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Abstract

This thesis develops, validates and implements a fracture mechanics model for the as-
sessnent of the fracture toughness of materials from scratch tests. Dimensional Analysis
highlights two major processes at work during scratch tests: plastic yielding and fracture
dissipation. An original set-up of controlled laboratory tests on paraffin wax allows us to
identify fracture processes as predominant. An analytical model for scratch tests with a
rectangular blade and a back-rake angle is then developed. This model applies to linear
elastic isotropic brittle materials and links the fracture toughness to the average horizon-
tal and vertical forces recorded in the scratch test, and to the width and depth of the
scratch. Finite Element simulation show that the model is highly accurate for back-rake
angles smaller than 25'. From the model, an inverse technique to predict the fracture
toughness is developed and implemented. This technique is validated for scratch tests
on cement paste, Jurassic limestone, red sandstone and Vosges sandstone. and applied
to oil cements hydrated at high temperature and pressure. The application shows that
the scratch tests is highly reproducible. almost non-destructive, and not more sophisti-
cated than classical strength-of-materials tests; which makes this *old' technique highly
attractive for both materials research and industrial applications.

Thesis Supervisor: Franz-Josef Ulm
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Part I

General Presentation



Chapter 1

Introduction

1.1 Industrial context

The scratch test is most likely the oldest mechanics-of-materials test for property char-

acterization. It suffices to recall the Mohs scale of mineral hardness which rationalized,

in 1822. the scratch resistance into a quantitative metric for the classification of various

minerals. The idea of the scratch test is simple: plowing and cutting with a scratch

device the surface of a weaker material; and quantifying the scratch resistance by means

of the scratch hardness [401:

FT HTALB (1.1)

where FT is the horizontal force applied to the apparatus; and ALB is the projected load

bearing area resisting the horizontal force; that is, the horizontal projection of the contact

area between the scratch device and the scratched material. Thanks to progress in force

and depth sensing measurement devices, the scratch test remains a popular alternative to

other material property test methods, and is relevant today in many fields of engineering,

ranging from macroscopic testing of adhesion properties of coatings [32], to damage and

wear of metals and polymers [41, 43. 14], and strength of rocks [36, 35].



1.2 Research Objectives and Approach

The classical approach presented above (Eq. (1.1)) is based on the works of Bard and Uln

[7] and of Schei et al. [36, 35], and assumes that scratch tests are strength-driven. Another

approach based on the works of Atkins [3. 4, 2] and Patel et al. [28] interprets scratch

tests from a fracture perspective. Therefore, there exists two schools of thought about the

scratch tests: strength versus fracture. The aim of this work is to assert the validity of

each approach and to develop a framework to predict the fracture toughness from results

of scratch tests. The approach developed here has three components: experimental,

analytical and numerical.

1.3 Thesis Outline

This thesis is divided in three parts. Part I considers scratch tests from the perspective of

Dimensional Analysis and presents the two currents of thought: strength versus fracture.

Part II investigates the fracture scaling of scratch tests on paraffin wax: an analytical

model, that is later supported by Finite Element simulations. is developed to explain

that scaling. Part III develops an inverse technique to extract the fracture toughness

from scratch tests, based on the analytical results derived in Part II. This technique is

further validated by tests on cement paste. Jurassic limestone, red sandstone and Vosges

sandstone. An industrial application of the approach to oil-cement slurries is also shown.

In the final and conclusive part, the limits of the proposed inverse technique are discussed

and further perspectives for future research are outlined.

1.4 Research Significance

Although scratch test is a common tool in the industry. the mechanisms at work during

the test are not very well understood. One of the goal of this thesis is to determine

whether plastic yielding or fracture dissipation is the driving process at work during the



test. Another goal of interest for industry is the determination of the fracture toughness

of materials from results of scratch tests. In fact, the main advantage of scratch tests over

conventional fracture testing methods, such as the three-point bending test on notched

specimens or the compact tension test, is that it requires little sample preparation. There-

fore it is convenient for materials that are too soft to be machined into a specimen for

conventional fracture testing methods. Another advantage is the small amount of mate-

rial required to get meaningful data. Finally, the test is almost non-destructive allowing

the samples to be reused for other testing methods.



Chapter 2

Dimensional Analysis of Scratch

Tests

This chapter introduces the scratch tests and the quantities involved through a dimien-

sional analysis. The focus is on identifying the relevant mechanical and geometrical

quantities that need to be considered in scratch test analysis, be this from a strength or

fracture perspective.

2.1 Introduction

A scratch test consists in pushing a tool of a given geometry at a controlled depth d and

with a constant velocity into the material as displayed in Fig. 2-1. In this thesis, the tool

considered is a blade of rectangular cross section, width d and thickness t. and inclined

at an angle 0 with regard to the vertical axis. 0 is also called the back-rake angle. During

the test, a horizontal force Fr and a vertical force Fy, are generated. If we assume an

Amontons-Coulonib friction law, the horizontal and vertical forces are related to 0 and

to the friction coefficient y - tan 3 between the blade and the material by:

Fv = FT t an(0 + B) (2.1)



Finally, the horizontal projected contact area for a rectangular blade is ALB = wd;

therefore the scratch hardness is equal to:

FT
HT = wd

(2.2)

zI

-. ~

x

Figure 2-1: Schematic of a scratch test. Courtesy of Pedro M. Reis.

Provided the test is slow enough to avoid rate effects, and provided the frictional

effects between the blade and the material are negligible. plastic yielding and fracture

propagation are the two major dissipative processes that can occur. During plastic

yielding, a part of the material is permanently displaced to the sides and to the front of

the groove left by the blade. On the other hand, during fracture propagation, chips of

material are removed as the blade moves into the material. In this chapter we will review

these approaches in the light of existing approaches found in the literature.



To this end, we will first proceed with a dimensional analysis. Then we will present

the two currents of thought on scratch tests. First. the strength interpretation with the

work of Schei et al. [36, 35) and Bard and Ulm [7]. Then the fracture interpretations

with the work of Atkins [3, 2. 4] and Patel et a/. [28]. Finally, we will discuss the validity

and limits of each approach.

2.2 Dimensional Analysis

The quantity of interest for a strength-driven, respectively fracture-driven, process is

the ultimate strength a, of dimension function [L- 1IMT -2, respectively the fracture

toughness Kc of dimension function [L- 1/2 AIT ]. For 2-D problems, the scaling of the

nominal stress at failure. ON, is given by two size effect laws [9, 10]: in the case of

large scale plastic yielding, and if the material is perfectly plastic, then oN is equal to

the ultimate strength, o, of the material. On the other hand, if fracture dissipation is

predominant over plastic dissipation, and within the framework of Linear Elastic Fracture

Mechanics (LEFM), oN is inversely proportional to the square root of D, where D is a

length parameter of the system(Fig. 2-2).

(N= o 0 Strength Theory (2.3)

UN = D Linear Elastic Fracture Mechanics (2.4)

For scratch tests. the nominal strength is given by the scratch hardness:

~N = HT (2.5)
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Figure 2-2: Strength and fracture scaling. Source [9, 10].

2.2.1 Strength Scaling of Scratch Tests

The key quantity for strength models of scratch tests is the scratch hardness HT defined

by Eqs. (1.1) and (2.2). This scratch hardness depends on the following quantities:

* The elasto-plastic and fracture properties of the scratched material: Young's mod-

ulus E, Poisson's ratio v, ultimate tensile strength -o, and fracture toughness Kc

* The geometric parameters of the scratch test: the width of the blade w. the depth

of scratch d, the back-rake angle 0 and the friction coefficient p.

That is:

(2.6)HT = f (E, v, o-o, Kc.w. d. 0, p)0



The exponent matrix in a LMT base dimension system reads:

[HTI [E] [v] [uo] [Ke] [w] [d] [0] [p]

L -1

M 1

T -2

-1

1

-2

-1 -1/2 1 1 0 0

0 1 1 0 0 0 .0

-2 -2 0 0 0 0

The rank of the matrix is k = 2. By choosing (d, o-o) as a system of dimensional

independent variables, the H-theorem [15] allows reducing Eq. (2.6) to:

o H
HT = o-o x H , V, I

(E'

d w
(Ke/uo)2 ' d

where H is the dimensionless hardness-to-strength ratio that depends on dimensionless

parameters relevant to the scratch geonetry (width-to-depth ratio w/d; back-rake angle

0) and the material (strength-to-stiffness ratio oo/E, friction coefficient pj, and Irwin's

number I I quantifies the transition from a pure strengti process,

I < 1. to a pure fracture process, I> 1.

2.2.2 Fracture Scaling of Scratch Tests

Classical Dimensional Analysis With a Focus on Fracture Scaling

We are interested in:

FT= f (w, d, E. Kc, o-o.0, p)

The exponent matrix in a LMT baste system reads:

[FT] [w] [d] [E] [Ke] [o-o] [0] [P]

(2.9)

1 1 -1 -1/2 -1 0 0

0 0 1 1 1 0 0

0 0 -2 -2

(2.7)

(2.8)

L 1

Al 1

T -2

(2.10)

-2 0 0



The rank of the matrix is k = 2. Choosing d and Kc as dimensionally independent

variables, the H-theorem [15] allows to construct the following invariants:

F1 w Ed 1
/

2  
(.0d 1/2

/- -F i- .f, = (2.11)
K / d Ke Ke

Dimensional Analysis With an Extended Base Dimension System

We now consider an extended base dimension system. [Q] = L LMLTMT 2 , where Li

stands for the length base dimensions in the i - x, y, z directions. In fact. extended

base dimension systems apply when the length dimension in one direction is independent

of the characteristic base dimension of length in the others direction. In this case, we

assume a scale separability condition: the scratch direction x is much greater than the

width w of the scratch device, and w is much greater than the depth of the scratch d. so

that the three length quantities can be expressed in separate length units:

d < w < x (2.12)

Given this scale separability condition, we employ a Lx LL2MT base dimension system,

in which we express the physical quantities of the problem in the form:

[Q] = LLLWAIMTC (2.13)

Therefore, we need to return to the very definition of the involved quantities. For instance,

the fracture toughness is related to the Young's modulus E and to fracture energy G 1

by Eq. (2.14) [26. 34]:

EfG
Kc = f (2.14)

'Gf is the energy per unit surface created by fracture.



where , = 1 in plane stress and , = 1 - v2 in plane strain. Therefore the dimension

function of Kc can be related to that of E and G1 by:

[Kc] = [E]l2 [Gf]1/2 (2.15)

In its turn, E is a longitudinal modulus and its dimension function in the extended base

dimension reads:

[F1 ][E] = [ Lz = (2.16)

where [FT] = LxAT- 2 is the dimension function of the scratch force, and [A] = [wd]

LYLz is the dimension function of the load bearing area of this force. In return, the

dimension function of the fracture energy G represents the energy per unit of crack sur-

face F created. which is oriented in the z-direction; thus [F] = L LY. Prior to fracturing,

the energy is equal to the work provided to the system by the scratch force, thus [W] -

[F] Lx; hence the dimension function of the fracture energy:

[G] -W] [FT]LX (2.17)
[F] LL

It then follows from definition Eq. (2.15):

[FT] Lx MT --
[Ac] -== (2.18)

LYL LYLZ



The exponent matrix in the extended base dimension system LLYL2ZMT-2 thus reads:

[FT] J [E] [v] [(o] [Ke] [w] [d] [0 [p']

L2 1 1 0 1 1 0 0 0 0

LY 0 -1 0 -1 -1 1 0 0 0 (2.19)

L2 0 -1 0 -1 -1/2 0 1 0 0

M 1 1 0 1 1 0 0 0 0

T -2 -2 0 -2 -2 0 0 0 0

The rank of the matrix is k = 3. By taking (Kc. d. w) as set of dimensionally independent

variables, the H-theorem [15] provides:

F, = Kcwvd x H (-. vI =(A j 601, (2.20)
(E (Kc/Uo)-

A comparison of Eqs. (2.4) and (2.20) yields:

HI, oc (2.21)
V d

Therefore the scaling proposed here captures the size effect inherent to fracture processes.

After having established the expected scaling for both strength or fracture in a scratch

test, we will now present the approaches developed in the past to study scratch tests from

a perspective of a strength-driven or fracture-driven process.

2.3 Scratch Tests: a Strength Perspective

The strength interpretation of scratch tests is based on the works of Schei et al. [36, 35]

and of Bard and Ulm [7]. Both approaches relate the uniaxial compressive strength of

the material. UCS. to the scratch hardness using empirical, analytical and numerical

arguments.
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Figure 2-3: Correlation between the intrinsic specific energy E and the uniaxial compres-
sive strength UCS for 92 sandstones, 86 limestones, 19 shales and 4 chalks. Courtesy of
Epslog S. A.



2.3.1 Schei et al. [35, 36]

Schei et al. [35, 36] studied the scratch testing of sedimentary rocks with a blade of

rectangular cross section and with a back-rake angle, 0 ~ 15' - 20'. For a given width

w of the blade, they witnessed two modes of failure of the material, depending on the

depth d of scratch:

e A ductile mode, at small depths. associated with yielding of the material. In this

mode, both the mean horizontal force and the mean horizontal peak force vary

linearly with d.

" A brittle mode, at higher depths, associated with fracture propagation and the

chipping of the material. In this mode, the variations of both the mean horizontal

force and the mean horizontal peak force with d were non-linear. M\ore precisely,

both quantities could be approximated by a parabola going through the origin.

The transition from the ductile mode to the brittle mode occurred at a depth defined by:

d* = " (2.22)
(UCS)

where Kc is the fracture toughness and UCS the uniaxial compressive strength. A

cutting model was developed for the ductile mode. It is based on the concept of an

intrinsic specific energy, E. which is the energy strictly required to cut a unit volume of

material, discarding any friction effects. For a perfectly sharp blade, the intrinsic specific

energy is defined by:

dFT dFT

dALB d(wd) w-constant

where ALB= wd is the projected contact area of a rectangular blade. For several lime-

stones, sandstone, shales and chalks, a close correlation was found between the specific

energy E and the uniaxial compressive strength UCS, as shown in Fig. 2-3.



2.3.2 Bard and Ulm [7]

Bard and Ulm [7] developed a lower-bound yield design approach for the scratch test,

which neglects elastic contributions (o-o/E -+ 0) and fracture processes (I < 1). The

lower-bound solutions were then validated by means of Finite Element simulations and

upper-bound yield design approaches. The relationship between the scratch hardness HT

and UCS, assuming a frictionless blade-material contact, are listed in Table 2.3.2. They

found that the ratio of the scratch hardness. HT. to the uniaxial compressive strength,

UCS. was always strictly greater than unity.

Criterion Hardness normalized by the UCS UCS-cohesion relation
Tresca 1 +S1 UCS 2c

Von Mises HT - 2(1-

Mohr-Coulomb - (1 Si
2 )(1-sin ) - 2 cos 0 cH 1-sin2 6)(1- 6sin ) os

UCS 1-sin 0I1-sin240cos26O-sin Ocos2 01-Sl

Hr _ __ 2 (1-sin26)(%3-a) UCS = 3 kDrucker-Prager sio±j 2
2 o oUCS~U S ='a -- k

UCS 31+$ sin 01+ a? Cos? -a cos2

Table 2.1: Values of the hardness normalized by the uniaxial compressive strength for the
four strength criteria considered. c is the cohesion and k is the ultimate shear strength.
Source [7].

Bard and Ulm [7] then analyzed three series of 20 scratch tests each on a cement paste

material prepared at a water-to-cement ratio of 0.44. The three series corresponded to

three different widths of the blade w=2.5. 5, 10 mm. The back-rake angle was 0 = 15'

while the depth of the scratch d ranged from 0.1 to 0.6 mm. The intrinsic specific energy

E defined by Eq. (2.23) was 54.3, 37.9 and 26.8 MPa, respectively for w = 2.5, 5, 10 mm.

The decrease of the intrinsic specific energy with the width and the curved shape of the

plot (FT, wd), displayed in Fig. 2-4, indicates that the scratch hardness is not a constant

but that it also depends on the contact area. This result is in contradiction with the

linear scaling predicted by definition Eq. (2.2) of the scratch hardness. Actually, that

linear scaling is valid only for small values of wd. That is why Bard and Ulm [7] propose



w = 2.5mm
250 w=5mm

w=10mm
200

z 150

U-

100-
y 7.08x2 +(67 .68 2.07) x
R 2 = 0.98

50,

0
0 2 wdmm 2 4 6

Figure 2-4: Schei's approach versus Bard's approach. E = 54.3, 37.9, 26.8 MPa for

respectively w = 2.5, 5. 10 mm. Following Eq. (2.24), HT = 60 MPa. Scratch tests on

cement paste w/c=0.44. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.



another definition of the scratch hardness as the initial slope of the function FT(wd):

H, dFT (2.24)
d(wd) d=O

This initial slope is conveniently determined from a quadratic fitting of the curve (Fr,. wd)

as illustrated in Fig. 2-4. Eq. (2.24) applied to cement paste yields : Hr= 67.7 i 2.1

MPa. Moreover, if we assume a Tresca criterion, respectively Von Mises criterion, the

UCS is found to be equal to 53.8±1.7 MPa, respectively 46.6+1.4 MPa. Both values are

not far off the experimental value of the uniaxial compressive strength: UCSxP 43 i 2

MPa.

Therefore it results from Schei et al.'s [35, 36] and Bard and Ulmn's [7] work that the

strength interpretation is valid for small values of the horizontal projected load bearing

area ALB= wd. Schei et al. [35, 36] predict that the ratio of the scratch hardness to

the uniaxial compressive strength is close to unity. However Bard and Ulm [7] show that

this ratio is always strictly greater than unity. Finally, for high values of wd, FT varies

in a non-linear way with wd. This non-linearity is characteristic of size effect and hints

toward fracture.

2.4 Scratch Tests: a Fracture Perspective

Atkins' [3. 4, 2] and Patel et al.'s [28] models rely on slip line field theory, which is an

upper bound model that assumes that energy dissipation occurs along a shear plane of

given inclination 6 with regard to the horizontal axis as shown in Fig. 2-5. An heuristic

energy balance shows that the external work provided by the horizontal force is either

stored in the material as strain energy or dissipated in fracture, friction and plastic

processes:

dUe = FTdx = dUfract + dUriction + dUpiast (2.25)
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Figure 2-5: Chip formation by shear. 0 is the back-rake angle and 4 is the shear plane
angle. Source [421.

The strength properties come into play via plastic dissipation, and the fracture properties

via crack propagation. The fracture dissipation is dUrat = Gfwdx where Gf is the

fracture energy, that is the energy required to create a unit of crack surface. The main

difference between cutting and scratching is that in cutting the blade's width is greater or

equal than that of the material whereas in scratch testing the blade width is significantly

smaller to avoid boundary's effects. The differences between Atkins' [3, 4, 2] and Patel et

al.'s [28] approaches reside in the way they evaluated both the incremental friction work

and the incremental plastic work.



2.4.1 Atkins [3, 4, 2]

Atkins [3, 4, 21 accounts for friction dissipation via an Anontons-Coulomb friction model

with a friction coefficient p:

dUfriction = Fjjsec(3 + 0) sin 3 s dx
cos(# + 0) (2.26)

The plastic dissipation is given by the area under the stress-strain curve as f k d-y, where

k is the naterial shear yield stress and y is the shear strain on the shear plane. It is

proposed:

dUpiast = kwd dx;

Therefore. Eq.

1
-y = I +tan(6 +0)

tan6

(2.25) relates the horizontal force to the fracture energy Gf and to the

shear yield stress k according to:

F = k-d +
w Q Q (2.28)

where Q is a friction correction factor given by:

sin,3 sin#

cos(B+0) cos(#+0) (2.29)

The shear plane angle 6 is determined via a Merchant's minimization scheme. This

scheme consists in replacing Q and y by their respective expressions in Eq. (2.28) and

then minimizing the resulting expression of F7 with regard to 6. This yields the following

implicit equation for #:

sin B sin ~ ~F
cos(+0)cos(#+0). [cos2

- [cot # + tan(6 + 0) + Z]

1 1
(#+0) -sin

2
9

sin,3

cos( -+ 0)
cos #

cos(+ 0)
Sill 9 sin(# + 0)

+ cos2 (0 +)

(2.27)

(2.30)



Once # is known, the fracture energy G and the shear strength k are determined using

Eq. (2.28), and from the slope and the positive intercept of the curve (FT, d).

2.4.2 Patel et al. [28]

Unlike Atkins [3, 4, 2], Patel et al. [28] postulate the existence of a horizontal force

-wGfe. that is responsible for the crack propagation. This force acts on the blade-

material interface and enters the force balance equation'. In particular. the shear force

acting on the blade-material interface is not FT sin(a) + Fv cos a but (FT - wGf) sin a +

Fv cos n. Consequently. the incremental friction dissipation reads:

dUfriction [(Fr - wGf) sin a + Fv7 cos a] dx (2.31)
cos(# - a)

The plastic dissipation is calculated as the work of the shear force F, acting on the shear

plane. Moreover the material is assumed to obey a Tresca criterion so that F, is equal to

half the material tensile yield strength o times the width of cut w and times the length

of the shear plane d/ sin Q. Consequently. the plastic dissipation is postulated to read as:

y wd cosad U,,.,, = Ywd o (2.32)2 sill # cos(# - a)

By equating the external work and the sum1 of the fracture, plastic and friction dissipation,

and by using a Merchant's minimization scheme to determine 6, Patel et al. [28 arrive

at:

FT 2 F 7
Gf + oyd 1 + (2.33)w oyd w

'This approach cannot be supported by LEFM and by thermodynamics of irreversible processes. The
fracture energy GJ, or miore precisely the energy release rate G, is a thermodynamic force equal, with
opposite sign, to the derivative of the potential energy with regard to the crack surface F. As such it is
a thermodynamic force that does not appear explicitly in any equilibrium equation. i.e. force balance
or momentum balance.



2.4.3 Discussion

Atkins' method [3, 4, 2] is applied to the cement paste material of section 2.3.2 as well

as to red sandstone and Vosges sandstone. materials that will be further considered in

Part III of this thesis (see Chapter 6). The MATLAB algorithm used to derive Gf and k

assumes that the friction coefficient p is constant for all w and d (this algorithm is given

in Appendix A). For cement paste, G ranges from 1.79 x 103 N/in for w = 2.5 mm to

4.06 x 103 N/n for w = 10 mm; whereas k decreases from 13.7 MPa for w = 2.5 mm

to 6.6 MPa for w = 10 nun. For red sandstone, G ranges from 24.88 x 103 N/n for

w = 2.5 mm to 9.09 x 103 N/in for w = 15 mm; whereas k decreases from 37.7 MPa for

w = 2.5 mm to 8.8 MPa for w=15 mn. Finally, for Vosges sandstone, Gf is negative for

w = 2.5 and 5 mmn, then it increases from 2.71 x 103 N/m for w = 10 mm to 3.85 x 103

N/m for w = 15 mum. As for k. it ranges from 12.5 MPa for w = 2.5 mmn to 6.9 MPa for

w = 15 mm. The values of G and k are displayed in Table 2.2

Atkins [3, 4. 2] assumes that the intercept of F(d) is always positive. We could

not confirm this assumption for small widths. For instance, for Vosges sandstone and for

w = 2.5 and 5 nun, a negative intercept was found, that resulted in negative values of the

fracture energy. Moreover. both Gf and k appear to be size-dependent. For cement paste

and Vosges sandstone, Gf globally increases with w and for red sandstone Gf decreases

with w. As for k, it globally decreases with w. Finally, for all three iatcrials, Gf is

one order of magnitude greater than the values expected. In fact, typical values of the

fracture energy for cement paste and rock materials are 10 - 100 N/m [29].

Patel et al.'s Merchant minimization scheme [28] was applied to the same materials

(the MATLAB script used is given in Appendix B). For cement paste, G increases from

1.00 x 103 N/in to 3.29 x 103 N/m whereas o-, decreases from 34.1 MPa to 14.1 MPa. For

red sandstone. G ranges from 18.08 x 103 Nim/ to 5.52 x 103 N/in whereas o- decreases

from 72.4 MPa to 19.4 MPa. Finally, for Vosges sandstone, G increases from 0 N/m

to 1.76 x 103 N/m whereas o-, decreases from 33.7 MPa to 18.0 N/m. These data are

displayed in Table 2.3



Material width Gf (x103 N/m) AGf (x10 3 N/m) k (MPa) Ak (MPa)
2.5 1.79 0.02 13.7 0.0

Cement Paste 5 3.05 0.06 9.5 0.1
10 4.06 0.12 6.6 0.2
2.5 24.88 0.37 37.7 0.4
5 16.14 0.14 19.8 0.1
10 8.33 0.29 10.5 0.5
15 9.09 0.25 8.8 0.3

2.5 -0.27 0.00 12.5 0.0
5 -0.98 0.00 10.7 0.0

10 2.71 0.03 9.0 0.0
15 3.85 0.06 6.9 0.1

Table 2.2: Atkins' method [3, 4. 2] applied to cement paste, red sandstone and Vosges
sandstone. The cement paste is the material presented in section 2.3.2. For each material,
t was assumed to be independent of w and d. Tests carried out by Epslog S. A.; data

courtesy of Schluinmberger.

The same observations as for Atkins' [3. 4, 2] model apply here. That is, G is a

decreasing function of w for both cement paste and Vosges sandstone whereas, for all

materials. o is a decreasing function of w. Therefore both Atkins' [3, 4, 2] and Patel

et al.'s [28] methods fail to capture the size effects related to fracture. as well as the

size-independence of the fracture properties.

2.5 Chapter Summary

The aim of this chapter was to present and confront the two currents of thought on

scratch tests: strength versus fracture. The strength approach predicts a linear scaling

between the horizontal force FT and the projected contact area wd and is valid only

for small values of wd. In return the fracture models presented here fail to capture the

size effects related to fracture, and they predict size-dependent fracture properties. This

motivates the work presented in this thesis, which will focus oi the development of a new

framework to better understand fracture dissipation and related size effects in scratch

tests.



Material width G (x 103 N/m) oy (MPa)
2.5 1.00 34.1

Cement Paste 5 1.81 25.8
10 3.29 14.1
2.5 18.08 72.4
5 10.12 44.6

Red Sandstone 10 5.52 22.1
15 6.15 19.4
2.5 0.00 33.7
5 0.00 27.0

Vosges Sandstone 100.70 23.0
15 1.76 18.0

Table 2.3: Patel et al.'s method [28] applied to cement paste, red sandstone and Vosges
sandstone. Tests carried out by Epslog S. A.: data courtesy of Schlumberger.



Part II

Fracture Approach to Scratch Tests



Chapter 3

Scratch Tests on Paraffin Wax

Our first focus is to understand the underlying mechanisn of scratch tests, in the light

of the two conflicting point of views: strength-driven versus fracture-driven process.

The purpose of this part is the development of a framework for the investigation of the

fracture scaling in scratch tests. To this end, Chapter 3 develops a controlled scratch

test experiment that makes it possible to identify the validity domain of the strength and

fracture interpretations. In Chapter 4 two analytical models based on LEFM derive the

fracture toughness from the forces and the geometry of scratch tests. Finally, in Chapter

5, the models proposed in Chapter 4 are confronted with Finite Element simulations to

assert their accuracy.

3.1 Experimental Development

In order to explore the fracture scaling in scratch tests. a controlled scratch test was

designed using paraffin wax as a model material. In our experiments, a paraffin block

of dinensions 3.4x5.7x22 em is clamped at its lateral sides. set on a linear stage and

moved at a constant velocity of 1.3 mn/s against a vertical steel cutter-blade at a depth

d (nieasured from the block's top surface). This blade of rectangular cross section (6.35

mm thick and w wide) is held by a rigid frame that ensures a constant depth and a zero



back-rake angle during the test.

In the following chapter we describe the materials used. the built-in experimental

set-up, and analyze the results in the light of the dimensionless relations Eqs. (2.8) and

(2.20) which we recall:

o-o d w
HT KO x H , vI 9 ,--- 1 (3.1)

(E (Ke/ao)~ d

F,, = Kcwyd x 1- " E.vI= .6,O) 1 1P) (3.2)

In our tests, the quantities y and v are constants given by the elasto-plastic properties

of paraffin wax. Also, the back-rake angle 0 is zero in our tests, so that the only two

invariants for our tests series are the Irwin nunber I d and the ratio . Our
(K, I/(O) -

strategy is to determine Ke and o-o via independent tests and then see which scaling,

strength or fracture, prevails in the scratch analysis according to Eqs. (3.1) and (3.2).

3.2 Materials and Methods

3.2.1 Materials

We consider paraffin wax for its thermal stability, nearly-linear elasticity and brittle

mechanical properties. The paraffin wax used is EXXO 2730 from the company Polygon

Wax [30]. Its density is 0.9kg/n 3, its melting point .52.2'C, and the oil content 0.1%. In

order to reduce the shrinkage of wax and the cavitation in the molds, an additive, Vybar

260 1, was added in 1% in mass.

Our specimens were prepared by casting wax in parallelepiped steel molds of dimen-

sions 3.4x5.7x34 cm. A mix of wax and Vybar was melted at 60'C and poured in

'Vybar is an additive that eliminates bubbles and prevents cavitation during the cooling of wax.
Vvbar 260 is especially designed for waxes whose rnelting point is below 54'C.



Figure 3-1: scratch test experiment on paraffin wax.

several stages to prevent the formation of holes during the cooling due to the shrinkage

of wax. To accelerate the cooling process, the molds were placed into a water bath at

room temperature (22'C) in a ventilated location. The molds were then left to harden

overnight (8-12 hours) to ensure that the wax reached a complete rigid state.

To ensure that the final specimens of wax had flat faces, the faces of the parallelepiped

steel molds were rigorously parallel and the molds set on a levelled glass surface. As a

consequence, the roughness of the top faces, measured by a scan of the scratch path prior

to the test. varied from 0.03 mm to 0.76 nim with a mean of 0.22 nim and a standard

deviation of 0.16 mm.



3.2.2 Material Tests

The compressive tensile and fracture properties of paraffin wax were measured via inde-

pendent testing methods.

Uniaxial Compression Tests

3.5r

2.5,

2-

1.5-

10

0.5

0.01

-2.Ox 10- 4 S-I

1 .2x 10- S-

0.02 0.03

Figure 3-2: Uniaxial compression tests on
Right: True strain-true stress curve.

paraffin wax. Left: Experimental set-up.

Uniaxial compressive tests were carried out on cylindrical paraffin wax samples of

radius R = 35 mm and of height H > 70 mm at, room temperature of 22 C. Three strain

rates, = 2 x 10', 2 x 10-4 , 2 x 10-3 s 1 were considered and for each strain rate

value. three tests were carried out. For the first two strain rates e = 2 x 10-5 s- and

e = 2 x 10-4 s-, the failure mode was plastic yielding. At these strain rates the values



strain rate (s-1) 07y (MPa) UCS (MPa)
2 10-3 N/A 3.53t0.12
2 10-4 1.67i0.14 2.19t0.10
2 1-- 1.29i0.03 1.64 i 0.01

Table 3.1: Uniaxial compression tests on paraffin wax. Measured compressive yield stress
and uniaxial compressive strength

of the compressive yield stress oy. determined at a strain of 0.2% offset were 1.2t0.03

MPa for e = 2 x 10-' s- and 1.67±0.14 MPa for e = 2 x 10-4 s-. The values of the

uniaxial compressive strength at these strain rates were 1.47i0.01 MPa for i = 2 x 10-'

s-1 and 2.19±0.10 MPa for C = 2 x 10-4 s. The ductility ratio, defined as the ratio

of the failure stress to the yield stress. decreased with the strain rate from 3.5 to 1.25.

For a = 2 x 10-3 s-1 the failure was brittle and the uniaxial compressive strength was

3.53±0.12 M\Pa. The values of the uniaxial compressive strength and of the compressive

yield strength are reported in Table 3.2.2 while the experimental set-up as well as the

true strain-true stress curves are displayed in Fig. 3-2.

Tension Tests on a Plate With a Centered Hole

When carrying out standard uniaxial tension tests, failure would occur by fracture at the

supports and not by necking at the center of the specimen. due to the great softness of

paraffin wax. For this reason. it was not possible to measure the tensile properties via

standard uniaxial tension tests. Therefore we tested finite plates of dimension 1Ox2xO.5

cm with a hole of radius 0.64 cm in the center. Appendix C develops a lower bound and

an upper bound models that show that this method vields the ultimate tensile strength

oo with an uncertainty of 15%. Three series of four tests each were carried out at the

following strain rates: 1.1 x 10-4 s-1, 1.1 x 10-3 s-1 and 1.1 x 10-4 s. The failure mode

was quasi-brittle and the ultimate tensile strength oo was 2.02±0.18 MPa. 1.72±0.15 MPa

and 2.15±0.28 MPa for C = 1.1 x 10-4 s-1, 1.1 x 10-3 s- and 1.1 X 102 S-2 respectively.

In contrast to compression tests, the tensile strength exhibits no clear strain rate effect,

for which reason we use the value at the highest strain rate, oo = 2.15 ± 0.28 MPa. The



true strain-true stress curves are shown in Fig. 3-3.
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Figure 3-3: Tensile tests on paraffin wax: true-strain true-stress curve.

Three-point bending tests

Three-point bending tests were performed on samples of length L = 150 mm and with a

rectangular cross section W x B. The samples had a notch of length a in their middle,

made with a fine razor. The experimental set-up is displayed in Fig. 3-4. The fracture

toughness Kc is related to the maximal prescribed force Pmax by[5]:

( a ) PL
"W BW 3/2

(3.3)

0.



Figure 3-4: Three-point bending tests on notched paraffin wax specimens.

where f(a/W) is a correction factor given by[5]:

3(a/W)1 / 2 [1.99 - (a/W)(1 - a/W) x (2.15 - 3.93a/W + 2.7a2 /W 2 )] (3.4)
2(1 + 2a/W) (1 - a/W)3 /2

A set of three tests were performed with a middle point velocity equal to 4.15 x 10-2

cm/s. The resulting fracture toughness was Kc = 0.146 i 0.01 MPaV/1i. We must then

check that the ASTM standard [6] for fracture toughness measurement is satisfied, that

W (mm) B (mm) L (mm) a (mm) f(a/W) Pma, (N) Kc (MPav/ii)

56 34 150 15 1.40 303 0.141

57 34 150 23 2.04 240 0.128
57 34 150 27 2.45 170.2 0.135

Table 3.2: Three-point bending tests on paraffin wax. Geometric parameters and results.

In all tests the velocity of the midpoint deflection was 4.15 x 10-2 cm/s.

.f(a ) _
W /



(L, B, L. W, a, W-a) > 16xr (3.5)

where rc is the fracture process zone which measures the extent of the plastic zone. rc is

given by [34, 26, 34]:

rc =(3.6)
27 o

where Kc and o- are respectively the fracture toughness and the ultimate tensile strength.

From the value of the ultimate tensile strength given above, 2.15t0.28 MPa for 

1.1 x 10-2 s- 1 , rc is estimated to 1.30 mm. and 16 x rc = 20.8 mm, which is smaller the

geometric parameters mentioned in Eq. (3.5) and listed in Table 3.2.

In short the measured compressive, tensile and fracture properties are:

UCS = 3.53 + 0.12 MPa, o-o = 2.15 + 0.28 MPA Kc = 0.146 + 0.01 MPaffm (3.7)

3.2.3 Experimental Set-up of Scratch Test

In our tests, a steel blade was used and held by a frame of compliance less than 0.31

mm/kN to maintain both the depth of the scratch d and the back-rake angle 0 = 0

constant. The depth sensor had an absolute precision of 10 pim. The horizontal and

vertical forces were recorded using respectively a 500lbs Futek S-beam and a 500lbs

HoneyWell AL-JP load cell. Finally, a NI USB-6009 National Instrument data acquisition

card along with a home-made Labview script were used to acquire the data and to control

the Stepper motor that generated the linear motion. A schematic of the experimental

set-up is provided in Fig. 3-5.



Figure 3-5: Schematic of the built-in scratch tester for paraffin wax.
2 500lbs S-beam load cell Futek to acquire the vertical force. 3 linear
to accurately set the depth. 5 steel blade. 6 block of paraffin wax.

1 rigid steel frame.
rails. 4 micrometer
7 vice holding the

block of paraffin wax. 8 500lbs load cell HoneyWell AL-JP to acquire the horizontal force.
9 linear steel ball bearing rails. 12 stringpot to measure the displacement.
motor to drive the linear stage.

13 Stepper

3.3 Results

A total of 55 scratch tests on paraffin wax were performed. The depth d of scratch varied

from 2.5 to 12.5 mm while the width w of the blade ranged from 2.5 to 20 mm. The ratio

w/d varied from 0.2 to 8, spanning nearly two orders of magnitude. Figs. 3-6 and 3-7

plot respectively the strength and fracture scaling as captured by Eqs. (2.8) and (2.20),

respectively.

Fig. 3-6 plots the dependence of the average of FT as a function of the blade's

projected area wd. As expected, for low values of the projected area. FT scales linearly

with wd which is significant of a strength process (the slope being the strength of the

material). From a quadratic fit, the scratch hardness, defined by Eq. (2.24), is found

to be 4.69+0.23 MPa. The ratio of Hr/UCS of the scratch hardness to the uniaxial
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Figure 3-6: Paraffin wax. Strength scaling. The bars represent the standard deviation.
The slopes of the dotted lines are the specific energy for each width(cf Eq. (2.13)). The
quadratic fit gives HI with a 95% confidence interval.

compressive strength is equal to 1.32, which is strictly greater than 1 or 2/v/5. Therefore,

Table 2.3.2 enables us to infer the presence of internal friction in paraffin wax. Fig. 3-6

also displays the intrinsic specific energy E for different scratch widths as foreseen by Schei

et al.'s approach (see Section 2.3.1). E is a decreasing function of w whose value range

from 5.97 MPa for w=2.5mm to 1.44 MPa for w=20 mm. This is another indication that

a fracture process is at play in the scratch response and confirms previous findings for

cement paste (cf Fig. 2-4). Another evidence of size effects characteristic of fracture is

the non-linearity of the plot (FT, wdO for high values of wd.

Fig. 3-7 displays the dimensionless force Fr/(Kcwy d) versus w/d. The data points

were fitted to a polynomial function of degree 3 in 1/x, y = ao+ai/x+bi/x2 +c 1 /x 3 . using
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Figure 3-7: Paraffin wax.Fracture scaling. The bars represent the standard deviation.
The confidence interval in the value of the asymptote is taken at 95%.

a weighted non-linear least squares regression. This was performed with the curve fitting

tool in MATLAB: the initial startpoint (ao, ai, a 2. a3) was random and the coefficients

ao and a3 were constrained to be positive to ensure that the fitted function were always

positive. There is a convergence toward a constant value of 1.43±0.02. This convergence

provides strong evidence that fracture is at play in the scratch response as captured by

Eq. (2.20).

3.4 Chapter Summary

The aim of this chapter was to explore the validity domain of the strength and fracture

approach via controlled experiments on paraffin wax. The results yield a second confir-



mation that the strength approximation is valid for small values of the projected contact

area wd. They also indicate that the fracture scaling found in Chapter 2 is valid for great

values of w/d as the dimensionless force FT/(CwVd') converges toward a constant. To

understand the value of this constant, it is now necessary to develop an analytical model.

This is the focus of the next chapter.



Chapter 4

Analytical Modeling of Scratch Tests

This chapter is devoted to the development of analytical models, based on Linear Elastic

Fracture mechanics (LEFM). that derive the fracture toughness from the forces, Fy and

FT generated in the scratch test, and that take into account the geometrical parameters,

width w and depth d, of scratch tests. The first model applies a constant uniaxial stress

field in scratch tests with a vertical blade, 0 = 0. The second model uses an airy stress

function approach applied to tests with a non-zero back-rake angle, 0 > 0, to improve the

representation of stresses in the scratched material. In both models, the energy release

rate, which upon crack propagation is equal to the fracture energy, is evaluated using the

J-Integral. Finally, the first model is confronted with the scratch test results on paraffin

wax.

4.1 Theoretical Background

4.1.1 J-Integral

In linear elastic fracture processes, the spontaneous change in potential energy is due

to the creation of additional fracture surface F - pf of crack length e situated on the

perimeter p of the scratch device. The energy release rate G is the thermodynamic driving



force of the dissipation due to crack propagation, and is given by the relation:

dD d_ E_ _ _Ep

dt dt - F - G pt (4.1)

where Epot is the potential energy stored in the system. For mode I(plane tensile) and

mode II(plane shear) fracture processes. this fracture energy relates to the fracture tough-

ness by [26, 34]:

K 2

G5 = Kg C(4.2)

where K = 1 in plane stress and = I - v 2 in plane strain. E is the Young's modulus

and v is the poisson's ratio.

For planar crack growth and within the framework of LEFM, the energy release rate

can be estimated using a contour integral method, known as the J-Integral (ef [17, 33]).

The fundamental idea of this method is to estimate the change in potential energy during

a fracture process from the perspective of an observer that is attached to a propagating

crack. In a displacement-driven test, the observer thus defined witnesses two sources of

potential energy change: one due to the change in free energy density v in a material

volume V enclosing the crack tip; the other due to the energy release that is convectively

transported at a speed V -n = -n, passed the (fixed) observer:

dEpt - v" j dV - tn dA (4.3)
dt yt 8t

where A is the closed boundarv of V. For a linear elastic material. for which i j_ : VU,

the divergence theorem allows a change of the volumetric term into a surface integral:

89 , &Vu &Buf O, dV o - fT dV T -- dA (4.4)
at yv= at A- Ox(4)

where T = o - n are surface tractions, and where we made use of the fact that in a

displacement-controlled fracture test, the displacement rate seen by the moving observer



in. A comparison of Eqs. (4.3)-(4.4) provides the following expression

of the energy release rate:

G = - ()nx
p iA (

Bu'
- _T - da/

Ox

Compared to the classical form of the J-Integral [33), in which the fracture perimeter

coincides with the fracture width, dA = pds, we have chosen to consider a difference

between these lengths, in order to employ the technique for different scratch geometries.

4.1.2 Airy stress function

An Airy stress function ,(x. z) is a function introduced to satisfy the equations of equi-

librium of plane problems:

02
oxz

OX0z
o-zz .

Ox2
(4.6)

With this definition of o, and provided that the body forces are negligible, the equilibrium

equations are automatically verified:

0o7

Ox
0 0x

Ox

oUxz
+ /= 0

+ =9z 0
01z

(4.7)

(4.8)

Moreover, if the material's behavior is linear elastic isotropic, the compatibility Equation

reads:

a a
x (oX + o-z) + &z2 ( +-Z)

therefore p is biharmnonic. That is:

A A = 0

(4.9)

is equal to aL

(4.5)

(4.10)



where A is the laplacian operator defined in 2-D by:

A p(x, z) = + (4.11)

Eq. (4.10) is exact in plane strain conditions and yields a good approximation for thin

plates in plane stress conditions. Therefore. solving for a statically compatible stress field

boils down to finding an Airy stress function o(x, z) verifying Eq. (4.10) in a way that

the stress boundary conditions are satisfied.

Moreover, if body forces are negligible. and if the behavior is linear elastic isotropic

described by E and v, then the displacements are related to the Airy stress function by:

un(x, z) = -- 1 + v K ) + UX (4.12)E OX az

u(,z) =0 -( v x +U (4.1t3)E a: OX ~

where (Ux. U2) is a plane rigid displacement, that does not provoke strains.

4.2 Fracture Toughness Derivation

In the following section, we will use the tools presented above to estimate the energy

release rate G, considering separately the case 0 = 0 and 0 > 0.

4.2.1 Scratch Tests With a Vertical Blade (0 = 0)

Considering the simplified geometry illustrated in Fig. 4-1, we hypothesize the existence

of crack planes surrounding the blade. For the scratch problem at hand, we choose a

closed volume that includes the blade-material interface, the stress-free surface at the

top (n- = 0; T = 0), the (stress free) fracture surfaces in prolongation of the scratch

probe surface (n - f = 0; T = 0). and closing material surfaces far removed from the

surfaces ( 0; = 0): so that the only contribution to the surface integral comes
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Figure 4-1: Simplified geometry of a scratch test with a vertical blade (0=0).
of Pedro Reis.

Courtesy

from the blade-material interface S:

G = --
P ()

- T - - dS
Oxz

(4.14)

Physically speaking, the energy release so defined can be associated with the energy

stored. prior to chipping, into a material domain in front of the scratch blade.

Consider then a rectangular blade (n -er) of width w that generates a crack surface

F = (w + 2d) e. Noting that T = o- - n -o-x e, o = -FT/ (wd) ; p = -aEx -=

Ko2 x/ (2E); U2,2 = Kuo/E (where r, 1 in plane stress and r, 1 - V2 in plane strain

applications) and dS - wdz. we obtain:

G f(d) (OX -4' dz F(
1+2) 2Ew2d (1 + 2w)

(4.15)



As the scratch probe is pushed along the scratch path, fracture surfaces are generated

along the probes bottom and lateral surfaces, releasing in the course the fracture energy,
i.e. G = Gf. Eq. (4.2) relates the fracture energy Gf, to the fracture toughness of the

material Kc. Expressed in terms of the dimensionless force FT/(Kcwvd) we thus find:

FT

K~wfi
2(1±2 d) (4.16)

In particular, if w/d > 1, the dimensionless force FT/(Kwvd) converges toward V2

1.41. This value is within the range of the asymptotic value of FT/(Kwvd), 1.43±0.02.

found for paraffin wax in Chapter 3.
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Figure 4-2: Simplified geometry of a scratch test with an inclined blade (0 > 0).
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4.2.2 Scratch Tests With an Inclined Angle 0 > 0

The next case we consider is a scratch test with an inclined blade shown in Fig. 4-2. We

first solve for the stress and displacement field, using the Airy stress function method.

Then we apply the J-Integral to evaluate the fracture energy. and thus the fracture

toughness.

Elastic Stress and Displacement Fields

The boundary value problem we aim to solve is to find a stress field o(x, z) that is

symmetric and that satisfies:

" The equilibrium equations. that is, in the absence of body forces., Eqs. (4.7) and

(4.8)

" The stress boundary conditions, which means here the stress-free boundary condi-

tions on the top face and on the crack face. as well as the vertical and tangential

force boundary conditions at the blade-material interface:

Uzz (x, z = id/2) - o, (x. z = ±d/2) = 0 (4.17)

. dS= FT - F ez (4.18)

where n = cos 0 ex + sin 0 ez is the outward unit normal to the interface.

" The compatibility equation, Eq. (4.9)

In order to satisfy Eq. (4.17), we consider the subset of stress fields given by the following

Airy stress function:

(p(x, z) = -bx (3 - 3z + cz 2  (4.9)
( -3z4) /(.9



Where (b. c) are constants to be determined from the boundary conditions. Using Eq.

(4.6). the stresses are then given by:

o-XX =2c - 6bxz

c,2 = 3bd2
(d2

(4.20)

(4.21)

(4.22)o-22 - 0

The expression of the constants b and c is found by solving for the boundary conditions

at the blade-material interface (i.e. Eq. (4.18)):

b = -2 w
'wd3

2wd

Finally, the displacements given by Eq. (4.13) read for the chosen function Eq.(4.19):

((1 + V + K)z3 - 3Kzx 2

KX 3 + 3(1 + v - v,)xz 2

3 1
- -(1 + v)zd 2 + 2cx + U

4 1
3

-- (1 + v)xd 2

4
- 2(1 + v - 1)czl + Uz

Now that the stress. strain and displacement fields are known, we can evaluate the J-

Integral to compute the energy release rate G.

Energy Release Rate and Fracture Toughness

For the evaluation of the J-Integral., we choose a closed contour which includes the

blade-material interface (outward unit normal n = - cos Oex + sin Oez), the crack tip,

the stress-free surfaces at x > d/2tan 0 and z = ±d/2, and closing material surfaces far

removed from the crack-tip, so that the only contribution to the J-Integral comes from

(4.23)

(4.24)

1
ax -

E
1U2 =

E

(4.25)

(4.26)



the blade-material interface S. Recalling Eq. (4.5), we have:

1/'B6u\ wE BuU
G=- pnx -_T -- dS = - @nx -_T(n)-- dS (4.27)

P (s) 7 P J(s) 8

where v@ is the free energy volume density, T(n) = o- - n is the stress vector at the

blade-material interface, is the displacement field, and p = w + 2d is the perimeter

of the projected contact area of the blade with the material. Knowing the stress and

displacement fields, we can now compute the two components of the energy release rate;

that is the free energy contribution and the displacement-gradient contribution.

The contribution from the free energy at the surface is calculated on account of the

stress solution Eq. (4.22) from:

1 o2 2
- 7: E- K + (1I+ )X Z (4.28)

2= = 2E E

(Note that 07 YC = 0 in both plane stress (7YY = 0) and plane strain (cy= 0) applica-

tions.). This yields:

G1 = / n xd S
w + 2d Js d

z=-d/2
z+-tan O, z dz

w+2d __d/2 2

= -2c rd + cbd3 tan 0 - b d5i + (
w + 2d E [_ 5 \\2 cos 2 g

On account of Eq. (4.22) and of Eq. (4.26), the stress vector - displacement gradient

scalar product acting on the inclined surface contributes to the energy release rate as



follows:

G2= W -T(n) dS
w +2d (s) Ox

w 1 f =-d/
= -d/T (n). - x=(z+d/2 tano dz

w + 2dcosO xz-d/2

w 1 2 ~ 3 25 1 + V 7
S [4c2Nd - cbd tan 0 - b2d ( -- - + -) (4.30)w + 2dE _5 2 cos2 0 8

The J-Integral thus provides the following expression of the energy release rate:

G = G + G = 2c2d + b2 (4.31)
~ w+2dE ( 40

Finally, by replacing b and c by their respective values (Eq. (4.24)), we obtain:

w K 1 3
G = G1 + G2(= - -E( F + F (4.32)

Upon fracture propagation, the energy release rate equals the fracture energy. which

in turn, within the limit of LEFM, can be linked to the fracture toughness by Eq. (4.2).

This means that the scratch test provides a means to determine the fracture toughness

from:

<Kc 2 1+2 
(4.33)

Eq. (4.33) is similar to Eq. (4.16) with the difference that FT is replaced by an

equivalent force Fe, = F + F . In fact, for 0 = 0 the vertical force is fully transmit-

ted into the material via the horizontal blade-material interface. and therefore does not

need to be accounted for; whereas for 0 > 0, the vertical force, as well as the horizontal

force, can only be transmitted through the inclined interface. This is consistent with

Amontons-Coulomb's law of friction (Eq. (2.1)) for which the friction coefficient on the



inclined interface is given by:

y = -0 + tan ,(Fv) (4.34)
FT

The found scaling relation is thus in agreement with the dimensional analysis, that is,

Eq. (2.20).

4.3 Chapter Summary

In this chapter, two models were developed that link the fracture toughness to the forces

and geometry of the scratch tests. For large values of w/d, Kc is given by e where

F, = F1 if the blade is vertical (0 = 0) and Feq = F1 + 3F if the blade is inclined

(0 > 0). This scaling captures the classical size effect inherent to linear elastic fracture

processes as described by Eq. (2.5). It is also in agreement with the scaling predicted

by dimensional analysis (Eq. (2.20)). The two models hold the promise to become

tools for fracture toughness determination. However, before we can use then for inverse

applications, we need to assess their accuracy. This is the focus of the next chapter.



Chapter 5

Model Validation by Finite Element

This chapter focusses on the validation of the analytical models derived in Chapter 4.

This is achieved by Finite Element (FE) simulations using Abaqus Version 6.9-1. The

model and methods used to simulate a scratch test and compute the energy release rate

are described and then applied to understand the dominant mode of fracture propagation.

Finally, the accuracy of the analytical solutions Eqs. (4.16) and (4.33), derived in Chapter

4, is evaluated.

5.1 Finite Element Analysis of Scratch Test

For the FE simulation, the scratch test is modeled by the 2-D structure shown in Fig. 5-1.

The horizontal displacement is constrained on the RIGHT side of the structure and both

the horizontal and vertical displacements are constrained on the BOTTOM side of the

structure. The main geometric parameters of the problem are the depth of the scratch

d. the inclination angle of the interface 0, or back-rake angle, the length of the crack f,

and the out-of-plane width of the structure, w. Three further length scales may affect

the numerical analysis. There are: L, L2 and H. representing the distance of the crack

from the borders. We choose them at least an order of magnitude greater than f and d,

first in order to approximate the assumption of a crack in an infinite medium, secondly
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Figure 5-1: Finite Element modeling of scratch tests. The structure above was modeled
in ABAQUS 6.9-1 with the following boundary conditions: RIGHT u, = 0. BOTTOM
Ux = uz = 0.

to minimize the effect of the displacement constraints at the boundaries. In fact. by

Saint-Venant's principle the influence of the displacement constraints at the boundaries

should become negligible far from those boundaries.

Two kinds of loading conditions are considered. Using force boundary conditions,

a uniform traction is prescribed on the interface in both directions, e and e-. Using

displacement boundary conditions, a rigid blade is in contact with the interface, and

a horizontal displacement u is applied to the blade, while its vertical displacement is

constrained. Moreover. in the simulation. we assume frictional interface condition with

different values for the friction coefficient, p = 0, 0.1. 0.2. The back-rake angle 0 consid-

ered in the simulation, varies between 0' and 60'. Because of non-linearities due to the

contact condition between the faces of the crack and between the blade and the material,

the simulations did not converge for 0 > 45', for displacement boundary conditions. In

all cases, the loading resulted in a resultant force Fre - FVe, acting on the interface.



Assuming the material to be linear elastic isotropic, the stress intensity factors, K1

and K 11 , in mode I (plane tensile) and II (plane shear), respectively, depend on the

loading and on the geometrical parameters of the structure. Dimensional analysis yields:

K1  (FT lL 1 L 2 H\
K T F1 , 0, - -, L - (5.1)

IT Fv, d' d d d

F T F 0 , (5.2)
FT Fv7 d d d d

The goals of the following investigation are multiple:

" To test the validity of the scaling above. Eqs. (5.1) and (5.2), for a wide range of

inclination angle 0 < 0 < 600.

" To understand the fracture mechanism at work during the scratch test and assess

the relative importance of plane tensile fracturing (mode I) compared to plane shear

fracturing (mode II).

To this purpose, we will describe the Finite Element model first and then present and

discuss the results obtained.

5.2 Finite Element Model

5.2.1 Mesh and Crack Modeling

The structure is meshed with 8-node biquadratic plane strain quadrilateral elements,

(CPE8R). available in Abaqus 6.9-1. The mesh has 24,060 elements and 72,843 nodes.

The mesh is refined around the crack and a circle of special elements with mnidside nodes

to the quarter point are used around the crack tip. This is done in order to capture the

singularity of stresses generated by the presence of the crack.



Figure 5-2: Fracture toughness calculation. Source [21]

The method presented here. to compute the stress intensity factors, is taken from

Bonnet [21] in his lecture notes of MEC568, at the Ecole Polytechnique. The stress

intensity factors are estimated from the jump in displacement between the upper and

lower faces of the crack. Consider a quadratic triangular element near the crack tip as

shown in Fig. 5-2. If the subscript + designates the nodes on the upper face of the crack

and - designates the nodes on the lower face, the displacement jump at the quarter-nodes

B_ and B+ and end-nodes C_ and C+ is defined by:

AUB UB+ UB : (5.3)

A'uc -c - 1 c_ (5.4)

The stress intensity factors in mode I and I are then given by:

K, = Ev2 FI _-2AUB - - 'AUc n (5.5)8r- 2 ]

K11 = E r--I 2AUB - I-U c-t (5.6)8 r 2



where n = e is the normal to the crack surface, and t = e is the direction of crack

propagation. Finally, restricting ourselves to plane strain conditions (= 1 - V 2), the

fracture energy release rate G relates to the fracture toughness in mode I and II by

[26, 34]:

G =2(K?+Kil) (5.7)

where the elastic constants used are: E = 1, v = 0.3.

5.2.2 Force Boundary Conditions

For modeling force-driven scratch tests. we apply at the inclined interface a horizontal

and a vertical force. denoted by F, and F, respectively. One way of doing this in

Abaqus is to apply two general tractions tx = txe_ and t, = -t-e, at the interface. If we

impose the tractions in the undeformed configuration and prevent them from rotating

with the surface, then the horizontal and vertical resultants at the interface are constant,

and given by:

F1 t-e da- t (58)I Interface COS 0
Fv dv = tz.e- da =- dt (5.9)

W JrInterface Cos (59

where w is the out-of-plane width of the structure, set equal to 1. We introduce a

friction coefficient t to account for an Anmontons-Coulomb type friction at the interface.

If # = tan- 1 (p) is the friction angle, tx and tz are then related by:

tz - tan(O + B)tz (5.10)

In our simulations t, is linearly increased from 0 to 0.01IMPa.
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Figure 5-3: Displacement boundary conditions. Scaling of K.

5.2.3 Displacement Boundary Conditions

For the modeling of displacement-driven scratch tests, a rigid blade is in contact with the

inclined interface of the material. A horizontal displacenient u is prescribed to the blade

whereas its vertical displacement is constrained, as well as any rotation around the Oz

axis. The friction coefficient between the blade and the material varies, 1p = 0, 0.1, 0.2,

and a hard contact is used to prevent any interpenetration between the blade and the

material.
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5.3 Results

In this section we will first discuss the dominant mode of crack propagation, mode I

versus imode II. and then confront the scaling with the results of Chapter 4.

5.3.1 Fracture Propagation Modes

Figs. 5-3 to5-6 display the normalized stress intensity factors (Eqs. 5.1 and (5.2)) in

node I, Kw d/Fr, and mode II, KijwVd/F],, versus 0 for both force and displacement

boundary conditions. For both loading conditions the stress intensity factor in mode I

decreases with 0 and even becoines negative, for values of 0 > 340 in displacement-

controlled tests (Fig. 3-3) and 0 > 45' in force-controlled tests (Fig. 3-5). In fact, as

O increases, the crack opening decreases and, upon crack closure, compressive stresses

develop on the crack faces. On the other hand, the stress intensity factor in mode II

increases with 0 for 0 < 0 < 45'. Moreover, for both modes, the ratio K1 r/Kr (Figs.

(5-7) and (5-8))is always than two and it rises sharply with 0. Therefore, mode II. plane

shear fracture mode, is identified as the dominant mode of fracture propagation.

5.3.2 Fracture Toughness Scaling

Figs. 5-9 and 5-10 display the variation of the dimensionless parameter Feq/(Kw d)

according to the analytical solution Eq. (4.33). Here we define K = +/K2+ K. and

Peq = F ! +F for 0 > 0, and Fq = F for 0 = 0. The analytical model pre-

dicts for large values of the ratio w/d that F = V-2. Simulations show that,. forK w /d

00 < 0 < 200, the square root of the normalized energy release rate is within 15% of the

analytical value. As 0 increases and as the friction coefficient p at the inclined interface

increases, this dimensionless parameter increases. However, it remains bounded. Simu-

lations show that Feq/(Kw\Fd) < 2 for 0 < 0 < 60' in case of force boundary conditions

and Feq/(Kwvd) < 1.5 for 0 < 0 < 450. Although the simulations presented here do

not model crack propagation. given that G = G and K = Kc when the crack advances,
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we can conclude that for 0' K 0 < 20' the analytical solution Eqs. (4.14) and (4.31) give

the fracture toughness within an accuracy greater than 85%.

5.4 Chapter Summary

The aim of this chapter was to assess the accuracy of the analytical models derived in

Chapter 5. A 2-D Finite Element model was developed to simulate scratch tests with a

rectangular blade and a back-rake angle of 0 < 0 < 60'. Both force and displacement

boundary conditions were considered as well as friction effects at the blade-material in-

terface. Simulations show that mode II is the dominant mode of fracture propagation.

Simulations identify the domain of application of our models as the interval of back-rake

angles: 0 < 0 < 20'. Therefore for this range of 0, we have a highly accurate model

for linear elastic isotropic brittle materials that allows one to determine the fracture

toughness from results of scratch tests. The possibilities offered by the models will be

illustrated in the next part of this thesis through the development of aim inverse appli-

cation scheme and its application to some interesting materials, cement paste, Jurassic

limestone, red sandstone and Vosges sandstone.
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Chapter 6

Inverse Application Scheme

The last part of the thesis is devoted to the application of the validated fracture scratch

model to the determination of the fracture toughness of different materials. This part

is composed of two chapters. This chapter develops an inverse application based on

the analytical model developed in Section 4.2.2. for scratch tests with a small back-rake

angle, that is, within the domain of application of the model as discussed in Chapter 5.

We then confront the predicted toughness values with results from conventional fracture

testing methods such as three-point bending tests on notched specimens. In particular, we

apply the inverse application scheme to cement paste, Jurassic limestone, red sandstone

and Vosges sandstone. We start by presenting the materials, then we describe the two

techniques that compose our scheme and finally we discuss the accuracy and limits of

the proposed methods. The next chapter then will present an example of industrial

application of the method to oil cement slurries hydrated at high temperatures and

pressures.



6.1 Materials and Methods

6.1.1 Materials and Fracture Properties

For the development of an inverse scheme for fracture toughness determination, we con-

sider four materials: cement paste. Jurassic limestone, red sandstone and Vosges sand-

stone. The cement paste material is a based-line oil-cement of Schlumberger: a class G

cement hydrated at ambient conditions with no mixed additives. Its slurry density is

1.9 g/cc, which corresponds to a solid volume fraction of 41.5% and a water-to-cement

ratio is equal to 0.44. The detailed composition of class G cement, is given in Table 6.1.

The Jurassic limestone, red sandstone and Vosges limestone are materials of Epslog S.A.,

who carried out the scratch tests. For purpose of comparison, the fracture properties

of similar materials found in the literature will serve as reference values for the inverse

application schemes. For cement paste, the reported fracture toughness values were

obtained by three-point bending tests on large notched specimen, Kc = 0.67 MPa iin

[181, or by means of extrapolation techniques that avoid interference with specimen size,

Kc, = 0.65 MPa ini [25]. As for sandstone. Ferreira et al. [22] performed three-point

bending tests on notched sandstone beams and found Kc = 1.01 MPa ini. Barker [8],

using specimens configurations that exhibited initial crack growth stability, measured a

fracture toughness value of Kc = 0.73 MPa ini for dry silt stones. This value can be

used as an approximation for the toughness value of the Vosges sandstone tested here,

because these Vosges sandstone have a composition close to that of a cenicted silt stone.

In order to estimate the fracture process zone, rc, we approximate the tensile strength

o-o by UCS/10. rc is then given by [34, 26, 34]:

rc = I(6.1)
27r o

We assume a uniaxial compressive strength of 60MPa, 45-60 MPa, 60-130 MPa and

20-30 MPa for cement paste, Jurasssic limestone, red sandstone and Vosges sandstone,



Composition of Portland Cement/ Class G
CaO SiO 2  Al20 3  Fe2 0 3  minor elements
67% 22% 5% 3% 3%

Table 6.1: Typical composition of a Class G oil well Portland Cement (In Mass%).

respectively. This yields the following estimates for rc: 1.6 mm, 2-7 m, 1-5 nun, and

10-20 mm for cement paste, Jurasssic limestone. red sandstone and Vosges sandstone,

respectively.

6.1.2 Scratch Device

All scratch tests were carried out by Epslog S. A. [20] with a Wombat scratch tester like

the one shown in Fig. 6-1. During these tests, a polycrystalline diamond blade, with a

back-rake angle of 0 - 15'. traces a groove of fixed width. w, and depth, d. at a constant

velocity of a few mm/s. The blade is held by a rigid steel frame with a compliance smaller

than 0.027 run/kN. The forces generated, Fr and Fy, are measured at a high sampling

rate, 10 measurements/nm, by force sensors with a maximal capacity of 4,000 N and an

absolute precision of 1 N. Simultaneously. the depth of the scratch d is measured with

an absolute precision of 0.01 mm.

6.1.3 Data Treatment

Three series of approximately 25 scratch tests each were perforned on cement paste. Each

series differs by the width, w = 2.5, 5, 10 mm. The depth of the scratch d ranged from

0.09 nim to 0.6 mm and the width-to-depth ratio, w/d ranged from 4 to 111, spanning

nearly two orders of magnitude. As for Jurassic limestone, four series of five tests each

were performed, corresponding to different scratch widths w = 2.5, 5. 10, 15 nun. d

ranged from 0.1 nmi to 0.5 mum and w/d from 5 to 150. Four widths. w = 2.5. 5. 10, 15

mn, were also considered for red sandstone. The total number of tests performed were

20; d ranged from 0.1 mm to 0.4 mm while w/d ranged from 7 to 100. As for Vosges



Figure 6-1: Wombat scratch tester. Source [20]
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sandstone, four series of 4-5 tests corresponding to the widths w = 2.5. 5, 10, 15mm

were carried out. d ranged from 0.25 to 0.5 mm and w/d from 5 to 60. The scratch

tests data for cement paste presented here were already used in Section Scratch Strength

Perspective to illustrate Schei et al. [35, 36] and Bard and Ulm [7] strength methods.

This data as well as those from red and Vosges sandstone were also used in Section 2.4

to challenge both Atkins' [3, 4, 2] and Patel et al.'s [28] fracture methods.

Fig. 6-2 shows a representative scratch test time series for w = 10mm and d = 0.2

mm; the data is from cement paste. For each scratch tests, the horizontal and the vertical

forces, F1 and Fv7 respectively, are averaged over a scratch patch of 3-4 mum. The average

value < Fe > and standard deviation AFeq of the equivalent force F = F + F2

were approximated by:

< Fe, > FT2+ Fv9 (6.2)

2

AFeq F 5+ Fv,2 FT2 + Fvj (6.3)

6.2 Inverse Schemes

In contrast to the scratch analysis on paraffin wax presented in Chapter 3, and supported

by theory developments in Chapter 4. the aim of an inverse scheme is to estimate the

fracture toughness from scratch data. The model as expressed by Eqs. (4.33) and (4.16),

and recalled below, allows two concurrent methods for fracture toughness measurement:

< 2 1+2' if0=0 (6.4)

Fy + F(65 < 2 (1+2 2- if 0 > 0 (6.5)
Ke w vd d
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Figure 6-2: Example of scratch test result: measured vertical FV and horizontal FT forces
along the scratch path. The dotted lines represent the mean Fv and FT values. Test on
cement paste: width w = 10 mml, depth d = 0.1 mm. The test was carried out by Epslog
S. A.; data courtesy of Schlumberger.



6.2.1 Scheme 1: Linear Fitting of the Equivalent Force

The first scheme consists in a linear fit of the equivalent force Fq versus wv d for each

width w:

dFeq

d(w 2d) w=constant

KW is the slope of the curve (Fq, wv/2d). In the light of the theoretical development of

Chapter 4. this scheme assumes large values of w/d for each test series, which iay well

be one of its limitations.

6.2.2 Scheme 2: non-linear Fitting of the Normalized Force

This scheme is based on the invariant form Eq. (6.5). In this scheme, the normalized

force, Feq/wv/d. converges to Kc for large w/d values. This scheme estimates directly

the asymptotic value Kc by fitting the normalized force with a particular type of function.

In this thesis we consider two fitting functions:

e From the asymptotic development of V1 + 2/x, given in Eq. (6.7). Kev/2 can be

approximated by a polynomial function of 1/x with x = w/d. We restrict ourselves

to a 3rd degree polynomial, given in Eq. (6.8).

1+- 1+-- + i+ ,x-++oo (6.7)
x x 2x2 2x3 0 4

al a2 a3y=ao+ ,+ a2+ - ao> 0 ,a 3 >0 (6.8)
x x2 x3

We require the first constant, ao and the last constant, a 3 . to be positive to avoid

negative values of the fitted normalized force function. In return, ao gives the

size-independent fracture toughness.



e The second fitting function is an exponential decay function:

y = ae-' + c. b < 0 (6.9)

In which c gives the size-independent fracture toughness. As we will see, the ad-

vantage of the exponential decay function is a greater precision on the asymptotic

value, resulting in reduced confidence intervals.

To perforim the non-linear fitting, the MATLAB bisquare weights algorithm is used. This

flexible algorithm makes it possible to define interval bounds for the fitting constants.

Moreover it yields confidence intervals for the fitted constants: we choose to have confi-

dence intervals at 95%.

6.3 Results and Discussion

6.3.1 Inverse Scheme 1

Figs. 6-3a)-6-6a) display the strength scaling for the materials presented above. The

slopes of the doted lines represent the intrinsic specific energy g as defined by Eq. (2.23).

For all four materials, E decreases with w, confirming once more that strength drives the

test only for small values of wd. For greater values of wd, fracture dissipation becomes

predominant and this is corroborated by the highly curved shape of the plot (F , wd).

By application of Eq. (2.24). the scratch hardness is 67.68±2.07 MPa. 21.48±1.27 MPa,

146.70+28.77 MPa and 54.37±5.23 MPa for cement paste, Jurassic limestone, red sand-

stone and Vosges sandstone, respectively. For red sandstone in particular. ef Fig 6-5a),

the data points (FT, wd) do not go through the origin. This initial offset, in the hor-

izontal force, can be attributed to frictional dissipation resulting for instance from the

presence of a flat wear on the blade.

Figs. 6-3b)-6-6b) apply the first scheme to the materials of this study. For each value

of w, there is a linear scaling between the equivalent force Fe and mvydv: this indicates
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that fracture processes occur even at small scales. K' is given in Table 6.2, with a 95%

confidence interval, for all widths. In general. Kw decreases with w. For cement paste,

it decreases from 1.22+0.14 MPa/ii to 0.61±0.05 MPa/in. For Jurassic limestone,

it decreases from 0.57+0.21 MPav/in to 0.39±0.07 MPa./ini. For red sandstone, it de-

creases from 4.58+0.44 MPa in to 1.06+0.05 MPa /iii. Finally, for Vosges sandstone., it

decreases from 1.69+0.21 MPa /in to 0.92+0.09 MPa\/in. To evaluate Kc, the asyip-

totic value of K". a linear fit is carried out for a certain range of widths. For instance,

all widths were considered for cement paste, whereas only the two series with the largest

width w were considered for red sandstone. For Jurassic limestone and Vosges sandstone,

KW was determined from the largest width., w = 15 mim. More generally, the assumption

of small scale yielding remains valid as long as all geometric parameters are at least an

order of magnitude greater than the fracture process zone rc [5, 34]. Hence. convergence

will occur for values of w greater than the fracture process zone rc:

K K '(w > re) (6.10)

For instance, for cement paste with a fracture process zone of rc ~ 1.6mm (as evalu-

ated in section 6.1.1), K'(10mm) yields a value close to the literature toughness value,

0.67 MPa /ini [18, 25]. The asymptotic toughness value for cement paste, estimated by

considering all data points, is Kr = 0.64 i 0.03 MPa /ini. An estimated value for the

fracture process zone of red sandstone is rc = - 5 mum and, by considering all data points

in the range w > 10 mn. we obtain an asymptotic toughness value. K, = 1.06 ± 0.05

MPaV/ i. This value is in close agreement with the literature value, Kc = 1.01 MPa /ii

[22]. In contrast to cement paste and red sandstone, the asymptotic toughness value,

Kc = 0.92 + 0.09 MPa /iu. do not converge to the literature value, Kc = 0.73 MPav/iii

[8] because the widths considered. w = 2.5 - 15 mm, are of the same order of magnitude

than the fracture process zone rc = 10 - 20 mm.

It should be noted that, in the linear fitting of (Fcq/v/2, wy), there is an initial offset

zo that is not accounted for in the analytical model, Eqs. (6.4) and (6.5). The values



width (mm) Cement Paste Jurassic Limestone Red Sandstone Vosges Sandstone
2.5 1.22i0.14 0.57±0.21 4.58±0.44 1.69±0.21
5 0.93±0.07 0.45±0.14 2.47±3.73 1.42±0.13
10 0.61±0.05 0.43±0.06 1.02±0.15 1.24t0.15

15 N/A 0.39±0.07 0.91±0.34 0.92±0.09
K_ _ 0.64±0.03a 0.39±0.07 1.06±0.05 0.92+0.09

rc (mm) 1.6c 2-7 1-5 e 10-20f

Literature Kc 0.679 N/A 1.01h 0. 7 3 i

Table 6.2: Inverse scheme 1: Fracture toughness values Kc (MPafini). a Considering all
data points. b Considering only w=10,15 mm. ' Based on ultimate tensile strength 6
MPa. d Based on ultimate tensile strength 4.5-6 MPa.e Based on ultimate tensile strength
6- 13 MPa. f Based on ultimate tensile strength 2-3 MPa. 9 Source [18. 25]. hSource

[22]. Source [8].

of zO are displayed in the inset in Figs.6-3b)-6-6b : zO can be positive or negative and it

is not always monotonic. xO could result from friction dissipation at the blade-material

interface. from plastic dissipation inside the material. xO could also be due to residual

internal stresses in the material, resulting from sample preparation. Such non-linear

phenomena are not taken into account in the linear model developed in this thesis. This

limits the general applicability of scheme 1. which is why we considered a second scheme.

6.3.2 Inverse Scheme 2

Figs. 6-3c),d)-6-6c),d) display the quantity Fcq/(w2d) fitted with a 3rd degree poly-

nomial function of 1/x (Eq. (6.7)) and with an exponential decay function (Eq. (6.8)).

For all materials except Vosges sandstone, all data points (FqV/(9 w V), w/d) collapse

into one curve. This is a strong evidence of the validity of the fracture scaling derived in

Section 2.2.2 and recalled below:

FT=Kcw fI E H( v,I=(K )2 (6.11)

The two fitting functions considered yield close estimates of the size-independent

fracture toughness. The fitting with a 3rd degree polynomial yields Kc = 0.62 ± 0.02



MPa im, 0.40i0.04 MPa in, 1.55+0.26 MPaV/ni, and 0.76+0.18 MPa/n for cement

paste, Jurassic limestone, red sandstone and Vosges sandstone, respectively. Meanwhile

the fitting with an exponential decay function yields Kc = 0.64±0.01 MPa /mii, 0.45+0.03

MPa Fi, 1.30±0.09 MPav mi, 0.77+0.04 lPa /in for cement paste, Jurassic limestone,

red sandstone and Vosges sandstone, respectively. These estimates are also close to the

asymptotic toughness values found using the inverse scheme 1 as well as to the values

of fracture toughness for cement paste, red sandstone and Vosges sandstone., reported in

the open literature. Finally, fitting with an exponential decav function is more accurate

than fitting with a polynomial of 1/x, which, in turn, is more accurate than the inverse

scheme 1.

Fig. 6-7 shows a strong correlation between the scratch tests fracture toughness

estimate, estimated with inverse scheme 2 and with an exponential decay function, and

reported values. As explained in Section 6.1.1, these literature values were obtained via

conventional testing methods such as three-point bending tests on notched specimens or

double-cantilever tests.

6.4 Chapter Summary

In this chapter an inverse scheme was developed that allows the assessment of the frac-

ture toughness from results of scratch tests. The first method uses linear fits of the

equivalent force Feq whereas the second one uses non-linear fitting of the normalized

force Feq/(ww/2d). Both methods converge for large values of wv/d and w/d toward a

size-independent fracture toughness that is in good agreement with conventional testing

methods such as notched-beam tests or double-cantilever tests. The more robust method

among those two schemes is the second method based on the dimensionless scaling re-

lation of the force with w/d. This is the method we recommend for fracture toughness

determination from scratch tests.



1.5

0.5I 0/

0 0.5 1.5
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Figure 6-7: Scratch tests mnodel versus conventional fracture testing methods (found in
the literature).



Chapter 7

Industrial Applications

The chapter presents an industrial application of the tools developed in this thesis. The

application deals with oil cement slurries hydrated at high temperatures and pressures.

The focus of this chapter is to show how the scratch test model can be used in such a

challenging industry application for both strength and fracture properties determination.

7.1 Industrial Context

The primary objectives of well cementing, that is the placement of cement in the annulus

between the pipe or casing and the rock formation. is zonal isolation. That is. the annular

cement sheath must isolate zones containing pressurized fluids from each other and from

the surface and maintain this isolation even when the cement sheath is subjected to

changes in stress and strain during the operating life of the well.

From a mechanics point of view, this objective needs to be met by an appropriate

cementitious material that can withstand high temperatures and pressures which are

typically encountered in down-hole applications. The key to choosing the appropriate

material is a method that allows the control of an appropriate material parameter. Like

in the construction materials industry, the classical paramieter in use has been the com-

pressive strength of the material, which is part of the cultural baggage of engineers, be



this in infrastructure applications of concrete, or in well-cementing applications. On the

other hand, given the objectives of well cementing, one can arguably make the case that

the material parameter that controls sealing and stability of the in-situ material does

not relate to a limit in strength but rather to a risk of cracking and fracture. A perfor-

mance based design of such functions would thus need to consider fracture properties;

for instance fracture energy or fracture toughness.

The main challenge of using fracture properties in industrial applications is that their

determination typically requires a much-more sophisticated test set-up that can deal with

fracture size effects inherent to fracture phenomena in brittle and quasi-brittle materials

[11], which need to be taken into account in the determination of concrete's fracture

properties [18].[25).[24),19). The scratch test analysis presented in this thesis offers an

attractive alternative. The focus of this chapter thus is to apply this technique in order

to shed light on the effect of high temperature and pressure on the fracture toughness of

a series of baseline oil well cement formulations.

To this end, we will first present the materials considered in this study. Then, we

will apply both a the strength interpretation (see section 2.3.2) and a fracture inverse

application scheme to the experimental data.

7.2 Materials and Methods

The materials considered here are made of class G cement; their composition was given

in the previous chapter, Table 6.1. As reference, we consider the cement paste w/c=0.44,

used all along in this thesis. With respect to high temperature and pressure applications,

two further base-line cement mixes in frequent use in oil well application are investigated.

These mixes contain in addition 35% of silica flour (by weight of cement). Silica flour

is crystalline silica, containing at least 98% silicon dioxide and with a mean particle size

around 20 microns. It is formed by grinding of quartz sand in ball or vibration mills.

For comparison with the reference sample the two materials where designed either at the



Reference Sample A Sample B

Slurry Density g/cc 1.9 2.03 1.89

w/c M% 44 45 58
wb M% 4443
s/c M% 035

____________ ________ Curing Conditions

Temperature 0C 25 200 1 week 50, then 300

Pressure MPa Atm. 20.7 20.7

Duration week 1 (A-lw) 4 (B-4w)

week 51 (A- 5 1w) 8 (B-8w)

week 12 (B-12w)

Table 7.1: Tested Oil-well cement samples. Mix formulation and temperature pressure

curing conditions.

sanme water-to-cement mass ratio or the samie water-to-binder mass ratio. Sample A of

slurry density 2.03 "2cc contains 70 Vol% of class 0 cement and 30 Vol% of silica flour.

This corresponds to a solid volume fraction of 50% representative of a water to binder

mass ratio of w/b = 0.33, and a water to cement ratio of w/c = 0.45. Sample series B of

slurry density 1.89 g/cc and solid volume fraction of 43.9% has almost time same water-

to-binder mass ratio as the reference sample (w/b - 0.43): yet due to the the solid mmix

of 70.3 Vol% cement and 29.7 Vol% of silica flour (s/c 0 0.35), its water-to-cenent ratio

is significantly higher. wjc = 0.58. Finally, each sample series was subjected to different

curing conditions: The curing temperature of sample A is 200'C and the pressure is 20.7

MPa, applied 1 week and 12 months. respectively. Sample B was cured for 1 week at 50C

and then subjected to a temperature of 300 flC aadn a pressure of 20.7 IPa for 1 month. 2

months and 3 months. respectiv ely. All umaterials were prepared by Schlumberger (Simon

James). Table 7.1 summarizes the different mixes and curing conditions and durations

considered i e this study.

7.2.1 Scratch Hardness and Scratch Toughness Determination

The scratch test device considered here is the same device as described in Sectiomi 6.1.2:

a, inclined blade of back-rake angle 0 - 15r and of out-of-plane width w is held at a
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w= 2.5mm
w = 5 mm
w= lOmm

K *=0.79 ±0.06MPa iW
z.1

y = -8.99x 2 +(87.44 ± 109)x
R2 0.99

1 2 2 3 4
wd, mm

d)

20

00E *
10

w,rrm 10
0 50 100 150 200 250

w 20004 ,mm1 5

w = 2 .5mm

w = 5mm
w = 10mm
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y = 0.80± 0.10 - 1.28x- '
-36.82x- 2 +2.22 10- 4 -3

R 2 = 0.55

20 40 60 80 100
w/d

0 5L

0 20 40 60
w/d

Figure 7-1: Scratch tests on sample A-1w. a) Strength scaling. The slopes of the dotted
lines give the intrinsic specific energy E for each width(cf Eq. (2.23)). The constant value
of the quadratic fit , curve in black, yield HT, cf Eq. (2.24) with a 95% confidence interval.
b) Inverse application scheme 2: Feq/v/2 versus wv'd. The inset plots the initial offset
xo versus w. c) Inverse application: scheme 1 with a fitting function that is a polynomial
is 1/x. b) Inverse application: scheme 2 with an exponential decay fitting function. For
c) and d), the constant value of the fitting function measures the fracture toughness Kc
with a confidence interval of 95%. For a), b), c) and d) the bars represent the standard
deviation. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.
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b)a)
250

200

150

y = - 6.68X2 + (77 77 ± 8.59)x
R 2 =0.97
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wd , mm

w = 2.Smm
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2 + 8 ~ SR2 =0 55

0 -_ __

0 20 40 60
w/d

d)
1.5
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w 42000d, mm' 5

300

w = 2.5 mm

w=l5mmW=x1m
\=lo l

3.44 exp (- 0-31x) + 0 .78± 0.06
R =0.61

20 40
w/d

Figure 7-2: Scratch tests on sample A-51w. a) Strength scaling. The slopes of the dotted
lines give the intrinsic specific energy E for each width(cf Eq. (2.23)). The constant value
of the quadratic fit , curve in black, yield HT, ef Eq. (2.24) with a 95% confidence interval.
b) Inverse application scheme 2: Feq/v/2 versus wvd. The inset plots the initial offset
xO versus w. c) Inverse application: scheme 1 with a fitting function that is a polynomial
is 1/x. b) Inverse application: scheme 2 with an exponential decay fitting function. For
c) and d), the constant value of the fitting function measures the fracture toughness Kc
with a confidence interval of 95%. For a), b), c) and d) the bars represent the standard
deviation. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.

102

z

LL

c)
1.5,

1~

0.51
C*

LI.



a),
w = 2.5mm
w=5mm

150 w=10mm

1o0

50

) 
1.5-

11

L.

0

b)
w = 2.5mm

200; w=5mm
w= 10mm

150L
K =0.64 0.06MPa 4i

y = &07x 2 + (71 .64 5.02) x
R2=0.98

1 2 3 4
wd, mm 2

ow = 2.5mm
w=S.mmW = 5 mm
w= 10mm

y =0.49 0.12+8.54x-
-143.35x - 2 

+ 905.91x- 3
R 2 = 0.66

20 40 60 80 100
w/d

100-

50-

0d)

0.8

0.6

0.4

30

E 20

x 10

W,r5-m 10
50 100 150 200 250

w 42000d, mrn'

w = 2 .5mm
w= 5 mm
w= 10 mm

0.23 exp (-0.026x)+0 .54± 011
R 2 = 0.63

"0 20 40 60
w/d

80 100

Figure 7-3: Scratch tests on sample B-4w. a) Strength scaling. The slopes of the dotted
lines give the inti-insic specific energy E for each width(cf Eq. (2.23)). The constant value
of the quadratic fit , curve in black, yield HT, cf Eq. (2.24) with a 95% confidence interval.
b) Inverse application scheme 2: Feq/v/2 versus wVd. The inset plots the initial offset
x0 versus w. c) Inverse application: scheme 1 with a fitting function that is a polynomial
is 1/x. b) Inverse application: scheme 2 with an exponential decay fitting function. For
c) and d), the constant value of the fitting function measures the fracture toughness Kc
with a confidence interval of 95%. For a), b), c) and d) the bars represent the standard
deviation. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.
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Figure 7-4: Scratch tests on sample B-8w. a) Strength scaling. The slopes of the dotted
lines give the intrinsic specific energy E for each width(ef Eq. (2.23)). The constant value
of the quadratic fit , curve in black, yield HT, cf Eq. (2.24) with a 95% confidence interval.
b) Inverse application scheme 2: Feq/V/2 versus wv/d. The inset plots the initial offset
xo versus w. c) Inverse application: scheme 1 with a fitting function that is a polynomial
is 1/x. b) Inverse application: scheme 2 with an exponential decay fitting function. For
c) and d), the constant value of the fitting function measures the fracture toughness Kc
with a confidence interval of 95%. For a), b), c) and d) the bars represent the standard
deviation. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.
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Figure 7-5: Scratch tests on sample B-12w. a) Strength scaling. The slopes of the dotted
lines give the intrinsic specific energy E for each width(cf Eq. (2.23)). The constant value
of the quadratic fit , curve in black, yield H,, cf Eq. (2.24) with a 95% confidence interval.
b) Inverse application scheme 2: Feq/v/2 versus wv's. The inset plots the initial offset
xO versus w. c) Inverse application: scheme 1 with a fitting function that is a polynomial
is 1/x. b) Inverse application: scheme 2 with an exponential decay fitting function. For
c) and d), the constant value of the fitting function measures the fracture toughness Kc
with a confidence interval of 95%. For a), b), c) and d) the bars represent the standard
deviation. Tests carried out by Epslog S. A.; data courtesy of Schlumberger.
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depth d by means of a vertical force Fv. A horizontal force F1, is applied to move the

blade over a scratch length of 5 cm. For each material sample and curing conditions, we

carry out such tests with three different widths. w = 2.5, 5. 10 mm; and up to six different

depths, varying between d = 0.1 mm and d = 0.35 mm; typically a total number of 16

scratch tests per sample; thus spanning a large range of w/d ratios between 10 and 100.

The strength interpretation presented in Section 2.3 and the fracture model developed in

Chapter 4 are both applied to assess the strength and fracture properties of the materials.

Strength Interpretation

Figs. 7-1a)-7-4a) display the horizontal force FT versus the projected contact area

ALB = wd for all materials except cement paste w/c=0.44. As expected, there is a

linear scaling for small values of wd. however at greater values, the curve becomes non-

linear. This confirms the predominance of plastic yielding at small widths and depths and

the prevalence of fracture dissipation at large widths and depths. The scratch hardness

is estimated from Eq. (2.24), which we recall below

HT =dF (7.1)
d(wd) ,d=O

The relationship between the scratch hardness and the uniaxial compressive strength, de-

veloped by Bard and Ulm [7] and listed in Table 2.3.2 is used to characterize the strength

properties of the materials. In particular, if the ratio of the scratch hardness to the uniax-

ial compressive strength, HT/UCS is strictly greater than 1I+sin 0 (value for a Tresca type

criterion) the material exhibits internal friction. Given that we are dealing with cemen-

titious materials, we can discard any symmetric and hydrostatic pressure-independent

criteria like the Von-Mises criteria. Moreover, if we assume that the material obeys a

Mohr-Coulomb type criterion, the scratch hardness, H,, and the uniaxial compressive
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strength, UCS, are linked to the cohesion, C, and to the internal friction angle, y, by:

H1, = 2 C cos O (1 - sin 2 0) (7.2)

1 - sin 0cosp 1 + (tan P sin )2 - sin ( cos 2 0

UCS = 2C Cos P (7.3)
1 - sin9

Therefore. from the results of scratch tests and from independent measurements of the

uniaxial compressive strength, one can estimate the cohesion and the internal friction

angle.

Fracture Inverse Application

We apply the inverse application method developed in Chapter 6 to evaluate the fracture

toughness. This scheme is based on the analytical expression derived in Chapter 4:

Fw
_e < Kc 2 (1+ 2 (7.4)

wd
2+3

Fe F+ F2F if0>0 (7.5)5

The first scheme approximates Kc by the asymptotic value Kf of the slope, at fixed

width, of the plot (Fq, wV2d). The second scheme directly fits the curve (Feq/(w 2d), wd)

with either a polynonial function of 1/x (i.e. Eq. (6.7)), or an exponential decay function

(i.e. Eq. (6.8)), and approximates Kc by the asymptotic value of the fitting function.

Figs. 7-1 b). c)and d)-7-5 b), c) and d) display the fracture scaling obtained for all

materials except the reference cement paste. Sonic observations are worthwhile mention-

ing:

e For each width of the blade w. there is a linear scaling between the equivalent force

Feq and wVmd, and the slope decreases with the width w. A plateau is reached for

values of w greater than the fracture process zone rc = 1/(21r)(Kc/O-o)2

* The normalized force Feq/(w 2d) converges for large values of w/d toward a con-
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Sample T0 C p/MPa UCS/MPa Hci/MPa C/MPa(*) Kc/MPa.m1 2

Reference 25 Patr 43 + 2 67.7±2.1 14.5 0.64 ± 0.01
A-lw 200 20.7 67 ± 5 87.4±3.1 22.6 0.79 ± 0.4

A-51w 200 20.7 53 ± 5 77.8±8.6 17.9 0.78 ± 0.06
B-4w 300 20.7 57 ± 5 71.6±5.0 19.3 0.54 ± 0.11
B-8w 300 20.7 47 ± 5 76.3±6.1 15.9 0.64 ± 0.04

B-12w 300 20.7 58 ± 5 76.8±7.7 19.8 0.68 ± 0.04

Table 7.2: Results: UCS = unconfined compressive strength (Mean i St.Dev. of 5 tests);
HT = Scratch hardness; Kc = fracture toughness. (*) Cohesion C is determined from

Eq. (7.3) under the assumption of a constant friction angle. Details provided in the text.

stant representative of the fracture toughness.

Of all the inverse methods presented, the non-linear fitting of of the normalized

force, Fq/(wv2d), using an exponential decav function (Scheme 2) yields the most

accurate estimate of Kc.

These observations confirm those made in Chapter 6. for cement paste, Jurassic limestone,

red sandstone and Vosges sandstone.

7.3 Results

Table 7.2 lists for the materials and curing conditions considered the scratch hardness,

HT, and fracture toughness, Kc, determined from each series of scratch tests as described

here before; together with the unconfined compressive strength, UCS. determined on

cylinder samples. The data display a fair amount of consistency: the general trend is

that both the scratch hardness (Fig. 7-6) and the fracture toughness (Figs. 7-7) increase

with the compressive strength, UCS. Two observations deserve particular attention: The

first relates to the positive correlation of HI with UCS. the second to the correlation of

HI or UCS with the fracture toughness.
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Figure 7-6: Scratch hardness HT versus UCS. Tests carried out by Epslog S. A.; Data
Courtesy of Schlumberger.
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7.3.1 Cohesive-Frictional Strength Behavior

The positive correlation of HT with UCS(Fig. 7-6) by Bard and Ulm [7] has been

recently identified to relate the cohesive-frictional nature of the scratched material. The

mean HT/UCS for all samples is equal to 1.42. This value is strictly greater than

1 + sin 0 = 1.26 therefore there is internal friction at play. From Eqs. (7.2) and (7.3), the

friction coefficient is p = 0.40, that is a friction angle of p 21.9'. This value is in very

good agrecment with previously reported friction angle for oil cement slurries obtained by

triaxial testing (confined compressive strength tests) [39],[16]. While there is no doubt

sone variability in HS/UCS ratios between samples, the results provide some insight

that the dominant source of different scratch hardness is the cohesion of the material.

For illustration, Table 7.2 also lists the cohesion values, C., determined with a constant

friction angle of p = 21.90 from Eq. (7.3). What thus emerges is that for the same

water-to-binder (w/b) mass ratio (compare Reference sample to Sample B). cementitious

materials achieve similar values of cohesion that are only slightly affected by the high

temperature-pressure curing conditions. This observation is also consistent with the fact

that the lower w/b- ratio of the A sample compared to both the reference sample and

B-samples entails a higher cohesion. Compared to this dominating effect related to the

mix design., the duration of temperature-pressure curing conditions appear, as a second

order effect, to affect the frictional behavior. For instance, the H1/UCS ratio for the

A-samples increases from 1.30 to 1.47 due to prolonged curing (compare sample A-lw

and A-51w), which corresponds to an increase of the friction coefficient (friction angle)

from pA _1 = 0.117 (o = 6.7') to A 51u = 0.45 (p = 26.02'). A similar trend is found

for samples B-4w and B-8w (but less so for B-12w). Such a variability of the friction

angle has also been found in triaxial testing of oil cement slurries [13],[31), for which the

method proposed is an attractive alternative.
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7.3.2 Toughness-Ductility Behavior

An important observation is the positive correlation between fracture toughness, Kc, on

one hand, and UCS or scratch hardness., HT, on the other hand (Fig. 7-7). In particular,

as for scratch hardness, we observe that materials with same w/b ratio display almost

the same fracture toughness (compare Reference with Samples B) independent of the

different curing conditions. In return, materials with lower w/b ratio exhibit a significant

higher fracture toughness (compare Sample A with Reference Sample or Sample B). For

many materials, such an increase in fracture toughness is often associated with a higher

brittleness respectively a lower ductility. However, the concurrent increase in fracture

toughness and hardness. K ~ HT, for the samples considered here is an indication that

the ductility of the material is preserved across all samples. A good means to quantify the

ductility is the characteristic size of the fracture process zone (FPZ). which we estimate

from,

r = (7.6)

The values for rc calculated for each sample and curing condition from Table 7.2, vary

indeed little around the mean of rc = 0.23 ± 0.07 mn. without any pronounced relation

with strength or hardness. This means that the ductility of the materials tested here is,

in first order, independent of the specific mix formulation. Finally, it is useful to note

that the size of this fracture process zone is much smaller than the characteristic size of

the scratch defined by the blade width w, which a posteriori justifies the use of LEFM

for scratch test analysis, i.e. Eq. (7.4).

7.4 Chapter Summary

The aim of this chapter was to show an industrial application of the methods devel-

oped throughout this thesis. In particular this chapter has investigated the strength and
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fracture properties of oil well cements cured at high temperatures and pressures. This in-

vestigation led to two main results. First, the key material design parameter for cohesion

and fracture toughness is the water-to-binder ratio (w/b), not the water-to-cement ra-

tio (w/c). Secondly., prolonged high temperature and high pressure curing induces some

second order effects, manifesting themselves by a frictional enhancement together with a

softening of cohesion and the fracture toughness.

The scratch test thus emerges as a self-consistent technique for both cohesive-frictional

strength and fracture properties that are highly relevant for oil-well cementing applica-

tions. The fact that it is highly reproducable, almost non-destructive and not more

sophisticated than classical compression tests, makes this test highly attractive for per-

formance based field applications.
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Part IV

Conclusion
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Chapter 8

Conclusions and Perspectives

The fracture model for scratch tests analysis and the proposed inverse application scheme

developed constitute a step forward toward a better use of the scratch test for fracture

testing of cohesive-frictional materials. Further developments could allow the scratch

test technique to become a complementary tool to measure fracture properties of such

materials at a micro-scale. We here summarize the main contributions and limitations

of our work.

8.1 Main Findings

Our major results are:

1. Plastic yielding is dominant for small values of the projected horizontal load bearing

contact area ALB -wd. In particular at this scale there is a linear relationship

between the horizontal force FT and wd. For greater values of wd. size effects

inherent to fracture processes appear.

2. A dimensional analysis of the scratch tests predicts that the dimensionless force

Fr'/(Kewvld) depends only on materials properties. on the friction at the blade-

material interface and on the width-to-depth ratio. A controlled scratch test ex-

periment was designed, using paraffin wax as a model material, that confirmed the
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scaling relation. In particular, the dimensionless force FT/(KwVd) converged for

great values of the width-to-depth ratio toward a constant value 1.42 ± 0.02

3. Two 2-D analytical model were developed to link the fracture toughuess to the

results of scratch tests. Both models rely on Linear Elastic Fracture Mechanics,

especially the use of the J-Integral, to estimate the energy release rate. The first

model assumes a constant uniaxial stress field in the structure and applies to scratch

tests with an inclined blade. The second model applies to scratch tests with a

back-rake angle, 0 > 0, and uses an Airy stress function approach for a better

representation of the stresses. These models predict that, for large width-depth

ratios, the normalized force Feq/(Kcwa/_) converges toward the square root of 2,

as found in the experiments. The equivalent force Fe, is equal to the horizontal

force if the blade is vertical; else it is equal to F2 + F .

4. Finite Element simulations of force-controlled and displacement-controlled scratch

tests help us define the domain of application of the model, which is restricted to

small back-rake angles, 0 < 0 < 20'. Moreover, the dominant fracture propagation

mode appears to be mode II. plane shear fracturing.

5. An inverse application method is developed to assess the fracture toughness from

scratch test data. This method involves two schemes. Experiments show a linear

scaling between Feq/V'2 and wVd for a given width. Moreover, the resulting slopes

decrease with the width and then reach a plateau. Scheme 1 then approximates the

fracture toughness by the asymptotic slope of Fq versus w 2d for a given width. In

particular, convergence occurs for values of the width much larger than the fracture

process zone of the material. On the other hand, scheme 2 estimates directly the

fracture toughness by fitting the quantity Feq/(wV2d) with a polynomial function or

an exponential decay function of the width-to-depth ratio. In general an exponential

decay fit yields a more accurate estimate.

6. The application of these methods in an industrial application (oil well cementing),
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illustrates the relevance of the developed approach for engineering application.

8.2 Current Limitations and Future Perspectives

1. The analytical models developed and the expressions derived apply only to hoino-

geneous linear elastic isotropic brittle materials. A non-linear material behavior

such as viscoelasticity. viscoplasticity was not taken into account. Moreover the

effect of internal residual stresses in the material were not considered.

2. In the fitting of the equivalent force Feq versus wV2d, an initial offset appears, that

could be attributed to an imperfect fracture geometry, friction effects at the blade-

material interface, plastic dissipation phenomena or residual internal stresses, that

are not considered in the derivation of the LEFM models.

3. Fracture dissipation occurs even at small scales. In fact the linear scaling between

Feq and w 2d is valid even for small values of w. However the slope is much

higher than the actual fracture toughness. Nevertheless. this scalability of the

fracture toughness suggests first, that micro and even nano scratch tests could be

used to access the fracture toughness at these scales. Secondly, it hints that the

fracture toughness maybe greater at small scales, in which case there is a need of

an upscaling model to relate iano and micro to macro fracture toughness.

8.3 Conclusion

The models presented in this thesis were developed to predict the fracture toughness

from results of scratch tests. These models have proved to be applicable to a wide

variety of materials: paraffin wax, Jurassic limestone, red sandstone, Vosges sandstone,

cement-based materials. etc. Therefore, the scratch test appears to be an alternative to

conventional fracture testing methods to measure the fracture toughness of materials, in

particular when the interference of the fracture process zone is a limiting parameter.
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Appendix A

MATLAB Script 1: Atkins [3, 4, 2]

Fracture Interpretation

clear all:

%7- -Irnporting the scratch tests data

allt=xlsreacl('Schlumiberger. Al:G204');

d=allt(:,1):w=allt(:.3);Ft=allt(:.4);Fn=allt(:.5);stdFt=allt(:,6):stdFn=allt(:,7);

theta=15*pi/180;E=9200; % theta is the back-rake angle

p1=polyfit(Ft.Fn.1);

bcta=atan(pl(1))-theta; %bcta is the friction angle at the

%blade- material interface

S-Initialisation of the main variables

phi=zeros(length(d).1); %phi is the shear plane angle

Gf=zeros(length(d),1); % Gf is the fracture energy

tauy=zcros(lcngth(d),l); % tauy is the shear yield stress

Zeta= zeros(length(d),1); % Z is the ratio Gf/(tauy x d)

gainma=zeros(length(d).1); % ganina is the shear strain

%/ Estimation of the shear plane

Z=linspace(0.1,20,1000)'; %potential Z values

for i=1:length(d)

x=d(w==w(i));y=Ft(w==w(i));

p=polyfit(cl(w==w(i)),w(w==w(i)), 1);

Phi=zeros(100.1):

for j=1:length(Z)

Phi(j)=newtonraph (theta,beta, Z (j)); % newtonraph

% mnehtod to solve for phi

uses a Newton-Raphson
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%given theta, beta and Z

end

Gamma=cos(theta)./(sin(Phi). *cos(Phi+theta));

Q=1-sin(beta)*sin(Phi)./(cos(beta+theta).*cos(Phi+theta));

VQ is the friction correction factor

IS=Z*d(i)./Gamma;

[B,IX]=sor-t(abs(IS-p(2)/p(1)));

ganmma(i)=Gamma(IX(1));

phi(i)=Phi(IX(1));

Zeta(i)=Z(IX(1));

Gf(i)=p(2)*Q(IX(1))/w(i);

tay(i)=p(1)*Q(IX(1))/(w(i)*Gamma(IX(1)));

end
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Appendix B

MATLAB Script 2: Patel's [28]

Fracture Interpretation

clear all;

%C Inporting the scratch tests data

allt=xlsreal('Schilumberger'.'A1:G204');

d=allt(:,1):w=allt(:.3):Ft=allt(:.4):Fnl=allt(:.5);stdFt=allt(:,6):stdFn=allt(:.7);

% non-linear fitting scheme for each width

f= @ci(xxdata)x(1)+x(2)*xdata(:,1).*sqrt(1+2*xdata(:,2)/x(2));

x1 = lsqcurvefit(f,[1 1],[d(w==2.5) Fn(w==2.5)./(2.5*d(w==2.5))],Ft(w==2.5)./2.5,[ 0 0],[+Inf +Inf]);

x2 = 1sqciirvefit(f.[1 1},[d(w==5) Fn(w==5)./(5*d(w==5))],Ft(w==5)./5,[ 0 0],[+Inf +Inf]);

x3 = lsqcurvefit(f.[1 1],[d(w==10) Fn(w==10)./(10*d(w==10))],Ft(w==10)./10,[ 0 0].[+Inf +Inf]):

x4 = 1sqcurvefit(f.,[1 1],{d(w==15) Fn(w==15)./(15*cd(w==15))],Ft(w==15)./15,[ 0 0],[+Inf +Inf]);

%e Final Gf and sigmay

Gf=[xl(1) x2(1) x3(1) x4(1)]; %Gf is the fracture energy

sigmay=[xl(2) x2(2) x3(2) x4(2)]:sigmay is the tensile yield stress
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Appendix C

Tensile testing of Paraffin Wax

C.1 Tensile tests: description

A finite plate with a hole at its center is submitted to a tensile load. The plate is clamped

at its top and bottom extremities and the experiment is displacement-controlled. The

geometric parameter of the problem are:

" w plate width

" B plate thickness

e H plate half-height

" R center hole radius

In the following section we will give an upper bound and a lower bound of the vertical

force F' when failure occurs.

C.2 Upper Bound Model

In the following section we assume the material to be perfectly plastic of yield stress o-,

and we give an upper bound of the yield stress that depends on the applied vertical force
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F and on the geometric parameters of the problem. We also assume the structure to be

in plane stress. Finally because of the double symmetry of the structure, we model only

a quarter of it as described in Fig. C-1. In order to give a lower bound on o-, we imagine

F

YB

= w/2 - R

Figure C-1: Schematic description of the tensile test. One quarter of the hole sample is
represented.

two sliding blocks, A and B. The velocity of block A is _VA = VAeY. That of the block

B is _VB -VBez. The length of interface between A and B is:

SAB w/2 - R

cos P

and one of its unit normal is

n = - sin ef, + cos e
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For the velocity field to be kinematically admissible, we must have:

(A - VB) _n -0 (C'3)

which means : -(0 + VB) sin o + (VA - 0) cos o = 0. Therefore VA and VB are related by:

V a= (C.4)
t an o

To determine the upper bound, we need to calculate the internal dissipation rate, Dint

corresponding to the assumed velocity field. In our case Dint is simply the shear force on

the slip plane multiplied by the relative velocity across it. From the principle of virtual

work, it comes that the external work rate is equal to the external work rate Wet is

equal to the sum of the internal plastic dissipation and of the strain energy stored in

the system. Therefore the external work rate is always less than the internal plastic

dissipation

Wext int

The greatest value of the internal dissipation is when the stress on the slip plane is equal

to the shear yield stress k = o/v/5:

w12 - R1
Dit < kX 1AB X - |LA= k x X V/2+Vx +V V 1 9cos O tan- p

The external rate of work corresponding to the assumed displacement field is:

Wext - FVA

Therefore we always have:

w/2 -R 1
Wet = FVA< k x x V +Vcos y tan
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In particular for p = Tr/4 and at collapse (= Fu), we have:

a' 2(w/2 - R)VA > FuVA

Finally the lower bound on o-, is:

v/5 F"

2 w/2-JR

U=0

Figure C-2: Lower Bound model. Statically admissible stress field.

C.3 Lower bound model

We divide the structures in two regions A (0 < x < R)and B (R < x < w/2).

(C.5)

We

consider a field constant in each region: _a 0 and g - ozzez 0 . Such a field is
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symmetric, satisfies the equilibrium conditions and the boundaries conditions implies:

F
0-zz B(w/2 - R)

Therefore such a field is statically admissible.

If we assume the material to obey a Von Mises criterion, therefore the potentially

admissible fields are so that o-22 < -y, which implies:

V F such that F < o-YB(w/2 - R), F potentially admissible

The condition above is no longer true when the structure collapses:

F" > o- YB(w/2 - R)

This gives us an upper bound on o-y.

In brief:

/5' Fu

2 B(w/2 - R)

Fu
0 86 6 B(w/2 - R)

Fu
- a - B(w/2 - R)

FU
- J - B(w/2 - R)
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