps are easily mistaken for dust particles and result in the same, a rough surface

not suitable for bonding.

To prevent static build up from affecting the PDMS films, a spin coating stack is developed to

minimize exposure of the PR172 from hydrophobic surfaces as shown in Figure 3.36. A silicon

wafer is used at the base of the stack to provide a rigid surface for the vacuum chuck. If the

transparency is placed directly on the chuck, the force of the vacuum causes the transparency to

distort. After the silicon wafer is a thin layer of cured PDMS which acts as a temporary adhesion

layer. Attached to the PDMS is a 3M PP2200 transparency which is used as a buffer layer to

absorb static charge that builds during rubbing and peeling. Then the PR172 transparency is

placed on the 3M transparency and secured with scotch tape on multiple sides since the two

transparencies do not adhere otherwise.

Polymex PR1 72 PDMS Scotch Tape

3M PP2200

Silicon Wafer Vacuum Chuck

Figure 3.36.The stack up used for spin-coating PDMS membranes. A silicon wafer is used for

mechanical support, PDMS for its adhesive properties, PP2200 for static prevention, and PR172 for its

anti-static hard coating.

After bonding the PDMS membrane to the silane surface, the contacted surfaces are placed in a

convection oven and a second 130 C anneal cycle is initiated (step 9). Since the PET

transparency starts to deform at this temperature, the devices are placed between glass plates and

weighed down with a weight of 10 pounds. Without adding a weight to the top surface, the

thermal expansion difference between the PET and the polycarbonate will induce deformation as

shown in Figure 3.37.
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130 C without weight

130 C with weight

Figure 3.37.Polycarbonate layer deformation is induced by thermal expansion differences between

polycarbonate and PET. By weighing down the piece before annealing, the deformation can be

removed.

After carefully peeling off the PET transparency to prevent tearing unanchored membranes

sections, holes are poked with needles for through-hole vias (step 10). In general, designs where

fluids exit from the bottom of the chip and gases exit from the top of the chip do not require any

through-hole vias between the fluid and gas layers, making device assembly easier. For the

bottom layers, coating procedures are different depending on if the substrate is polycarbonate or

extruded PMMA, but are the same as described in the previous section (step 11-13). After drying

the activated silane surfaces (step 14), PDMS sides are corona treated and the layers are bonded

and clamped for 4 hours to promote bond formation (step 15). For extremely flat substrates, the

clamping step can be removed and bonded devices can just be baked at 50 C to promote dry

conditions.

After the layers in contact with the PDMS membrane are bonded, the upper layers are assembled

using double-sided silicone pressure sensitive adhesive tape from Adhesives Research Inc. (AR-

clad 7876) (step 16). The tape is first attached to the featureless through-hole side of the

manifold layer. This allows the tape to be attached without worrying about sealing channels

during adhesion. With the plastic liner still on the outside of the tape, the layer is placed adhesive

side up on the milling machine and holes are drilled into the adhesive. In order to prevent the

adhesive from sticking to the drill bit, isopropanol is used as a lubricant. After the through-hole

vias are opened, the top-side adhesive liner is removed and the layer is bonded to the channel

side of the subsequent layer. The bonded layers are then placed into a hydraulic press at 0.25

tons per square inch to improve bond coverage and bond strength. Since the adhesive tape is a
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transfer tape and contains no liner, the tape can be easily subjected to shear during clamping and

should only be clamped for seconds before releasing pressure.

3.5 Surface Coatings

After complete device assembly, inner surfaces need to be chemically treated. The first reason

for chemical treatment is that the bonding agent exists on all surfaces, including fluid channels.

If valves are closed for long periods without surface treatment, they can bond permanently and

cause device failure. The second reason is biocompatibility and surface fouling. For microfluidic

devices, surface fouling is a large issue due to the large surface to volume ratio inside chips. A

summary of the surface to volume ratios for previous microscale continuous culture devices are

shown in Table 3.4.

Device JSurface/Volm m1
GroismanJ

Quake 214353
Jensen

This work 2142

Table 3.4. Summary of surface to volume ratios of different microfluidic continuous culture devices.

In devices by Groisman et al. and Quake et al., surface fouling resulted in channel obstruction in

less than 24 hours, where as for the device by Jensen et al., obstruction did not occur throughout

the growth. Since the device design in this work has a similar surface area to volume ratio and

we need to deal with post-bonding valve adhesion, the approach to reduce surface fouling will

take the approach of applying surface coatings to reduce adhesion.

Since we are using silane primers and PDMS membranes, all bonding surfaces should contain

silanol groups which can be reacted with other silane or glassy compounds. Therefore to test

surface coatings, coatings are applied to glass slides and their effectiveness is rated by whether

bonds are formed between PDMS and glass after coating procedures.

Three different chemicals are used to test coating resistance, 2-

[METHOX(POLYETHYLENEOXY)PROPYL]-TRIMETHOXYSILANE with a PEG chain of
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9 to 12 units, referred to as PEG-silane, and two PEG-amines, Jeffamine M-1000, and

Surfonamine L-300. Schematics of these molecules are shown in Figure 3.38.

CH 30-(CH2CH 20);(CH2)3Si(OCH 3)3

0 NH2
H3 C 0

19 3

CH 3

Figure 3.38.Above is the chemical configuration of PEG-silane. Below is the chemical configuration

for Jeffamine M-1000, with an ethylene oxide (EO) chain length of 19 and a propylene oxide (PO)

chain length of 3. Surfonamine L-300 is the same configuration as Jeffamine M-1000 except that the

EO chain length is 58 and the PO chain length is 8.

To bond the PEG-amines to the substrate without causing adverse reactions, the surface coating

method employed by Zhang et al. [13] is utilized. Briefly, poly-acrylic acid (PAA) (MW-5000)

and PEG-amine, either Jeffamine or Surfonamine, are reacted in a grafting ratio of 50% under

nitrogen at 180 C for 24 hours to created a grafted PEG copolymer. After the reaction is

completed, the solution turns from clear to dark brown and has a much harder consistency than

either component. We will refer to the copolymer as PAA-Jeff and PAA-Surf for PAA reacted

with Jeffamine and PAA reacted with Surfonamine respectively.

The three chemicals are initially tested to select the most promising candidate for surface

coating. Since the coatings will be applied on the internal chip surfaces, each chemical is

prepared as a 5% weight aqueous solution to lower the viscosity and is coated on a glass slide.

For the grafted PEG copolymers, glass surfaces are first treated with a 5% weight aqueous

solution of AEAPST at room temperature for 12 hours, washed in DI water, and dried in a 50 C

oven. Treated glass slides are then coated with each chemical at room temperature for 12 h,

washed in DI water and dried in a 50 C oven. PDMS is then corona treated and bonded to the

treated glass slides. If the surface coating effectively provides non-adhesive characteristics, when

the transparency is peeled from the PDMS after bonding, the PDMS will remain on the

transparency and detach from the glass slide where the coating has been deposited. If the surface
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coating does not prevent adhesion, the transparency will peel from the PDMS leaving the PDMS

bonded to the glass. Results in Figure 3.39 show that the coatings applied directly to the glass

slides do not effectively shield the reactive groups on the glass surface from bonding to the

PDMS sheet. However, PAA-Surf shows signs of delamination at the edges and can potentially

be optimized to improve non-adhesion properties.

Figure 3.39.Coating performance of the different PEG coatings. While it is clear that all three coatings

do not provide a non-stick surface under the applied conditions, surfonamine is a better candidate to

explore since there are signs of non-adhesion in the surrounding areas.

To increase non-adhesion between the PDMS and glass surfaces, the PDMS is also coated

following the coating process by Zhang et al. [13]. PDMS is corona treated as before, and then

submerged in a 5% weight aqueous solution of AEAPST for 24 hours. Following this, the

samples are rinsed in DI water and dried at room temperature. During this time, there is

noticeable hydrophobic recovery of the PDMS surface. However, samples then treated with

PAA-surfonamine for 12 hours recover and retain a more hydrophilic surface as shown in Figure

3.40.
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AEAPST AEAPST+PAA-Surf

Figure 3.40.Water contact angle for coatings on PDMS. While the AEAPST coating by itself recovers

the contact angle of PDMS after a few hours, AEAPST+PAA-Surf retains some hydrophilicity.

After modification of both the PDMS and glass layers, a comparative study of the affects of

removing coating components was performed. Samples of coated PDMS and coated glass are

bonded by first wetting a layer of water in between and then baking at 50 C to slowly evaporate

the water, simulating the situation of evaporation in a pressurized valve blocking a fluid channel.

Figure 3.41 demonstrates the importance of each coating component on the non-adhesive

properties of the bond.
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Figure 3.41.PDMS adhesion to glass for different coating variations. The upper left section is glass

coated with AEAPST and PDMS coated with AEAPST+PAA-Surf. The upper right section is both

glass and PDMS coated with AEAPST+PAA-Surf. The bottom left is both glass and PDMS coated

with AEAPST. The bottom right is glass coated with AEAPST+PAA-Surf and PDMS coated with

AEAPST. It is clear that the glass coating type has a large impact on the non-adhesive contact

properties. While PDMS sticks regardless of the coating type, there is a noticeable improvement due to

the addition of PAA-Surf on PDMS.

While we have already demonstrated that corona treated PDMS bonded easily to coated glass

slides, AEAPST treated PDMS does not bond to the glass slide when the slide is coated with

AEAPST+PAA-Surf. If the slide is only coated with AEAPST, the PDMS sticks regardless of

whether it is coated with AEAPST only or AEAPST+PAA-Surf. The earlier observation of

PDMS hydrophobic recovery under all coating conditions also supports this data. It is most

likely that reactive groups generated from the corona process have not been fully reacted with

the surface coating molecules and are still able to find bond sites on the glass after long periods

of time when bond sites exist. However, the area of PDMS bonded to the glass slide is less when

PAA-Surf has also been coated on the PDMS. As demonstrated by the sustained partial

hydrophilicity of the PDMS coated with AEAPST+PAA-Surf, there is potentially some PEG-

amine still at the PDMS surface unable to diffuse into the bulk PDMS which improves the non-

adhesion properties.
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While coatings on glass demonstrate successful non-adhesive properties, PMMA coatings have a

minor problem. Coatings deposited under room temperature conditions seem to be fine, but

PMMA resistance to PEG coatings baked at 50 C is low. Tests were performed where slugs of

PMMA were placed in vials with 50% concentrated aqueous solutions of Jeffamine, PAA-

Jeffamine, surfonamine, and PAA-surfonamine. All samples showed no effect at 50 C when

exposed in aqueous solution. However, if the solution was placed on the PMMA surface and

allowed to dry and concentrate, cracks were visible. While all samples result in cracks and

crazing, it is clear from Figure 3.42 that crack lines are longer and more pronounced, almost

extending through the thickness of the PMMA, for samples exposed to both Jeffamine and PAA-

Jeffamine solutions. Samples exposed to surfonamine and PAA-surfonamine exhibit much

smaller scale cracking. In addition, stress tests induced by bending the PMMA pieces

demonstrate that the Jeffamine induced cracks nearly extend through the thickness of the pieces

while the Surfonamine induced cracks are restricted only to the surface. From these results,

PAA-surfonamine is a more suitable co-polymer for coating PMMA devices.

Jeffamine PAA-Jeffamine Surfonamine PAA-Surfonamine

II

Figure 3.42.Cracks induced by drying solutions onto extruded PMMA pieces. From the images it is

clear that cracks induced by Jeffamine solutions are deeper and more pronounced than cracks induced

by Surfonamine solutions.

3.6 Conclusions

By utilizing silane primers on polycarbonate and PMMA surfaces, we have shown that

hydrolytically stable hybrid plastic-PDMS devices consisting of valves, pumps, and mixers can

be fabricated consistently and operated over a wide pH range, from pH 0 through pH 15.

172



3.6 CONCLUSIONS 173

Hydrolytic and pH stability is shown to be highly dependent on material choice and bonding

chemistry. We have also demonstrated the application of a previously developed surface coating

procedure for improving biocompatibility to also reduce the probability of valve sticking during

device operation. In addition, exploration of the surface coating process has shown that the

coating chemistry has a minor affect on PMMA and can result in stress cracks if the fabrication

process is not properly optimized.
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Chapter 4

System Architecture

4.1 Board and Chip Level Integration

While the chip contains the majority of the functionality required for continuous culture

operation, a number of additional off chip support devices are required to enable control and

usability. External to the chip are fluid sources, pressure sources, heaters, coolers, humidifiers,

electronics, and optics. The chip is only made functional by integrating all of these components.

The full system architecture shown in Figure 4.1 demonstrates the complexity associated with

the microfluidic support system. Since the chip is only a small fraction of the system, each

section of the system must also be designed to meet the stringent requirements of long term

operation under exposure to water, acids, and bases. In addition, external components requiring

direct fluid access to the chip must also be compatible with sterilization processes. The full

system is composed of a fluid delivery system, a gas delivery system, temperature controllers for

cell growth and sample collection, an optical system for environmental sensing, and an electrical

system for control. With so many components, it is important to determine what can be

integrated into the device and what needs to remain external.
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Figure 4.1 .Picture of the full setup for running the continuous culture microfluidic device. In addition to

the device, heaters, pneumatics, fluids, manifolds, sample coolers, led drivers, photodetectors,
humidifiers, and controlling FPGAs are required for operation.

A detailed summary of all of the required components for each system is given in Table 4.1.

Without board and chip level (BCL) integration and sharing of external components, we see that

the worst case external system cost can be an order of magnitude higher than an integrated

solution. Chip level integration refers to direct integration of devices onto the microfluidic chip

while board level integration refers to integration of devices onto circuit boards and manifolds.

Without integration, fluid, gas, and electrical wiring becomes prohibitive, with 100 additional

macroscopic connections, 6 of which are large GPIB cables. In addition, 51 analog wires are

required between bulk components such as function generators and LEDs and between switch

drivers and switches. All of these wires will require appropriate shielding to prevent noise from

affecting measurements.
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No BCL
Components Cost Integration

With BCL
Integration

Fluidic System
Medium Reservoirs
Regulators (McMaster)
External Interface (Nanoport)

Gas System
Switches (Lee Co.)
Switch Drivers (Digikey)
External Interface (Nanoport)
Electrical Connections

Temperature System
TEC (RC6-2.5-01L)
Sensor
Controller (TTCOO 1)
Electrical Connections

Optical System
Function Generators (332 1OA)
LED Drivers
Photodetectors
Amplifiers (SR570)
Analog/Digital Converters (AD7687)
Electrical Connections

Electrical System
Power Supply (E3646A)
Analog Acquisition (NI USB-625 1)
Digital System (XEM3010-1500P)

Total Connections
Fluid/Gas Interfaces
Electrical Inputs
Electrical Outputs

Internal Wiring

Total Cost

50

Internal (35 Analog) Internal (2 SPI)
External (35 Digital) External (1 SPI)

- 1

- 2

600
Internal (4 Analog)
External (2 GPIB)

1
2

Internal (2
Analog)

External (2 SPI)

Internal (12 Analog) Internal (0)
External External

(4 GPIB, 4 Analog) (4 Digital, 1 SPI)

1550
400 0 1

45
4 Analog
35 Digital

6 GPIB
51 Analog

22665

28
1 SPI

4 Digital
4 SPI

2 Analog
2 SPI
2450

Table 4.1. Summary of required external system components for a bulk component system and an

integrated system. BCL refers to board and chip level integration. Integration can greatly reduce the

cost and complexity of the system. Components which have been integrated either on-chip or on-board

have been highlighted in grey.

In order to perform integration and reduce system complexity, we need to understand what

constraints restrict integration. The first constraint is for all wetted components to be sterilization
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compatible, since these components will be in contact with the cells. We can break integration

into two levels, chip level, which will require sterilization and board level which will not. Since

fluids and cells are also on the chip, any components integrated with the chip will also need to

resist chemical exposure and sterilization procedures. In general, these restrictions prevent

electrical integration due to incompatibility with chemicals, high humidity, and sterilization

procedures. However, fluid and gas components should be as integrated as possible since they

will be in contact with liquids both on-chip and off-chip.

Fluid components include the medium reservoirs and pressure regulators to adjust input pressure.

While the volume of medium makes full volume reservoirs impossible to integrate on chip,

regulators can be integrated to reduce off-chip complexity and tubing. Gas components include

everything from the initial pressure input to valve actuation on chip. Since we cannot sterilize

our electronic components, the solenoid valves will have to remain off chip. However, the

pressure distribution system connecting the solenoids to the chip can be multiplexed on-chip to

reduce external connections. In the ideal case, only operationally shared valves should have

connections off-chip. Since many valves can be operated in unison, or actuated with no affect for

certain operations, we will need to analyze the chip to determine which lines can be shared.

Typical devices used for external connections, such as Nanoports, are not only large, but are

expensive. In the worst case of no integration, 45 connections will be required per device,

increasing the cost of each microfluidic device by 1700 dollars.

The rest of the system, which does not need to be sterilized, is restricted by cost and complexity.

The optical system makes up the majority of not only the cost, but also the bulk, as each function

generator and preamplifier unit is a large 27 cm x 21 cm x 90 cm box. Board level integration of

off-chip systems can also reduce the complexity of wiring in addition to reducing the size of the

system. For minimum wiring, all of the electrical components such as the temperature system,

the photodetectors, LED drivers, and solenoid drivers should be addressable digitally through

serial connections rather than parallel connections. This will require each system to be board

level integrated with digital controllers and converters. By moving to digital signal transfer, a

single digital controller such as an FPGA can be used to control all circuits, reducing wiring and

increasing signal integrity through robust digital signals. Finally, a device interface must also be
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fabricated to interface the microfluidic device with the different integrated control systems in a

robust and repeatable way. The interface shown in Figure 4.2 allows the device to be aligned and

clamped in place to ensure that the optical sensors are aligned and that the chip is in direct

contact with the heater at all times.

OD LEDs

OD sensor Plate

Gas',. Manifold Interface

Conrssion
Input Fluid M j~crofluidic Device
Access

Black Polycarbonate utput Fluid Access
Optical Isolation OutitaluirAces

Optical Probes

Aluminum Structural Mount

Figure 4.2.Device interface for mounting the microfluidic device into the off-chip integrated system.

Fluid access ports are provided in the mount to directly connect tubing to the microfluidic device.

Alignment pins and clamps ensure that the device is in the proper position for optical sensor addressing

and that it is always in direct contact with the heater board.

Even with integration, controlling the solenoids, temperature, and optical systems still requires

off-chip design. Therefore, the first half of this chapter is organized into detailed discussions of

the fluid, gas, electrical, and optical systems. For long term operation, fluids must be sterilized

and pressurized and fluid connections must be maintained leak-free to achieve contamination

free operation. This will require an exploration of autoclave compatible fluidic components

including tubing, tube connectors, and fluid reservoirs. In order for the on-chip valves to actuate,
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off-chip solenoids are required. For proper pressure distribution to the solenoids, a manifold

must also be designed. With the need for so many valves, a control architecture must also be

implemented, either in hardware or software, and electronics must be designed to coordinate

operations. An FPGA will be used to simplify cabling and provide general autonomous

operations. In addition, a heater must be designed to control temperature during cell growth. To

perform measurements, an optical system must also be integrated to interrogate environmental

sensors necessary to maintain control. The optical system will require an analysis of the optical

sensors and creation of electrical circuits to perform excitation and detection. Finally a passive

optical system must be integrated to interrogate sensors with minimal crosstalk.

The second half of the chapter covers the operational aspects of the integrated external system.

For proper continuous operation, a variety of protocols and procedures must be implemented.

For example, sterility must be maintained to decrease the chance of foreign contamination during

valve actuation. As a result, chip sterilization procedures are explored and proper connection and

inoculation procedures must be implemented. During chip operation, valve switching order is

also important to reduce potential backflow. For proper control, algorithms must also be

implemented to measure and change the flow rate, oxygen concentration, and pH. Since volume

consistency is also important, permeability of the PDMS membrane to water vapor must also be

addressed. Water evaporation can only be reduced if the supplied oxygenation gas can be

humidified before use. However, to fully prevent evaporation, a protocol to replenish any lost

water must also be developed. Without all of these additional supporting devices and protocols,

the chip cannot function reliably for long term operation.

4.2 External Fluidic System

Since continuous culture requires a constant flow of fluid, external fluid sources are required.

Implementing external fluid supplies which can maintain long term sterility can be challenging.

Both fluid and gas leaks can result in cell contamination. The first step to designing the external

fluidic system is to find compatible tubing. Since steam sterilization is standard for preparation

of biological solutions, we need to check tubing compatibility against this procedure. Two

different tubing materials and two different custom blends for each are tested, for Tygon vinyl
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tubing, omega flex TYVY-18116 and Saint-Gobain S-50-HL, and for silicone tubing, Helix

Mark 60-411-47 normal silicone and Vanguard VP51135-71-50 firm silicone. Both Tygon and

silicone resist acidic and basic solutions, are autoclave compatible, and are readily available in

medical grade. For the autoclaving test, tubing samples are attached to polypropylene barb

connectors at one end and bent 180 degrees and wrapped in aluminum foil on the other end.

Results from autoclaving tests with hose barbs attached are shown in Figure 4.3.

TYVY-18116 S-50-LNra Firm
SiliconeSilicone

Figure 4.3.Autoclave tubing tests for two types of Tygon vinyl tubing and two types of silicone tubing.

Tygon becomes permanently stretched by the barb after autoclaving while silicone does not. The forced

bend is also permanently introduced indicating that the autoclaving cycle results in permanent stress

relief for vinyl tubing.

Tygon tubing clearly results in stress relaxation during the autoclaving cycle. In fact, if the other

end of the tube is sealed and pressure is applied to the tube through the barbed connector, the

tube starts to leak through the barb even at pressures as low as 1 psi. While the silicone tubing

does not have any noticeable changes after autoclaving, there are other issues that limit its use.

The gas permeability of the tubing is 200 times higher than vinyl [91] and results in noticeable

evaporation out of the tube when the liquid is pressurized. Also, the low Young's modulus of

even the hardest silicone tubing results in the tube being easily removed from barb connections
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under moderate force during handling. For long term operation, this could result in catastrophic

failures during chip maintenance or media exchange.

The only functional problem with the Tygon tubing is relaxation during the autoclaving process.

This can be remedied using an external force to maintain the seal, such as an o-ring. Autoclave

tests of Tygon tubing incorporating a cross type viton o-ring with a 7/64 inner diameter to grab

and compress the barb connection are shown in Figure 4.4.

Figure 4.4.Picture of autoclaved S-50-HL tubing at the barb connection site. The o-ring shape is

imprinted on the tubing after autoclaving, but still withstands pressurized fluids without leaking.

For barb connectors, many material options exist, including acetal, nylon, polycarbonate,
polyethylene, polypropylene, and Kynar. Of these options, only Kynar and polypropylene meet

the chemical resistance and temperature requirements. Acetal and polyethylene are not

autoclavable and nylon and polycarbonate are not base resistant. For cost issues, Kynar is only

used when polypropylene is unavailable. The leak free fluid delivery system is shown in Figure

4.5.
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Fluid Output . /16 inch Tygon Tube

Cross O-Ring
Barbed Luer

Stopcock

Panel Mount
Barbed Luer Thread Barb

GL45 Cap

Gass Bottle

Figure 4.5.Schematic of the fluid delivery system. Filtered air pressurizes the headspace of the glass

bottle. The tube in the GL45 cap extends to the bottom of the glass bottle to collect the pressurized fluid

and send it through the fluid output. A stopcock is provided to allow manual on-off control. The entire

system is made of polypropylene, Kynar, and glass with Tygon tubing to be compatible with autoclave

sterilization.
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A glass jar with a GL45 cap is used to improve liquid volume scalability. The cap is modified to

include an input and an output for pressurization and fluid dispensing. For the pressure input, a

1/16" tube is connected to a 0.22 micron filter and then connected to a thread barb on the cap.

For the fluid output a panel mount barbed luer, or compression fit connector, is inserted into the

cap with the barb on the inside of the cap. A tube attached to this barb extends to the bottom of

the jar such that pressure from the gas input forces fluid through the tube. On the output side of

the cap, a full Kynar manual valve called a stopcock is attached to have manual on/off control

over fluid output. A tube is then attached to the output of the stopcock and is used to connect to

the chip. By keeping the glass bottle at constant positive pressure using filtered air, sterility of

the feed liquid inside the bottle is guaranteed even if the threaded connections are not tight. As

threaded connections are prone to leaks due to relaxation during temperature cycling, all wetted

liquid connections are intentionally made using barbs or luer connections.

At the chip input, barbs are also integrated to enable easy leak free connections as shown in

Figure 4.6. Since the base layer of the device is only 2 mm thick, the integrated hose barbs are

recessed into the bottom layer. This also improves sterility since the connectors are facing down

and can be protected from circulating air.

Connector Layer
Manifold Layer

~~Gas Layer
Fluid Layer

External Barbs
V~ Fluid Inputs

Gas Connectors
Fluid Outputs

Figure 4.6.Schematic of the recessed on-chip barbs. Barbs are designed with a tapered outer diameter

from 0.06 to 0.09 inches. This results in a 50% tubing elongation after attachment increasing the

probability of a leak-free seal.
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4.3 Pneumatic System

As presented in Chapter 2, the proposed device consists of 8 inputs connected to individual

regulators and blocking valves, a peristaltic pump, 2 outputs, and a three section growth chamber

as required for mixing. Since these 35 membrane sections require 20 valves to operate, a

manifold as well as control blocks will be required for pressure distribution and valve state

control. A schematic of the chip valves is given in Figure 4.7.

Reservoir Pressure

Input Valves

Input Select -

Peristaltic Pump
Mixer Pressure

Mixer Block
Pass-through Block

Output Valves

Figure 4.7.Schematic of the device showing the external solenoid interfaces to the chip. The input and

As shown in the design, we take advantage of as much sharing as possible. The 35 deflectable

membranes are controlled by 20 solenoids. Input blocking and reservoir pressurization is set to

be a global operation for all inputs and selectivity is implemented only at the output of the on-
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chip reservoir through individual blocking valves. Since we need to provide control for flow rate,

oxygenation, and sampling, all of the other valves are individually controlled.

To operate the on-chip valves without leaks, we need to use solenoid switches which can provide

enough pressure to fully seal channels through membrane deflection. For channels machined

with a 0.0625 in. ball mill, sealing pressures are around 5 psi as simulated in 2.3.1 Valve Design.

Since we want the blocking valves to operate without leaks even under input fluid pressure, it is

beneficial to operate at the maximum allowable pressure set by the solenoid switch. A three way

switch by The Lee Company (LDHA052 1111 H) shown in Figure 4.8 is suitable for the given

requirements. In addition to supplying up to 15 psi, the size of the valves are small (0.3 inch

wide) allowing a large number to be integrated in a small space.

N.C. Corrmon N.O The Lee Company HDI3-way solenoid va ve

Figure 4.8.A cross-sectional and external view of the 3-way solenoid valve manufactured by Lee

Company. Two inputs, one which is normally open (N.O.) and normally closed (N.C.) are connected to

the center common output (Out) depending on the voltage applied to the valve.

This leaves 10 psi to compensate for variations in backpressure. In addition to blocking valves,
we also have pressure and gas requirements for the pressure reservoir and growth chamber

mixer. Pressure sources for these two devices should not be shared since oxygen concentration

needs to be controlled in the growth chamber. In total, we require three different pressures for

valves, growth chamber, and pressure reservoirs ranging from less than 3 psi to 15 psi.
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For each pressure controllable chip input, one valve is required, with a connection to high

pressure and a connection to room pressure. Depending on whether high pressure or room

pressure is applied more often, the appropriate pressure line is connected to the normally open

and normally closed inputs to reduce power usage. A schematic of the manifold providing all

necessary pressure inputs is provided in Figure 4.9. Each color represents a different manifold

channel layer, with layer 1 (green), and layer 2 (brown).

Valve Pressure
- Valve Vent

Mixer Vent
Mixer Pressure

Am Reservoir Pressure
Reservoir Vent

Figure 4.9.Schematic of the pressure distribution manifold. Different colored lines correspond to the

different manifold layers. Green (layer 1) is the switch distribution layer connecting switches to their

respective outputs. Brown (layer 2) represents the main pressure distribution layer which connects the

input pressure sources to either the normally open or normally closed port of each solenoid.

The manifold architecture is designed such that layers closer to the pressure line inputs are

larger, preventing backflow from vent lines into other channels. For shared vent ports, a high

pressure line switching between pressure and vent can cause pressurization of other valves

before reaching room pressure if the resistance between valves is low. The growth well and

reservoirs also have their own vent ports decoupled from the common valve vent lines. This

allows the vent gas to be fed through a gas analyzer to measure gas consumption and production

rates.
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Since the gas manifold requires similar functionality to the actual microfluidic chip, fabrication

of the manifold is performed similarly. However, since active valves are not required, other

bonding processes can be used, such as glue, double-sided adhesive tape, solvent, or thermal

bonding. Layers of the manifold are fabricated with CNC machining, followed by vapor

polishing. Layers are then assembled with thin double sided tape rather than PDMS, although

PDMS bonding would be just as effective.

Since the device has 20 external pneumatic connections a connector must be designed to

interface the chip to the manifold. Since the pneumatic side of the chip does not need to be

sterilized, materials for the connector do not need to be sterilization compatible. Three types of

tubing are readily available for tubing connections. We have already looked at Tygon and

silicone tubing options. While Tygon is reasonable for connections when o-rings are available,

high density connections cannot afford to have large o-rings over each tube connection. While

the tensile modulus when stretched to 200% is high (7.6 MPa), repeated connect/disconnect

cycles with Tygon tubing will result in permanent stretching as demonstrated during autoclave

tests, reducing the tensile modulus and making Tygon unsuitable as a connector tube. Silicone is

much more durable than Tygon, with an ultimate elongation of 800%; however, the tensile

modulus at 200% is only 1.9 MPa. This would cause a 4x reduction in holding power of the barb

against pressure and can cause potential leaks for high pressure valve lines. A good compromise

material which has similar elasticity as silicone and similar tensile modulus as Tygon is

polyurethane. Polyurethane tubing is available in 1/16 inch inner diameter, has a tensile modulus

of 8 MPa at 200% strain, and a maximum elongation of 500%. In addition, the hardness of

polyurethane tubing is larger than Tygon, providing very tight fits over barbs. Therefore

polyurethane tubing is used for all pneumatic connections.

4.4 Electrical System

With the pneumatic system in place, an electrical system is required to control the solenoids

which switch between pressure sources. The electrical system architecture consists of a main

control FPGA and daughter boards to implement additional functionality. The FPGA is then

connected via USB to a computer which schedules procedural operations and handles signal
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processing for more data intensive sensors. Four daughter boards are also necessary, a solenoid

driver, heater board, LED driver, and photodiode receiver board. A block diagram of the system

architecture is given in Figure 4.10 where each FPGA block is a coded module interconnected by

the indicated arrows. Algorithms and code used to instantiate the state machines and controllers

are given in Appendix E. Computer graphical user interfaces and data interfaces between

MATLAB and the FPGA are discussed in Appendix F.

Computer FPGA Daughter
FPGA Device FPGA circuit Bad

Matlab Interface Interface

DnStats

Temp Out

Figure 4. 10.Block diagram of the control system architecture. The FPGA controls the solenoid valves,

temperature controller, and optical detection systems. Since optical detection is data intensive, data is

temporarily stored in block RAM before dumping to the computer for signal processing and analysis.

To reduce the total number of connections between the different electrical components, such as

the solenoid valves, LEDS, heaters, and photodetectors, a serial digital implementation is used.

Since the frequency of operation for most components is in the range of seconds, serial data

transfer can be considered nearly instantaneous. Frequencies for control on the other hand

determine which control blocks need to be placed in the FPGA and which control blocks can be

placed in the computer. Since the computer is responsible for signal processing, it is detrimental

to place controllers which require constant updates on the computer Therefore only controllers

that rely on signal processing are integrated into the computer. Faster controllers, on the
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timescales of milliseconds to seconds, such as injection, mixing, and temperature control, are

integrated directly onto the FPGA to relieve the computer of constantly transferring data.

4.4.1 Solenoid Drivers

For the solenoid drivers, a single 8 output serial to parallel low-side driver integrated circuit

(MCZ33879) is used for control. These can be daisy chained to connect an arbitrary number of

solenoids using a single set of digital connections. As the IC is all encompassing, no additional

circuit components are required for its operation and only power requirements must be taken into

account. The top view of the solenoid board layout is shown in Figure 4.11.

Figure 4.11 .Circuit layout for the solenoid driver board. 8 solenoids are connectable at maximum

solenoid density of 0.3 inch pitch. The size of the input and output connectors are necessary to support

the high current required under a daisy chain configuration.

Since each solenoid driver requires 150 mA of current to operate and our minimized power

manifold has a worst case of 12 solenoids on at any given time, we have 1.8 A of current flowing

through the wires into the first board. Therefore, a bank of 5 wire connections are used to

distribute power given that 26 gauge wire is used with a maximum current rating of 360 mA per
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wire. Also, due to the large current switching requirements for the board, the analog and digital

grounds are isolated to prevent any high current ground loops through the digital circuits.

Placement of the solenoid connectors also eliminates the need for cabling between the board and

the solenoids.

4.4.2 Heater System Design

In order to perform accurate and compact temperature control, a heater board is developed as the

base for the chip. Since cell growth depends highly on temperature, accurate temperature control

is important for generating reproducible results. A plot of the growth rate of E. coli ML 30 is

reproduced below in Figure 4.12 from Kovarova et al. [92] to illustrate the large dependence of

cell growth rate on temperature.
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Figure 4.12.Plot of the E.

model.

coli ML 30 maximum growth rate versus temperature using the Ratkowsky

While sandwiching the device between uniform temperature metal plates is feasible, optical

access for diagnostic purposes would be difficult. In addition, reducing the thermal capacitance

of the heating element will enable faster temperature transients necessary to study effects such as

heat shock in cells.
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Figure 4.13.Heater circuit board design. A 2.84 m long snaking heater covers the growth chamber area.

At the center of the heater is an insulated cantilever with a temperature sensor at the end to measure the

temperature of the chip.

The heater circuit board is designed with a serpentine thin heater covering the entire footprint of

the growth chamber. The heater leaves space for optical probes as well as a temperature sensor.

Integrating the heater directly onto the circuit board eliminates the need to employ additional

fabrication procedures for integrating heaters with the chip. Using a 180 pIrm wide trace, a length

of 2.84 m can be packed into the growth chamber area as shown in Figure 4.13, resulting in a

heater resistance of 7.8 ohms. In practice, commercially used manufacturing processes generate
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heaters with variable resistances from 3 ohms to 7 ohms. To control the heater, a high power

MOSFET is connected in series with the heater. By adjusting the duty cycle for turning on and

off the MOSFET, the heater power can be easily adjusted proportionally with the control signal

and square law complications arising from either voltage or current control can be avoided.

The main challenge with designing a heater controller is determining how temperature is going

to be measured. In this design, we would like the FPGA to perform closed loop temperature

control so we will implement a temperature sensor with digital output. To reduce thermal

impedance to circuit ground, the sensor (LM95231) has the option of measuring temperature

remotely through a current compare BJT sensor which is connected as a diode by shorting the

base and the collector (MMBT3904). To measure temperature using the diode, we exploit the

temperature dependence of the diode equation.

I = Is exp[q -1 (4.1)
L kT

Where Is is the saturation current of the diode, q is the electron charge, k is the Boltzmann

constant, T is the temperature (K), and Vbe is the base emitter voltage. If the current is large, we

can ignore the -1 term leaving an approximation which is just an exponential function. To

measure temperature, we can measure the voltage and current and exponentially fit the

exponential with temperature as our fitting parameter. In the simplest case, we perform a 2 point

measurement with two different currents. If we look at the resulting voltage difference, we see

that the relationship is given by

kT I
AVbe = -n ky) (4.2)

Where I, and I2 are the two test currents. Process parameters such as Is drop out of the equation

since the voltage difference is the ratio of the currents. From this equation, we can solve for the

temperature by simply applying two known currents and measuring the voltage difference.
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Since the remote sensor has no ground connection, thermal isolation can be performed using

long leads. Since the manufacturer quoted remote temperature accuracy is ±1.25 *C, the reduced

thermal impedance comes at the price of temperature accuracy. In order to decrease the thermal

resistance between the temperature sensor and the liquid in the chip, a diving board design is

implemented, including a recessed area in the chip for sensor contact as shown in Figure 4.14.

When the chip is placed on the circuit board, the temperature sensor makes contact with the

device due to flex in the attached cantilever.

Microfluidic Chip

Circuit Board Spring Board
Temperature Sensor

Figure 4.14.Illustration of the temperature sensor contact mechanism. A cantilever is integrated on the

circuit board and the temperature sensor is placed at the end. When the microfluidic chip is placed on

the circuit board, the cantilever is bent which induces contact between the sensor and the chip.

To characterize the heater response, a microfluidic chip with a growth chamber is placed above

the heater and actuated to induce mixing. Then the temperature is modulated sinusoidally and the

sensor is measured. A Bode plot showing the magnitude and phase response of the sensor to

input heating is shown in Figure 4.15 for an input voltage of 3.3V and an input current of 0.7 A.

Due to the temperature resolution of the sensor, signals beyond 0.04 Hz were below the noise

floor.
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Figure 4.15.Frequency response of the heater sensor system measuring temperature changes in a mixed

microbioreactor. Even at frequencies as low as 0.004 Hz, degradation in the response is visible.

Although the phase response has noticeable degradation of more than 90 degrees, indicating at

least a second pole near the frequency range swept, as long as we operate our control loop in the

range where the phase still approximates a single pole response, we can ensure that we do not

have sustained oscillations or overshoot in our heating profile.

The PID algorithm for temperature control follows the basic model with a few additions. Since

there is a maximum and a minimum to the heater power, bounds have to be set when the PID

control desires a set point which is out of range. In addition, since there is no active cooling,

maximal heater power needs to be adjusted depending on the desired temperature set point. The

modified PID algorithm is given below. Initially the output control variable is calculated

normally taking into account the error terms

n

Out = kpEn + (En-En _1) + kdtEj (4.1)
j=0



CHAPTER 4 SYSTEM ARCHITECTURE

Where Out is the output control variable, kp is the proportional constant, En is the difference

between the setpoint and the measured temperature at the nth data point, kd is the derivative

constant, dt is the sampling time, and ki is the integral constant. After calculating Out, we need to

check that the value is within the bounds of our physical system, which we will call Outmin and

Outma as defined below

Tsetpoint - Tmin
Outmin 0 and Outmax Tmax - Tmin (4.2)

Where Tsetpoint is the current temperature set point, Tmin is the ambient temperature, and Tmax is

the maximum temperature reached when the heater is at full power. By setting Outm to be the

ratio of the set point temperature to the maximum temperature, we can improve the heating

transient response by reducing overshoot due to non-symmetric rates of heating and cooling at

different temperatures. If Out is larger than Outmx we need to set Out = Outm. and recalculate

what the integral error under the new condition as given below

n

kidtEj = Outmax -kEn + (E,n - En_1) (4.3)
j=0

And similarly if Out is less than Outmin we need to set Out = Outmin and recalculate the integral

error as follows

n

kidt]Ej = Outmin - kpEn + (En - En_1) (4.4)
j=0

In the actual implementation, derivative control is removed since the response time for just PI is

fast enough, and implementing derivative control with the resolution and noise of the system

would be difficult. For PI constant selection, a pole-zero form of the PID controller transfer

function is used to more intuitively modify the open loop transfer function as shown below
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G~s) = (tys + 1)G(s) = k, (tds + 1) (4.5)
ti s

With conversions to kp, kd, and ki are given below

kP = kc 1+ ) ki = -, kd = kctd (4.6)
td) ti

In this form, it is clear that the integral term provides a pole at zero, a zero at frequency 1/ti and

another zero at frequency l/td. Removing the derivative control in this model is equivalent to

setting the derivative time constant to zero. For the integral time constant, we want to choose a

frequency of operation that results in greater than 90 degrees of phase margin to guarantee

overshoot free operation. To reduce or remove phase dips below 90 degrees, we will set our

integrator zero at nearly zero phase in the open loop response since the pole at DC already

contributes 90 degrees. Since the slowest frequency of 0.004 hertz still has some open loop

phase, we choose a zero frequency near but slower than this frequency. This time constant of 4

minutes is still fast in comparison to cell activity. Closed loop step responses for different k, and

ti values for this range are shown in Figure 4.16. We see that the response time of the heater

correlates well with the integrator zero location.
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Figure 4.16.Closed loop step response of the heater for different integrator zero locations. As the zero

from the integrator also increases the magnitude of higher frequency components, incorrect K, values

can also easily lead to oscillations.

Due to the varying temperature accuracy of the sensor and the fact that the heater sensor is not

located directly in the liquid, calibrations must be done to ensure that the temperature of the

liquid is set properly. Also, while the cantilever design ensures direct contact between the sensor

and the chip, since the contact is not flush, thermal paste is necessary to increase thermal contact.

Calibrations are performed by placing a thermal couple directly into the growth well from the top

and sealing the entry point with super glue. Figure 4.17 shows the error versus temperature for

the remote BJT sensor on two different circuit boards.
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Figure 4.17.Error between the measured sensor temperature and the actual water temperature. The two

circuit boards demonstrate the variability of accuracy between different sensor ICs when measuring the

same device. Dry refers to contact between the sensor and microfluidic chip without thermal paste.

Thermal paste dramatically improves accuracy for both devices.

Even though the sensor is on the same circuit board as the heater, the fact that sensor errors are

all negative demonstrate that the remote sensor on cantilever design is largely isolated from the

adjacent heater. In fact, as long as the temperature sensor is in intimate contact with the device,

the contact to the heater does not induce variability. In tests where the same device is repeatedly

measured, removed, and remeasured, calibration curves were similar. Unfortunately,

underestimating the water temperature can be detrimental to cell growth since cells are more

sensitive to growth at higher temperatures as demonstrated in Figure 4.12. Therefore

compensation of the temperature set point using the measured calibration curves must be

performed before growths.

4.5 Optical Sensor System

The optical sensor system consists of a variety of optical sensors for measuring optical density

(OD), oxygen, and pH. In order to design an optical detection system for measuring these
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sensors, we have to understand the physical processes that cause an interaction between the

sensors and the chemical that they interact with. Three different optical sensors are used in the

microfluidic device. For oxygen, a fluorescent molecule that interacts with oxygen is used. For

pH, a fluorescent molecule that interacts with hydrogen ions is used. Finally, for OD, light

scattering measurements are used. The physical processes for these three sensors are discussed

below.

4.5.1 Oxygen Sensor

The oxygen sensor relies on a single molecule, Platinum (II)-octaethylporphrine-ketone

(PtOEPK) that is dissolved in polystyrene [93] using toluene as the carrier solvent. The particular

molecule used is a ketone of a commercially available molecule PtOEP. The particular

modification shifts the absorption peak from 380 nm to 585 nm and the emission peak from 600

nm to 750 nm. The implications of this wavelength shift will be discussed later in this section.

When oxygen diffuses into the polystyrene, molecular oxygen which collides with the molecule

quenches the fluorescence. We can model this with a differential equation to understand how

oxygen contributes to a change in fluorescence [94].

ON N
-= P --- K[0 2]N (4.7)

at TO

Where N is the number of excited state dye molecules, P is the rate that molecules are pumped

into the excited state, to is the excited state lifetime without oxygen, and K[0 2] is the quenching

rate. We can combine rate constants to determine an effective quenched lifetime which is a

function of oxygen.

To
T = O (4.8)1 + K[0 2 ]To

If we assume that the number of excited state molecules is proportional to the fluorescence

intensity, we can calculated a frequency transfer function for the differential equation
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T
H(w) = + j (4.9)

we can solve the differential equation in steady state to determine the number of excited

molecules for a given oxygen concentration.

N = Pr (4.10)

The ratio of the unquenched number of excited molecules, No, to the quenched number, N, is

then

N = = 1 + K[0 2 ]z 0  (4.11)
N -r

which is the Stem-Vollmer relationship for fluorescence quenching.

We can perform calibration measurements using this sensor to extract the lifetime of the dye and

compare with previous experimental data. Since there are non-ideal effects such as reflection and

scattering of excitation light and autofluorescence of filters and fibers, lifetimes are extracted

using an additive constant model for the transfer function. This assumes that all of the unwanted

optical signals which are detected have a much shorter lifetime than the lifetime of interest. For

the oxygen sensor with an excitation wavelength of 600 nm, autofluorescence is not detectable,

so a zero phase additive constant is appropriate.

H(a) = C + 1 + jor (4.12)

Figure 4.18 shows the phase response of the sensor as well as first order fits using extracted time

constants. The measurement was performed by modulating a 590 nm LED at different

frequencies and detecting fluorescence with a photodetector. Measurements are referenced from

the signal of the LED directly incident on the photodetector. Fitted time constants of 58 ps and
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19.8 ps agree reasonably with time constants of 61.4 ps and 17.1 ps extracted by Papkovsky et

al. [93] using the same dye for nitrogen and air respectively.
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Figure 4.18.Magnitude and phase response of the PtOEPK sensor. Dashed lines are theoretical fits

assuming a single pole with additive constant model. The plot of unquenched to quenched lifetime

versus oxygen is also plotted demonstrating the linearity of extracted time constants.

From the data in Figure 4.18, it is clear that the phase response of the sensor fits with more

precision than the magnitude response for the same single pole fitting equation. This is an

indication that the phase is less sensitive than the magnitude to coupling variations and

systematic errors. Therefore it is more robust to use phase information to extract oxygen

concentration from lifetime measurements. Since full frequency sweeps are time consuming for

determining oxygen concentration, a specific frequency that maximizes the phase response can

be used. As shown in Figure 4.19, this maximum phase signal occurs around 5 kHz.
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Figure 4.19.Phase difference of the PtOEPK fluorescence between air saturation and nitrogen

conditions. A maximum phase difference is achieved around a 5 kHz excitation frequency.

Since the oxygen sensor relies on diffusion of oxygen from the water into the polystyrene film,

temperature can affect the sensor response and must also be calibrated. The oxygen that affects

the sensor fluorescence is actually the oxygen in the polystyrene film. Therefore measurements

of the dissolved oxygen in water is indirect and a function of the ratio of oxygen solubility

between the water and polystyrene. While oxygen solubility in water decreases with temperature,

oxygen solubility in polystyrene increases with temperature due to thermal expansion [95].

Therefore the sensor will detect more oxygen when the temperature increases as shown in Figure

4.20. While the lifetime under nitrogen conditions remains constant, the lifetime in air saturated

conditions varies 36% over 20 degrees and can significantly affect the measured oxygen

concentration if the response versus temperature is not calibrated.
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Figure 4.20.Temperature dependence of the phase difference of the PtOEPK fluorescence between air

saturation and nitrogen conditions at 5 kHz. A linear fit results in a 0.514 degree change per degree

temperature.

4.5.2 pH sensor

For the pH sensor available commercially by Presens, phase detection is also used, however the

mechanism is different. Since the fluorescence lifetime of typical pH sensitive molecules such as

fluorescein are fast (4 ns) [96], expensive high frequency electronics would be required. As a

result, the commercial pH sensors rely on the dual lifetime referencing technique [97]. This

measurement pairs the fast dye with an unresponsive slow dye with a similar absorption

spectrum (430 nm-500 nm) such as Ruthenium{II}-4,7-diphenyl-1,10-phenanthroline (5.3 Is)

[99]. As the amplitude of the pH sensitive dye changes in different pH conditions, a phase

change is measured resulting from the combined fluorescence. Using a similar frequency sweep

experiment as used for the oxygen sensor, we can determine the maximum phase response

frequency which occurs at 45 kHz. A calibration curve of the phase response versus pH is given

in Figure 4.21 at room temperature of 21 C.
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Figure 4.21 .Phase response of the pH sensor versus pH from pH 4 to pH 10.

Assuming that the pH sensitive molecule is fluorescein, the measured pH will also depend on

temperature but through different mechanisms. Increases in temperature result in absorption

shifts to higher wavelength as well as equilibrium shifts towards more undissociated forms of the

molecule [96]. Since the fluorescence intensity of fluorescein increases under basic conditions,

increases in temperature will appear like increases in pH. Plots of the phase response versus

temperature shown in Figure 4.22 agree with these assumptions.
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Figure 4.22.Temperature dependence of the phase at pH 7 for the pH sensor at 44 kHz. A linear fit to

the temperature dependence results in a shift of 0.16 degrees phase per degree temperature.
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If we look at the temperature dependence of the pH sensor, we see that if we shift temperature

from 30 C to 42 C in our growth, the pH of the media will change by 1.9 degrees or equivalently

increase in pH by 0.32 units and greatly affect cell growth.

4.5.3 Optical Density Sensor

The optical density sensor relies on scattering from the cells to change the transmission

properties of the medium. In a microfluidic reactor where bubbles are not required for

oxygenation, direct optical transmission measurements through the growth medium can generate

repeatable results. The setup for measuring optical density consists of an LED and a 500 ptm

diameter PMMA fiber in a transmission configuration as shown in Figure 4.23. The LED is

placed into a black nylon holder to suppress stray light. The light from the LED is then coupled

to a white nylon diffuser to improve the uniformity of the output intensity. To reduce stray light

from the diffuser, the output of the diffuser is then placed through another black nylon tube to

collimate the output. This collimated uniform excitation is then sent through the sample. After

passing through the sample, the transmitted light is collected by a 0.2 mm black nylon aperture

with a 4.8 mm length. This reduces the solid half angle of collection to 2.4 degrees, increasing

the linearity of forward transmission dependence on cell density [98]. A 500 pm PMMA fiber is

then connected to the output of the reducer and is sent to the photodetector.
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Figure 4.23.Schematic of the optical density measurement setup. An LED illuminates through a

diffuser to improve uniformity of the initial illumination source. The output of the diffuser enters a

black nylon collimator to reduce the solid angle of the output. After passing through the sample, the

light passes through a 0.2 mm diameter, 4.8 mm long aperture to further reduce the collected solid

angle before entering the collection fiber.

To maintain a consistent path length, optical density can be measured through a rigid section of

the growth chamber such as the pass-through or a channel connecting growth chamber sections.

This also allows for an arbitrary path length by changing the thickness of the channel where the

OD sensor is located. Therefore the linear range of the OD sensor can be tailored to the desired

OD operating range. A calibration of the optical density for a 500 pm thick pass-through is

shown in Figure 4.24. Without any fitting of the pass-through thickness, the sensor maintains a

linear range of 2 orders of magnitude with less than 10% error.
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Figure 4.24.Percent error of the optical density versus expected concentration for a path length of 500

im. Linearity is maintained over nearly 2 orders of magnitude for an error of 10%.

Again, since the sensor relies on the alignment of the excitation source with the solid angle

reducer, thermal expansion or shifting due to temperature can affect the optical density signal.

For the implemented design, the OD only has a shift of 0.016 OD units per degree C as shown in

Figure 4.25.

0.3

0.25

0.2

0.15

0.1

0.05

30 32 34 36 38
Temperature (C)

40 42 44 46

Figure 4.25.Plot of the

temperature shift results

drift in measured optical density versus

in a change of 0.016 OD units per degree C.

temperature. A linear fit of the

10% error

0-
28

L. . . .. L . A . . I . i . . . I - - I-

208



4.5 OPTICAL SENSOR SYSTEM

4.5.4 System Overview and Detection Algorithm

For oxygen and pH, the phase response of the sensor fluorescence changes in proportion to

concentration, while for OD, light scattering determines the concentration. For phase detection of

the oxygen and pH sensors, lock-in is necessary since we need to compare the phase shift of the

fluorescence with the phase of the excitation source. For light scattering measurements of the

OD, lock-in is not required, but the signal to noise ratio improves dramatically by running at a

specific frequency. In order to improve reliability of the sensor data, all of the sensors are

measured using lock-in detection methods. Therefore both phase and magnitude information is

required for sensor data to be extracted.

To perform lock-in detection, both the optical system and the electrical drivers and detection

circuits must be designed. A general electrical optical detection system for four sensors is shown

in Figure 4.26. Further details of the signal processing algorithm are given in Appendix A. A

signal driver circuit is connected to LEDs which optically excite fluorescence sensors. The

fluorescence is then collected by photodetectors. Analog signals from the photodetectors and

LED drivers are collected and digitized into a computer which then performs signal processing.

At the end of signal processing, the magnitude and phase of each optical signal with respect to its

reference is known.
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Figure 4.26.Schematic of the optical/electrical system and the signal processing algorithm used to

extract magnitude and phase. Signal drivers modulate LEDs which are used to excite fluorescence

sensors. Fluorescence is then collected by photodetectors and signals are sent to a computer for signal

processing.

4.5.5 LED Driver Circuit

Since we are using an FPGA to synchronize device operation and simplify electronic interfaces,

the optical excitation and detection system should also be integrated with the FPGA. This can be

accomplished by using digital to analog converters (DAC) at the signal driver circuit and analog

to digital converters (ADC) at the receiver circuit. In addition to providing an integrated solution,

this greatly improves timing between the reference and signal and reduces noise by placing the
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DACs and ADCs close to the actual LEDs and photodetectors and removing cables used for

transmitting analog signals.

For excitation, a pure sine wave is preferred to remove harmonics from the frequency spectrum.

The easiest implementation for this is a 1-bit DAC where the percentage of high signals is

proportional to the desired voltage. The 1-bit DAC consists of a sigma-delta modulator which

generates pulses proportional to the sine wave amplitude and is shown in Figure 4.27. Increasing

the clocking frequency (fcik) of the 1-bit DAC is equivalent to pushing the noise spectrum out to

higher frequency as shown in Figure 4.28 for the generation of a 1 kHz sine wave.

Accumulator Comparator Latch

A(sin(wt)+1)/2 -- *+ -- Output

A

Figure 4.27.Block diagram of the first order 1-bit delta sigma modulator used to generate analog sine

waves.
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Figure 4.28.Illustration of the noise spectra generated by a 1-bit DAC generating a sine wave at 1 kHz.

As the frequency of pulses increases, the non-ideal harmonics dissipate and the noise density drops at

low frequency.
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To generate an analog output sine wave from the pulse train, only a low pass filter is needed to

remove the high frequency components and generate a power averaged signal. To determine the

frequency of the low pass filter, we need to determine what harmonics are still generated using a

DAC modulation scheme. These harmonics are mostly determined by how we generate the input

for the DAC.

To generate the input sine wave for the DAC, we use a 10 bit lookup table and a phase counter

which skips through the lookup table at a rate proportional to the desired frequency of operation.

This type of sine generation allows us the flexibility to control the output frequency without

recompiling code. Since the FPGA will operate nominally at 24 MHz, we can use this frequency

as a base to determine the skip rate through the lookup table. If we merely skip through the table,
we can only set frequencies that are integer divisions of our base clock frequency. This can very

easily result in harmonic overlap from impure low frequency signals with higher frequency

signals. Since our lookup table is also only 10 bits long, the minimum frequency of operation if

we use the entire table is 24 kHz, which is faster than our optical sensors. To increase the

frequency resolution, we can add a cycle hold, which is equivalent to an integer multiplier to our

skip rate as shown in equation (4.13)

fout = fkMk (4.13)210 nhold

Where the phase counter is assumed to be 10 bits long and only increases by mskip after the 24

MHz clock has run nhold cycles. While frequency resolution improves, adding a hold integer

effectively decreases the clocking frequency since the pulse train remains constant for more

cycles. Since multiple values of m and n can result in similar frequencies, the optimal values will

depend on the low pass filter frequency.

To choose the low pass filter frequency, we look at the frequency that generates the most

harmonics. In this system, this is the highest frequency required, or 44 kHz. The frequency

spectrum of the 44 kHz pulse train using a 24 MHz clock is shown in Figure 4.29 generated with

mskip= 69 and nhold 37.
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Figure 4.29.Frequency spectrum of a 1-bit DAC generated 44 kHz sine wave using an input 10 bit

lookup table, 37 hold cycles, and 69 skip indices.

For these values, we see that the sine wave starts to have harmonics at higher frequency. If we

limit the maximum hold cycles to 37, we can be sure that harmonics at lower frequency are not

generated regardless of the desired frequency. From the location of the harmonics, we determine

that the low pass filter frequency should be between 44 kHz and 600 kHz. In our design, we have

chosen a low pass filter frequency around 250 kHz.

To run LEDs, we then connect the output of the low pass filter to a voltage controlled current

source since the light output from the LED is approximately proportional to current at low

current operation. The output analog circuit connected to the output of the DAC is shown in

Figure 4.30. An AND gate is placed at the input to level shift and clean up the digital input to a

regulated voltage. Then a third order low pass filter and a voltage driven current source are

connected to the final LED.
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Figure 4.30.Circuit diagram of the downstream analog circuit which filters the DAC signal and drives

the LED.

4.5.6 Photodetector Circuit

For the photodetector circuits, a high gain band pass filter is connected to the photodetectors.

Since detector speed is not an issue, dark current noise from the photodetectors is removed by

biasing the diodes at zero volts. To reduce external connections and improve acquisition time, all

optical signals are summed after their respective band pass filters electrically and sent into a

single 16 bit ADC. While this improves the acquisition time and decreases expensive ADC

usage, this type of system design can result in the measurement of optical crosstalk between

sensors and crosstalk issues will need to be addressed. The photodetector circuit is shown in

Figure 4.31.
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Vout

Figure 4.31 .Circuit diagram of the PD circuit with integrated band pass filter. R refers to resistors, C

refers to capacitors, and the subscript g is gain, f is filter, and b is back.

The band pass filter consists of a low pass filter connected to the photodiode, and an integrator in

feedback to provide high pass filtering characteristics. If we solve for the output voltage given an

input current from the photodiode, we get the following equation

Vout -RgjtMTfRb

iPD [Rg - 2TgTfRb] + j-iTfRb

Where tg = RgCg and rf = RfCf. The maximum value of the band pass filter follows trivially by

setting the real part of the denominator to zero. One could also take the harder route of finding

the magnitude and taking the derivative with respect to o to find the maximum. As a result, the
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center frequency is given below. Interestingly, the maximum gain is always Rg regardless of

other parameters.

1
e= T (4.15)FTfR bC g

We notice that not only does the maximum gain only depend on Rg, but the resonance frequency

does not depend on Rg at all. This allows us to decouple gain from the resonance frequency of

the band pass filter.

The last part we need to design the filter properly is the location of the low frequency and high

frequency poles. If we factor the denominator, we obtain these poles as a function of our circuit

parameters

2 Rg

Rb (± 14TgRg (4.16)
( TfRbg

The form of equation (4.16) is hard to interpret since it is solved symmetrically about the two

poles and determines the 3 dB cut-on and cut-off frequencies. As such, we turn to the circuit

diagram to understand how to move the low frequency and high frequency poles using circuit

components. If we look at the integrator, we see that the input consists of a low pass filter and

therefore only frequencies below the cutoff of this filter will experience integration and removal

from the original signal. Therefore the low frequency cut-on of the band pass is positioned at r.

For the high frequency low pass filter, we observe that the inverting amplifier connected to the

photodiode is also the low pass filter. However, the resistor of the low pass consists of Rg in

parallel with Rb since both of these resistors look equivalent at the photodiode node. Since Rg
will be much larger than Rb, we can position the high frequency pole by adjusting Rb. To

simplify fabrication of the detector board, all four photodetectors on the board are configured
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using mostly the same components shown in Table 4.2. The only exception is the pH sensor

which operates at 44 kHz, which has minor changes for crosstalk isolation.

Element Value (pH) Value (Rest)

Cg IlpF I1pF

........... i 'FI

Cf 100 nF 100 nF

Table 4.2. List of circuit component values used for the photodetector receiver.

If we look at the frequency response in Figure 4.32 between the two circuits, we see that there is

only an additional factor of 3 for operating the pH sensor receiver at 10 Mn. By dropping the

gain value, we can reduce the optical crosstalk of neighboring channels leaking into the pH

receiver between 2 kHz and 10 kHz by 20 dB without greatly affecting the gain at the frequency

of interest. In addition, since the high frequency pole moves to higher frequency when we drop

the gain, the phase noise decreases as well. This is important at high frequency since the DAC

behaves worse at frequencies close to the clocking frequency. Finally, since there is one detector

per sensor, a downstream summing bias circuit and final filter are used to prepare the signal for

detection with the ADC as shown in Figure 4.33. A second order filter at 100 kHz at the output

reduces aliasing effects and the high pass filter at the input for the pH detector further improves

sensor crosstalk.
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Figure 4.32.Frequency response of the photodiode circuit for different resistor gain values. A drop in Rg
to 1 MK affects frequencies less than 10 kHz much more than frequencies above 10 kHz.
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Figure 4.33. Downstream detection circuit for signal summing, level shifting, and anti-aliasing. This

enables simultaneous detection of all sensors with a single ADC provided that the signals are at

different frequencies. For the higher frequency pH filter, a high pass filter is added at the input to

further decrease crosstalk.
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The noise spectrum acquired by the ADC is given in Figure 4.34. Spice simulations of the

Johnson (thermal), shot, and flicker noise, from the resistors and op amp models are provided.

Models of the exact op amps from the manufacturer are used instead of manually using external

noise sources at the inputs of the op amps.

10

10

10

7
10

10 3 10510 (
Frequency (Hz)

Figure 4.34.Output noise spectrum measured by the ADC vs. the expected noise spectrum from Spice.

Actual noise values follow the same trend and are within an order of magnitude of simulation.

Since the transimpedance amplifier gain is large (106 ~ 107), most of the noise comes from

current sources feeding the gain resistor. Since the photodetector is at OV bias, the main sources

of noise current come from the Johnson noise of Rb and the current noise of the transimpedance

amplifier itself. As an example calculation for the DO photodetector, the resistor noise current

spectral density, given by

n _4kBT

Nf-f R
(4.17)

Where in is the noise current, Af is the bandwidth, kB is the Boltzmann constant, T is the

temperature in Kelvin, and R is the resistance [102]. For room temperature (300 K) and a
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resistance of 105 , the current noise is 0.4 pA/Hz"'". If we add this to the current noise of the

transimpedance amplifier (0.3 pA/Hz(1/2>), we get a resulting noise current of 0.5 pA/Hz0"2 ). Fed

through the gain resistor of 107, the resulting noise voltage at the output is already 5 ptV/Hz(1/2).

Simulations of the noise at the output of the 4 band-pass filters are added to form the combined

noise spectrum.

We see that the noise spectrum follows the gain profile. The noise is especially high at the center

frequency of the OD and DO sensors. The summing junction before the ADC input results in the

noise also being summed. Since there are three 5 kHz center frequency amplifiers, the noise is a

factor of three higher at the ADC input. If we used a separate ADC for each amplifier, we could

reduce the noise at the expense of increased cost, external wiring, and acquisition time. The noise

spectrum shown sets a minimum on the limit of detection for each sensor since it will add a

random magnitude and phase to the measured fluorescence signal. For phase measurements, the

single pole approximation given in Equation (4.12) will require another additive constant, but the

constant will have a randomized magnitude and phase. As long as the fluorescence signal is

much larger than the noise floor, the effect is minimal and can be neglected.

4.5.7 Optical System

As described in sections 4.4.1 through 4.4.3, three different optical sensors are used for online

measurements. In order to address these sensors, optical excitation and collection systems must

be developed to excite and collect fluorescence. To further increase measurement stability,

waveguide systems can also be utilized [41], providing a true lab-on-a-chip device. For low

parallelism systems, fiber probes can also be used and are more versatile if sensor locations vary.

The fiber probe used for measurements is shown in Figure 4.35. It consists of a central 1 mm

diameter PMMA fiber with 9 surrounding 500 pm diameter collection fibers configured to

collect fluorescence emitted at 180 degrees. This system achieves a collection efficiency of 2.8%

when exciting a perfect fluorophore with 100% absorption and 100% conversion efficiency is

placed 1 mm in front of the bundle [103].
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PMMA Fibers

Figure 4.35. Illustration of the fiber probe used for fluorescence excitation and collection. A central 1

mm diameter PMMA fiber provides excitation while 9 500 pn diameter fibers are used for collection.

Since the detection system uses a photodetector, which produces a signal over a range of

wavelengths, filters must be used to isolate the excitation from the fluorescence. Some of the

excitation inevitably enters the collection fibers either through interface reflections or scattering

in the medium. To select proper filters, we need to first determine the excitation and emission

wavelengths of the sensors. Table 4.3 summarizes the peak wavelengths of excitation and

emission for the different sensors.

PtOEPK (Oxygen) [93] 592 nm 759 nm

Fluorescein Ru (pH) [97] 470 nm > 550 nm

Optical Density 590 nm N.A.

Table 4.3. Peak excitation and emission wavelengths for the different optical sensors used in the

bioreactor.

Selecting filters for PtOEPK is easy since the excitation and emission wavelengths are separated

by over 150 nm. However, one issue deals with the excitation spectrum provided by the 590 nm

LED (5Y3BCA-H Roithner Lasertechnik). As shown in Figure 4.36, there is a non-negligible

peak at 860 nm which will be detected by the photodetector if a long pass filter is used to block

the excitation source.
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Figure 4.36.Spectra of the 590 nm LED used for excitation of the PtOEPK sensor. A non-negligible

peak at 860 nm from the LED can also be detected as erroneous fluorescence.

If we integrate the power at the two peaks, we find that 0.35% of the power is contained in the

long wavelength peak. If we assume that the sensor absorbs 50% of the incident light and is 12%

efficient at converting that light into fluorescence, the total collected fluorescence is only 0.17%

of the incident excitation light. Under these conditions, even the initial reflection from the chip

air interface of 4% will result in the collection of the excitation source that is 8% of the

fluorescence signal. This can greatly reduce the accuracy of the oxygen detector. To prevent this

infrared excitation from affecting the signal, we integrate a short-pass filter into the excitation

source in addition to the long pass filter at the detector. Since lens based collimation is not

practical to integrate into the plastic optical fiber system, dielectric filters, which have angle

dependent transmission, are not used. Instead, color glass filters are used. An added benefit of

using color glass is that the filtering occurs due to bulk absorption and glass can be cut into the

desired dimensions for use without working about coating delamination.

The spectra of the short pass (Schott BG39) and long pass (Schott RG-9) filters used for PtOEPK

and the short pass (Schott BG3) and long pass (KOPP 3482, Schott OG530) filters used for the

pH sensor are shown in Figure 4.37 for 1 mm thickness. We see that if BG39 is placed after the

LED, we can suppress the emission at 860 nm by over 3 orders of magnitude. While the

crossover between the short pass and long pass filters occurs with a non-negligible transmission
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of 10 4, the LED spectra does not have an emission near the crossing frequency of 690 nm

resulting in good isolation between excitation and fluorescence.

10 0

103 [-
400

100

100 L-
400

500 600 700 800 900
Wavelength (nm)

500 600 700 800 900
Wavelength (nm)

1000

1000

Figure 4.37.Plots of the transmission characteristics for the different filters tested for fluorescence

detection. The top plot shows the filters used for PtOEPK. The bottom plot shows the filters tested for

pH detection. KOPP 3482 has better long-pass characteristics.

For the pH sensor, the crossover frequency also occurs with a transmission of 10' at 505 nm, but

unfortunately, the sensor excitation and fluorescence peaks are very near the crossover in this

case. If we plot the spectra of the 470 nm LED (B56L5111 P Roithner Lasertechnik) in Figure

4.38, we notice that there is a long tail which extends into the filter crossover region. While this

can be reduced by adding a BG3 short-pass filter, this still results in a direct transmission of

0.04% and 0.008% for OG530 and Kopp 3482 respectively. From these results Kopp is a better

filter for removal of the excitation signal. In addition, it has been shown that autofluorescence of

Kopp glass is much lower than autofluorescence of Schott glass, most likely due to differences in

the manufacturing processes used the different types of the glass [104].
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Figure 4.38.Plot of the directly measured 470 nm LED spectra, as well as the spectra measured through

two different long pass filters. Non-negligible power transmission occurs due to the long tail of the

LED.

One other issue occurs when performing excitation using a blue LED. The PMMA fiber used to

couple light from the LED to the sensor also fluoresces and causes a non-negligible signal at the

output. In order to effectively remove this autofluorescence signal from the fiber, the BG3 filter

should nominally be placed directly in front of the sensor. To measure the amount of

autofluorescence collected by the fiber during normal operation, signal voltages from the

detector are measured with the BG3 filter placed before and after the PMMA fiber probe

connecting the LED to the sensor chip. Two measurements are taken, once with a chip

containing a pH sensor, and once with a chip containing no sensor. The pH fluorescence is used

to calibrate the LED input intensity. Autofluorescence is estimated by measuring the difference

in the ratio of the no-sensor chip to the sensor chip when BG3 is placed at the LED or at the

sensor. From these measurements, collected autofluorescence from the PMMA fiber is 7.2% of

10 0
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the pH sensor fluorescence per meter of PMMA fiber. If integrating the BG3 filter at the sensor

is difficult, then autofluorescence can be reduced by minimizing the fiber length.

For the OD sensor, a wavelength near 600 nm is used to maintain consistency with standard

commercial and bench scale optical density measurement systems. Measuring OD at 600 nm can

be problematic given that we use a summing junction to simultaneously measure oxygen, pH,

and optical density in a single acquisition. Any optical crosstalk between the different fiber

probes will translate directly into a signal at the output. Since the OD sensors have a solid angle

reducer before fiber collection, the main problem is leakage from the LED directly into the pH

sensor only, since the emission filter Kopp 3482 passes 600 nm directly. However, as we have

described in Section 4.5.6 Photodetector Circuit, with the proper choice of excitation

frequencies, electrical filtering methods can be applied to block transmission of the OD sensors

into the pH detector.

4.6 Sterile Protocols

With proper sensors and electrical systems implemented, standard procedures must also be

developed to sterilize and maintain sterility during chip operation. If any step of the controller

during valve switching does not maintain sterility, a continuous culture experiment can be

overgrown with a foreign contaminant. The first requirement is that the chip is initially sterile.

Different sterilization procedures exist, including autoclaving, ethylene oxide, alcohol solutions,

hydrogen peroxide, and gamma irradiation [100, 101].

Since autoclaving occurs at 120 C, this process is not compatible with polycarbonate and PMMA

since the materials will deform or melt. Ethylene oxide gas is also incompatible with

polycarbonate and PMMA since they are soluble [56, 59]. Sterilizing fluids such as a 70%

ethanol solution also dissolve PMMA and hydrogen peroxide solutions behave similarly to ozone

for polycarbonate. Since no chemical or heat sterilization methods are compatible with the

materials used to make the devices, gamma irradiation, which has been shown to be compatible

with many plastics, will be explored.
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Gamma irradiation involves exposing samples to a source of gamma rays, typically from a Co60

source. Gamma rays deeply penetrate organics, interacting with DNA and causing damage. In

general the amount of induced damage depends on the specific cell, and a parameter Dio is

defined as the radiation dose required to reduce the active cell population by a factor of 10 as

shown in Equation (4.18) [105].

N D
log 1 0 - = - - (4.18)No Die

Typical Dio values for bacteria have a wide range from 50 Gy to 10 kGy. For yeasts, molds, and

parasites, radiation dose levels are given as a lethal or non-pathogenic dose. For yeasts, lethal

doses range from 4.5 kGy to 20 kGy, for molds, lethal doses range from 2.5 kGy to 6 kGy, and

for parasites, doses range from 90 Gy to 6 kGy [105]. We can see that while the range of doses to

inactivate all cells covers a large range, bacteria are generally hardest to kill, with the worst case

being only a 1 Ox reduction at a radiation level of 10 kGy.

Gamma irradiation of polycarbonate has been reported in literature [106]. It has been observed

that the structural properties remain relatively constant up to 1000 kGy with a minor drop in

maximum tensile stress. Even in the worst case, irradiation with 1000 kGy would be more than

enough to ensure a reduction of all organisms by 100 orders of magnitude. Unfortunately, even

gamma irradiation leads to unwanted chemical modification in certain plastics such as

polycarbonate. As shown in Figure 4.39, the optical properties of polycarbonate change

drastically after irradiation at 50 kGy.

226



4.6 STERILE PROTOCOLS

Gamma Irradiated PC vs white light
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Figure 4.39.Comparison between native and gamma irradiated polycarbonate immediately after

irradiation as well as after aging. While optical properties mostly return to normal after aging,

yellowing results, which can affect pH sensor excitation which occurs at 470 nm. Inset shows the

difference in color between a native and gamma irradiated sample of polycarbonate.

While samples aged for a few days recover the majority of their optical transmission, the short

wavelength absorption cutoff red shifts from approximately 400 nm to 530 nm. This will have an

impact on the optical sensors which can be used in polycarbonate devices, especially the pH

sensor which requires excitation at 470 nm. This is less of an issue for OD and oxygen sensors

which operate at 600 nm and 595 nm respectively.

If we decrease the dose from 50 kGy to 16 kGy, we notice that there is a smaller reduction in

optical transmission, as shown in Figure 4.40. The reduction of radiation by 3x reduces the

absorption coefficient by a factor of 8.6. If optical properties are a concern, mild reduction in

radiation levels appears to have a large impact on yellowing. Gamma irradiation of PMMA also

results in a similar yellowing effect, however, the recovery after aging is much less pronounced,

with virtually no change in absorption at 470 nm after aging.

227



CHAPTER 4 SYSTEM ARCHITECTURE

0'L
400

0-
400

500 600 700 800 900
Wavelength (nm)

500 600 700 800 900
Wavelength (n m)

1000

1000

Figure 4.40.Increase in absorption relative to native polycarbonate and PMMA for samples exposed to

16 kGy of gamma irradiation. Recovery of optical properties is more pronounced for polycarbonate

versus PMMA. Both samples after recovery stabilize to an absorption of approximately 2 dB/cm at 470

nm.

After initial sterilization, inoculation and fluid filling of microfluidic chips must be performed

without causing contamination. Inoculation procedures must also be carried out in a way that

minimizes bubble introduction into the device. Since the chip is designed with fully deflectable

membranes, an inoculation protocol can be implemented which prevents air from backfilling into

the device. This process is illustrated in Figure 4.41.
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a) Remove air from growth chamber
Passthrough -

Reservoir Peristaltic Pump Growth Chamber

b) Prime input fluid lines using external fluid sources
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Reservoir Peristaltic Pump Growth Chamber

c) Fill growth chamber with DI water
I - - ePassthrough/

Reservoir Peristaltic Pump Growth Chamber

d) Remove residual air and bubbles
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Reservoir Peristaltic Pump Growth Chamber

e) Inoculate growth chamber with cells
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Figure 4.41 .A schematic of the inoculation procedure is shown. In step 1 (a), all 5 sections of the

growth chamber are depressed to remove any air volume from the chambers. Then in step 2 (b) each

input is driven through the output to remove air and pre-fill the reservoirs and microchannels. In step 3

(c), the water reservoir is used to inflate the growth chamber, suspending any remaining trapped air into

the fluid. In step 4 (d), the water and bubbles in the growth chamber are removed by pressurizing the

growth chamber sections. If bubbles still remain, step 3 (c) and step 4 (d) are repeated until bubbles are

removed. In step 5 (e), the inoculum is backfilled into the growth chamber to 1 mL by keeping one

section pressurized.
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After all of the external barbs are interfaced to sterilized tubing, the growth chamber membranes

are completely deflected, forcing the pre-sterilized air out of the waste output port (a). Next each

external fluid source is flowed through its respective on-chip reservoir, through the pass-through,

and to the waste output to replace the air in the on-chip reservoirs with fluid (b). After priming

the reservoirs, the DI water input is used to fill the growth chamber (c). After a few mixing

cycles to detach bubbles from the walls of the growth chamber, the growth chamber is

pressurized to remove the water and bubbles through the waste output (d). If any bubbles still

remain, the procedure is repeated until the bubbles are all removed (c) (d). Following bubble

removal, the sample output, which is connected to the inoculation syringe, is used to inoculate

the chamber (e). For inoculation, one growth chamber membrane is completely pressurized. This

prevents the syringe from injecting fluid into one of the growth chambers, allowing a maximum

of 1 mL of culture media into the chambers. After inoculation, the chip is ready for growth.

Since all connections to the chip are sterile and the growth chamber membrane is never placed in

a position to apply negative pressure to the chamber, the chip remains sterile through the entire

fluid priming, bubble removal, and inoculation procedure.

4.7 Chip Operation and Control

After inoculation, chip operation also requires a few protocols. Since the pass-through is

implemented to maintain volume during pumping and prevent the pressurized growth chamber

from leaking fluid into the output, it cannot be connected to the peristaltic pump and the growth

chamber at the same time. Therefore the chip operates in two modes, injection mode and mixing

mode. These two modes are summarized in Figure 4.42.
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a) Injection Mode Passthrough

Reservoir Peristaltic Pump Growth Chamber
(Pressurized) (on)

Passthrough
b) Mixing Mode

Reservoir Peristaltic Pump Growth Chamber
(Refill) (off)

Figure 4.42.Diagram of the two different modes of operation used to pump fluid into and out of the

chip while still providing mixing. (a) In injection mode, the valves connecting the growth chamber to

the pass-through are closed and the internal valve connecting the first and last growth chamber sections

is opened to close the mixing loop. With the growth chamber isolated from the pass-through, the

peristaltic pump is operated to replace the cells in the pass-through with fresh medium. (b) After

injection, the peristaltic pump is closed, the internal valve of the growth chamber is closed, and the

valves connecting the pass-through to the growth chamber are opened. In this state, the growth chamber

fluid circulates through the pass-through, mixing the newly injected media with the growth chamber

contents.

In injection mode (a), the valves connecting the growth chamber to the pass-through are closed

and the internal valve connecting the first and last growth chamber sections is opened to close

the mixing loop. With the growth chamber isolated from the pass-through, the peristaltic pump is

operated to replace the cells in the pass-through with fresh medium. After injection (b), the

peristaltic pump is closed, the internal valve of the growth chamber is closed, and the valves

connecting the pass-through to the growth chamber are opened. In this state, the growth chamber

fluid circulates through the pass-through, mixing the newly injected media with the growth

chamber contents.

Maintaining sterility during these operations is critical to prevent cells from backwashing into

the peristaltic pump. In order to maintain a constant forward flow and forward pressure of liquid

into the growth chamber, valves are always opened in order from the input first and the output
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last. In preparation for injection mode, the external input valve is first closed and the reservoir is

pressurized before opening any of the input select valves. Therefore when the peristaltic pump

starts operating, there is substantial backpressure to prevent backwash. When the peristaltic

pump is not operating, it is placed in holding mode where a plug of liquid is ready to be injected

into the growth chamber. This allows the final valve to be closed to prevent back contamination.

In addition to order of operations for valves, there is also an order of operations for fluid

injection. Since the cells swim towards beneficial chemical gradients such as food and oxygen,

preventing cell chemotaxis is important. For continuous culture experiments, we can separate

media components into salts, carbon source, and water. By separating in this fashion, each

external input is not capable of sustaining growth independently, decreasing the chance of

contamination. With a separation of media components, we can also specify the order of inputs

into the growth chamber. By making sure that the carbon source is the first input and the water is

the last input, we can always maintain a negative chemical gradient at the peristaltic pump after

each injection cycle.

With three different media component inputs, we can start to look at pump and mixer mediated

environmental control. Three types of control are implemented during the continuous growth.

The first is pump mediated control of parameters such as flow rate, cell density, and input

concentrations by varying the different quantity of injections for each input. Pump mediated

control includes pH control since input from acid and base reservoirs also requires the peristaltic

pump. The last controller for oxygen is implemented off-chip using the mixer for delivery and

does not rely on the pump.

4.7.1 Flow and Input Control

Pump based control is performed discretely, either by specifying flow rate or cell density. For

flow rate control, the number of injections is simply specified by the desired flow rate and is

performed open loop. Since we assume that the pump provides a fixed volume per injection, we

increment a counter with the desired additional flow volume at each iteration. We then compare

the desired flow rate with the number of injections and round to the nearest whole number to

determine the required injection quantity as given in Equation (4.19)
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in= - Z i + 0.5 (4.19)
j=1

Where in is the injection quantity, F is the flow rate, n is the current iteration, dt is the time

elapsed between iterations, and v is the volume per injection.

For cell density control, the flow rate is controlled by measuring the cell density and comparing

to the set point. Since our control loop operates every 30 seconds and our maximum cell

doubling time for E. coli is 20 minutes, the maximum deviation from each measurement is only

1.75%. Since the standard deviation of our measurement at continuous culture densities around

OD 1 is roughly 1%, as will be shown in Chapter 5, our measurement is fast enough to allow for

simple on-off control around the set point. Therefore the control algorithm sets the injection

volume to be larger than the maximum growth rate when the measurement is above threshold,

and lower when it is below threshold as shown in Figure 4.43.
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Figure 4.43.Measurement of cell density and the injections versus time required to maintain turbidostat

conditions. While the injection count is varying at nearly every sampling point, the measurement noise

is on the order of the dilution and growth rate.
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Input and pH control is more involved as the flow rate is governed by the cells and is not

arbitrarily controllable. Therefore, there are a maximum number of injections for all inputs at

each measurement. In order to perform control over input concentrations, the base operating

condition must have a dilution with water as a place holder for other inputs. A control algorithm

is not difficult as long as there are enough water injections to replace for all inputs. If another

input needs to be injected, it replaces a previous water injection to maintain the same

concentration of all other inputs. If the total required input injections exceed the total water

injections, then the particular set point is not reachable. In addition, outside of pH control, other

inputs such as glucose and salt concentration are only controllable open loop since there are no

sensors currently integrated into the device which can measure these parameters.

At the base of the control scheme is a table specifying the desired set points of inputs, which is

utilized to determine the distribution of injections. For open loop inputs, the set point is simply

the preprogrammed number of injections required at the iteration. This can be described similarly

to Equation (4.19), but with flow rate replaced by the preprogrammed flow rate for the input.

Again, the expected total number of injections is compared to the actual injection total as given

below

in = I F, -I i + 0.5 (4.20)

where Fk is the preprogrammed flow rate of the input at iteration k, ij is the actual injection count

at iteration j, dt is the time elapsed between iterations, v is the volume per injection, and n is the

current iteration. An example of open loop set point control is shown in Figure 4.44 for a single

glucose input operating with a sinusoidal waveform. Since control is discretized into injections,

the waveform for glucose looks similar to what is used to generate sine waves for LED

excitation. However, in this case, the growth chamber itself acts as the low pass filter, generating

the sinusoidal response.
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Figure 4.44.Injection count for glucose versus time to generate a 4 hour period sine wave of glucose

input. Since injections are discrete, the algorithm oscillates between two injection values when the

desired value is a fraction. The input filtered with a low pass of 12 minutes shows the recreated sine

wave.

4.7.2 pH control

For pH control, the algorithm is more complicated, since the pH change for an input of acid and

base depends on the buffering capacity of the medium, the pH change per injection must

constantly be estimated to determine the appropriate number of injections.

The algorithm essentially follows from the pH control algorithm used by Lee et al. [94]. The first

step to implementing the algorithm is to determine the response of the pH sensor to changes in

pH, since mixing times in the reactor have been demonstrated to be 2 seconds, the only limitation

to response is the sensor itself. Figure 4.45 shows that a step change in pH results in a 90%

sensor response of approximately 3 minutes. Therefore estimates of the pH change per injection

should only be performed more than 3 minutes after the injection cycle. In addition, since pH

values before 3 minutes result from sensor response, estimates of the acid production rate should

also be performed 3 minutes after injections.
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Figure 4.45.Step response of the pH sensor around pH 7. From the time constant of 0.75 minutes, a

90% response time can be extracted of 3 minutes.

Due to the slow response of the sensor, the pH algorithm is run on a 6 minute cycle. The first 3

minutes of data are ignored and estimates of the pH change due to injection and pH change due

to acid production are performed on the last 6 data points. The pH change (dpH/dt) due to

metabolic acid production is estimated as

OpH _ S -(4.21)

at at

Where S, is the pH measured at sample point n and dt is the sampling time. In actuality, since

there are 6 data points from which to estimate dpH/dt, a linear fit is used to achieve a better

estimate. If an injection has occurred, we can estimate the change of pH due to an injection by

comparing the estimated drop in pH from the last 6 minute pH control cycle

5" ~ rpH n - tn-k) + Sn-k
A Sn-k (t - (4.22)

ap H =
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Where ApH is the estimated pH change per injection, t" is the time at the nth sample, Ninj is the

number of injections from the last control cycle, and k is number of iterations per control cycle,

which in the case of a 6 minute cycle with a 30 second sampling time is 12 iterations. Again, to

improve estimates of ApH, the fitted pH values from the last control cycle can be compared to

the new estimates rather than to the raw data. Also, since the acid and base reservoirs might not

result in the same pH change per injection, estimates of ApH are needed individually for acid and

base injections.

Finally, with the estimated acid production rate and pH change due to injection, the number of

injections to bring the pH within desired levels can be calculated as

pHtarget - (tn+k - tn) + Sn
N 1 Pi =trn (4.23)

ApH

where negative values of Ninj encode for acid injections and positive values of Ninj encode for

base injections. The estimate for Ninj is always rounded towards zero to reduce swings in pH due

to the controller.

Since we don't want large swings in pH to result from improper estimates due to non-ideal

effects such as measurement noise, stuck valves, or mixing issues, there are a few additional

requirements included in the calculation of Ninj. These issues are problematic when estimates of

ApH are smaller than the actual ApH since the controller will calculate a larger number of

injections than are required. In order to prevent large overshoots due to underestimates, a

minimum value of ApH is set from offline calibrations.

Since injections of acid and base require volume, batch and fed-batch operation will not tolerate

constant injections of acid and base which can result from oscillations around the set point. As a

result, a dead band of operation must be specified which prevents the controller from operating

until deviations are larger than a minimum. In general, we need the total dead band range to be

larger than the ApH to prevent injections from pushing the pH out of the dead band in the other
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direction. This dead band is set by the estimated ApH in either direction to prevent overshoots. If

control is only required in one direction, for example in the case of only acid production, then

dead band control can be tighter since we do not need to worry about overshoot corrections from

the other direction. An example of control with a dead band of only 0.03 pH units is shown in

Figure 4.46.

7.0 Setpoint

6.95

6.9 -Deadband-

6.85
10 11 12 13 14 15 16 17 18 19 20

Time (h)

Figure 4.46.Example of pH control at pH 6.95 with a dead band of only 0.03 pH units. This is possible

with single sided control since overshoots in the basic direction do not result in corrections using acid.

4.7.3 Oxygen Control

Oxygen control involves a closed loop between the oxygen sensor in the liquid and the off-chip

oxygen supply. In order to control the oxygen supply, a solenoid valve is placed upstream of the

input to the device and is connected to two input pressure sources, the oxygen supply and

helium. Since the solubility of helium in PDMS and water is low and the diffusivity is high,
actuation with helium instead of nitrogen should allow the gas to more easily diffuse back out of

the control line rather than diffuse into the liquid [107].

By supplying a control signal to the solenoid valve which adjusts the duty cycle of the switch,

the ratio of oxygen and helium delivery can be adjusted. Since the gas feed does not result in

accumulation of volume like the pH controller, implementation of control using this strategy can

be continuous using a PID controller. The modified PID controller of Section 4.4.2 Heater

System Design can be used for oxygen as well. Since our control is limited to a range of 0 to 1,
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the modified controller with set point limits works well. To specify PID parameters, we can

again look at the frequency response of the system in open loop.

For oxygen input, it is easier to characterize the system by looking at the step response. The step

response is measured using the dynamic gassing method [108]. The water is first mixed with

nitrogen to remove all oxygen from the chip. After the oxygen sensor baselines at zero, the input

gas is switched to oxygen and the step response is measured. The time constant of the oxygen is

called the kLa which is useful for comparisons with other bioreactor systems. The rate equation

for oxygen in the reactor is shown below

-= k a(Cin(t) - C) - OUR (4.24)
at

where C is the concentration of oxygen in the reactor, Cin is the concentration of the input gas,

kLa is the time constant for oxygen transfer, and OUR is the oxygen uptake rate of the cells or

chemicals in the liquid. For measurements of kLa, OUR is zero since the water contains no

oxygen absorbing species. Under this condition, the solution to the differential equation is a

simple exponential when Ci, is a step input

C(t) = (Cin - Co)[1 - exp(-kLa * t)] + Co (4.25)

where Co is the initial concentration of oxygen. A plot of the step response of the system is given

in Figure 4.47. for different mixing periods and membrane pressures for 2 membranes actuated

per stroke. The maximum kLa is obtained at a mixing period of 1 second, which is slightly

different than the optimum mixing period. This is mostly due to the fact that the membrane is

able to laminate the ceiling when the section is not pressurized. At slower frequencies, a

membrane is constantly pressed against the ceiling since the other two membranes are fully

pressurized. At faster frequencies, there is not enough time to remove the membrane from the

ceiling. We see in Figure 4.47 that the kLa is also a function of pressure, with an increase in

oxygen transfer at larger pressures due again to the decreased lamination time of the membrane

against the mixer chamber ceiling.
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Figure 4.47.Measured kLa values for different mixer conditions. (Top) Optimum oxygen transfer occurs
at a 1 second period which is slower than optimum mixing. (Bottom) Oxygen transfer can be increased
by increasing the mixing pressure at the expense of more aggressive shear force. Both dependencies
result from the variability in the available surface area of the membrane for gas transfer due to the
ability of the membrane to laminate the ceiling of the mixer headspace.

The measured kLa of 0.016 seconds results in a 90% response time of 2.4 minutes and a single

pole frequency of 0.007 Hz. This suggests that the oxygen controller must operate reasonably

slowly. Again, we choose a frequency slower than the pole, in this case, a Ti of 200, which is a

single pole frequency of 8e-4 Hz. Like the heater controller, the oxygen controller suffers from

the problem that the oxygen delivery rate and the oxygen consumption rate are not equal. While

in the case of the heater, the difference in heating and cooling rates was deterministic at a

particular temperature, the oxygen consumption rate is not deterministic and depends on cell

metabolism and cell number. In the extreme case when the cells are consuming the oxygen equal

to the rate of oxygen delivery when the controller is already delivering pure oxygen, very small

changes in the duty cycle result in large changes to the oxygen concentration in the reactor.

Therefore a global controller must have a gain setting low enough to compensate changes and a
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slow enough integrator when the delivery and consumption rates are nearly equal to prevent

oscillations near zero oxygen.

While many of the cell metabolic requirements change during growth, a few metabolic changes

are deterministic and can be compensated by the controller. In the case of fed batch, where cells

are fed a carbon source at set intervals, the oxygen consumption increases dramatically directly

after feeding and decreases dramatically when the feed is consumed as shown in Figure 4.48.

Immediately after the feed injection, the oxygen consumption rate increases dramatically,

reducing the oxygen concentration in the reactor to zero. If the feed is not accumulating, then

before the next feed injection, the cells will also run out of their carbon source and the oxygen

concentration in the reactor will increase. This condition is easily identified by checking the

range of oxygen concentrations measured in one feeding cycle. If the concentration range is

above a given threshold, then the oxygen controller should be turned to 100% oxygen during the

feed injection. Otherwise, the oxygen controller will change the oxygen delivery in the wrong

direction since the measurement is taken before the feed.

100 .......

Oxygeni ~ ~ / o>~~,'
80 Duty Cycle Feed Comp.

60 Feed injctonNo Feed Comp.

0
20 Concentration
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Figure 4.48.Oxygen controller behavior with and without feed compensation. When uncontrolled, the

controller reduces the oxygen input when the feed is injected. Therefore during an entire sampling

interval, the oxygen input is lower than necessary. In contrast, with feed compensation, the oxygen is

immediately set to 100% when there is a feed input.
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4.8 Humidification

For proper environmental control, the volume of the chamber must also be known. In addition to

fluid control induced volume inconsistencies, volume can drift in all microfluidic devices due to

evaporation. Many methods have been implemented to deal with evaporation issues, including

Parylene coatings [109], water jackets [110], collagen [112] and, most commonly, humidified

and temperature controlled microenvironments [12]. However, even with these implementations,

fluid loss due to evaporation is never completely eliminated. In the discussed component and

device implementations, the most important design constraint is the ability to maintain a constant

volume and consistent input and output flow rates even under conditions that result in

evaporation.

Since PDMS will be used for the oxygen permeable membrane, water evaporation through the

membrane can become problematic for any gas actuated valves. To further exacerbate the issue,

most cells are grown at elevated temperature, increasing the required water vapor partial pressure

required to prevent evaporation. Providing a heated humidification stage before the manifold

pressure inputs can reduce evaporation. To design the humidifier, we need to first determine the

flow rate of gas through the chip. Since the largest volume exists in the growth chamber, we

need to evaluate gas volume exchange in mixing mode. During mixing, the mixer is constantly

inflating and deflating at a given frequency. Minimizing mixing time resulted in an actuation

period of 500 ins, or, if assuming full deflection, 6 full 500 p1 growth sections every second. This

results in a gas exchange rate of 3 ml per second. To determine the amount of water molecules

removed in this volume, we need to look at the water vapor saturation pressure versus

temperature. Using the saturation pressure curve along with the ideal gas law and water density,

the required quantity of water per day can also be calculated as shown in Figure 4.49.
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Figure 4.49.(Top) A plot of the partial pressure of water vapor versus temperature. (Bottom) Plot of the

required daily volume of water for an air flow of 3 ml per second of water vapor saturated air. At 80 C,

73.5 ml of water is required per day.

For operation at 80 C, we require 73.5 ml of water per day to maintain saturated vapor pressure.

Therefore, two week long operation at 80 C requires a reservoir which can hold 1 L of water. For

the humidifier design, a bubbler is created which is the reverse of the pressurized fluid input

source. By bubbling the input gas through water, the gas can be partially humidified before

reaching the headspace, increasing the water vapor pressure in the humidified gas. The

humidifier is made out a GL45 cap and a glass bottle to enable volume scalability as shown in

Figure 4.50. Then the entire outer surface is covered with a 90W blanket silicone heater

(Mcmaster-Carr 35285K21 1) controlled by a 4 channel PID controller (Omega Engineering

CN1504TC). By placing the thermocouple inside the liquid, the temperature of the liquid is

maintained regardless of thermal contact between the heater and the bottle.
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Thermocouple
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Figure 4.50.An illustration of the humidifier used for experiments. Input gas is bubbled through heated

water to improve diffusion of water vapor into the gas. Humidified outputs are provided at the top of

the humidifier to ensure that liquid does not enter the output lines.

One global humidifier is placed upstream of each pressure source, with the oxygen and helium

humidifiers placed before the oxygen controlling solenoid. Since the rubber tubing is not heated,

chances that the gas cools and water condenses before reaching the chip is high. Therefore, in

addition to the global humidifier, smaller local humidifiers are included to act as both water traps

and water vapor generators. Since the global humidifier feeds the local humidifiers, the local

humidifier volumes are kept small using 10 mL test tubes.

Using this humidifier configuration, we can analyze evaporation rates in the microreactor as a

function of heater temperature and other factors. We can measure the evaporation rate inside the

chip by looking at the concentration increase of a dye in solution as the water evaporates as

shown in Figure 4.51. If a constant evaporation rate is assumed, the concentration should

increase hyperbolically given by
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C(t) = V (4.26)
V - at

where N is the number of dye molecules, V is the initial volume, and a is the evaporation rate.
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Figure 4.51 .Plot of the increase in concentration of blue dye resulting from evaporation. The

evaporation rate can be calculated by approximating a linear fit to the concentration.

Evaporation rates are given for a variety of different humidifier configurations with the chip

heated to 30 C. In addition to the off-chip configuration, an on-chip humidification ring is also

included to see if evaporation can be prevented by maintaining a positive pressure of water

around the edges of the chip as shown in Figure 4.52. Error bars result from the standard

deviation of 4 repeated measurements at a single condition.
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Figure 4.52.Plot of the evaporation rate versus various humidifier parameters. While both the local and

global humidifiers affect the evaporation rate, the temperature of the local humidifier can be lower with

a similar affect on the evaporation rate. The on-chip humidification ring also helps reduce the

evaporation rate by 10%.

All humidification elements play a role in reducing the evaporation rate. Interestingly, the 80 C

global heater and the 45 C local heater have similar performance, which is an indication that

tubing condensation is a major factor in reducing the supplied water vapor from the global

humidifier. The on-chip ring also effectively reduces the evaporation rate by 10% from the un-

humidified evaporation rate. If we don't need to control the oxygen concentration in the reactor,

the evaporation rate can further be reduced by removing the switching solenoid since this

provides direct contact between the humidified air and stainless steel. Unfortunately, even with

evaporation compensation, the rate of evaporation is still non-negligible. With an evaporation of

2 pL/h, a 1 mL volume will reduce in volume by 50% in only 10 days. In addition, the

evaporation rate depends exponentially on the growth temperature. Therefore, a more permanent

solution is required.

Since we are operating as a closed volume when using the chip for continuous culture, we can

take advantage of the full volume deflection used for inoculation to return our device to a known

volume. By pressurizing one membrane section, the remaining fluid is pushed into the other two

chambers which have a combined fully inflated volume of 1 mL. When at this state, the DI water
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reservoir can be pressurized and pumped directly into the growth chamber by turning off

pressure to the peristaltic pump as shown in Figure 4.53.

Passthrough

Water Reservoir Peristaltic Pump Growth Chamber
(Pressurized) (off)

Figure 4.53.Schematic of evaporation compensation using volume correction. The DI water reservoir is

directly connected to the growth chamber under pressure. With only one growth chamber section

pressurized, the two unpressurized sections are free to inflate due to reservoir pressure until the

membranes are fully inflated. This returns the growth chamber to a known volume regardless of the

evaporation rate.

As long as the pressure applied to the reservoir is less than the pressure applied to the growth

chamber, the water will fill the growth chamber until either the stress of the membrane equals the

reservoir pressure or the two mixer sections inflate completely. This returns the growth chamber

to a known volume regardless of the evaporation rate. Again, to prevent contamination, the pump

is only opened after the water reservoir is pressurized and the pump valves are closed after the

fill cycle in order from the input to the output.

4.9 Conclusions

Throughout Chapter 4 we have developed protocols and systems in order to maintain a viable

cell environment for long term operation. The first step to accomplishing control for protocol

implementation was the development of methods for fluid delivery, gas delivery, and heat

delivery. With these three delivery systems in place, food, oxygen, and heat can be provided to

enhance cell growth. Then an electrically controllable and programmable supporting architecture

was implemented through combining an FPGA with computer processing. By enabling all digital

control of the device, control systems could be centrally automated and device operation could

be programmed through a simple interface such as MATLAB. To ensure that the cell

environment was ideal for growth, optical sensors were also integrated and analyzed. Sensors for

optical density, oxygen, and pH were analyzed thoroughly as far as their response to changes in
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environmental conditions as well as their drift due to temperature changes. After implementing

the controlling architecture, the next step to maintaining long term operation was the

development of sterile procedures. Gamma irradiation was demonstrated to be a practical option

for sterilizing microfluidic devices and although there was minor degradation of the optical

properties of the plastic materials, the effects were minimal. With the ability to control valve

pressurization, procedures for valve opening and closing were implemented to ensure sterility.

Verification of these sterile protocols will be performed in the next chapter. Then modes of

operation to perform continuous culture were explored and control algorithms were implemented

to maintain steady states either through open loop or closed loop control. With control systems in

place, control over cell density, pH, and oxygen concentration were demonstrated. Finally, in

order to truly maintain continuous culture conditions for long term operation, evaporation and

volume control were explored and an algorithm was developed which used the full deflection

capability of the chip to actively counteract evaporation. With the supporting system and

algorithms in place, we can begin to use the device for cell growth.
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Chapter 5

Biological Validation and Continuous
Operation

With algorithms and supporting systems in place, the continuous culture device can be used to

perform cell growths. The first step to demonstrating that the device can be used for growths is to

look at a model system for biological validation. While previous validation experiments looked

at optical density curves or acid production rates to determine if cell growth was similar to bench

scale reactions [11, 15], a more definitive validation experiment would also utilize information

of a cellular product and look at production yield between the bench scale and microscale

reactors. Looking at final titer is typically difficult in the microscale, since sample volumes are

small and measurement techniques for non-excreted cell products such as lipids and proteins

involve cell lysis and extraction of internal components. From all of the purification steps

involved in analysis, large volumes (mL) are typically necessary to get concentration estimates.

Two systems in particular are good candidate systems for measuring product yield in addition to

optical density and acid production. Both systems also challenge all aspects of the device, as the

typical growth curves result in large optical density values (> 30), accompanied by large oxygen

consumption rates and fast pH changes due to fast cell growth and oxygen limitation.
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The first system involves the batch growth of E. coli DH5a [pVAX1-GFP]. Cell growth in the

microreactor is compared to shake flask batch cultures. By running the chip open loop without

control, we can compare cell density curves and also look at pH and oxygen behavior in the

microreactor. The second system tests fed-batch growth of E. coli DH5a [pVAX 1 -GFP], a K- 12

strain commonly used for plasmid DNA production. By increasing the growth temperature to 42

C, an essential RNA complex which regulates DNA quantity within the cell breaks down

allowing the cell to produce large quantities of plasmid DNA [114]. For measuring pDNA titer, a

PCR process can be utilized which again uses microliters of volume per measurement and is

compatible with the microbioreactor system. In addition, this system requires an accurate and

programmable temperature as well as a flow controlled feed source, allowing us to test

temperature control, injection accuracy, and feed contamination.

After validating the system against different strains and bench scale reactions, continuous culture

is explored. In the first continuous culture experiment, the importance of sterility is tested and

the chip is not gamma irradiated prior to the continuous culture run. This allows us to explore

where contamination occurs and how it can be prevented. Even with contamination, various

continuous operation modes can be explored and controlled to test the validity of control

algorithms. In the second continuous culture experiment, the chip is gamma irradiated, and

potential sources of contamination identified from the first run are addressed, allowing the chip

to operate contamination free for 3 weeks. Additional operational modes are explored and an

analytical technique is identified for measuring cell metabolism under excess carbon conditions.

A summary of the experiments and the aspects of the device which are tested are given in Table

5.1.
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E coli DH5a Open loop operation, Direct shake
Batch

[pVAX1-GFP] flask comparison

E. coli DH5a High OD, pH control, temperature
Fed Batch

[pVAX1-GFP] control, product (pDNA)

Chemostat, Turbidostat,
Continuous E. coli ATCC31883

Contamination

Feed Control, Dynamic Control,
B. coli FB21591

HPLC sampling, Contamination

Table 5.1 .Summary of the validation experiments performed for testing the continuous culture system.

Three types of validation are performed for the three types of cell culture. For each type of experiment

a different cell line is utilized to validate different features of the device.

5.1 Batch Culture Validation: E. coli DH5a [pVAX1-GFP]

A cell line which is well suited for microscale validation is the E. coli DH5a strain. This cell line

is commonly used for molecular cloning and plasmid DNA production for gene therapy and

DNA vaccination [116]. An alternative cell line, Rhodococcus opacus PD630, was also explored

for validation, but due to complicated cell dynamics under different metabolic conditions,

accurate validations were not performed. Preliminary experiments on this cell line can be found

in Appendix C.

To understand what types of control are necessary for cultivating DH5a for plasmid production,

we need a brief overview of how plasmid is produced in the cell. DNA replication inside the cell

is not limited to the cell genome. If an additional chromosome is added to the cell, the cellular

machinery will also bind to it and start to replicate. However, in order to control the quantity of

DNA present, activators and inhibitors exist on the chromosome to prevent too many copies of

the chromosome from being produced inside the cell. Without activation and inhibition, a great

deal of chemical resources inside the cell will be devoted to manufacturing unnecessary copies of

DNA and associated proteins, causing the cell metabolism to decrease, eventually stopping cell

growth.
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The activator (RNA II) and inhibitor (RNA I) for controlling the initiation of DNA replication

are RNA complexes which are also manufactured by the cell [114]. If high levels of plasmid

DNA are desired, these complexes must be modified to prevent inhibition. However, since cell

growth is affected by the quantity of chromosome or plasmid copies, this type of modification

must be switchable to prevent unnecessary inhibition when the cell density is low. In order to

induce a switchable change in plasmid copy numbers, typically the binding between RNA II and

RNA I is targeted. Since complex formation of RNA II and RNAI inhibits DNA replication,

preventing RNA I binding will prevent inhibition. One way to accomplish this is to mutate the

RNA II-RNA I binding site to reduce the temperature at which this binding site breaks down

[114]. This enables a temperature inducible switch for increasing plasmid production.

Since plasmid production is temperature dependent and should only be initiated when the cell

density is high, K coli DH5a is typically growth in fed-batch to increase the cell density before

inducing plasmid production. Associated with fed-batch and temperature switching are many

process parameters which can be optimized. Feeding rates during exponential phase can affect

maximal cell density, feeding rates after the temperature shift can affect plasmid production and

cell viability, pH set points can affect cell metabolism, and even the properties of the temperature

shift can affect the growth, a parameter that we will explore during validation. With such a large

parameter space to explore, microreactors are well suited for development and optimization.

However, since a lot of variables are associated with fed-batch culture, the first set of

experiments are still performed in batch to bench mark the optical density against shake flask

cultures and test cell viability after temperature shifts in the reactor. For the experiments, E coli

DH5a, transfected with a pVAX1-GFP plasmid was utilized. The pVAX1 is a general plasmid

used for DNA vaccine production which contains an insertion site for the vaccine vector. In this

case, the insertion site is loaded with GFP as a placeholder to better simulate actual conditions

where a protein is being produced by the plasmid. For batch experiments, cells were grown in

LB media with 25 mg/L Kanamycin.

From the growth data in Figure 5.1, we see that the growth curves in the micro-reactor match

shake flask curves under conditions of constant 30 C temperature and conditions of a 42 C
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temperature shift. With fast pH measurements, we can also see the increase in acid production

which occurs due to the temperature shift. This could be due to an increase in metabolic activity

or a stress response associated with high temperature growth [117]. The increased oxygen

measured after the temperature shift is an artifact of the temperature dependence of the oxygen

sensor as described in Chapter 4.
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Figure 5.1.Comparison between batch growths grown at 30 C and batch growths with a temperature

shift to 42 C induced at 5.6 hours. Microreactor growths track shake flask growths reasonably well,

with higher final OD reached in the case of the 30 C growth. From the pH data, the temperature shift to

42 C induces increased acid production. Also, the temperature dependence of the oxygen sensor is

visible after the temperature shift.

5.2 Fed-Batch Culture Validation: E. coli DH5a [pVAX1-GFP]

With similar optical density curves demonstrated for batch growths, the next step is to perform

validation against plasmid production under fed batch conditions. For this experiment, a

modified version of the continuous reactor is necessary. While single input control is possible in
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the continuous reactor, multiple inputs can become problematic. If multiple inputs are required,
such as feed and pH control fluids, a single input will result in a time delay from injection to

delivery into the growth chamber due to the dead volume between different inputs and the

growth chamber as illustrated in Figure 5.2. As described in Chapter 2, the total dead volume

between an input and the growth chamber is 1.5 pL, which from estimates of the injection

volume, would require 7 injections for an injection from a previous cycle to be pushed into the

pass-through. While this is not a problem for continuous culture since there is a defined

continuous flow which results in a fixed delay time between injections and delivery to the

growth chamber, for fed-batch this is problematic. Since it is unknown when injections will take

place, it is unclear how pH control will work with feed injections interleaved. The controller will

most likely oscillate due to improper estimates of the pH change per injection, especially for

injection counts less than 7. In the worst case, if 7 feed injections occurred previously and 7 base

injections were required, the estimated pH change per injection would be zero.

tInput Inu

Dead Volume Peristaltic Pump

'Growth Chamber-"

Figure 5.2.Illustration of the input dead volume between the input and the growth chamber for the

continuous culture chip. If a direct response is required for an input injection, the dead volume may not

be tolerable.

To circumvent the problem of delayed delivery for fed-batch operation, a modified version of the

chip is fabricated. In this chip, volume consistency is not a factor, and inputs have their own

peristaltic pump and a direct line to the growth chamber. Additionally, the growth chamber
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mixer is modified into a chamber design similar to earlier mixer designs as shown in Figure 5.3.

The chip consists of 3 individually connected inputs for acid, base, and feed, which are directly

connected to the growth chamber through peristaltic pumps. The growth chamber is the same

thickness as the continuous chip which should allow the chip to maintain a similar oxygen

transfer rate. However, since the mixer membranes are not as compliant as the continuous

reactor, the operating volume of the reactor is set to 700 pL. To use the external system

architecture, the external 20 port pneumatic connector is used with only the appropriate

connections connected on the chip. A single peristaltic pump is used and fluids are controlled

through upstream input valves in the same way as the continuous reactor. Oxygen, pH, and

optical density sensors are also included in the same positions as the continuous reactor. In

addition to validating the microreactor system against fed batch growths, the fed batch

experiment will require feeding a high concentration carbon source into a growth chamber

Figure 5.3.Schematic of the fed-batch reactor. Three separate inputs for acid, base, and feed are directly

connected through peristaltic pumps to the growth chamber. Two outputs allow for air removal during

inoculation. Oxygen, pH, and OD sensors are located in the same positions as the continuous reactor.
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Figure 5.4.Mixer characterization of the fed-batch reactor. The time course demonstrates mixing

performed with a 0.5 second period. Since the mixer is not symmetric, there are different mixing times

depending on which input is used to start the mixing cycle.

Before using the fed-batch reactor, the mixer design change must be characterized for mixing

speeds and kLa. As illustrated in Figure 5.3, the shaded mixer sections are connected in 3 groups

of 2, 2, and 3 membranes, and are actuated sequentially to mix fluid. The center membrane is

connected to one of the sections to ensure that the center is mixed along with the rest of the

chamber. Experiments identical to those used to characterize the continuous reactor are

performed. From mixing experiments in Figure 5.4, it is clear that the mixing efficiency when

full volume deflection is not implemented is reduced. However the mixing times are still

reasonable, with the fastest mixing time at 58 seconds with a single exponential mixing time

constant of 0.079 s-. There is also a noticeable difference between mixing input from the left and
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right inputs, which is likely due to the 3 membrane group located at the right input and unable to

induce as large of a deflection stroke as the two membrane groups.

For oxygenation, it is expected that the kLa will be similar to the continuous system since the

ratio of membrane to liquid area and the liquid thickness are similar. As a result, the similarity

between the time constants of mixing and oxygen transfer rate will likely result in a dependence

of the oxygen transfer rate on mixing speed. As shown in Figure 5.5, this is the case, with a

reasonably linear dependence of the kLa on mixing speed. Interestingly, with this design, the

oxygen transfer rates are larger than the oxygen transfer rate in the continuous reactor. This

could be due to the actual pressure of the gas in the growth chamber headspace. In the

continuous reactor, the flow resistance between chambers is large, reducing the ability for

membranes to pressurize quickly and reach their maximum input pressure at the operating mixer

frequencies. However, in the fed-batch reactor, there is no flow resistance between membrane

groups, and pressurized sections are constantly at their maximum input pressure.

1 --- 0.022
0.5 s period7

0.8 0 . 0.02

0.6 0.018
3 1.5s period

C

0.4 0,016
0 1 s period

0.2 0.014

0 ............... ....... ............. .......... ........ 002................ . . . . . . . . . ........ .........................................................................
0 50 100 150 200 250 0.5 1 1.5

Time (s) Mixing Period (s)

Figure 5.5.Oxygen transfer rates as a function of mixing period in the fed-batch reactor. Since the

mixing times are on the same timescale as the oxygen transfer through the PDMS membrane, kLa

values are dependent on the mixer period. Even at mixing periods of 1.5 seconds, the fed-batch oxygen

transfer is equivalent to the oxygen transfer through the continuous reactor.

Since the mixing times are on the order of our sampling times and the kLa of the device is

equivalent to the continuous reactor, we can use the device for validation with confidence that

the data will be transferable to the continuous reactor. Fed-batch growths are performed on the

same cell line as batch growths, with a preprogrammed schedule for feed initiation and

temperature shift. For fed-batch experiments, cells were grown in semi-defined media with
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glycerol as a carbon source and media components are given in Table 5.2. Quantitative PCR

analysis of genomic and plasmid DNA as well as bench scale comparison growths were

performed by Diana Bower and Professor Kristala Jones Prather in Chemical Engineering at

MIT using a 1 L bench fermentor. Plasmid copy number is measured in units of

plasmids/chromosome using a quantitative PCR assay adapted from the Lee et al. [111]. For this

assay, the total DNA (genomic DNA + plasmid DNA) is purified from the E. coli cells and used

as a template for qPCR. Each sample is analyzed with two sets of primers - one targeting the

Kanamycin resistance gene (only found on the plasmid) and the other targeting a single-copy

gene on the chromosome (dxs). By comparing the amplification of each primer set, we can

calculate the ratio of Kanamycin genes to dxs genes, and determine the quantity of plasmid

copies per chromosome.

(NH4)2SO4 3 ZnCl2 2 mg KH2PO4 3.5 g
N4 S04 7H,, 0. *l*

Tiamine0. Na2MoOJ4*2H20 2 m - e

Bacto peptone 10 g CuC12*2H20 1.3 mg Yeast Extract 79.3 g
Ka~mci~~ 25 M 0 .m

Table 5.2.Table listing the growth media components used for growth of E. coli DH5a. The media is

semi-defined since yeast extract and bacto peptone are used.

From a variety of validation experiments, we can determine how different parameters vary in the

growths. Before discussing the data from microreactor growths, we will first look at the behavior

in a 1 L bench scale reactor to understand the growth process.
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Figure 5.6.Plots of the optical density, acetate, glycerol, and plasmid DNA concentrations in a 1 liter

bench scale bioreactor. a) At 8 hours, the initial glycerol is completely consumed and feeding is started.

b) At 20 hours, the temperature shift is induced to start plasmid DNA production. During this time, the

cells are still being fed at the same feed rate. c) Acetate production increases after the temperature shift.

d) Final acetate concentration returns to starting levels.

The 1 L bench scale growth in Figure 5.6 demonstrates the production process for making

plasmid DNA. While not shown, pH is controlled to pH 7.1 and oxygen is controlled at 25% of

air saturation. The cells start initially at an OD = 0.01 and grow in batch mode. After 8 hours at

Figure 5.6a), the glycerol in the initial medium is depleted and the feed is started. The cells

consume the feed until 20 hours when they reach an OD of approximately 50 and the

temperature shift from 30 C to 42 C is induced at Figure 5.6b). The time scale of the temperature

shift for a 1 L reactor is approximately I hour. Plasmid DNA production starts due to the

temperature shift and feeding continues until plasmid production saturates at 30 hours and the

cells are harvested [114]. A few points are interesting in this plot. First, the start of feeding

should occur when the initial glycerol is consumed, which is difficult to measure directly without

constantly running HPLC measurements. If too much time elapses between initial glycerol

consumption and the start of feeding, the cells could temporarily enter a different metabolic state

and consume another component of the medium. However, glycerol depletion directly causes an

increase in the oxygen concentration at 8 hours. Second, a substantial quantity of acetate is

produced after the temperature shift as indicated in Figure 5.6c). Since 2 grams per liter of acetic
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acid in DI water results in a pH of 3, we can assume that we will require base control to maintain

the pH at 7. However, a few hours after the temperature shift, the acetate concentration in the

reactor decreases as shown in Figure 5.6d), suggesting that the acid is consumed during the

plasmid production period.

Three microreactor validation runs are performed with the intent of achieving the same dynamics

observed in the bench scale reactor. The three experiments iterate through minor changes to the

growth conditions which are necessary to achieve similar results.

5.2.1 Fed-Batch: Run 1

The first validation growth in the microreactor in shown in Figure 5.7. Since it is assumed that

the cells are only producing acid, to prevent unnecessary pH swings due to controller oscillation,

only base control is implemented. The feed rate is set at 0.375 injections per minute, or a flow

rate of glycerol of 150 mg/L/min of glycerol assuming an injection volume of 327 nL. Optical

density data matches bench data very well until the pH drops to 6.5. At this point, the cell growth

rate is slower, most likely due to pH inhibition. Control at pH 6.5 was caused by inherent errors

in the particular pH sensor used which resulted in a large degree of hysteresis with an unknown

cause.
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Figure 5.7.Growth data from the first fed-batch validation run. From the optical density curves, it seems

like the cells are growing similar to batch experiments. Due to minor sensor issues, the pH was

controlled at a lower set point than the desired value of 7. The oxygen sensor is capable of seeing

glycerol depletion, feed start, and temperature shift due to metabolic changes that occur in the cells

during these conditions.

Interesting dynamics can be observed through the oxygen measurements. Initial glycerol

depletion is easy to determine due to the large spike in oxygen when the cells stop consuming

glycerol. This results from the cell metabolism decreasing abruptly with the loss of their carbon

source, and the controller's inability respond to instantaneous changes in metabolic activity. This

signal can be detected and used to start the feed. When the feed is started, the cells metabolism

increases and the oxygen concentration drops immediately to zero. From measurements, both

events occur abruptly, with immediate changes seen at the sampling time of 30 seconds. In

addition to the direct observation of glycerol consumption and feed start, individual injections of

feed are also visible as shown in Figure 5.8.
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Figure 5.8.Close up of the oxygen concentration in the reactor during glycerol feeding. Each injection

results in immediate utilization on the 30 second sampling time scale as indicated by a sharp decrease

in oxygen concentration. Immediately before the next injection, the glycerol is depleted resulting in an

immediate increase in oxygen concentration.

After each feed injection, the oxygen concentration decreases to zero. If the cells are able to

consume all of the injected glycerol before the next feed injection, the oxygen then spikes to

higher concentration. These injection and consumption events result in periodic spikes in oxygen

concentration at the same rate as the feed injection rate. Since spikes will only occur if the cells

are able to consume all of the injected glycerol, these spikes can be used to detect if glycerol is

accumulating in the media, which can lead to unwanted acetate production. If we analyze the

oxygen data from Figure 5.7, we should expect to see an increase in glycerol concentration after

20 hours since the oxygen controller decreases while the glycerol feed is still constant.

HPLC data from the run confirm our expected results, with both acetate and glycerol

accumulating for data points taken at 20 hours and later. From Figure 5.9, we see that glycerol

starts to accumulate after the temperature shift and that acetate production also increases. This

could be due to differences in the temperature shift between the two reactors or the low pH

providing suboptimal growth conditions. Temperature shift issues are more likely since acetate

accumulation did not occur before the temperature shift. Even with the differences in acid

production and glycerol uptake rates after the temperature shift, the plasmid production rate is
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similar between the bench scale and microreactor scale experiments. However, to complete the

validation, we need to address the differences in acetate production and glycerol consumption.

1 5 - - - - -

Bench 2
M10

Bench
Micro .. 5,
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Time (h) Time
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Figure 5.9.HPLC data for Glycerol and Acetate, and PCR data for pDNA in the microreactor compared

to bench values. Data looks very consistent before the temperature shift, but acid and glycerol

accumulate after the temperature shift. pDNA concentration is still similar even under accumulating

acetate conditions.

5.2.2 Fed-Batch: Run 2

For the second validation run, since problems occurred mostly after the temperature shift, we

take a look at differences between the temperature shifts in the microreactor versus the

temperature shifts in the bench scale reactor. As shown in Figure 5.10, the bench reactor shift

takes about an hour to switch from 30 C to 42 C, whereas the shift in Run 1 takes only 2 minutes.

In order to better approximate bench reactor heating, the temperature shift is controlled to a

linear ramp over 30 minutes. Since it is known that excessive heat shock can affect E. coli's

ability to consume acetate in the medium [117], slowing down the temperature shift may prevent

acetate build up.
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Figure 5.10.Comparison between an uncontrolled temperature ramp and a 30 minute controlled
temperature ramp. The uncontrolled temperature ramp occurs in less than 2 minutes, which is fast in
comparison to cell dynamics. The bench reactor temperature ramp is also included for reference.

On-line and off-line growth data are shown in Figure 5.11. We see that controlling the pH above

7 results in better growth rates than controlling below 7 and the OD curve between the bench and

microreactor growths overlap almost exactly. In contrast with Run 1, the oxygen controller

shows complete glycerol utilization throughout the feeding cycle and past the temperature shift.

The HPLC data directly measuring glycerol concentration in the medium over time also supports

the fact that glycerol is not accumulating. Interestingly, the plasmid DNA yield is even higher

than the yields in the bench scale reactor. This could be due to the fact that we are actuating with

pure oxygen instead of air which is allowing the cells more energy for production.
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Figure 5.11 .Growth data and off-line data from the second validation run. By controlling the pH above

7 and inducing a slower temperature shift, the glycerol accumulation and acetate production can be

reduced.

Interestingly, at the final time point, the acetate production increases 8 fold. If we look at the

oxygen data during this time, we see that the oxygen control stops delivering oxygen to the

system. At 27 hours, the last sample removed from the reactor resulted in a reduction in volume

large enough that the mixer membranes could not properly actuate. Without mixing, the sensor

measured only the local oxygen concentration, which in this case was due to a bubble. We see

that while the glycerol concentration remains undetectable, acetate has accumulated, which does

not support the hypothesis that acetate production is due to overflow metabolism. Instead, it is

likely that acetate production is directly correlated to mixing efficiency. Two potential

mechanisms for acetate production responding to mixing efficiency are considered. The first is

that the temperature increases at the base of the reactor when there is no mixing since the reactor
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is heated from the base. The second is that the oxygen delivery is reduced and the cells are

growing in an anaerobic environment. From just measuring acetate production, it is not possible

to decouple these two potential causes of acetate accumulation. However, since both problems

are removed if mixing is maintained, we know at least that ensuring that mixing occurs will

eliminate the acetate accumulation problem.

5.2.3 Fed-Batch: Run 3

The third validation run in the microreactor is performed to test that acetate accumulation can be

prevented with proper mixing. In order to increase the chance that enough volume is maintained

in the reactor after sampling, the initial inoculation volume is increased from 700 p1L to 750 pL.

Due to the increased volume, the feed injection is also increased from 0.375 injections per

minute to 0.402 injections per minute. Growth data and off-line data from the third run are

shown in Figure 5.12.
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Figure 5.12.Growth data and off-line data from the third validation run. Again, proper pH control

results in overlapping GD curves between the microreactor and the batch reactor. By ensuring that

proper mixing occurs throughout the growth, the acetate concentration can be controlled to similar

levels as the bench reactor.

Run 3 looks very similar to Run 2, except that the acetate production over time looks more

similar to the bench reactor. This is likely due to the cells growing at pH 7 instead of pH 7.2 as

no other changes were made between the two runs. Again at hour 27, manual sampling resulted

in removal of too much volume and a reduction in the mixing efficiency was observed. The pH

data after hour 27 indicates an increase in acetate production immediately after the 27 hour

sample was taken. However, to compensate for the decreased volume, bubbles were injected into

the reactor until the mixing efficiency returned to normal levels. The OD and oxygen data reflect

the fact that bubbles are introduced into the reactor as both signals are very noisy. However, after

bubble introduction, the pH returns to 7.4 and the measured acetate at 30 hours is still low,

indicating that the cells are able to reuse the produced acid. The lower acetate levels during the
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temperature shift in the microreactor could also be an indication that the temperature ramp in the

bench reactor is faster than estimated, since Run 1 showed a marked increase in acetate

production directly after the temperature shift.

In Run 3, the plasmid DNA yield is even higher than Run 2, which could indicate that plasmid

yield is affected by oxygen delivery or that an excessive increase in temperature caused by poor

mixing is actually detrimental to plasmid yield. Comparing the data from Runs 2 and 3 with the

1 liter bench reactor demonstrate that the microreactor growths can match bench scale growths

very well, provided that certain parameters of the bench scale system such as temperature

dynamics are well characterized and can be transferred into the microscale.
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Figure 5.13.(Top) Comparison between the growth curves in the three different runs and how they

compare to the 1 liter bench reactor. The growth curves match very well for all three microreactor runs.

(Bottom) Comparison of chemical concentrations in the reactors measured by HPLC. Even with similar

OD curves, a variety of other parameters such as acetate, glycerol, and plasmid yield are not the same.
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Surprisingly, if we only look at the growth curves to determine if the systems behave similarly,

we can easily come to the conclusion that there are no differences between any of the three runs

as shown in Figure 5.13. However, by looking at other parameters such as product yield, acetate

production, and glycerol concentration, it is very clear that there are minor but important

differences in the metabolic state of the cells in each microreactor experiment which result in

very different acid and pDNA production rates. Therefore, in order to properly verify the

similarity or differences between the microreactor and bench scale reactor, other aspects of the

growth must also be compared in addition to the optical density.

From validation of bench scale fermentations using microfluidics, it is important to compare the

operational benefits and challenges associated with miniaturization. The first major benefit to

miniaturization is the ability to reduce volume. Sterilization procedures for both the reactor and

media become easier when working with a small volume. In contrast to cleaning large glassware

and steel parts necessary for a bench scale reactor, microfluidic devices are disposable and small

enough to be easily gamma irradiation sterilized. For fluids, moving to smaller, more easily

handled volumes reduces the chance of contamination by reducing preparation time. Additional

benefits are included through integration of sensors. Most importantly, optical density can be

measured on-line since bubbles are not required for oxygenation.

Unfortunately, even with on-line monitoring, a variety of parameters such as pDNA, glycerol,

and acetate concentration do not have on-line sensors and must be measured through PCR and

HPLC. Therefore samples must still be taken out of the reactor periodically. For microreactors,

this poses a significant challenge since sampling volumes are no longer negligible with respect to

the chamber volume. However, this can be partially compensated by changing the feed

concentration to account for off-line sampling.
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Figure 5.14.Volume versus time for Run 3. Sampling 50 ptL volumes results in a significant decrease in
volume over time. This can be compensated by feed injections to restore the volume to initial levels.

As shown in Figure 5.14, for 50 ptL samples, the volume in Run 3 does not decrease significantly

throughout the growth. Unfortunately, sampling only 50 pL is challenging since there is no

pipette interface to the device and the growth chamber is constantly under positive pressure.

Therefore variability in sampling volume, usually in the direction of larger samples, can result in

volume issues. As shown in Run 2, sampling with large' volumes eventually results in a reduction

in mixing efficiency which generates unwanted effects such as oxygen depletion and increased

temperature.

5.3 Continuous Culture Experiments

With proper verification that the microreactors can replicate conditions in large bench scale

reactors, we can start to perform continuous culture experiments to test the functionality of the

microfluidic device for controlling continuous cell growth. Two experiments will be performed

to test continuous culture. In the first experiment, chemostat and turbidostat operation will be

demonstrated. These modes will test if the peristaltic pump can properly control the flow rate. In

the first experiment, the chip will be operated with high levels of antibiotic but without initial

gamma irradiation to test if chip sterilization is required under antibiotic conditions. Since there

is continuous flow, there should be no build up of acids which induce a large drop in pH, so pH

control is also not required. In the second experiment, gamma irradiation is performed before
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growth, and the input configuration is changed to allow for control of the feed concentration.

This experiment tests the ability for the system to maintain a constant flow rate while changing

the media concentrations. More advanced turbidostat and chemostat operations will also be

explored in the second experiment.

5.3.1 Continuous Culture of E. coli ATCC31883

In the first experiment, E. coli ATCC31883, a phenylalanine producing strain is used for growth.

This strain is resistant to Ampicillin and also contains genetic mutations that require tryptophan

and tyrosine added externally to the media for the cells to grow. These allow for positive and

negative controls for contamination streaks, which are essential for testing if the cells are present

at different locations in the reactor. For the continuous culture, the culture media is prepared with

the following chemical concentrations given in Table 5.3. Changes in the buffering capacity are

an artifact of switching media during the experiment due to the initial feed stock volume only
supporting one week of growth. Growth curves for E. coli ATCC31883 grown in continuous

culture on this media are given in Figure 5.15.

(NH42H-PO4  4 g 2 g CaCl2 2 g

MgS0 4*7H 20 1.4 g 0.7 g (NH4)6Mo 70 26*4H20 0.1 g

Thiamine 0.3 g 0.15 g CuSO 4 *5H 20 g

Typtophan 0.04 g

Ampicillin 100 mg

Table 5.3.Table listing the growth media components used for growth of E. coli ATCC31883. The
media is defined and different buffering capacities are used.

Four different conditions are tested in the run. Initially, the cells are seeded at OD = 0.01 and
grown in batch at 37 C. After reaching sufficient cell density, the cells are grown in continuous

culture without oxygen control. The second continuous culture operation at hour 200 turns on
oxygen control under the same flow rate. Then turbidostat operation is started at a lower cell
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density. After turbidostat operation, the cells are returned to chemostat operation and two flow

rates are tested to see the effects on the cells.

Continuous Oxygen Control Turbidostat Continuous (1/2 Buffer)
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Figure 5.15.Growth curve for the first continuous culture experiment grown with E. coli ATCC31883.

Initially, the cells are seeded at OD 0.01 and grown in batch. After reaching a significant optical

density, flow is initiated and continuous culture is started. Initial steady state without oxygen control

resulted in the oxygen dropping to zero. After starting oxygen control at 60% air saturation, the optical

density increased significantly. After reaching steady state, turbidostat operation was started using

closed loop flow control. At this point the feed bottle was depleted and switched to a new feed bottle.

Two more steady states are demonstrated at different flow rates to demonstrate chemostat flow control.

After the first day, the cells reach an OD = 3 and continuous flow is started. The cells then start

growing until they run out of oxygen and reach steady state. The oxygen limited steady state

results in a lower cell density and it is clear the pH drops below the initial pH of the media. After

initiating oxygen control at 60% air saturation, the optical density increases significantly for the

same flow rate with a decrease in pH. The pH- drop is most likely caused by overflow

metabolism from the previous steady state. Since the cells grow to a higher optical density when
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sufficient oxygen is supplied, it is likely that the steady state reached in the first section without

oxygen control was not glucose limited. As a result, when the oxygen supply is changed to

support aerobic growth, the cells quickly start consuming the excess glucose in the media,

resulting in acid production. After the initial transient in pH between 60 hours and 80 hours, the

pH increases to a higher steady state value. This indicates that the steady state acid production in

this new aerobic steady state is reduced.

At 140 hours, turbidostat operation is initiated using closed loop flow control with a set point of

OD = 2. From the flow rate in turbidostat operation, if is clear that the growth rate is constant as

shown in Figure 5.16. Assuming that the cells have excess of all growth components available in

the media, the flow rate of 0.79 h-1 is the maximum growth rate of the cells in this media at 37 C.

0.82

'7'
0.8 A

0.78
o

0.76'

144 146 148 150 152 154 156 158 160 162 164
Time (h)

Figure 5.16.Flow rate of the peristaltic pump during closed loop control of the cell density. Turbidostat

operation allows us to assume that this is the maximum cell growth rate.

There is also noticeable drift in the pH during turbidostat operation. This could either be due to

inherent sensor drift or due to growth with excess nutrients causing the cells to be overrun by a

foreign contaminant. Due to the higher flow rate in turbidostat conditions, the feed stock was

mostly consumed at 190 h. Therefore the feed was switched to a new bottle with the same sugar

concentrations but with half the trace minerals and salts.

Two more steady states are demonstrated at different flow rates to demonstrate chemostat flow

control. For these flow rates, we observe that the cell density decreases with decreasing flow

rate. If we compare the cell density curves under different flow rates with our two models for
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continuous growth, the basic substrate dependent growth kinetics given in Equations (2.8)

through (2.11) [43] and the more complex overflow metabolism model given in Equations (2.12)

through (2.20) [44], we observe that the cells behave similarly to the model incorporating acetate

inhibition and overflow metabolism as shown in Figure 5.17. In addition to curves following the

same trends, overshoot which occurs when switching growth conditions is also visible in the

model. However, even with similar behavior, it is clear that there is a method of inhibition that is

not accounted for at lower growth rates. This could be due to an increased need to deal with

stress at lower feeding rates which could appear as carbon flux dependent maintenance energy.

5
4.5

160 170 180 190 200 210 220 230 240 250 260 270
Time (h)

Figure 5. 17.Close up of the optical density as a function of flow rate for the turbidostat and two

different chemostat flow rates. Comparisons with chemostat models demonstrate that the complex

overflow metabolism model better approximates actual growth data.

Since we did not gamma irradiate this device, it is necessary to see what type of contamination

occurs even under antibiotic conditions. After finishing the continuous culture experiment,

samples were carefully extracted from each section of the device. Growth chamber cells were

extracted from the output directly by deflating the growth chamber membranes. Premixer and

reservoir cells were extracted through an empty port with the DI water line supplying additional

liquid to rinse the lines. The tubing connecting the external feed bottle to the chip was also tested

by cuffing the tubing directly attached to the chip and extracting fluid from the tubing.

Contamination was tested by taking extracted fluids and growing test tubes under different

conditions.
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Feed line Feed Bottle Premixer Growth chamber
LB LB -AMP +AMP DM+AA DM-AA

Figure 5.18.Contamination tests of the different sections of the continuous culture device. While the

feed line and feed bottle were not contaminated with cells, the premixer was contaminated with foreign

cells, most likely from before the growth started. Antibiotic tests of the premixer fluid demonstrate that

there is no chemotaxis of growth chamber cells through the peristaltic pump into the premixer.

However, there is contamination of foreign cells into the growth chamber even though the cells do not

grow easily on defined medium with Ampicilin.

As shown in Figure 5.18, contamination tests of the various continuous culture device sections

show that there are contamination issues if gamma irradiation is not performed. Growing the

premixer liquid in LB with and without Ampicillin demonstrate that while E. coli ATCC31883

did not manage to contaminate the premixer, there are other foreign contaminants in the

premixer. These contaminants did not make it into the feed bottle, most likely because of the

high antibiotic concentration in the feed. Even with contamination, E. coli ATCC31883 cells

were still present in the growth chamber, as demonstrated by the growth characteristics of the

extracted growth chamber liquid in defined media (DM) with Ampicillin with and without the

amino acids (AA) tyrosine and tryptophan present. To determine how much contamination

occurred in the growth chamber, we can take the growth chamber liquid and plate it on LB in

parallel with the cells regrown from the DM+AA culture and cells regrown from the premixer

fluid. From the plating tests shown in Figure 5.19, it is clear that the majority of cells are foreign

contaminants at the end of the 2 week culture as these colonies grow into large flat colonies

instead of small round colonies.
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Growth Chamber Liquid DM+AA Liquid Premixer Liquid

Figure 5.19.Plate tests of the growth chamber liquid before and after regrowth in defined media with

Ampicillin and tryptophan and tyrosine present. If we compare with premixer cells, most of the cells

growing in the growth chamber at the end of the experiment are foreign contaminants.

We can look in even more detail of the contamination characteristics of the device by looking at

the device under a microscope. Using correction collar objectives, we can image the channels

directly in the device and look at the cells. It is clear from the images in Figure 5.20 of the

premixer and DI water input lines that the foreign contaminant cannot tolerate the feed solution

directly. In addition, instead of growing in the premixer, the cells grow as close to PDMS valves

as possible, most likely due to increased oxygen availability at the valves with respect to the

premixer. In addition, the cell growth into the DI water reservoir suggests that the evaporation

compensation algorithm results in diffusion of premixer liquid into the DI water reservoir, which

allows the cells to grow. While not shown, there is a gradient in colony formation in the DI water

reservoir, with more colonies located towards the premixer input, which supports this argument.
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Figure 5.20.Microscope images of cell growth in the premixer and on-chip reservoirs. (Top) Foreign

contaminants cannot tolerate the antibiotic filled feed input and grow away from it. In addition, the

growth of cells only near the input select valves suggests that the oxygen supply in the premixer plays a

large role in where cells can grow in the premixer. (Bottom) Colonies formed in the DI water reservoir

suggest that the evaporation control algorithm results in diffusion of premixer fluid into the DI water

reservoir.
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The locations of cell growth upstream of the growth chamber suggest that oxygen availability

plays a large role in chemotaxis. Since there is no active oxygen diffusion in the premixer, lack

of oxygen could be a large factor in preventing cells from contaminating the premixer through

chemotaxis. . In addition, filling the valve control lines with fluid rather than air for

pressurization can greatly reduce the oxygen diffusion through valve membranes. These

observations support the fact that back contamination of the growth chamber cells into the on-

chip reservoirs did not occur in either the fed-batch or continuous culture experiments.

5.3.2 Continuous Culture of E. coli FB21591

Since foreign contaminants growing in pockets upstream of the feed input can seed the growth

chamber with unwanted cells, it is important to gamma irradiate prior to device use. In the

second continuous culture experiment, the chip is gamma irradiated with an irradiation intensity

of 16 kGy as described in Section 4.6 Sterile Protocols. Since the cell growth rate was slower

than the expected maximum E. coli growth rate, a different cell line, E. coli FB21591, which

grows quickly on glucose, is used for the second continuous culture experiment. Defined media

for this cell is very similar to the media used in the first experiment, except that the cells are not

dependent on external amino acids. The growth media for the second experiment is given in

Table 5.4.

K2HPO4  13.5g CaCl2  2
______71_20 1.4 ~ ZnSQ 4WO

Citric Acid 1.7 g (NH 4)Mo 70 2 *4H20 0.1 g

Trace Elements 10 ml CuSOA*5HO 1 a

Table 5.4.Table listing the growth media components used for growth of E. coli FB21591. The media is

defined and the carbon source is kept separate from other medium components.

For the growth, an additional input of only glucose is used in addition to the feed and DI water.

In addition, the defined medium salt input contains no carbon source for growth. The salt and
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glucose inputs are also intentionally mixed at twice the desired concentration to allow for

dilution in the reactor. Splitting the carbon source and salts has two main effects. First,

contamination into the feed is effectively prevented even if cells grow into the premixer because

none of the direct inputs to the chip are capable of sustaining growth on their own. Second, since

the salt input is concentrated, every injection cycle will require water injections to dilute the salt

input. By replacing the water injections with glucose injections, control over the glucose input

can be provided without affecting the salt concentration. If all of the water injections are replaced

with glucose injections, we have the same half buffer medium that we used at the end of the first

experiment, which is half the salt concentration with 5 g/L of glucose. Control over the glucose

concentration allows us to run more complicated continuous culture experiments, where we can

study the cell metabolism as a function of carbon input even when the flow rate is constant. In

addition, for output HPLC sampling, a 4 *C TE cooled block holding a 1.5 mL Eppendorf tube is

placed below the output port to collect and cool samples. The system setup is shown in Figure

5.21 illustrating the three feed reservoirs and the output sampling block. Using this setup, data

from the second continuous culture experiment is shown in Figure 5.22, demonstrating many

different steady and dynamic states including chemostat, turbidostat, and different steady state

and dynamic state glucose concentrations.
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Cooled Sample

Figure 5.21.Full setup for running the continuous culture with feed control and HPLC sampling. Three

input bottles are shown containing the inputs for water, salts, and carbon. In addition, at the output is a

sample collector TE cooled to 4 C containing an Eppendorf tube placed right below the output port.
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Figure 5.22.Data from the second continuous culture experiment using E. coli FB21591. Additional

plots are added for flow rate and glucose input since these are now controlled. Different steady states

and dynamic states based on glucose control are demonstrated in both chemostat and turbidostat modes.

a) Cells are grown in batch before initiating continuous flow. b) Chemostat operation at different flow

rates and glucose concentrations. c) Washout conditions. d) Repeated chemostat operation at different

glucose concentrations. e) Chemostat operation at dynamically varying glucose concentrations. f)

Turbidostat operation at different glucose concentrations. g) Dynamically varying glucose

concentration in a chemostat at different flow rates.

In addition to on-line measurements, for the second continuous culture run, samples are taken

periodically to calibrate the on-line sensors for better accuracy and to run HPLC columns. From

HPLC analysis, we can determine the produced chemicals in the system during growth. An

example of an HPLC data set from 124 hours is given in Figure 5.23. Two types of

0
AO
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measurements are performed as the solution is pushed through the column. Ultraviolet excitation

induces fluorescence which typically occurs from acids, and refractive index measurements

induce intensity changes for high index solutions such as sugar solutions. From HPLC analysis

of the continuous culture growth, we see that E. coli FB21591 grown on defined medium

produces relatively few components, with acetic acid produced generally from overflow

metabolism, and a-ketoglutaric (aKG) acid and succinic acid produced through the citric acid

cycle.

100 - - - r ---.. r . -......--- - - - -- r - -- - -.- r-- - - - - - --

Citric Acid -aKGAcid
50

A i Succinic Acid
cl / Acetic Acid

0
0 4 5 10 15 20 25
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2.5

2 -

~1.5

Glucose
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Figure 5.23.Plot of the HPLC column time course for ultraviolet (UV) and refractive index (RI)

measurements. Acids appear more clearly in UV analysis where as sugars appear more clearly in RI

analysis. For the continuous culture growth on defined medium, only a few acids are noticeable.

Before discussing individual sections of the growth, we first need to test that gamma irradiation

results in a completely sterile device and that the cells in the chip are not contaminated by

foreign entities. Again, after running the continuous culture experiment, the media in the

premixer, reservoirs, and growth chamber are extracted and grown in plates. Cells grown from

LB plates are shown in Figure 5.24 demonstrating that there is no contamination of the premixer

and reservoirs after 3 weeks and that the cells in the chip at the end of the growth are the same as

those initially seeded into the reactor. Since the chip maintains sterility, we can be confident that

the results extracted from the growth are representative of E. coli FB21591 cells. The chip is also
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disconnected and examined under a microscope to look at cell growth in the peristaltic pump as

shown in Figure 5.24. From images of the peristaltic pump valves, it is clear that cells are only

found in the last valve closest to the growth chamber. It is unclear if these cells enter the last

valve during the experiment, or if their presence is an artifact of disconnecting the valve pressure

at the end of the experiment.

Figure 5.24.(Top) Contamination streaks of the growth chamber and premixer fluids after the

continuous culture experiment. The cultures are streaked on the same plate as the initial stock culture

demonstrating that there is no contamination of the feed and that the cells have not been overrun by a

foreign organism. (Bottom) Microscope images of the PDMS membrane above each peristaltic pump

valve. Spots in the first two valves are characteristic of water evaporation, while textured rods in the

last valve are characteristic of cells.

First-Va e--"1-"
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Initially, the cells are grown in batch until they reach a maximum OD and the pH drops due to

acid production as shown in Figure 5.22(a). This type of growth profile is typical of batch

growths with glucose. Then continuous culture is turned on at flow rates specified in the flow

rate plot and the corresponding cell densities are given in Figure 5.22(b). As expected from

simulations and the previous experiment, an increase in the flow rate at 50 hours results in higher

optical density at the same glucose concentration.

To test the effect of glucose concentration on the cells, the glucose in the feed is then reduced

from 2.5 g/L glucose by a factor of 2 to 1.25 g/L and then increased by a factor of 3 to 3.75 g/L

as shown in Figure 5.22(b). As expected, the cell density tracks the glucose concentration almost

exactly in chemostat mode. At 120 hours in Figure 5.22(c), the flow rate is ramped up to induce

washout. This allows us to sweep the flow rate to approximate the maximum growth rate. If we

take the maximum growth rate to be when the washout reaches 50% of the starting OD, we get a

maximum growth rate of 1.06 h 1. From HPLC data of samples taken during the washout run, we

see typical characteristics of washout associated with a ramp in the flow rate as shown in Figure

5.25. Initial glucose accumulation results in the cells growing to higher density and initiation of

acid production. Then as the flow rate increases past the maximum growth rate, the cell density

decreases and glucose increases. A decrease in acid production also results due to dilution, but a

non-zero quantity of acetic acid is still measured due to overflow metabolism [44]. Restoration

of chemostat flow rates results in complete removal of glucose and acetate from the medium as

expected.
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Figure 5.25.Plot of the concentrations of glucose, acetate, and alpha-ketoglutaric acid in the medium
during the washout and restoration of chemostat operation between 100 hours and 160 hours. The input
glucose concentration and flow rate are also plotted. Acetate production dominates during washout
conditions as excess glucose is utilized for acid production. However, in chemostat operation, alpha-
ketoalutaric acid vroduction dominates.

After washout, three repeat steady states at 3.75 g/L, 2.5 g/L, and 1.25 g/L demonstrate that the

previous steady states can be repeated to within 5% as shown in Figure 5.22(d). In addition, the

cells grow in direct proportion to the glucose input, with optical densities of 3.3, 2.2, and 1.1

respectively with the input glucose concentrations. Looking at the HPLC data in Figure 5.26, we

see that in chemostat operation, the acid production is very different from what we see in

washout conditions. Instead of the cells producing acetic acid, the majority of acid production is

aKG acid and succinic acid. Since the quantities of each track almost identically throughout the

growth, only aKG acid is shown. The production of aKG and succinic acid are also proportional

to the cell density, suggesting that the production rate per cell is not actually changing with

glucose input.
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Figure 5.26.Plot of the concentrations of glucose, acetate, and a-ketoglutaric acid in the medium during

chemostat operation at different glucose input concentrations. a-ketoglutaric acid changes are much

more pronounced than acetic acid changes versus glucose input during chemostat growth.

After steady state chemostat operation, the system is switched into dynamic operation by

oscillating the glucose feed sinusoidally. As a result, the cell density and pH also vary

sinusoidally as shown in Figure 5.22(e). If we look at the HPLC data for the time response of

glucose and acid production in the reactor, we see dynamics occurring on the time scale of the

modulated input as shown in Figure 5.27. If we look at the optical density versus glucose input at

both a 2 hour and 4 hour period, we see that the two signals are almost exactly 90 degrees out of

phase. This behavior can be explained by looking at the growth rate. If growth is approximately

instantaneous with respect to our feeding rate, we expect the cells to grow more if we feed them

more carbon. This suggests that the growth rate is proportional to the amount of glucose

delivered. This directly results in the cell density having a 90 degree phase shift with respect to

the glucose input.
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Figure 5.27.(top) Plot of the concentrations of glucose, acetate, and a-ketoglutaric acid in the medium

during dynamic sinusoidal modulation of the glucose input at a period of 4 hours. (bottom)

Concentrations of glucose, acetate, and a-ketoglutaric acid in the medium during dynamic sinusoidal

modulation of the glucose input at a period of 2 hours. The optical density correlates well with glucose

input with the maximum growth rate occurring at the maximum glucose input concentration. Both aKG

and acetic acid production also vary sinusoidally but out of phase with the optical density.

While cell growth rate behaves as expected, acid production behaves very differently. If we look

at the glucose concentration in the medium, we can assume that we are always in a glucose

limited chemostat. However, there is substantial acetic acid production, which is not seen during

chemostat operation. While acetic acid production is typically explained by either anaerobic

metabolism or overflow metabolism, in this case, the cells are always at 50% air saturated

oxygen and the glucose concentration in the medium is always zero. This suggests that the
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pathway for acetic acid production can be activated by increases in glucose concentration below

the limit for overflow.

In addition, the acetic acid and aKG acid concentration waveforms are not directly correlated

with either the glucose input or the cell density, different from what we see in steady state. aKG

acid production, which looks correlated with cell density in chemostat operation, is not

correlated with cell density when operated dynamically. Since we have no knowledge of the

consumption rates of acetic acid and aKG acid, it is difficult to make conclusions about

metabolic behavior. However, by comparing the relative phase lags and time delays between the

concentrations of acids against the input concentration as shown in Table 5.5, we see that there

are differences between the behavior of optical density and acid production. The phase lag for

optical density is directly related to glucose input, varying by 90 degrees regardless of the

modulation frequency. This supports our assumption that dynamics of cell growth in relation to

glucose concentration are much faster than the modulation frequencies used. In contrast, the

phase lag in acid concentration changes with modulation frequency. However, if we look directly

at the time delay between the input and output waveforms, we observe a consistent time delay of

30 minutes and 40'minutes for acetic acid and aKG acid respectively which do not depend on the

modulation period. One possible conclusion could be that the metabolic pathway involving the

citric acid cycle requires roughly half an hour to respond to changes in feeding. This could be

due to a slow enzyme in the pathway which results in a buildup of aKG acid.

Glucose Input 0.06 0.04 0.9998 2.4 0.8 0.964

Acetic Acid 49.27 32. 84 0.977 89.28 2.6 0.97

ct:'a-KG acid 62.59 -02K .9361 t1;7 3:7.5 0.988,S

Table 5.5.Extracted phase delays for various components in the medium during sinusoidal modulation

of the glucose input. Optical density is 90 degrees out of phase for either frequency. Acid production

maintains a constant time lag for either frequency.

If we compare the sinusoidal time delays from HPLC data with those for the pH in the reactor in

Figure 5.28, we see that while there is good agreement for the 2 hour signal, the pH

overestimates the time delay in the 4 hour signal. This could be an indication that there are other
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acids that do not respond with a fixed slow delay in the system, or that the slower acids

experience more attenuation when running at a 2 hour period versus a 4 hour period and no

longer contribute a significant phase shift.
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Figure 5.28.(Top) Fit for the acetate response using the HPLC data for a 4 hour period versus the sine

wave fit for the pH response. The additional delay in the pH response could be the result of pH

contributions from other acids. (Bottom) Fit for the acetate response using HPLC data for a 2 hour

period versus the measured pH response. Both the fit of acetate and the fit of pH estimate a similar

phase delay.

In addition, if we look at the step response in Figure 5.29 and compare the time lag of acid

production with the one extracted from modulation experiments, we see that extracting delays

that are frequency independent is not possible.



CHAPTER 5 BIOLOGICAL VALIDATION AND CONTINUOUS OPERATION

1

0.8

S:3

0.

6 0.

0.

6
pH (b= 1.047)

OD (b 0.4392)

. fit: a*exp(-b-x)+c
t(start) = 168,2 h

Time (h)

Figure 5.29.Exponential fits to the OD and pH for a step change in glucose from 2.5 g/L to 1.25 g/L

which occurs at 168.2 hours. From the step response, the pH changes faster than the OD, as expected

from phase delays. However, the single exponential response suggests that the delay is time dependent.

If we assume an exponential response due to a step input governed by the differential equation

required to generate a single exponential fit

OX (5.1)
-- = -b(X - c)
at

where b is the time constant of the exponential and c is the steady state value, we see that

converting this equation into a sinusoidal response generates a single pole response

(5.2)
X(jco) = ~ _

1 + j ?

Where o is the frequency of operation. From this equation we can determine the equation for the

phase delay, which is frequency dependent

(5.3)
(Wo) =-tan-

b
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Equation (5.3) has the right frequency dependence to generate the fixed delay response seen in

OD and HPLC measurements. When the frequency increases from 4 hours to 2 hours, the phase

delay also increases causing the time delays not to change as much. For the optical density, both

sine modulation and step response give us the same behavior of a 90 degree phase shift, which

merely indicates that the time constant for OD change is very long, or equivalently that the time

constant for growth rate change is very fast. However, for the acid response, the extracted time

constants from the exponential response would also yield phase delays of nearly 90 degrees for 2

hours and 4 hour periods, which is clearly not seen from direct measurements using HPLC. Even

if the time constant extracted from the exponential response yielded a dependence of phase on

frequency as is required for the fixed time response, a single pole fit would require a decade

change in frequency to incur an additional 45 degrees of phase shift. A phase shift of 45 degrees

with only a factor of 2 difference in frequency is not possible using a single exponential fit.

In the microfluidic reactor, we can also directly study acetic acid production through overflow

metabolism. After sinusoidal modulation, we switch to turbidostat operation as shown in Figure

5.22(f). Since we can change the glucose input concentration without affecting the flow rate, we

can run the closed loop control algorithm to fix the cell density at OD = 1.1 and measure changes

to cell metabolism resulting from glucose input changes. If we use the controlled flow rate to

determine the maximum growth rate of E. coli FB21591, we get a maximum growth rate of

0.994±0.051 h-, which is comparable to our washout experiment value of 1.06 h-. From the

HPLC data shown in Figure 5.30 during turbidostat operation, we can see that overflow

metabolism is a function of glucose concentration as expected. Since neither the cell density nor

the growth rate is changing, any additional consumed glucose must be used to make acetic acid.

If we compare the results of turbidostat experiments with simulations, we see that the behavior is

the same and even acid production rates and glucose consumption rates are similar. However,

using the parameters given by the overflow metabolism model [44], the growth rate in

turbidostat mode is much lower (0.6 h-) than our measured value (1 h-).
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Figure 5.30.(top) Concentrations of glucose, acetate, and a-ketoglutaric acid in the medium during

turbidostat operation. The optical density correlates well with glucose input with the maximum growth

rate occurring at the maximum glucose input concentration. Both aKG and acetic acid production also

vary sinusoidally but out of phase with the optical density. (bottom) Simulations are compared with

measured results for glucose and acetic acid using the Enfors model for overflow metabolism.

Using the data from turbidostat experiments, we can extract the increase in acetic acid

production versus glucose consumed as shown in Figure 5.31. Compared to simulations, these

production values versus glucose consumption are quite different, which is most likely due to the

simulation assuming wild type E coli K-12, where as the experiment is using a strain optimized

for growth on glucose. Another potential reason for the difference could be due to the accuracy

of the HPLC data at low glucose concentrations where noise is easily amplified into a

measurable signal offset.
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Figure 5.31 .Comparison between measured acetic acid production versus simulation as a function of

glucose consumed. The acetic acid production rate appears higher at lower consumption rates for the

cells used in the experiment.

By analyzing chemical concentrations in the different steady state and dynamic modes of

operation, we can see that many properties of the cells can be extracted. From chemostat

experiments, steady state production of different acids can be characterized and the dynamics of

acid production can be explored. From turbidostat experiments, direct observation of overflow

metabolism can be analyzed to determine acid yields and estimates of maximum cell growth

rates can be measured.

5.4 Conclusions

In this chapter, we have identified a cellular system which is useful for a thorough validation of

microreactors. For chip validation, the cell line F. coli DH5ta was used. The . coli cell line

generates a final product that can be measured through quantitative measures in pL quantities. In

addition to pH control, the cell line requires precise temperature control, allowing us to test the

chip's ability to set and dynamically vary the temperature. Batch growths demonstrated that

temperature control was possible, and fed batch growths demonstrated that chemical profiles

similar to a 1 liter bench reactor could be repeated. Interestingly, acetic acid production was

found to be correlated with the speed of the temperature ramp, with faster temperature ramps

resulting in large quantities of acetic acid production.
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After validating the devices, two continuous cultures were run. The first growth using E. coli

ATCC31883 allowed us to perform rigorous testing of contamination for chips grown using

antibiotic without initial gamma irradiation. Both chemostat and turbidostat operation were

demonstrated through a 2 week long growth. Contamination tests on the chip after finishing the

growth revealed that even with a high concentration of antibiotic, non-antibiotic resistant cells

could grow in areas of low antibiotic, such as the DI water input and the corners of other unused

channels. It was also observed that premixer contamination occurred preferentially where aerated

membranes were available.

Since it was clear that gamma irradiation was necessary to prevent foreign contamination, a

second continuous culture growth using E coli FB 21591 was performed with a gamma

irradiated chip. In this growth, more advanced methods of flow control were implemented by

separating the input feed components into salt, carbon, and water. By setting the input salt

concentration to twice the desired concentration, the water to carbon ratio could be varied

without affecting the supply of other growth components. This allowed experiments where

glucose concentration could be varied to study the steady state and dynamic response of the cells

to changes in feed concentration. From the experiments, it was concluded that acetic acid

production can be initiated without reaching glucose concentrations required for overflow. This

type of behavior could influence pH control in fed-batch cultures with feeding schedules on the

same time scale as modulation experiments. Acetic acid would be produced and consumed, and

the resulting pH controller could respond by first injecting base to compensate for the acetate,

then injecting acid to compensate for the lack of acetate, a potentially unnecessary oscillatory

behavior. From modulation experiments, it was also observed that while the cell density is

dependent on the glucose feeding frequency, the acid production response has a relatively fixed

time delay regardless of the frequency of glucose addition. It was also observed that the

dominant acids produced during chemostat and turbidostat operation were different, with mostly

the citric acid cycle components a-ketoglutaric and succinic acid produced in chemostat mode

and acetate produced during turbidostat mode.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

This goal of this thesis was to develop an easily usable and controllable continuous culture

device with a small enough volume to allow for long term experiments at low cost. In order to

achieve this goal, a microfluidic device with a 1 mL volume and the accompanying measurement

and control platform was developed and fabricated. Design of the microfluidic device was

reasonably restricted by cellular requirements for growth rate, oxygenation, and shear.

Restrictions on the device volume were also given by sampling requirements for various off-line

measurements of chemicals.

Many device components were invented to allow full control over the microfluidic environment.

Volume consistency was the primary concern since the volume directly affects the cell growth

rate and dilution rates. Precise flow control was demonstrated using a novel on-chip pressure

regulator coupled with a peristaltic pump. A redesign of the peristaltic oxygenating membrane

mixer allowed for very fast mixing times of 2 seconds without introducing a great deal of shear

stress. Volume consistent in-flow to and out-flow from a peristaltic membrane mixer was also
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demonstrated by coupling a non-compliant pass-through channel to the membrane mixer. All of

these improvements were necessary to support continuous flow operation.

Most of the device innovations relied on the microfluidic devices being rigid against pressure

variations. This requirement led to the need for plastic microfluidic devices. However, active

control still required flexibility and therefore PDMS membranes were also required. Since no

suitable bonding processes existed at the time to bond PDMS membranes to plastics in a way

that could withstand aqueous environments for weeks, a chemical bonding process was

developed. This process resulted in a bond resistant to hydrolytic failure from acid and base

hydrolysis in a range from pH -1 to 15 for over 3 weeks actuated at 15 psi. In addition to the

bonding process, the amine deposition chemistry was very well suited for further surface

modification by proteins. As a result, application of previously demonstrated antifouling coatings

was possible. These coatings provided two improvements to the device by preventing valve

sticking and reducing cell adhesion.

In addition to the microfluidic device, instrument operation required the fabrication of supporting

subsystems. Long term operation enforced stringent requirements on fluid and gas connections

and a thorough exploration of different fluid and gas tubing options was required. Active

pneumatic control required integration of solenoids and electrical circuits. Cell growth also

required proper temperature control so a heater design was necessary. For proper environmental

control, integration of chemically sensitive optical sensors was required and circuits designed to

measure the fluorescence signal were fabricated. After implementing actuation and measurement

strategies, proper device control algorithms were also implemented to control the environmental

pH and oxygen concentration. In addition, algorithms for proper control of the peristaltic pump

to changes in cell density were implemented. These algorithms will allow the cells to grow in

repeatable and measureable steady state environments. Since evaporation cannot be prevented, a

method for evaporation prevention which took advantage of the full membrane mixer was also

demonstrated. All of these innovations led to the demonstration of a continuous culture system

capable of supporting cell growth for multiple weeks.
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With the system and supporting control algorithms implemented, system validation was

performed on a variety of cell lines. Initial batch growths with Rhodococcus opacus PD630

allowed us to understand material compatibility with base control and issues associated with

growing cells to high OD over long time scales. It was clear from this experiment that an optical

density sensor path length of 500 ptm was not acceptable for high OD measurements and that

evaporation for a 1 week culture was fast enough to dry out the entire volume.

A second experiment was performed on E. coli DH5a which grew in only 30 hours and tested

feed control and temperature control in addition to the previous pH control and high optical

density experiment. Experiments required a minor redesign of the microfluidic chip to support

instantaneous input from multiple sources. Cell growth in this system replicated 1 liter bench

scale fermentations and also demonstrated a dynamic dependence of cellular acetic acid

production to fast increases in temperature. A smaller path length sensor of 125 pLm enabled

measurements up to OD 50 and since the cells produced plasmid, a direct comparison of product

yield was possible between the microreactor and bench scale fermentations.

Finally, continuous culture experiments were performed on different E. coli cell lines. A first

experiment using a cell line E. coli ATCC31883 with a growth dependency on the amino acids

tyrosine and tryptophan as well as an antibiotic resistance to Ampicillin allowed us to test chip

sterility and how cellular contamination occurred in the reactor. In addition to characterizing

contamination, the chip was able to demonstrate both chemostat and turbidostat control at

different flow rates. A second continuous culture experiment was also performed on E. coli

FB21591, which grew efficiently on glucose. Breaking the feed into a salt only and carbon only

source allowed the experiment to test the dependencies of cell metabolism on both static and

dynamic changes to glucose concentration under constant growth rates. These experiments led to

interesting observations about the dynamics of acid production in glucose limited and glucose

overflow conditions with respect to cell density and input glucose.
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6.2 Future Work

While the chip has been shown to function properly for long term continuous culture, there are a

variety of improvements which can improve reliability and extend functionality. Future

improvements to the chip can result in more reliable and operator-free data collection. Since the

end goal of this work is to supply useful continuous culture reactors to biologists, improvements

that increase usability and data robustness are necessary. From a biological perspective, a variety

of experiments can be performed to study cellular metabolism. However, for an experiment to be

useful on a microscale, measurement strategies must also be compatible with microscale

volumes. This can greatly restrict the usefulness of the microreactor for continuous culture. For

example, to quantify the carbon content of lipids by production in Rhodococcus, 4 mg of dry cell

weight (dcw) are required [118]. With a conversion of 0.33 g-dcw/L/OD [94], a 1 mL

microfluidic reactor would require an OD of 12 to take one measurement requiring the entire

reactor volume. We will first explore near term goals and then look at longer term improvements

to generating a fully functional microscale continuous culture which can be operated by anyone

with minor training.

6.2.1 Short Term Goals

Many of the near term goals involve chip modifications to improve reliability of operation or

data collection. The first modification involves the oxygenating mixer. Since the mixer is

pressurized and depressurized through the same pneumatic line, the delivered oxygen

concentration can be diluted by both the volume of the low pressure line and the returned waste

gas. Using the same line for gas input and output results in the gas headspace having a larger

effective volume which includes all of the tubing and manifold routing between the on-chip

mixing chamber and the off-chip solenoid valve. For current designs, this additional volume is

approximately 500 tL which not only doubles the expected on-chip volume, but also causes a

large dilution of the input gas every mixing cycle. After each vent cycle, there is 500 pL of 1 atm

waste gas in the line, which at 300 K is 2e-5 moles of gas. Assuming the waste gas has

equilibrated with air, 21% of the original 2e-5 moles of gas is now oxygen. If we then pressurize
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with pure oxygen at 3 psi and maximally inflate the chamber to 500 ptL, our total volume at 3 psi

is now 1 mL with a total of 4.9e-5 moles of gas. Since 100% of the additional gas is oxygen, our

effective input oxygen concentration is diluted to 67%. Large oxygen consumption rates will

result in even larger dilution of the input gas if we assume that we do not equilibrate during

depressurization.

In addition to the problem of gas dilution, the humidified gas always condenses before reaching

the chip since the connections from the humidifier to the chip are not heated. If the temperature

of the humidifier is high enough, there can be a steady deposition of liquid into the mixer

headspace. This directly changes both the surface area available for gas diffusion as well as the

volume available for gas delivery. In the worst case, the entire headspace is filled with liquid and

the delivered gas must diffuse through the liquid into the PDMS to reach the growth media.

Since the return line is the same as the pressure line, the condensed liquid is only pushed

between the headspace and connecting tubes and is never removed. If a local humidification

reservoir is included between the chip and the solenoid valve, the required humidification

temperature can be decreased to reduce condensation, but the dilution volume can increase

significantly resulting in an even larger oxygen delivery problem.

As shown in Figure 6.1, these humidification issues results in fluid accumulation in the mixer

headspace. Looking at the oxygen controller, we see a steady increase in the controller oxygen

supply for a steady state optical density, demonstrating that even though the oxygen demand is

not changing, the supply oxygen concentration is continuously increasing. After dropping the

humidifier temperature from 80 C to 50 C, we see that the input oxygen concentration decreases

at a rate proportional to the evaporation rate of water in the headspace.

A modification that addresses both of these issues is to include a waste line for the gas.

Pressurization of the mixer can still be carried out through the pressure line, but the return waste

line should connect through a different port which can vent directly. This will prevent dilution of

the feed gas and allow an external path for condensed fluid removal.
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Figure 6.1.Example of water accumulation resulting from condensation from an upstream hot

humidifier. The bubble on the bottom right mixer section is actually in the gas headspace. In steady

state, this accumulation results in a decrease in oxygen transfer area, resulting in a steady increase in

the required oxygen supply to maintain constant oxygen levels.
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Since the mixer is expected to have 350 Pa of shear force, the device is not suitable for growth of

certain mammalian cells such as CHO cells. If continuous culture of mammalian cells is

required, modifications must be made to reduce the shear stress. From the shear model developed

in Section 2.3.5 Mixing and Shear, two main methods can be used to reduce shear stress. The

first is to increase the gas chamber capacitance or air line resistance to reduce the inflation speed

of the mixer membrane and the second is the decrease the fluid line resistance. The modifications

occur at the locations specified in Figure 6.2.

{ Fluid
Resistance

Air
Resistance

Figure 6.2.Locations for varying gas and fluid resistance to change shear stress properties. Air

resistance can be changed by varying the channel dimensions either off-chip at the three barb locations

or on-chip after the three barbs. Fluid resistances must be changed at all growth chamber connecting
channels.
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For the first strategy, since the gas chamber capacitance can directly affect the oxygen transfer

rate through waste gas dilution, it is more useful to design a module either on-chip or off-chip to

create an increased air line resistance. Without changing the channel dimensions, we can

interpret increased resistance or increased capacitance as a decrease in the flow rate through the

fluid channels. From Equation (2.22), the decreased flow rate directly reduces shear stress.

However, decreased flow rate also means increased mixing times which can have negative

effects on mixing and temperature control. As shown in Figure 6.3, changing the air channel

resistance without changing the fluid channel dimensions reduces shear at the cost of increasing

the shear duration and mixing time.

400

300 Air: h= 250 um
~l- Wa ter:h=68urn

-a-200 J
Air: h = 100 um

Water: h 68 um

Air: h 250 um
'/4__Water: h = 500 um

0
Air: h =100 um

Water: h = 500 um

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

Figure 6.3.Simulations of shear stress for different air channel and water channel resistances.

Decreasing the water channel resistance and increasing the air channel resistance both decrease shear.

Changing from an air channel height of 250 pm to 68 pm and changing from a water channel height of

68 im to 500 pm reduces the maximum shear from 400 Pa to 2 Pa.

The second method is to decrease the fluid line resistance to reduce fluid shear in the

microchannel. From Equation (2.22), if we look at shear stress under constant flow, shear stress

decreases as the square of the channel height indicating that we should be able to decrease shear

with less overall impact on the device design. However, looking at simulations in Figure 6.3

using the shear model from Section 2.3.5 Mixing and Shear, we see that the shear stress reduces

from 400 Pa to 40 Pa when we increase the fluid channel height from 68 im to 500 ptm,

302



6.2 FUTURE WORK

suggesting an almost linear dependence. If we look at the shear duration, it is clear that

decreasing the fluid channel resistance also results in a faster flow rate through the channel,

counteracting the desired effects.

Since our flow rate is now much faster using a wider channel, we can also incorporate the slow

mixing strategy to reduce the flow rate back to a mixing time of 2 seconds. If we use both of

these strategies, we can retain our desired mixing times and further reduce shear stress by over

an order of magnitude to 2 Pa. The main problem with implementing a larger channel approach

is that the channel size is currently restricted by the need to integrate valves into the connecting

channels, so a design for larger valves will be required to enable this strategy.

From the variety of cultures performed in this thesis, there have been noticeable drift issues with

the pH sensors which also varied with each device. For instance, a 2 point calibration on the

continuous culture growth of E. coli FB21591 is compared to a rolling multipoint calibration in

Figure 6.4. The rolling multipoint calibration is implemented using off-line pH data measured

from samples taken from the chip periodically. The off-line pH data is then used for piecewise 2

point pH calibrations to compensate for drift over time. In addition to unwanted offsets in the pH

readings at different pH values, there is also a slow and steady drift towards lower pH which is

especially noticeable between 240 hours and 300 hours during the initial sinusoidal modulation.

These issues could be inherent in the commercial sensors, or could be due to processing steps

used such as gamma irradiation or PEG surface coating. While the majority of pH sensors are

still functional even after coating, the nature of the drift should be explored in order to have a

truly reliable pH sensor on-chip. Methods of compensation should also be implemented to ensure

that pH values can be measured reliably during growth. These could either be the

implementation of in place protocols for pH sensor calibration before cell growth, or further

development of reference methods such as offline sample calibration which was used in the

continuous culture experiments. In addition, optical sensor data is also currently measured as raw

data and controllers use raw data for control. For more user friendly operation, calibrations

should be performed on each device prior to use and conversions directly implemented to plot

DO and pH data in real time using proper units.
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Figure 6.4.2 Point versus multipoint calibration of the pH sensor over a 500 hour long continuous

culture experiment. Rolling multipoint calibration was implemented using off-line pH measurements

taken periodically and performing 2 point calibrations for each section of data contained between two

off-line pH measurements. Different offsets exist at different pH values over time. In addition, looking

at the sinusoidal modulation from 240 hours to 300 hours, there is a steady drift in the pH reading

towards low pH when the offline measurements that fix the multipoint calibration indicate a constant

mean sinusoid.

6.2.2 Long Term Goals

As we saw in the Rhodococcus experiment, the inability to measure lipid production accurately

in the chip resulted in the device not being useful for Rhodococcus continuous culture. Typical

lipid measurement techniques require large quantities of lipid for accurate measurements,

making microscale continuous culture not ideal for experimentation [118]. Even in the

continuous culture of E. coli FB21591, analysis of glucose and acids was only possible by

continuously taking off-line samples. In the case of sinusoidal modulation, each measurement
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required 12 minutes of flow and measurements were taken every 15 minutes for 4 hours. For an

operator, this type of manual sampling can be prohibitive for use.

Two solutions to manual sampling are proposed for future integration. The first simple solution

is to interface the output stream with an automatic sampler. This would require fabrication of an

automatic sampler which could be simultaneously cooled, similar to those used in HPLC

machines or fractionators. Integration of an automatic sampler would enable continuous

measurements without the need for operator intervention and improve the resolution of dynamic

experimentation. Systems that could be integrated with the chip include HPLC machines, Nova

Bioprofile FLEX machines, commercial flow cytometers, or other devices for chemical and cell

measurement. The only disadvantage to direct connections with external analyzers is that the

sampling time is directly dependent on the analysis time. For sugar and acids analysis using

HPLC, this would reduce the sample measurement time to 30 minutes per sample, which is

slower than what we needed to measure dynamic response in the reactor.

The second more ambitious solution would involve developing sensors which can be integrated

with the chip to measure chemicals directly. These types of sensors can be split into two classes,

sensors directly embedded in the microfluidic device and sensors which are connected to the

outflow. The most useful sensors would be those integrated into the reactor since they can be

used for batch and fed-batch experiments which do not necessarily contain an outflow. For

continuous reactors, in general it makes no difference whether the sensor is integrated into the

chip or integrated into the outflow if the dead volume between the mixer and the sensor is low.

For accessibility of measurement strategies, integrated outflow based sensors make more sense.

These sensors can be varied in nature and many have been miniaturized including flow

cytometers [119] and PCR devices [64]. Since many microfluidic versions of cell measurement

techniques exist, these types of sensors can be integrated with minimal impact on the overall size

of the device. In fact, for nanoliter sized chemostats, a cell sorter has already been integrated

allowing selective pressure to be introduced based on fluorescence readings [120].
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If we look at in-situ sensors, in general we are left with only optical detection methods since they

do not require direct access outside of the chip causing sterility issues. Two main classes of

optical measurement systems exist, non-imaging systems and imaging systems. For non-imaging

detectors, we have found pH, oxygen, and carbon dioxide sensors available commercially from

Presens Precision Sensing and integration of pH and oxygen has already been performed on the

chip. However, even these three sensors are a very restrictive set for measurements. Other

fluorescent sensors have also been demonstrated in the laboratory such as glucose [121] and

temperature [122], but have not been made commercially available due to issues of long term

fluorescence reliability and chemical sensitivity in the case of glucose, and high power

requirements in the case of temperature. More important metabolic components such as glucose

and organic acids are not easily sensed optically since they typically absorb in the UV with

overlapping spectra and many components are similar in chemical structure. Typical optical

measurement techniques involve specific binding reactions between the chemical of interest and

the fluorescent molecule, such as the case for glucose [121], and therefore a different sensor spot

will be required for each chemical. This is not scalable if measurements of all organic acids and

sugars are desired.

In contrast to fluorescence sensing based on molecular interactions, Raman spectroscopy is

capable of distinguishing many components simultaneously. Since vibrational and rotational

modes of the molecule cause inelastic scattering with light, a spectrum similar to those obtained

through NIR spectroscopy measurements can be measured using shorter wavelength light which

penetrates into the liquid without much absorption. The use of Raman spectroscopy on E. coli

fermentations has already been demonstrated [123], with the ability to extract estimates of many

chemicals such as glucose, phenylalanine, acetate, format, and lactate simultaneously. In

addition, Raman has already been integrated with microfluidic devices, demonstrating that

chemical reactions can be observed and imaged and concentrations of chemicals such as urea can

be measured [124, 125]. Integrating this sensor into the microfluidic continuous culture will

enable rapid sample free measurements of chemicals as well as provide a pathway for closed

loop control on parameters such as sugar and acid. A completely closed system which can

measure all relevant parameters of the culture without requiring sampling would truly enable a

low barrier of entry to running continuous culture experiments. For example, the onset of glucose
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overflow metabolism can be explored directly by monitoring glucose and acetate levels in-situ

and in real time through Raman spectroscopy. This will enable feedback control of the glucose

input to accurately determine the onset of overflow metabolism and acetate production.

For optical imaging detection methods, microscopy is widely used. A variety of stains have been

developed to look at cell membranes [115], cell viability [128], DNA [129]. While most of the

quantitative stains result in cell death, integration of these methods with the output stream can

result in quantitative measurements. On-line indicators of growth such as cell morphology or

fluorescence of internal proteins can also be useful for quantifying cell growth. In addition,

variations of cells within the homogenous continuous culture can be quantified through

microscopy methods. However, the act of taking the cells out of the growth chamber before

microscope analysis could result in physiological changes that are an artifact of microscopy slide

preparation [130]. Ways around this issue have been explored, such as directly cooling the output

of the microfluidic device to stop metabolism [13], however, unless the sample is cooled through

the entire sample and analysis process, the cells may start to grow again. This could affect

perceived sugar and acid levels, especially when the cell density is high and samples quickly

become anaerobic. The full deflection membrane mixer is well suited for in situ microscopy

since it is capable of generating a state where a thin layer of liquid is pressed into the bottom of

the well. This approach has also been used previously to immobilize and study mechanical lysis

of mammalian cells [131]. Microscope objectives specially configured to look through variable

depths of glass called correction collar objections are well suited for imaging through

microreactors. Using correction collar microscope objectives designed for looking through

optical windows would allow direct visualization of cells in the reactor as shown in Figure 6.5. A

design which could integrate an objective into the system underneath the heater would have to be

developed to enable these measurements.
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Mixing

Membrane Immobilization

Microscope Imaging

Figure 6.5.(Top) Illustration of the methodology for performing in situ microscopy in the microreactor.

(Bottom) Initial experiments of Yeast cell imaging showing both fluorescence (left) and bright field

(right) imaging within the reactor using a full deflection membrane approach.

6.3 Overall Conclusions

In this work, we have developed an instrument capable of supporting automated microscale

continuous culture experiments. In order to achieve long term steady state growth without

volume drift or evaporation, the chip was made out of both plastic and PDMS. In order to take

advantage of both rigid plastics and elastic microvalve control, a novel bonding process was

invented to fabricate devices with chemically stable interfaces against water, acids, and bases.

The device design, instrument design, and fabrication processes allowed for the production of
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fluidic devices with a 1 mL working volume, high oxygen transfer rate (kLa ~ 0.025 s1), fast

mixing (2 s), accurate flow control (± 18 nL), and closed loop control over temperature, cell

density, oxygen, and pH.

Providing control over environmental parameters allowed the system to perform different types

of cell culture on a single device, such as batch, fed-batch, chemostat, and turbidostat continuous

culture. Validation experiments demonstrated that cells could be grown to high optical densities

(OD = 50) and production of commercially relevant chemicals such as DNA vaccines were

comparable to large scale fermentations both in DNA yield as well as sugar and acid

concentrations . Continuous cultures were also demonstrated without contamination for 3 weeks

in a single device and both steady state and dynamically controlled conditions were shown,

allowing observations of cell metabolic dynamics.

Exploring dynamics with the chemostat would allow for a variety of controlled experiments.

From our initial dynamic experiments, we could further explore how overflow metabolism is

initiated without excess glucose or lack of oxygen. This could result in conclusions about how to

better set feeding schedules during fed-batch operation to maximize production and minimize

waste. With multiple inputs and dynamic control, we could also explore issues of co-metabolism,

such as how metabolic pathways open and close as a function of the concentrations of different

carbon sources. From our fed batch experiments, we have also observed that heat shock is likely

a function of both absolute temperature and temperature dynamics. We could use a continuous

culture system to more closely study how heat shock affects cells when heat is introduced at

different speeds. We could also see if there are any differences in heat shock response as a

function of steady state conditions.

While these are just a few of the future experiments that we could look into from data collected

during this work, there are a variety of other biological questions for which the device could be

useful. Turbidostat steady state opens the door to explore overflow metabolism and maximum

growth rate conditions, two conditions which dominate batch fermentations that are still used in

production today. Optical transparency of the microfluidic devices also allows the devices to be

used for studies with photosynthetic organisms. Finally, input control allows for experiments
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with inducers and repressors, useful for studying genetic networks. With a continuous culture

device developed which requires minimal setup time and minimal engineering knowledge to

operate, both the cost and time barriers to operating continuous cultures have been greatly

reduced, opening the door for more biologists to perform quantitative and reproducible

biological research.
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Appendix A

Derivation of Lock-in Detection
Algorithm

The specific algorithm for determining phase from measured signals is illustrated below in

Figure A.l.

Signal: Asin(wt+Q,) -+Asin(w~t1)Al
Input: sin(wt) BPF sin(w,t) A sin(0 ) Alexp(jO,)

Hilbert cos(w,t)

Figure A. 1.Schematic of the signal processing block diagram used for extracting the magnitude and

phase of a measured signal referenced from an input signal.

The inputs to the signal processing system are an input reference at a frequency wi and the

measured signal, also at a frequency of wi but with an arbitrary magnitude A1 and phase shift 01.

To reduce signal noise, we first band pass filter the data, leaving only the frequency component

of interest wi. Since the frequencies of interest are known a priori, Fourier transforms and
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complicated peak detection algorithms are unnecessary to determine the band pass center

frequencies. We then Hilbert transform the in-phase input reference to get the quadrature version

phase shifted by 90 degrees. Then, the in-phase and quadrature versions of the input reference

are multiplied with the signal, generating sum and difference frequencies as given by

A, sin(wit +0 1)@ sin(wit)= A [cos(0,)- cos(2w, +0)]
2 (A.1)

Al sin(wit + 01)0 cos(wt)= A [sin(0 1 ) + sin(2w, +012

We then low pass filter the resulting signals to drop the high frequency term, leaving only the

phase terms. Simple inverse tangent and magnitude formulas can then be utilized to recover the

amplitude and phase of the measured signal.

A1 = 2 Acos()1 + sin() (A.2)

S= tan 2s(0(A.3)
A, /2 cos(6,)
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Appendix B

Overflow Metabolism Model

B.1 Continuous Culture Simulation Parameters

Chapter 2 parameters are those extracted in [94] for growth of E. coli FB21591. Parameters are

varied for simulations for E. coli ATCC31883 to result in the same growth rate as observed in

experiments. Parameters in continuous culture experiments with E. coli FB21591 are returned to

original values.



APPENDIX B OVERFLOW METABOLISM MODEL

mi iiiln lIN' -MB-C I

RUN. Paamte Defniton

% parameters for continuous culture simulations

enforsglobals;

YAS = .667; %Stoichiometry Acetate from Glucose
YOA = 1.067; %Stoichiometry of respiratio 02 consumed per acetate
YOS = 1.067; %Stoichiometry of respiration 02 consumed per glucose
YXA = 0.2; %biomass yield on acetate << 0.40 ATCC31883
YXA = 0.4; FB21591

YXSof =0.10; W biomass yield on glucose overflow << 0.15 ATCC31883
YXSof = 0.15; % FB 21591
YXSox = .5; % biomass yield on glucose oxidation
CA = 1/30; % mol C/g-acetate carbon content mols/gram. acetate
CS = 1/30; W mol C/g-glucose carbon content mols/gram glucose
CX = 0.04; 1- mol C/g-cell carbon content mols/gram cell
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KS = 0.05;
KA = 0.05;
KiO = 15;
KiO = 4;
KiS = 26;
KiS = 5;

Osat = 0.21;
Cno = 0.21;
Cnc = 0.21*5;
FoV = 1.8*3600;

Ocrit = 0.0081;
kLa = 46.8;

% data for batch
qOmax = 15e-3*32;
qSmax = 1.4;
qSmax = 1.8;
qm = 0.04;
qAcmax = 0.1;

Fsample = 0;
V1 = .0000008;
V2 = .001;
% initial condit
%turbidostat
Yi = [5; %

0;
.01/2.5;
2.5; %

%E

Re

g/L Monod inhibition glucose-glucose
g/L Monod inhibition acetate-acetate
g/L Monod inhibition acetate-oxygen << 4 ATCC31883
FB21591
g/L Monod inhibition acetate-glucose << 5 ATCC31883
FB21591

% mmol-02/L
% air
% pure oxygen
% 1/s time constant for humidifier reservoir

9 mmol-02/L critical concentration
% 1/h % bioreactor

culture
% g/g/h
% g/g/h << 1.4 ATCC31883
% FB21591
% g/g/h
% g/g/h

% L premixer
% L growth chamber

ions

glucose g/L
acetate g/L

% biomass g/l
servoir Glucose g/L

Cno; % Dissolved oxygen
Cno]; % Reservoir oxygen

% chemostat
% Yi = [.001;
% 0;
%6 0.0003;
% .01; %
%C Cno;
! Cno];
duty = 1;
indexmu = 1;

% glucose g/L
% acetate g/L

% biomass g/l
Volume L
% Dissolved oxygen
% Reservoir oxygen

B.2.2 Dynamic Model (Overflow Metabolism)

function dYdt = enfors derivs(t,Y)
% Y = [S;A;X;V;O];
% glucose, acetate, cell mass, volume, oxygen

% This version has a more physically motivated oxygen threshold.
I This version includes the effect of the mixer reservoir

enforsglobals;

% calculate substrate metabolism

315



APPENDIX B OVERFLOW METABOLISM MODEL

qS = qSmax./(l+Y(2)./KiS).*Y(l)./(Y(1)+KS); %k glucose flux g/(g-cell-h) (1)

qSox = qS; % assume no overflow, no limitation (all sugar through
% oxidative pathway)

qSoxan = max([0,(qSox-qm).*YXSox.*CX./CS]); % glucose flux to biomass (2)
qSoxen = qSox-qSoxan; % glucose flux to aerobic energy (3)

% metabolism

qOS = qSoxen.*YOS; % oxygen used for glucose oxidation (4)

% Here test overflow/underflow

% event 1: overflow metabolism,
modified so oxygen limitation triggers too

% threshold for overflow metabolism.
% added threshold due to oxygen limitation.

qOthresh = min([qOmax./(1+Y(2)./KiO),...
kLa.* (Y(6))*32./1e3./Y(3)]);

if q0S>=q0thresh; % oxygen for glucose oxidation saturated

qSoxen = qSoxen.*qOthresh./qOS; W set oxidized glucose to max
% qSoxen = qOSthres./YOS; % same expression, proportion emphasized above

qSoxan = qSoxan.*qothresh./qoS; W proportional reduction in anabolic flux
qSox = qSoxan+qSoxen; % new oxidative flux (5)

qOS = qOthresh;

qSof = qS-qSox; % compute overflow flux (6)

qSofan = qSof.*YXSof.*CX./CS; % (7)
qSofen = qSof-qSofan; % (8)

% acetate production through overflow mechanism
qAp = qSofen.*YAS; % (9)

else
qSof = 0;
qAp = 0;

end

% acetate consumption
qAc = qAcmax.*Y(2)./(abs(Y(2))+KA); % (10)
qAcan = qAc.*YXA.*CX./CA; % (11) growth on acetate

qAcen = qAc-qAcan; % (12) energy from acetate

qAthresh = (q0thresh-qOS)./YOA; % maximum acetate flux during respiration
if qAcen>qAthresh

qAc = qAthresh/(i-YXA*CX/CA);
%qAcan = qAc.*qAthresh./qAcen;
qAcan = qAc*YXA*CX/CA;
qAcen = qAthresh;
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%qAc = qAcan+qAcen;
end;

qO = qOS+qAcen.*YOA; % total oxygen flux (13)

% growth rate
mu = max([0,(qSox-qm).*YXSox]) + qSof.*YXSof + qAc*YXA; % (14)

duty = .5;
dYdt = [[Fturbidostatfigure(t,mu,Y(3))./V2.*(Y(4)-Y(l)) - qS.*Y(3)].';%

dS/dt glucose (g/L)
[(qAp-qAc).*Y(3)-(Fturbidostatfigure(t,mu,Y(3))./V2).*Y(2)].'; %

dA/dt acetate (g/L) Ka 1.74e-5, Density 1.049 g/ml, Mass 60.05 g/mol
[(-Fturbidostatfigure(t,mu,Y(3))./V2+mu).*Y(3)].1;

dX/dt cell mass (g/L)
[Fturbidostatfigure(t,mu,Y(3))./Vl.*(Sfeedturbidostatfigure(t)-

Y(4))].'; % dSr/dt volume

[kLa.*(Y(6)-Y(5)) - qO.*Y(3)./32.*1e3].'; % dO/dt D02 (mmol/L)

[-FoV*Y(6) + FoV*(Cnc*duty + Cno*(l-duty))]; %dOr/dt
[].'; %HCl (M)

[].']; %NaOH (M)

B.2.3 Dynamic Model (Simple Chemostat)

function dYdt = enfors derivs(t,Y)

enforsglobals;

mumax = .79; % Maximum growth rate h -1
mu = Y(1)*mumax/(Y(1)+KS);
dYdt = [[F(t,mu,Y(2))./V2.*(Y(3)-Y(1)) - mu/YXSox.*Y(2)';% dS/dt glucose

(g/L)

[(-F(t,mu,Y(2))./V2+mu).*Y(2)].'; % dX/dt cell mass (g/L)
[F(t,mu,Y(2))./Vl.*(Sfeed(t)-Y(3))].']; % dSr/dt volume

B.2.4 Flow Control

% flow rate
function flow = F(t,mu,X);
enforsglobals;

%FB21591 turbidostat simulation
if t <= 1000

if (X > .35) %simple
flow = mu*V2; %l/h

else
flow = 0;

end
end

% %ATCC31883 waveform generation
% if t <= 53 %start as turbidostat
% % if (X > 2/4.22*2.721) %complex
% if (X > 2/4.22*2.855) %simple
%6 flow = mu*V2; %l/h
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%6 else
%6 fflow = 0;
%6 end
% end
% % run chemostat afterwards
% if (t > 89)

flow = .0003;
%elseif (t > 53)

flow = .00048;
% end

B.2.5 Substrate Control

function gluc = Sfeed(t)

% turbidostat dynamics FB21591

if (t < 40)
gluc = 3.75;

elseif (t < 58)
gluc = 2.5;

else
gluc = 1.25;

end

% ATCC31883
% gluc = 5;

B.2.6 Main Loop

enforsparams_129_3_thesisfigoverflowmetabolism
%enforsparams_129_3_thesisfigphenylalaninestrain
tl = 0; % interval start
t2 = 100; % interval end

% yi for simple model
% Yi = [5; % glucose g/L
% .01/2.5; % biomass g/l
%- 2.5]; % Reservoir Glucose g/L

Y1 = Yi;

% [t,Y] =ode23 ( 'enforsderivs_3 simple', [tl t2] ,Yl); %simple model
[t,Y]=ode23s('enfors derivs_3', [tl t2],Yl);

318



319

Appendix C

Batch Growth: Rhodococcus opacus
PD630

The most basic experiment useful for biological validation is batch culture. Since batch culture

does not require any controlled input of food or output of cells, this form of culture is the easiest

to implement. To test the system in batch conditions, we want to operate with a cell line which

has the ability to grow to very high ODs to determine the maximum cell density supported by the

reactor. In addition, the ability to measure other indicators of cell growth such as product would

improve validation data. A cellular system capable of validating the chip against batch growth

data at high optical densities is the Rhodococcus opacus PD630 system for producing

triacylglycerol (TAG) [113]. Triacylglycerol is produced when the cells become nitrogen limited

in the presence of excess carbon. Under this condition, they convert the excess carbon into lipids

stored within the cell membrane. While typical methods of measuring TAG production require

large volumes, microscopic methods, such as staining with Nile Red dye, are also available for

quantitative measurements [115].

Growth experiments were performed in a polycarbonate chip using 5 molar NaOH for base

control. Since typical doubling times for Rhodococcus are 6 to 12 h at 30 C [113] and they are
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not antibiotic resistant, the culture must run for multiple days without contamination. Therefore

the device is gamma irradiated before use. The media used for growth is a defined media with

the composition given in Table C. 1.

(NH-4)2S4 6. 7 g FeNa.EDTA 5g ZnSO4*,"7H2,0 0.4-Cg

CaCl2*H20 0.045 -T I I -E H3O3 0.015
Stuck A 3 L 1000 4  113 NiC12z*6H0O 0401
A9 Trace Elements 3 mL K112P0 4  47 g EDTA 0.25 g
Phost Iite'Biiffer 17.6 mL CoC 15120 0.05:

CuCl2 *2H20 0.005 g
Table C. 1.Table listing the growth media components used for growth of Rhodococcus Opacus PD630.

The glucose concentration is much higher than the nitrogen concentration to facilitate TAG production.

For measurements of nitrogen, glucose, and TAG concentration, 50 p.L samples are removed

from the reactor every 24 hours. For TAG concentration estimates, 2 pL of the daily sample is

stained with Nile Red. Nile red is prepared by mixing 0.5 g Nile Red with 1 mL of acetone. The

Nile Red solution is then diluted by mixing 5pL of the acetone solution with 1 mL of 75%

glycerol solution. Cells are then stained by mixing the cell volume with an equal volume of the

diluted Nile Red/Glycerol solution. After staining, the cells are placed under a fluorescence

microscope with a 60x oil emersion lens and cells are imaged using a GFP filter set.
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Figure C. 1.Comparison of the growth of Rhodococcus Opacus PD630 in a microreactor versus the

bench scale reactor. a) Growth data from the microreactor. TAG production starts before nitrogen

limitation occurs. On-line optical density measurements are also no longer linear after OD 15 as

expected. b) Growth data from a 5L bench scale reactor. c) Microscope images of the cell morphology

at different time points. While the trends are the same for both growths, lag phase seems shorter in the

microreactor versus the bench scale reactor.
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Data from the microreactor growth is shown in Figure C. 1 and compared to a bench scale

growth. First, the microscope images of the cell morphology indicate that the cells change from

long rods to short cylinders throughout the growth. This can have an impact on the light

scattering properties of the cells. In addition, the accumulation of lipids within the cells can also

have an impact on the light scattering properties due to the difference in refractive index between

cytoplasm (n = 1.35) [126] and TAG, assumed to be vegetable oil (n = 1.47) [127]. As a result, a

direct relationship cannot be made between optical density measurements and dry cell weight.

Second, while offline optical density measurements demonstrate that the cells grow to over OD

100, the online sensor with a path length of 500 pm as measured in Chapter 4 becomes nonlinear

after OD 15 due to multiple scattering events resulting in increased signal as expected from

calibrations and is not suitable for measurements of such high optical densities.

Even more issues are noticeable from the batch growth. Since we used a polycarbonate chip

rather than a PMMA chip, base control was only possible until the base line degraded the input

and failed. In addition, Rhodococcus cells are very hydrophobic and clump easily, leading to

control problems if the valves become clogged. Since batch growth was performed, cycling

between injection and mixing mode was not implemented, leading to clogs between the pass-

through and growth chamber. A simple fix for this issue is to periodically cycle the growth

chamber valves to clean them. As shown from Figure C.2, a clog between the pass-through and

growth chamber resulted in the base line extending to the end of the pass-through.
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Figure C.2.(Top) pH during the Rhodococcus growth. Control operated until 22 hours when the cells

clogged the pass-through channel. At 27 hours, the controller was disabled as acid production

decreased and the base input started to fail. (Bottom) Oxygen concentration in the reactor and controller

output.

Increasing the growth chamber pressure from 3 to 4 psi at 23 hours and implementing a valve

refresh cycle removed this clog, injecting an entire pass-through volume of base into the

chamber as demonstrated by the measured pH spike. Failure of the base polycarbonate layer due

to exposure to sodium hydroxide was also an issue. Eventually at 27 hours, the base input

degraded enough that pH control had to be disabled. Fortunately, by this point the cells had

consumed enough glucose that acid production decreased. In addition to pH control issues, the

sensor itself seemed to fail after 50 hours, reporting pH values of 11 when the measured offline

values did not exceed 8. However, towards the end of the growth, the sensor drifted back to pH

7, suggesting that there could be an issue with biofouling of the sensor or interactions between

the sensor and a chemical produced by the cells. In contrast to pH control, oxygen control

behaved as expected, keeping the oxygen level at 50% throughout the growth. The only instance

of control failure in oxygen was during base control failure, where the cell metabolism changed

quickly with respect to the oxygen controller.
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Another issue discovered during batch growth was pronounced evaporation within the chip. By

90 hours into the growth, the majority of the liquid volume of the chip had evaporated, leaving

only a layer of cells in the reactor. As a result, the data shown previously in Figure C. 1 has been

corrected for evaporation assuming a linear evaporation rate and accounting for sampling times

and pH injections. Figure C.3 shows the uncorrected optical density measurements as well as the

estimated time course of evaporation. The estimated evaporation rate given that the chip

evaporated in 96 hours was 9 pL per hour, consistent with previous measurements of chip

evaporation without humidification.

300 ~Measured

E 200

100 - Corrected

0 10 20 30 40 50 60 70 80 90

0.8
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>02

0 10 20 30 40 50 60 70 80 90
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Figure C.3 .(Top) Measured optical density including evaporation and corrected for evaporation. By 72

hours, more than half of the measured optical density is due to evaporation rather than cell growth.

(Bottom) Estimated volume in the reactor correcting for pH injections and sampling times.

As mentioned in Chapter 4, correcting for evaporation is essential for long term growth of cells.

While in continuous culture, water injections can be used to return the growth chamber to a

known volume, for batch growths where the volume is changing due to acid and base

corrections, estimating water injections is more difficult.

While Rhodococcus does not provide an ideal system for validation due to large morphological

changes and the need to perform microscopy to estimate product yields, running the system
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allowed the identification of key issues which needed to be resolved. As predicted,

polycarbonate as a base layer for pH control was not acceptable, with failure of the control line

in less than 30 hours. Evaporation rates were also high, leading to full chip evaporation in less

than 4 days. A more appropriate validation experiment would utilize a cell line which is better

behaved in suspension to reduce clogging, generates a product which can be easily measured at

low sample volumes, and grows faster to reduce evaporation effects.
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Appendix D

Device G-code

D.1 Continuous Culture

The code to machine the continuous culture device consists of a variety of tool changes for each

of the layers. The first step to fabrication is to machine blanks. After blank machining, the

machine code is broken into layer fabrication. Specific order of tool changes is required due to

the requirement for pocketing, beveling, undercutting, and deburring operations. Since there is a

large quantity of G-code, the code is placed in two column format to fit it into a reasonable

number of pages.
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D.1.1 Blanks

Before placement on the vacuum chuck a

corner block is used to drill alignment pin

locations.

File: Alignment drills 0.0625.fgc
Tool: 0.0625 drill (Polycarbonate)_,
0. 0625 square mill (PlMMA)

G90 (use absolute coordinates)

GOO ZO.0300
XO.2420
YO.1580
G83 RO.0300 Z-0.1100 QO.150 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.2420
Y1.8420
G83 RO.0300 Z-0.1100 QO.150 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7580
Y1.8420
G83 RO.0300 Z-0.1100 QO.150 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7580
YO.1580
G83 RO.0300 Z-0.1100 QO.150 F40.0000
GOO Z1.500
XO.2420
YO.1580

Then borders are machined and rounded to

prevent bond failure due to burrs.

File: square mill 0.125 downcut.fgc
Tool: 0.125 square mill single flute
down cutter to prevent upward force

GOO ZO.0300
X-0 .1500
YO.1250
G01 Z-0.1100 F40.0000
G01 X-0.0625 YO.1250 F40.0000
G01 X-0.0625 Y1.8750 F40.0000
G02 XO.1250 Y2.0625 10.1875 JO.0000
G01 X2.8750 Y2.0625 F40.0000
G02 X3.0625 Yl.8750 10.0000 J-0.1875
G01 X3.0625 YO.1250 F40.0000
G02 X2.8750 Y-0.0625 1-0.1875 JO.0000
G01 XO.1250 Y-0.0625 F40.0000
G02 X-0.0625 YO.1250 10.0000 JO.1875
GOO Z1.5000

File: ball mill 0.125in fast.fgc
Tool: 0.125 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.2420
YO.1580
G83 RO.0300 Z-0.0110 QO.0750 F40.0000
GOO ZO.0300

GOO ZO.0300
X-0.0313
YO.1250
G01 Z-0.0133 F40.0000
G01 X-0.0313 Y1.8750 F40.0000
G02 XO.1250 Y2.0313 10.1563 JO.0000

GOO ZO.0300
XO.2420
Y1.8420
G83 RO.0300 Z-0.0110 QO.0750 F40.0000
GOO ZO.0300
X-0.0313 Y1.875
GOO Z-0.0133 F40.0000
G02 XO.1250 Y2.0313 10.1563 JO.0000
G01 X2.8750 Y2.0313 F40.0000
G02 X3.0313 Y1.8750 10.0000 J-0.1563

GOO ZO.0300
X2.7580
Y1.8420
G83 RO.0300 Z-0.0110 QO.0750 F40.0000
GOO ZO.0300
X2.875 Y2.0313
G01 Z-0.0133 F40.0000

G02 X3.0313 Y1.8750 10.0000 J-0.1563
G01 X3.0313 YO.1250 F40.0000
G02 X2.8750 Y-0.0312 1-0.1563 JO.0000
GOO ZO.0300
X2.7580
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YO.1580
G83 RO.0300 Z-0.0110 QO.0750 F40.0000
G00 ZO.0300
X3.0313 Y0.125
G01 Z-0.0133 F40.0000

G02 X2.8750 Y-0.0312 1-0.1563 J0.0000
G01 XO.1250 Y-0.0313 F40.0000
G02 X-0.0312 YO.1250 10.0000 J0.1563
G00 ZO.0300
GOO Z1.5

D.1.2 Layer 1 Bottom Side

The backside consists of the fluid interface

barbs and the recesses for the temperature

sensor.

File: layerireverse 0.0625 square
mill.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GO0 ZO.0300
XO.0625
YO.4662
G01 Z-0.055
G01 XO.0625
G02 XO.2463
G01 XO.2463
G02 XO.0625
G01 XO.0781
G02 XO.1544
G02 XO.1544
G02 XO.0781
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544

F40.0000
Y1.5338
Y1. 5338
YO.4662
YO.4663
YO.4662
YO.5425
YO.3900
YO.4662
YO. 5425

YO. 6950
YO.5425
YO.6950
YO. 8475

YO.6950
YO.8475
Y1. 0000
YO.8475
Y1. 0000
Y1. 1525
Y1. 0000
Y1. 1525
Y1.3050

F40.0000
10.0919 JO.0000
F40.0000
1-0.0919 JO.0000
F40.0000
10.0763 JO.0000
10.0000 J-0.0763
10.0000 JO.0763
10.0763 JO.0000
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763

G02 XO.1544 Y1.1525
G02 XO.1544 Y1.3050
G02 XO.1544 Y1.4575
G02 XO.1544 Y1.3050
G02 XO.1544 Y1.4575
G02 XO.1544 Y1.6100
G02 XO.1544 Y1.4575
G02 XO.1544 Y1.6100
GOO Z0.0300

10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763

GO0 ZO.0300
X1.9629
YO.9762
G01 Z-0.0200 F40.000
G01 X1.9629 Y1.0100 F40.000
G01 X1.9335 Y1.0394 F40.000
G01 X1.9922 Y1.0394 F40.000
G01 X1.9922 YO.9606 F40.000
G01 X1.9335 YO.9606 F40.000
G01 X1.9335 Y1.0394 F40.000
GO0 ZO.0300

GOO Z0.0300
X2.8276
YO . 9820

G01 Z-0.055 F40.0000
G03 X2.8276 YO.8295 10.0000 J-0.0763
G03 X2.8276 YO.9820 10.0000 JO.0763
G01 X2.8095 YO.9958 F40.0000
G02 X2.8457 YO.9958 10.0181 JO.0049
G02 X2.8095 YO.9958 1-0.0181 J-0.0901
G02 X2.8457 YO.9958 10.0181 J-0.0901
GO0 ZO.0300

GO0 ZO.0300
X2.8276
YO.2695
G01 Z-0.055 F40.0000
G03 X2.8276 YO.4220 10.0000 JO.0763
G03 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8457 YO.2557 F40.0000
G02 X2.8095 YO.2557 1-0.0181 J-0.0049
G02 X2.8457 YO.2557 10.0181 JO.0901
G02 X2.8095 YO.2557 1-0.0181 JO.0901
GOO Z1.5000

After pocketing the borders of the barbs we can

insert the keyseat to introduce undercuts.

Originally a 3-32 diameter keyseat cutter was

used, but it was found that barb structural

integrity suffered from such a large undercut.
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Therefore a thinner undercut using a 5-64

diameter cutter is used.

File: layerireverse 3-32 keyseat
revised2.fgc

Tool: 5-64 diameter 1-32 high keyseat
cutter

G90 (use absolute coordinates)

GOO ZO.0300
X0.0871
YO.5425
G01 Z-0.0540 F40.0000
G01 XO.1544 YO.5425 F40.0000
G02 XO.1544
G02 XO.0781
G02 XO.1544
G02 XO.1544
G02 XO.0781
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G01 XO.0871
GOO ZO.0300

YO.3900 10.0000 J-0.0763
YO.4662 10.0000 JO.0763
YO.5425 10.0763 JO.0000
YO.3900 10.0000 J-0.0763
YO.4662 10.0000 JO.0763
YO.5425 10.0763 JO.0000
YO.6950 10.0000 JO.0763
YO.5425 10.0000 J-0.0763
YO.6950 10.0000 JO.0763
YO.8475 10.0000 JO.0763
YO.6950 10.0000 J-0.0763
YO.8475 10.0000 JO.0763
Y1.0000 10.0000 JO.0763
YO.8475 10.0000 J-0.0763
Y1.0000 10.0000 JO.0763
Y1.1525 10.0000 JO.0763
Y1.0000 10.0000 J-0.0763
Y1.1525 10.0000 JO.0763
Y1.3050 10.0000 JO.0763
Y1.1525 10.0000 J-0.0763
Y1.3050 10.0000 JO.0763
Y1.4575 10.0000 JO.0763
Y1.3050 10.0000 J-0.0763
Y1.4575 10.0000 JO.0763
Y1.6100 10.0000 JO.0763
Y1.4575 10.0000 J-0.0763
Y1.6100 10.0000 JO.0763
Y1.4575 10.0000 J-0.0763
Y1I.4575 F40.0000

GOO ZO.0300

XO.0871
YO.5425
G01 Z-0.0540 F40.0000
G01 XO.1544 YO.5425 F40.0000
G02 XO.1544 YO.3900 10.0000 J-0.0763
G02 XO.0781 YO.4662 10.0000 JO.0763
G02 XO.1544 YO.5425 10.0763 JO.0000

G02 XO.1544 YO.3900 10.0000
G02 XO.0781 Y0.4662 10.0000
G02 XO.1544 YO.5425 10.0763
G02 XO.1544 YO.6950 10.0000
G02 XO.1544 YO.5425 10.0000
G02 XO.1544 YO.6950 10.0000
G02 XO.1544 YO.8475 10.0000
G02 XO.1544 YO.6950 10.0000

J-0.0763
JO. 0763
Jo. 0000
JO. 0763
J-0.0763
JO. 0763
JO. 0763
J-0.0763

G02 XO.1544 YO.8475 10.0000 JO.0763
G02 XO.1544 Y1.0000 10.0000 JO.0763
G02 XO.1544 YO.8475 10.0000 J-0.0763
G02 XO.1544 Y1.0000 10.0000 JO.0763
G02 XO.1544 Y1.1525 10.0000 JO.0763
G02 XO.1544 Y1.0000 10.0000 J-0.0763
G02 XO.1544 Y1.1525 10.0000 JO.0763
G02 XO.1544 Y1.3050 10.0000 JO.0763
G02 XO.1544 Y1.1525 10.0000 J-0.0763
G02 XO.1544 Y1.3050 10.0000 JO.0763
G02 XO.1544 Y1.4575 10.0000 JO.0763
G02 XO.1544 Y1.3050 10.0000 J-0.0763
G02 XO.1544 Y1.4575 10.0000 JO.0763
G02 XO.1544 Y1.6100 10.0000 JO.0763
G02 XO.1544 Y1.4575 10.0000 J-0.0763
G02 XO.1544 Y1.6100 10.0000 JO.0763
G02 XO.1544 Y1.4575 10.0000 J-0.0763
G01 XO.0871 Y1.4575 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8276

Y1.0008
G01 Z-0.0540 F40.0000
G01 X2.8276 YO.9820 F40.0000
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G01 X2.8276 Y1.0008 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8276
YO.2508
G01 Z-0.0540 F40.0000
G01 X2.8276 YO.2695 F40.0000
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763

G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763

G01 X2.8276 YO.2508 F40.0000
GOO Z1.5000
XO.0871
YO.5425

Now we machine the tapers into the top face.
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D.1 CONTINUOUS CULTURE

File: layerireverse 90deg revision.fgc
Tool: 0.125 diameter 90 degree full

angle cutter

G90 (use absolute coordinates)

G00 Z0.0300
XO.0871
Y0.5425
G01 Z-0.0430 F40.0000
G01 X0.1544 Y0.5425 F40.0000
G02 XO.1544 YO.3900
G02 XO.0781 YO.4662
G02 XO.1544 YO.5425
G02 XO.1544 YO.3900

G02 XO.0781 YO.4662
G02 XO.1544 YO.5425
G02 XO.1544 YO.6950
G02 XO.1544 YO.5425
G02 XO.1544 YO.6950
G02 XO.1544 YO.8475
G02 XO.1544 YO.6950
G02 XO.1544 YO.8475
G02 XO.1544 Y1.0000
G02 XO.1544 YO.8475
G02 XO.1544 Y1.0000
G02 XO.1544 Y1.1525
G02 XO.1544 Y1.0000
G02 XO.1544 Y1.1525
G02 XO.1544 Y1.3050
G02 XO.1544 Y1.1525
G02 XO.1544 Y1.3050
G02 XO.1544 Y1.4575
G02 XO.1544 Y1.3050
G02 XO.1544 Y1.4575
G02 XO.1544 Y1.6100
G02 XO.1544 Y1.4575
GO2 XO.1544 Y1.6100

G02 XO.1544 Y1.4575
G01 XO.0871 Y1.4575
GOO ZO.0300

10.0000 J-0.0763
10.0000 JO.0763
10.0763 JO.0000
10.0000 J-0.0763
10.0000 JO.0763
10.0763 JO.0000
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 JO.0763
10.0000 J-0.0763
10.0000 JO.0763
10.0000 J-0.0763
F40.0000

GOO ZO.0300
X2.8276
Y1.0008
G01 Z-0.0430 F40.0000
G01 X2.8276 YO.9820 F40.0000
G02 X2.8276 YO.8295 10.0000 J-0.0763

G02 X2.8276 YO.9820 10.0000 JO.0763

G01 X2.8276 Y1.0008 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8276
YO.2508

G01 Z-0.0430 F40.0000
G01 X2.8276 Y0.2695 F40.0000
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8276 YO.2508 F40.0000
GOO Z1.500
X0.0871
YO.5425

Since the keyseat cutter introduces burrs at the

undercut face, we repeat a finish pass with the

square mill to clean up the surfaces. This

reduces sealing failure when tubing is

connected to the barbs.

File: layerireverse 0.0625 square mill
finishpass.fgc

Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.0625
YO.4662
G01 Z-0.055 F40.0000

G01 XO.0625 Y1.5338 F40.0000

G02 XO.2463 Y1.5338 10.0919 JO.0000
G01 XO.2463 YO.4662 F40.0000

G02 XO.0625 YO.4663 1-0.0919 JO.0000
G01 XO.0781 YO.4662 F40.0000

G02 XO.1544 YO.5425 10.0763 JO.0000
G02 XO.1544 YO.3900 10.0000 J-0.0763
G02 XO.0781 YO.4662 10.0000 JO.0763
G02 XO.1544 YO.5425 10.0763 JO.0000
G02 XO.1544 YO.6950 10.0000 JO.0763
G02 XO.1544 YO.5425 10.0000 J-0.0763
G02 XO.1544 YO.6950 10.0000 JO.0763
G02 XO.1544 YO.8475 10.0000 JO.0763
G02 XO.1544 YO.6950 10.0000 J-0.0763
G02 XO.1544 YO.8475 10.0000 JO.0763
G02 XO.1544 Y1.0000 10.0000 JO.0763

G02 XO.1544 YO.8475 10.0000 J-0.0763

G02 XO.1544 Y1.0000 10.0000 JO.0763

G02 XO.1544 Y1.1525 10.0000 JO.0763

G02 XO.1544 Y1.0000 10.0000 J-0.0763

G02 XO.1544 Y1.1525 10.0000 JO.0763

G02 XO.1544 Y1.3050 10.0000 JO.0763

G02 XO.1544 Y1.1525 10.0000 J-0.0763

G02 XO.1544 Y1.3050 10.0000 JO.0763
G02 XO.1544 Y1.4575 10.0000 JO.0763
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APPENDIX D DEVICE G-CODE

G02 XO.1544
G02 XO.1544

G02
G02
G02
G00

X0. 1544

XO.1544
XO.1544
ZO .0300

G00 ZO.0300
X2.8276

YO.9820
G01 Z-0.055
G03 X2.8276
G03 X2.8276
G01 X2.8095
G02 X2.8457
G02 X2.8095
G02 X2.8457
G00 ZO.0300

G00 ZO.0300
X2.8276
YO.2695
G01 Z-0.055
G03 X2.8276
G03 X2.8276
G01 X2.8457
G02 X2.8095
G02 X2.8457
G02 X2.8095
G00 Z1.5000

Y1.3050 10.0000 J-0.0763
Y1.4575 10.0000 JO.0763
Y1.6100 10.0000 JO.0763
Y1.4575 10.0000 J-0.0763
Y1.6100 10.0000 JO.0763

F40.0000
YO.8295 10.0000 J-0.0763
YO.9820 10.0000 JO.0763
YO.9958 F40.0000
YO.9958 10.0181 JO.0049
YO.9958 1-0.0181 J-0.0901
YO.9958 10.0181 J-0.0901

F40.0000
YO.4220 10.0000 JO.0763
YO.2695 10.0000 J-0.0763
YO.2557 F40.0000
YO.2557 1-0.0181 J-0.0049
YO.2557 10.0181 JO.0901
YO.2557 1-0.0181 JO.0901

D.1.3 Layer 1 Top Side

This is the fluidic layer so there are a lot of tool

changes to make sure that surfaces are curved

and tapered. First we pocket the growth

chamber, premixer, and reservoirs and curve

the growth chamber walls.

File: layer1 0.125 square mill.fqc
Tool: 0.125 square mill single flute
upcut

XO.9299
YO.4589
G01 Z-0.0300 F40.0000
G01 XO.9695 YO.6325 F40.0000
G01 X1.0091 YO.4589 F40.0000
G02 XO.9299 YO.4589 1-0.0396
G01 XO.9250 YO.4600 F40.0000
G01 XO.9695 YO.6550 F40.0000
G01 X1.0140 YO.4600 F40.0000
G02 XO.9250 YO.4600 1-0.0445
G00 ZO.0300

J-0 .0090

J-0.0102

GOO ZO.0300
XO.6990
YO.5297
G01 Z-0.0300 F40.0000
G01 XO.8101 YO.6689 F40.0000
G01 XO.7704 YO.4953 F40.0000
G02 XO.6990 YO.5297 1-0.0396 JO.0090
G01 XO.6951 YO.5328 F40.0000
G01 XO.8198 YO.6892 F40.0000
G01 XO.7753 YO.4942 F40.0000
G02 XO.6951 YO.5328 1-0.0445 JO.0102
G00 ZO.0300

G00 ZO.0300
XO.5218
YO.6936
G01 Z-0.0300 F40.0000
G01 XO.6822 YO.7709 F40.0000
G01 XO.5712 YO.6316 F40.0000
G02 XO.5218 YO.6936 1-0.0318 JO.0253
G01 XO.5196 YO.6981 F40.0000
G01 XO.6998 YO.7849 F40.0000
G01 XO.5751 YO.6285 F40.0000
G02 XO.5196 YO.6981 1-0.0357 JO.0285
G00 ZO.0300

G00 ZO.0300
XO.4332
YO.9182
G01 Z-0.0300 F40.0000
G01 XO.6113 YO.9182 F40.0000
G01 XO.4508 YO.8410 F40.0000
G02 XO.4332 YO.9182 1-0.0176 JO.0366
G01 XO.4332 YO.9232 F40.0000
G01 XO.6332 YO.9232 F40.0000
G01 XO.4530 YO.8364 F40.0000
G02 XO.4332 YO.9232 1-0.0198 JO.0411
G00 ZO.0300

G90 (use absolute coordinates)
(G-code auto generated

dxf2gcode.m)

G00 ZO.0300

G00 ZO.0300

XO.4508
using Y1.1590

G01 Z-0.0300 F40.0000
G01 XO.6113 Y1.0818 F40.0000
G01 XO.4332 Y1.0818 F40.0000
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D.1 CONTINUOUS CULTURE

G02 XO.4508 Y1.1590 10.0000 J0.0407
G01 XO.4530 Y1.1636 F40.0000
G01 XO.6332 Y1.0768 F40.0000
G01 XO.4332 Y1.0768 F40.0000
G02 X0.4530 Y1.1636 10.0000 J0.0457
G00 ZO.0300

G00 Z0.0300
XO.5712
Y1.3684
G01 Z-0.0300 F40.0000
G01 XO.6822 Y1.2291 F40.0000
G01 XO.5218 Y1.3064 F40.0000
G02 XO.5712 Y1.3684 10.0176 JO.0366
G01 XO.5751 Y1.3715 F40.0000
G01 XO.6998 Y1.2151 F40.0000
G01 XO.5196 Y1.3019 F40.0000
G02 XO.5751 Y1.3715 10.0198 JO.0411

GOO ZO.0300

GOO ZO.0300
XO.7704
Y1.5047
G01 Z-0.0300 F40.0000
G01 XO.8101 Y1.3311 F40.0000
G01 XO.6990 Y1.4703 F40.0000
G02 XO.7704 Y1.5047 10.0318 JO.0253
G01 XO.7753 Y1.5058 F40.0000
G01 XO.8198 Y1.3108 F40.0000
G01 XO.6951 Y1.4672 F40.0000
G02 XO.7753 Y1.5058 10.0357 JO.0285
GOO ZO.0300

GOO ZO.0300
X1.0091
Y1.5411
G01 Z-0.0300 F40.0000
G01 XO.9695 Y1.3675 F40.0000
G01 XO.9299 Y1.5411 F40.0000
G02 X1.0091 Y1.5411 10.0396 JO.0090
G01 X1.0140 Y1.5400 F40.0000
G01 XO.9695 Y1.3450 F40.0000
G01 XO.9250 Y1.5400 F40.0000
G02 X1.0140 Y1.5400 IO.0445 JO.0102
GOO ZO.0300

GOO ZO.0300
X1.5355
Y1.1690
G01 Z-0.0400 F40.0000
G02 X1.6028 Y1.2856 10.1925 J-0.0334

G01 X1.6028 Y1.2079 F40.0000
G01 X1.5355 Y1.1690 F40.0000
G01 X1.5025 Y1.1138 F40.0000
G02 X1.6341 Y1.3418 10.2255 JO.0218
G01 X1.6341 Y1.1898 F40.0000
G01 X1.5025 Y1.1138 F40.0000

G01 X1.4801 Y1.0648
G01 X1.4634 Y1.0191
G02 X1.6966 Y1.4230
G01 X1.6966 Y1.1537
G01 X1.4634 Y1.0191
G01 X1.4505 YO.9756
G01 X1.4235 YO.9598
G02 X1.7280 Y1.4872
G02 X1.7591 Y1.4561
G01 X1.7591 Y1.1356
G02 X1.7435 Y1.1087
G01 X1.4660 YO.9484
G02 X1.4235 YO.9598
GOO ZO.0300

F40.0000
F40.0000
10.2646 JO.1165
F40.0000
F40.0000
F40.0000

F40.0000
10.3045 JO.1758
10.0000 J-0.0311
F40.0000
1-0.0311 JO.0000
F40.0000
1-0.0155 JO.0269

GOO ZO.0300
X1.5892
Y1.2157
G01 Z-0.0500 F40.0000
G01 X1.5892 Y1.1682 F40.0000
G02 X1.5893 Y1.2632 10.0000 JO.0475
G02 X1.5892 Y1.1682 I-0.0001 J-0.0475
G01 X1.5892 Y1.2157 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.3902
Y1.1690
G01 Z-0.0400 F40.0000
G01 X2.3229 Y1.2079 F40.0000
G01 X2.3229
G02 X2.3902
G01 X2.4233
G01 X2.2917
G01 X2.2917
G02 X2.4233
G01 X2.4457
G01 X2.4623
G01 X2.2292
G01 X2.2292
G02 X2.4623
G01 X2.4753
G01 X2.5022
G02 X2.4598
G01 X2.1822
G02 X2.1667
G01 X2.1667
G02 X2.1977
G02 X2.5022
GOO ZO.0300

Y1.2856 F40.0000
Y1.1690 1-0.1252 J-0.1500
Y1.1138 F40.0000
Y1.1898 F40.0000
Y1.3418 F40.0000
Y1.1138 1-0.0939 J-0.2062
Y1.0648 P40.0000
Y1.0191 F40.0000
Y1.1537 F40.0000
Y1.4230 F40.0000
Y1.0191 1-0.0314 J-0.2874
YO.9756 F40.0000
YO.9598 F40.0000
YO.9484 1-0.0269 JO.0155
Y1.1087 F40.0000
Y1.1356 10.0155 JO.0269
Y1.4561 F40.0000
Y1.4872 10.0311 JO.0000
YO.9598 10.0000 J-0.3516

GOO ZO.0300
X1.8956
YO.5454
G01 Z-0.0400 F40.0000
G01 X1.9629 YO.5843 F40.0000
G01 X2.0302 YO.5454 F40.0000
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G02 X1.8956
G01 X1.8312
G01 X1.9629
G01 X2.0945
G02 X1.8312
G01 X1.7776
G01 X1.7297
G01 X1.9629
G01 X2.1960
G02 X1.7297
G01 X1.6855
G01 X1.6698
G01 X1.9473
G02 X1.9784
G01 X2.2560
G02 X2.2674
G02 X1.6584
G02 X1.6698
GOO ZO.0300

YO.5454 1-0.0673 JO.1834
YO.5444 F40.0000
YO.6204 F40.0000
YO.5444 F40.0000
YO.5444 1-0.1316 JO.1844
YO.5495 F40.0000
YO.5579 F40.0000
YO.6925 F40.0000
YO.5579 F40.0000
YO.5579 1-0.2332 JO.1709
YO.5685 F40.0000
YO.5955 F40.0000
YO.7557 F40.0000
YO.7557 10.0155 J-0.0269
YO.5955 F40.0000
YO.5530 I-0.0155 J-0.0269
YO.5530 1-0.3045 JO.1758
YO.5955 10.0269 JO.0155

GOO ZO.0300
X1.8378
YO.5445
G01 Z-0.0500 F40.0000
G01 X1.8378 YO.4970 F40.0000
G02 X1.8348 YO.5919 10.0000 JO.0475
G02 X1.8378 YO.4970 10.0029 J-0.0474
G01 X1.8378 YO.5445 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0863
YO.5445
G01 Z-0.0500 F40.0000
G01 X2.0863 YO.5320 F40.0000
G02 X2.0864 YO.5570 10.0000 JO.0125
G02 X2.0863 YO.5320 I-0.0000 J-0.0125
G01 X2.0863 YO.5445 F40.0000
G01 Z-0.0510 F40.0000
GOO Z1.5000
XO.9299
YO.4589

File: layer1 3-16 ball mill slow.fgc
Tool: 3-16 diameter ball mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.8216
Y1.4561
G01 Z-0.035 F40.0000
G01 X1.8216 Y1.1356 F40.0000
G02 X1.7748 Y1.0546 1-0.0936 JO.0000
G01 X1.4972 YO.8943 F40.0000
G02 X1.3694 YO.9286 1-0.0468 JO.0811
G02 X1.7280 Y1.5497 10.3586 JO.2070

G02 X1. 8216
G01 Z-0.040
G01 X1.8216
G02 X1.7748
G01 X1.4972
G02 X1.3694
G02 X1.7280
G02 X1.8216
G01 X1.8216
GOO ZO.0300

GOO ZO.0300
X2.1042

Y1.4561
G01 Z-0.035
G02 X2.1977
G02 X2.5564
G02 X2.4285
G01 X2.1510
G02 X2.1042
G01 X2.1042
G01 Z-0.040

APPENDIX D DEVICE G-CODE

Y1.4561 10.0000 J-0.0936
F40.0000
Y1.1356 F40.0000
Y1.0546 1-0.0936 JO.0000
YO.8943 F40.0000
YO.9286 1-0.0468 JO.0811
Y1.5497 10.3586 JO.2070
Y1.4561 10.0000 J-0.0936
Y1.1356 F40.0000

F40.0000
Y1.5497 10.0936 JO.0000
YO.9286 10.0000 J-0.4141
YO.8943 1-0.0811 JO.0468
Y1.0546 F40.0000
Y1.1356 10.0468 JO.0811
Y1.4561 F40.0000
F40.0000

G02 X2.1977 Y1.5497 10.0936 JO.0000
G02 X2.5564
G02 X2.4285
G01 X2.1510
G02 X2.1042
G01 X2.1042
G02 X2.1977
GOO ZO.0300

GOO ZO.0300
X2.0097
YO.8098
G01 Z-0.035
G01 X2.2872
G02 X2.3215
G02 X1.6043
G02 X1.6385
G01 X1.9161
G02 X2.0097
G01 Z-0.040
G01 X2.2872
G02 X2.3215
G02 X1.6043
G02 X1.6385
G01 X1.9161
G02 X2.0097
G01 X2.2872
GOO Z1.50
X1.8216
Y1.4561

YO.9286 10.0000 J-0.4141
YO.8943 1-0.0811 JO.0468
Y1.0546 F40.0000
Y1.1356 10.0468 JO.0811
Y1.4561 F40.0000
Y1.5497 10.0936 JO.0000

F40.0000
YO.6496 F40.0000
YO.5217 1-0.0468 J-0.0811
YO.5217 1-0.3586 JO.2070
YO.6496 10.0811 JO.0468
YO.8098 F40.0000
YO.8098 10.0468 J-0.0811
F40.0000
YO.6496 F40.0000
YO.5217 1-0.0468 J-0.0811
YO.5217 1-0.3586 JO.2070
YO.6496 10.0811 JO.0468
YO.8098 F40.0000
YO.8098 10.0468 J-0.0811
YO.6496 F40.0000

File: layer1 120 deg mill.fgc
Tool: 3-16 diameter 120 degree full
angle drill mill



D.1 CONTINUOUS CULTURE

G90 (use absolute coordinates)

GOO ZO.0300
X1.8685
Y1.4561
G01 Z-0.0230 F40.0000
G01 X1.8685 Y1.1356 F40.0000
G02 X1.7982 Y1.0140 1-0.1405 JO.0000

G01 X1.5207 YO.8537 F40.0000
G02 X1.3288 YO.9051 1-0.0702 JO.1217

G02 X1.7280 Y1.5966 10.3992 JO.2305

G02 X1.8685 Y1.4561 10.0000 J-0.1405

GOO Z0.0300

GOO ZO.0300
X2.0573
Y1.4561
G01 Z-0.0230 F40.0000
G02 X2.1977 Y1.5966 10.1405 JO.0000

G02 X2.5970 YO.9051 10.0000 J-0.4610

G02 X2.4051 YO.8537 1-0.1217 JO.0702

G01 X2.1275 Y1.0140 F40.0000
G02 X2.0573 Y1.1356 10.0702 JO.1217

G01 X2.0573 Y1.4561 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0331
YO.8504
G01 Z-0.0230 F40.0000
G01 X2.3107 YO.6902 F40.0000
G02 X2.3621 YO.4983 1-0.0702 J-0.1217

G02 X1.5637 YO.4983 1-0.3992 JO.2305

G02 X1.6151 YO.6902 10.1217 JO.0702

G01 X1.8926 YO.8504 F40.0000
G02 X2.0331 YO.8504 10.0702 J-0.1217

GOO Z1.5000

Now we need to machine the rounded valved

microfluidic channels and square optical

density measurement channels. In addition to

rounded channels, the 0.0625 ball mill is also

used to deburr the sensor spot recesses.

File: layer1 0.0625 ball mill.fgc
Tool: 0.0625 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544

YO.4662
G01 Z-0.0040 F40.0000
G01 XO.3939 YO.2259 F40.0000
G03 XO.4161
G01 XO.9383
G03 XO.9695
G01 XO.9695
G01 XO.6432
G02 XO.6015
G01 XO.3424
G02 XO.3338
G01 XO.1544
G01 XO.3338
G03 XO.3424
G01 XO.6015
G03 XO.6432
G01 XO.9695
G01 XO.3815
G02 XO.3376
G01 XO.3181
G01 XO.1544
G01 XO.3181
G01 XO.3376
G03 XO.3815
G01 XO.9695
G01 XO.2293
G02 XO.1946
G01 XO.1544
G01 XO.1946
G03 XO.2293
G01 XO.9695
G01 XO.2293
G03 XO.1946
G01 XO.1544
G01 XO.1946
G02 XO.2293
G01 XO.9695
G01 XO.3815
G03 XO.3376
G01 XO.3181
G01 XO.1544
G01 XO.3181
G01 XO.3376
G02 XO.3815
G01 XO.9695
G01 XO.6432
G03 XO.6015
G01 XO.3424
G03 XO.3338
G01 XO.1544
G01 XO.3338
G02 XO.3424

G01 XO.6015
G02 XO.6432

G01 XO.9695
G01 XO.9695
G03 XO.9383

YO.2167
YO.2167
YO.2479
Y1. 0000
YO.3224
YO.3078
YO.4326
YO.4387
YO. 6188
YO.4387
YO.4326
YO.3078
YO.3224
Y1. 0000
YO.5311
YO.5361
YO.5605
YO.7713
YO.5605
YO. 5361
YO.5311
Y1. 0000
YO.8311
YO. 8470

YO. 9237
YO.8470
YO.8311
Y1.0000
Y1. 1689
Y1. 1530
Y1. 0763
Y1. 1530
Y1. 1689
Y1. 0000
Y1.4689
Y1.4639
Y1.4395
Y1.2288
Y1.4395
Y1.4639
Y1.4689
Y1. 0000
Y1. 6776
Y1. 6922
Y1.5674
Y1.5613
Y1.3812
Y1.5613
Y1.5674
Y1.6922
Y1. 6776
Y1. 0000
Y1. 7521
Y1.7833

10.0221 JO.0221
F40.0000
10.0000 JO.0313
F40.0000
F40.0000
1-0.0282 JO.0136
F40.0000
10.0136 JO.0282
F40.0000
F40.0000
10.0221 JO.0221
F40.0000
10.0136 JO.0282
F40.0000

F40.0000

1-0.0195 JO.0244
F40.0000
F40.0000
F40.0000
F40.0000
10.0244 JO.0195
F40.0000

F40.0000
1-0.0070 JO.0305
F40.0000
F40.0000

10.0277 JO.0145
F40.0000
F40.0000
1-0.0070 J-0.0305
F40.0000

F40.0000
10.0277 J-0.0145
F40.0000
F40.0000
1-0.0195 J-0.0244
F40.0000
F40.0000
F40.0000
F40.0000

10.0244 J-0.0195
F40.0000

F40.0000

1-0.0282 J-0.0136
F40.0000
10.0136 J-0.0282

F40.0000
F40.0000
10.0221 J-0.0221

F40.0000

10.0136 J-0.0282

F40.0000
F40.0000
1-0.0313 JO.0000
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G01 XO.4161 Y1.7833
G03 XO.3939 Y1.7741
G01 XO.1544 Y1.5338
G01 XO.3939 Y1.7741
G02 XO.4161 Y1.7833
G01 XO.9383 Y1.7833
G02 XO.9695 Y1.7521
G01 XO.9695
G01 X1..0632
G03 X1.1257
G01 X1.1257
G02 X1.1586
G02 X1.2064
G01 X1.2064
G01 X1.2064
G01 X1.2064
G01 X1.2064
G01 X1.2064
G02 X1.2664
G01 X1.4144
G03 X1.4439
G02 X1.7280
G01 X2.1977
G02 X2.4819
G03 X2.5114
G01 X2.6593
G02 X2.7193
G01 X2.7193
G01 X2.7193
G01 X2.7193
G01 X2.7193
G01 X2.7193
G03 X2.8276
G01 X2.8276
G01 X2.8276
G01 X2.8276
G01 X2.8276
GOO ZO.0300
GOO ZO.0300

Y1. 0000
Y1..0000
Y1. 0625
Y1. 1356
Y1. 3317
Y1.4367
Y1.4767
Y1.5167
Y1. 5567
Y)..5967
Y)..5992
Y1..6592
Y)..6592
Y)..6666
Y1. 7379
Y1. 7379
Y1. 6666
Y1. 6592
Y1. 6592
Y1. 5992
Y1. 5967
Y1. 5567
Y1. 5167

Y1.4767
Y1.4367
Y1.3742
Y)..6542
Y1.3742
Y1.2492
Y1.0942

F40.0000
10.0000 J-0.0313
F40.0000
F40.0000

10.0221 J-0.0221
F40.0000
10.0000 J-0.0313
F40.0000
F40.0000
10.0000 JO.0625
F40.0000
10.6023 JO.0000
10.5694 J-0.1961
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
10.0600 JO.0000
F40.0000
10.0000 JO.0625
10.2841 J-0.5310
F40.0000
10.0000 J-0.6023
10.0295 JO.0551
F40.0000
10.0000 J-0.0600
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
10.1083 JO.0625
F40.0000
F40.0000
F40.0000
F40.0000

GOO ZO.0300
X1.3482
Y1.3549

G01 Z-0.0400 F40.0000
G01 X1.2876 Y1.3899 Z-0.0040 F40.0000
G01 X1.2064 Y1.4367 F40.0000
G01 X1.2064 Y1.4767 F40.0000
G01 X1.2187 Y1.4729 F40.0000
G02 X1.2347 Y1.4652 I-0.0187 J-0.0596
G01 X1.3052 Y1.4181 F40.0000
G01 X1.3634 Y1.3792 Z-0.0400 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3801
Y1.4025

G01 Z-0.0400 F40.0000
G01 X1.3246 Y1.4452 Z-0.0040
G01 X1.2586 Y1.4958 F40.0000
G03 X1.2402 Y1.5056 1-0.0380
G01 X1.2064 Y1.5167 F40.0000
G01 X1.2064 Y1.5567 F40.0000
G01 X1.2637 Y1.5367 F40.0000
G02 X1.2843
G01 X1.3457
G01 X1.3983
GOO ZO.0300

Y1.5247
Y1.4709
Y1.4247

1-0.0206
F40.0000
Z-0.0400

F40.0000

J-0.0496

J-0.0590

F40.0000

GOO ZO.0300
X1.4179
Y1.4457
G01 Z-0.0400 F40.0000
G01 X1.3684 Y1.4952 Z-0.0040 F40.0000
G01 X1.3118 Y1.5518 F40.0000
G03 X1.2893 Y1.5662 1-0.0442 J-0.0442
G01 X1.2064 Y1.5967 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.8216
Y1.3759
G01 Z-0.0440 F40.0000
G01 X1.8460 Y1.3759 F40.0000
G01 X1.9160 Y1.3759 Z -0.0040 F40.0000
G01 X2.0097 Y1.3759 F40.0000
G01 X2.0797 Y1.3759 Z -0.0440 F40.0000
G01 X2.1042 Y1.3759 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.1042
Y1.3359
G01 Z-0.0440 F40.0000
G01 X2.0797 Y1.3359 F40.0000
G01 X2.0097 Y1.3359 Z -0.0040 F40.0000
G01 X1.9160 Y1.3359 F40.0000
G01 X1.8460 Y1.3359 Z -0.0440 F40.0000
G01 X1.8216 Y1.3359 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.8216
Y1.2959
G01 Z-0.0440 F40.0000
G01 X1.8460 Y1.2959 F40.0000
G01 X1.9160 Y1.2959 Z -0.0040 F40.0000
G01 X2.0097 Y1.2959 F40.0000
G01 X2.0797 Y1.2959 Z -0.0440 F40.0000
G01 X2.1042 Y1.2959 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.1042
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Y1.2559
G01 Z-0.0440 F40.0000
G01 X2.0797 Y1.2559 F40.0000
G01 X2.0097 Yl.2559 Z -0.0040 F40.0000
G01 X1.9160 Y1.2559 F40.0000
G01 X1.8460 Y1.2559 Z -0.0440 F40.0000
G01 X1.8216 Y1.2559 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.8216
Y1.2159
G01 Z-0.0440 F40.0000
G01 X1.8460 Y1.2159 F40.0000
G01 X1.9160 Y1.2159 Z -0.0040 F40.0000
G01 X2.0097 Y1.2159 F40.0000
G01 X2.0797 Y1.2159 Z -0.0440 F40.0000
G01 X2.1042 Y1.2159 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7193

Y1.5967
G01 Z-0.0040 F40.0000
G01 X2.6365 Y1.5662 F40.0000
G03 X2.6139 Y1.5518 IO.0216 J-0.0586
G01 X2.5573 Y1.4952 F40.0000
G01 X2.5078 Y1.4457 Z-0.0400 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.5274

Y1.4247
G01 Z-0.0400 F40.000
G01 X2.5801 Y1.4709
G01 X2.6414 Y1.5247
G02 X2.6620 Y1.5367
G01 X2.7193 Y1.5567
G01 X2.7193 Y1.5167
G01 X2.6856 Y1.5056
G03 X2.6672 Y1.4958
G01 X2.6012 Y1.4452
G01 X2.5456 Y1.4025
GOO ZO.0300

Z-0.0040 F40.0000
F40.0000
10.0412 J-0.0470
F40.0000
F40.0000
F40.0000
10.0197 J-0.0593
F40.0000
Z-0.0400 F40.0000

GOO ZO.0300
X2.5623
Y1.3792
G01 Z-0.0400 F40.0000
G01 X2.6206 Y1.4181 Z-0.0040 F40.0000
G01 X2.6910 Y1.4652 F40.0000
G02 X2.7071 Y1.4729 10.0347 J-0.0520
G01 X2.7193 Y1.4767 F40.0000
G01 X2.7193 Y1.4367 F40.0000
G01 X2.6381 Y1.3899.F40.OOOO
G01 X2.5775 Y1.3549 Z-0.0400 F40.0000
GOO ZO.0300
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GOO ZO.0300
X2.3590
Y0.9344
G01 Z-0.0440 F40.0000
G01 X2.3468 YO.9133 F40.0000
G01 X2.3118 YO.8527 Z -0.0040 F40.0000
G01 X2.2649 Y0.7715 F40.0000
G01 X2.2299 Y0.7109 Z -0.0440 F40.0000
G01 X2.2177 YO.6897 F40.0000
GOO ZO.0300

G00 Z0.0300
X2.1831
YO.7097
G01 Z-0.0440 F40.0000
G01 X2.1953 YO.7309 F40.0000
G01 X2.2303 YO.7915 Z -0.0040 F40.0000
G01 X2.2772 YO.8727 F40.0000
G01 X2.3122 YO.9333 Z -0.0440 F40.0000
G01 X2.3244 YO.9544 F40.0000
GO0 ZO.0300

GOO ZO.0300
X2.2897

Y0.9744

G01 Z-0.0440 F40.0000
G01 X2.2775 YO.9533 F40.0000
G01 X2.2425 YO.8927 Z -0.0040 F40.0000
G01 X2.1957 YO.8115 F40.0000
G01 X2.1607 YO.7509 Z -0.0440 F40.0000
G01 X2.1484 YO.7297 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.1138

YO.7497
G01 Z-0.0440 F40.0000
G01 X2.1260 YO.7709 F40.0000
G01 X2.1610 YO.8315 Z -0.0040 F40.0000
G01 X2.2079 YO.9127 F40.0000
G01 X2.2429 YO.9733 Z -0.0440 F40.0000
G01 X2.2551 YO.9944 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2205
Y1.0144
G01 Z-0.0440 F40.0000
G01 X2.2082 YO.9933 F40.0000
G01 X2.1732 YO.9327 Z -0.0040 F40.0000
G01 X2.1264 YO.8515 F40.0000
G01 X2.0914 YO.7909 Z -0.0440 F40.0000
G01 X2.0792 YO.7697 F40.0000
GOO ZO.0300

GOO ZO.0300
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X1. 8466
YO. 7697

G01 Z-0.0440 F40.0000
G01 X1.8344 YO.7909 F40.0000
G01 X1.7994 YO.8515 Z -0.0040 F40.0000
G01 X1.7525 YO.9327 F40.0000
G01 X1.7175 Y0.9933 Z -0.0440 F40.0000
G01 X1.7053 Y1.0144 F40.0000
G00 ZO.0300

GOO ZO.0300
X1.6707
Y0.9944
G01 Z-0.0440 F40.0000
G01 X1.6829 YO.9733 F40.0000
G01 X1.7179 YO.9127 Z -0.0040 F40.0000
G01 X1.7647 YO.8315 F40.0000
G01 X1.7997 YO.7709 Z -0.0440 F40.0000
G01 X1.8119 YO.7497 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.7773
YO.7297
G01 Z-0.0440 F40.0000
G01 X1.7651 YO.7509 F40.0000
G01 X1.7301 YO.8115 Z -0.0040 F40.0000
G01 X1.6832 YO.8927 F40.0000
G01 X1.6482 YO.9533 Z -0.0440 F40.0000
G01 X1.6360 YO.9744 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.6014
YO.9544
G01 Z-0.0440 F40.0000
G01 X1.6136 YO.9333 F40.0000
G01 X1.6486 YO.8727 Z -0.0040 F40.0000
G01 X1.6955 YO.7915 F40.0000
G01 X1.7305 YO.7309 Z -0.0440 F40.0000
G01 X1.7427 YO.7097 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.7080
YO.6897
G01 Z-0.0440 F40.0000
G01 X1.6958 YO.7109 F40.0000
G01 X1.6608 YO.7715 Z -0.0040 F40.0000
G01 X1.6139 YO.8527 F40.0000
G01 X1.5789 YO.9133 Z -0.0440 F40.0000
G01 X1.5667 YO.9344 F40.0000
GOO ZO.0300

(G-code auto
dxf2gcode.m)

generated using

APPENDIX D DEVICE G-CODE

G90 (use absolute coordinates)

GOO ZO.0300
X1.0152
YO.6654
G01 Z-0.0051 F40.0000
G01 X1.0597 YO.4704 F40.0000
G02 XO.8793 YO.4704 1-0.0902 J-0.0206
G01 XO.9238 YO.6654 F40.0000
G02 X1.0152 YO.6654 10.0457 J-0.0104
GOO ZO.0300

GOO ZO.0300
XO.8655
YO.6787
G01 Z-0.0051 F40.0000
G01 XO.8210 YO.4837 F40.0000
G02 XO.6585 YO.5620 1-0.0902 JO.0206
G01 XO.7832 YO.7184 F40.0000
G02 XO.8655 YO.6787 10.0367 J-0.0292
GOO ZO.0300

GOO ZO.0300
XO.7364
YO.7556
G01 Z-0.0051 F40.0000
G01 XO.6117 YO.5993 F40.0000
G02 XO.4992 YO.7403 1-0.0723 JO.0577
G01 XO.6794 YO.8271 F40.0000
G02 XO.7364 YO.7556 10.0203 J-0.0422
GOO ZO.0300

GOO ZO.0300
XO.6535
YO.8810
G01 Z-0.0051 F40.0000
G01 XO.4733 YO.7942 F40.0000
G02 XO.4332 YO.9701 1-0.0401 JO.0834
G01 XO.6332 YO.9701 F40.0000
G02 XO.6535 YO.8810 I-0.0000 J-0.0469
GOO ZO.0300

GOO ZO.0300
XO.6331
Y1.0299
G01 Z-0.0051 F40.0000
G01 XO.4331 Y1.0299 F40.0000
G02 XO.4733 Y1.2058 10.0000 JO.0925
G01 XO.6535 Y1.1190 F40.0000
G02 XO.6331 Y1.0299 1-0.0203 J-0.0422
GOO ZO.0300

GOO ZO.0300
XO.6794
Y1.1728
G01 Z-0.0051 F40.0000
G01 XO.4992 Y1.2596 F40.0000
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G02 XO.6117 Y1.4007 10.0401 JO.0834
G01 XO.7364 Y1.2443 F40.0000
G02 XO.6794 Y1.1728 1-0.0367 J-0.0292
GO0 ZO.0300

GOO ZO.0300
XO.7831
Y1.2816
G01 Z-0.0051 F40.0000
G01 XO.6584 Y1.4380 F40.0000
G02 XO.8210 Y1.5162 10.0723 JO.0577
G01 XO.8655 Y1.3213 F40.0000
G02 XO.7831 Y1.2816 1-0.0457 J-0.0104
GOO ZO.0300

GOO ZO.0300
XO.9238
Y1.3346
G01 Z-0.0051 F40.0000
G01 XO.8793 Y1.5296 F40.0000
G02 X1.0597 Y1.5296 10.0902 J0.0206
G01 X1.0152 Y1.3346 F40.0000
G02 XO.9238 Y1.3346 1-0.0457 JO.0104
GOO ZO.0300

GOO Z0.0300
XO.9695
Y1.0462
G01 Z-0.0051 F40.0000
G01 XO.9695 YO.9538 F40.0000
G02 XO.9489 YO.9390 1-0.0156 JO.0000
G02 XO.9489 Y1.0610 10.0206 JO.0610
G02 XO.9695 Y1.0462 10.0050 J-0.0148
GOO Z0.0300

GOO Z0.0300
X1.2064
Y1.4367
G01 Z-0.0051 F40.0000
G01 X1.2064 Y1.4767 F40.0000
G01 X1.2064 Y1.5167 F40.0000
G01 X1.2064 Y1.5567 F40.0000
G01 X1.2064 Y1.5967 F40.0000
G01 X1.2064 Y1.5992 F40.0000
G02 X1.2664 Y1.6592 10.0600 JO.0000
G01 X1.4144 Y1.6592 F40.0000
G03 X1.4439 Y1.6666 10.0000 JO.0625
G02 X1.7280 Y1.7379 10.2841 J-0.5310
G01 X2.1977 Y1.7379 F40.0000
G02 X2.4819 Y1.6666 10.0000 J-0.6023
G03 X2.5114 Y1.6592 10.0295 JO.055
G01 X2.6593 Y1.6592 F40.0000
G02 X2.7193 Y1.5992 10.0000 J-0.0600
G01 X2.7193 Y1.5967 F40.0000
G01 X2.7193 Y1.5567 F40.0000
G01 X2.7193 Y1.5167 F40.0000
GO). X2.7193 Y1.4767 F40.0000

G01 X2.7193 Y1.4367 F40.0000
GOO Z0.0300

GOO Z0.0300
X1.4948
Y1.2157
G01 Z-0.0450 F40.0000
G02 X1.6836 Y1.2157 10.0944 JO.0000
G02 X1.4948 Y1.2157 1-0.0944 JO.0000
GO0 ZO.0300

GO0 ZO.0300
X1.9322
YO.5445
G01 Z-0.0450 F40.0000
G02 X1.7434 YO.5445 1-0.0944 JO.0000
G02 X1.9322 YO.5445 10.0944 JO.0000
GO0 ZO.0300

GO0 ZO.0300
X2.0270
YO.5445
G01 Z-0.0450 F40.0000
G02 X2.1457 YO.5445 10.0594 JO.0000
G02 X2.0270 YO.5445 1-0.0594 JO.0000
GOO Z1.5000

File: layer1 0.03125 square mill.fgc
Tool: 0.03125 square mill

G90 (use absolute coordinates)

GOO Z0.0300
X1.1586
Y1.3317
G01 Z-0.0000 F40.0000
G02 X1.2064 Y1.4367 Z-0.0100 10.5694

J-0.1961
G01 X1.2064
G02 X1.2664
G01 X1.3264
G01 X1.4144
G03 X1.4439
G02 X1.7280
G01 X2.1977
G02 X2.4819
G03 X2.5114
G01 X2.5993
G01 X2.6593
G02 X2.7193
G01 X2.7193
G03 X2.8276
GOO Z1.5000

Y1. 5992
Y1. 6592
Y1. 6592
Y1.6592
Y1. 6666
Y1. 7379
Y1. 7379
Y1. 6666
Y1. 6592
Y1. 6592
Y1. 6592
Y1.5992
Y1.4367
Y1.3742

F40.0000

10.0600 JO.0000
Z-0.03125 F40.0000
F40.0000
10.0000 JO.0625
10.2841 J-0.5310
F40.0000
10.0000 J-0.6023
10.0295 JO.0551
F40.0000

Z-0.01 F40.0000
10.0000 J-0.0600
F40.0000
ZO 10.1083 JO.0625

File: layer1 0.03125 square mill.fgc
Tool: 0.03125 square mill
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G90 (use absolute coordinates)

GOO ZO.0300
X1.1586
Y1.3317
G01 Z-0.0000 F40.000
G02 X1.2064 Y1.4367

J-0 .1961
G01 X1.2064
G02 X1.2664
G01 X1.3264
G01 X1.4144
G03 X1.4439
G02 X1.7280
G01 X2.1977
G02 X2.4819
G03 X2.5114
G01 X2.5993
G01 X2.6593
G02 X2.7193
G01 X2.7193
G03 X2.8276
GOO Z1.5000

Y1. 5992
Y1. 6592
Y1. 6592
Y1. 6592
Y1. 6666
Y1. 7379
Y1. 7379
Y1. 6666
Y1. 6592
Y1. 6592
Y1. 6592
Y1.5992
Y1.4367
Y1.3742

0
Z-0.0100 10.5694

F40.0000
10.0600 JO.0000
Z-0.03125 F40.0000
F40.0000
10.0000 JO.0625
10.2841 J-0.5310
F40.0000
10.0000 J-0.6023
10.0295 JO.0551
F40.0000
Z-0.01 F40.0000
10.0000 J-0.0600
F40.0000
ZO 10.1083 JO.0625

GOO ZO.0300
X1.6360
YO.9744
G01 Z-0.0040 F40.0000
G01 X1.7773 YO.7297 F40.0000
GOO Z1.50
XO.9451
YO.9683

After machining all of the device features, we

can now break vacuum by drilling access ports

where all of the barbs are located. These are

drilled into the top side of layer 1. For

polycarbonate we can drill using regular drills,

but for PMMA we need to use center cutting

square mills and peck to prevent heating and

fracturing at the exit of the holes.
File: layer1 0.02 deep OD in mixer.fgc
Tool: 0.02 square mill

GOO ZO.0300
XO.9451
YO.9683
G01 Z-0.0050 F40.0000
G02 XO.9451 Y1.0317 10.0244 JO.0317
G01 XO.9451 YO.9683 F40.0000
G01 XO.9551 YO.9521 F40.0000
G02 XO.9551 Y1.0479 10.0144 JO.0479
G01 XO.9551 YO.9521 F40.0000
G01 XO.9651 YO.9402 F40.0000
G02 XO.9651 Y1.0598 10.0044 JO.0598
G01 XO.9651 YO.9402 F40.0000
G01 XO.9751 YO.9300 F40.0000
G01 XO.9695 YO.9300 F40.0000
G02 XO.9695 Y1.0700 10.0000 JO.0700
G01 XO.9751 Y1.0700 F40.0000
G01 XO.9751 YO.9300 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1408
Y1.2129
G01 Z-0.0040 F40.0000
G01 X1.1210 Y1.2155 F40.0000
G01 X1.1223 Y1.2254 F40.0000
G01 X1.1421 Y1.2228 F40.0000
G02 X1.1395 Y1.2030 1-0.0013 J-0.0099
G01 X1.1197 Y1.2056 F40.0000
G02 X1.1223 Y1.2254 10.0013 JO.0099
GOO ZO.0300

File: layer1 0.036 drill.fgc
Tool: 0.036 drill

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544
Y1.5338
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO . 1544
Y1.3812
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.1544
Y1.2287
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.1544
Y1.0762
G83 RO.0300
GOO ZO.0300

GOO ZO.0300

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000
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XO .1544
YO.9238
G83 RO.0300
G00 ZO.0300

G00 Z0.0300
XO . 1544
YO.7713
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
XO . 1544
YO.6188
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.1544
YO .4662
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
X2.8276
Y1.0942
G83 RO.0300
GO0 ZO.0300

GOO Z0.0300
X2.8276
Y1.6542
G83 RO.0300
GOO Z1.5000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

File: layer1 0.03125 mill drill.fgc
Tool: 0.03125 square mill long reach

G90 (use absolute coordinates)

GOO Z0.0300
XO .1544
Y1.5338
G83 RO.0300
G00 ZO.0300

GOO Z0.0300
XO . 1544
Y1.3812
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
XO.1544
Y1.2287
G83 RO.0300
GOO Z0.0300

GO0 ZO.0300
XO . 1544

Y1.0762
G83 RO.0300
GOO Z0.0300

GOO ZO.0300
XO.1544
YO.9238
G83 RO.0300
GOO Z0.0300

GO0 ZO.0300
XO .1544
YO .7713
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO . 1544

YO.6188
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
XO . 1544
YO.4662
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
X2.8276

Y1.0942
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.8276
Y1.6542
G83 RO.0300
GOO Z1.5000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

Z-0.1000 QO.04500 F40.0000

D.1.4 Layer 2 Top Side

For the second layer, we need to machine the

connecting manifold channels on the backside

first. If we cut the mixer pockets before doing

this, the vacuum chuck will pull down the thin

Z-0.1000 QO.04500 F40.0000
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material, causing large thickness variations in GOO ZO.0300

the gas manifold channels.

File: layer2 top 0.02 square mill.fgc
Tool: 0.02 square mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.1775
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.1252 YO.1544 F40.0000
G02 X1.0652 YO.2144 10.0000 JO.0600
G01 X1.0652 YO.2167 F40.0000
G03 X1.0027 YO.2792 1-0.0625 JO.0000
G01 X1.0007 Y0.2792 F40.0000
G01 X0.9908 Y0.2792 F40.0000
G00 ZO.0300

G00 ZO.0300
X0.9483
Y0.2792
G01 Z-0.0100 F40.0000
G01 XO.9382 Y0.2792 F40.0000
G02 X0.6849 YO.3370 10.0312 J0.7208
G01 X0.6759 Y0.3414 F40.0000
G00 ZO.0300

G00 ZO.0300
XO.6376
YO.3598
G01 Z-0.0100 F40.0000
G01 XO.6286 YO.3641 F40.0000
G02 XO.4254 YO.5262 10.3409 JO.6359
G01 XO.4192 Y0.5340 F40.0000
G00 ZO.0300

GOO ZO.0300
XO.3927
Y0.5672
G01 Z-0.0100 F40.0000
G01 XO.3865 YO.5750 F40.0000
G02 XO.2737 YO.8091 10.5830 JO.4250
G01 XO.2715 YO.8189 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.2621
YO.8603
G01 Z-0.0100 F40.0000
G01 XO.2598 YO.8701 F40.0000
G02 XO.2598 Y1.1299 10.7097 JO.1299
G01 XO.2621 Y1.1397 F40.0000

GOO ZO.0300
XO.2715
Y1.1811
G01 Z-0.0100 F40.0000
G01 XO.2737 Y1.1909 F40.0000
G02 XO.3865 Y1.4250 10.6958 J-0.1909
G01 XO.3927 Y1.4328 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4192
Y1.4660
G01 Z-0.0100 F40.0000
G01 XO.4254 Y1.4738 F40.0000
G02 XO.6286 Y1.6359 10.5441 J-0.4738
G01 XO.6376 Y1.6402 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.6759
Y1.6586
G01 Z-0.0100 F40.0000
G01 XO.6849 Y1.6630 F40.0000
G02 XO.9382 Y1.7208 10.2846 J-0.6630
G01 XO.9483 Y1.7208 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9695
Y1.6383
G01 Z-0.0100 F40.0000
G03 XO.9695 YO.3617 10.0000 J-0.6383
G01 X1.1275 YO.3617 F40.0000
G02 X1.1775 YO.3117 10.0000 J-0.0500
G01 X1.1775 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.3162 YO.1544 F40.0000
G02 X1.2537 YO.2169 10.0000 JO.0625
G01 X1.2537 YO.3392 F40.0000
G03 X1.1912 YO.4017 1-0.0625 JO.0000
G01 XO.9695 YO.4017 F40.0000
G02 XO.6756 YO.4789 10.0000 JO.5983
G02 XO.6438 YO.5333 10.0307 JO.0544
G01 XO.6438 YO.9742 F40.0000
G02 XO.7202 Y1.0351 10.0625 JO.0000
G01 XO.7503 Y1.0282 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7598
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YO.9303
G01 Z-0.0100 F40.0000
G01 XO.7324 YO.9241 F40.0000
G03 XO.6838 YO.8631 10.0139 J-0.0609
G01 XO.6838 YO.6917 F40.0000
G03 XO.9338 Y0.4417 10.2500 JO.0000
G01 X1.2675 Y0.4417 F40.0000
G02 X1.3300 YO.3792 10.0000 J-0.0625
G01 X1.3300 YO.3069 F40.0000
G00 Z0.0300

G00 ZO.0300
X1.4825
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.4687 YO.1544 F40.0000
G02 X1.4062 YO.2169 10.0000 JO.0625
G01 X1.4062 YO.4192 F40.0000
G03 X1.3437 YO.4817 1-0.0625 JO.0000
G01 XO.9557 YO.4817 F40.0000
G02 XO.7682 YO.6692 10.0000 JO.1875
G01 XO.7682 YO.7822 F40.0000
G02 XO.7918 YO.8311 10.0625 JO.0000
G01 XO.8108 YO.8462 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8932
YO.7926
G01 Z-0.0100 F40.0000
G01 XO.8802 YO.7657 F40.0000
G03 XO.8740 YO.7385 10.0563 J-0.0271
G01 XO.8740 YO.5855 F40.0000
G03 XO.9316 YO.5232 10.0625 JO.0000
G03 XO.9695 YO.5217 10.0379 JO.4768
G01 X1.4200 YO.5217 F40.0000
G02 X1.4825 YO.4592 10.0000 J-0.0625
G01 X1.4825 YO.3069 F40.0000
GOO ZO.0300

G00 ZO.0300
X1.6350
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.6212 YO.1544 F40.0000
G02 X1.5587 YO.2169 10.0000 JO.0625
G01 X1.5587 YO.4992 F40.0000
G03 X1.4962 YO.5617 1-0.0625 JO.0000
G01 X1.0532 YO.5617 F40.0000
G02 XO.9907 YO.6242 10.0000 JO.0625
G01 XO.9908 YO.7800 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7843
Y1.1206
G01 Z-0.0100 F40.0000

G01
G03
G01
G02
G01
G03
G01
G02
G01
GO0

XO.9042 Y1.0249 F40.0000
XO.9822 YO.9976 10.0779 JO.0977
XO.9833 YO.9976 F40.0000
X1.0458 YO.9351 10.0000 J-0.0625
X1.0458 YO.6642 F40.0000
X1.1083 YO.6017 10.0625 JO.0000
X1.5725 YO.6017 F40.0000
X1.6350 YO.5392 10.0000 J-0.0625
X1.6350 YO.3069 F40.0000
ZO.0300

GOO ZO.0300
X1.7875
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.7737 YO.1544 F40.0000
G02 X1.7112 YO.2169 10.0000 JO.0625
G01 X1.7112 YO.5792 F40.0000
G03 X1.6487 YO.6417 1-0.0625 JO.0000
G01 X1.1482 YO.6417 F40.0000
G02 X1.0857 YO.7042 10.0000 JO.0625
G01 X1.0857 YO.9751 F40.0000
G03 X1.0232 Y1.0376 1-0.0625 JO.0000
G01 X1.0046 Y1.0376 F40.0000
G02 XO.9598 Y1.0459 10.0000 JO.1250
G01 XO.9504 Y1.0495 F40.0000
G02 XO.8995 Y1.0964 10.0336 JO.0875
G01 XO.8549 Y1.1890 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9483
Y1.2200
G01 Z-0.0100 F40.0000
G01 XO.9482 Y1.1714 F40.0000
G03 X1.0420 Y1.0776 10.0938 JO.0000
G01 X1.0632 Y1.0776 F40.0000
G02 X1.1257 Y1.0151 10.0000 J-0.0625
G01 X1.1257 YO.7442 F40.0000
G03 X1.1882 YO.6817 10.0625 JO.0000
G01 X1.7250 YO.6817 F40.0000
G02 X1.7875 YO.6192 10.0000 J-0.0625
G01 X1.7875 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.9262 YO.1544 F40.0000
G02 X1.8637 YO.2169 10.0000 JO.0625
G01 X1.8637 YO.6592 F40.0000
G03 X1.8012 YO.7217 1-0.0625 JO.0000
G01 X1.2282 YO.7217 F40.0000
G02 X1.1657 YO.7842 10.0000 JO.0625
G01 X1.1657 Y1.0955 F40.0000
G03 X1.1474 Y1.1342 1-0.0500 JO.0000
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G01 X1.1457 Yl.1356 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1507
Y1.2116
G01 Z-0.0100 F40.0000
G01
G02
G01
G03
G01
G02
G03
G01
G03
G01
G02
G01
GOO

X1. 1909
X1.2137
X1.2137
X1.2762
Xl. 7067
Xl. 7656
Xl. 7767
Xl. 8453
Xl. 8736
Xl. 8775
Xl. 9400
Xl. 9400
ZO .0300

Y1. 1787
Y1. 1304
YO. 9746
YO.9121
YO.9121

YO.8630
YO.8420
YO.7734
YO. 7617
YO. 7617

YO.6992
YO.3069

GOO ZO.0300
X2.0925
YO.1544
G01 Z-0.0100 F40.000
G01 X2.0787 YO.1544
G02 X2.0162 YO.2169

G01 X2.0162 YO.7392
G03 X1.9537 YO.8017

G01 X1.9229 YO.8017
G02 X1.8787 YO.8200
G01 X1.8630 YO.8357
G02 X1.8453 YO.8713
G03 X1.7067 YO.9921

G01 X1.3562 YO.9921
G02 X1.2937 Y1.0546
G01 X1.2937 Y1.1517
G03 X1.2709 Y1.2001
G01 X1.1656 Y1.2863
GOO ZO.0300

F40.0000
1-0.0396 J-0.0483
F40.0000
10.0625 JO.0000
F40.0000
10.0000 J-0.0600
10.0393 JO.0073
F40.0000
10.0283 JO.0283
F40.0000
10.0000 J-0.0625
F40.0000

APPENDIX D DEVICE G-CODE

G02 X2.5387 YO.5442 1-0.0625 JO.0000
G01 X2.4600 YO.5442 F40.0000
G03 X2.3975 YO.4817 10.0000 J-0.0625

G01 X2.3975 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.5500

YO.1544
G01 Z-0.0100 F40.000
G01 X2.5362 YO.1544
G02 X2.4737 YO.2169
G01 X2.4737 YO.3792
G02 X2.5362 YO.4417

G01 X2.6353 YO.4417
G03 X2.6978 YO.5042
G01 X2.6978 Y1.3773
GOO ZO.0300

F40.0000
10.0000 JO.0625

F40.0000
10.0625 JO.0000
F40.0000
10.0000 JO.0625
F40.0000

GOO ZO.0300
X2.7876
Y1.3117
G01 Z-0.0100 F40.0000
G01 X2.7876 YO.8314 F40.0000
GOO ZO.0300

F40.0000
10.0000 JO.0625

F40.0000
1-0.0625 JO.0000
F40.0000
10.0000 JO.0625
F40.0000
10.0442 JO.0442
1-0.1387 J-0.0192
F40.0000
10.0000 JO.0625
F40.0000
1-0.0625 JO.0000
F40.0000

GOO ZO.0300
X1.3651
Y1.5560
G01 Z-0.0100 F40.0000
G01 X2.5606 Y1.5560 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7876

Y1.4992
G01 Z-0.0100 F40.0000
G01 X2.6929 Y1.4992 F40.0000
G03 X2.6548 Y1.4863 10.0000 J-0.0625

G01 X2.6256 Y1.4639 F40.0000
G03 X2.6012 Y1.4143 10.0380 J-0.0496

G01 X2.6012 YO.6067 F40.0000

GOO ZO.0300
X2.7876

YO.7314
G01 Z-0.0100 F40.0000

G01 X2.7876 YO.3694 F40.0000
G02 X2.7251 YO.3069 1-0.0625 JO.0000
G01 X2.5500 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.3975
YO.1544
G01 Z-0.0100 F40.0000
G01 X2.3837 YO.1544 F40.0000
G02 X2.3212 YO.2169 10.0000 JO.0625

G01 X2.3212 Y1.1132 F40.0000
G03 X2.2587 Y1.1757 1-0.0625 JO.0000
G01 X1.9629 Y1.1757 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0752
Y1.0649
G01 Z-0.0100 F40.0000
G01 X2.1825 Y1.0649 F40.0000
G02 X2.2450 Y1.0024 10.0000 J-0.0625

G01 X2.2450 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2450
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YO.1544
G01 Z-0.0100 F40.0000
G01 X2.2312 YO.1544 F40.0000
G02 X2.1687 YO.2169 10.0000 JO.0625
G01 X2.1687 YO.8451 F40.0000
G03 X2.1375 YO.8992 1-0.0625 JO.0000
G01 X1.8505 Y1.0649 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9629
YO.8703
G01 Z-0.0100 F40.0000
G01 X2.0300 YO.8703 F40.0000
G02 X2.0925 YO.8078 10.0000 J-0.0625
G01 X2.0925 YO.3069 F40.0000
GOO Z1.5000
X1.1775
YO.1544

After machining the channels, we can do an

automatic deburr, which saves manual labor

required to deburr all of the sidewalls using a

razor blade.

File: layer2 top 0.03125 ball mill
deburr.fgc
Tool: 0.03125 diameter ball mill

(G-code auto
dxf2gcode.m)

generated ng

G90 (use absolute coordinates)

GOO ZO.0300
X1.1775
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.1252 YO.1544 F40.0000
G02 X1.0652 YO.2144 10.0000 JO.0600
G01 X1.0652 YO.2167 F40.0000
G03 X1.0027 YO.2792 1-0.0625 JO.0000
G01 X1.0007 YO.2792 F40.0000
G01 XO.9908 YO.2792 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9483
YO.2792
G01 Z-0.0060 F40.0000
G01 XO.9382 YO.2792 F40.0000
G02 XO.6849 YO.3370 10.0312 JO.7208

G01 XO.6759 YO.3414 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.6376
YO.3598
G01 Z-0.0060 F40.0000
G01 XO.6286 YO.3641 F40.0000
G02 XO.4254 YO.5262 10.3409 JO.6359
G01 XO.4192 YO.5340 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3927
YO.5672
G01 Z-0.0060 F40.0000
G01 XO.3865 YO.5750 F40.0000
G02 XO.2737 YO.8091 10.5830 JO.4250
G01 XO.2715 YO.8189 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.2621
YO.8603
G01 Z-0.0060 F40.0000
G01 XO.2598 YO.8701 F40.0000
G02 XO.2598 Y1.1299 10.7097 JO.1299
G01 XO.2621 Y1.1397 F40.0000
GOO ZO.0300

GOO Z0.0300
XO.2715
Y1.1811
G01 Z-0.0060 F40.0000
G01 XO.2737 Y1.1909 F40.0000
G02 XO.3865 Y1.4250 10.6958 J-0.1909
G01 XO.3927 Y1.4328 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4192
Y1.4660
G01 Z-0.0060 F40.0000
G01 XO.4254 Y1.4738 F40.0000
G02 XO.6286 Y1.6359 10.5441 J-0.4738
G01 XO.6376 Y1.6402 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.6759
Y1.6586
G01 Z-0.0060 F40.0000
G01 XO.6849 Y1.6630 F40.0000
G02 XO.9382 Y1.7208 10.2846 J-0.6630
G01 XO.9483 Y1.7208 F40.0000
GOO ZO.0300
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GOO ZO.0300
XO.9695
Y1.6383
G01 Z-0.0060 F40.0000
G03 XO.9695 YO.3617 10.0000 J-0.6383

G01 X1.1275 YO.3617 F40.0000
G02 X1.1775 YO.3117 10.0000 J-0.0500

G01 X1.1775 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.3162 YO.1544 F40.0000
G02 X1.2537 YO.2169 10.0000 JO.0625
G01 X1.2537 YO.3392 F40.0000
G03 X1.1912 YO.4017 1-0.0625 JO.0000
G01 XO.9695 YO.4017 F40.0000
G02 XO.6756 YO.4789 10.0000 JO.5983
G02 XO.6438 YO.5333 10.0307 JO.0544
G01 XO.6438 YO.9742 F40.0000
G02 XO.7202 Y1.0351 10.0625 JO.0000

G01 XO.7503 Y1.0282 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7598
YO.9303
G01 Z-0.0060 F40.0000
G01 XO.7324 YO.9241 F40.0000
G03 XO.6838 YO.8631 10.0139 J-0.0609

G01 XO.6838 YO.6917 F40.0000
G03 XO.9338 YO.4417 10.2500 JO.0000

G01 X1.2675 YO.4417 F40.0000
G02 X1.3300 YO.3792 10.0000 J-0.0625
G01 X1.3300 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.4825
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.4687 YO.1544 F40.0000
G02 X1.4062 YO.2169 10.0000 JO.0625
G01 X1.4062 YO.4192 F40.0000
G03 X1.3437 YO.4817 1-0.0625 JO.0000

G01 XO.9557 YO.4817 F40.0000
G02 XO.7682 YO.6692 10.0000 JO.1875

G01 XO.7682 YO.7822 F40.0000
G02 XO.7918 YO.8311 10.0625 JO.0000
G01 XO.8108 YO.8462 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8932
YO.7926

G01 Z-0.0060 F40.0000
G01 XO.8802 YO.7657 F40.0000
G03 XO.8740 YO.7385 10.0563 J-0.0271
G01 X0.8740 Y0.5855 F40.0000
G03 XO.9316 Y0.5232 10.0625 J0.0000
G03 X0.9695 YO.5217 10.0379 J0.4768

G01 X1.4200 YO.5217 F40.0000
G02 X1.4825 Y0.4592 10.0000 J-0.0625
G01 X1.4825 Y0.3069 F40.0000
G00 ZO.0300

G00 ZO.0300
X1.6350
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.6212 YO.1544 F40.0000
G02 X1.5587 YO.2169 10.0000 JO.0625

G01 X1.5587 YO.4992 F40.0000
G03 X1.4962 YO.5617 1-0.0625 JO.0000
G01 X1.0532 YO.5617 F40.0000
G02 XO.9907 YO.6242 10.0000 JO.0625
G01 XO.9908 YO.7800 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7843
Y1.1206
G01 Z-0.0060 F40.0000
G01 XO.9042 Y1.0249 F40.0000
G03 XO.9822 YO.9976 10.0779 JO.0977

G01 XO.9833 YO.9976 F40.0000
G02 X1.0458 YO.9351 10.0000 J-0.0625

G01 X1.0458 YO.6642 F40.0000
G03 X1.1083 YO.6017 10.0625 JO.0000
G01 X1.5725 YO.6017 F40.0000
G02 X1.6350 YO.5392 10.0000 J-0.0625
G01 X1.6350 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.7875
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.7737 YO.1544 F40.0000
G02 X1.7112 YO.2169 10.0000 JO.0625
G01 X1.7112 YO.5792 F40.0000
G03 X1.6487 YO.6417 1-0.0625 JO.0000

G01 X1.1482 YO.6417 F40.0000
G02 X1.0857 YO.7042 10.0000 JO.0625

G01 X1.0857 YO.9751 F40.0000
G03 X1.0232 Y1.0376 1-0.0625 JO.0000

G01 X1.0046 Y1.0376 F40.0000
G02 XO.9598 Y1.0459 10.0000 JO.1250

G01 XO.9504 Y1.0495 F40.0000
G02 XO.8995 Y1.0964 10.0336 JO.0875

G01 XO.8549 Y1.1890 F40.0000
GOO ZO.0300
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GOO ZO.0300
XO.9483
Y1.2200
G01 Z-0.0060 F40.0000
G01 XO.9482 Y1.1714 F40.0000
G03 X1.0420 Y1.0776 10.0938 JO.0000
G01 X1.0632 Y1.0776 F40.0000
G02 X1.1257 Y1.0151 10.0000 J-0.0625
G01 X1.1257 YO.7442 F40.0000
G03 X1.1882 YO.6817 10.0625 JO.0000
G01 X1.7250 YO.6817 F40.0000
G02 X1.7875 YO.6192 10.0000 J-0.0625
G01 X1.7875 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.9262 YO.1544 F40.0000
G02 X1.8637 YO.2169 10.0000 JO.0625
G01 X1.8637 YO.6592 F40.0000
G03 X1.8012 YO.7217 1-0.0625 JO.0000
G01 X1.2282 YO.7217 F40.0000
G02 X1.1657 YO.7842 10.0000 JO.0625
G01 X1.1657 Y1.0955 F40.0000
G03 X1.1474 Y1.1342 1-0.0500 JO.0000
G01 X1.1457 Y1.1356 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1507
Y1.2116
G01 Z-0.0060 F40.0000
G01 X1.1909 Y1.1787 F40.0000
G02 X1.2137 Y1.1304 1-0.0396 J-0.0483
G01 X1.2137 YO.9746 F40.0000
G03 X1.2762 YO.9121 10.0625 JO.0000
G01 X1.7067 YO.9121 F40.0000
G02 X1.7656 YO.8630 10.0000 J-0.0600
G03 X1.7767 YO.8420 10.0393 JO.0073
G01 X1.8453 YO.7734 F40.0000
G03 X1.8736 YO.7617 10.0283 JO.0283
G01 X1.8775 YO.7617 F40.0000
G02 X1.9400 YO.6992 10.0000 J-0.0625
G01 X1.9400 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0925
YO.1544
G01 Z-0.0060 F40.0000
G01 X2.0787 YO.1544 F40.0000
G02 X2.0162 YO.2169 10.0000 JO.0625
G01 X2.0162 YO.7392 F40.0000
G03 X1.9537 YO.8017 1-0.0625 JO.0000

G01 X1.9229 YO.8017 F40.0000
G02 X1.8787 YO.8200 10.0000 J0.0625
G01 X1.8630 YO.8357 F40.0000
G02 X1.8453 YO.8713 10.0442 JO.0442
G03 X1.7067 YO.9921 1-0.1387 J-0.0192
G01 X1.3562 YO.9921 F40.0000
G02 X1.2937 Y1.0546 10.0000 JO.0625
G01 X1.2937 Y1.1517 F40.0000
G03 X1.2709 Y1.2001 1-0.0625 JO.0000
G01 X1.1656 Y1.2863 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3651
Y1.5560
G01 Z-0.0060 F40.0000
G01 X2.5606 Y1.5560 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7876
Y1.4992
G01 Z-0.0060 F40.0000
G01 X2.6929 Y1.4992 F40.0000
G03 X2.6548 Y1.4863 10.0000 J-0.0625
G01 X2.6256 Y1.4639 F40.0000
G03 X2.6012 Y1.4143 10.0380 J-0.0496
G01 X2.6012 YO.6067 F40.0000
G02 X2.5387 YO.5442 1-0.0625 JO.0000
G01 X2.4600 YO.5442 F40.0000
G03 X2.3975 YO.4817 10.0000 J-0.0625
G01 X2.3975 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.5500
YO.1544
G01 Z-0.0060 F40.0000
G01 X2.5362 YO.1544 F40.0000
G02 X2.4737 YO.2169 10.0000 JO.0625
G01 X2.4737 YO.3792 F40.0000
G02 X2.5362 YO.4417 10.0625 JO.0000
G01 X2.6353 YO.4417 F40.0000
G03 X2.6978 YO.5042 10.0000 JO.0625
G01 X2.6978 Y1.3773 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7876
Y1.3117

G01 Z-0.0060 F40.0000
G01 X2.7876 YO.8314 F40.0000
GOO ZO.0300
X2.7876
YO.7314
G01 Z-0.0060 F40.0000
G01 X2.7876 YO.3694 F40.0000

347



APPENDIX D DEVICE G-CODE

G02 X2.7251 YO.3069 1-0.0625 JO.OOOO
G01 X2.5500 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.3975
YO.1544
G01 Z-0.0060 F40.0000
G01 X2.3837 YO.1544 F40.0000
G02 X2.3212 YO.2169 10.0000 JO.0625
G01 X2.3212 Y1.1132 F40.0000
G03 X2.2587 Y1.1757 1-0.0625 JO.0000
G01 X1.9629 Y1.1757 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0752
Y1.0649
G01 Z-0.0060 F40.0000
G01 X2.1825 Y1.0649 F40.0000
G02 X2.2450 Y1.0024 10.0000 J-0.0625
G01 X2.2450 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2450
YO.1544
G01 Z-0.0060 F40.0000
G01 X2.2312 YO.1544 F40.0000
G02 X2.1687 YO.2169 10.0000 JO.0625
G01 X2.1687 YO.8451 F40.0000
G03 X2.1375 YO.8992 1-0.0625 JO.0000
G01 X1.8505 Y1.0649 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9629
YO.8703
G01 Z-0.0060 F40.0000
G01 X2.0300 YO.8703 F40.0000
G02 X2.0925 YO.8078 10.0000 J-0.0625
G01 X2.0925 YO.3069 F40.0000
GOO Z1.5000
Xl.1775
YO.1544

D.1.5 Layer 2 Bottom Side

The fabrication of the bottom side of layer 2 is

similar to the top side of layer 1. The growth

chamber mixer sections are first pocketed and

rounded.

File: layer2 0.125 square mill.fgc
Tool: 0.125 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.9250
YO.4600
G01 Z-0.0050 F40.0000
G01 XO.9695 YO.6550 F40.0000
G01 X1.0140 YO.4600 F40.0000
G02 XO.9250 YO.4600 1-0.0445 J-0.0102
GOO ZO.0300

GOO ZO.0300
XO.6951
YO.5328
G01 Z-0.0050 F40.0000
G01 XO.8198 YO.6892 F40.0000
G01 XO.7753 YO.4942 F40.0000
G02 XO.6951 YO.5328 1-0.0445 JO.0102
GOO ZO.0300

GOO ZO.0300
XO.5196
YO.6981
G01 Z-0.0050 F40.0000
G01 XO.6998 YO.7849 F40.0000
G01 XO.5751 YO.6285 F40.0000
G02 XO.5196 YO.6981 1-0.0357 JO.0285
GOO ZO.0300

GOO ZO.0300
XO.4332
YO.9232
G01 Z-0.0050 F40.0000
G01 XO.6332 YO.9232 F40.0000
G01 XO.4530 YO.8364 F40.0000
G02 XO.4332 YO.9232 1-0.0198 JO.0411
GOO ZO.0300

GOO ZO.0300
XO .4530
Y1.1636
G01 Z-0.0050 F40.0000
GO1 XO.6332 Y1.0768 F40.0000
G01 XO.4332 Y1.0768 F40.0000
G02 XO.4530 Y1.1636 I-0.0000 JO.0457
GOO ZO.0300
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GOO ZO.0300
XO.5751
Y1.3715
G01 Z-0.0050 F40.0000
G01 XO.6998 Y1.2151 F40.0000
G01 XO.5196 Y1.3019 F40.0000
G02 XO.5751 Y1.3715 10.0198 JO.0411
G00 ZO.0300

G00 Z0.0300
XO.7753
Y1.5058
G01 Z-0.0050 F40.0000
G01 XO.8198 Y1.3108 F40.0000
G01 XO.6951 Y1.4672 F40.0000
G02 XO.7753 Y1.5058 10.0357 J0.0285
GOO ZO.0300

G00 ZO.0300
X1.0140
Y1.5400
G01 Z-0.0050 F40.0000
G01 XO.9695 Y1.3450 F40.0000
G01 XO.9250 Y1.5400 F40.0000
G02 X1.0140 Y1.5400 10.0445 JO.0102
GOO ZO.0300

GOO ZO.0300
X1.5355
YO.8310
G01 Z-0.0400 F40.0000
G01 X1.6028 YO.7921 F40.0000
G01 X1.6028 YO.7144 F40.0000
G02 X1.5355 YO.8310 10.1252 JO.1500
G01 X1.5025 YO.8862 F40.0000
G01 X1.6341 YO.8102 F40.0000
G01 X1.6341 YO.6582 F40.0000
G02 X1.5025 YO.8862 10.0939 JO.2062
G01 X1.4801 YO.9352 F40.0000
G01 X1.4634 YO.9809 F40.0000
G01 X1.6966 YO.8463 F40.0000
G01 X1.6966 YO.5770 F40.0000
G02 X1.4634 YO.9809 10.0314 JO.2874
G01 X1.4505 Y1.0244 F40.0000
G01 X1.4235 Y1.0402 F40.0000
G02 X1.4660 Y1.0516 10.0269 J-0.0155
G01 X1.7435 YO.8913 F40.0000
G02 X1.7591 YO.8644 1-0.0155 J-0.0269
G01 X1.7591 YO.5439 F40.0000
G02 X1.7280 YO.5128 1-0.0311 JO.0000
G02 X1.4235 Y1.0402 I-0.0000 JO.3516
GOO ZO.0300

GOO ZO.0300
X2.0302
Y1.4546
G01 Z-0.0400 F40.0000

G01 X1.9629 Y1.4157 F40.0000
G01 X1.8956 Y1.4546 F40.0000
G02 X2.0302 Y1.4546 10.0673 J-0.1834
G01 X2.0945 Y1.4556 F40.0000
G01 X1.9629 Y1.3796 F40.0000
G01 X1.8312 Y1.4556 F40.0000
G02 X2.0945 Y1.4556 10.1316 J-0.1844
G01 X2.1481 Y1.4505 F40.0000
G01 X2.1960 Y1.4421 F40.0000
G01 X1.9629 Y1.3075 F40.0000
G01 X1.7297 Y1.4421 F40.0000
G02 X2.1960 Y1.4421 10.2332 J-0.1709
G01 X2.2402 Y1.4315 F40.0000
G01 X2.2674 Y1.4470 F40.0000
G02 X2.2560 Y1.4045 1-0.0269 J-0.0155
G01 X1.9784 Y1.2443 F40.0000
G02 X1.9473 Y1.2443 1-0.0155 JO.0269
G01 X1.6698 Y1.4045 F40.0000
G02 X1.6584 Y1.4470 10.0155 JO.0269
G02 X2.2674 Y1.4470 10.3045 J-0.1758
GOO ZO.0300

GOO ZO.0300
X2.3902
YO.8310
G01 Z-0.0400 F40.0000
G02 X2.3229 YO.7144 1-0.1925 JO.0334
G01 X2.3229
G01 X2.3902
G01 X2.4233
G02 X2.2917
G01 X2.2917
G01 X2.4233
G01 X2.4457
G01 X2.4623
G02 X2.2292
G01 X2.2292
G01 X2.4623
G01 X2.4753
G01 X2.5022
G02 X2.1977
G02 X2.1667
G01 X2.1667
G02 X2.1822
G01 X2.4598
G02 X2.5022
GOO Z1.5000
XO.9250
YO.4600

YO.7921
YO.8310
YO.8862
YO.6582
YO.8102
YO.8862
YO. 9352

YO.9809
YO.5770
YO.8463
YO. 9809
Y1. 0244
Y1. 0402
YO.5128
YO.5439
YO. 8644

YO.8913
Y1. 0516
Y1. 0402

F40.0000
F40.0000
F40.0000
1-0.2255 J-0.0218
F40.0000

F40.0000
F40.0000
F40.0000
1-0.2646 J-0.1165
F40.0000
F40.0000
F40.0000
F40.0000
1-0.3045 J-0.1758
10.0000 JO.0311
F40.0000

10.0311 JO.0000
F40.0000
10.0155 J-0.0269

File: layer2 3-16 ball mill
revisedagain.fgc
Tool: 3-16 diameter ball mill

G90 (use absolute coordinates)

GOO ZO.0300
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X1. 7748
YO. 9454
G01 Z-0.0350 F40.000
G02 X1.8216 YO.8644
G01 X1.8216 YO.5439
G02 X1.7280 YO.4503
G02 X1.3694 Y1.0714
G02 X1.4972 Y1.1057
G01 X1.7748 YO.9454
G01 Z-0.0400 F40.000
G02 X1.8216 YO.8644
G01 X1.8216 YO.5439
G02 X1.7280 YO.4503
G02 X1.3694 Y1.0714

G02 X1.4972 Y1.1057
G01 X1.7748 YO.9454
G02 X1.8216 YO.8644
GOO ZO.0300

GOO ZO.0300
X1.9161
Y1.1902
G01 Z-0.0350 F40.000
G01 X1.6385 Y1.3504
G02 X1.6043 Y1.4783
G02 X2.3215 Y1.4783
G02 X2.2872 Y1.3504
G01 X2.0097 Y1.1902
G02 X1.9161 Y1.1902
G01 Z-0.0400 F40.000
G01 X1.6385 Y1.3504
G02 X1.6043 Y1.4783
G02 X2.3215 Y1.4783
G02 X2.2872 Y1.3504
G01 X2.0097 Y1.1902
G02 X1.9161 Y1.1902
G01 X1.6385 Y1.3504
GOO ZO.0300

GOO ZO.0300
X2.1510
YO.9454
G01 Z-0.0350 F40.000
G01 X2.4285 Y1.1057
G02 X2.5564 Y1.0714
G02 X2.1977 YO.4503
G02 X2.1042 YO.5439
G01 X2.1042 YO.8644
G02 X2.1510 YO.9454
G01 Z-0.0400 F40.000
G01 X2.4285 Y1.1057
G02 X2.5564 Y1.0714
G02 X2.1977 YO.4503
G02 X2.1042 YO.5439
G01 X2.1042 YO.8644
G02 X2.1510 YO.9454
G01 X2.4285 Y1.1057

1-0.0468 J-0.0811
F40.0000
1-0.0936 JO.0000
10.0000 JO.4141
10.0811 J-0.0468
F40.0000
0
1-0.0468 J-0.0811
F40.0000
1-0.0936 JO.0000
10.0000 JO.4141
10.0811 J-0.0468
F40.0000
1-0.0468 J-0.0811

0
F40.0000
10.0468 JO.0811
10.3586 J-0.2070
1-0.0811 J-0.0468
F40.0000
1-0.0468 JO.0811
0
F40.0000
10.0468 JO.0811
10.3586 J-0.2070
1-0.0811 J-0.0468
F40.0000
1-0.0468 JO.0811
F40.0000

0
F40.0000
10.0468 J-0.0811
1-0.3586 J-0.2070
I-0.0000 JO.0936
F40.0000
10.0936 JO.0000
0
F40.0000
10.0468 J-0.0811
1-0.3586 J-0.2070
I-0.0000 JO.0936
F40.0000
10.0936 JO.0000
F40.0000

GOO ZO.0300
GOO Z1.5
X1.7748
YO.9454

File: layer2 120 deg mill
revisedagain.fgc
Tool: 3-16 diameter 120 degree full
angle drill mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.7982
YO.9860
G01 Z-0.0230 F40.0000
G02 X1.8685 YO.8644 1-0.0702 J-0.1217
G01 X1.8685 YO.5439 F40.0000
G02 X1.7280 YO.4034 1-0.1405 JO.0000
G02 X1.3288 Y1.0949 10.0000 JO.4610
G02 X1.5207 Y1.1463 10.1217 J-0.0702
G01 X1.7982 YO.9860 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.8926
Y1.1496
G01 Z-0.0230 F40.0000
G01 X1.6151 Y1.3098 F40.0000
G02 X1.5637 Y1.5017 10.0702 JO.1217
G02 X2.3621 Y1.5017 10.3992 J-0.2305
G02 X2.3107 Y1.3098 1-0.1217 J-0.0702
G01 X2.0331 Y1.1496 F40.0000
G02 X1.8926 Y1.1496 1-0.0702 JO.1217
GOO ZO.0300

GOO ZO.0300
X2.1275
YO.9860
G01 Z-0.0230 F40.0000
G01 X2.4051 Y1.1463 F40.0000
G02 X2.5970 Y1.0949 10.0702 J-0.1217
G02 X2.1977 YO.4034 1-0.3992 J-0.2305
G02 X2.0573 YO.5439 10.0000 JO.1405
G01 X2.0573 YO.8644 F40.0000
G02 X2.1275 YO.9860 10.1405 JO.0000
GOO Z1.5
X1.7982
YO.9860

After making the growth chamber mixers and

reservoirs, texturing is introduced to maintain

gas flow even when the membrane is pressed

against the top surface.
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File: layer2
revision.fgc
Tool: 1-64 ball mi

G90 (use absolute

G01 XO.6603 YO.7659 F40.0000
1-64 ball mill G02 XO.6725 YO.7507 10.0043 J-0.0090

G01 XO.5751 YO.6285 F40.0000
Ll G02 XO.5037 YO.6285 1-0.0357 JO.0285

G01 XO.5988 YO.7043 F40.0000
coordinates) GOO ZO.0300

GOO ZO.0300
XO.9695
YO.3617
G01 Z-0.0090 F40.000
G01 XO.9695 YO.3730
G02 X0.8945 YO.4670
G01 XO.9390 YO.6620
G02 X0.9997 YO.6632
G01 X1.0445 YO.4670
G02 X0.9695 YO.3730
G01 XO.9695 YO.4042
G02 XO.9250 YO.4600
G01 XO.9597 YO.6123
G02 XO.9792 YO.6123
G01 X1.0140 YO.4600
G02 XO.9695 YO.4042
G01 XO.9695 YO.5258
GOO ZO.0300

F40.0000
I-0.0000 JO.0769
F40.0000
10.0305 J-0.0070
F40.0000
1-0.0750 J-0.0171
F40.0000

I-0.0000 JO.0457
F40.0000
10.0097 J-0.0022
F40.0000

1-0.0445 J-0.0102
F40.0000

GOO ZO.0300
XO.6926
YO.4249
G01 Z-0.0090 F40.0000
G01 XO.6974 YO.4350 F40.0000
G02 XO.6707 YO.5523 10.0334 JO.0693
G01 XO.7954 YO.7087 F40.0000
G02 XO.8506 YO.6835 10.0245 J-0.0195
G01 XO.8058 YO.4872 F40.0000
G02 XO.6974 YO.4351 1-0.0750 JO.0171
G01 XO.7110 YO.4632 F40.0000
G02 XO.6951 YO.5328 10.0198 JO.0411
G01 XO.7925 YO.6550 F40.0000
G02 XO.8101 YO.6465 10.0078 J-0.0062
G01 XO.7753 YO.4942 F40.0000
G02 XO.7110 YO.4632 1-0.0445 JO.0102
G01 XO.7638 YO.5728 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4705
YO.6020
G01 Z-0.0090 F40.0000
G01 XO.4793 YO.6090 F40.0000
G02 XO.5060 YO.7263 10.0601 JO.0480
G01 XO.6862 YO.8131 F40.0000
G02 XO.7250 YO.7664 10.0136 J-0.0282
G01 XO.5995 YO.6090 F40.0000
G02 XO.4792 YO.6091 1-0.0601 JO.0479
G01 XO.5037 YO.6285 F40.0000
G02 XO.5196 YO.6981 IO.0357 JO.0285

GOO ZO.0300
XO.3472
YO.8580
G01 Z-0.0090 F40.0000
G01 XO.3582 YO.8605 F40.0000
G02 XO.4331 YO.9545 10.0750 JO.0171
G01 XO.6331 YO.9545 F40.0000
G02 XO.6479 YO.8956 10.0000 J-0.0313
G01 XO.4665 YO.8083 F40.0000
G02 XO.3582 YO.8605 1-0.0334 JO.0693
G01 XO.3886 YO.8674 F40.0000
G02 XO.4331 YO.9232 10.0445 JO.0102
G01 XO.5894 YO.9233 F40.0000
G02 XO.5937 YO.9042 10.0000 J-0.0100
G01 XO.4530 YO.8365 F40.0000
G02 XO.3886 YO.8674 I-0.0198 JO.0411
G01 XO.5072 YO.8945 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3472
Y1.1420
G01 Z-0.0090 F40.0000
G01 XO.3582 Y1.1395 F40.0000
G02 XO.4665 Y1.1917 10.0750 J-0.0171
G01 XO.6467 Y1.1050 F40.0000
G02 XO.6344 Y1.0455 1-0.0136 J-0.0282
G01 XO.4331 Y1.0455 F40.0000
G02 XO.3582 Y1.1395 I-0.0000 JO.0769
G01 XO.3886 Y1.1326 F40.0000
G02 XO.4529 Y1.1636 10.0445 J-0.0102
G01 XO.5937 Yl.0958 F40.0000
G02 XO.5894 Y1.0768 1-0.0043 J-0.0090
G01 XO.4331 Y1.0768 F40.0000
G02 XO.3886 Y1.1326 I-0.0000 JO.0457
G01 XO.5072 Y1.1055 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4705
Y1.3980
G01 Z-0.0090 F40.0000
G01 XO.4793 Y1.3910 F40.0000
G02 XO.5995 Y1.3910 10.0601 J-0.0479
G01 XO.7242 Y1.2346 F40.0000
G02 XO.6874 Y).1864 1-0.0245 J-0.0195
G01 XO.5060 Y1.2737 F40.0000
G02 XO.4793 Y1.3910 10.0334 JO.0693
G01 XO.5037 Y1.3715 F40.0000
G02 XO.5751 Y1.3715 10.0357 J-0.0285
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G01 XO.6725 Y1.2493 F40.0000
G02 XO.6603 Y1.2341 1-0.0078 J-0.0062
G01 XO.5196 Y1.3019 F40.0000
G02 X0.5037 Y1.3715 10.0198 J0.0411
G01 XO.5988 Y1.2957 F40.0000
G00 ZO.0300

GOO ZO.0300
XO.6926
Y1.5751
G01 Z-0.0090 F40.000
G01 XO.6974 Y1.5649
G02 XO.8058 Y1.5128
G01 XO.8503 Y1.3178
G02 XO.7962 Y1.2904
G01 XO.6707 Y1.4477
G02 XO.6974 Y1.5650
G01 XO.7110 Y1.5368
G02 XO.7753 Y1.5058
G01 XO.8101 Y1.3535
G02 XO.7925 Y1.3450
G01 XO.6951 Y1.4672
G02 XO.7110 Y1.5368
G01 XO.7638 Y1.4272
GOO ZO.0300

F40.0000
10.0334 J-0.0693
F40.0000
1-0.0305 J-0.0070
F40.0000
10.0601 JO.0479
F40.0000
IO.0198 J-0.0411
F40.0000
1-0.0097 J-0.0022
F40.0000

10.0357 JO.0285
F40.0000

G01 X1.7549 Y0.8799
G02 X1.7591 YO.8644
G01 X1.7591 YO.5439
G02 X1.7280 Y0.5128
G02 X1.4235 Y1.0402
G02 X1.4660 Y1.0516
G01 X1.7435 Y0.8913
G02 X1.7549 Y0.8799
G01 X1.7278 YO.8643
G01 X1.7278 Y0.5441
G02 X1.4505 Y1.0244
G01 X1.7278 YO.8643
G01 X1.6966 Y0.8463
G01 X1.6966 YO.5770
G02 X1.4634 YO.9809
G01 X1.6966 YO.8463
G01 X1.6653 YO.8282
G01 X1.6653 YO.6143
G02 X1.4801 YO.9352
G01 X1.6653 YO.8282
G01 X1.6341 YO.8102
G01 X1.6341 YO.6582
G02 X1.5025 YO.8862
G01 X1.6341 YO.8102
GOO ZO.0300

F40.0000
1-0.0269 J-0.0155
F40.0000
1-0.0311 JO.0000
I-0.0000 JO.3516
10.0269 J-0.0155
F40.0000
1-0.0155 J-0.0269
F40.0000
F40.0000
10.0002 JO.3203
F40.0000
F40.0000
F40.0000
10.0314 JO.2874
F40.0000
F40.0000
F40.0000
10.0627 JO.2501
F40.0000
F40.0000
F40.0000
10.0939 JO.2062
F40.0000

GOO ZO.0300
XO.9695
Y1.6383
G01 Z-0.0090 F40.0000
G01 XO.9695 Y1.6270 F40.0000
G02 X1.0445 Y1.5330
G01 X1.0000 Y1.3380
G02 XO.9393 Y1.3368
G01 XO.8945 Y1.5330
G02 XO.9695 Y1.6270
G01 XO.9695 Y1.5958
G02 X1.0140 Y1.5400
G01 XO.9793 Y1.3877
G02 XO.9598 Y1.3877
G01 XO.9250 Y1.5400
G02 XO.9695 Y1.5958
G01 XO.9695 Y1.4742
GOO ZO.0300

10.0000 J-0.0769
F40.0000
1-0.0305 JO.0070
F40.0000
10.0750 JO.0171
F40.0000
10.0000 J-0.0457
F40.0000
1-0.0097 JO.0022
F40.0000
10.0445 JO.0102
F40.0000

GOO ZO.0300
X1.8496
YO.9346
G01 Z-0.0440 F40.0000
G01 X1.7820 YO.8956 F40.0000
G02 X1.7903 YO.8644 1-0.0540 J-0.0312

G01 X1.7903 YO.5439 F40.0000
G02 X1.7280 YO.4816 1-0.0623 JO.0000

G02 X1.3964 Y1.0558 I-0.0000 JO.3828

G02 X1.4816 Y1.0786 10.0540 J-0.0312
G01 X1.7592 YO.9184 F40.0000
G02 X1.7820 YO.8956 1-0.0312 J-0.0540

GOO ZO.0300
X1.9629
Y1.1307
G01 Z-0.0440 F40.0000
G01 X1.9629 Y1.2089 F40.0000
G02 X1.9317 Y1.2172
G01 X1.6541 Y1.3775
G02 X1.6313 Y1.4626
G02 X2.2944 Y1.4626
G02 X2.2716 Y1.3775
G01 X1.9940 Y1.2172
G02 X1.9629 Y1.2089
G01 X1.9629 Y1.2401
G02 X1.9473 Y1.2443
G01 X1.6698 Y1.4045
G02 X1.6584 Y1.4470
G02 X2.2674 Y1.4470
G02 X2.2560 Y1.4045
G01 X1.9784 Y1.2443
G02 X1.9629 Y1.2401
G01 X1.9629 Y1.2714
G01 X1.6855 Y1.4315
G02 X2.2402 Y1.4315

G01 X1.9629 Y1.2714
G01 X1.9629 Y1.3075
G01 X1.7297 Y1.4421
G02 X2.1960 Y1.4421
G01 X1.9629 Y1.3075
G01 X1.9629 Y1.3436
G01 X1.7776 Y1.4505
G02 X2.1481 Y1.4505

10.0000 JO.0623
F40.0000
10.0312 JO.0540
10.3316 J-0.1914
1-0.0540 J-0.0312
F40.0000
I-0.0312 JO.0540
F40.0000
10.0000 JO.0311
F40.0000
10.0155 JO.0269
10.3045 J-0.1758
1-0.0269 J-0.0155
F40.0000
I-0.0155 JO.0269

F40.0000
F40.0000
10.2773 J-0.1603
F40.0000
F40.0000
F40.0000
10.2332 J-0.1709
F40.0000
F40.0000
F40.0000
10.1853 J-0.1793
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G01 X1.9629 Y1.3436 F40.0000
G01 X1.9629 Y1.3796 F40.0000
G01 X1.8312 Y1.4556 F40.0000
G02 X2.0945 Y1.4556 10.1316 J-0.1844
G01 X1.9629 Y1.3796 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0761
YO.9346
G01 Z-0.0440 F40.0000
G01 X2.1438 YO.8956 F40.0000
G02 X2.1666
G01 X2.4441
G02 X2.5293
G02 X2.1977
G02 X2.1354
G01 X2.1354
G02 X2.1438
G01 X2.1708
G02 X2.1822
G01 X2.4598
G02 X2.5022
G02 X2.1977
G02 X2.1667
G01 X2.1667
G02 X2.1708
G01 X2.1979
G01 X2.4753
G02 X2.1979
G01 X2.1979
G01 X2.2292
G01 X2.4623
G02 X2.2292
G01 X2.2292
G01 X2.2604
G01 X2.4457
G02 X2.2604
G01 X2.2604
G01 X2.2917
G01 X2.4233
G02 X2.2917
G01 X2.2917
GOO Z1.5
XO.9695
YO.3617

YO.9184 10.0540 J-0.0312
Y1.0786 F40.0000
Y1.0558 10.0312 J-0.0540
YO.4816 1-0.3316 J-0.1914
YO.5439 I-0.0000 JO.0623
YO.8644 F40.0000
YO.8956 10.0623 JO.0000
YO.8799 F40.0000
YO.8913 10.0269 J-0.0155
Y1.0516 F40.0000
Y1.0402 10.0155 J-0.0269
YO.5128 1-0.3045 J-0.1758
YO.5439 I-0.0000 JO.0311
YO.8644 F40.0000
YO.8799 10.0311 JO.0000

YO.8643 F40.0000
Y1.0244 P40.0000
YO.5441 1-0.2775
YO.8643 F40.0000
YO.8463 F40.0000
YO.9809 F40.0000
YO.5770 1-0.2646
YO.8463 F40.0000
YO.8282 F40.0000
YO.9352 F40.0000
YO.6143 1-0.2479
YO.8282 P40.0000
YO.8102 F40.000
YO.8862 F40.0000
YO.6582 1-0.2255
YO.8102 F40.0000

J-0.1600

J-0.1165

J-0.0708

J-0.0218

The humidifier channel and valves are now

introduced and deburred.

File: layer2 0.02 square mill.fgc
Tool: 0.02 square mill

(G-code auto generated using

dxf2gcode.m)

G90 (use absolute coordinates)

GOO ZO.0300
X1.1357
YO.8644
G01 Z-0.0050 F40.0000
G01 X1.1257 YO.8644 F40.0000
G01 X1.1157 YO.8644 F40.0000
G01 X1.1157 YO.8744 F40.0000
G01 X1.1357 YO.8744 F40.0000
G02 X1.1357 YO.8544 10.0000 J-0.0100
G01 X1.1157 YO.8544 F40.0000
G02 X1.1157 YO.8744 10.0000 JO.0100
GOO ZO.0300

GOO ZO.0300
X1.1408
YO.7871
G01 Z-0.0050 F40.0000
G01 X1.1210 Y0.7845 F40.0000
G01 X1.1223 YO.7746 F40.0000
G02 X1.1197 YO.7944 1-0.0013 JO.0099
G01 X1.1395 YO.7970 F40.0000
G02 X1.1421 YO.7772 10.0013 J-0.0099
G01 X1.1223 YO.7746 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1559
YO.7111
G01 Z-0.0050 F40.0000
G01 X1.1463 YO.7085 F40.0000
G01 X1.1366 YO.7059 F40.0000
G01 X1.1340 YO.7156 F40.0000
G01 X1.1533 YO.7208 F40.0000
G02 X1.1585 YO.7014 10.0026 J-0.0097
G01 X1.1392 YO.6963 F40.0000
G02 X1.1340 YO.7156 1-0.0026 JO.0097
GOO ZO.0300

GOO ZO.0300
X1.3651
YO.4440
G01 Z-0.0050 F40.0000
G02 X1.2280 YO.6227 10.3629 JO.4204
G01 X1.2370 YO.6270 F40.0000
G03 X1.3716 YO.4515 10.4910 JO.2374
G02 X1.3586 YO.4364 1-0.0065 J-0.0076
G02 X1.2190 YO.6183 10.3694 JO.4280
G02 X1.2370 YO.6270 10.0090 JO.0044

GOO ZO.0300

GOO ZO.0300
X1.9629
YO.5840
G01 Z-0.0050 F40.0000
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G01 X1.9629 YO.8243 F40.0000
G01 X1.9529 YO.8243 F40.0000
G02 X1.9729 YO.8243 10.0100 JO.0000
G01 X1.9729 YO.5840 F40.0000
G02 X1.9529 YO.5840 I-0.0100 JO.0000
G01 X1.9529 YO.8243 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.6978
YO.6227
G01 Z-0.0050 F40.0000
G02 X2.5606 YO.4440 1-0.5000 JO.2417
G01 X2.5541 YO.4515 F40.0000
G03 X2.6888 YO.6270 1-0.3564 JO.4128
G02 X2.7068 YO.6183 10.0090 J-0.0044
G02 X2.5672 YO.4364 1-0.5090 JO.2461
G02 X2.5541 YO.4515 1-0.0065 JO.0076
GOO ZO.0300

GOO ZO.0300
X2.8676
YO.6883
G01 Z-0.0050 F40.0000
G01 X2.7876 YO.6883 F40.0000
G01 X2.7876 YO.6983 F40.0000
G01 X2.8676 YO.6983 F40.0000
G02 X2.8676 YO.6783 10.0000 J-0.0100
G01 X2.7876 YO.6783 F40.0000
G02 X2.7876 YO.6983 10.0000 JO.0100
GOO ZO.0300

GOO ZO.0300
X2.8676
YO.5008
G01 Z-0.0050 F40.0000
G01 X2.7876 YO.5008 F40.0000
G01 X2.7876 YO.5108 F40.0000
G01 X2.8676 YO.5108 F40.0000
G02 X2.8676 YO.4908 10.0000 J-0.0100
G01 X2.7876 YO.4908 F40.0000
G02 X2.7876 YO.5108 10.0000 JO.0100
GOO ZO.3000

GOO ZO.0300
X2.7876
Y1.2686
G01 Z-0.0100 F40.0000
G01 X2.7031 Y1.2686 F40.0000
G02 X2.6489 Y1.2999 10.0000 JO.0625
G01 X2.4899 Y1.5755 F40.0000
G03 X1.4359 Y1.5755 1-0.5270 J-0.3043

G01 X1.2360 Y1.2292 F40.0000
G02 X1.1777 Y1.2448 1-0.0271 JO.0156
G01 X1.1777 Y1.8175 F40.0000
G03 X1.1152 Y1.8800 1-0.0625 JO.0000
G01 XO.4385 Y1.8800 F40.0000

APPENDIX D DEVICE G-CODE

G03 XO.3943 Y1.8617 10.0000 J-0.0625
G01 XO.3083 Y1.7757 F40.0000
G02 XO.2420 Y1.7482 1-0.0663 JO.0663
G01 XO.1406 Y1.7482 F40.0000
G03 XO.0781 Y1.6857 10.0000 J-0.0625
G01 XO.0781 YO.3142 F40.0000
G03 XO.1406 YO.2517 10.0625 JO.0000
G01 XO.2420 YO.2517 F40.0000
G02 XO.3083 YO.2243 10.0000 J-0.0938
G01 XO.3943 YO.1383 F40.0000
G03 XO.4385 YO.1200 10.0442 JO.0442
G01 X2.5615 YO.1200 F40.0000
G03 X2.6057 YO.1383 10.0000 JO.0625
G01 X2.6917 YO.2243 F40.0000
G02 X2.7580 YO.2518 10.0663 J-0.0663
G01 X2.8594 YO.2518 F40.0000
G03 X2.9219 YO.3143 10.0000 JO.0625
G01 X2.9219 Y1.1061 F40.0000
G03 X2.8594 Y1.1686 1-0.0625 JO.0000
G01 X2.7876 Y1.1686 F40.0000
GOO Z1.5000
X1.1357
YO.8644

File: layer2 deburr 0.0625 ball
mill.fgc
Tool: 0.0625 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.0152
YO.6654
G01 Z-0.0050 F40.0000
G01 X1.0597 YO.4704 F40.0000
G02 XO.8793 YO.4704 1-0.0902 J-0.0206
G01 XO.9238 YO.6654 F40.0000
G02 X1.0152 YO.6654 10.0457 J-0.0104
GOO ZO.0300

GOO ZO.0300
XO.8655
YO.6787
G01 Z-0.0050 F40.0000
G01 XO.8210 YO.4838 F40.0000
G02 XO.6584 YO.5620 1-0.0902 JO.0206
G01 XO.7831 YO.7184 F40.0000
G02 XO.8655 YO.6787 10.0367 J-0.0292
GOO ZO.0300

GOO ZO.0300
XO.7364
YO.7557
G01 Z-0.0050 F40.0000
G01 XO.6117 YO.5993 F40.0000
G02 XO.4992 YO.7404 1-0.0723 JO.0577
G01 XO.6794 YO.8272 F40.0000
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G02 XO.7364 YO.7557 10.0203 J-0.0422
G00 Z0.0300

G00 ZO.0300
X0.6535
YO.8810
G01 Z-0.0050 F40.0000
G01 X0.4733 Y0.7942 F40.0000
G02 X0.4331 YO.9701 1-0.0401 J0.0834
G01 X0.6331 Y0.9701 F40.0000
G02 XO.6535 YO.8810 10.0000 J-0.0469
G00 ZO.0300

G00 ZO.0300
X0.6332
Y1.0299
G01 Z-0.0050 F40.0000
G01 XO.4332 Y1.0299 F40.0000
G02 XO.4733 Y1.2058 I-0.0000 JO.0925

G01 XO.6535 Y1.1190 F40.0000
G02 XO.6332 Y1.0299 1-0.0203 J-0.0422
GOO ZO.0300

GOO ZO.0300
XO.6794
Y1.1729
G01 Z-0.0050 F40.0000
G01 XO.4992 Y1.2597 F40.0000
G02 XO.6117 Y1.4007 10.0401 JO.0834
G01 XO.7364 Y1.2444 F40.0000
G02 XO.6794 Y1.1729 1-0.0367 J-0.0292
GOO ZO.0300

GOO ZO.0300

XO.7832
Y1.2816

G01 Z-0.0050 F40.0000
G01 XO.6585 Y1.4380 F40.0000
G02 XO.8210 Y1.5163 10.0723 JO.0577
G01 XO.8655 Y1.3213 F40.0000
G02 XO.7832 Y1.2816 1-0.0457 J-0.0104
GOO ZO.0300

GOO ZO.0300
XO.9238
Y1.3346
G01 Z-0.0050 F40.0000
G01 XO.8793 Y1.5296 F40.0000
G02 X1.0597 Y1.5296 10.0902 JO.0206
G01 X1.0152 Y1.3346 F40.0000
G02 XO.9238 Y1.3346 1-0.0457 JO.0104
GOO ZO.0300

GOO ZO.0300

X1.1157
YO.8688
G01 Z-0.0050 F40.0000

G01 X1.1357 YO.8688 F40.0000
G02 X1.1357 YO.8600 10.0000 J-0.0044
G01 X1.1157 YO.8600 F40.0000
G02 X1.1157 YO.8688 10.0000 JO.0044
GOO ZO.0300

GOO XO.0300
X1.1204
YO.7888
G01 Z-0.0050 F40.0000
G01 X1.1402 YO.7914 F40.0000
G02 X1.1414 YO.7828 10.0006 J-0.0043
G01 X1.1216 YO.7801 F40.0000
G02 X1.1204 YO.7888 1-0.0006 JO.0043
GOO ZO.0300

GOO ZO.0300
X1.1355
YO.7102
G01 Z-0.0050 F40.0000
G01 X1.1548 YO.7153 F40.0000
G02 X1.1571 YO.7069 10.0011 J-0.0042
G01 X1.1377 YO.7017 F40.0000
G02 X1.1355 YO.7102 I-0.0011 JO.0042
GOO ZO.0300

GOO ZO.0300
X1.2319
YO.6246
G01 Z-0.0050 F40.0000
G03 X1.3680 YO.4473 10.4961 JO.2398
G02 X1.3622 YO.4407 1-0.0029 J-0.0033
G02 X1.2240 YO.6208 10.3658 JO.4237

G02 X1.2319 YO.6246 10.0039 JO.0019
GOO ZO.0300

GOO ZO.0300
X1.9672
YO.8243
G01 Z-0.0050 F40.0000
G01 X1.9672 YO.5840 F40.0000
G02 X1.9585 YO.5840 1-0.0044 JO.0000
G01 X1.9585 YO.8243 F40.0000
G02 X1.9672 YO.8243 10.0044 JO.0000
GOO ZO.0300

GOO ZO.0300
X2.7017

YO.6208
G01 Z-0.0050 F40.0000
G02 X2.5635 YO.4407 1-0.5040 JO.2436
G02 X2.5578 YO.4473 1-0.0029 JO.0033
G03 X2.6938 YO.6246 1-0.3600 JO.4171
G02 X2.7017 YO.6208 10.0039 J-0.0019
GOO ZO.0300
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GOO ZO.0300
X2.7876

YO.6926
G01 Z-0.0050 F40.0000
G01 X2.8676 YO.6926 F40.0000
G02 X2.8676 YO.6839 10.0000 J-0.0044
G01 X2.7876 YO.6839 F40.0000
G02 X2.7876 YO.6926 10.0000 JO.0044
GOO ZO.0300

GOO ZO.0300
X2.7876
YO.5051
G01 Z-0.0050 F40.0000
G01 X2.8676 YO.5051 F40.0000
G02 X2.8676 YO.4964 10.0000 J-0.0044
G01 X2.7876 YO.4964 F40.0000
G02 X2.7876 YO.5051 10.0000 JO.0044
GOO ZO.0300

(G-code auto
dxf2gcode.m)

generated

G90 (use absolute coordinates)

GOO ZO.0300
X2.7876
Y1.2686
G01 Z-0.0025 F40.0000

X2.7031
X2. 6489
X2.4899
X1.4359
X1. 2360
X1. 1777
X1. 1777
X1. 1152
XO.4385
XO.3943
XO.3083
XO.2420
XO.1406
XO.0781
XO.0781
XO.1406
XO.2420
XO.3083
XO.3943
XO.4385
X2.5615
X2.6057
X2.6917
X2.7580
X2.8594
X2.9219
X2.9219
X2.8594

Y1. 2686
Y1.2999
Y1. 5755
Y1. 5755
Y1.2292
Y1. 2448
Y1.8175
Y1. 8800
Y1. 8800
Y1. 8617
Y1. 7757
Y1. 7482
Y1.7482
Y1. 6857
YO.3142
YO.2517
YO.2517
YO.2243
YO.)1383
YO.)1200
YO.1200
YO.1383
YO.2243
YO.2518
YO.2518
YO.3143
Y1. 1061
Y1. 1686

F40.0000
10.0000 JO.0625
F40.0000
1-0.5270 J-0.3043
F40.0000
1-0.0271 JO.0156
F40.0000
1-0.0625 JO.0000
F40.0000
10.0000 J-0.0625
F40.0000
1-0.0663 JO.0663
F40.0000
10.0000 J-0.0625
F40.0000
10.0625 JO.0000
F40.0000
10.0000 J-0.0938
F40.0000
10.0442 JO.0442
F40.0000
10.0000 JO.0625
F40.0000
10.0663 J-0.0663
F40.0000
10.0000 JO.0625
F40.0000
1-0.0625 JO.0000

G01 X2.7876 Y1.1686 F40.0000
GOO Z1.5
X1.0152
YO.6654

Finally, the holes interfacing the layer 2 top

side manifold to the layer 2 bottom side valves

are drilled.

File: layer2
revisedagain.fgc
Tool: 0.02 drill

0.02 drill

G90 (use absolute coordinates)

G00 ZO.0300
XO.9907

using YO.2792

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9482
YO.2792
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9695
YO.3617
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6759
YO.3414
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6376
YO.3598
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6926
YO.4249
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.4192

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000
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G01
G02
G01
G03
G01
G02
G01
G03
G01
G03
G01
G02
G01
G03
G01
G03
G01
G02
G01
G03
G01
G03
G01
G02
G01
G03
G01
G03



D. 1 CONTINUOUS CULTURE

YO.5340
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3927
Y0.5672
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
X0.4705
YO.6020
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.2715
YO.8189
G83 RO.0300
G00 ZO.0300

GOO Z0.0300
XO.2620
YO.8603
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
XO.3472
YO.8580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.2620
Y1.1397
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.2715
Y1.1811
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3472
Y1.1420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3927
Y1.4328
G83 RO.0300
GOO ZO.0300

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

GOO ZO.0300
XO.4192
Y1.4660
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.4705
Y1.3980
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6376
Y1.6402
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6759
Y1.6586
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6926
Y1.5751
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9482
Y1.7208
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
Y1.7208
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9695
Y1.6383
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
Y1.2200
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9482

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000
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Y1.2200
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8932
Y1.2074
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
XO.8549
Y1.1890
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8107
Y1.1538
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7842
Y1.1206
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X0.7597
Y1.0697
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
XO.7503
Y1.0282
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
XO.7503
Y0.9718
G83 RO.0300
GOO ZO.0300

GO0 ZO.0300
XO.7597
YO.9303
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7842
YO.8794
G83 RO.0300
GOO ZO.0300

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

G00 ZO.0300
XO.8107
YO.8462
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8549
YO.8110
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8932
YO.7926
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9482
YO.7800
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
YO.7800
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1057
YO.8644
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1457
YO.8644
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1507
YO.7884
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1111
YO.7832

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1270

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.1750 F40.0000

Z-0.1050 QO.1750 F40.0000

Z-0.1050 QO.1750 F40.0000

Z-0.1050 QO.1750 F40.0000
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YO . 7033
G83 RO.0300
GOO Z0.0300

G00 ZO.0300
X1.1656
YO.7137
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2280
YO.6227
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.3651

Y0.4440
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X1.9629
YO.5840
G83 RO.0300
GOO ZO.0300

G00 Z0.0300
X1.9629
YO.8243
G83 RO.0300
G00 Z0.0300

G00 ZO.0300
X1.8505
YO.9351

G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.9629
Y1.1297
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.0752
YO.9351
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.5606

YO.4440
G83 RO.0300
G00 ZO.0300

Z-0.1050 QO.1750 F40.0000

Z-0.1050 QO.1750 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 00.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

GOO Z0.0300
X2.6978
YO.6227
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7876
YO.6883
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.8676
YO.6883
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.8676

YO.5008
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7876
YO.5008
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7876
Y1.1686
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7876
Y1.2686
G83 RO.0300
GOO ZO.0300

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.15000 F40.0000

Z-0.1050 QO.1500 F40.0000

Z-0.1050 QO.1500 F40.0000

GOO Z1.5
XO.9907
YO.2792

D.1.6 Layer 3 Top Side

Layer 3 only contains top side features which

are more manifold routing connections. These

simply need to be cut and deburred like
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previous channels. In addition, since the G00 ZO.0300

adhesive layers can have de

reflections, holes are drilled

optical density sensors.

File: layer3 0.02
updated. fgc
Tool: 0.02 square mill

G90 (use absolute coordi

G00 ZO.0300
XO.3615
Y1.8420
G01 Z-0.0100 F40.0000
G01 XO.3615 Y1.1313 F40.0
G03 XO.3981 Y1.0430 10.12
G01 XO.6560 YO.7851 F40.0
G03 XO.7444 YO.7485 10.08
G01 XO.8909 YO.7485 F40.0
G03 XO.9351 YO.7668 10.00
G01 XO.9483 YO.7800 F40.0
GOO ZO.0300

G00 ZO.0300
X0.8549
YO.8110
G01 Z-0.0100 F40.0000
G01 XO.7702 YO.8110 F40.0
G02 XO.6818 YO.8476 10.00
G01 X0.4741 Y1.0553 F40.0
G02 XO.4375 Y1.1437 10.08
G01 XO.4375 Y1.8420 F40.0
G00 ZO.0300

G00 Z0.0300
XO.5135
Y1.8420
G01 Z-0.0100 F40.0000
G01 XO.5135 Y1.1302 F40.0
G03 XO.5318 Y1.0860 10.06
G01 XO.7201 YO.8978 F40.0
G03 XO.7643 YO.8794 10.04
G01 X0.7842 YO.8794 F40.0
G00 ZO.0300

G00 ZO.0300
XO.7503
YO .9718
G01 Z-0.0100 F40.0000
G01 XO.6078 Y1.1142 F40.0
G02 XO.5895 Y1.1584 10.04
G01 XO.5895 Y1.8420 F40.0

tects and cause 000 ZO.0300
XO .6655

directly for the Y1.8420
001 Z-0.0100 F40.0000
001 XO.6655 Y1.1898 F40.0000
003 XO.6838 Y1.1.456 10.0625 JO.0000
01 XO.7597 Y1.0697 F40.0000

square mill 000 ZO.0300

000 ZO.0300
XO .8107

nates) Y1.1538
501 Z-0.0100 F40.0000
001 XO.8107 Y1.4052 F40.0000
003 XO.7924 Y1.4494 1-0.0625 JO.0000
GO. XO.7598 Y1.4820 F40.0000
002 XO.7415 Y1.5262 10.0442 JO.0442

00001 XO.7415 Y1.8420 40.0000

50 JO.0000 000 ZO.0300
000
84 JO.0884 000 ZO.0300

000 XO.8175
'00 JO.0625 Y1.8420

000 001 Z-0.0100 F40.0000
001 XO.8175 Y1.5648 F40.0000
003 XO.8358 Y1.5206 10.0625 JO.0000
001 XO.8749 Y1.4815 040.0000
002 XO.8932 Y1.4373 1-0.0442 J-0.0442
001 XO.8932 Y1.2074 F40.0000
000 ZO.0300

000
00 JO.1250 G00 ZO.0300

'000 XO.9907

84 JO.0884 Y1.2200
'000 G01 Z-0.0100 F40.0000

G01 XO.9907 Y1.4572 F40.0000
G03 XO.9724 Y1.5014 1-0.0625 JO.0000
G01 XO.9118 Y1.5620 F40.0000

002 XO.8935 Y1.6062 10.0442 JO.0442
G001 XO.8935 Y1.8420 F40.0000
G00 ZO.0300

'000
:25 JO.oooo 000 ZO.0300
000 XO.9695
42 JO.0442 Y1.8420

'000 G01 Z-0.0100 F40.0000
G01 XO.9695 Y1.8217 F40.0000

G03 XO.9732 Y1.8004 10.0625 JO.0000
G01 XO.9870 Y1.7624 F40.0000
G02 XO.9907 Y1.7411 1-0.0588 J-0.0213
G01 XO.9907 Y1.7208 F40.0000
G00 ZO.0300

'000
42 JO.0442 G00 ZO.0300

G000 XO.9695
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Y1. 6383
G01 Z-0.0100 F40.0000
G01 XO.9830 Y1.6383 F40.0000
G03 X1.0455 Y1.7008 10.0000 JO.0625
G01 X1.0455 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1215
Y1.8420
G01 Z-0.0100 F40.0000
G01 X1.1215 Y1.3521 F40.0000
G03 X1.1223 Y1.3382 10.1250 JO.0000
G01 X1.1270 Y1.2967 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1111
Y1.2168
G01 Z-0.0100 F40.0000
G01 X1.1610 Y1.2168 F40.0000
G03 X1.2860 Y1.3418 10.0000 JO.1250
G01 X1.2860 Y1.5094 F40.0000
G01 X1.2735 Y1.5929 F40.0000
G01 X1.2735 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3495
Y1.8420
G01 Z-0.0100 F40.0000
G01 X1.3495 Y1.2606 F40.0000
G02 X1.2245 Y1.1356 1-0.1250 JO.0000
G01 X1.1057 Y1.1356 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2280
Y1.3773
G01 Z-0.0100 F40.0000
G01 X1.2051 Y1.4192 F40.0000
G02 X1.1975 Y1.4491 10.0549 JO.0299
G01 X1.1975 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.5775
Y1.8420
G01 Z-0.0100 F40.0000
G01 X2.4989 Y1.8420 F40.0000
G02 X2.5431 Y1.8237 10.0000 J-0.0625
G01 X2.8676 Y1.4992 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8676
Y1.3117

G01 Z-0.0100 F40.0000
G01 X2.5690 Y1.3117 F40.0000
G02 X2.5248 Y1.3300 10.0000 JO.0625
G01 X2.2348 Y1.6200 F40.0000
G03 X2.1907 Y1.6383 1-0.0442 J-0.0442
G01 X1.5640 Y1.6383 F40.0000
G02 X1.5015 Y1.7008 10.0000 JO.0625
G01 X1.5015 Y1.8420 F40.0000
G00 Z0.0300

G00 ZO.0300
X1.4255
Y1.8420
G01 Z-0.0100 F40.0000
G01 X1.4255 Y1.4785 F40.0000
G03 X1.4880 Y1.4160 10.0625 JO.0000
G01 X1.9629 Y1.4160 F40.0000
GOO Z1.5000
XO.3615
Y1.8420

File: layer3 0.03125 ball mill deburr
updated.fgc
Tool: 0.03125 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.3615
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.3615 Y1.1313 F40.0000
G03 XO.3981 Y1.0430 10.1250 JO.0000
G01 XO.6560 YO.7851 F40.0000
G03 XO.7444 YO.7485 10.0884 JO.0884
G01 XO.8909 YO.7485 F40.0000
G03 XO.9351 Y0.7668 10.0000 JO.0625
G01 XO.9483 YO.7800 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8549
YO.8110
G01 Z-0.0060 F40.0000
G01 XO.7702 YO.8110 F40.0000
G02 XO.6818 YO.8476 10.0000 JO.1250
G01 XO.4741 Y1.0553 F40.0000
G02 XO.4375 Yl.1437 10.0884 JO.0884

G01 XO.4375 Y1.8420 F40.0000
GO0 ZO.0300

GOO ZO.0300
XO.5135
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.5135 Y1.1302 F40.0000
G03 XO.5318 Y1.0860 10.0625 JO.0000
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G01
G03
G01
GOO
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XO.7201 YO.8978 F40.0000
XO.7643 YO.8794 10.0442 JO.0442
XO.7842 YO.8794 F40.0000
ZO .0300

GOO ZO.0300
XO.7503
YO.9718
G01 Z-0.0060 F40.0000
G01 XO.6078 Y1.1142 F40.0000
G02 XO.5895 Y1.1584 10.0442 JO.0442
G01 XO.5895 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.6655
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.6655 Y1.1898 F40.0000
G03 XO.6838 Y1.1456 10.0625 JO.0000
G01 XO.7597 Y1.0697 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8107
Y1.1538
G01 Z-0.0060 F40.0000
G01 XO.8107 Y1.4052 F40.0000
G03 XO.7924 Y1.4494 1-0.0625 JO.0000
G01 XO.7598 Y1.4820 F40.0000
G02 XO.7415 Y1.5262 10.0442 JO.0442
G01 XO.7415 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8175
Yl.8420
G01 Z-0.0060 F40.0000
G01 XO.8175 Y1.5648 F40.0000
G03 XO.8358 Y1.5206 10.0625 JO.0000
G01 XO.8749 Y1.4815 F40.0000
G02 XO.8932 Y1.4373 1-0.0442 J-0.0442
G01 XO.8932 Y1.2074 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9907
Y1.2200
G01 Z-0.0060 F40.0000
G01 XO.9907 Y1.4572 F40.0000
G03 XO.9724 Y1.5014 1-0.0625 JO.0000
G01 XO.9118 Y1.5620 F40.0000
G02 XO.8935 Y1.6062 10.0442 JO.0442
G01 XO.8935 Y1.8420 F40.0000
GOO ZO.0300

XO. 9695
Y1. 8420
G01 Z-0.0060 F40.0000
G01 X0.9695 Y1.8217 F40.0000
G03 XO.9732 Y1.8004 10.0625 JO.0000
G01 XO.9870 Y1.7624 F40.0000
G02 XO.9907 Y1.7411 1-0.0588 J-0.0213
G01 XO.9907 Y1.7208 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9695
Y1.6383
G01 Z-0.0060 F40.0000
G01 XO.9830 Y1.6383 F40.0000
G03 X1.0455 Y1.7008 10.0000 JO.0625
G01 X1.0455 Y1.8420 F40.0000
G00 ZO.0300

GOO ZO.0300
X1.1215

Y1.8420
G01 Z-0.0060 F40.0000
G01 X1.1215 Y1.3521 F40.0000
G03 X1.1223 Y1.3382 I0.1250 JO.0000
G01 X1.1270 Y1.2967 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1111

Y1.2168
G01 Z-0.0060 F40.0000
G01 X1.1610 Y1.2168 F40.0000
G03 X1.2860 Y1.3418 10.0000 JO.1250
G01 X1.2860 Y1.5094 F40.0000
G01 X1.2735 Y1.5929 F40.0000
G01 X1.2735 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3495
Y1.8420
G01 Z-0.0060 F40.0000
G01 X1.3495 Y1.2606 F40.0000
G02 X1.2245 Y1.1356 1-0.1250 JO.0000
G01 X1.1057 Y1.1356 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2280
Y1.3773
G01 Z-0.0060 F40.0000
G01 X1.2051 Y1.4192 F40.0000
G02 X1.1975 Y1.4491 10.0549 JO.0299
G01 X1.1975 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
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GOO ZO.0300
X1.5775
Y1.8420
G01 Z-0.0060 F40.0000
G01 X2.4989 Y1.8420 F40.0000
G02 X2.5431 Y1.8237 10.0000 J-0.0625
G01 X2.8676 Y1.4992 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8676
Y1.3117
G01 Z-0.0060 F40.0000
G01 X2.5690 Y1.3117 F40.0000
G02 X2.5248 Y1.3300 10.0000 JO.0625

G01 X2.2348 Y1.6200 F40.0000
G03 X2.1907 Y1.6383 1-0.0442 J-0.0442

G01 X1.5640 Y1.6383 F40.0000
G02 X1.5015 Y1.7008 10.0000 JO.0625
G01 X1.5015 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.4255
Y1.8420
G01 Z-0.0060 F40.0000
G01 X1.4255 Y1.4785 F40.0000
G03 X1.4880 Y1.4160 10.0625 JO.0000
G01 X1.9629 Y1.4160 F40.0000
GOO Z1.5000
XO.3615
Y1.8420

We still have two more drill operations, the

interface ports and the OD sensor ports. Since

we break vacuum drilling, we will do the

smaller holes first.

File: layer3 0.02 drill.fgc
Tool: 0.02 drill

G90 (use absolute coordinates)

GOO ZO.0300
X1.1775
YO.1544
G83 RO.0300 Z-0.1000 QO.1500 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G83 RO.0300 Z-0.1000 QO.1500 F40.0000

GOO ZO.0300

GOO ZO.0300
X1.4825
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.6350
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.7875
YO.1544

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.0925
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.2450
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2 .397s
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.5500
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.5500
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000
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X2 .3975
Y0.3069
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X2.2450
Y0.3069
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.0925
YO.3069
G83 RO.0300
G00 Z0.0300

G00 ZO.0300
X1.9400
Y0.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.7875
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.6350
YO.3069
G83 RO.0300
GOO ZO.0300

GO0 ZO.0300
X1.4825
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1775
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9483
YO.7800
G83 RO.0300

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

GOO ZO.0300

GOO ZO.0300
XO.8549
YO.8110
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7842
YO.8794
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7503
YO.9718
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7597
Y1.0697
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8107
Y1.1538
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8932
Y1.2074
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
Y1.2200
G83 RO.0300
GOO ZO.0300

GOO ZO.0300

XO.9695
Y1.6383
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
Y1.7208
G83 RO.0300
GOO ZO.0300

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 QO.1500 F40.0000 GOO ZO.0300
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X1. 2280
Y1.3773
G83 RO.0300
G00 Z0.0300

GOO ZO.0300
X1.1270
Y1.2967
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.1111
Y1.2168
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.1057
Y1.1356
G83 RO.0300
GOO Z0.0300

GOO ZO.0300
X1. 9629
Y1.4160
G83 RO.0300
GOO Z0.0300

G00 ZO.0300
X2.8676
Y1 .3117
G83 RO.0300
G00 ZO.0300

GOO Z0.0300
X2.8676
Y1.4992
G83 RO.0300
G00 Z1.5000
X1.1775
YO . 1544

Z-0.1000 Q0.1500 F40.0000

Z-0.1000 Q0.1500 F40.0000

Z-0.1000 Q0.1500 F40.0000

Z-0.1000 Q0.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

Z-0.1000 Q0.1500 F40.0000

Z-0.1000 QO.1500 F40.0000

File: layer3 0.0625 drill spots.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
X1.7067
YO.8521
G83 RO.0300 Z-0.08 QO.150 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0449

Y1.7379
G83 RO.0300 Z-0.08 Q0.1500 F40.0000
G00 Z0.0300

GOO ZO.0300
X2.3349
Y1.7220

G83 RO.0300 Z-0.08 QO.1500 F40.0000
G00 Z1.500
X1.7067
YO.8521

D.1.7 Layer 4 Top Side

Layer 4 only contains the pneumatic tubing

interface for the gas connections so we are

focused on machining barbs. Again, for optical

density sensors, we need to drill access ports to

prevent any adhesive defect induced sensor

drift.

File: layer4 0.0625 square , mill
revision. fqc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

G00 Z0.0300
X2.5500
YO.0625
G01 Z-0.055 F40.0000
G01 X1.1775 YO.0625 F40.0000
G02 X1.0856 YO.1544 10.0000 JO.0919
G01 X1.0856 YO.3069 F40.0000
G02 X1.1775 YO.3988 10.0919 JO.0000
G01 X2.5500 YO.3987 F40.0000
G02 X2.6419 YO.3069 10.0000 J-0.0919
G01 X2.6419 YO.1544 F40.0000
G02 X2.5500 YO.0625 1-0.0919 JO.0000
G01 X2.5500 YO.0781 F40.0000
G02 X2.4737 YO.1544 10.0000 JO.0763
G02 X2.5500 YO.0781 10.0763 JO.0000
G02 X2.4737 YO.1544 10.0000 JO.0763
G02 X2.3212 YO.1544 1-0.0763 JO.0000
G02 X2.4737 YO.1544 10.0763 JO.0000
G02 X2.3212 YO.1544 1-0.0763 JO.0000
G02 X2.1687 YO.1544 1-0.0763 JO.0000
G02 X2.3212 YO.1544 10.0763 JO.0000
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G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
GOO

GOO ZO.0300
X1.7067
YO.8521

X2.1687
X2. 0162
X2.1687
X2.0162
X1.8637
X2. 0162
X1. 8637
X1. 7112
X1. 8637
X1. 7112
X1. 5587
X1. 7112
X1. 5587
X1.4062
X1. 5587
X1.4062
X1.2537
X1.4062
X1.2537
X1. 1775
X1.2537
X1. 1775
X1.2537
X1. 1775
X1.2537
X1.4062
X1.2537
X1.4062
X1. 5587
X1.4062
X1. 5587
X1. 7112
X1. 5587
X1. 7112
X1. 8637
X1. 7112
Xl.8637
X2. 0162
X1. 8637
X2. 0162
X2.1687
X2. 0162
X2.1687
X2. 3212
X2.1687
X2.3212
X2.4737
X2.3212
X2.4737
X2.6262
X2.4737
X2. 6262

ZO.3000

YO. 1544
YO. 1544
YO. 1544
YO.1544
YO. 1544
YO. 1544

YO. 1544
YO. 1544
YO. 1544
YO. 1544

YO.1544
YO. 1544

YO.1544
YO. 1544
YO. 1544
YO. 1544

YO. 1544
YO.1544
YO. 1544
YO.2306
YO. 1544
YO.2306
YO.3069
YO.2306
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO. 3069

YO.3069
YO.3069
YO.3069
YO.3069
YO.3069

1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0000 J-0.0763
1-0.0763 JO.0000
10.0000 JO.0763
1-0.0763 JO.0000
10.0000 JO.0763
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 J0.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 J0.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
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G83 RO.0300 Z-0.09 QO.150 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0449
Y1.7379
G83 RO.0300 Z-0.09 QO.1500 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.3349
Y1.7220
G83 RO.0300 Z-0.09 QO.1500 F40.0000
GOO Z1.500
X2.5500

YO.0625

Again, the 3-32 diameter keyseat cutter results

in a reduction in barb structural integrity, so we

have changed to a smaller 5-64 diameter

keyseat cutter.

File: layer4 3-32 keyseat mill
revision.fgc
Tool: 5-64 diameter 1-32 thick keyseat
cutter

G90 (use absolute coordinates)

GOO ZO.0300
X2.4737

YO.2306
G01 Z-0.0540 F40.0000
G01
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02

X2.4737 YO.1544 F40.0000
X2.5500 YO.0781 10.0763 JO.0000
X2.4737 YO.1544 10.0000 JO.0763
X2.5500 Y0.0781 10.0763 JO.0000
X2.4737 YO.1544 10.0000 JO.0763
X2.3212 YO.1544 1-0.0763 JO.0000
X2.4737 YO.1544 10.0763 JO.0000
X2.3212 YO.1544 1-0.0763 JO.0000
X2.1687 YO.1544 1-0.0763 JO.0000
X2.3212 YO.1544 10.0763 JO.0000
X2.1687 YO.1544 1-0.0763 JO.0000
X2.0162 YO.1544 1-0.0763 JO.0000
X2.1687 YO.1544 10.0763 JO.0000
X2.0162 YO.1544 1-0.0763 JO.0000
X1.8637 YO.1544 1-0.0763 JO.0000
X2.0162 YO.1544 10.0763 JO.0000
X1.8637 YO.1544 1-0.0763 JO.0000
X1.7112 YO.1544 1-0.0763 JO.0000
X1.8637 YO.1544 10.0763 JO.0000
X1.7112 YO.1544 1-0.0763 JO.0000
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G02 X1.5587 YO.1544 1-0.0763 JO.0000
G02 X1.7112 YO.1544 10.0763 JO.0000
G02 X1.5587 YO.1544 1-0.0763 JO.0000
G02 X1.4062 YO.1544 1-0.0763 JO.0000
G02 X1.5587 YO.1544 10.0763 JO.0000
G02 X1.4062 YO.1544 1-0.0763 JO.0000
G02 X1.2537 YO.1544 1-0.0763 JO.0000
G02 X1.4062 YO.1544 10.0763 JO.0000
G02 X1.2537 YO.1544 1-0.0763 JO.0000
G02 X1.1775 YO.2306 1-0.0763 JO.0000
G02 X1.2537 YO.1544 10.0000 J-0.0763
G02 X1.1775 YO.2306 1-0.0763 JO.0000
G02 X1.2537 YO.3069 10.0000 JO.0763
G02 X1.1775 YO.2306 1-0.0763 JO.0000
G02 X1.2537 YO.3069 10.0000 JO.0763
G02 X1.4062 YO.3069 10.0763 JO.0000
G02 X1.2537 YO.3069 1-0.0763 JO.0000
G02 X1.4062 YO.3069 10.0763 JO.0000
G02 X1.5587 YO.3069 10.0763 JO.0000
G02 X1.4062 YO.3069 1-0.0763 JO.0000
G02 X1.5587 YO.3069 10.0763 JO.0000
G02 X1.7112 YO.3069 10.0763 JO.0000
G02 X1.5587 YO.3069 1-0.0763 JO.0000
G02 X1.7112 YO.3069 10.0763 JO.0000
G02 X1.8637 YO.3069 10.0763 JO.0000
G02 X1.7112 YO.3069 1-0.0763 JO.0000
G02 X1.8637 YO.3069 10.0763 JO.0000
G02 X2.0162 YO.3069 10.0763 JO.0000
G02 X1.8637 YO.3069 1-0.0763 JO.0000
G02 X2.0162 YO.3069 10.0763 JO.0000
G02 X2.1687 YO.3069 10.0763 JO.0000
G02 X2.0162 YO.3069 1-0.0763 JO.0000
G02 X2.1687 YO.3069 10.0763 JO.0000
G02 X2.3212 YO.3069 10.0763 JO.0000
G02 X2.1687 YO.3069 1-0.0763 JO.0000
G02 X2.3212 YO.3069 10.0763 JO.0000
G02 X2.4737 YO.3069 10.0763 JO.0000
G02 X2.3212 YO.3069 1-0.0763 JO.0000
G02 X2.4737 YO.3069 10.0763 JO.0000
G02 X2.6262 YO.3069 10.0763 JO.0000
G02 X2.4737 YO.3069 1-0.0763 JO.0000
G02 X2.6262 YO.3069 10.0763 JO.0000
G02 X2,4737 YO.3069 1-0.0763 JO.0000
G01 X2.4737 YO.2306 F40.0000
GOO Z1.5000
X2.4737
YO.2306

File: layer4 90 deg mill revision.fgc
Tool: 0.125 diameter 90 degree full
angle drill mill

G90 (use absolute coordinates)

GOO ZO.0300
X2.4737

YO.2306

G01 Z-0.0430 F40.0000
G01
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02
G02

X2.4737 YO.1544 F40.0000
X2.5500
X2.4737
X2. 5500
X2.4737
X2.3212
X2.4737
X2.3212
X2.1687
X2.3212
X2.1687
X2.0162
X2.1687
X2.0162
X1. 8637
X2. 0162
X1. 8637
X1. 7112
X1. 8637
X1. 7112
X1. 5587
X1. 7112
X1. 5587
X1.4062
X1. 5587
X1. 4062
X1.2537
X1. 4062
X1. 2537
X1. 1775
X1. 2537
X1. 1775
X1. 2537
X1. 1775
X1. 2537
X1.4062
X1. 2537
X1.4062
X1. 5587
X1.4062
X1. 5587
X1. 7112
X1. 5587
X1. 7112
X1. 8637
X1. 7112
X1. 8637
X2.0162
X1. 8637
X2. 0162

X2. 1687
X2. 0162

X2. 1687

X2.3212
X2.1687
X2.3212

YO. 0781
YO. 1544

YO.0781
YO. 1544
YO.1544
YO. 1544
Y0. 1544

YO.1544
YO. 1544

YO.1544
YO. 1544
YO.1544
YO. 1544
YO.1544
YO. 1544

YO.1544
YO. 1544
YO. 1544
YO. 1544
YO. 1544
YO. 1544

YO.1544
YO. 1544

YO.1544
YO. 1544
YO.1544
YO. 1544
YO.1544
YO.2306
YO.1544
YO.2306
YO.3069
YO.2306
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069

10.0763 JO.0000
10.0000 JO.0763
10.0763 JO.0000
10.0000 JO.0763
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0000 J-0.0763
1-0.0763 JO.0000
10.0000 JO.0763
1-0.0763 JO.0000
10.0000 JO.0763
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
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G02 X2.4737 YO.3069
G02 X2.3212 YO.3069
G02 X2.4737 YO.3069
G02 X2.6262 YO.3069
G02 X2.4737 YO.3069
G02 X2.6262 YO.3069
G02 X2.4737 YO.3069
G01 X2.4737 YO.2306
GOO Z1.5000

10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
F40.0000

Again, the keyseat cutter introduces burrs at the

barb wall so we need to remachine the edges

for a finish pass on the sidewalls.

File: layer4 0.0625 square mill
finishpass . fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

G00 ZO.0300
X2.5500

YO.0625
G01 Z-0.055
G01 X1.1775
G02 X1.0856
G01 X1.0856
G02 X1.1775
G01 X2.5500
G02 X2.6419
G01 X2.6419
G02 X2.5500
G01 X2.5500
G02 X2.4737
G02 X2.5500
G02 X2.4737
G02 X2.3212
G02 X2.4737
G02 X2.3212
G02 X2.1687
G02 X2.3212
G02 X2.1687
G02 X2.0162
G02 X2.1687
G02 X2.0162
G02 X1.8637
G02 X2.0162
G02 X1.8637
G02 X1.7112
G02 X1.8637
G02 X1.7112
G02 X1.5587
G02 X1.7112

F40.0000
YO.0625 F40.0000
YO.1544
YO.3069
YO.3988
YO.3987
YO.3069
YO.1544
YO. 0625
YO.0781
YO.1544
YO. 0781
YO.1544
YO. 1544
Y0. 1544

YO.1544
YO. 1544
YO. 1544
YO. 1544
YO.1544
YO. 1544
YO.1544
YO. 1544
YO.1544
YO. 1544
YO. 1544

YO.1544
YO.1544
YO. 1544

YO. 1544

10.0000 JO.0919
F40.0000
10.0919 JO.0000
F40.0000
10.0000 J-0.0919
F40.0000
1-0.0919 JO.0000
F40.0000
10.0000 JO.0763
10.0763 JO.0000
10.0000 JO.0763
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000

G02 X1.5587
G02 X1.4062
G02 X1.5587
G02 X1.4062
G02 X1.2537
G02 X1.4062
G02 X1.2537
G02 X1.1775
G02 X1.2537
G02 X1.1775
G02 X1.2537
G02 X1.1775
G02 X1.2537
G02 X1.4062
G02 X1.2537
G02 X1.4062
G02 X1.5587
G02 X1.4062
G02 X1.5587
G02 X1.7112
G02 X1.5587
G02 X1.7112
G02 X1.8637
G02 X1.7112
G02 X1.8637
G02 X2.0162
G02 X1.8637
G02 X2.0162
G02 X2.1687
G02 X2.0162
G02 X2.1687
G02 X2.3212
G02 X2.1687
G02 X2.3212
G02 X2.4737
G02 X2.3212
G02 X2.4737
G02 X2.6262
G02 X2.4737
G02 X2.6262
GOO Z1.5000
X2.5500
YO.0625

YO. 1544

YO. 1544
YO. 1544

YO.1544
YO. 1544

YO. 1544

YO.1544
YO.2306
YO. 1544

YO.2306
YO.3069
YO.2306
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069
YO.3069

1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
1-0.0763 JO.0000
10.0000 J-0.0763
1-0.0763 JO.0000
10.0000 JO.0763
1-0.0763 JO.0000
10.0000 JO.0763
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
IO.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000
10.0763 JO.0000
1-0.0763 JO.0000
10.0763 JO.0000

The final drilling step was originally 0.036

diameter holes. However, the valve backfill

lines were easily delaminated by 15 psi.

Therefore this step has been reduced to 0.02

diamter holes. This effectively prevents the

cover over the backfill lines from adhesive

failure.
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File: layer4 0.036 drill.fgc
Tool: 0.02 drill

G90 (use absolute coordinates)

GOO ZO.0300
X1.1775
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.4825
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.6350
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.7875
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.0925
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.2450
YO.1544
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.3975
YO.1544

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.5500
Y0.1544

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.5500
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.3975
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.2450
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.0925

YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.7875
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.6350
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.4825
YO.3069
G83 RO.0300
GOO ZO.0300

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000
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GOO ZO.0300
X1.3300
YO.3069
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.1775
YO.3069
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X0.3615
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X0.4375
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.5135
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.5895
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.6655
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7415
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8175
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8935
Y1.8420

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9695
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.0455
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1215
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1975
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2735
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3495
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.4255
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.5015
Y1.8420
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.5775
Y1.8420
G83 RO.0300
GOO Z1.5000
X1.1775

APPENDIX D DEVICE G-CODE

Z-0.1100 QQ.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000

Z-0.1100 QO.150 F40.0000
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YO. 1544

D.1.7 Adhesive Drilling

After bonding layer 1 and layer 2, layers that

are bound with double sided pressure sensitive

silicone adhesive need to have their drilled

through holes opened to allow liquid and gas

access between lines. While this can be done

manually, there are 109 holes per device that

need to be punctured. Therefore this step is

done automatically using the CNC machine.

Since the adhesive sticks to the drill, layers are

lubricated with isopropanol during the drilling

process.

File: layer3reverse 0.02 drill

adhesive.fgc
Tool: 0.02 drill

G90 (use absolute coordinates)

G00 ZO.0300
X2.8676
YO.5008
G83 RO.0300 Z-0.0400 QO.0750 F40.0000

G00 ZO.0300

GOO ZO.0300
X2.8676
YO.6883
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.9629
YO.5840
G83 RO.0300

GOO ZO.0300

GOO ZO.0300
X1.1057
YO.8644
G83 RO.0300
GOO ZO.0300

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

GOO ZO.0300
X1.1111
YO .7832
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.1270
YO 7033
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
Xl.2280
YO .6227
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO .9907
YO .2792

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO .9695
YO.3617
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9907
YO.7800
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8932
YO.7926
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8107
YO.8462
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7597
YO.9303
G83 RO.0300
GO0 ZO.0300

GOO ZO.0300
XO.7503

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000
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Y1. 0282
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.7842
Y1.1206
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
XO.8549
Y1.1890
G83 RO.0300
G00 Z0.0300

GOO ZO.0300
XO.9483
Y1.2200
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1775
Y1.8456
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3300
Y1.8456
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X1.4825
Y1.8456
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.6350
Y1.8456
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.7875
Y1.8456
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.9400
Y1.8456
G83 RO.0300
GOO ZO.0300

Z-0.0400 QO.0750 F40.0000

Z-0.0400 Q0.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

G00 ZO.0300
X2.0925
Y1.8456
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
G00 Z0.0300

G00 ZO.0300
X2.2450

Y1.8456
G83 RO.0300 Z-0.0400 Q0.0750 F40.0000
G00 ZO.0300

GOO ZO.0300
X2.3975
Y1.8456
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

G00 ZO.0300
X2.5500
Y1.8456
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

G00 ZO.0300
X2.5500

Y1.6931
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

G00 ZO.0300
X2.3975
Y1.6931
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2450
Y1.6931
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0925

Y1.6931
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9400
Y1.6931
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

G00 ZO.0300
X1.7875
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Y1. 6931
G83 RO.0300
G00 Z0.0300

G00 ZO.0300
X1.6350
Y1.6931
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.4825
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.3300
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.1775
Y1.6931
G83 RO.0300
GOO ZO.0300

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0

File: layer4reverse
adhesive.fgc
Tool: 0.02 drill

GOO ZO.0300
XO.6655
YO.1580
G83 RO.0300
G00 Z0.0300

GOO ZO.0300
XO.7415
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8175
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.8935
YO.1580
G83 RO.0300
GOO ZO.0300

750 F40.0000 GOO ZO.0300
XO.9695
YO.1580

0.036 drill G83 RO.0300
GOO ZO.0300

G90 (use absolute coordinates)

GOO ZO.0300
XO.3615
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.4375
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.5135
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.5895
YO.1580
G83 RO.0300
GOO ZO.0300

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

GOO ZO.0300
X1.0455
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1215
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1975
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2735
YO.1580
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3495

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 Q0.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000
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YO. 1580
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.4255
Y0.1580
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.5015
YO.1580
G83 RO.0300
G00 Z0.0300

GOO ZO.0300
X1.5775
YO.1580
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.1775
Y1.6931
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X1.3300
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 Z0.0300
X1.4825
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.6350
Y1.6931
G83 RO.0300
G00 Z0.0300

G00 ZO.0300
X1.7875
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.9400
Y1.6931
G83 RO.0300
G00 ZO.0300

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 Q0.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

G00 ZO.0300
X2.0925

Y1.6931
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X2.2450
Y1.6931
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X2.3975
Y1.6931
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X2.5500
Y1.6931
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.5500

Y1.8456
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.3975
Y1.8456
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X2.2450

Y1.8456
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.0925

Y1.8456
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.9400
Y1.8456
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.7875

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

374



D. 1 CONTINUOUS CULTURE

Y1. 8456
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.6350
Y1.8456
G83 RO.0300
G00 ZO.0300

GOO Z0.0300
X1.4825
Y1.8456
G83 RO.0300

GOO ZO.0300
Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

GOO ZO.0300
X1.3300

Y1.8456
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1775
Y1.8456
G83 RO.0300 Z-0.0400 QO.0750 F40.0000
GOO ZO.0300

Z-0.0400 QO.0750 F40.0000
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D.2 Fed-Batch Reactor

The Fed-Batch reactor is much easier to machine since there is only one growth chamber section

and 3 inputs. Therefore it consists of only 3 layers instead of 4. In order for the external

interfacing to look the same, the top layer remains the same as the continuous culture chip.

Therefore, only the code for the bottom two layers are given below.

D.2.1 Layer 1 Bottom Side

The bottom side looks the same as the

continuous culture chip except that there are

only three inputs.

File: layerireverse 0.0625 square
mill.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.0625
YO.4662
G01 Z-0.0550 F40.0000
G01 XO.0625 Y1.5338 F40.0000

XO.2463
XO.2462
XO. 0625
XO. 1084

XO. 1084
XO.2003
XO.2003
XO.)1544
XO. 1544

XO. 1544
XO. 1544

XO. 1544
XO. 1544
XO. 1084
XO. 1084

XO.2003
XO.2003
XO. 1544

Y1.5338
YO.4662
YO.4662
YO.4662
YO.6113
YO.6113
YO.4662
YO.3744
YO.4662
YO. 6113
YO.7638
YO. 6112.
YO.7638
YO. 7637
YO.9238
YO.9238
YO. 7637
YO.7637

10.0919 JO.0000
F40.0000
1-0.0919 JO.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000

G01 XO.1544 YO.9238
G02 XO.1544
G02 XO.1544
G02 XO.1544
G01 XO.1084
G01 XO.1084
G01 XO.2003
G01 XO.2003
G01 XO.1544
G01 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G01 XO.1084
G01 XO.1084
G01 XO.2003
G01 XO.2003
G01 XO.1544
G01 XO.1544
GOO ZO.0300
GOO ZO.0300
XO.0625
YO.4662
G01
G01
G02
G01
G02
G01
G01
G01
G01
G01
G01
G01
G02
G02
G02
G01
G01
G01

Y1. 0763
YO. 9237
Y1. 0763
Y1. 0762
Y1.2363
Y1.2363
Y1. 0762
Y1. 0762
Y1.2363
Y1.3888
Y1.2362
Y1.3888
Y1. 3887
Y1.5338
Y1. 5338
Y1.3887
Y1. 3887
Y1. 6256

F40.0000
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000

Z-0.0550 F40.0000
XO.0625 Y1.5338 F40.0000
XO.2463 Y1.5338 I0.0919 JO.0000
XO.2462 YO.4662 F40.0000
XO.0625 YO.4662 1-0.0919 JO.0000
XO.1084 YO.4662 F40.0000
XO.1084 YO.6113 F40.0000
XO.2003 YO.6113 F40.0000
XO.2003 YO.4662 F40.0000
XO.1544 YO.3744 F40.0000
XO.1544 YO.4662 F40.0000
XO.1544 YO.6113 F40.0000
XO.1544 YO.7638 10.0000 JO.0762
XO.1544 YO.6112 10.0000 J-0.0762
XO.1544 YO.7638 10.0000 JO.0762
XO.1084 YO.7637 F40.0000
XO.1084 YO.9238 F40.0000
XO.2003 YO.9238 F40.0000
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G01 XO.2003
G01 XO.1544
G01 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G01 XO.1084
G01 XO.1084
G01 XO.2003
G01 XO.2003
G01 XO.1544
G01 XO.1544
G02 XO.1544
G02 XO.1544
G02 XO.1544
G01 XO.1084
G01 XO.1084
G01 XO.2003
G01 XO.2003
G01 XO.1544
G01 XO.1544
GOO ZO.0300

YO.7637 F40.0000
YO.7637 F40.0000
YO.9238 F40.0000
Y1.0763 10.0000 JO.0762
YO.9237 10.0000 J-0.0762
Y1.0763 10.0000 JO.0762
Y1.0762 F40.0000
Y1.2363 F40.0000
Y1.2363 F40.0000
Y1.0762 F40.0000
Y1.0762 F40.0000
Y1.2363 F40.0000
Y1.3888 10.0000 JO.0762
Y1.2362 10.0000 J-0.0762
Y1.3888 10.0000 JO.0762
Y1.3887 F40.0000
Y1.5338 F40.0000
Y1.5338 F40.0000
Y1.3887 F40.0000
Y1.3887 F40.0000
Y1.6256 F40.0000

GOO ZO.0300
X1.9629
YO.9768
G01 Z-0.0200 F40.0000
G01 X1.9629 Y1.0214 F40.0000
G01 X1.9335 Y1.0394 F40.0000
G01 X1.9922 Y1.0394 F40.0000
G01 X1.9922 YO.9606 F40.0000
G01 X1.9335 YO.9606 F40.0000
G01 X1.9335 Y1.0394 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8276
YO.9820
G01 Z-0.055 F40.0000
G03 X2.8276 Y0.8295.
G03 X2.8276 YO.9820
G01 X2.8095 YO.9958
G02 X2.8457 YO.9958
G02 X2.8095 YO.9958
G02 X2.8457 YO.9958
GOO ZO.0300
GOO ZO.0300
X2.8276
YO.9820
G01 Z-0.055 F40.0000
G03 X2.8276 YO.8295
G03 X2.8276 YO.9820
G01 X2.8095 YO.9958
G02 X2.8457 YO.9958
G02 X2.8095 YO.9958
G02 X2.8457 YO.9958
GOO ZO.0300

10.0000 J-0.0763
10.0000 JO.0763
F40.0000
10.0181 JO.0049
1-0.0181 J-0.0901
10.0181 J-0.0901

10.0000 J-0.0763
10.0000 JO.0763
F40.0000
10.0181 J0.0049
1-0.0181 J-0.0901
10.0181 J-0.0901

GOO ZO.0300
X2.8276
YO.2695
G01 Z-0.055 F40.0000
G03 X2.8276 YO.4220 10.0000 JO.0763
G03 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8457 Y0.2557 F40.0000
G02 X2.8095 YO.2557 1-0.0181 J-0.0049
G02 X2.8457 YO.2557 10.0181 JO.0901
G02 X2.8095 Y0.2557 1-0.0181 JO.0901

GOO ZO.0300
X2.8276
YO.2695
G01 Z-0.055 F40.0000
G03 X2.8276 YO.4220 10.0000 JO.0763
G03 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8457 YO.2557 F40.0000
G02 X2.8095 YO.2557 1-0.0181 J-0.0049
G02 X2.8457 YO.2557 10.0181 JO.0901
G02 X2.8095 YO.2557 1-0.0181 JO.0901
GOO Z1.5000

File: layerireverse 5-64 keyseat.fgc
Tool: 5-64 diameter 1-32 thick keyseat
cutter

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544
YO.4662
G01 Z-0.0540 F20.0000
G01 XO.1544 YO.6113 F20.0000
G02
G02
G02
G02
G02
G01
G02
G02
G02
G02
G02
G01
G02
G02
G02
G02
G02
G01
GOO

XO. 1544

XO. 1544
XO. 1544

XO. 1544
X0.1544
XO. 1544
XO.1544
XO. 1544
XO. 1544

XO. 1544
XO. 1544

XO. 1544
XO. 1544

XO. 1544
XO.1544
XO. 1544
XO.1544
XO. 1544
ZO .0300

YO.7638 10.0000 JO.0762
YO.6112 10.0000 J-0.0762
YO.7638 10.0000 JO.0762
YO.6112 10.0000 J-0.0762
YO.7638 10.0000 JO.0762
YO.9238 F20.0000
Y1.0763 10.0000 JO.0762
YO.9237 10.0000 J-0.0762
Y1.0763 10.0000 JO.0762
YO.9237 10.0000 J-0.0762
Y1.0763 10.0000 JO.0762
Y1.2363 F20.0000
Y1.3888 10.0000 JO.0762
Y1.2362 10.0000 J-0.0762
Y1.3888 10.0000 JO.0762
Y1.2362 10.0000 J-0.0762
Y1.3888 10.0000 JO.0762
Y1.5338 F20.0000

GOO ZO.0300
X2.8276
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Y1. 0008
G01 Z-0.0540 F20.0000
G01 X2.8276 YO.9820 F20.0000
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G01 X2.8276 Y1.0008 F20.0000
GOO ZO.0300

GOO ZO.0300
X2.8276

YO.2508
G01 Z-0.0540 F20.0000
G01 X2.8276 YO.2695 F20.0000
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8276 YO.2508 F20.0000
GOO Z1.5000
XO.0871
YO.5425

File: layerireverse 90 deg mill.fgc
Tool: 0.125 diameter 90 degree full
angle drill mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544
YO.4662
G01 Z-0.0400 F20.0000
G01 XO.1544 YO.6113 F20.0000

XO. 1544
XO. 1544
XO. 1544

XO. 1544

XO. 1544
XO. 1544
XO.1544
XO. 1544
XO. 1544
XO.1544
XO. 1544
XO. 1544
XO. 1544

XO. 1544
XO. 1544
XO. 1544

YO. 7638
YO.6112
YO.7638
YO. 6112
YO.7638
YO. 9238
Y1. 0763
YO. 9237
Y1. 0763
YO. 9237
Yl. 0763
Y1.2363
Y1. 3888
Y1.2362
Y1. 3888
Y1.2362

G02 XO.1544 Y1.3888
G01 XO.1544
GOO ZO.0300

GOO ZO.0300
X2.8276

10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
F20.0000
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
F20.0000
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762
10.0000 J-0.0762
10.0000 JO.0762

Y1.5338 F20.0000

Y1. 0008
G01 Z-0.0400 F20.0000
G01 X2.8276 YO.9820 F20.0000
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G02 X2.8276 YO.8295 10.0000 J-0.0763
G02 X2.8276 YO.9820 10.0000 JO.0763
G01 X2.8276 Y1.0008 F20.0000
GOO ZO.0300

GOO ZO.0300
X2.8276

YO.2508
G01 Z-0.0400 F20.0000
G01 X2.8276 YO.2695 F20.0000
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763
G02 X2.8276 YO.4220 10.0000 JO.0763
G02 X2.8276 YO.2695 10.0000 J-0.0763
G01 X2.8276 YO.2508 F20.0000
GOO Z1.500
XO.0871
YO.5425

File: layerireverse 0.0625 square mill
finish pass.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544
YO.4662
G01 Z-0.0550 F40.0000
G01 XO.1544 YO.6113 F40.0000
G02 XO.1544 YO.7638 10.0000 JO.0762
G02 XO.1544 YO.6112 10.0000 J-0.0762
G02 XO.1544 YO.7638 10.0000 JO.0762
G01 XO.1544 YO.9238 F40.0000
G02 XO.1544 Y1.0763 10.0000 JO.0762
G02 XO.1544 YO.9237 10.0000 J-0.0762
G02 XO.1544 Y1.0763 10.0000 JO.0762
G01 XO.1544 Y1.2363 F40.0000
G02 XO.1544 Y1.3888 10.0000 JO.0762
G02 XO.1544 Y1.2362 10.0000 J-0.0762
G02 XO.1544 Y1.3888 10.0000 JO.0762
G01 XO.1544 Y1.6256 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.8276
YO.9820
G01 Z-0.055
G03 X2.8276
G03 X2.8276
G01 X2.8095

F40.0000
YO.8295 10.0000 J-0.0763
YO.9820 10.0000 JO.0763
YO.9958 F40.0000
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G02 X2.8457 YO.9958 10.0181 JO.0049
G02 X2.8095 YO.9958 1-0.0181 J-0.0901
G02 X2.8457 YO.9958 10.0181 J-0.0901
G00 Z0.0300

GOO ZO.0300
X2.8276
YO.2695
G01 Z-0.055 F40.000C
G03 X2.8276 YO.4220
G03 X2.8276 YO.2695
G01 X2.8457 YO.2557
G02 X2.8095 YO.2557
G02 X2.8457 YO.2557
G02 X2.8095 YO.2557
GOO Z1.5000

10.0000 JO.0763
10.0000 J-0.0763
F40.0000
1-0.0181 J-0.0049
10.0181 JO.0901
1-0.0181 JO.0901

D.2.2 Layer 1 Top Side

The optical density sensor in this chip is an

elevated mesa to allow for path length control.

Since the thickness is hard coded into the G-

code, we change the drill depth for the OD

sensor as appropriate for the growth.

File: layer1 0.125 square mill
updated0shortOD.fgc
Tool: 0.125 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
X1.9629
Y1.4792
G01 Z-0.0400 F40.0000
G02 X1.9629
G02 X1.9629
G01 X1.9629
G02 X1.9629
G02 X1.9629
G01 X1.9629
G02 X1.7284
G02 X1.6109
G02 X1.9629
G01 X1.9629
G02 X1.7906
G03 X1.8250
G03 X1.7309

YO.5208 10.0000 J-0.4792
Y1.4792 10.0000 JO.4792
Y1.4209 F40.0000
YO.5791 10.0000 J-0.4209
Y1.4209 10.0000 JO.4209
Y1.3584 F40.0000
YO.7290 10.0000 J-0.3584

YO.9325 1-0.0218 JO.1231
Y1.3584 10.3519 JO.0675
Y1.2959 F40.0000
YO.7595 10.0000 J-0.2959
YO.8117 1-0.0840 JO.0926
YO.9747 10.1379 JO.1883

G03 X1.6684 YO.9711 1-0.0242 J-0.1226
G03 X1.7309 YO.9747 10.0382 J-0.1190

G03 X1.6684 YO.9711
G02 X1.9629 Y1.2959
G01 X1.9629 Y1.1709
G02 X1.9629 YO.8291
G02 X1.9629 Y1.1709
G01 X1.9629 Y1.1084
G02 X1.9629 YO.8916
G02 X1.9629 Y1.1084
G01 X1.9629 Y1.0000
GOO ZO.0300

1-0.0242 J-0.1226
10.2944 JO.0289
F40.0000
10.0000 J-0.1709
10.0000 JO.1709
F40.0000
10.0000 J-0.1084
10.0000 JO.1084
F40.0000

GOO ZO.0300
X1.7067
YO.8521
G01 Z-0.0046 F40.0000
G01 X1.7067 YO.9146 F40.0000
G02 X1.7067 YO.7896 10.0000 J-0.0625
G02 X1.7067 YO.9146 10.0000 JO.0625
GOO ZO.0300

GOO ZO.0300
X1.5892
Y1.2157
G01 Z-0.0500 F40.0000
G01 X1.5892 Y1.2632 F40.0000
G02 X1.5892 Y1.1682 10.0000 J-0.0475
G02 X1.5892 Y1.2632 10.0000 JO.0475
GOO ZO.0300

GOO ZO.0300
X1.8378
YO.5445
G01 Z-0.0500 F40.0000
G01 X1.8378 YO.5920 F40.0000
G02 X1.8378 YO.4970 10.0000 J-0.0475
G02 X1.8378 YO.5920 10.0000 JO.0475
G01 X1.8378 YO.5445 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0863
YO.5620
G01 Z-0.0500 F40.0000
G02 X2.0863 YO.5270 10.0000 J-0.0175
G01 X2.0863 YO.5620 F40.0000
G03 X2.0863 YO.5270 10.0000 J-0.0175
G01 X2.0863 YO.5455 F40.0000
G01 Z-0.0520 F10.0000
GOO ZO.0300

(G-code auto
dxf2gcode.m)

generated using

G90 (use absolute coordinates)

GOO ZO.0300
XO.5191
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YO.6875
G01 Z-0.0200 F40.0000
G01 XO.7691 YO.6875 F40.0000
G01 XO.7691 YO.6250 F40.0000
G01 XO.5191 YO.6250 F40.0000
G02 XO.5191 YO.7500 10.0000 JO.0625
G01 XO.7691 YO.7500 F40.0000
G02 XO.7691 YO.6250 10.0000 J-0.0625
GOO ZO.0300

GOO ZO.0300
XO.5191
Y1.0000
G01 Z-0.0200 F40.0000
G01 XO.7691 Y1.0000 F40.0000
G01 XO.7691 YO.9375 F40.0000
G01 XO.5191 YO.9375 F40.0000
G02 XO.5191 Y1.0625 10.0000 JO.0625
G01 XO.7691 Yl.0625 F40.0000
G02 XO.7691 YO.9375 10.0000 J-0.0625
GOO ZO.0300

GOO ZO.0300
XO.5191
Y1.3125
G01 Z-0.0200 F40.0000
G01 XO.7691 Y1.3125 F40.0000
G01 XO.7691 Y1.2500 F40.0000
G01 XO.5191 Y1.2500 F40.0000
G02 XO.5191 Yl.3750 10.0000 JO.0625
G01 XO.7691 Y1.3750 F40.0000
G02 XO.7691 Y1.2500 10.0000 J-0.0625
GOO Z1.5000

File: layer1 0.125 ball mill.fgc
Tool: 0.125 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.9629
Y1.5417
G01 Z-0.0400 F40.0000
G02 X1.9629 YO.4583 10.0000 J-0.5417
G02 X1.9629 Y1.5417 10.0000 JO.5417
GOO Z1.5000

File: layer1 0.0625 ball mill.fgc
Tool: 0.0625 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.1544
YO.6875
G01 Z-0.0040 F40.0000
G01 X1.9629 YO.6875 F40.0000

G01 X1.9629 Yl.0000 F40.0000
G01 XO.1544
G01
G01
G01
G01
G01
G01
G02
G02
G03
G01
G01
G02
G03
G03
G01
G01
G03
G01

X1. 9629
X1. 9629
XO. 1544

X1. 9629
X1. 9629
X1. 7635
X1.8099
X2.5056
X2.5900
X2.8276
X2.5900
X2.5056
X1. 8099
X1. 7635
X1. 9629
X2.7651
X2. 8276
X2.8276

Y1. 0000
Y1. 0000
Y1. 3125
Y1. 3125

Y1. 3125
Y1. 0000
Y1..6301
Y1. 7101
Y1.4828
Y1.4745
Y1. 6542
Y1.4745
Y1.4828
Y1.7101
Y1. 6301
Y1. 0000
Y1.0000
Y1. 0625
Y1.0942

F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
F40.0000
10.0596 JO.0189
IO.1530 J-0.7101
10.0467 JO.0415
F40.0000
F40.0000
1-0.0377 JO.0498
1-0.5427 J-0.4828
IO.0132 J-0.0611
F40.0000
F40.0000
10.0000 JO.0625
F40.0000

GOO Z1.500

File: layer1 0.0625 square mill
addon.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
X1.2066
Y1.3125
G83 RO.0300 Z-0.0040 QO.1500 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.0000
G83 RO.0300 Z-0.0040 QO.1500 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.6875
G83 RO.0300 Z-0.0040 QO.1500 F40.0000
GOO Z1.500

File: layer1 0.0312
addon.fgc
Tool: 0.03125 ball mill

5 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
X2.0863
YO.6155
G01 Z-0.0450 F40.0000
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G02 X2.0863 YO.4734 10.0000 J-0.0711
G02 X2.0863 YO.6155 10.0000 JO.0711
GOO ZO.0300

GOO ZO.0300
X1.8378
YO.6455
G01 Z-0.0450 F40.0000
G02 X1.8378 YO.4435 10.0000 J-0.1010
G02 X1.8378 YO.6455 10.0000 JO.1010
GOO ZO.0300

GOO ZO.0300
X1.5892
Y1.3167
G01 Z-0.0450 F40.0000
G02 X1.5892 Y1.1147 10.0000 J-0.1010
G02 X1.5892 Y1.3167 10.0000 JO.1010
GOO ZO.0300

GOO ZO.0300
XO.5191
Y1.4275
G01 Z-0.0050 F40.0000
G01 XO.7691 Y1.4275 F40.0000
G02 XO.7691 Y1.1975 10.0000 J-0.1150
G01 XO.5191 Y1.1975 F40.0000
G02 XO.5191 Y1.4275 10.0000 JO.1150
GOO ZO.0300

GOO ZO.0300
XO.5191
Y1.1150
G01 Z-0.0050 F40.0000
G01 XO.7691 Y1.1150 F40.0000
G02 XO.7691 YO.8850 10.0000 J-0.1150
G01 XO.5191 YO.8850 F40.0000
G02 XO.5191 Y1.1150 10.0000 JO.1150
GOO ZO.0300

GOO ZO.0300
XO.5191
YO.8025
G01 Z-0.0050 F40.0000
G01 XO.7691 YO.8025 F40.0000
G02 XO.7691 YO.5725 10.0000 J-0.1150
G01 XO.5191 YO.5725 F40.0000
G02 XO.5191 YO.8025 10.0000 JO.1150
GOO Z1.5000

File: layer1 0.03125 square drill
addon.fgc
Tool: 0.03125 square mill long reach

G90 (use absolute coordinates)

GOO ZO.0300

XO. 1544

YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.1544
Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.1544
Y1.3125
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.8276

Y1.6542
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.8276
Y1.0942
G83 RO.0300
GOO Z1.500
XO.1544
YO.6875

Z-0.0900 QO.07500 F40.0000

Z-0.0900 Q0.07500 F40.0000

Z-0.0900 QO.07500 F40.0000

Z-0.0900 QO.07500 F40.0000

Z-0.0900 QO.07500 F40.0000

File: layer1 120deg mill.fgc
Tool: 0.125 diameter 90 degree full
angle drill mill

(G-code auto
dxf2gcode.m)

generated using

G90 (use absolute coordinates)

GOO ZO.0300
X1.7067
YO.9146
G01 Z-0.0400 F40.000
G02 X1.7067 YO.7896
G02 X1.7067 YO.9146
G02 X1.7067 YO.7896
G02 X1.7067 YO.9146
GOO Z1.5000

0
10.0000 J-0.0625
10.0000 JO.0625
10.0000 J-0.0625
10.0000 JO.0625

D.2.3 Layer 2 Top Side

File: layer2top 0.02 square mill.fgc
Tool: 0.02 square mill

G90 (use absolute coordinates)
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GOO ZO.0300
X1.1775
Y0.1544
G01 Z-0.0100 F40.0000
G01 XO.5450 YO.1544 F40.0000
G02 XO.5008 YO.1727 10.0000 JO.0625
G01 XO.3499 YO.3236 F40.0000
G02 XO.3316 YO.3678 10.0442 JO.0442
G01 XO.3316 YO.6662 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3316
YO.7088
G01 Z-0.0100 F40.0000
G01 XO.3316 YO.9787 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3316
Yl.0213
G01 Z-0.0100 F40.0000
G01 XO.3316 Yl.2912 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.3338
G01 Z-0.0100 F40.0000
G01 XO.3316 Y1.6331 F40.0000
G02 XO.3408 Y1.6552 IO.0313 JO.0000
G01 XO.3523 Y1.6667 F40.0000
G03 XO.3615 Yl.6888 1-0.0221 JO.0221
G01 XO.3615 Yl.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4377
Y1.8422
G01 Z-0.0100 F40.0000
G01 XO.4377 Y1.6190 F40.0000
G02 XO.4286 Y1.5969 I-0.0313 JO.0000
G01 XO.4133 Y1.5816 F40.0000
G03 XO.4041 Y1.5595 10.0221 J-0.0221
G01 XO.4041 YO.4478 F40.0000
G03 XO.4224 YO.4036 10.0625 JO.0000
G01 XO.5008 YO.3252 F40.0000
G03 XO.5450 YO.3069 10.0442 JO.0442
G01 X1.1775 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.3162 YO.1544 F40.0000

G02 X1.2537 YO.2169 10.0000 J0.0625
G01 X1.2537 YO.3187 F40.0000
G03 X1.1912 YO.3812 1-0.0625 JO.0000
G01 X1.0191 Y0.3812 F40.0000
G02 XO.9566 YO.4437 10.0000 J0.0625
G01 XO.9566 Y0.6662 F40.0000
G00 ZO.0300

GOO ZO.0300
XO.9566
YO.7088
G01 Z-0.0100 F40.0000
G01 XO.5760 YO.7088 F40.0000
G02 XO.5135 YO.7713 10.0000 JO.0625
G01 XO.5135 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.5895
Y1.8420
G01 Z-0.0100 F40.0000
G01 XO.5895 Y1.4143 F40.0000
G03 XO.6078 Y1.3701 10.0625 JO.0000
G01 XO.9566 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.9787
G01 Z-0.0100 F40.00C
G01 XO.9566 YO.8853
G03 XO.9749 YO.8411
G01 XO.9852 YO.8308
G02 X1.0035 YO.7866
G01 X1.0035 YO.4925
G03 X1.0660 YO.4300
G01 X).1441 YO.4300
G01 X1.2675 YO.4300
G02 X1.3300 YO.3675
G01 X1.3300 YO.3069
GOO ZO.0300

F40.0000
10.0625 JO.0000
F40.0000
1-0.0442 J-0.0442
F40.0000
10.0625 JO.0000
F40.0000
F40.0000
10.0000 J-0.0625
F40.0000

GOO ZO.0300
X1.4825
YO.1544
G01 Z-0.0100 F40.0000
G01 X1.4687 YO.1544 F40.0000
G02 X1.4062 YO.2169 10.0000 JO.0625
G01 X1.4062 YO.4162 F40.0000
G03 X1.3437 YO.4787 1-0.0625 JO.0000
G01 X1.1129 YO.4787 F40.0000
G02 X1.0504 YO.5412 10.0000 JO.0625
G01 X1.0504 Y1.0387 F40.0000
G03 X1.0321 Y1.0829 1-0.0625 JO.0000
G01 XO.9749 Y1.1401 F40.0000
G02 XO.9566 Y).1843 10.0442 JO.0442
G01 XO.9566 Y1.2912 F40.0000
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GOO ZO.0300

GOO ZO.0300
XO.9566
Y1.3338
G01 Z-0.0100 F40.0000
G01 XO.7674 Y1.3338 F40.0000
G02 XO.7232 Y1.3521 10.0000 JO.0625
G01 XO.6838 Y1.3914 F40.0000
G02 XO.6655 Y1.4356 10.0442 JO.0442
G01 XO.6655 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7415
Y1.8420
G01 Z-0.0100 F40.0000
G01 XO.7415 Y1.7310 F40.0000
G03 XO.7598 Y1.6868 10.0625 JO.0000
G01 X1.1129 Y1.3338 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
Y1.2912
G01 Z-0.0100 F40.0000
G01 X1.1129 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.9787
G01 Z-0.0100 F40.0000
G01 X1.1129 YO.7088 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.6662
G01 Z-0.0100 F40.0000
G01 X1.1129 YO.5913 F40.0000
G03 X1.1754 YO.5287 10.0625 JO.0000
G01 X1.4195 YO.5288 F40.0000
G02 X1.4820 YO.4663 10.0000 J-0.0625
G01 X1.4820 YO.4437 F40.0000
G03 X1.5445 YO.3812 10.0625 JO.0000
G01 X1.8012 YO.3812 F40.0000
G02 X1.8637 YO.3187 10.0000 J-0.0625
G01 X1.8637 YO.2169 F40.0000
G03 X1.9262 YO.1544 10.0625 JO.0000
G01 X1.9400 YO.1544 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.3069
G01 Z-0.0100 F40.0000

G01 X1.9400 YO.3787 F40.0000
G03 X1.8775 YO.4412 1-0.0625 JO.0000
G01 X1.6117 YO.4412 F40.0000
G02 X1.5492 YO.5037 10.0000 J0.0625

G01 X1.5492 YO.5163 F40.0000
G03 X1.4867 Y0.5788 1-0.0625 JO.0000
G01 X1.2691 YO.5788 F40.0000
G02 X1.2066 Y0.6413 10.0000 JO.0625
G01 X1.2066 YO.6653 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.7088
G01 Z-0.0100 F40.0000
G01 X1.2066 YO.9787 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.0213
G01 Z-0.0100 F40.0000
G01 X1.2066 Y1.2912 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.3338
G01 Z-0.0100 F40.0000
G01 XO.8358 Y1.7046 F40.0000
G02 XO.8175 Y1.7488 10.0442 JO.0442
G01 XO.8175 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.8935
Y1.8420
G01 Z-0.0100 F40.0000
G01 XO.8935 Y1.7665 F40.0000
G03 XO.9118 Y1.7223 10.0625 JO.0000
G01 X1.3004 Y1.3338 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.2912
G01 Z-0.0100 F40.0000
G01 X1.3004 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.9787
G01 Z-0.0100 F40.0000
G01 X1.3004 YO.7088 F40.0000
GOO ZO.0300
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GOO ZO.0300
X1.3004
YO.6662
G01 Z-0.0100 F40.0000
G01 X1.5500 Y0.6662 F40.0000
G02 X1.6125 YO.6037 10.0000 J-0.0625
G01 X1.6125 YO.5637 F40.0000
G03 X1.6750 YO.5012 10.0625 JO.0000
G01 X1.9537 Y0.5012 F40.0000
G02 X2.0162 YO.4387 10.0000 J-0.0625
G01 X2.0162 Y0.2169 F40.0000
G03 X2.0787 Y0.1544 10.0625 JO.0000
G01 X2.0925 YO.1544 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0925
YO.3069
G01 Z-0.0100 F40.0000
G01 X2.0925 YO.5612 F40.0000
G01 X1.7095 YO.5612 F40.0000
G01 X2.0925 YO.5612 F40.0000
G01 X2.2162 YO.5612 F40.0000
G01 X2.0925 YO.5612 F40.0000
G01 Z-0.0020 F40.0000
G01 X1.9304 YO.7232 F40.0000
G03 X1.8862 YO.7415 1-0.0442 J-0.0442
G01 X1.5033 YO.7415 F40.0000
G02 X1.3783 YO.8665 10.0000 JO.1250
G01 X1.3783 Y1.4391 F40.0000
G03 X1.3600 Y1.4833 1-0.0625 JO.0000
G01 X1.1398 Y1.7035 F40.0000
G02 X1.1215 Y1.7477 10.0442 JO.0442
G01 X1.1215 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1975

Y1.8420
G01 Z-0.0020 F40.0000
G01 X1.1975 Y1.8078 F40.0000
G03 X1.2158 Y1.7636 10.0625 JO.0000
G01 X1.5223 Y1.4571 F40.0000
G03 X1.5664 Y1.4388 10.0442 JO.0442
G01 X1.7095 Y1.4388 F40.0000
G01 Z-0.0100 F40.0000
G01 X1.7095 Y1.0000 F40.0000
G01 Xi.4562 Y1.0000 F40.0000
G01 X1.7095 Y1.0000 F40.0000
G01 X1.8309 Y1.0000 F40.0000
G01 X2.1334 YO.6975 F40.0000
G03 X2.1776 YO.6792 10.0442 JO.0442
G01 X2.2783 YO.6792 F40.0000
G02 X2.3408 YO.6167 10.0000 J-0.0625
G01 X2.3408 YO.5871 F40.0000
G02 X2.3225 YO.5429 1-0.0625 JO.0000
G01 X2.2633 YO.4837 F40.0000

G03 X2.2450 YO.4395 10.0442 J-0.0442
G01 X2.2450 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2450
YO.1544
G01 Z-0.0100 F40.0000
G01 X2.2587 YO.1544 F40.0000
G03 X2.3212
G01 X2.3212
G02 X2.3396
G01 X2.4513
G03 X2.4696
G01 X2.4696
G01 X2.2787
G02 X2.2162
G01 X2.2162
G01 Z-0.0020
G01 X2.1108
G03 X2.0666
G01 X1.5788
G02 X1.5346
G01 X1.2735
GOO ZO.0300

YO. 2169
YO.3602
YO.4044
Y0.5162
Y0.5604
Yl.0000
Y1.0000
Y1.0625
Yl.4388

F40.000
Y1. 5443
Y1.5626
Y1.5626
Y1.5809
Y1.8420

10.0000 JO.0625
F40.0000
10.0625 JO.0000
F40.0000
1-0.0442 JO.044
F40.0000
F40.0000
10.0000 JO.0625
F40.0000
0

2

F40.0000
1-0.0442 J-0.0442
F40.0000
10.0000 JO.0625
F40.0000

GOO ZO.0300
X1.5015
Y1.8420
G01 Z-0.0100 F40.0000
G01 X1.5015 Y1.7381 F40.0000
G03 X1.5640 Y1.6756 10.0625 JO.0000
G01 X2.1903 Y1.6756 F40.0000
G02 X2.2345 Y1.6573 10.0000 J-0.0625
G01 X2.5317 Y1.3601 F40.0000
G02 X2.5500 Y1.3159 1-0.0442 J-0.0442
G01 X2.5500 Y1.0838 F40.0000
G03 X2.6125 Y1.0212 10.0625 JO.0000
G01 X2.6879 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.6879
YO.9787
G01 Z-0.0100 F40.0000
G01 X2.6125 YO.9787 F40.0000
G03 X2.5500 YO.9162 10.0000 J-0.0625
G01 X2.5500 YO.4853 F40.0000
G02 X2.5317 YO.4411 1-0.0625 JO.0000
G01 X2.3975 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.5500

YO.3069
G01 Z-0.0100 F40.0000
G01 X2.7427 YO.4996 F40.0000
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G03 X2.7610 YO.5437 1-0.0442 JO.0442
G01 X2.7610 Y1.4650 F40.0000
G03 X2.7427 Y1.5092 1-0.0625 JO.0000
G01 X2.7088 Y1.5431 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7088
Y1.5856
G01 Z-0.0100 F40.000
G01 X2.5670 Y1.5856
G02 X2.5228 Y1.6039
G01 X2.3785 Y1.7482
G03 X2.3343 Y1.7665
G01 X1.6789 Y1.7665
G02 X1.6347 Y1.7848
G01 X1.5775 Y1.8420
GO0 Z1.500

F40.0000
I0.0000 JO.0625
F40.0000
1-0.0442 J-0.0442
F40.0000
10.0000 JO.0625
F40.0000

File: layer2top 0.03125 ball mill
updated.fgc
Tool: 0.03125 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
X1.1775
YO.1544
G01 Z-0.0060 F40.0000
G01 XO.5450 YO.1544 F40.0000
G02 XO.5008 YO.1727 10.0000 JO.0625
G01 X0.3499 YO.3236 F40.0000
G02 XO.3316 YO.3678 10.0442 JO.0442
G01 XO.3316 YO.6662 F40.0000
G00 ZO.0300

G00 Z0.0300
XO.3316
YO.7088
G01 Z-0.0060 F40.0000
G01 XO.3316 YO.9787 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.0213
G01 Z-0.0060 F40.0000
G01 XO.3316 Y1.2912 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.3338
G01 Z-0.0060 F40.0000
G01 XO.3316 Y1.6331 F40.0000
G02 XO.3408 Y1.6552 10.0313 JO.0000
G01 XO.3523 Y1.6667 F40.0000

G03 XO.3615 Y1.6888 1-0.0221 JO.0221
G01 XO.3615 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.4377
Y1.8422
G01 Z-0.0060 F40.0000
G01 XO.4377 Y1.6190 F40.0000
G02 XO.4286 Y1.5969 1-0.0313 JO.0000
G01 XO.4133 Y1.5816 F40.0000
G03 XO.4041 Y1.5595 10.0221 J-0.0221

G01 XO.4041 YO.4478 F40.0000
G03 XO.4224 YO.4036 10.0625 JO.0000
G01 XO.5008 YO.3252 F40.0000
G03 XO.5450 YO.3069 10.0442 JO.0442
G01 X1.1775 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3300
YO.1544
G01 Z-0.0060 F40.0000
G01 X1.3162 YO.1544 F40.0000
G02 X1.2537 YO.2169 10.0000 JO.0625
G01 X1.2537 YO.3187 F40.0000
G03 X1.1912 YO.3812 1-0.0625 JO.0000
G01 X1.0191 YO.3812 F40.0000
G02 XO.9566 YO.4437 10.0000 JO.0625
G01 XO.9566 YO.6662 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.7088
G01 Z-0.0060 F40.0000
G01 XO.5760 YO.7088 F40.0000
G02 XO.5135 YO.7713 10.0000 JO.0625

G01 XO.5135 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.5895
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.5895 Y1.4143 F40.0000
G03 XO.6078 Y1.3701 10.0625 JO.0000
G01 XO.9566 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.9787
G01 Z-0.0060 F40.0000
G01 XO.9566 YO.8853 F40.0000
G03 XO.9749 YO.8411 10.0625 JO.0000
G01 XO.9852 YO.8308 F40.0000
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G02 X1.0035 YO.7866 1-0.0442 J-0.0442
G01 X1.0035 Y0.4925 F40.0000
G03 X1.0660 YO.4300 10.0625 JO.0000
G01 X1.1441 Y0.4300 F40.0000
G01 X1.2675 Y0.4300 F40.0000
G02 X1.3300 YO.3675 10.0000 J-0.0625
G01 X1.3300 YO.3069 F40.0000
G00 Z0.0300

G00 ZO.0300
X1.4825
Y0.1544
G01 Z-0.0060 F40.0000
G01 X1.4687 YO.1544 F40.0000
G02 X1.4062 YO.2169 10.0000 JO.0625
G01 X1.4062 YO.4162 F40.0000
G03 X1.3437 YO.4787 1-0.0625 JO.0000
G01 X1.1129 YO.4787 F40.0000
G02 X1.0504 YO.5412 10.0000 JO.0625
G01 X1.0504 Y1.0387 F40.0000
G03 X1.0321 Y1.0829 1-0.0625 JO.0000
G01 XO.9749 Y1.1401 F40.0000
G02 XO.9566 Yl.1843 10.0442 JO.0442
G01 XO.9566 Y1.2912 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.9566
Y1.3338

G01 Z-0.0060 F40.0000
G01 XO.7674 Y1.3338 F40.0000
G02 XO.7232 Y1.3521 10.0000 JO.0625
G01 XO.6838 Y1.3914 F40.0000
G02 XO.6655 Y1.4356 10.0442 JO.0442
G01 XO.6655 Y1.8420 F40.0000
GOO ZO.0300

GOO ZO.0300
XO.7415
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.7415 Y1.7310 F40.0000
G03 XO.7598 Y1.6868 10.0625 JO.0000
G01 X1.1129 Y1.3338 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
Y1.2912
G01 Z-0.0060 F40.0000
G01 X1.1129 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.9787
G01 Z-0.0060 F40.0000

G01 X1.1129 YO.7088 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.6662
G01 Z-0.0060 F40.0000
G01 X1.1129 YO.5913 F40.0000
G03 X1.1754 YO.5287 10.0625 JO.0000
G01 X1.4195 YO.5288 F40.0000
G02 X1.4820 YO.4663 10.0000 J-0.0625
G01 X1.4820 YO.4437 F40.0000
G03 X1.5445 YO.3812 10.0625 JO.0000
G01 X1.8012 YO.3812 F40.0000
G02 X1.8637 YO.3187 10.0000 J-0.0625
G01 X1.8637 YO.2169 F40.0000
G03 X1.9262 YO.1544 10.0625 JO.0000
G01 X1.9400 YO.1544 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.9400
YO.3069
G01 Z-0.0060 F40.0000
G01 X1.9400 YO.3787 F40.0000
G03 X1.8775 YO.4412 1-0.0625 JO.0000
G01 X1.6117 YO.4412 F40.0000
G02 X1.5492 YO.5037 10.0000 JO.0625
G01 X1.5492 YO.5163 F40.0000
G03 X1.4867 YO.5788 1-0.0625 JO.0000
G01 X1.2691 YO.5788 F40.0000
G02 X1.2066 YO.6413 10.0000 JO.0625
G01 X1.2066 YO.6653 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.7088
G01 Z-0.0060 F40.0000
G01 X1.2066 YO.9787 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.0213
G01 Z-0.0060 F40.0000
G01 X1.2066 Y1.2912 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.3338
G01 Z-0.0060 F40.0000
G01 XO.8358 Y1.7046 F40.0000
G02 XO.8175 Y1.7488 10.0442 JO.0442
G01 XO.8175 Y1.8420 F40.0000
GOO ZO.0300
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GOO ZO.0300
XO.8935
Y1.8420
G01 Z-0.0060 F40.0000
G01 XO.8935 Y1.7665 F40.0000
G03 XO.9118 Y1.7223 10.0625 JO.0000
G01 X1.3004 Y1.3338 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.2912
G01 Z-0.0060 F40.0000
G01 X1.3004 Y1.0213 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.9787
G01 Z-0.0060 F40.0000
G01 X1.3004 YO.7088 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.6662
G01 Z-0.0060 F40.0000
G01 X1.5500 YO.6662 F40.0000
G02 X1.6125 YO.6037 10.0000 J-0.0625
G01 X1.6125 YO.5637 F40.0000
G03 X1.6750 YO.5012 10.0625 JO.0000
G01 X1.9537 YO.5012 F40.0000
G02 X2.0162 YO.4387 10.0000 J-0.0625
G01 X2.0162 YO.2169 F40.0000
G03 X2.0787 YO.1544 10.0625 JO.0000
G01 X2.0925 YO.1544 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.0925
YO.3069
G01 Z-0.0060 F40.0000
G01 X2.0925 YO.5612 F40.0000
G01 X1.7095 YO.5612 F40.0000
G01 X2.0925 YO.5612 F40.0000
G01 X2.2162 YO.5612 F40.0000
G01 X2.0925 YO.5612 F40.0000
GOO ZO.0300

GOO ZO.0300
X1.7095
Y1.4388
G01 Z-0.0060 F40.0000
G01 X1.7095 Y1.0000 F40.0000
G01 X1.4562 Y1.0000 F40.0000
G01 X1.7095 Y1.0000 F40.0000

G01
G01
G03
G01
G02
G01
G02
G01
G03
G01
GO0

Xl. 8309
X2. 1334

X2.1776
X2.2783
X2.3408
X2.3408
X2.3225
X2 .2633
X2.2450
X2. 2450

ZO .0300

Y1.0000
YO.6975
YO. 6792
YO.6792
YO.6167
YO.5871
YO.5429
YO.4837
YO.4395
YO.3069

GOO ZO.0300
X2.2450
YO.1544
G01 Z-0.0060 F40.000
G01 X2.2587 YO.1544
G03 X2.3212 YO.2169
G01 X2.3212 YO.3602
G02 X2.3396 YO.4044
G01 X2.4513 YO.5162
G03 X2.4696 YO.5604
G01 X2.4696 Y1.0000
G01 X2.2787 Y1.0000
G02 X2.2162 Y1.0625
G01 X2.2162 Y1.4388
GOO ZO.0300

GOO ZO.0300
X1.5015
Y1.8420
G01 Z-0.0060 F40.000
G01 X1.5015 Y1.7381
G03 X1.5640 Y1.6756
G01 X2.1903 Y1.6756
G02 X2.2345 Y1.6573
G01 X2.5317 Y1.3601
G02 X2.5500 Y1.3159
G01 X2.5500 Y1.0838
G03 X2.6125 Y1.0212
G01 X2.6879 Y1.0213
GOO ZO.0300

F40.0000
F40.0000
10.0442 JO.0442
F40.0000
10.0000 J-0.0625
F40.0000

1-0.0625 JO.0000
F40.0000
10.0442 J-0.0442
F40.0000

'0
F40.0000
10.0000 JO.0625
F40.0000
10.0625 JO.0000
F40.0000

1-0.0442 JO.0442
F40.0000
F40.0000
10.0000 JO.0625
F40.0000

F40.0000
10.0625 JO.0000
F40.0000
10.0000 J-0.0625
F40.0000
1-0.0442 J-0.0442
F40.0000
IO.0625 JO.0000
F40.0000

GOO ZO.0300
X2.6879
YO.9787
G01 Z-0.0060 F40.0000
G01 X2.6125 YO.9787 F40.0000
G03 X2.5500 YO.9162 10.0000 J-0.0625
G01 X2.5500 YO.4853 F40.0000
G02 X2.5317 YO.4411 1-0.0625 JO.0000
G01 X2.3975 YO.3069 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.5500
YO.3069
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G01 Z-0.0060 F40.0000
G01 X2.7427 YO.4996 F40.0000
G03 X2.7610 YO.5437 1-0.0442 JO.0442
G01 X2.7610 Y1.4650 F40.0000
G03 X2.7427 Y1.5092 1-0.0625 JO.0000
G01 X2.7088 Y1.5431 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.7088

Y1.5856
G01 Z-0.0060 F40.0000
G01 X2.5670 Y1.5856 F40.0000
G02 X2.5228 Y1.6039 10.0000 JO.0625
G01 X2.3785 Y1.7482 F40.0000
G03 X2.3343 Y1.7665 1-0.0442 J-0.0442
G01 X1.6789 Yl.7665 F40.0000
G02 X1.6347 Y1.7848 10.0000 JO.0625
G01 X1.5775 Y1.8420 F40.0000
GOO Z1.5000

D.2.4 Layer 2 Bottom Side

File: layer2bottom 0.125 square
mill.fgc
Tool: 0.125 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.5191
YO.6875
G01 Z-0.0060 F40.0000
G01 XO.7691 YO.6875 F40.0000
G01 XO.7691 YO.6250 F40.0000
G01 XO.5191 YO.6250 F40.0000
G02 XO.5191 YO.7500 10.0000 JO.0625
G01 XO.7691 YO.7500 F40.0000
G02 XO.7691 YO.6250 10.0000 J-0.0625
GOO ZO.0300

GOO ZO.0300
XO.5191
Y1.0000
G01 Z-0.0060 F40.0000
G01 XO.7691 Y1.0000 F40.0000
G01 XO.7691 YO.9375 F40.0000
G01 XO.5191 YO.9375 F40.0000
G02 XO.5191 Y1.0625 10.0000 JO.0625
G01 XO.7691 Y1.0625 F40.0000
G02 XO.7691 YO.9375 10.0000 J-0.0625
GOO ZO.0300

GOO ZO.0300
XO.5191

Y1.3125
G01 Z-0.0060 F40.0000
G01 XO.7691 Y1.3125 F40.0000
G01 XO.7691 Y1.2500 F40.0000
G01 XO.5191 Y1.2500 F40.0000
G02 XO.5191 Y1.3750 10.0000 JO.0625
G01 XO.7691 Y1.3750 F40.0000
G02 XO.7691 Y1.2500 10.0000 J-0.0625
GOO ZO.0300

(G-code auto generated
dxf2gcode.m)

using

G90 (use absolute coordinates)

GOO ZO.0300
X1.5635
Y1.0000
G01 Z-0.0300 F40.0000
G01 X1.5635 YO.9375 F40.0000
G02 X1.5635 Y1.0625 10.0000 JO.0625
G02 X1.5635 YO.9375 10.0000 J-0.0625
G01 X1.5635 YO.8775 F40.0000
G02 X1.5635 Y1.1225 10.0000 JO.1225
G02 X1.5635 YO.8775 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X1.7632
Y1.3459
G01 Z-0.0300 F40.0000
G01 X1.7632 Y1.2834 F40.0000
G02 X1.7632 Y1.4084 10.0000 JO.0625
G02 X1.7632 Y1.2834 10.0000 J-0.0625
G01 X1.7632 Y1.2234 F40.0000
G02 X1.7632 Y1.4684 10.0000 JO.1225
G02 X1.7632 Y1.2234 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X2.1626
Y1.3459
G01 Z-0.0300 F40.0000
G01 X2.1626 Y1.2834 F40.0000
G02 X2.1626 Y1.4084 10.0000 JO.0625
G02 X2.1626 Y1.2834 10.0000 J-0.0625
G01 X2.1626 Yl.2234 F40.0000
G02 X2.1626 Y1.4684 10.0000 JO.1225
G02 X2.1626 Y1.2234 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X1.9629
Y1.0000
G01 Z-0.0300 F40.0000
G01 X1.9629 YO.9375 F40.0000
G02 X1.9629 Y1.0625 10.0000 JO.0625
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G02 X1.9629 YO.9375 10.0000 J-0.0625
G01 X1.9629 YO.8775 F40.0000
G02 X1.9629 Y1.1225 10.0000 JO.1225
G02 X1.9629 Y0.8775 10.0000 J-0.1225
GOO ZO.0300

G00 ZO.0300
X2.3622
Y1.0000
G01 Z-0.0300 F40.00C
G01 X2.3622 YO.9375
G02 X2.3622 Y1.0625
G02 X2.3622 YO.9375
G01 X2.3622 YO.8775
G02 X2.3622 Y1.1225
G02 X2.3622 YO.8775
G00 ZO.0300

F40.0000
10.0000 JO.0625
10.0000 J-0.0625
F40.0000
10.0000 JO.1225
10.0000 J-0.1225

GOO ZO.0300
X2.1626

YO.6541
G01 Z-0.0300 F40.0000
G01 X2.1626 YO.5916 F40.0000
G02 X2.1626 YO.7166 10.0000 JO.0625
G02 X2.1626 YO.5916 10.0000 J-0.0625
G01 X2.1626 YO.5316 F40.0000
G02 X2.1626 YO.7766 10.0000 JO.1225
G02 X2.1626 YO.5316 10.0000 J-0.1225
GOO ZO.0300

G00 ZO.0300
X1.7632
YO.6541
G01 Z-0.0300 F40.0000
G01 X1.7632 YO.5916 F40.0000
G02 X1.7632 YO.7166 10.0000 JO.0625
G02 X1.7632 YO.5916 10.0000 J-0.0625
G01 X1.7632 YO.5316 F40.0000
G02 X1.7632 YO.7766 10.0000 JO.1225
G02 X1.7632 YO.5316 10.0000 J-0.1225
GOO Z1.5000

File: layer2bottom 0.0625 square
mill.fgc
Tool: 0.0625 square mill single flute
upcut

G90 (use absolute coordinates)

GOO ZO.0300
XO.3316
Y1.3125
G83 RO.0300 Z-0.0050 QO.0750 F40.0000
G00 ZO.0300

GOO ZO.0300
XO.3316

Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3316
YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.6875
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300

XO.9566
Y1.0000
G83 RO.0300
G00 ZO.0300

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000
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GOO ZO.0300
XO.9566
Y1.3125
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X1.1129
Y1.3125
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.2066
Y1.3125
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.3125
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.6879
Y1.0000
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X2.7088

YO.4356
G83 RO.0300
GOO Z1.5000
XO.3316
Y1.3125

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

Z-0.0050 QO.0750 F40.0000

File: layer2bottom 0.03125 ball mill
updated.fgc
Tool: 0.03125 ball mill

G90 (use absolute coordinates)

GOO ZO.0300
XO.5191
Y1.4275
G01 Z-0.0050 F40.0000
G01 XO.7691 Y1.4275 F40.0000
G02 XO.7691 Y1.1975 10.0000 J-0.1150
G01 XO.5191 Y1.1975 F40.0000
G02 X0.5191 Y1.4275 10.0000 J0.1150
G00 ZO.0300

GOO ZO.0300
XO.4141

Y1.3125
G01 Z-0.0110 F40.0000
G01 X0.5191 Y1.3125 F40.0000
G01 XO.7691 Y1.3125 F40.0000
G01 XO.7691 Y1.2500 F40.0000
G01 XO.5191 Y1.2500 F40.0000
G02 XO.5191 Y1.3750 10.0000 JO.0625
G01 XO.7691 Y1.3750 F40.0000
G02 XO.7691 Y1.2500 10.0000 J-0.0625
G00 ZO.0300

GOO ZO.0300
XO.5191
Y1.1150
G01 Z-0.0050 F40.0000
G01 XO.7691 Y1.1150 F40.0000
G02 XO.7691 YO.8850 10.0000 J-0.1150
G01 XO.5191 YO.8850 F40.0000
G02 XO.5191 Y1.1150 10.0000 JO.1150
G00 ZO.0300

G00 ZO.0300
XO.4141
Y1.0000
G01 Z-0.0110 F40.0000
G01 XO.5191 Y1.0000 F40.0000
G01 XO.7691 Y1.0000 F40.0000
G01 XO.7691 YO.9375 F40.0000
G01 XO.5191 YO.9375 F40.0000
G02 XO.5191 Y1.0625 10.0000 JO.0625
G01 XO.7691 Y1.0625 F40.0000
G02 XO.7691 YO.9375 10.0000 J-0.0625
GOO ZO.0300

G00 ZO.0300
XO.5191
YO.8025
G01 Z-0.0050 F40.0000
G01 XO.7691 YO.8025 F40.0000
G02 XO.7691 YO.5725 10.0000 J-0.1150
G01 XO.5191 YO.5725 F40.0000
G02 XO.5191 YO.8025 10.0000 JO.1150
GOO ZO.0300

GOO ZO.0300
XO.4141
YO.6875
G01 Z-0.0110 F40.0000
G01 XO.5191 YO.6875 F40.0000
G01 XO.7691 YO.6875 F40.0000
G01 XO.7691 YO.6250 F40.0000
G01 XO.5191 YO.6250 F40.0000
G02 XO.5191 YO.7500 10.0000 JO.0625
G01 XO.7691 YO.7500 F40.0000
G02 XO.7691 YO.6250 10.0000 J-0.0625
G00 ZO.0300
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GOO ZO.0300
X1.5635
Y1.1750
G01 Z-0.0050 F40.0000
G02 X1.5635 YO.8250 10.0000 J-0.1750
G02 X1.5635 Y1.1750 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300
X1.5635
Y1.0000
G01 Z-0.0350 F40.0000
G01 X1.5635 YO.9375 F40.0000
G02 X1.5635 Y1.0625 10.0000 JO.0625
G02 X1.5635 YO.9375 10.0000 J-0.0625
G01 X1.5635 YO.8775 F40.0000
G02 X1.5635 Y1.1225 10.0000 JO.1225
G02 X1.5635 YO.8775 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X1.7632
Y1.5209
G01 Z-0.0050 F40.0000
G02 X1.7632 Y1.1709 10.0000 J-0.1750
G02 X1.7632 Y1.5209 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300
X1.7632
Y1.3459
G01 Z-0.0350 F40.0000
G01 X1.7632 Y1.2834 F40.0000
G02 X1.7632 Y1.4084 10.0000 JO.0625
G02 X1.7632 Y1.2834 10.0000 J-0.0625
G01 X1.7632 Y1.2234 F40.0000
G02 X1.7632 Y1.4684 10.0000 JO.1225
G02 X1.7632 Y1.2234 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X2.1626

Y1.5209
G01 Z-0.0050 F40.0000
G02 X2.1626 Y1.1709 10.0000 J-0.1750
G02 X2.1626 Y1.5209 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300

X2.1626
Y1.3459
G01 Z-0.0350 F40.0000
G01 X2.1626 Y1.2834 F40.0000
G02 X2.1626 Y1.4084 10.0000 JO.0625
G02 X2.1626 Y1.2834 10.0000 J-0.0625
G01 X2.1626 Y1.2234 F40.0000
G02 X2.1626 Y1.4684 10.0000 JO.1225

G02 X2.1626 Y1.2234 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X1.9629
Y1.1750
G01 Z-0.0050 F40.0000
G02 X1.9629 YO.8250 10.0000 J-0.1750
G02 X1.9629 Y1.1750 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300
X1.9629
Y1.0000
G01 Z-0.0350 F40.0000
G01 X1.9629 YO.9375 F40.0000
G02 X1.9629 Y1.0625 10.0000 JO.0625
G02 X1.9629 YO.9375 10.0000 J-0.0625
G01 X1.9629 YO.8775 F40.0000
G02 X1.9629 Y1.1225 10.0000 JO.1225
G02 X1.9629 YO.8775 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X2.3622
Y1.1750
G01 Z-0.0050 F40.0000
G02 X2.3622 YO.8250 10.0000 J-0.1750
G02 X2.3622 Y1.1750 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300
X2.3622
Y1.0000
G01 Z-0.0350 F40.0000
G01 X2.3622 YO.9375 F40.0000
G02 X2.3622 Y1.0625 10.0000 JO.0625
G02 X2.3622 YO.9375 10.0000 J-0.0625
G01 X2.3622 YO.8775 F40.0000
G02 X2.3622 Y1.1225 10.0000 JO.1225
G02 X2.3622 YO.8775 10.0000 J-0.1225
GOO ZO.0300

GOO ZO.0300
X2.1626

YO.8291
G01 Z-0.0050 F40.0000
G02 X2.1626 YO.4791 10.0000 J-0.1750
G02 X2.1626 YO.8291 10.0000 JO.1750
GOO ZO.0300

GOO ZO.0300
X2.1626

YO.6541
G01 Z-0.0350 F40.0000
G01 X2.1626 YO.5916 F40.0000
G02 X2.1626 YO.7166 10.0000 JO.0625
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G02
G01
G02
G02
GO0

G00 ZO.0300
X1.7632
YO.8291
G01 Z-0.0050 F40.0000
G02 X1.7632 YO.4791 10.0000 J-0.1750
G02 X1.7632 YO.8291 10.0000 JO.1750
G00 ZO.0300

GOO ZO.0300
X1.7632
YO.6541
G01 Z-0.0350 F40.0000
G01 X1.7632 YO.5916 F40.0000
G02 X1.7632 YO.7166 10.0000 JO.0625
G02 X1.7632 YO.5916 10.0000 J-0.0625
G01 X1.7632 YO.5316 F40.0000
G02 X1.7632 YO.7766 10.0000 JO.1225
G02 X1.7632 YO.5316 10.0000 J-0.1225
G00 Z1.5000

File: layer2bottom
mill.fgc
Tool: 0.02 square mill

X2.1626 YO.5916 10.0000 J-0.0625
X2.1626 YO.5316 F40.0000
X2.1626 YO.7766 10.0000 JO.1225
X2.1626 Y0.5316 10.0000 J-0.1225
ZO .0300

G00 ZO.0300
X1 7095

YO.5612
0.02 square G83 RO.0300

G00 ZO.0300

Z-0.0400 QO.0750 F40.0000

X1. 7095
Y1.4388
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X2.2162
Y1.4388
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.4696
Y1.0000
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X2.2162
YO.5612
G83 RO.0300
GOO ZO.0300

G90 (use absolute coordinates)

G00 ZO.0300
XO.4041
Y1.3125
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
XO.4041
Yl.0000
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
XO.4041
YO.6875
G83 RO.0300
G00 ZO.0300

G00 ZO.0300
X1.4562
Yl.0000
G83 RO.0300
G00 ZO.0300

G00 ZO.0300

Z-0.0160 QO.0750 F40.0000

Z-0.0160 QO.0750 F40.0000

Z-0.0160 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

G00 ZO.0300
X1.8309
Y1.0000
G83 RO.0300
G00 Z1.5000
XO.4041
Y1.3125

Z-0.0400 QO.0750 F40.0000

File: layer2bottom 0.02 drill.fgc
Tool: 0.02 drill

G90 (use absolute coordinates)

G00 ZO.0300
XO.3316
YO.6663
G83 RO.0300 Z-0.1100 QO.1500 F40.0000
G00 ZO.0300

G00 ZO.0300
XO.3316
YO.7088
G83 RO.0300 Z-0.1100 QO.1500 F40.0000
G00 ZO.0300

G00 ZO.0300
XO.4041
YO.6875

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000

Z-0.0400 QO.0750 F40.0000
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G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.6663
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.9566
YO.7088
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.7088
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
YO.6663
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.6663
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
YO.7088
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.7088
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
YO.6663
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.4562
Y1.0000
G83 RO.0300
GOO ZO.0300

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

GOO ZO.0300
X1.3004
Y0.9788
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.0212
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.0212
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
Y0.9788
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
X1.1129
YO.9788
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
Y1.0212
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
XO.9566
Y1.0212
G83 RO.0300
GOO ZO.0300

G00 ZO.0300
X0.9566
YO.9788
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
XO.4041
Y1.0000
G83 RO.0300

G00 ZO.0300

G00 ZO.0300
X0.3316
YO.9788

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000
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G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.0212
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.2913
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
XO.3316
Y1.3337
G83 RO.0300
GOO Z0.0300

GOO ZO.0300
XO.4041
Y1.3125
G83 RO.0300
GOO ZO.0300

GOO Z0.0300
X0.9566
Y1.2913
G83 RO.0300
G00 ZO.0300

GOO ZO.0300
XO.9566
Y1.3337
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.1129
Y1.3337

G83 RO.0300
GOO Z0.0300

G00 ZO.0300
X1.1129
Y1.2913
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.2066
Y1.2913

G83 RO.0300
GOO ZO.0300

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 Q0.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

G00 Z0.0300
X1.2066
Y1.3337
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.3337
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.3004
Y1.2913
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X1.7095
Y1.4388
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.2162
Y1.4388

G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.4696
Y1.0000
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.6879
Y1.0212
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.6879
YO.9788
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7088
YO.4569
G83 RO.0300
GOO ZO.0300

GOO ZO.0300
X2.7088
YO.4144

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000

Z-0.1100 QO.1500 F40.0000
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G83 RO.0300 Z-0.1100 QO.1500 F40.0000 YO.5612

GOO ZO.0300 G83 RO.0300 Z-0.1100 QO.1500 F40.0000
GOO ZO.0300

GOO ZO.0300
X2.2162 GOO ZO.0300

YO.5612 X1.8309
G83 RO.0300 Z-0.1100 QO.1500 F40.0000 Y1.0000

GOO ZO.0300 G83 RO.0300 Z-0.1100 QO.1500 F40.0000

GOO Z1.5000

GOO ZO.0300 XO.3316

X1.7095 YO.6663
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Appendix E

FPGA Code

The code modules presented in Chapter 4 are reprinted in detail in this chapter with the exception

of Opal Kelly provided USB interface functions.

E.1 Main Block (Data Mux)

Filename: Mainusb.v
'timescale ins / ips

module mainusb(
input wire [7:0] hiin,
output wire [1:0] hiout,
inout wire [15:0] hi inout,

output wire i2csda,
output wire i2c_scl,
output wire hi muxsel,
output wire [7:0] led,
input wire [1:0] button,
input wire clk1,
input wire clk2,

// fpga outputs for device1
output wire devlsolclk,
output wire dev1_solncs,
output wire devlsolout,

output wire deviheaterout,
//outputs for leds
output wire [3:0] dev1_ledout,
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output wire devlled en,

output wire devl smbus clk,
inout wire dev1 smbus data,

// fpga outputs for device 2
output wire dev2 sol clk,
output wire dev2 sol ncs,
output wire dev2_sol out,

output wire dev2 heater-out,
//outputs for leds
output wire [3:0] dev2 led out,
output wire dev2 led en,

output wire dev2_smbus_clk,
inout wire dev2_smbus data,

//// this clock is for the SDRAM
// input wire clkl,
// // this clock is for the FPGA ADC Controller
// input wire clk2,
//
// // External pins for ADC1

output wire adcl clk,
input wire adc sdo,
output wire adc sdi,
output wire adc _conv,

// // External pins for ADC2
output wire adc2_clk,
input wire adc2 sdo,
output wire adc2_sdi,
output wire adc2_conv,

/
output wire sdram cke,
output wire sdram cs n,
output wire sdram we n,
output wire sdram cas n,
output wire sdram ras n,
output wire sdram_ldqm,
output wire sdram_udgm,
output wire [1:0] sdram ba,
output wire [12:0] sdram a,
inout wire [15:0] sdram d

// Host interface connections
wire ti clk;
wire [30:0] okl;
wire [16:0] ok2;
wire [15:0] epOOwire; // register select
wire [15:0] epOlwire; // dataLSB
wire [15:0] ep02wire; // dataMSB
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wire [15:0] ep03wire; // SRAAM control
wire [15:0] ep20wire; // dataoutLSB
wire [15:0] ep2lwire; // dataout MSB
wire [15:0] ep22wire; // temperature out
wire [15:0] ep23wire; // temperature mod out
wire [15:0] ep24wire;

wire [15:0] ep40trigger;
assign i2c sda = 1'bz;

assign i2c scl = 1'bz;
assign hi-muxsel = 1'bO;

wire reset;

assign reset = -button[0];
// adc controller registers

wire sdram clk;
reg sdramrden;
reg sdramwren;

//assign sclk = clkl;

//assign led[7] = adc1_conv;
reg sram-wrreset;
reg sram rdreset;
// sram row address
reg sram-adcreset;

// adcl instantiation
wire [14:0] adcl rowaddr out;
wire adcl write;
wire [15:0] adcl data;
wire adc1 reset;
wire [15:0] adc1 moddata;
reg [31:0] adc1_samples = 32'h00020000;
reg [14:0] adc1_rowaddr = 15'hO;
wire adc1_busy;
wire adcl sram wren;
wire [127:0] adcl moddatatotal;

// adc2 instantiation
wire [14:0] adc2_rowaddrout;
wire adc2 write;
wire [15:0] adc2 data;
wire adc2 reset;
wire [15:0] adc2 moddata;
reg [31:0] adc2_samples = 32'h00020000;
reg [14:0] adc2_rowaddr = 15'h000C;
wire adc2_busy;
wire adc2 sram wren;
wire [127:0] adc2_moddatatotal;

// adc combined instantiation
wire [14:0] adc rowaddr;
wire adc write;
wire [15:0] adc data;
wire adc reset;
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wire adc_busy;
// or of all adcs
assign adcrowaddr = adc _rowaddrout;
assign adc write = adc1 write;
assign adcdata = adc1_data;
assign adcreset = adc1_reset;
//assign ep37wire = adc data;
assign adc busy = adc1_busy;
assign adc1_sdi = l'b1;
assign adc2_sdi = 1'bl;

// end adc controller registers

// global controller registers
reg [23:0] solstate = 0;
reg [31:0] mix div = 12000000;
reg [31:0] pumpdiv = 12000000;
reg [31:01 inj_num = 0;
reg [2:0] data rw = 0;
reg mixen = 0;
reg pumpen = 0;
reg leden = 0;
reg [63:0] oxydiv = 4800000;
reg [63:0] oxyduty = 2400000;
reg [63:0] heaterdiv = 48000; // 1 kHz
reg [63:0] heaterduty = 0; // keep off at first
reg [31:0] devlleddiv [3:0];
reg [31:0] dev1_led duty [3:0];
reg [31:0] dev1_ledthresh [3:0];
reg [15:0] devlledoffset [3:0];
wire [15:0] dev1_led sineout [3:0];
reg [63:0] kp = 0;
reg [63:0] kidt = 0;
reg [63:0] kdddt = 0;
reg [15:0] setpoint = 0;

wire [31:0] heaterdutyout;

// dev controller registers
reg [7:0] dev select = 0;

// devicel assignments
wire dev1 cs;
assign devlcs = devselect[0];
wire [31:0] devl status;
wire [31:0] dev1_heater duty_out;
wire [15:0] dev1_heatererrorout;
wire [15:0] devltempout;
wire dev1 modreset;

// device2 assignments
wire dev2 cs;
assign dev2_cs = devselect[1];
wire [31:0] dev2 status;
wire [31:0] dev2_heater duty_out;
wire [15:0] dev2_heater errorout;
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wire [15:0] dev2_temp_out;
wire dev2_modreset;

// shared data streams inactive streams = 0
assign heater dutyout = dev1_heater dutyout + dev2_heaterdutyout;
assign ep22wire = devl tempout + dev2_tempout;
assign {ep2lwire, ep2owire} = dev1_status + dev2_status; // sum of all status

registers
assign ep24wire = dev1_heatererrorout + dev2_heater error out;
//assign led = {-oxyout, -dev_select[6:0]};

//assign ep23wire = {oxyout,15'b000000000000000};
//assign {ep32wire, ep3lwire, ep3owire, ep29wire} = heaterpidconnector[63:0];
always @(posedge clk1) begin

// data load
if (button[l] == 1'b0 || ep40trigger[0] == 1) begin
case (epO0wire)
1: begin
solstate <= {ep02wire[7:0],ep01wire};
mix en <= ep02wire[8];
pumpen <= ep02wire[9];
leden <= epo2wire[10];
datarw <= ep02wire[15:13];// write = 0, read = 1,2,3,4
end
2: mix div <= {ep02wire,epolwire};
3: pumpdiv <= {ep02wire,epolwire};
4: injnum <= {ep02wire,epOlwire};
5: devselect <= epO1wire;
6: heaterdiv[31:0] <= {ep02wire,epolwire};
7: oxyduty[31:0] <= {ep02wire,epOlwire};
8: devl led div[0] [31:0] <= {ep02wire,epOlwire};
9: devlled duty[0] [31:0] <= {ep02wire,epOlwire};
10: dev1 led div[1] [31:0] <= {ep02wire,epOlwire};
11: dev1_led duty[1] [31:0] <= {ep02wire,epOlwire};
12: devl led div[2] [31:0] <= {ep02wire,epOlwire};
13: devlled duty[2] [31:0] <= {ep02wire,epOlwire};
14: dev1 led div[3] [31:0] <= {ep02wire,epOlwire);
15: devlled duty[3] [31:0] <= {epo2wire,ep01wire};
16: {dev1 ledthresh[0] [15:0], dev1 led offset[0][15:0]<
{ep02wire,epo1wire};
17: {devlledthresh[1][15:0], dev1 led offset[l][15:0 }
{ep02wire,epolwire};
18: {dev1_ledthresh[2] [15:0], dev1 led offset[2][15:0]}
{ep02wire,ep01wire};
19: {devlledthresh[3][15:0], devlled offset[3][15:0]}
{ep02wire,ep01wire};
20: heaterdiv[63:32] <= {ep02wire,ep01wire};
21: oxydiv[31:0] <= {ep02wire,epOlwire};
22: kp[63:32] <= {ep02wire, epOlwire);
23: kp[31:0] <= {ep02wire, epolwire};
24: kidt[63:32] <= {ep02wire, epOlwire};
25: kidt[31:0] <= {ep02wire, epOlwire};
26: kdddt[63:32] <= {ep02wire, epOlwire};
27: kdddt[31:0] <= {ep02wire, epOlwire};
28: setpoint <= {epolwire};
29: dev1_ledthresh[0] [31:16] <= ep0lwire;
30: dev1_ledthresh[l] [31:16] <= epolwire;
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31: devlledthresh
32: dev1_ledthresh
33: adc1_samples <=
34: adcl rowaddr <=
35: adc2_samples <=
36: adc2 rowaddr <=
endcase
end

[2] [31:16]
[3] [31:16]
{ep02wire,
{1'b0, ep0
{ep02wire,
{l'bO, ep0

<= ep0lwire;
<= epOlwire;
epOlwire};
lwire[14:0]};
ep0lwire);
1wire [14:0]};

end
//wire [63:0] intwire;
//wire [63:0] pdwire;
// ok hostinstantiation
okHostInterface okHI(.hiin(hiin), .hiout(hiout),

.ticlk(ticlk), .okl(okl), .ok2(ok2));
// end point instantiation

okWireIn epoo (.okl(okl), .ok2(ok2), .epaddr(8'hoO)
okWireIn epol (.ok1(okl), .ok2(ok2), .epaddr(8'hol)
okWireIn ep02 (.okl(okl), .ok2(ok2), .ep_addr(8'h02)
okWireIn ep03 (.okl(okl), .ok2(ok2), .ep addr(8h03)

okWireOut
okWireOut
okWireOut
okWireOut
okWireOut

ep2 0
ep21
ep22
ep2 3
ep24

(.okl(ok1)
(.okl(ok1)
(.ok1(ok1)
(.okl(ok1)
(.ok1(ok1)

.ok2 (ok2)

.ok2 (ok2)
.ok2 (ok2)
.ok2 (ok2)
.ok2 (ok2)

.ep_addr(8
.ep_addr(8
.epaddr(8
.ep_addr(8
.epaddr(8

okWireOut ep29 (.okl(ok1),
.epdatain(heater dutyout[15:0]));

okWireOut ep30 (.okl(ok1),
.epdatain(heater duty-out[31:16]));

'h20)
'h21)
'h22)
'h23)
'h24)

.ok2 (ok2),

.ok2 (ok2),

.hi inout(hiinout),

.epdataout(epOOwire)

.ep_dataout(epOlwire)

.ep_dataout(ep02wire)

.epdataout(ep03wire)

.ep_datain(ep2owire)
, epdatain(ep2lwire)
, epdatain(ep22wire)
, epdatain(ep23wire)
, .ep_datain(ep24wire)

.epaddr(8'h29),

.epaddr(8'h30),

okTriggerIn ep40 (.okl(ok1),
.eptrigger(ep4otrigger));

.ok2(ok2), .ep_addr(8'h40), .ep_clk(clkl),

chipcontroller devl (.clkin(clkl), .reset(reset), .cs(dev1 c
.data rw(data rw),
.injnum in(inj-num), .mixdivin(mixdiv), .pumpdiv-in(pump-di
.mixenin(mixen),
.pumpen-in(pump-en), .solstatein(solstate),
.oxydiv in(oxydiv), .oxydutyin(oxyduty), .heaterdivin(heaterdi
.heaterdutyin(heaterduty),
.kpin(kp), .kidt in(kidt), .kdddtin(kdddt), .setpoint in(setpoint),
.leddivin1(dev1_leddiv[0] [31:0]), .led div in2(dev1_leddiv[1] [31:0]),
.leddivin3(dev1_leddiv[2] [31:0]), .led-div-in4(devlleddiv[3] [31:0]),
.led duty_inl(devlledduty[0] [31:0]),
.led duty_in2(devlledduty[l] [31:0]),
.led dutyin3(devlledduty[2] [31:0]),
.led-duty-in4(devlledduty[3] [31:0]),
.ledthreshin1
.ledthreshin2
.ledthreshin3
.ledthreshin4
.led_offsetin1
.ledoffsetin2
.led_offsetin3
.ledoffset in4

(dev1_ledthresh[0]
(dev1_ledthresh[1]
(devlledthresh[2]
(devlledthresh[3]
(dev1_ledoffset[0]
(dev1_ledoffset[1]
(deviledoffset[2]
(deviled offset[3]

S),

v),

v),

[31:0]
[31:0]
[31:0]
[31:0]
[15:0]
[15:0]
[15:0]
[15:0]
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.led en in(led en), .modreset(dev1_modreset), .smbus-data(dev1 smbus-data),

.smbus clk(dev1 smbus clk),

.adcmoddata(adclmoddata), .sol clk(dev1_sol_clk),

.solncs(devl_sol_ncs), .solout(devlsolout), .status(devlstatus),

.led out(devl led out[3:0]), .heater-tempout(dev1_tempout),

.heatererrorout(devlheatererrorout),

.heaterdutyout(dev1_heaterdutyout), .heaterout(devlheaterout),

.leden(dev1_leden), .adcmoddatatotal(adclmoddatatotal));

chipcontroller dev2 (.clkin(clkl), .reset(reset), .cs(dev2_cs),
.data rw(data rw),
.injnum-in(injnum), .mix-div-in(mix-div),' .pump_divin(pump-div),
.mix en in(mix en),
.pumpen-in(pump-en), .sol-state-in(sol-state),
.oxydiv in(oxydiv), .oxyduty-in(oxyduty), .heaterdivin(heaterdiv),
.heaterdutyin(heaterduty),
.kp in(kp), .kidt in(kidt), .kdddt in(kdddt), .setpoint-in(setpoint),

.led div inl(devl led div[0] [31:0]), .led-div-in2(dev1_leddiv[l] [31:0]),

.led div in3(dev1 led div[2] [31:0]), .led div in4(devlled div[3] [31:0]),

.ledduty_in1(dev1_ledduty[0] [31:0]),

.ledduty_in2(devlledduty[l] [31:0]),

.led duty_in3(dev1_ledduty[2] [31:0]),

.ledduty_in4(dev1_ledduty[3] [31:0]),

.led thresh in1(deviled thresh[0] [31:0]),

.led thresh in2(dev1 led thresh[l] [31:0]),

.led thresh in3(dev1 led thresh[2] [31:0]),

.led thresh in4(dev1 led thresh[3] [31:0]),

.led offset in1(dev1 led offset[0] [15:0]),

.led offset in2(devl led offset[l] [15:0]),

.led offset in3(devl led offset[2] [15:0]),

.led offset in4(dev1 led offset[3] [15:0]),

.led en in(led en), .modreset(dev2_modreset), .smbus-data(dev2_smbus-data),

.smbus clk(dev2_smbus clk),

.adcmoddata(adc2_moddata), .solclk(dev2_solclk),

.solncs(dev2_solncs), .solout(dev2_solout), .status(dev2_status),

.led out(dev2_led out[3:0]), .heater-tempout(dev2_tempout),

.heater error out(dev2_heater error-out),

.heaterdutyout(dev2_heater dutyout), .heater-out(dev2_heater-out),

.led en(dev2 led en), .adc moddatatotal(adc2_moddatatotal));

//pwmgen oxycon (.clk(clkl), .reset(reset), .div(oxydiv), .duty(oxyduty),

.out(oxyout));
//smbus templ (.clk(clkl), .smbus-clk(smbus-clk), .smbusdata(smbusdata),

.smbus dataout(ep22wire));
//pwmgen heater (.clk(clkl), .reset (reset), .div(heaterdiv),

.duty(heaterpidconnector), .out(heaterout));

// adc control

//----------------------------Cookie Cutter RAM Block -----------------------

/ -- -- - - -
--------------------------------------------------------------------

/-------- Change the pipe in to read in from the ADC register--------------

// These signals come in on TICLK from the host interface. We need

// to make sure to resynchronize them to our state machine clock or
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// things strange things can happen (like hopping to unexpected states).

// ep03wire[0] is read from sdram
// ep03wire[1] is reset the ADC
// ep03wire[2] is reset all
// ep03wire[3] is reset FIFO and controller for sram read
wire adc sram wren;

always @(negedge sdramclk) begin
sdramrden <= ep03wire[0];
sdramwren <= adclsram wren I adc2_sram wren; // should be or of all adc
chips

// sdramwren <= ep03wire[1];
sramwrreset <= adcreset | ep03wire [2]; // should be or of all adc write
resets
sram adc reset <= ep03wire[2];
sram_rdreset <= ep03wire[3] | ep03wire[2];

end

// SDRAM controller / negotiator connections
reg cmd_pageread;
reg cmdpagewrite;
wire cmd ack;
wire cmd done;
reg [14:0] rowaddr;
reg [14:0] rowaddr adc;
reg [14:0] rowaddr adc2;

// SDRAM controller / FIFO connections.
wire cOfiforead;
wire cofifowrite;
wire [15:0] cO fifo dout;
reg adc1_fifoen;
reg [15:0]adcl fifo mask;
reg [15:0]adc2 fifo mask;
regadc2_fifoen;
wire [15:0]adcfifodout;

// part of Pipe In replaced by adc data and adc write
//wire [15:0] ep80_dout;
//wire ep80_write;

wire [15:0] adc1fifo dout;
wire [10:0] adc1fifo status;
wire adclfifoempty;
wire adc1fifo full;
regadclfifo rden = 0;
wire [15:0) adc2fifo dout;
wire [10:0] adc2fifo status;
wire adc2fifo empty;
wire adc2fifo full;
regadc2fiforden = 0;
wire epAOread;
wire [15:0] epAOdin;
wire [10:0] epAofifo status;
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wire epAOfifoempty;
wire epAOfifofull;

reg faultofull, fault ifull, faultoempty, fault iempty;

assign adc fifodout (adclfifo dout & adclfifo mask) (adc2fifo dout &
adc2_fifo mask);

//assign hi muxsel = l'b0;
//assign i2cscl = l'bz;
//assign i2csda = l'bz;

assign sdram cke = l'bl;
assign sdram ldqm = l'bO;
assign sdram-udqm = l'b0;

// These will register a fault:
// - Read from a FIFO that is empty
// - Write to a FIFO that is full
// Since the Host Interface is operating at 48 MHz and the SDRAM is
// much faster than that, it should easily be able to keep up with
// the PC transfers, so these faults should never occur.
always @(negedge sdramclk) begin

if (sramadcreset == 1'bl) begin
fault ofull <= 1'b0;
fault iempty <= l'bO;
end else begin
if ((cO fifo write == l'bl) && (epAOfifofull == l'bl)) begin
fault ofull <= l'bl;
end
if ((cO fifo read == 1'bl) && ((adclfifo empty == 1'bl) (adc2fifo empty
== l'bl))) begin
fault iempty <= 1'bl;
end
end

end

always @(posedge ti clk) begin
if (sramadcreset == l'bl) begin
fault ifull <= l'bO;
fault oempty <= l'b0;
end else begin
if (((adc1_write == l'bl) && (adclfifofull == l'bl))
l'bl) && (adc2fifo full == 1'bl))) begin
//if ((ep8Owrite == l'bl) && (ep8Ofifofull == l'bl)) begin
fault ifull <= 1'bl;
end
if ((epAO read == l'bl) && (epAOfifo empty == l'bl)) begin
fault oempty <= l'bl;
end
end

end

((adc2_write

//---------------------------------------------------------
// SDRAM transfer negotiator
// This block handles communication between the SDRAM controller and
// the FIFOs. The FIFOs act as a simplified cache, holding at least
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// a full page on-chip while the PC reads the FIFO. This dramatically
// increases DRAM access performance since full pages can be read very
// quickly. Since the PC transfers are slower than the DRAM, there is
// no fear of underrun.
//--- ------------------------------------------------------------
parameter n idle = 0,

n wackwait adcl = 1,
n rackwait adcl = 2,

n wackwait adc2 = 3,
n rackwait adc2 = 4,
n busy wadcl = 5,
n_busywadc2 = 6,
n busy-radc = 7;

integer staten;
always @(negedge sdramclk) begin

// reset clears fifo and resets negotiator
if (sramadcreset == l'bl || sram-wrreset sramrdreset 1) begin
staten <= n idle;
cmd-pagewrite <= 1'b0;
cmd-pageread <= 1'b0;
//rowaddr <= adcrowaddr | (sdramrden && add _rowaddr);
rowaddr adc <= 15'hOOOO;
rowaddr adc2 <= adc2_rowaddr;
//rowaddr <= 15'h0000;
end else begin
cmd-pagewrite <= l'bO;
cmd-pageread <= l'b0;
adc1fifo rden <= l'b0;
adc2fifo rden <= 1'bO;
adcl fifo mask <= 16'h0000;
adc2 fifo mask <= 16'hOOOO;
case (staten)
n idle: begin
staten <= n idle;

// If SDRAM WRITEs are enabled, trigger a block write whenever
// the Pipe In buffer is at least 1/4 full (1 page, 512 words).
if (sdram wren == 1'bl) begin
if (adc1fifostatus[10:71 >= 4'b0100) begin
rowaddr <= rowaddr adc;
staten <= n wackwait adc;
end
if (adc2fifostatus[10:7] >= 4'b0100) begin
rowaddr <= rowaddr adc2;
staten <= n wackwait adc2;
end
end
// If SDRAM READs are enabled, trigger a block read whenever
// the Pipe Out buffer has room for at least 1 page (512 words).
else if ((sdramrden == 1'bl) && (epAOfifo status[10:7] <= 4'b1000)) begin
rowaddr <= rowaddr adc1;
staten <= n rackwait adc;
end
end

n wackwait adc: begin
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cmd-pagewrite <= l'bl;

adclfifo rden <= l'bl;

adcl fifo mask <= 16'hFFFF;

staten <= n wackwait adc1;

if (cmd ack == l'bl) begin

rowaddr adcl <= rowaddr adc1 + 1;
staten <= n-busywadcl;
end
end

n rackwait adc1: begin
cmdpageread <= l'bl;

staten <= n rackwait adc1;

if (cmd ack == l'bl) begin

rowaddr adcl <= rowaddr adcl + 1;
staten <= nbusy_radc;
end
end

n wackwait adc2: begin
cmd-pagewrite <= l'bl;

adc2fifo rden <= l'bl;

adc2 fifo mask <= 16'hFFFF;

staten <= n wackwait adc2;

if (cmdack == l'bl) begin

rowaddr adc2 <= rowaddr adc2 + 1;

staten <= nbusywadc2;
end
end

n rackwait adc2: begin
cmd-pageread <= l'bl;

staten <= n rackwait adc2;

if (cmd ack == l'bl) begin

rowaddr adc2 <= rowaddr adc2 + 1;
staten <= nbusyradc;
end
end

n_busy wadcl: begin
staten <= n busy_wadcl;
adclfifo rden <= l'bl;

adc1 fifo mask <= 16'hFFFF;

if (cmd done == l'bl) begin

staten <= n idle;
end
end

n-busywadc2: begin
staten <= n busy_wadc2;

adc2fifo rden <= l'bl;
adc2 fifo mask <= 16'hFFFF;

if (cmd done == l'bl) begin

staten <= n idle;

end
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end
n_busyradc: begin
staten <= n busyradc;
if (cmddone == l'bl) begin
staten <= n idle;
end
end
endcase
end

end

------------------------------------------------------------------------
// SDRAM CONTROLLER
//-----------------------------------------------------------------
sdramctrl cO (

.clk(-sdram clk),

.clkread(-sdram_clk),

.reset(sramadcreset),

.cmd_pagewrite (cmd-pagewrite),

.cmd_pageread (cmdpageread),

.cmdack(cmdack),

.cmddone(cmddone),

.rowaddr in(rowaddr),

.fifodin(adcfifodout),

.fiforead(cOfiforead),

.fifodout(cOfifodout),

.fifowrite(cOfifowrite),

.sdramcmd({sdram_c s_n, sdramrasn, sdram-cas-n, sdram-we_

.sdramba(sdramba),

.sdram a(sdram a),

.sdram_d(sdram_d));

--------------------------------------------------------------------
// DCM
// This ensures that the internal FPGA fabric clock (CLK) is phase
// aligned with the provided PLL clock (PLLCLK) that is shared with
// the SDRAM at the board level.
//
// The DCM here uses a phase delay to best align the fabric clock with
// the SDRAM clock for optimum performance. The phase delay was
// determined experimentally by testing the maximum "no-error" frequency
// of RAMTester for various phase delays.
//-- -------------------------------------------------------------
dcmsys sdramDCM (

.CLKININ(clk2),

.RSTIN(l'b0),

.CLKINIBUFGOUT(,

.CLKOOUT(sdramclk),

.LOCKEDOUT() );

//okTriggerIn ep40 (.okl(okl), .ok2(ok2), .epaddr(8'h40), .ep_clk(clk2),
.eptrigger(ep4Otrigger));

//okPipeIn ep80
.epwrite(ep80_write),

(.okl(ok1), .ok2(ok2),
.epdataout(ep8Odout));

.epaddr(8'h80),
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fifol6w16r 2048 adclfifo
.rst(sram wrreset), .rd-data-count(adclfifo-status), .wr-data-count(),
.empty(adclfifoempty), .full(adclfifofull),
.wr clk(adcl clk), .wr-en(adcl-write), .din(adcl-data),

//.wr clk(ti clk), .wren(ep80_write), .din(ep8odout),
.rd clk(-sdram clk), .rd en(cOfifo read & adclfifo
.dout(adclfifo dout));

409

rden),

fifol6wl6r 2048 adc2fifo (
.rst(sram wrreset), .rd data-count(adc2fifo-status), .wr-data-count(,
.empty(adc2fifoempty), .full(adc2fifofull),
.wr clk(adc2_clk), .wr-en(adc2_write), .din(adc2_data),

//.wr clk(ti clk), .wren(ep8owrite), .din(ep80_dout),
.rd clk(-sdram clk), .rd-en(co fifo read & adc2fifo rden),
.dout(adc2fifo dout));

okPipeOut epAO (.okl(okl), .ok2(ok2), .ep_addr(8'haO), .ep_read(epAOread),

.epdatain(epAOdin));
fifol6wl6r_2048 epAOfifo

.rst(sramrdreset), .rd-data-count(), .wrdatacount(epAOfifostatus),

.empty(epAOfifoempty), .full(epAOfifofull),

.wr clk(-sdram clk), .wr en(co fifo write), .din(co fifo dout),

.rd clk(ti clk & -adcbusy), .rden(epAOread), .dout(epAO_din));

adccontroller adc1 (.sdo(adcl sdo), .clk(clkl), .conv(adcl-conv),
.reset(sramadcreset), .samples-in(adcl_samples),
.rowaddr in(adcl rowaddr), .moddata-in(adcl-moddata),
.trigger(ep40trigger[1]), // trigger 1 initializes acquisition
.adc write(adcl write), .adc data(adcl data), .SRAMreset(adcl reset),
.rowaddr out(adclrowaddr out), .busy(adclbusy),
.sram wren(adcl sram wren), .adc-clk(adcl-clk), .modreset(dev1 modreset),
.moddatatotal in(adcl moddatatotal));

adccontroller adc2 (.sdo(adc2 sdo), .clk(clkl), .conv(adc2_conv),
.reset(sram adc reset), .samples-in(adc2_samples),
.rowaddr in(adc2_rowaddr), .moddata-in(adc2_moddata),
.trigger(ep40trigger[2]), // trigger 1 initializes acquisition
.adc write(adc2_write), .adc-data(adc2_data), .SRAMreset(adc2_reset),
.rowaddr out(adc2_rowaddr out), busy(adc2_busy),
.sram wren(adc2 sram wren), .adc-clk(adc2_clk), .modreset(dev2_modreset),
.moddatatotal in(adc2_moddatatotal));

assign led = -{adclbusy, l'bl, cfifowrite, epAOread, faultofull,
faultifull, fault_oempty, fault_iempty};

//assign led = -adc1_data[15:8;
endmodule

E.2 Device Block

Filename: chipcontroller.v
'timescale ins / lps

module chipcontroller(
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input clkin,
input reset,
input cs, // chip select
input [2:0] data rw,
// inputs
input [31:0] inj_numin,
input [31:0] mixdivin,
input [31:0] pump_divin,
input mix en in,
input pump_enin,
input [23:0] sol state in,

input [63:0] oxydiv in,
input [63:0] oxyduty_in,

// heater inputs
input [63:0] heaterdivin, // 1 kHz
input [63:0] heaterdutyin, // keep off at first
input [63:0] kpin,
input [63:0] kidt in,
input [63:0] kdddt in,
input [15:0] setpoint_in,

// LED modulation inputs
input [31:0] leddivin1,
input [31:0] leddivin2,
input [31:0] led div in3,
input [31:0] leddivin4,
input [31:0] ledduty_inl,
input [31:0] ledduty in2,
input [31:0] ledduty in3,
input [31:0] ledduty in4,
input [31:0] ledthreshin1,
input [31:0] ledthreshin2,
input [31:0] ledthreshin3,
input [31:0] ledthreshin4,
input [15:0] ledoffsetinl,
input [15:0] ledoffset in2,
input [15:0] ledoffsetin3,
input [15:0] ledoffset in4,
input led en in,
input modreset,
inout smbus data,

output smbus clk,

output [15:0] adcmoddata,
output sol clk,
output sol ncs,
output sol out,
output reg [31:0] status,
output [3:0] led-out,
output reg [15:0] heatertempout,
output reg [15:0] heatererrorout,
output reg [31:0] heater dutyout,
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output heaterout,
output reg led en,
output [127:0] adcmoddatatotal

// mixer/pump frequency
parameter CNTMIXDIV = 12000000;
parameter CNTPUMPDIV = 12000000;

// mixer/pump address
parameter MIXMSB = 18,

MIXLSB = 16,

PUMPMSB = 21,

PUMPLSB = 19,
OXYBIT = 8;

// state machine parameters last 3 bits encode valve info
parameter mixstateidle = 5'b00000,

mix statel = 5'bolol,
mix state2 = 5'b10110,
mix state3 = 5'b11101,
pumpstateidle = 6'b000000,
pumpstatel = 6'b001001,
pumpstate2 = 6'b010011,
pumpstate3 = 6'b011110,
pumpstate4 = 6'b100100,
pumpstate5 = 6'b101000;

// data registers
reg [31:0] mix div = CNTMIXDIV;
reg [31:0] pumpdiv = CNTPUMPDIV;
reg [31:0] injnum = 0;
reg [23:0] solstate = 0;

// counters
reg [31:0] mixcount = 0;
reg [31:0] pump_count = 0;
reg [31:0] injcount = 0;

// enables
reg mix en = 0;
reg pumpen = 0;

reg [63:0] kp;
reg [63:0] kidt;
reg [63:0] kdddt;
reg [15:0] setpoint;
reg [63:0] oxydiv 4800000;
reg [63:0] oxyduty = 2400000;
reg [63:0] heaterdiv = 24000; // 1 kHz
reg [63:0] heaterduty = 0; // keep off at first
reg [31:0] leddiv [3:0];
reg [31:0] led duty [3:0];
reg [31:0] ledthresh [3:0];
reg [15:0] ledoffset [3:0];

reg [4:0] mixstate;
reg [5:0] pumpstate;

411



APPENDIX E FPGA CODE

wire oxyout;
// adc modulation
wire [15:0] ledsineout[3:0];
wire [15:0] ledsineoutq[3:0];
assign adc moddata = {2'bOO,ledsineout[0] [15

{2'b0O,ledsineout[l] [15:2]} + {2'b00,led-sineout[2] [1
{2'bOO,led sineout[3] [15:2]};

assign adcmoddatatotal = {ledsineout[0] [15:0], led sineou
ledsineout[l] [15:0], ledsineoutq[1] [15:0],
ledsineout[2] [15:0], ledsineoutq[2] [15:0], ledsineo
ledsineoutq[3] [15:0]};

//assign adcmoddatatotal = 128'hll1l2222333344445555666677778888;
// heater
wire [15:0] heatertemp;
wire [31:0] heaterduty;
wire [15:0] heater-error;

wire clk;

reg clkintpos = 0;
reg clkintneg = 0;

always @(posedge clkin) begin
clkintpos <= clkintpos + 1;

end

always @(negedge clkin) begin
clkintneg <= clkintneg + 1;

end

assign clk = clkintpos+clkintneg;

// register load
always @(posedge clk) begin

// data loading
if (cs == 1) begin
case (data rw)
0: begin
injnum <= inj numin;
mix div <= mix divin;
pumpdiv <= pumpdivin;
mix en <= mixenin;
pumpen <= pumpen in;
// mask out the bits from mixer and pump if enabled
solstate <= solstatein;
if (mixen == 1) begin
solstate[MIXMSB:MIXLSB] <= mixstate[2:0];
end
if (pumpen == 1) begin
solstate[PUMPMSB:PUMPLSB] <= pump state[2:0];
end
// heater PID parameters
kp <= kpin;
kidt <= kidt in;

kdddt <= kdddt in;
setpoint <= setpointin;
// Oxygen control

:2]}
5:2]}

tq[0] [15:0],

ut[3] [15:0],

412
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oxydiv <= oxydiv in;
oxyduty <= oxydutyin;
// heater frequency control
heaterdiv <= heaterdiv in;
heaterduty <= heaterduty-in;
// led control
led div[0] [31:0] <= led div inl;
led div[1] [31:0] <= led div in2;
led div[2] [31:0] <= led div in3;
led div[3] [31:0] <= led div in4;
led duty[0] [31:0] <= ledduty in1;
led duty[l] [31:0] <= ledduty in2;
led duty[2] [31:0) <= leddutyin3;
led duty[3] [31:0] <= leddutyin4;
led thresh[0] [31:0] <= led thresh inl;
led thresh[l] [31:0) <= led thresh in2;
led thresh[2] [31:0] <= led thresh in3;
led thresh[3] [31:0] <= led thresh in4;
led offset[0] [15:0) <= led offset inl;
led offset[1] [15:0] <= led offset in2;
led offset[2] [15:0] <= led offset in3;
led offset[3] [15:0] <= led offset in4;
led-en <= led-en-in;

end
1: status[25:0] <= {mix en, pumpen, solstate};
2: status <= mix div;
3: status <= pumpdiv;
4: status <= inj-num;
5: status <= inj count;
endcase
heatertemp_out <= heatertemp;
heaterdutyout <= heaterduty;
heater error out <= heater error;
end else begin
status <= 0;

heatertempout <= 0;
heaterdutyout <= 0;
heater error out <= 0;
end

if (reset == 1) begin
mix count <= 0;
mix state <= mix stateidle;
pumpcount <= 0;
pumpstate <= pump_stateidle;
sol state <= 0;
mix div <= CNTMIXDIV;
pumpdiv <= CNTPUMPDIV;
mix en <= 0;

pumpen <= 0;

injnum <= 0;

end else begin
solstate[OXYBIT] <= oxyout;
if (mixcount >= mix div) begin
mix count <= 0;
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case (mix-state)
mixstateidle: begin
mixstate <= mixstateidle;
if (mix en == 1) begin
mixstate <= mixstatel;
sol_state[MIXMSB:MIXLSB] <= mixstatel[2:0];
end else begin
mixstate <= mixstateidle;
// if idling, dont set the mix valves
// sol_state[MIXMSB:MIXLSB] <= mix stateidle[2:0];
end
end
mixstatel: begin
mixstate <= mix state2;
sol_state[MIXMSB:MIXLSBJ <= mix-state2[2:0];
end
mixstate2: begin
mixstate <= mix state3;
sol_state[MIXMSB:MIXLSB] = mix-state3[2:O];
end
mixstate3: begin
if (mixen == 1) begin
mixstate <= mix statel;
sol_state[MIXMSB:MIXLSB] <= mix-statel[2:0]
end else begin
mixstate <= mix stateidle;
sol_state[MIXMSB:MIXLSB] <= mix stateidle[2:O]
end
end
endcase
end else begin
mixcount <= mix count+1;
end

if (pumpcount >= pumpdiv) begin
pump_count <= 0;
case (pumpstate)
pumpstateidle: begin
pumpstate <= pumpstateidle;
inj_count <= 1;
if (pumpen == 1) begin
pumpstate <= pumpstatel;
sol_state[PUMPMSB:PUMPLSB] <= pump statel[2:0];
end else begin
pumpstate <= pumpstateidle;
// if idling, dont set the pump valves
// sol_state[PUMPMSB:PUMPLSB] <= pumpstateidle[2:0];
end
end
pumpstatel: begin
sol_state[PUMPMSB:PUMPLSB] <= pump state2[2:0];
pumpstate <= pumpstate2;
end
pumpstate2: begin
sol_state[PUMPMSB:PUMPLSB] <= pump state3[2:0];
pumpstate <= pumpstate3;
end



E.2 DEVICE BLOCK

pumpstate3: begin
solstate[PUMPMSB:PUMPLSB] <= pump state4[2:0];
pumpstate <= pump_state4;
end
pumpstate4: begin
sol_state[PUMPMSB:PUMPLSB] <= pump state5[2:0];
pump_state <= pump_state5;
end
pump_state5: begin
if (pump en == 1) begin
if (inj-num == 0) begin // infinity condition
pumpstate <= pump_statel;
sol state[PUMPMSB:PUMPLSB] <= pump statel[2:0];
end else if (inj count >= injnum) begin // turn off the pump
pump_state <= pump_stateidle;
sol state[PUMPMSB:PUMPLSB] <= pump stateidle[2:0];
pumpen <= 0;
end else begin // keep counting
injcount <= inj count + 1;
pumpstate <= pump_statel;
sol state[PUMPMSB:PUMP LSB] <= pump statel[2:0];
end
end else begin
pump_state <= pump_stateidle;
sol state[PUMPMSB:PUMP LSB] <= pump stateidle[2:0];
end
end
endcase
end else begin
pumpcount <= pump_count+1;
end
end

end

// MC33879controller instantiation
MC33879controller solenoidl(.clk(clk), .in(sol-state), .res

.clkout(sol clk), .ncs(sol-ncs), .out(sol-out));
// heater modules
pwmgen heater (.clk(clk), .reset (reset), .div(heaterdiv), .duty(heate

.out(heater out));
smbus temp1 (.clk(clk), .smbus clk(smbus clk), .smbus data(smbu

. smbusdataout(heater temp));
PIDopt heaterpid (.clk(clk), .kp(kp), kidt(kidt), kdddt

.setpoint(setpoint), .data(heatertemp),

.duty(heater duty), .error(heatererror));
pwmgen oxycon (.clk(clk), .reset(reset), div(oxydiv), duty(o

.out(oxyout));
sinepwm ledo (.reset(modreset), .clk(clk), .cycles(led div[0]

.pwm(ledout[0]), .t_skip(ledduty[0] [31:0]), .thresh(ledthresh[0]

.offset(led offset[0] [15:0]), .sineout(led-sineout[0]

.sineoutq(ledsineoutq[0] [15:0]));
sinepwm ledi (.reset(modreset), .clk(clk), .cycles(leddiv[1]

.pwm(ledout[1]), .t_skip(ledduty[1] [31:0]), .thresh(ledthresh[1]

.offset(led offset[1][15:0]), .sineout(led-sineout[1]

.sineoutq(led sineoutq[1] [15:0]));

(reset),

r-duty),

s data),

(kdddt),

xyduty),

[31:0]
[31:0]
[15:0]

[31:0]
[31:0]
[15:0]

415
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sinepwm led2 (.reset(modreset), .clk(clk), .cycles(led div[2] [31:0]),
.pwm(led out[2]), .t_skip(ledduty[2] [31:0]), .thresh(ledthresh[2] [31:0]),
.offset(ledoffset[2] [15:0]), .sineout(ledsineout[2] [15:0]),
.sineoutq(ledsineoutq[2] [15:0]));

sinepwm led3 (.reset(modreset), .clk(clk), .cycles(led div[3] [31:0]),
.pwm(ledout[3]), .t_skip(ledduty[3] [31:0]), .thresh(ledthresh[3] [31:0]),
.offset(ledoffset[3] [15:0]), .sineout(ledsineout[3] [15:0]),
.sineoutq(led_sineoutq[3] [15:0]));

endmodule

E.3 Solenoid MC33879 Controller Interface

Filename: MC33879controller.v
'timescale ins / lps

module MC33879controller(
input clk,
input [23:0] in, // change this to BUSWIDTH/2-1
input res,
output clkout,
output reg ncs,
output out

// assume input clock runs at 24 Mhz
// generate clocks

parameter BUSWIDTH = 48;
parameter BUSBITS = 6;
parameter LOADDETECT = 8'bO; //OFF
reg clkint;
reg [2:0] counterclk = 0;
reg [BUS_BITS-1:0] sendcount = 0;
reg [BUSWIDTH-1:0] SDI = 0;
reg clken 0;
assign out = SDI[BUS WIDTH-1];
assign clkout = clkint & clken;

parameter start = 1,
load = 2,
sendl = 3,
send2 = 4,
endl = 5,
end2 = 6;

integer state;
always @(posedge clk) begin

if (res == 1) begin
counterclk <= 0;
clkint <= 0;
end
if (counterclk <= 3'b010) begin
clkint <= clkint + 1;
counterclk <= 0;
end else begin



E.3 SOLENOID MC33879 CONTROLLER INTERFACE 417

counterclk <= counterclk + 1;
end

end

always @(posedge clkint) begin
if (res == 1) begin

sendcount <= 0;
ncs <= 1;
SDI <= 0;
clken <= 0;
state <= load;
end else begin
case (state)
load: begin
state <= load;
// add additional signals as necessary
SDI <= {LOADDETECT, in[23:16], LOADDETECT, in[15:8], LOAD-DETECT,
in[7:0]);
ncs <= 0;
clken <= 0;
state <= sendl;
end
send1: begin
state <= sendl;
clken <= 1;
sendcount <= 1;
state <= send2;
end
send2: begin
state <= send2;
SDI <= SDI << 1;
if (sendcount == BUS WIDTH-l) begin
sendcount <= 0;

state <= endl;
end else begin
sendcount <= sendcount + 1;

state <= send2;

end
end
endl: begin
state <= endl;
clken <= 0;
SDI <= 0;
ncs <= 1;
state <= load;
end
endcase
end

end

endmodule

E.4 Temperature Controller Interface

Filename: smbus.v
module smbus(
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input clk,
output smbus_clk,
inout smbus data,
output [15:0] smbusdataout

reg [15:0] smbus clkdiv = 1;
reg smbus_clkint = 0;
reg smbus_clklogic = 0;
assign smbus_clk = (smbus_clklogic) ? 1'bz : 1'b0;
//assign smbus_clk = smbus-nclken | smbusclkclk[l];
// 24e6 Hz down to 50 kHz
always @(posedge clk) begin // period of 2*div

if (smbusclkdiv == 240) begin
smbus_clkint <= smbusclkint+1;
smbus clkdiv <= 1;
end else begin
smbusclkdiv <= smbus clkdiv+l;
end

end

parameter [5:0] sm-idlel 0,
sm idle2 = 1,
sm initO = 2,
sm initl = 3,
sm addrO = 4,
sm addrl = 5,
sm addr2 = 6,
sm addr3 = 7,
sm addr4 = 8,
sm addr5 = 9,
sm cmdO = 10,
sm cmdl = 11,
sm cmd2 = 12,
sm cmd3 = 13,
sm cmd4 = 14,
sm cmd5 = 15,
sm cmd6 = 16,
sm cmd7 = 17,
sm readO = 18,
sm readl = 19,
sm read2 = 20,
sm read3 = 21,
sm read4 = 22,
sm read5 = 23,
sm read6 = 24,
sm read7 = 25;

reg [5:0] tempstate = sm idlel;

reg [15:0] smbus counter = 0;
reg [6:0] tempaddress = 7'b0011001;
reg [15:0] smbustemp = 0;
reg [15:0] smbusdataint = 0;
reg [15:0] smbusdatareg = 0;
reg [15:0] smbus op = 0;
parameter opcmdmsb = 0,
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op_cmdlsb = 1,
opcmdcfg = 2,
op_rdmsb = 3,
oprdlsb = 4,
opwrite = 5;

assign smbusdataout = smbus-datareg;
assign smbusdata = (smbustemp[15]) ? 12bz 11b0;
always @(posedge smbus_clkint) begin

case (temp_state)
smidlel: begin
tempstate <= sm idle2;
smbus_clklogic <= 1;
smbus counter <= 1500;
smbus temp[15] <= 1; // changed
end
smidle2: begin
tempstate <= sm idle2;
if (smbuscounter == 0) begin
tempstate <= sm initO;
smbus-temp[15] <= 0;
smbusop <= op cmdmsb;
end else begin
temp_state <= sm idle2;
smbus-temp[15] <= 0;
end
smbus counter <= smbus counter-1;
end
sminito: begin
smbus-temp[15] <= l'bl;
temp_state <= sm initl;
end
sminit1: begin // initialize
smbus temp[15:8] <= {1'b0,temp address}; / startaddressin}
if (smbus_op == op_cmdmsb || smbus-op ==opcmdlsb) begin
smbus temp[7] <= l'b0;
end else begin
smbus temp[7] <= 1'bl;
end
smbus counter <= 8;
temp state <= sm addrO;
end
smaddro: begin // start condition
smbusclklogic <= 0;
temp state <= sm addrl;
if (smbuscounter == 0) begin
tempstate <= sm addr3;
end else begin
tempstate <= sm addrl;
smbus counter <= smbus counter-1;
end
end
// shift in the address
smaddrl: begin// change the data in
tempstate <= sm addr2;
smbus temp <= {smbus-temp[14:0],1'b1};
end
sm addr2: begin // clock the data in
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smbus_clklogic <= 1;
temp state <= smaddrO;
end
smaddr3: begin
tempstate <= sm addr4;
// allow for ack bit and set the next state
smbustemp[15] <= 1'b1; // ack bit + local MSB reg (command register)
smbuscounter <= 8;
end
smaddr4: begin // clock in the ack
smbusclklogic <= 1;
temp-state <= sm addr5;
end
smaddr5: begin
smbusclklogic <= 0;
if (smbusdata == 0) begin move on if we got an ack
case (smbusop)
opcmdmsb: begin
tempstate <= sm cmdO;
smbustemp[14:7] <= 8'h12;
end
opcmdlsb: begin
tempstate <= sm cmd0;
smbustemp[14:7] <= 8'h22;
end
oprdmsb: begin
temp-state <= sm readO;
smbuscounter <= 8;
end
oprdlsb: begin
tempstate <= sm readO;
smbuscounter <= 8;
end
endcase
end else begin // wait for it....
tempstate <= sm addr5;

// DONT WAIT FOR IT
case (smbusop)
opcmdmsb: begin
tempstate <= sm cmdo;
smbustemp[14:7] <= 8'h12; // remote temp 2 msb
end
opcmdlsb: begin
tempstate <= sm cmd0;
smbustemp[14:71 <= 8'h22; // remote temp 2 lsb
end
oprdmsb: begin
temp-state <= sm readO;
smbuscounter <= 8;
end
oprdlsb: begin
tempstate <= sm readO;
smbuscounter <= 8;
end
endcase
// DONT WAIT FOR IT
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end
end
sm cmdo: begin
tempstate <= sm-cmdl;

smbus_clklogic <= 0;

if (smbus counter == 0) begin

tempstate <= sm cmd3;

end else begin
tempstate <= sm-cmdl;

smbus counter <= smbus counter-1;

end
end
sm cmdl: begin // shift in the register address to read
tempstate <= sm-cmd2;
smbus temp <= {smbus-temp[14:0],1'b0};
end
sm cmd2: begin
tempstate <= sm-cmdO;

smbus_clklogic <= 1;

end
sm cmd3: begin
tempstate <= sm cmd4;

// allow for ack bit
smbus temp[15] <= l'bl;
end
sm cmd4: begin
tempstate <= sm-cmd5;

smbus clklogic <= 1;

end
sm cmd5: begin
smbus clklogic <= 0;

if (smbus data == 0) begin

tempstate <= sm cmd6;

end else begin // wait for it ....
tempstate <= sm-cmd5;

// DONT WAIT FOR IT
tempstate <= smcmd6;
// DONT WAIT FOR IT

end
end
sm cmd6: begin
smbus temp[15] <= 1;
temp state <= sm-cmd7;
end
smcmd7: begin
smbusclklogic <= 1;

temp state <= sm-initO;

case(smbusop)
op_cmdmsb: smbus_op <= op_rdmsb;
op_cmdlsb: smbus_op <= op_rdlsb;
endcase
end
smreado: begin
tempstate <= sm-readl;
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smbusclklogic <= 0;
if (smbuscounter == 0) begin
tempstate <= sm read3;
end else begin
temp-state <= sm readl;
smbuscounter <= smbuscounter-1;
end
end
smreadi: begin
smbus_clklogic <= 1;
tempstate <= sm read2;
end
smread2: begin
smbusdataint <= {smbus dataint[14:0],smbusdata};
tempstate <= sm readO;
end
smread3: begin
// set NACK
smbustemp[15] <= 1'bl;
temp-state <= sm read4;
// if we finished reading lsb, latch data
if (smbusop == oprdlsb) begin
smbusdatareg <= smbusdataint;
end
end
sm read4: begin
tempstate <= sm read5;
smbusclklogic <= 1;
end
smread5: begin
temp-state <= sm read6;
smbusclklogic <= 0;
end
sm-read6: begin
temp-state <= sm read7;
smbustemp[15] <= l'bO;
end
smread7: begin
smbusclklogic <= 1;
tempstate <= sm initO;
case (smbusop)
oprdmsb: smbus_op <= opcmdlsb;
oprdlsb: smbus_op <= opcmdmsb;
endcase
end
endcase

end

endmodule
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E.5 Pulse Width Modulator (heater, oxygen control)

Filename: pwmgen.v
'timescale lns / lps

module pwmgen(
input clk,
input reset,
input [31:0] div,
input [31:0] duty,
output out

// div is the number of clock cycles per period
// duty is the number of clock cycles high
reg [31:0] counter = 1;
reg outint = 0;

assign out = outint;
always @(posedge clk) begin

if (reset == 1) begin
counter <= 1;
outint <= 0;
end else begin
if (counter > duty) begin
outint <= 0;
end else begin
outint <= 1;
end
if (counter >= div) begin
counter <= 1;
end else begin
counter <= counter+1;
end
end

end

endmodule

E.6 Sine Wave Modulator
Filename: sinepwm.v
'timescale ins / 1ps

module sinepwm(
input reset,
input [31:0] cycles,
input [31:0] tskip,
input clk,
output reg pwm,
input [31:0] thresh,
input [15:0] offset,
output [15:0] sineout,
output [15:0] sineoutq

reg [9:0] theta = 0;
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reg [9:0] thetaq = 0;
reg [31:0] counter = 0;
// clk frequency is 24 MHz

//reg clkdiv = 0;
//reg clk2 = 0;
wire [15:0] sine;
assign sineout = sine;
/*// reduced clock speed by 2
always @(posedge clk) begin

clk2 <= clk2+1;
end*/
wire clkint;
reg clkintpos = 0;
reg clkintneg = 0;

always @(posedge clk) begin
clkintpos <= clkintpos + 1;

end

always @(negedge clk) begin
clkintneg <= clkintneg + 1;

end
assign clkint = clkintpos+clkintneg;

reg [32:01 acc = 0;
wire [15:0] sinetemp;
wire [15:0] sinetempq;
wire [32:0] threshin;
assign threshin = {0,thresh};
assign sine = sinetemp + 16384;
assign sineoutq = sinetempq + 16384;
always @(posedge clkint) begin //delta sigma modulator

if (reset == 1) begin
acc <= 0;
theta <= 0;
thetaq <= 769;
counter <= 0;
pwm <= 0;
end else begin
if (counter >= cycles) begin
counter <= 1;
theta <= theta + t_skip;
thetaq <= thetaq + tskip;
end else begin
counter <= counter + 1;
end

if (thresh == 32'hFFFFFFFF) begin
pwm <= 0;
end else begin
if (acc < threshin) begin
acc <= acc + sine + offset; //remove 2's complement and give a small dc
bias
pwm <= 0;
end else begin
acc <= acc - threshin + sine + offset;//+offset;
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pwm <= 1;
end
end
end

end

sineLUT lookup (.THETA(theta), SINE(sinetemp));
sineLUT lookupq (.THETA(thetaq), SINE(sinetempq));
endmodule

E.7 Heater PID controller

Filename: PIDopt.v
'timescale ins / ips
module PIDopt(

input clk, // 48 mhz
input signed [63:0] kp,
input signed [63:0] kidt,
input signed [63:0] kdddt,
input signed [15:0] setpoint,
input signed [15:0] data,
output reg signed [31:0] duty,
output wire signed [15:0] error,
output wire signed [63:0] intwire,
output wire signed [63:0] pdwire

// fixed point, decimal is between bit 9 and bit 8 from temp sensor

reg signed [63:0] integral = 0;
reg signed [15:0] errorint = 0;
//wire signed [63:0] intwire;
//wire signed [63:0] pdwire;
reg signed [15:0] errorold = 0;

// parameters and limits
// set max based on current setpoint
// reference temp 50 C to 48000*256 ->

parameter [15:0] tmax = 37*256,
tmin = 21*256;

parameter [63:0] dmax = 48000*256;
parameter [47:0]dscaled = 48000/(37-21)*256; // dmax / (37-21)*256
reg signed [63:0] Umax dmax; // max count for 1 khz shifted fixed point
reg signed [63:0] Umin = 0;
wire signed [63:0] dutywire;

// multiplier registers and wires
reg [47:0] multina = 0;
reg [15:0] multinb = 0;
reg signed [63:0] errorpkidt = 0;
reg signed [63:0] errorpkp = 0;
wire signed [63:0] multout;

// PID internal logic
assign error = setpoint-data;
assign intwire = integral + errorpkidt;
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assign pdwire = errorpkp;
assign dutywire = integral + errorpkidt + errorpkp;

// clock and data sync
reg [31:0] clkdiv = 600000;
reg [31:0] clkcount = 1;
reg clk2 = 0;
reg clk3 = 0;
reg [2:0] multcount = 0;
always @(posedge clk) begin

// scale down to 20 hz
if (clkcount >= clkdiv) begin
clk2 <= clk2+1;
clkcount <= 1;
end else begin
clkcount <= clkcount + 1;
end
// make a slightly slower clk for the mult block
clk3 <= clk3+1;

end

always @(posedge clk3) begin
// run the multiplier at speed (semi-instant)
// changes limited by changes in errorint
multcount <= multcount+1;
case (multcount)
0: begin
multina <= kp[47:0];
multinb <= errorint;
end
1: errorpkp <= multout;
2: begin
multina <= kidt[47:0];
multinb <= errorint;
end
3: errorpkidt <= multout;
4: begin
multina <= dscaled;
multinb <= setpoint-tmin;
end
5: begin
if (setpoint > tmax) begin
Umax <= dmax;
end else if (setpoint < tmin) begin
Umax <= 0;
end else begin
Umax <= multout;
end
end
endcase

end

always @(negedge clk2) begin
errorint[15:0] <= error; // sync the error since we dont know when we get
data

end
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always @(posedge clk2) begin
if (dutywire[63] == 1) begin // negative number since Umin = 0 anyway
integral <= Umin - pdwire;

duty <= Umin;

end elseif (dutywire > Umax) begin
integral <= Umax - pdwire;

duty <= Umax[39:8];
end else begin
integral <= intwire;

duty <= dutywire[39:8];

end
errorold <= errorint;

end

mult 48x16 64 8FP mult (.a(multina), .b(multinb), .p(multout));
endmodule

E.8 SRAM Controller

---------------------------------- -----------------------------
// sdramctrl.v
//
// This is a simple SDRAM controller that provides fullpage read and

// write capability. Autorefresh cycles are added to each page access

// to guarantee that enough refresh cycles are completed for the memory

// to stay fresh.
//
// During idle time, autorefresh cycles are also performed.

//
// IMPORTANT NOTE: This controller is provided free of charge from

// Opal Kelly Incorporated. This controller comes with NO GUARANTEES

// of any kind (including any warranty of the suitability of a particular

// purpose).
/----------------------------------------------------------------------

// tabstop 3
// Copyright (c) 2005-2007 Opal Kelly Incorporated
// $Rev: 318 $ $Date: 2007-08-31 16:03:04 -0700 (Fri, 31 Aug 2007) $

//--- ------------------------------------------------------------

'defaultnettype none
'timescale 1ns / 1ps
module sdramctrl(

input wire clk,
input wire clk_read,
input wire reset,

input wire cmd pagewrite,
input wire cmd pageread,
output reg cmdack,
output reg cmddone,
input wire [14:0] rowaddr_ in,
input wire [15:0] fifodin,
output reg [15:0] fifodout,
output reg fifowrite,
output reg fifo read,
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output reg [3:0] sdramcmd,// csn, rasn, casn, we_n}
output reg [1:0] sdram ba,
output reg [12:0] sdram a,
inout wire [15:0] sdram d

Isynthesis attribute iob sdram -ba is "true";
// synthesis attribute iob sdram a is "true";
// synthesis attribute iob sdram dout is "true";
// synthesis attribute iob sdram cmd is "true";
// synthesis attribute iob sdram dir is "true";
// synthesis attribute iob fifo-dout is "true";

IRefresh cycle. 8192 AUTO REFRESH commands must be delivered every
i4ms. Distributing these means that one must be issued every

7.8lus. At a 100MHz clock, that's 781 cycles.
parameter REFRESHsCYCLE = i0'd750;

// Default mode:
// Burst length = Full page
// Burst type = Sequential
// CAS latency = 2 (for Micron -7E devices)
// Operating mode = Standard
// Write burst mode = Programmed burst length
//parameter MODEDEFAULT = 13'bOO00000100111;
parameter MODEDEFAULT = 13'bOO00000110111; //CAS=3

// Delay timings. Most of these are specified in ns on the Micron
// datasheet. They are converted to clock cycles here for a
// 100 MHz clock frequency.
parameter CNT tRP = 4'dl;
parameter CNTtRFC = 4'd9;
parameter CNTtMRD = 4'd1;
parameter CNTtWR = 4'd4;
parameter CNTtCAS = 4'd2;
parameter CNTtINIT = 16'd17500;
parameter CMDINHIBIT = 4'b1000,

CMDNOP = 4'b0111,
CMDACTIVE = 4'bOO11,
CMDREAD = 4'b0101,
CMDWRITE = 4'b0100,
CMDBURSTTERMINATE = 4'b0110,
CMDPRECHARGE = 4'b0010,
CMDAUTOREFRESH = 4'bO001,
CMDLOADMODE = 4'bO000;

reg [15:0] sdram dout;
reg sdram dir;
assign sdramd = (sdramdir==1'b0) ? (sdramdout) : (16'bz);

// Initialization counter
reg [15:0] cINIT;

// Counter for various delay timings.
reg [3:0] cWAIT;
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// Transaction counter.
reg [8:0] cTX;

// Refresh timer.
reg [9:0] cREFRESHTIMER;
reg [4:0] cREFRESHCOUNT;

// Location addressed by memory transactions.
reg [14:03 rowaddr;
reg cmdrefresh;

parameter [5:0]
s idle = 6'dO,
s reset = 6'dl,

s reset2 = 6'd2,

s reset3 = 6'd3,

s reset4 = 6'd4,
s reset5 = 6'd5,
s reset6 = 6'd6,

s loadmode = 6'd7,
s loadmode2 = 6'd8,

s blockwrite = 6'd9,
s blockwritel = 6'd10,
s blockwrite2 = 6'd11,
s blockwrite3 = 6'd12,
s blockwrite4 = 6'd13,
s blockwrite5 = 6'd14,
s blockwrite6 = 6'd15,
s blockwrite7 = 6'd16,
s blockwrite8 = 6'd17,

s blockread = 6'd18,
s blockreadl = 6'd19,
s blockread2 = 6'd20,

s blockread3 = 6'd21,
s blockread4 = 6'd22,
s blockreads = 6'd23,
s blockread6 = 6'd24,

s blockread7 = 6'd25,
s blockread8 = 6'd26,

s autorefresh = 6'd27,
s autorefresh1 = 6'd28,
s autorefresh2 = 6'd29,
s autorefresh3 = 6'd30,

s init = 6'd31,
s init2 = 6'd32;

reg [5:0] state;
always @(posedge clkread) begin

fifo dout <= sdram d;

end
always @(posedge clk) begin

if (reset == l'bl) begin
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state <= s init;

fifo read <= 1'bO;

fifo write <= 1'b0;
cmd ack <= 1'b0;
cmddone <= l'b0;
cmdrefresh <= 1'b0;

cREFRESHCOUNT <= 1;

cREFRESHTIMER <= REFRESHCYCLE;
cTX <= 0;

cWAIT <= 0;

rowaddr <= 0;

sdramcmd <= CMDINHIBIT;
sdram ba <= 0;

sdram a <= 0;

sdram dir <= 0;

end else begin
fifo read <= 1'b0;

fifowrite <= l'b0;
sdramdout <= fifodin;
sdram dir <= 1'b0;

cmd done <= 1'bO;

cmd ack <= 1'bO;
cmd refresh <= l'b0;

// Keep the refresh counter going until it expires.
if (cREFRESHTIMER == 0) begin
cmd refresh <= 1'bl;

end else begin
cREFRESHTIMER <= cREFRESHTIMER - 1;
end

case (state)
s_idle: begin
sdramcmd <= CMDINHIBIT;
state <= s idle;

// When the refresh timer expires, perform an auto refresh.
if (cmdrefresh == 1'bl) begin
cREFRESH COUNT <= 5'dl;

cmd ack <= 1'b0;

state <= s autorefresh;

end else if (cmd_pagewrite == l'bl) begin
cmd ack <= 1'bl;

rowaddr <= rowaddr in;
state <= s blockwrite;

end else if (cmd_pageread == l'bl) begin
cmd ack <= 1'bl;

rowaddr <= rowaddr in;

state <= s blockread;

end
end

// --- INIT- ----------------------------------------------------
s-init: begin
sdram_cmd <= CMDINHIBIT;
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sdram a <= 13'b0010000000000;

sdram ba <= 2'b00;

cINIT <= CNT tINIT;
state <= s init2;

end

// Wait to satisfy tINIT (>100us).
s init2: begin
cINIT <= cINIT - 1;

if (cINIT == 0)

state <= s reset;

else
state <= s init2;

end

//--- RESET
// Send PRECHARGE to all banks.

s reset: begin
sdram cmd <= CMD PRECHARGE;

sdram a <= 13'bOO10000000000;
sdram ba <= 2'b00;

cWAIT <= CNT tRP;

state <= s reset2;

end

// Wait to satisfy tRP.

s reset2: begin
sdram cmd <= CMDNOP;

cWAIT <= cWAIT - 1;

if (cWAIT == 0)

state <= s reset3;

else
state <= s reset2;

end

// Send AUTO REFRESH.

s_reset3: begin
sdram cmd <= CMDAUTOREFRESH;

cWAIT <= CNT tRFC;
state <= s reset4;

end

// Wait to satisfy tRFC.
s reset4: begin
sdram cmd <= CMDNOP;
cWAIT <= cWAIT - 1;
if (cWAIT == 0)

state <= s reset5;

else
state <= sreset4;

end

// Send AUTO REFRESH.

s reset5: begin
sdram cmd <= CMDAUTOREFRESH;

cREFRESH TIMER <= REFRESHCYCLE;
cWAIT <= CNT tRFC;



432 APPENDIX E FPGA CODE

state <= sreset6;
end

// Wait to satisfy tRFC.
s_reset6: begin
sdramcmd <= CMDNOP;
cWAIT <= cWAIT - 1;

if (cWAIT == 0)

state <= s loadmode;

else
state <= sreset6;
end

// Send the LOAD MODE command.
s_loadmode: begin
sdramcmd <= CMD LOADMODE;
sdrama <= MODEDEFAULT;
cWAIT <= CNT tMRD;
state <= s loadmode2;

end

// Wait to satisfy tMRD.
s_loadmode2: begin
sdramcmd <= CMD NOP;

cWAIT <= cWAIT - 1;
if (cWAIT == 0)

state <= s idle;

else
state <= s loadmode2;

end

// --- AUTO REFRESH --------------------------------------------
s_autorefresh: begin
sdramcmd <= CMDPRECHARGE;
sdrama <= 13'b0010000000000;

sdramba <= 2'b00;
cWAIT <= CNT tRP;
state <= sautorefreshl;
end

// Wait to satisfy tRP.
s_autorefreshl: begin
sdramcmd <= CMDNOP;
cWAIT <= cWAIT - 1;

if (cWAIT == 0)

state <= sautorefresh2;

else
state <= sautorefreshl;

end

// Send AUTO REFRESH.
s_autorefresh2: begin
sdramcmd <= CMDAUTOREFRESH;
cREFRESHCOUNT <= cREFRESHCOUNT - 1;
cREFRESHTIMER <= REFRESHCYCLE;
CWAIT <= CNT tRFC;

state <= s autorefresh3;
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end

// Wait to satisfy tRFC.
s autorefresh3: begin
sdram cmd <= CMDNOP;
cWAIT <= cWAIT - 1;

if (cWAIT == 0) begin

if (cREFRESH COUNT == 0)

state <= s idle;

else
state <= s autorefresh2;
end else begin
state <= s autorefresh3;

end
end

//--- BLOCK WRITE

// Send the ACTIVE command
s blockwrite: begin
cTX <= 9'd511;

sdram cmd <= CMDACTIVE;
sdram ba <= rowaddr[14:13];
sdram a <= rowaddr[12:0];
fifo read <= l'bl;
state <= s blockwrite2;

end

// Send NOP to satisfy tRCD.

s blockwrite2: begin
sdram cmd <= CMDNOP;
fifo read <= l'bl;
state <= s blockwrite3;

end

// Send a WRITE with AUTO PRECHARGE
// First FIFO data is available here.
s blockwrite3: begin
sdram cmd <= CMDWRITE;
sdram ba <= rowaddr[14:13];
sdram a <= {4'b0010, 9'd0};
fifo read <= l'bl;
cTX <= cTX - 1;

state <= s blockwrite4;

end

// Send NOP until the burst is complete.
s blockwrite4: begin
sdram cmd <= CMDNOP;
fifo read <= 1'bl;

cTX <= cTX - 1;

if (cTX == 2)

state <= s blockwrite5;

else
state <= s blockwrite4;

end



434 APPENDIX E FPGA CODE

// Second to last WRITE in the burst.
s_blockwrite5: begin
sdramcmd <= CMDNOP;
state <= sblockwrite6;.

end

// Last WRITE in the burst.
s_blockwrite6: begin
sdramcmd <= CMDNOP;
state <= s blockwrite7;

end

// Terminate the full-page burst.
s_blockwrite7: begin
sdramcmd <= CMDBURSTTERMINATE;
state <= sblockwrite8;
end

// Wait to satisfy tWR.
// Perform an AUTO REFRESH when we finish.
s_blockwrite8: begin
sdram cmd <= CMD NOP;
cREFRESHCOUNT <= 5'd1;

state <= s autorefresh;

cmd done <= 1'bl;

end

// --- BLOCK READ

// Send the ACTIVE command
s_blockread: begin
cTX <= 9'd511;

sdramcmd <= CMDACTIVE;
sdramba <= rowaddr[14:13];

sdrama <= rowaddr[12:0];
sdram dir <= l'bl;
state <= s blockread2;

end

// Send NOP to satisfy tRCD.
s_blockread2: begin
sdram cmd <= CMD NOP;

sdram dir <= l'bl;
state <= s blockread3;

end

// Send a READ with AUTO PRECHARGE
s_blockread3: begin
sdram cmd <= CMD READ;
sdramba <= rowaddr[14:13];

sdrama <= {4'b0010, 9'd0};
sdram dir <= 1'bl;
cTX <= 9'd511;

cWAIT <= CNT tCAS;

state <= s blockread4;

end
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// CAS wait
s blockread4: begin
sdram cmd <= CMDNOP;
sdram dir <= 1'bl;
cWAIT <= cWAIT - 1;

if (cWAIT == 0) begin

state <= s blockread5;

end else begin
state <= s blockread4;

end
end

// First read is available here
s blockread5: begin
sdram cmd <= CMDNOP;
sdram dir <= l'bl;
fifo write <= l'bl;
cTX <= cTX - 1;

if (cTX == 9'd3)
state <= s blockread6;

else
state <= s blockread5;

end

// Send BURST TERMINATE.
s blockread6: begin
sdram cmd <= CMDBURSTTERMINATE;

sdram dir <= 1'bl;

fifo write <= l'bl;
cTX <= cTX - 1;

state <= s blockread7;

end

// Send NOP. Second to last read available here.

s blockread7: begin
sdram cmd <= CMDNOP;
sdram dir <= l'bl;
fifo write <= l'bl;
state <= s blockread8;
end

// Send NOP. Last read available here.
// Run an AUTO REFRESH cycle after the block read.

s blockread8: begin
sdram cmd <= CMDNOP;
sdram dir <= 1'bl;

fifo write <= l'bl;
cmd done <= l'bl;
cREFRESH COUNT <= 5'dl;

state <= s autorefresh;

end

endcase
end

end
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endmodule

E.9 ADC Controller
Filename: adccontroller.v
'timescale 1ns / 1ps
module adccontroller(
//wires to device
input sdo,
input clk,
output reg conv,
// other module connections
input reset,
input [31:0] samplesin,
input [14:0] rowaddr in,
input [15:0] moddata in, // should run on same clock
input [127:0] moddatatotal in,
input trigger,
// Outputs for SRAM
output reg adc_write,
output reg sram wren,
output reg [15:0] adc data,
output reg SRAMreset,
output reg [14:0] rowaddr out,
output reg [3:0] state,
// output for conversion busy
output reg busy,
output reg adc_clk,
output reg modreset

// States for ADC state machine
parameter [4:0]

adc trigwait = 0,
adc init = 1,
adc_convertfirst = 2,
adcwaitbusy = 3,
adcwaitbusyend = 4,
adcacquireclkon = 5,
adcacquirestore = 6,
adcacquireclkoff = 7,
adcwaitfifo = 8,
adcwaitfifo2 = 9,
adcacquirefifo = 10,
adcwaitend 11,
adc waitend2 = 12;

// ADC Constants
parameter [15:0] CONVCYCLES = 130;

// registers necessary for ADC controller
//reg [3:0] state = adc-trigwait;
reg [15:0] cnt conv = 0;
reg [31:0] cntsamples = 0;
reg [5:0] cnt bits = 0;
// number of samples 131072 (MAX for 18 bits is 262144)
reg [31:0] samples = 32'h20000;
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reg [127:0] moddatastore = 0;
reg clkintpos = 0;
reg clkintneg = 0;
wire clkint;
//assign adcclk = clkint && adc_clk en;
//assign adc_clk = clkint;
always @(posedge clk) begin

clkintpos <= clkintpos + 1;
end

always @(negedge clk) begin
clkintneg <= clkintneg + 1;

end
assign clkint = clkintpos+clkintneg;

always @(posedge clkint) begin
// if reset enabled, reset everything
if (reset == 1) begin
conv <= 0;

cnt conv <= 0;
cntsamples <= 0;
samples <= 32'h20000;
adc write <= 0;
sram wren <= 0;
adcdata <= 0;
SRAMreset <= 0;
rowaddr out <= 0;

busy <= 0;

state <= adctrigwait;
modreset <= 0;
adc clk <= 0;
end

// Enabled by not conv
else begin
case (state)

// Idle state waits for a trigger to being aaquisition
adc_trigwait: begin
state <= adctrigwait;
// zero all SRAM outputs
adc write <= 0;
adc data <= 0;
rowaddr out <= 0;
SRAMreset <= 0;
sram wren <= 0;
busy <= 0;

conv <= 0;

cnt conv <= 1;
cntsamples <= 1;

modreset <= 0;
adc clk <= 0;
if (trigger == 1) begin

state <= adc init;
busy <= 1;

end else begin
state <=adctrigwait;
end



438 APPENDIX E FPGA CODE

end

// Initial step reset the sram controller store starting at SRAM position 0
adcinit: begin
state <= adc init;
modreset <= 1; //
// clear the fifo and transfer negotiator and load in SRAM address
SRAMreset <= 1;
rowaddr out <= rowaddr in;
adc write <= 0;
cnt conv <= 1;
adc data <= 0;
state <= adc convertfirst;
// load in the inputs into registers to prevent any latching errors during
acquisition
samples <= samplesin;
end
// conversion test successful
adcconvertfirst: begin
state <= adc convertfirst;
modreset <= 0;
SRAMreset <= 0;
sram wren <= 1;
adc write <= 0;
adc data <= 16'h0000;
conv <= 1;
cnt conv <= cnt conv+1;
state <= adcwaitbusy;
end
adcwaitbusy: begin
state <= adcwaitbusy;
conv <= 0;
cnt conv <= cnt conv+1;
cnt bits <= 0;

if (sdo == 0) begin
state <= adcwaitbusyend;
adc clk <= 1;
adcdata <= {adc-data[14:0],sdo};
cnt bits <= 1;
end
end
adcwaitbusyend: begin
adc clk <= 0;
state <= adc acquireclkon;
cnt conv <= cnt conv+1;
end
adcacquireclkon: begin
adc clk <= 1;
state <= adc acquirestore;
cnt conv <= cnt conv+1;
end
adcacquirestore: begin
conv <= 0;
adc write <= 0;
adcdata <= {adc-data[14:0],sdo};
cnt conv <= cnt conv+1;
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state <= adcacquireclkoff;
cnt bits <= cnt bits+1;
end
adcacquireclkoff: begin
state <= adcacquireclkon;
adc clk <= 0;
cnt conv <= cnt conv+1;
if (cnt bits >= 16) begin
state <= adc waitfifo;
adc write <= 1;
cnt bits <= 0;
end
end
adc waitfifo: begin
adc write <= 1;
adc clk <= 1;
state <= adc waitfifo2;
cnt conv <= cnt conv+1;
moddatastore <= moddatatotal in;
//moddatastore <= 128'h11112222333344445555666677778888;
end
adc waitfifo2: begin
adc write <= 1;
adc clk <= 0;
state <= adcacquirefifo;
cnt conv <= cnt conv+1;
end
adcacquirefifo: begin
adc write <= 1;

adc clk <= 0;
conv <= 0;

adc data <= moddatastore[15:0];

cnt conv <= cnt conv+1;

state <= adc waitend;
end
adc waitend: begin
adc clk <= 1;
state<= adc waitend2;
cnt conv <= cnt conv+1;
end
adcwaitend2: begin
adc write <= 1;
adc clk <= 0;
cnt bits <= cnt bits+1;
cnt conv <= cnt conv+1;

if (cnt bits >= 7) begin
if (cntconv >= CONVCYCLES) begin
cnt-samples <= cntsamples+l;
cnt bits <= 0;
if (cntsamples >= samples) begin

state <= adc trigwait;
end else begin
state <= adc convertfirst;

cnt conv <= 1;
adc write <= 0;
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end
end else begin
state <= adc waitend2;

end
end else begin
state <= adc acquirefifo;

moddatastore <= {16'hOOOO,moddatastore[127:16]};
end
end
endcase
end

end
endmodule

E.10 Pin-outs and Constraints

#-------------------------------------------------------------------------
# XEM3010 - Xilinx constraints file

# Pin mappings for the XEM3010. Use this as a template and comment out
# the pins that are not used in your design. (By default, map will fail
# if this file contains constraints for signals not in your design).

# Copyright (c) 2004-2006 Opal Kelly Incorporated
# $Rev: 152 $ $Date: 2006-10-08 11:14:04 -0700 (Sun, 08 Oct 2006) $

# -------------------------------
# FrontPanel Host Interface pins
#-------------------------------
#NET "jtagtck"LOC = "P14"
#NET " jtagtms"LOC = "R14"
#NET "jtagtdi"LOC = "R10"
#NET "jtagtdo"LOC = "P12"
# ---------------
# PLL Clock pins
# ---------------
NET "sdram clk" TNM NET="TNMclk2";
TIMESPEC "TS clk2" = PERIOD "TNM clk2" 7.0 ns HIGH 50%;
#NET "ti clk" TNMNET="TNM ticlk";
#TIMESPEC "TSticlk" = PERIOD "TNMticlk" 20 ns HIGH 50%;
#NET "clk2" TNM NET="TNMclk2";
#TIMESPEC "TS clk2" = PERIOD "TNM clk2" 50 ns HIGH 50%;
NET "clk2"LOC = "N9";
NET "clk1"LOC = "P9";
#NET "clk3"LOC = "P10";
#-----------
# Peripherals
#------------
#NET "sdram lqdm"LOC = "D9";
#NET "sdram uqdm"LOC = "A9";
#NET "button<0>"LOC = "P7";
#NET "button<1>"LOC = "P6";
#PACE: Start of Constraints generated by PACE
#PACE: Start of PACE I/O Pin Assignments
NET "devl sol clk" LOC = "M16"; #xbusl5
NET "dev1 sol ncs" LOC = "L15"; #xbusl7
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NET " dev1 sol out" LOC = "L16"; #xbusl9

NET "devl led out<0>"LOC = "L18"; #xbusl8
NET "devl led out<1>"LOC = "L17"; #xbusl6
NET "devl led out<2>"LOC = "M18"; #xbusl4

NET "devl led out<3>"LOC = "N17"; #xbusl2

NET " dev1 led en" LOC = "P18"; #xbuslO

NET "devl smbus_clk" LOC = "P17" IPULLUP; #xbus8

NET "devl smbusdata" LOC = "R18" |PULLUP; #xbus6

NET "devlheater out" LOC = "T16"; #xbusl

NET "adcl sdi" LOC = "M15"; #xbusl3

NET "adcl clk" LOC = "N15"; #xbusll

NET "adcl sdo" LOC = "P16" IPULLUP; #xbus09

NET "adcl conv" LOC = "P15"; #xbus07

NET "dev2 sol clk" LOC = "Ml"; #ybusl5

NET "dev2 sol ncs" LOC = "L2"; #ybusl7

NET "dev2 sol out" LOC = "Ll"; #ybusl9

NET "dev2 led out<0>"LOC = "L3"; #ybusl8

NET "dev2 led out<1>"LOC = "L4"; #ybusl6

NET "dev2 led out<2>"LOC = "M3"; #ybusl4

NET "dev2 led out<3>"LOC = "M4"; #ybusl2

NET "dev2 led en" LOC = "N4"; #ybuslo

NET "dev2_smbusclk" LOC = "P3" |PULLUP; #ybus8

NET "dev2_smbusdata" LOC = "P4" JPULLUP; #ybus6

NET "dev2 heater out" LOC "Ul"; #ybus1

NET "adc2 sdi" LOC = "N2"; #ybusl3

NET "adc2 clk" LOC = "P1"; #ybusl

NET "adc2_sdo" LOC = "P2" IPULLUP; #ybus09

NET "adc2 conv" LOC = "Rl"; #ybus07

NET "hi in<0>" LOC = "N10"
NET "hi in<1>" LOC = "V2"

NET "hi in<2>" LOC = "V3"
NET "hi in<3>" LOC = "V12"
NET "hi in<4>" LOC = "R8";

NET "hi in<5>" LOC = "T8
NET "hi in<6>" LOC = "V8"
NET "hi in<7>" LOC = "V7";
NET "hi inout<O>" LOC = "T7"

NET "hi inout<10>" LOC = "U5"
NET "hi inout<11>" LOC ="V4"

NET "hi inout<12>" LOC = "U4"
NET "hi inout<13>" LOC = "T4";
NET "hi inout<14>" LOC = "T5";
NET "hi inout<15>" LOC ="R5"1

NET "hi inout<1>" LOC = "R7"
NET "hi inout<2>" LOC = "V9"
NET "hi inout<3>" LOC = "U9"
NET "hi inout<4>" LOC = "P11"

NET "hi inout<5>" LOC = "N11"

NET "hi inout<6>" LOC = "R12";

NET "hi inout<7>" LOC = "T12"
NET "hi inout<8>" LOC ="U6"

NET "hi inout<9>" LOC = "V5"

NET "hi muxsel" LOC = "R9"

NET "hi out<0>" LOC = "V10";

NET "hi out<l>" LOC = "V11";
NET "i2cscl" LOC = "U13" |PULLUP

NET "i2c sda" LOC = "R13" |PULLUP
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NET "led<0>" LOC = "V14";
NET "led<l1>" LOC = "U14 ";
NET "led<2>" LOC = "T14";
NET "Zled<3>" LOC = "V15"
NET "led<4>" LOC = "U15" ;
NET "led<5>" LOC = "V16"
NET "led<6>" LOC = "V17";
NET "led<7>" LOC = "U16";
NET "button<0>"LOC = "P7";
NET "button<l>"LOC = "P6";
NET "sdram cas n" LOC = "El"
NET "sdram cke" LOC = "F8"
NET "sdram Cs n" LOC = "E8"

NET "sdram ldqm" LOC = "D9";
NET "sdram ras n" LOC = "D12"
NET "sdramudqm" LOC ="A9"
NET "sdram we n" LOC ="E7"

NET "sdram a<0>" LOC = "A15"
NET "sdram a<1>" LOC = "A16"
NET "sdram a<2>" LOC = "B15"
NET "sdram a<3>" LOC ="B14"

NET "sdram a<4>" LOC = "Dl"
NET "sdram a<5>" LOC = "B13";

NET "sdram a<6>" LOC = "C11"
NET "sdram a<7>" LOC = "A12"
NET "sdram a<8>" LOC = "All"
NET "sdram a<9>" LOC = "D10";
NET "sdram a<10>" LOC = "A17"
NET "sdram a<11>" LOC = "B10"
NET "sdram a<12>" LOC = "A10"
NET "sdram ba<0>" LOC = "C12";
NET "sdram ba<1>" LOC = "A14";

NET "sdram d<0>" LOC = "C4"
NET "sdram d<1>" LOC = "D5"
NET "sdram d<2>" LOC = "C5";
NET "sdram d<3>" LOC = "D6";
NET "sdram d<4>" LOC = "D7";
NET "sdram d<5>" LOC = "C7"
NET "sdram d<6>" LOC = "C8"
NET "sdram d<7>" LOC = "D8"
NET "sdram d<8>" LOC = "B9";
NET "sdram d<9>" LOC = "A8"
NET "sdram d<10>" LOC = "A7";
NET "sdram d<11>" LOC = "B6"
NET "sdram d<12>" LOC = "A5"
NET "sdram d<13>" LOC = "B5"
NET "sdram d<14>" LOC = "A4";

NET "sdram d<15>" LOC = "B4";

#PACE: Start of PACE Area Constraints
#PACE: Start of PACE Prohibit Constraints
#PACE: End of Constraints generated by PACE
NET "cik1" TNM NET = clk1;
TIMESPEC TS clkl = PERIOD "clk1" 12 ns HIGH 50%;
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#TIMEGRP "clk1" OFFSET = IN 100 ns VALID 7 ns BEFORE "clk1" RISING;
#NET "dev1_ledout<0>" OFFSET = OUT 10 ns AFTER "clkl";
#NET "dev1 led out<1>" OFFSET = OUT 10 ns AFTER "clk1";
#NET "dev1 led out<2>" OFFSET = OUT 10 ns AFTER "clkl";
NET "devl/solenoid1/clkint 0" TNM NET = devl/solenoid1/clkint 0;
NET "dev2/solenoid1/clkint 0" TNM NET = dev2/solenoid1/clkint 0;
NET "adcl conv" OFFSET = OUT 2 ns AFTER "clk1" REFERENCE PIN "adcl clk";
NET "adcl sdi" OFFSET = OUT 2 ns AFTER "clkl" REFERENCE PIN "adcl clk";
NET "adc2_conv" OFFSET = OUT 2 ns AFTER "clkl" REFERENCEPIN "adc2_clk";
NET "adc2_sdi" OFFSET = OUT 2 ns AFTER "clk1" REFERENCEPIN "adc2_clk";
NET "dev1 smbus data" OFFSET = OUT 2 ns AFTER "clk1" REFERENCEPIN

"dev1 smbus clk";
NET "dev2 smbus data" OFFSET = OUT 2 ns AFTER "clk1" REFERENCEPIN

"dev2 smbus clk";
NET "dev1 Sol ncs" OFFSET = OUT 2 ns AFTER "clkl" REFERENCEPIN

"dev1 sol clk";
NET "dev sol out" OFFSET = OUT 2 ns AFTER "clk1" REFERENCE PIN

"dev1 sol clk";
NET "dev2 sol ncs" OFFSET = OUT 2 ns AFTER "clkl" REFERENCEPIN

"dev2 sol clk";
NET "dev2 sol out" OFFSET = OUT 2 ns AFTER "clkl" REFERENCEPIN

"dev2 sol clk";
TIMESPEC TS dev1 solenoidlclkint_0 = PERIOD "devl/solenoid1/clkint 0 " 10 ns

HIGH 50%;
TIMESPEC TS dev2 solenoidl clkint 0 = PERIOD "dev2/solenoid1/clkint 0 " 10 ns

HIGH 50%;
NET "dev2/templ/smbusclkint 0" TNM NET = dev2/templ/smbusclkint_0;
TIMESPEC TSdev2_templsmbusclkint_0 = PERIOD "dev2/templ/smbusclkint0 " 10

ns HIGH 50%;
NET "devl/templ/smbusclkint_ 0" TNM NET = devl/templ/smbusclkint_0;
TIMESPEC TSdevltemplsmbus clkint_0 = PERIOD "devl/templ/smbusclkint0 " 10

ns HIGH 50%;
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Appendix F

Matlab Control Interface

The MATLAB control interface includes a gui interface for interfacing with the Opal Kelly

FPGA and incorporates all of the slow control algorithms for controlling pH, oxygen, and cell

density. A picture of the GUI is given in Figure F.1. This GUI universally controls batch, fed-

batch, and continuous culture operations. The left side. of the GUI performs discrete control over

solenoid valves, necessary for initial inoculation or troubleshooting steps. Frequencies for the

LEDs can also be programmed and set points for temperature, oxygen, and pH can be

programmed. Feeding rates and evaporation control cycles can be programmed.



APPENDIX F MATLAB CONTROL INTERFACE

Device Select

Device 1 r ~Re Mode

Input Valves
nput 4 C Iput 5

CInput 3 Chput 6
C put 2 C put 7

Inhput 1 inhput'8
C Iput Off

f~Pumnp Enable Mix Enable

CPunp1 MixLeft
C Pump 2 CMti TOp

C Punp 3 C mix Bottom
Cycle Period

1 1 1 1
Input Controls Mixer Controls
C iput Valve C Mix Block

C Reservoir C Channel Block

Output Controls
C waste C Saple
Injections IN Count

0- - 1 F

DO.2

0.61

0 0.51

.0.5

0 65Iterations1r
Refill Cycle
Iterations

60

0

Status

Oxy
OD 1
OD02

DO
pH

Frequency Duty Cycle

'i 1 0.5'
16510 .,I

1 8018 1r
1 5208 F 1

i44271 r-1

Heater PID Oxygen PID

c Kc 0.01
Ti 60 TJ 200

Td 0 Td 0

Setpoiit 20 Setrpoint 190

r LE Enable r Batch Mode r Swuple 1ode

Acq Period (sec)

1 1

Save File Devi

Data Save
Save File Dev2

Data Save

W Oxygen Control

r- pH contrig

Acid Valve 5

Base Valve 3

pH Satpond -85

pflDeadband 0.5~

Irowee Ir savevfie

rOjer Savel

Feed Valve Feed inhnIn
- Feed Enable 4 [T5

ODI Data Output

1 0.51

012

0 0.5
Water Valve

DissolvedOxygen 0 0
pH r

Optical Density I

Optical Density 2

Temperature o
Power r

Temperature

0

Figure F. 1.Picture of the GUI used for controlling the continuous culture system in MATLAB.

F.1 Main Code Block

Commented Code blocks are in general implemented functions for specific situations which may

or may not apply to the current code configuration. For instance, code blocks for weight
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measurements of output fluid and code blocks for temperature ramps have been commented

since they do not apply to the most recent run.

Filename continuousculture.m
function varargout = continuousculture export (varargin)
% CONTINUOUSCULTUREEXPORT M-file for continuouscultureexport.fig
%6 CONTINUOUSCULTUREEXPORT, by itself, creates a new
CONTINUOUSCULTUREEXPORT or raises the existing
% singleton*.
%r

%H = CONTINUOUSCULTURE EXPORT returns the handle to a new
CONTINUOUSCULTUREEXPORT or the handle to
%6 the existing singleton*.

CONTINUOUSCULTUREEXPORT('CALLBACK',hObject,eventData,handles,...)
calls the local
%0 function named CALLBACK in CONTINUOUSCULTUREEXPORT.M with the given
%6 input arguments.
%

% CONTINUOUSCULTUREEXPORT('Property','Value',...) creates a new
CONTINUOUSCULTURE EXPORT or raises the
%6 existing singleton*. Starting from the left, property value pairs are
%6 applied to the GUI before continuousculture_OpeningFunction gets
called. An
%6 unrecognized property name or invalid value makes property application
W stop. All inputs are passed to continuouscultureexportOpeningFcn
via varargin.

6 *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
%-. instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help continuouscultureexport

% Last Modified by GUIDE v2.5 21-Nov-2010 20:00:35

% Begin initialization code - DO NOT EDIT
guiSingleton = 1;

guiState = struct('gui Name', mfilename,
'guiSingleton', guiSingleton,
'guiOpeningFcn', @continuouscultureexportOpeningFcn,

'guiOutputFcn', @continuousculture exportOutputFcn, ...

'guiLayoutFcn', @continuousculture exportLayoutFcn, ...

'guiCallback', []);
if nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = guimainfcn(gui_State, varargin{:});

else
gui mainfcn(guiState, varargin{:});
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end
% End initialization code - DO NOT EDIT

% --- Executes just before continuousculture export is made visible.
function continuousculture_exportOpeningFcn(hObject, eventdata, handles,
varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to continuouscultureexport (see
VARARGIN)

% Choose default command line output for continuouscultureexport
handles.output = hObject;
handles.ptr = initfrontpanel();
handles.dev(l) = devinit(l);
handles.dev(2) = devinit(2);
% map to correct places left matrix corresponds to fpga bit locations
handles.rb_input(5) = handles.rb_inputl;
handles.rb_input(4) = handles.rb_input2;
handles.rb_input(3) = handles.rb_input3;
handles.rb_input(2) = handles.rb_input4;
handles.rb_input(l) = handles.rb_input5;
handles.rb_input(6) = handles.rbinput6;
handles.rb_input(7) = handles.rb_input7;
handles.rb_input(8) = handles.rb_input8;

handles.rbpump(1) = handles.rbpumpl;
handles.rbpump(2) = handles.rbpump2;
handles.rbpump(3) = handles.rbpump3;

handles.rb mixer(l) = handles.rb mixleft;
handles.rbmixer(2) = handles.rbmixtop;
handles.rb mixer(3) = handles.rb mixbottom;
% graphing lines and options
handles.reftime = 0;
handles.linetemp = line(0,0);
handles.line OD1 = line(0,0);
handles.line OD2 = line(0,0);
handles.linepH = line(0,0);
handles.line DO = line(0,0);
handles.databuf = zeros(6,1000);
handles.datalength = 0;
%-------------------------------------------------------------
% flow rate measurement with scale
% handles.scale = serial('COM1', 'BAUD', 9600, 'Terminator','CR/LF');
% fopen(handles.scale);
% %turn it on
% fprintf(handles.scale,'@');
% while(handles.scale.BytesAvailable > 0)

fscanf(handles.scale)
% end
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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set(handles.uipanelinput,'Selectedobject',handles.rb-inputoff);

handles.t read =
timer('Period',.25,'ExecutionMode','fixedRate','BusyMode','drop');
set(handles.tread, 'TimerFcn',{@t readTimerFcn, handles});

% Sequence Program Variables
set(handles.editsavefilel,'String', [cd '\CultureDataDevl.txt']);
set(handles.edit savefile2,'String', [cd '\CultureDataDev2.txt']);

% DAQ initialization

% addpath('.\daq');
% handles.daqlib = 'daqlib';
% daqloadlibrary('daglib');
% (error handles.AI] = daqmxcreatetask(handles.daqlib, 'ai');
% daqmxgeterrorstring(handles.daqlib,error)
% error = daqmxcreateaivoltagechan('daqlib',handles.AI,'Dev3/aiO, Dev3/ai4,
Dev3/ai23');
% daqmxgeterrorstring(handles.daqlib,error)
handles.rate = 24e6/96;

% program timer
handles.tsequence =
timer('Period',5,'ExecutionMode','fixedRate','BusyMode','drop');
set(handles.tsequence, 'TimerFcn',{@tsequence_TimerFcn,
handles},'StartFcn',{@tsequenceStartFcn,
handles},'StopFcn',{@tsequenceStopFcn, handles});
% Update handles structure
guidata(hObject, handles);

% UIWAIT makes continuousculture-export wait for user response (see UIRESUME)
% uiwait(handles.continuousculture_export);

--- Executes when user attempts to close continuousculture export.
function continuouscultureCloseRequestFcn(hObject, eventdata, handles)
% hObject handle to continuousculture export (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
delete(handles.t read);
delete(handles.t sequence);
% daqmxstoptask(handles.daqlib,handles.AI);
% daqmxcleartask(handles.daqlib,handles.AI);
% daqunloadlibrary(handles.daqlib);
delete(hObject);

% --- Outputs from this function are returned to the command line.
function varargout = continuousculture exportOutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
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% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function devvisualupdate(dev, handles)
for n=1:8

set(handles.rbinput(n),'Value',dev.solstate(25-n)-'O');
end
set(handles.cb mixenable,'Value',dev.mix en);
set(handles.cbpumpenable,'Value',dev.pumpen);
for n=1:3

set(handles.rb_pump(n),'Value',dev.solstate(n+2)-'0');
set(handles.rb mixer(n),'Value',dev.sol state(n+5)-'O');

end
set(handles.rbinputvalve,'Value', dev.solstate(2)-'0');
set(handles.rb reservoir,'Value', dev.sol state(l)-'0');
set(handles.rb mixblock,'Value', dev.sol state(14)-'0');
set(handles.rbchannelblock,'Value', dev.solstate(13)-'0');
set(handles.rb waste,'Value', dev.sol state(ll)-'0');
set(handles.rbsample,'Value', dev.solstate(12)-'0');
set(handles.editpumpperiod,'String',num2str(dev.pumpperiod));
set(handles.edit_mixperiod,'String',num2str(dev.mixperiod));
set(handles.edit injnum,'String',num2str(dev.inj_num));

set(handles.editoxyfreq,'String',num2str(dev.oxyfreq));
set(handles.editoxyduty,'String',num2str(dev.oxy_duty));
set(handles.editODlfreq,'String',num2str(dev.ledfreq(l)));
set(handles.editODlduty,'String',num2str(dev.ledintensity(l)));
set(handles.editOD2freq,'String',num2str(dev.led_freq(2)));
set(handles.edit OD2duty,'String',num2str(dev.led intensity(2)));
set(handles.editDOfreq,'String',num2str(dev.ledfreq(3)));
set(handles.editDOduty,'String',num2str(dev.ledintensity(3)));
set(handles.edit_pHfreq,'String',num2str(dev.ledfreq(4)));
set(handles.edit-pHduty,'String',num2str(dev.ledintensity(4)));
set(handles.cb leden,'Value',dev.led en);

set(handles.edit PIDKc,'String',num2str(dev.Kc));
set(handles.edit PIDTi,'String',num2str(dev.Ti));
set(handles.edit PIDTd,'String',num2str(dev.Td));
set(handles.editsetpoint,'String',num2str(dev.t_setpoint));

set(handles.editoxyKc,'String',num2str(dev.oxy_Kc));
set(handles.edit oxyTi,'String',num2str(dev.oxyTi));
set(handles.editoxyTd,'String',num2str(dev.oxyTd));
set(handles.editoxysetpoint,'String',num2str(dev.oxysetpoint));
% plot selected device data

set(handles.linetemp,'Xdata',dev.databuf(1,1:dev.datalength),'Ydata',dev.dat
abuf(2,1:dev.datalength))

set(handles.line OD1, 'Xdata',dev.databuf(1,1:dev.datalength), 'Ydata',dev.data
buf(3,1:dev.datalength))
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set(handles.lineOD2,'Xdata',dev.databuf(1,1:dev.datalength),'Ydata',dev.data
buf(4,1:dev.datalength))

set(handles.lineDO, 'Xdata',dev.databuf(1,1:dev.datalength), 'Ydata',dev.datab
uf(5,1:dev.datalength))

set(handles.linepH, 'Xdata',dev.databuf(1,1:dev.datalength), 'Ydata',dev.datab
uf(6,1:dev.datalength))

drawnow('expose');

function t read TimerFcn(hObject, eventdata, handles)
% get the current device data
devout = readdevice(2^(get(handles.popupdevselect,'Value')-1),handles.ptr);
% update visuals
devvisualupdate(devout,handles)

function tsequenceStartFcn(hObject, eventdata, handlesold)
handles = guidata(handlesold.continuousculture);
handles.rate = 24e6/130;
if (handles.reftime == 0)

handles.reftime = clock;
set(handles.editreftime,'String',datestr(handles.reftime));

handles.datalength = 0;
set(handles.line_temp, 'parent',handles.axes temp);
set(handles.lineOD1,'parent',handles.axesOD1);
set(handles.line OD2, 'parent',handles.axesOD2);
set(handles.linepH, 'parent',handles.axespH);
set(handles.lineDO,'parent',handles.axesDO);

end

freqOD1 = str2num(get(handles.edit ODlfreq, 'String'));
freq_OD2 = str2num(get(handles.editOD2freq, 'String'));
freq_DO = str2num(get(handles.editDOfreq, 'String'));
freqpH = str2num(get(handles.editpHfreq,'String'));

%create filters
%bandpass 100 hz centered at operating frequency
[handles.butterbOD1 handles.butteraODl] = butter(3, [(freq_OD1-
50)*2/handles.rate (freqOD1+50)*2/handles.rate]);
[handles.butterbOD2 handles.butteraOD2] = butter(3, [(freqOD2-
50)*2/handles.rate (freqOD2+50)*2/handles.rate]);
[handles.butterbDO handles.butteraDO] = butter(3, [(freq_DO-50)*2/handles.rate
(freqDO+50)*2/handles.rate]);
[handles.butterbpH handles.butterapH] = butter(3, [(freqpH-50)*2/handles.rate
(freqpH+50)*2/handles.rate]);

%phase update filter
[handles.butterphaseb handles.butterphasea] = butter(4,.99, 'low');
%lowpass filter 100 Hz
[handles.butterlowb handles.butterlowa] = butter(4,200/handles.rate,'low');
handles.dev(l).pHinjold = 0;
handles.dev(l).injold1 = 0;
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handles.dev(l).pHinj = 1;
handles.dev(1).pHphaseold = -360;
handles.dev(l).pHest = -82;
handles.dev(1).dpHacid = .2;
handles.dev(1).dpHbase = .2;
handles.gluinjacc = 42.395;
handles.gluinjtotal = 0;

guidata(handlesold.continuousculture,handles);

function tsequenceStopFcn(hObject, eventdata, handlesold)
handles = guidata(handlesold.continuousculture);
set(handles.editseqstatus,'String','Stopped')
devnum = get(handles.popupdevselect,'Value');
%turn off mixer
% handles.dev(devnum).mix en = 0;
% writedevice(handles.dev(devnum),handles.ptr);
% handles.dev(devnum).sol state(6:8) = 1000';
% writedevice(handles.dev(devnum),handles.ptr);

function t_sequenceTimerFcn(hObject, eventdata, handlesold)
%get current handles object
handles = guidata(handlesold.continuousculture);
% set desired valve open
% input 1 = 20
% input 2 = 21
% input 3 = 22,
% input 4 = 23,
% input 5 = 24,
% input 6 = 19,
% input 7 = 18,
% input 8 = 17,

valvelookup = [20 21 22 23 24 19 18 17];

pHcontrol = get(handles.cbpHcontrol, 'Value');
oxycontrol = get(handles.cb oxycontrol, 'Value');
batchmode = get(handles.cbbatchmode,'Value');
samplemode = get(handles.cbsamplemode, 'Value');
feedenable = get(handles.cbfeedenable,'Value');
injectorenable = false;
dev2enable = false;
refillcount = str2num(get(handles.edititerations,'String'));
set(handles.edit seqstatus,'String','Running: Starting Sequence')

pause(0.01)
devnum = get(handles.popupdevselect,'Value');
%take the data
samplesperchannel = 2A17+1;

% turn on LED
handles.dev(l).led en = 1;
writedevice(handles.dev(l),handles.ptr);

set(handles.editseqstatus, 'String', 'Running: ADC acquisition Devl')

[ref sig] = adcacquire(samplesperchannel,handles.ptr,handles.dev(l));
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samples = length(ref);
%[error readarray samples]
daqmxreadanalogf64(handles.daqlib,handles.AI,samplesperchannel*3);
tout = clock;

%turn off LEDS
handles.dev(l).led en = 0;
writedevice(handles.dev(l),handles.ptr);

if (dev2enable == true)
% turn on LED
handles.dev(2).led en = 1;
writedevice(handles.dev(2),handles.ptr);

set(handles.editseqstatus,'String','Running: ADC acquisition Dev2')
[ref2 sig2] = adcacquire(samplesperchannel,handles.ptr,handles.dev(2));

samples = length(ref2);
%[error readarray samples] =

daqmxreadanalogf64(handles.daqlib,handles.AI,samplesperchannel*3);
tout2 = clock;

%turn off LEDS
handles.dev(2).led en = 0;
writedevice(handles.dev(2),handles.ptr);

end
% --------- Grab the temperature--------------------------------------

[temp dutyout error] = fpgagettemp(handles.ptr,handles.dev(1));

if (dev2enable == true)
[temp2 dutyout2 error2] = fpgagettemp(handles.ptr,handles.dev(2));

end
timereftable = etime(tout,handles.reftime)/60/60
% if timereftable > 8
% handles.dev(devnum).t_setpoint = 42;
% else

handles.dev(devnum).t_setpoint = 30;
% end
% temptable = [27 28 30 32 34 36 37 38 40 42 44
% for n=l:length(temptable)

if (timereftable > n-1)
handles.dev(devnum).tsetpoint = tempt
handles.dev(devnum).oxy_setpoint = 180

end
% if (timereftable > n-.6)
%- % handles.dev(devnum).oxy_setpoint = 0;
% end

% end
% tempprogramtime = [.25 .5 .75 1 1.25 1.5 1.75
% tempprogramtemp = [28 30 32 34 36 38 40 42 44
% handles.dev(devnum).tsetpoint = 20;
% for n=l:length'(tempprogramtime)

if (timereftable > tempprogramtime(n))

27];

able (n);

2 2.25 2.51 *2;
20]

453
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% handles.dev(devnum).tsetpoint = tempprogramtemp(n);
%6 end
% end

set(handles.edit seqstatus,'String','Running: Calculating...')
pause(0.001)

% extract mag and phase of signals
if samples > 0 % &&error == 0

% %- ------------- filter for OD1--------------------------------------

[magmeanOD1 magstdOD1 phasemeanOD1 phasestdOD1 refmagOD1] =

lockindetect(ref,sig,...

handles.butterbODl,handles.butteraODl,handles.butterphaseb,handles.butterphas
ea,...

handles.butterlowb,handles.butterlowa);

%----------------- filter for OD2----------------------------------------

[magmeanOD2 magstdOD2 phasemeanOD2 phasestdOD2 refmagOD2] =

lockindetect(refsig,...

handles.butterbOD2,handles.butteraOD2,handles.butterphaseb,handles.butterphas
ea,...

handles.butterlowb,handles.butterlowa);

--- ---------- filter for DO-----------------------------------------

[magmeanDO magstdDO phasemeanDO phasestdDO] -

lockindetect(ref,sig, ...

handles.butterbDO,handles.butteraDO,handles.butterphaseb,handles.butterphasea

handles.butterlowb,handles.butterlowa);

--- ---------- filter for OD

[magmeanpH magstdpH phasemean_pH phasestd_pH] =

lockindetect(ref,sig,...

handles.butterbpH,handles.butterapH,handles.butterphaseb,handles.butterphasea

handles.butterlowb,handles.butterlowa);
oxycontrolenable = get(handles.cb oxycontrol,'Value');
n=1;
% oxygen pid
if oxycontrolenable == true

oxymax = 133;
oxymin = 101.83;
oxyKc = handles.dev(n).oxyKc;
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oxyTi = handles.dev(n).oxyTi;
oxyTd = handles.dev(n).oxyTd;
setpoint = handles.dev(n).oxy-setpoint;
alpha = 1+oxyTd/oxyTi;
oxyKp = oxyKc*alpha;
oxyTi = oxyTi*alpha;
oxyTd = oxyTd/alpha;
oxyKi = oxyKp/oxyTi;
oxyKd = oxyKp*oxyTd;
if n == 1

oxyerror = -(setpoint-phasemeanDO);
else

oxyerror = -(setpoint-phasemean2_DO);
end
integral =

handles.dev(n).oxyint+oxyerror*str2num(get(handles.edit dataperiod,'String')

output = oxyKp*oxyerror+oxyKi*integral;
if output > 1

output = 1;
integral = (output-oxyKp*oxyerror)/oxyKi;

elseif output < 0
output = 0;
integral = (output-oxyKp*oxyerror)/oxyKi;

end
if isnan(integral)

integral = 0;
end
if isnan(oxyerror)

oxyerror = 0;
end
if isnan(output)

output = 0;
end
handles.dev(n).oxyint = integral;
handles.dev(n).oxyperror = oxyerror;
handles.dev(n).oxyduty = output;

% handles.dev(n).oxyduty = 0;
%set(handles.edit refilliter,'String',num2str(integral));
%set(handles.edititerations,'String',num2str(oxyerror));

writedevice(handles.dev(devnum),handles.ptr);
end

% Display Values
% calculate ODs
set(handles.editODlout,'String',num2str(magmeanODl))
set(handles.editOD2out, 'String',num2str(magmeanOD2))
set(handles.editDOout, 'String',num2str(phasemeanDO))
set(handles.edit_DOmag,'String',num2str(magmean DO))
set(handles.editpHout,'String',num2str(phasemeanpH))
set(handles.editpHmag,'String',num2str(magmeanpH))
set(handles.edittempout, 'String',num2str(temp))
set(handles.edit heaterpower, 'String',num2str(dutyout))
set(handles.edit oxyduty,'String',num2str(handles.dev(l).oxyduty));
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% check memory size
datamax = 10000;
handles.dev(l).datalength = handles.dev(l).datalength+l;
if (handles.dev(l).datalength > datamax)

handles.dev(l).databuf = [handles.dev(l).databuf(:, (end-
datamax+2):end) zeros(6,1)];

handles.dev(l).datalength = datamax;
handles.dev(l).datalength

else
if (handles.dev(l).datalength > size(handles.dev(l).databuf,2))

handles.dev(l).databuf = [handles.dev(l).databuf zeros(6,1000));
end

end
% save plot vectors
handles.dev(l).databuf(:,handles.dev(l).datalength)

[etime(tout,handles.reftime);temp;magmeanOD1;magmeanOD2;phasemeanDO;phasem
eanpH];

% plot selected device data

set(handles.linetemp,'Xdata',handles.dev(devnum).databuf(1,1:handles.dev(dev
num).datalength), 'Ydata',handles.dev(devnum).databuf(2,1:handles.dev(devnum).
datalength))

set(handles.line OD1,'Xdata',handles.dev(devnum).databuf(1,1:handles.dev(devn
um).datalength), 'Ydata',handles.dev(devnum).databuf(3,1:handles.dev(devnum).d
atalength))

set(handles.line OD2,'Xdata',handles.dev(devnum).databuf(1,1:handles.dev(devn
um).datalength),'Ydata',handles.dev(devnum).databuf(4,1:handles.dev(devnum).d
atalength))

set(handles.line DO,'Xdata',handles.dev(devnum).databuf(1,1:handles.dev(devnu
m).datalength),'Ydata',handles.dev(devnum).databuf(5,1:handles.dev(devnum).da
talength))

set(handles.line-pH, 'Xdata',handles.dev(devnum).databuf(1,1:handles.dev(devnu
m).datalength), 'Ydata',handles.dev(devnum).databuf(6,1:handles.dev(devnum).da
talength))

else
% daqmxgeterrorstring(handles.daqlib,error)
'ERROR'

end

inj_ratio = 0;
inj_total = 0;
injectornumber = 0;
handles.dev(1).inj_num = 0;
injectpH = false;
iterations = str2num(get(handles.edititerations, 'String'));

pHsampletime = 12;%make this an even number
% handles.dev(1).dpH = .5;
% handles.dev(l).pHinjold = 0;
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handles.dev(l).pHinj = 0;
% handles.dev(1).dpHacid
% handles.dev(1).dpHbase
%handles.dev(l).dpH
if (mod(iterations,pHsampletime) == 0 && handles.dev(devnum).datalength > 12)

pHsetpoint = str2num(get(handles.editpHsetpoint, 'String'));
pHdeadband = str2num(get(handles.editpHdeadband, 'String'));
%last half samples
handles.dev(l).pHest
handles.dev(l).databuf(6,handles.dev(devnum).datalength-

floor(pHsampletime/2)+1)
handles.dev(l).pHest-

handles.dev(l).databuf(6,handles.dev(devnum).datalength-
floor(pHsampletime/2)+1)

M =
polyfit([floor(pHsampletime/2)+l:pHsampletime],handles.dev(devnum).databuf(6,
handles.dev(devnum).datalength-
floor(pHsampletime/2)+1:handles.dev(devnum).datalength),1)

if (handles.dev(l).pHinjold == 0)
handles.dev(l).pHest = m(l)*(floor(pHsampletime*1.5)+l)+m(2);

elseif (handles.dev(l).pHinjold < 0)
% figure out the change in pH from the previous set
handles.dev(1).dpHacid = abs((m(l)*(floor(pHsampletime/2)+l)+m(2)-

handles.dev(l).pHest)/handles.dev(l).pHinjold); Wevaluated at half way
between

% new estimate
handles.dev(l).pHest = m(l)*(floor(pHsampletime*1.5)+l)+m(2);

elseif (handles.dev(l).pHinjold > 0)
% figure out the change in pH from the previous set
handles.dev(1).dpHbase = abs((m(l)*(floor(pHsampletime/2)+l)+m(2)-

handles.dev(l).pHest)/handles.dev(l).pHinjold); %evaluated at half way
between

% new estimate
handles.dev(l).pHest = m(l)*(floor(pHsampletime*1.5)+l)+m(2);

end

baseacid = 0;
handles.dev(1).dpHacid
handles.dev(1).dpHbase
handles.dev(l).pHest

if handles.dev(1).dpHbase < .2
handles.dev(1).dpHbase = .2;

end
if handles.dev(1).dpHacid < .2

handles.dev(1).dpHacid = .2;
end
% pH outside of deadband
if abs(handles.dev(l).pHest - pHsetpoint) > pHdeadband

baseacid = sign(pHsetpoint-handles.dev(l).pHest); %1 = base, -1 =
acid

if baseacid == 1
handles.dev(1).dpH = handles.dev(1).dpHbase;

elseif baseacid == -1;
handles.dev(1).dpH = handles.dev(l).dpHacid;

end



458 APPENDIX F MATLAB CONTROL INTERFACE

% calculate injections
handles.dev(l).pHinj = abs(floor((pHsetpoint-

handles.dev(l).pHest)/handles.dev(l).dpH));
if handles.dev(l).pHinj > 10 % maximum injection

handles.dev(l).pHinj = 10;
end
if handles.dev(l).pHinj == 0 % if one injection is too many

inject_pH = false;
else

inject_pH = true;
end

else
handles.dev(l).pHinj = 0;

end
handles.dev(l).pHinj = handles.dev(l).pHinj*baseacid;
if baseacid < 0

handles.dev(l).pHinj = 0;
injectpH = false;

end
handles.dev(l).pHinjold = handles.dev(l).pHinj; %store the pHinjection
handles.dev(l).pHinj

end

%handles.dev(devnum).tsetpoint = 30;
% if (etime(clock,handles.reftime) > 30570+11*3600)
% handles.dev(devnum).tsetpoint = 20;
% end
%injectpH = false;
%if (mod(refillcount,4) == 0)

% if (mod(refillcount,6) < 1)
% %close channel block
% handles.dev(devnum).sol state(13) Ill;
% %open the mix block
% handles.dev(devnum).solstate(14) = 11;
% else
% %close channel block
% handles.dev(devnum).sol state(13) =0';
% %open the mix block
% handles.dev(devnum).sol state(14) = '0';
% end
if (inject-PH == true)

injectorenable = true;
%close channel block

handles.dev(devnum).sol state(13) = '0';
%open the mix block
handles.dev(devnum).sol state(14) = '0';

end
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
%injectorenable = true;
injectorenable = true;

watervalve = 8;
saltsvalve = 4;
gluvalve = 6;

%reset
% handles.gluratio = .5;
gluinjections = 0;
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feedinjections = 0;
waterinjections = 0;
sinusoid = false;
%1 handles.waterinjtotal = 1;
%6 handles.gluinjtotal = 1;

if (injectorenable == true)
refillcount = str2num(get(handles.edit iterations,'String'));
refillmax = str2num(get(handles.editrefilliter,'String'));

if samplemode == true %cycle the other valve occasionally
if mod(refillcount,32) == 1 %cycle the sample valve

samplemode = false;
else

samplemode = true;
end

else
if mod(refillcount,32) == 1 %cycle the sample valve

samplemode = true;
else

samplemode = false;
end

end
totalinjections = str2num(get(handles.edit-feedinj,'String'));

% handles.gluinjacc =
handles.gluinjacc+(sin(etime(clock,handles.reftime)*2*pi/2/3600)+l)/2*.9*roun
d(totalinjections/2);
9 (sin(etime(clock,handles.reftime)*2*pi/2/3600)+l)/2*.9
% handles.gluinjacc
% handles.gluinjtotal

if (mod(refillcount,refillmax) ~= 0)
waittime = 0.25;
starttime = clock;
injectornumber = 1;
set(handles.edit seqstatus,'String','Running: Inject Valve 1')

% ODinit = 0.0257;
% ODset = 0.0178; %od2
%6 vpi = 175e-6;
%6 ODold2 =
handles.dev(devnum).databuf(4,handles.dev(devnum).datalength);

if (ODold2 < ODset)
%injector sequence

0 injratio = 1;
% injtotal = 50;
%6 else
% injratio = 1;
% injtotal = 8;
%- end
% ODold2a = -

log10(handles.dev(devnum).databuf(4,handles.dev(devnum).datalength)/ODinit)/.
079375;
% ODold2b = -

log10(handles.dev(devnum).databuf(4,handles.dev(devnum).datalength-
1)/ODinit)/.079375;
% pODold2b = (1-(handles.dev(devnum).injold2*vpi))*ODold2b;
%- growthrate = ODold2a/pODold2b;
% handles.dev(devnum).growthrate =
[handles.dev(devnum).growthrate(2:end) growthrate];
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% mean(handles.dev(devnum).growthrate)
%6 pODold2a = ODold2a*(l-
(handles.dev(devnum).injoldl*vpi))*mean(handles.dev(devnum).growthrate);
%6 pvinj = round((l-(-
loglO(ODset/ODinit)/.079375)/(pODold2a*mean(handles.dev(devnum).growthrate)))
/vpi)
%- if (pvinj > 50)
%- pvinj = 50;
0- elseif (pvinj < 15)
%- pvinj = 15;
% end
%- injtotal = pvinj

inj_ratio = 1;
if (pHcontrol == true && inject_pH == true)

%get pH value
inj total = abs(handles.dev(l).pHinj)

%close off the mixer
handles.dev(devnum).sol state(3:5) = '000';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% set input valve (sol state 2) closed
handles.dev(devnum).inj num = round(inj total*inj ratio);
handles.dev(devnum).pumpperiod = .5;
% close syringe input
handles.dev(devnum).sol state(2) = '1';
if (batchmode == false)

%close channel block
handles.dev(devnum).sol state(13) = '1';
%open the mix block
handles.dev(devnum).sol state(14) = '1';

else
%close channel block
handles.dev(devnum).sol state(13) = '0';
%open the mix block
handles.dev(devnum).sol state(14) = '0';

end
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)

%set reservoir (sol state 1) pressurized
handles.dev(devnum).sol state(l) = '1';

%open waste
if (batchmode == false)

if (samplemode == true)
handles.dev(devnum).sol state(11) = '0'; % left
handles.dev(devnum).sol state(12) = '1'; %right

else
handles.dev(devnum).sol state(ll) = '1'; % left
handles.dev(devnum).sol state(12) = '0'; %right

end
else

handles.dev(devnum).sol state(11) = '0'; % left
handles.dev(devnum).sol state(12) = '0'; %right

end
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% waste = 11, chan block = 13
curtime = (etime(clock,handles.reftime)-300)
starttimeref = 0;
injratio = 1;
if (baseacid > 0)

injectornumber =

valvelookup(str2num(get(handles.editbasevalve, 'String')));
else

'acid'
injectornumber =

valvelookup(str2num(get(handles.editacidvalve,'String')));
end
handles.dev(devnum).solstate(injectornumber) = '1';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% start pump cycle
handles.dev(devnum).pumpen = true;
writedevice(handles.dev(devnum),handles.ptr);
handles.dev(devnum).pump_en = false;
waittime =

handles.dev(devnum).pump_period*round(injratio*injtotal)+.25
starttime = clock;

end
if (feedenable == true)

pause(waittime);
%close all input valves
for n=l:length(valvelookup)

handles.dev(devnum).solstate(valvelookup(n)) = '0';
end
writedevice(handles.dev(devnum),handles.ptr);
iperinj =

60/str2num(get(handles.edit_dataperiod,'String'))/str2num(get(handles.edit fe
edinj,'String'));

%iterations per 4 injections
iperinj = iperinj*32; %changed for continuous
iperinj = 1;
totalinjections = str2num(get(handles.edit-feedinj,'String'));

P injectornumber =
valvelookup(str2num(get(handles.editfeedvalve,'String')));

glurationew = str2num(get(handles.edit feedvalve,'String'));
handles.gluratio
glurationew
if handles.gluratio ~= glurationew

handles.gluratio = glurationew;
handles.gluinjtotal =

round(glurationew*totalinjections/2);
handles.waterinjtotal = round(totalinjections/2-

handles.gluinjtotal);

end
%handles.gluratio = 0.5;

turbid = false;
if turbid == true

magmeanOD2
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OD2setpoint = 0.0289;
if magmeanOD2 < OD2setpoint

totalinjections = 56;
else

totalinjections = 16;
end

end
%- handles.gluinjtotal 0;
% handles.waterinjtotal = 0;
% handles.gluinjacc = 0;

handles.gluinjacc =
handles.gluinjacc+((sin(etime(clock,handles.reftime)*2*pi/4/3600)+l)/2*.5+.25
)*round(totalinjections/2);

((sin(etime(clock,handles.reftime)*2*pi/4/3600)+l)/2*.5+.25)
% handles.gluinjacc = 0;

handles.gluinjacc = handles.gluinjacc +
handles.gluratio*totalinjections/2;

gluinjections = round(handles.gluinjacc-handles.gluinjtotal);
if gluinjections < 0

gluinjections = 0;
end
if (gluinjections > round(totalinjections/2))

gluinjections = round(totalinjections/2);
end
handles.gluinjtotal = handles.gluinjtotal+gluinjections;
waterinjections = round(totalinjections/2)-gluinjections;
handles.waterinjtotal =

handles.waterinjtotal+waterinjections;
feedinjections = round(totalinjections/2);

o gluratio =
handles.gluinjtotal/(handles.gluinjtotal+handles.waterinjtotal); %actual

glucose is 50% less due to dilution
% gluinjections =
round(handles.gluratio*(handles.gluinjtotal+handles.waterinjtotal+totalinject
ions/2))-handles.gluinjtotal;
o waterinjections = round(totalinjections/2-gluinjections);
% feedinjections = round(totalinjections/2);

0% handles.gluinjtotal = handles.gluinjtotal+gluinjections;
%- handles.waterinjtotal =

handles.waterinjtotal+waterinjections;
handles.waterinjtotal
handles.gluinjtotal
handles.gluinjacc

if (mod(str2num(get(handles.edit iterations,'String')),iperinj)
== 0) %changed for continuous

inj_total = gluinjections; %glucose
if gluinjections > 0

injectornumber = valvelookup(gluvalve);
injratio = 1;
%close off the mixer
handles.dev(devnum).sol state(3:5) = '000';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% set input valve (sol state 2) closed
handles.dev(devnum).inj num = round(injtotal);
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handles.dev(devnum).pumpperiod = .3;
% close syringe input
handles.dev(devnum).sol state(2) = '1';
if (batchmode == false)

%close channel block
handles.dev(devnum).sol state(13) = '1';
%open the mix block
handles.dev(devnum).sol state(14) = '1';

else
%close channel block
handles.dev(devnum).sol state(13) = '0';
%open the mix block
handles.dev(devnum).sol state(14) = '0';

end
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)

%set reservoir (sol state 1) pressurized
handles.dev(devnum).sol state(l) = '1';

%open waste
if (batchmode == false)

if (samplemode == true)
handles.dev(devnum).sol state(l) = '0'; % left
handles.dev(devnum).solstate(12) = '1'; %right

else
handles.dev(devnum).sol state(l) = '1'; % left
handles.dev(devnum).solstate(12) = '0'; %right

end
else

handles.dev(devnum).sol state(ll) = '0'; % left
handles.dev(devnum).solstate(12) = '0'; %right

end

% waste = 11, chan block = 13
curtime = (etime(clock,handles.reftime)-300);
starttimeref = 0;
injratio = 1;
handles.dev(devnum).solstate(injectornumber) = '1';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% start pump cycle
handles.dev(devnum).pump_en = true;
writedevice(handles.dev(devnum),handles.ptr);
handles.dev(devnum).pump_en = false;
waittime =

handles.dev(devnum).pumpperiod*round(injratio*injtotal)+.25;
pause(waittime);
waittime = 0.25;

end
%feed injection

%close all input valves
for n=l:length(valvelookup)

handles.dev(devnum).sol_state(valvelookup(n)) = '0';
end
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writedevice(handles.dev(devnum),handles.ptr);
inj_total = feedinjections; %feed
injectornumber = valvelookup(saltsvalve);
injratio = 1;
%close off the mixer
handles.dev(devnum).sol state(3:5) = '000';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% set input valve (sol state 2) closed
handles.dev(devnum).ininum = round(inj_total);
handles.dev(devnum).pump_period = .3;
% close syringe input
handles.dev(devnum).sol state(2) = '1';
if (batchmode == false)

%close channel block
handles.dev(devnum).sol state(13) = '1';
%open the mix block
handles.dev(devnum).sol state(14) = '1';

else
%close channel block
handles.dev(devnum).sol state(13) = '0';
%open the mix block
handles.dev(devnum).sol state(14) = '0';

end
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)

%set reservoir (sol state 1) pressurized
handles.dev(devnum).sol state(l) = '1';

%open waste
if (batchmode == false)

if (samplemode == true)
handles.dev(devnum).sol state(11) = '0'; % left
handles.dev(devnum).sol state(12) = '1'; %right

else
handles.dev(devnum).sol state(11) = '1'; % left
handles.dev(devnum).sol state(12) = '0'; %right

end
else

handles.dev(devnum).sol state(11) = '0'; % left
handles.dev(devnum).sol state(12) = '0'; %right

end

% waste = 11, chan block = 13
curtime = (etime(clock,handles.reftime)-300);
starttimeref = 0;
inj_ratio = 1;
handles.dev(devnum).sol state(injectornumber) = '1';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% start pump cycle
handles.dev(devnum).pump_en = true;
writedevice(handles.dev(devnum),handles.ptr);
handles.dev(devnum).pump_en = false;
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waittime
handles.dev(devnum).pumpperiod*round(injratio*injtotal)+.25;

pause(waittime);
waittime = 0.25;

%injector water
if waterinjections > 0

%close all input valves
for n=1:length(valvelookup)

handles.dev(devnum).solstate(valvelookup(n)) = '0';
end
writedevice(handles.dev(devnum),handles.ptr);
injtotal = waterinjections; %water
injectornumber = valvelookup(watervalve);
injratio = 1;
%close off the mixer
handles.dev(devnum).solstate(3:5) = '000';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% set input valve (sol state 2) closed
handles.dev(devnum).ininum = round(injtotal);
handles.dev(devnum).pumpperiod = .3;
% close syringe input
handles.dev(devnum).solstate(2) = '1';
if (batchmode == false)

%close channel block
handles.dev(devnum).sol state(13) = '1';
%open the mix block
handles.dev(devnum).sol state(14) = '1';

else
%close channel block
handles.dev(devnum).solstate(13) = 'o';
%open the mix block
handles.dev(devnum).sol state(14) = '0';

end
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)

%set reservoir (sol state 1) pressurized
handles.dev(devnum).sol state(l) = '1';

%open waste
if (batchmode == false)

if (samplemode == true)
handles.dev(devnum).sol state(11) = '0'; % left
handles.dev(devnum).solstate(12) = '1'; %right

else
handles.dev(devnum).sol state(11) = '1'; % left
handles.dev(devnum).solstate(12) = '0'; %right

end
else

handles.dev(devnum).solstate(11) = '0'; % left
handles.dev(devnum).solstate(12) = '0'; %right

end
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% waste = 11, chan block = 13
curtime = (etime(clock,handles.reftime)-300);
starttimeref = 0;
injratio = 1;
handles.dev(devnum).solstate(injectornumber) 1';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)
% start pump cycle
handles.dev(devnum).pumpen = true;

writedevice(handles.dev(devnum),handles.ptr);
handles.dev(devnum).pumpen = false;
waittime =

handles.dev(devnum).pumpperiod*round(injratio*injtotal)+.25;
end
starttime = clock;

end
end

else

%- injectornumber =

valvelookup(str2num(get(handles.editwatervalve, 'String')));
injectornumber = valvelookup(watervalve);
inj_total = 66;
inj_ratio = 0;
%close the input valve
handles.dev(devnum).sol state(17:24) = '00000000';
%close waste valves and stop mixer
handles.dev(devnum).sol state(ll) = '0';
handles.dev(devnum).sol state(12) = '0';
handles.dev(devnum).mix en = 0;
writedevice(handles.dev(devnum),handles.ptr);
%pause 1 mix cycle
pause(handles.dev(devnum).mixperiod);

%open reservoir, input to refill reservoir
handles.dev(devnum).sol state(l) = '0';
handles.dev(devnum).sol state(2) = '0';
% set up mixer
handles.dev(devnum).sol state(6:8) = '001';
%open channel block
handles.dev(devnum).sol state(13) = '0';
writedevice(handles.dev(devnum),handles.ptr);
%wait for equilibrium with mixer
tic
starttime = clock;
waittime = 10;

end
% handles.dev(devnum).injold2 = handles.dev(devnum).injold1;

% handles.dev(devnum).injold1 = injtotal;
% handles.dev(devnum).growthrate = [zeros(1,10)

handles.dev(devnum).growthrate];

waitleft = waittime - etime(clock,starttime);

if (waitleft > 0)
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set(handles.edit seqstatus,'String','Running: Waiting for Injection
End')

pause(waitleft);
end
%should we run a refill
refillcount = str2num(get(handles.edititerations,'String'));
refillmax = str2num(get(handles.editrefilliter,'String'));

%close all input valves
for n=l:length(valvelookup)

handles.dev(devnum).solstate(valvelookup(n)) = '0';
end
writedevice(handles.dev(devnum),handles.ptr);

if (mod(refillcount,refillmax) == 0)
set(handles.edititerations,'String','1');

% refillcount = 0;
set(handles.edit-seqstatus,'String','Running: Refill')

%. %init next
% handles.dev(devnum).ininum = round(inj total*(l-inj ratio));
%6 handles.dev(devnum).sol state(22) = '0';
% handles.dev(devnum).sol state(18) = '1';
% writedevice(handles.dev(devnum),handles.ptr);

% % start pump cycle
% handles.dev(devnum).pump_en = true;
% writedevice(handles.dev(devnum),handles.ptr);
% handles.dev(devnum).pump_en = false;
% pause(handles.dev(devnum).pump period*(l-inj ratio)*injtotal+.5);

% close syringe input
handles.dev(devnum).sol state(2) = '1';

% handles.dev(devnum).sol state(2) = '0';
writedevice(handles.dev(devnum),handles.ptr);pause(.25);

% Pressurize reservoir open input valve
handles.dev(devnum).sol state(1) = '1';

% handles.dev(devnum).sol state(1) = 'o';
%DI water line
injectornumber = valvelookup(watervalve);
handles.dev(devnum).solstate(injectornumber) = '1';
writedevice(handles.dev(devnum),handles.ptr);pause(.25);

%open pump
handles.dev(devnum).sol state(3:5) = '101';

%wait 5 sec for refill
set(handles.edit seqstatus,'String','Running: Evap Refill')
writedevice(handles.dev(devnum),handles.ptr);pause(5);
%close pump valve 1
handles.dev(devnum).sol state(3:5) = '001';
writedevice(handles.dev(devnum),handles.ptr);pause(.25)
% close input and last pump valve
handles.dev(devnum).solstate(injectornumber) = '0';
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handles.dev(devnum).sol state(3:5) = '000';
writedevice(handles.dev(devnum),handles.ptr);pause(.25)

else
%set(handles.edit iterations,'String',num2str(refillcount+l));
%close waste valves
handles.dev(devnum).sol state(11) = '0';
handles.dev(devnum).sol state(12) = '0';
%close the input valve
handles.dev(devnum).sol state(injectornumber) = '0';
writedevice(handles.dev(devnum),handles.ptr);
pause(.25)

end
%reset to waiting condition
%open reservoir, input, and channel valves
handles.dev(devnum).sol state(l) = '0';
handles.dev(devnum).sol state(2) = '0';
handles.dev(devnum).sol state(13) = '0';
%close all input valves
for n=l:length(valvelookup)

handles.dev(devnum).sol state(valvelookup(n)) =l0;
end
%close pump valve 2
handles.dev(devnum).sol state(3:5) = '000';
%close the mix block
handles.dev(devnum).sol state(14) = '0';
%open channel block
handles.dev(devnum).sol state(13) = '0';
% start the mixer
if get(handles.cbmixenable,'Value') == 1

handles.dev(devnum).mix en = 1;
end
writedevice(handles.dev(devnum),handles.ptr);

end
% write the data to file

if (get(handles.cbsavel,'Value') == 1)
fid = fopen(get(handles.editsavefilel,'String'),'a');
fprintf(fid, '%12.6e 012.6e %12.6e %12.6e %12.6e %12.6e 912.6e 912.6e

%12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e

%12.6e %12.6e %12.6e %12.6e %12.6e %12.6e\n',...
etime(tout,handles.reftime),temp,

magmean_ODl,magstdODl,phasemeanODl,phasestdODl,magmeanOD2,magstdOD2,phas
emeanOD2,phasestdOD2,...

magmeanDO,magstdDO,phasemeanDO,phasestd_DO,magmeanpH,magstdpH,phasemean_
pH,phasestdpH,refmagOD1,refmagOD2,dutyout,handles.dev(1).oxyduty,handles.
dev(l).pHinj,injectornumber,handles.dev(l).injnum);

fclose(fid)
end
if (get(handles.cbsave2,'Value') == 1)

fid = fopen(get(handles.editsavefile2,'String'), 'a');
% fprintf(fid,'%12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e

%12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e %12.6e

%12.6e %12.6e %12.6e\n',...
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% etime(tout2,handles.reftime),temp2,
magmean2_OD1,magstd2_ODl,phasemean2_ODl,phasestd2_ODl,magmean2_OD2,magstd2_OD
2,phasemean2_OD2,phasestd2_OD2,...

magmean2_DO,magstd2_DO,phasemean2_DO,phasestd2_DO,magmean2_pH,magstd2_pH,phas
emean2_pH,phasestd2_pH,refmag2_OD1,refmag2_OD2,dutyout);

% fprintf(fid,'%12.6e %12.6e %12.6e
%12.6e\n',etime(tout,handles.reftime),handles.dev(l).pHest,handles.dev(l).dpH
,handles.dev(l).pHinj);

fprintf(fid,'%12.6e %12.6e %12.6e
%12.6e\n',etime(tout,handles.reftime),gluinjections,feedinjections,waterinjec
tions);

fclose(fid);
end

set(handles.edit seqstatus,'String','Running: Waiting')
set(handles.edit iterations,'String',num2str(refillcount+l));

guidata(handles.continuousculture,handles);
drawnow

% --- Executes on selection change in popupdevselect.
function popupdevselectCallback(hObject, eventdata, handles)
% hObject handle to popup_devselect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject, 'String') returns popup_devselect contents as
cell array
% contents{get(hObject,'Value')} returns selected item from
popupdevselect

% update the visual table
devnum = get(hObject,'Value');
devvisualupdate(handles.dev(devnum),handles);
% disable read mode and turn off the timer if it is running
set(handles.cb read,'Value',O);
stop(handles.tread);

% --- Executes on button press in cb read.
function cbreadCallback(hObject, eventdata, handles)
% hobject handle to cbread (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of cbread
val = get(hObject,'Value');
if val == 1 % oh
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% start timer
start(handles.t read);

else
stop(handles.tread);

devvisual_update(handles.dev(get(handles.popupdevselect,'Value')),handles);
end

% --- Executes on button press in pb_setdevice.
function pb_setdeviceCallback(hObject, eventdata, handles)
% hObject handle to pb setdevice (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
? store into the current device structure
valvelookup = [20 21 22 23 24 19 18 17];
devnum = get(handles.popup_devselect,'Value');
for n=1:8

handles.dev(devnum).sol state(25-n)
get(handles.rbinput(n),'Value')+'O';

% handles.dev(devnum).sol state(25-n) = '1';
end

%handles.dev(devnum).sol state(25-7) = '1';

handles.dev(devnum).mixen = get(handles.cbmixenable,'Value');
handles.dev(devnum).pump_en = get(handles.cbypumpenable, 'Value');
handles.dev(devnum).leden = get(handles.cb_leden, 'Value');
for n=1:3

handles.dev(devnum).solstate(n+2) = get(handles.rb-pump(n),'Value')+'O';
handles.dev(devnum).sol state(n+5) =

get(handles.rb-mixer(n),'Value')+'0';
end
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)
handles.dev(devnum)
handles.dev(devnum)

handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)
str2num(get(handles
handles.dev(devnum)

.solstate(2) = get(handles.rb_inputvalve,'Value')+'o';

.solstate(l) = get(handles.rbreservoir,'Value')+'0';

.solstate(14) = get(handles.rbmixblock, 'Value')+'O';

.solstate(13) = get(handles.rbchannelblock,'Value')+'0';

.solstate(11) = get(handles.rbwaste,'Value')+'0';

.solstate(12) = get(handles.rbsample,'Value')+'0';

.pumpperiod =

.editpumpperiod, 'String'));

.mix_period =

.editmixperiod, 'String'));

.ininum = str2num(get(handles.editinjnum,'String'));

.oxy_freq = str2num(get(handles.editoxyfreq, 'String'));

.oxyduty = str2num(get(handles.edit oxyduty, 'String'));

.ledfreq(1) =

.editODlfreq,'String'));

.ledintensity(l) =

.editODlduty,'String'));

.ledfreq(2) =

.edit_OD2freq,'String'));

.ledintensity(2) =

.edit_OD2duty,'String'));

.ledfreq(3) = str2num(get(handles.editDOfreq,'String'));
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handles.dev(devnum).ledintensity(3) =
str2num(get(handles.edit_DOduty,'String'));
handles.dev(devnum).led freq(4) = str2num(get(handles.editjpHfreq, 'String'));
handles.dev(devnum).led intensity(4) =
str2num(get(handles.edit_pHduty, 'String'));

handles.dev(devnum).Kc = str2num(get(handles.editPIDKc,'String'));
handles.dev(devnum).Ti = str2num(get(handles.editPIDTi,'String'));
handles.dev(devnum).Td = str2num(get(handles.editPIDTd,'String'));
handles.dev(devnum).t setpoint =
str2num(get(handles.edit setpoint,'String'));

handles.dev(devnum).oxyKc = str2num(get(handles.edit_oxyKc, 'String'));
handles.dev(devnum).oxyTi = str2num(get(handles.edit_oxyTi, 'String'));
handles.dev(devnum).oxyTd = str2num(get(handles.edit_oxyTd,'String'));
handles.dev(devnum).oxysetpoint =
str2num(get(handles.edit oxysetpoint,'String'));
guidata(hObject,handles);

%code for measuring injection volumes
% if (handles.dev(devnum).pumpen == 1)
%- %take scale reading
% while(handles.scale.BytesAvailable > 0);
% fscanf(handles.scale);
%6 end
% % doesnt work
% fprintf(handles.scale,'SIU');
% %6 pause(O.04) %minimum delay to get a value
%6 % handles.scale
% % if (handles.scale.BytesAvailable > 14)
% %file ops
%- query = fscanf(handles.scale);
% tempweight = str2double(query(5:14));
% end

writedevice(handles.dev(devnum),handles.ptr);

clockfreq = handles.dev(devnum).clkfreq;
for n=1:4

f_cutoff = 500000; %low pass filter frequency
t_bit = 2A10; %10 bits of angle resolution
cyclemax = floor(clockfreq/f-cutoff*.75);

cycles = 1:cyclemax;
thetajump =

round(handles.dev(devnum).led freq(n)*cycles*tbit/clockfreq);
[y iJ = min(abs(clockfreq/tbit*thetajump./cycles-

handles.dev(devnum).led freq(n)));
cycles = cycles(i);
thetajump = thetajump(i);
actualfreq = clockfreq/cycles/(tbit/thetajump);
if n == 1

set(handles.editODlfreq,'String',num2str(actualfreq));
elseif n == 2
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set(handles.edit_OD2freq,'String',num2str(actualfreq));
elseif n == 3

set(handles.editDOfreq,'String',num2str(actualfreq));
elseif n == 4

set(handles.edit pHfreq, 'String',num2str(actualfreq));
end

end

------------------------------------------------------------
% % code for measuring injection volumes
% if (handles.dev(devnum).pump en == 1)

pause(handles.dev(devnum).pumpperiod*handles.dev(devnum).inj_num+15);
'done pausing'

%- while(handles.scale.BytesAvailable > 0);
% fscanf(handles.scale);
%- end
% fprintf(handles.scale,'SIU');
%. % if (handles.scale.BytesAvailable > 14)
%- %file ops
% query = fscanf(handles.scale);
%- flowrate = (str2double(query(5:14))-
tempweight)/(handles.dev(devnum).injnum)
% sf = fopen('reservoirpressurizationcalibration25injections-
3psiin-1.txt', 'a');
% fprintf(sf,'%12.llf %d

%12.llf\n',handles.dev(devnum).pump_period,handles.dev(devnum).inj num,str2do
uble(query(5:14))-tempweight);
%- fclose(sf);
% end
%----------------------------------------------------------

6 --- Executes on button press in pb_browsefilel.
function pbbrowsefilel Callback(hObject, eventdata, handles)
% hObject handle to pb browsefilel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
[filename pathname] = uiputfile('*.txt');
if (filename -= 0)

set(handles.edit savefilel,'String', [pathname filename]);
end

% --- Executes on button press in pb_setreftime.
function pb_setreftimeCallback(hObject, eventdata, handles)
% hObject handle to pb setreftime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.reftime = clock;
set(handles.edit reftime,'String',datestr(handles.reftime));

handles.dev(l).datalength = 0;
handles.dev(2).datalength = 0;
set(handles.line temp,'parent',handles.axes_temp);
set(handles.lineOD1,'parent',handles.axesOD1);
set(handles.line OD2,'parent',handles.axesOD2);
set(handles.linepH,'parent',handles.axes_pH);
set(handles.lineDO,'parent',handles.axesDO);
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guidata(hObject,handles);

% --- Executes on button press in pbseqstart.
function pbseqstartCallback(hObject, eventdata, handles)
% hObject handle to pbseqstart (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.tsequence,'Period',str2num(get(handles.editdataperiod,'String')
)H);
start(handles.tsequence);

% --- Executes on button press in pbseqstop.
function pbseqstopCallback(hObject, eventdata, handles)
% hObject handle to pbseqstop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
stop(handles.tsequence);

25 pages of unused GUI functions that must be instantiated are not reprinted here.

100 pages of GUI blocks for positioning and declaring GUI objects are also not reprinted here.

F.2 Writing To The FPGA Device
Filename: writedevice.m
function writedevice(dev, ptr)

clockfreq = dev.clkfreq;
%ep00 is selector
%ep01 LSB, ep02 MSB
% data rw = 0 is write mode

% upload write solenoid state
setwireinvalue(ptr,hex2dec('00'),1,65535);
temp = [dev.datarw '00' num2str(dev.leden) num2str(dev.pumpen)
num2str(dev.mix en) dev.sol state];
setwireinvalue(ptr,hex2dec( '01') ,bin2dec(temp(17:32)) ,65535);
setwireinvalue(ptr,hex2dec('02') ,bin2dec(temp(1:16)) ,65535);
updatewireins(ptr);
activatetriggerin (ptr, hex2dec ('40') ,0)

% upload mixer divisions
setwireinvalue(ptr,hex2dec('00') ,2,65535);
temp = dec2bin(round(dev.mixperiod/3*clockfreq) ,32);
setwireinvalue(ptr,hex2dec( '01') ,bin2dec(temp(17:32)) ,65535);
setwireinvalue(ptr,hex2dec('02') ,bin2dec(temp(l:16)) ,65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% upload pump divisions
setwireinvalue(ptr,hex2dec('00'),3,65535);
temp = dec2bin(round(dev.pumpperiod/5*clockfreq) ,32);
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setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% injection number
setwireinvalue(ptr,hex2dec('00'),4,65535);
temp = dec2bin(dev.injnum,32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% heater divisions
setwireinvalue(ptr,hex2dec('00'),20,65535);
temp = dec2bin(round(clockfreq/dev.heaterfreq),64);
% load up the frequency (div)
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

setwireinvalue(ptr,hex2dec('00'),6,65535); %msb
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(49:64)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(33:48)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

%heater pid parameters
% calculate pid parameters
a = 1 + dev.Td/dev.Ti;
Kp = dev.Kc*a;
Ti = dev.Ti*a;
Td = dev.Td/a;

conv = 48000/5;%ratio of duty cycle count to power
dt = 0.05; % 20 hz sampling
%fixed point
fpconv = 2 8;

Kd = Kp*Td;
Ki = Kp/Ti;
Kdddt = round(Kd/dt*conv*fpconv);
Kidt = round(Ki*dt*conv*fpconv);
Kp = round(Kp*conv*fpconv);
% set the PID parameters

temp = dec2bin(Kp,64);
setwireinvalue(ptr,hex2dec('00'),23,65535); %msb
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(49:64)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(33:48)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

setwireinvalue(ptr,hex2dec('00'),22,65535);
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setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

temp = dec2bin(Kidt,64);
setwireinvalue(ptr,hex2dec('00'),25,65535); %msb
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(49:64)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(33:48)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

setwireinvalue(ptr,hex2dec('00'),24,65535);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

temp = dec2bin(Kdddt,64);
setwireinvalue(ptr,hex2dec('00'),27,65535); %msb
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(49:64)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(33:48)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

setwireinvalue(ptr,hex2dec('00'),26,65535);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

setpoint = dev.tsetpoint*fpconv;
temp = dec2bin(setpoint,16);

setwireinvalue(ptr,hex2dec('00'),28,65535);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% oxygen frequency
setwireinvalue(ptr,hex2dec('00'),21,65535);
temp = dec2bin(round(clockfreq/dev.oxy freq),32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% oxygen dutycycle
setwireinvalue(ptr,hex2dec('00'),7,65535);
temp = dec2bin(round(clockfreq/dev.oxyfreq*dev.oxyduty),32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)
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% %LED parameters
for n=1:4

f cutoff = 500000; %low pass filter frequency
t bit = 2A10; 910 bits of angle resolution
cyclemax = floor(clockfreq/f-cutoff*.75);

cycles = 1:cyclemax;
thetajump = round(dev.led freq(n)*cycles*tbit/clockfreq);
[y i] = min(abs(clockfreq/t-bit*thetajump./cycles-dev.led-freq(n)));
cycles = cycles(i);
thetajump = thetajump(i);

% cycles (div input)
wireindex = n*2+6;
setwireinvalue(ptr,hex2dec('00'),wireindex,65535);
temp = dec2bin(cycles,32);
bin2dec(temp);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0);
%theta
setwireinvalue(ptr,hex2dec('00'),wireindex+1,65535);
temp = dec2bin(thetajump,32);
bin2dec(temp);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0);

%upperbits = thresh lower bits = offset
% sine wave goes from offset to 2A15+offset
% threshold = maximum bitvalues
vcc = 5;
vmax 5;
vmin vcc-5;
% max value when thresh = 2A15;
% 2^15 is what percentage of maximum?
% thresh = round(2Al5/(vmax-vmin)*vcc);

if (dev.led intensity(n) == 0)

thresh = 2^32-1; % off state
else

thresh = round(2A15/dev.led intensity(n));
end
offset = round(2^15*vmin/(vmax-vmin));
%we go through an inverter!!!

setwireinvalue(ptr,hex2dec('00'),15+n,65535);
threshout = dec2bin(thresh,32);
temp = [threshout(17:32) dec2bin(offset,16)];
bin2dec(temp);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0);
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setwireinvalue(ptr,hex2dec('00'),28+n,65535);
temp = [threshout(1:16) threshout(1:16)];
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins (ptr);
activatetriggerin(ptr,hex2dec('40'),0);

end

%sprintf('Writing Device Address:%d\n',dev.address)
% enable device storage to device address
setwireinvalue(ptr,hex2dec('00'),5,65535);
temp = dec2bin(dev.address,32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
%setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% disable device storage
setwireinvalue(ptr,hex2dec('00'),5,65535);
temp = dec2bin(0,32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
%setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

F.3 ADC Acquisition
Filename: adcacquire.m
function [ref adc] = adcacquire(adcsamples,ptr-,dev)
%running the adc

%READBUFSIZE = round((adcsamples-1)*18);
READBUFSIZE = round((adcsamples-l)*2);
g-rbuf = uint8(zeros(READBUFSIZE,1));
%adcsamples = 2^18;
%adcrowaddr = 0;
delaycycles = 130;
freq = dev.clkfreq;
% upload samples for adcl
setwireinvalue(ptr,hex2dec('00'),33,65535);
setwireinvalue(ptr,hex2dec('01'),mod(adcsamples,2A16),65535);
setwireinvalue(ptr,hex2dec('02'),floor(adcsamples/2A16),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)
setwireinvalue(ptr,hex2dec('00'),0,65535);
updatewireins(ptr);

% upload samples for adc2
setwireinvalue(ptr,hex2dec('00'),35,65535);
setwireinvalue(ptr,hex2dec('01'),mod(adcsamples,2A16),65535);
setwireinvalue(ptr,hex2dec('02'),floor(adcsamples/2A16),65535);

477



478 APPENDIX F MATLAB CONTROL INTERFACE

updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)
setwireinvalue(ptr,hex2dec('00'),0,65535);
updatewireins(ptr);

% upload address for adc2
address = (adcsamples-1)*2/512;
address = 0;
setwireinvalue(ptr,hex2dec('00'),36,65535);
setwireinvalue(ptr,hex2dec('01'),mod(address,2Al6),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)
setwireinvalue(ptr,hex2dec('00'),0,65535);
updatewireins(ptr);

% reset all
setwireinvalue(ptr,hex2dec('03'),4,65535);
updatewireins(ptr);
setwireinvalue(ptr,hex2dec('03'),0,65535);
updatewireins(ptr);
if dev.address == 1

activatetriggerin(ptr,hex2dec('40'),1);
pause(adcsamples*delaycycles/freq+.1)

elseif dev.address == 2
activatetriggerin(ptr,hex2dec('40'),2);
pause(adcsamples*delaycycles/freq+.l)

end
%tic
setwireinvalue(ptr,hex2dec('03'),8,65535);
updatewireins(ptr);
setwireinvalue(ptr,hex2dec('03'),0,65535);
updatewireins(ptr);
setwireinvalue(ptr,hex2dec('03'),1,hex2dec('FFFF'));
updatewireins(ptr);

g_rbuf(1:READBUFSIZE) = readfrompipeout(ptr,hex2dec('AO'),READBUFSIZE);
% if dev.address == 2
%. g_rbuf(:READBUFSIZE) =

readfrompipeout(ptr,hex2dec('AO'),READBUFSIZE);
% end
%g-rbuf(READBUF_SIZE+1:READBUFSIZE*2) =

readfrompipeout(ptr,hex2dec('AO'),READBUFSIZE);
6tOC

%convert
databuf = uintl6(grbuf(1:2:end))+uintl6(grbuf(2:2:end))*2 8;
adc = double(databuf(1:2:end))/2A15*5;
%adc = double(databuf(1:9:end))/2^15*5;
%adc = [adc adc adc adc adc adc adc adc];

% for n=1:length(adc)
% if (adc(n) > 4)
%6 adc(n) = adc(n)/2;
%6 end
0 if (adc(n) < 2.29-.25-.0625)
%6 adc(n) = adc(n)+.25+.0625;
% elseif (adc(n) < 2.29-.25-.03125)
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% adc(n) = adc(n)+.25+.03125;
%6 elseif (adc(n) < 2.1)
% adc(n) = adc(n)+.125+.0625;
%6 elseif (adc(n) < 2.16)
% adc(n) = adc(n)+.125;
% end
% end
%mean(adc);

% end
ref = double(databuf(2:2:end));
%ref = double([databuf(9:9:end) databuf(8:9:end) databuf(7:9:end)
databuf(6:9:end) databuf(5:9:end) databuf(4:9:end) databuf(3:9:end)
databuf(2:9:end)])/2Al4-1;
%ref = double(databuf);
%

9
toc

%figure;plot(databuf(READBUFSIZE/2-2048:READBUF SIZE/2))
%figure;plot(adc)
%figure;plot(ref)

F.4 Temperature Acquisition
Filename: fpgagettemp.m
function [temp dutyout error] = fpgagettemp(ptr,dev)

% upload gettemp solenoid state (6 is blank state)
setwireinvalue(ptr,hex2dec('00'),1,65535);
temp = ['110' '00' num2str(dev.leden) num2str(dev.pumpen)
num2str(dev.mixen) dev.solstate];
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% enable device access to device address
setwireinvalue(ptr,hex2dec('00'),5,65535);
temp = dec2bin(dev.address,32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
%setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
activatetriggerin(ptr,hex2dec('40'),0)

% get the data
updatewireouts(ptr);

% disable device storage
setwireinvalue(ptr,hex2dec('00'),5,65535);
temp = dec2bin(0,32);
setwireinvalue(ptr,hex2dec('01'),bin2dec(temp(17:32)),65535);
%setwireinvalue(ptr,hex2dec('02'),bin2dec(temp(1:16)),65535);
updatewireins(ptr);
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activatetriggerin(ptr,hex2dec('40'),0)

temp = getwireoutvalue(ptr,hex2dec('22'))/256;
dutyout = getwireoutvalue(ptr,hex2dec('30'))*2A16 +
getwireoutvalue(ptr,hex2dec('29'))*2A0;
error = getwireoutvalue(ptr,hex2dec('24'));

F.5 Lock In Detector

Filename: lockindetect.m
function [magmean magstd phasemean phasestd refmean] = lockindetect(ref, sig,
butterb, buttera, butterphaseb, butterphasea, butterlowb, butterlowa)

samples = length(ref);
ratio = 0.2;
mini round(samples*ratio);

---- ------ filter for OD---------------------------------------------

ai0filt = filter(butterb,buttera,ref);
ai0filt = filter(butterphaseb,butterphasea,aiofilt);
ailfilt = filter(butterb,buttera,sig);
ref = filter(butterlowbbutterlowa,2*aiofilt.^2);
refmean = mean(ref(mini:round(samples*(1-ratio))));

% refstd = std(ref(mini:round(samples*(l-ratio))));
% get the phase shifted version
ai0hil = imag(hilbert(aiOfilt));

maxin = max(ai0hil(mini:round(samples*(l-ratio))));
aiofilt = aiafilt/maxin;
aiahil = aiOhil/maxin;
inphasedc = 2*filter(butterlowb,butterlowa, (aiofilt.*ailfilt));
outphasedc = -2*filter(butterlowb,butterlowa, (aiohil.*ailfilt));
total = inphasedc + li*outphasedc;
magnitude = abs(total);
phase = angle(total)*180/pi;

magmean = mean(magnitude(mini:length(magnitude)));
phasemean = mean(phase(mini:length(phase)));
magstd = std(magnitude(mini:length(magnitude)));
phasestd = std(phase(mini:length(phase)));

F.6 Opal Kelly Interface Functions

function [ptr ret] = initfrontpanel()

addpath('c:\userdata\kevbo\matlab\continuousculture\okusbfrontpanel')
% UIWAIT makes testfig wait for user response (see UIRESUME)
% uiwait(handles.testfig);
if -libisloaded('okFrontPanel')
loadlibrary('okFrontPanel', @okFrontPanelDLL);
end
ptr = calllib('okFrontPanel', 'okUsbFrontPanelConstruct');
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ret = calllib('okFrontPanel', 'okUsbFrontPanelOpenBySerial', ptr, '');

okFrontPanelDLL is instantiated by autogenerating a matlab library from the C++ header file.

This 10 page file is not reprinted here.

Filename: setwireinvalue.m
function setwireinvalue(ptr, epaddr, epvalue, epmask)

%SETWIREINVALUE Write into WireIn values of the device.
% SETWIREINVALUE(OBJ,epADDR,epVALUE,epMASK) writes
% a value into a WireIn endpoint of a the device.
% The elements of epVALUE need to be ints (16 bits : 0..65535)
% stored as fints (floating point integers). epVALUE will have
% the same dimension as epADDR.

% The valid endpoint address ranges are:
%* 0x00-0x1F : WireIn
% Ox20-Ox3F : WireOut
% 0x40-Ox5F : TriggerIn
% Ox60-Ox7F : TriggerOut
% 0x80-Ox9F : PipeIn
% OxAO-OxBF : PipeOut

% Copyright (c) 2005 Opal Kelly Incorporated
% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

for i=l:size(epaddr, 1)
for j=1:size(epaddr, 2)

calllib('okFrontPanel', 'okUsbFrontPanelSetWireInValue', ptr,
epaddr(i,j), epvalue(i,j), epmask(i,j));
end

end

Filename: updatewireins.m
function updatewireins(ptr)

%UPDATEWIREINS Update all WireIn endpoints on the device.

% Copyright (c) 2005 Opal Kelly Incorporated
% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

calllib('okFrontPanel', 'okUsbFrontPanelUpdateWireIns', ptr);

Filename: activatetriggerin.m
function activatetriggerin(ptr, epaddr, epbit)

%ACTIVATETRIGGERIN Activate a trigger of a TriggerIn.
% ACTIVATETRIGGERIN(OBJ,epADDR,BIT) activates a trigger
% from a TriggerIn endpoint. OBJ is the device class instance.
% epADDR is a scalar containing the TriggerIn endpoint address
% and BIT contains the corresponding bit (BIT = [0,71).

% The valid endpoint address ranges are:

% 0x00-0x1F : WireIn
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% 0x20-0x3F : WireOut
* 0x40-Ox5F : TriggerIn

% Ox60-Ox7F : TriggerOut

% 0x80-0x9F : PipeIn
% OxAO-OxBF : PipeOut

% Copyright (c) 2005 Opal Kelly Incorporated

% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

success = calllib('okFrontPanel', 'okUsbFrontPanelActivateTriggerIn', ptr,

epaddr, epbit);

if (0 == success)

error('ActivateTriggerIn failed.');

end

Filename: readfrompipeout.m
function epvalue = readfrompipeout(ptr, epaddr, bsize, psize)

%READFROMPIPEOUT Read data from a PipeOut.

% epVALUE=READFROMPIPEOUT(OBJ,epADDR,SIZE) reads SIZE number of elements

% from a PipeOut endpoint. The elements of evVALUE are unsigned bytes

% (8 bits : 0..255) stored as fints (floating point integers).

% epADDR the endpoint address of the PipeOut endpoint.

% epVALUE=READFROMPIPEOUT(OBJ,epADDR,SIZE,PSIZE) subdivides the read

% transfer into smaller packets of size PSIZE.

% By default, PSIZE = SIZE.

% The valid endpoint address ranges are:

% 0x00-0x1F : WireIn

% 0x20-Ox3F : WireOut
% Ox40-Ox5F : TriggerIn
% Ox60-Ox7F : TriggerOut
% Ox8O-Ox9F : PipeIn
%* OxAO-OxBF : PipeOut

% Copyright (c) 2005 Opal Kelly Incorporated

% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

if -exist('psize', 'var') I isempty(psize), psize = bsize; end

% Allocate a buffer for ReadFromPipeOut.

psize = min(psize,bsize);
persistent buf pv;

buf(psize,l) = uint8(0);
epvalue(bsize,l) = uint8(0);
pv = libpointer('uint8Ptr', buf);

if (psize == bsize),
buf(bsize,l) = uint8(0);
calllib('okFrontPanel', 'okUsbFrontPanelReadFromPipeOut', ptr, epaddr,

bsize, pv);
epvalue = get(pv, 'value');

else
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kk = (1:psize)';
for k = 1:fix(bsize/psize),

[x,pv] = calllib('okFrontPanel', 'okUsbFrontPanelReadFromPipeOut',
ptr, epaddr, psize, pv);

epvalue(kk) = buf;

kk = kk+psize;
end
psize-last = mod(bsize,psize);
kk = kk(l:psizelast);
[x,pv] = calllib('okFrontPanel', 'okUsbFrontPanelReadFromPipeOut', ptr,

epaddr, sizelast, pv);
epvalue(kk) = buf(l:psizelast);

end
clear buf;

Filename: updatewireouts.m
function updatewireouts(ptr)

%UPDATEWIREOUTS Update all WireOut endpoints on XEM device.
% UPDATEWIREOUTS(OBJ) updates all WireOut endpoints on the
% device.

% Copyright (c) 2005 Opal Kelly Incorporated
% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

calllib('okFrontPanel', 'okUsbFrontPanelUpdateWireOuts', ptr);

Filename: getwireoutvalue.m
function epval = getwireoutvalue(ptr, epaddr)

%GETWIREOUTVALUE Read the WireOut values from the device.
% epVAL=GETWIREOUTVALUE(OBJ,epADDR) returns the values of the WireOut
% endpoint in epVAL. The elements of epVAL are unsigned bytes
% (8 bits : 0..255) stored as fints (floating point integers).
% epVAL will have the same dimension as epADDR. epADDR is a vector or
% matrix containing the endpoint addresses.
6

% The valid endpoint address ranges are:
9 0x00-0x1F : WireIn
% * 0x20-Ox3F : WireOut
% Ox40-Ox5F : TriggerIn
% Ox6O-Ox7F : TriggerOut
% Ox80-Ox9F : PipeIn
% OxAO-OxBF : PipeOut

% Copyright (c) 2005 Opal Kelly Incorporated
% $Rev: 210 $ $Date: 2005-10-13 19:54:17 -0700 (Thu, 13 Oct 2005) $

epval = zeros(size(epaddr));
for i=l:size(epaddr, 1)

for j=l:size(epaddr, 2)
epval(i,j) = calllib('okFrontPanel',

'okUsbFrontPanelGetWireOutValue', ptr, epaddr(i,j));
end

end
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F.7 Data Analysis

One of many analysis operations on collected data is given below. This particular example is for

a fed-batch culture of E. coli DH5a.

Filename: analysis.m

x = load('2010-10-28-dianafedbatch7SOulrestart.txt');
% culture start 11:39 am
% pH readings
% 5:38 end index 3602 pH = 6.85
% 2:38 pm index 3235 pH = 6.84
% 11:47 pm index 2893 pH = 6.99
% 7:52 am index 2424 pH = 7.35
% 7:48 pm index 976 pH = 7.51
% 3:34 pm index 468 pH = 7.19
% feed 0.375 inj per minute
% offline OD
tbench = [0 1 2 3 4 5 6 7 8 10.25 11.25 12.25 19.5 21 22 23 24 25 26 27 28

29.5];
ODbench = [0.2759 0.5460 0.9540 1.5560 2.5420 4.3250 6.5180 8.8840 12.2070

18.3810 23.5900 ...
32.4800 47.0100 44.8400 52.1600 45.5200 51.0300 51.6400 62.8700

43.5700 52.0500 56.1500];

tplasmid = [5 8 12.5 19.5 22 23 24 25 26 27 28 29.5];

plasmidbench = [.9 .7 .4 .3 .9 1.8 1.4 1.9 2.3 4.4 4.1 4.0];

gbench = [4.8 5 4.9 4.8 4.3 3.5 2.5 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

abench = [0 .1 .2 .2 .3 .3 .3 .2 0 .1 0 .1 1 1.7 1.8 1.2 .9 .7 .6 .5 .4 .4];

microt = [4 8 20 21 24 27 30];

microglu = [4.7 1.6 0 0 0 0 0];

microace = [0.3 0.3 0.8 .6 .4 .4 .7];

microdna = [0.3 0.2 0.3 0.2 .6 1.4 11.4];

tphprobe = [0 3.917 8.15 20.217 24.133 26.983 30.037];

phoffline = [7.1 7.19 7.51 7.35 6.99 6.84 6.85];

indexes = [170 480 955 2436 2893 3235 3602];

phoffline = [7.1 7.16 6.937 7.34];

indexes = [170 480 243.6 2880];

glycerol = [3 0 0 0 0.1 0 0];

acetate = [0.3 0 .9 1.3 3.7 3.4];

dna = [.8 .8 .7 .7 .9 1.1 1.8];

oxyduty = (1-x(:,22))*100;

t = x(:,l)/3600;

pHinject = x(:,23);
pHinject(1:600) = 0;

feedinject = x(:,25);
%pHinject(1:500) = x(1:500,25).*(x(1:500,24)-23);
%device2
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%thermal paste
temp2 = [27 30 33 37 40 42 45];
tc2 = [28.13 31.43 34.71 39 42.47 44.7 47.94];
temp = interpl(temp2,tc2,x(:,2));
OD1data = x(:,3);

ODldata(2866:end) = ODldata(2866:end)/ODldata(2869)*ODldata(2863);
ODldata(2885:end) = ODldata(2885:end)/ODldata(2887)*ODldata(2883);
OD2data = x(:,7);
pH = x(:,17);

%pH(2505:end) = pH(2505:end); %temperature offset
DO = X(:,13);
ODdata = OD1data;
OD1 = -loglO(ODdata/.0261)/.003*.3937+.3;
logODls = real(smooth(real(log2(OD1)),20,'rloess'));
dtime = diff(logODls)./diff(t);%+.4281;
%figure;plot(t(2:end),dtime,t,0D1,t,2 .^logODls)%,reftime,refod,'^'
figure;subplot(3,1,1);plot(t,OD1,tbench,ODbench,'o-')
tmax = t(end);
axis([0 tmax 0 60]);ylabel('OD')
%subplot(4,1,2);plot(t/3600, [0;dtime]+flow/log(2))
%axis([0 tmax 0 1.5])
cccv4pHcal;
%find starting values
% from calibration, -37.56 is pH 7.341, at 8.295h
% from calibration at measurement 20.21 h pH 7.009 phase -39.11
pHphasel = -39.77;
pHinitl = 6.94;
pHphase2 = -36.8;
pHinit2 = 7.34;
% pHphase2 = -37.7;
% pHinit2 = 7.46;
pHfinalscale = phasefit(pHinit1);
pHinitscale = phasefit(pHinit2);
%set pH range to 0-1 based on init and final values
pHout2 = (pH-pHphasel)*abs(pHfinalscale-pHinitscale)/abs(pHphasel-
pHphase2)+pHfinalscale;
% use for multiple offline pH calibration points
% for n=2:length(phoffline)
% pHphasel = pH(indexes(n-1));
%- pHiniti = phoffline(n-1);
%- pHphase2 = pH(indexes(n));
%- pHinit2 = phoffline(n);
%6 pHfinalscale = phasefit(pHinit1);
% pHinitscale = phasefit(pHinit2);
%6 %set pH range to 0-1 based on init and final values
%6 pHouttemp2 = (pH-min([pHphasel pHphase2]))*abs(pHfinalscale-
pHinitscale)/abs(pHphasel-pHphase2)+min([pHinitscale pHfinalscale]);
% pHouttemp = (x(:,17)-min([pHphasel pHphase2]))*abs(pHfinalscale-
pHinitscale)/abs(pHphasel-pHphase2)+min([pHinitscale pHfinalscale]);
% pHout2(indexes(n-1):end) = pHouttemp2(indexes(n-1):end);
% % pHout(indexes(n-1):end) = pHouttemp(indexes(n-1):end);
% end

pHout2 = pHfit(pHout2);
for n=l:length(pHout2)

if pHout2(n) > 14
pHout2(n) = 3.5;
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end
end
feed = x(:,25)-pHinject;
%pHout = smooth(pHout,.01*length(pHout),'loess');
subplot(3,1,2);plot(t,pHout2);axis([0 tmax 5.5 7.6]);ylabel('pH')

%subplot(4,1,3);plot(t,pHinject);axis([0 tmax 0 5]);ylabel('Base
Injections');
temptc = [28.12 28.7 31.43 32.3 34.71 35.85 38.99 40.78 42.45 44.2 44.71 46.6

47.94 50.221;
oxytemp = [131 130.3 132.7 132.5 134.4 134.8 136.6 137.4 138.2 139.1 139.2

140.3 140.6 141.9]+2.6;
oxyminphase = 102.6;

oxymaxphase = interp1(temptc,oxytemp,temp);
oxy = (DO-oxyminphase) . / (oxymaxphase-oxyminphase);
oxyout = phaseconvert(oxy)/.21*100;
%oxyout = smooth(oxyout,.01*length(oxyout),'loess');
subplot(3,1,3);plot(t,oxyout,t,oxyduty);axis([0 tmax 0 150]);ylabel('Oxygen

%sat');xlabel('Time (h)')
%subplot(4,1,4);plot(t/3600,temp);axis([0 tmax 25 45])

volume = .75;
for n=2:length(pHinject)

volume(n) = volume(n-1)+300e-6*abs(pHinject(n));
if (feed(n) == 1)

volume(n) = volume(n)+300e-6;
end
if (n == 481 n == 955 || n == 2606 || n == 3115 n == 3600)

volume(n) = volume(n)-40e-3;
end

end
%save fedbatch-2010-09-09.mat t temp OD1 pHout2 oxyout oxyduty pHinject
feedinject

%figure;plot(tbench,ODbench,'o-',t,OD1)
% set(gca,'fontsize',14);xlabel('Time (h)');ylabel('Optical Density (1

cm)');axis([0 30 0 65])
figure;subplot(1,3,1);subplot(1,3,1);plot(tplasmid,plasmidbench,'o-
',microt,microdna,'s-')
set(gca,'fontsize',21);xlabel('Time (h)');ylabel('pDNA (ug/mg cell)');axis([0

30 0 8])
subplot(1,3,2);plot(tbench,gbench,'o-',microt,microglu,'s-')
set(gca,'fontsize',21);xlabel('Time (h)');ylabel('Glycerol (g/L)');axis([o 30

0 5])
subplot(1,3,3);plot(tbench,abench,'o-',microt,microace,'s-')
set(gca,'fontsize',21);xlabel('Time (h)');ylabel('Acetate (g/L)');axis([0 30

0 5])

pH Calibration

Filename: cccv4pHcal.m

xpH = load('cccv4cal.txt');
pHout = smooth(xpH(:,17),.01*length(xpH(:,17)));
pHmean = [mean(pHout(600:635)) mean(pHout(675:720)) mean(pHout(760:795))

mean(pHout(880:960)) ...
mean(pHout(1010:1040)) mean(pHout(1120:1220)) mean(pHout(1280:1310))

mean(pHout(1370:1430))];
pHcal = [4 5 6 6.86 7 7.38 8 9];
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pHnorm = (pHmean-min(pHmean))/range(pHmean);
pHfit = fit(pHnorm',pHcal',fittype('pchipinterp'));
phasefit = fit(pHcal',pHnorm',fittype('pchipinterp'));

Oxygen Calibration

Filename: phaseconvert.m
function concout = phaseconvert(phase)

xfit = [0 .2 .4 .6 .8 1]*.21;
yfit = [0 0.2867 0.5188 0.7139 0.8705 1.0000];
concout = interpl(yfit,xfit,phase, 'pchip');
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