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[]Abstract
Given the increasing complexity of the physical structures surrounding our everyday
environment -- buildings, machines, computers and almost every other physical object that
humans interact with -- the processes of assembling these complex structures are inevitably
caught in a battle of time, complexity and human/machine processing power. If we are to keep
up with this exponential growth in construction complexity we need to develop automated
assembly logic embedded within our material parts to aid in construction. In this thesis I
introduce Logic Matter as a system of passive mechanical digital logic modules for self-
guided-assembly of large-scale structures. As opposed to current systems in self-reconfigurable
robotics, Logic Matter introduces scalability, robustness, redundancy and local heuristics to
achieve passive assembly. I propose a mechanical module that implements digital NAND logic
as an effective tool for encoding local and global assembly sequences. I then show a physical
prototype that successfully demonstrates the described mechanics, encoded information and
passive self-guided-assembly. Finally, I show exciting potentials of Logic Matter as a new
system of computing with applications in space/volume filling, surface construction, and 3D
circuit assembly.
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Introduction

This thesis explores the nature of assembly, specifically in the context of complex structures,

i.e. assemblies with extremely large numbers of parts, assemblies with extremely small parts

in large numbers or any variety of possibilities in between. The problem that arises from

geometric complexities and difficulties in assembly techniques include material tolerances,

error propagation, difficult construction sequences and increasing complexity of the information

required to build complicated structures. Many of these assembly problems relate to the

complexity of information processing and information transfer from material-to-material and

from assembler-(human or machine)-to-material. A number of techniques have been developed

to fight the associated problems with assembly including; precise Computed Numerically

Controlled (CNC) Machines, robotic arms, large-scale 3D printing and many others, however

these machines can be seen to only avoid many of the issues of assembly rather than offering

resolutions. In this thesis I will argue that if we want to build more complex structures than

humanly possible today, then we need to embed discrete assembly information directly into

our materials to self-guide the successful assembly of complex structures. Initially, I will

explain the notion of digital information, as compared to analog or continuous information,

relating to the problems of assembly and systems of fabrication today. Then I will outline a

number of case studies that attempt to infuse digital logic as a system for information transfer

and assembly. I will introduce a system called, Logic Matter, that directly embeds digital

information into material parts to provide self-guided assembly of complex structures. Logic

Matter offers a new paradigm to resolve many of the associated problems with assembly systems

today. I will demonstrate that we can actually describe useful geometries (lines, surfaces and

volumes) through single sequences of binary inputs and geometric transformations. Further,

I will demonstrate that Logic Matter provides powerful computing possibilities for complex

assemblies. Finally, a working prototype will be shown that emphasizes the benefits of Logic

Matter as a system of material parts for self-guided assembly, utilizing digital information for

computing through construction.
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Digital Materials

It is important to identify the term digital material and differentiate it from an analog material

and the systems of fabrication/assembly that surround us today. The term digital fabrication is

common terminology in most schools and facilities around the world, referring to cutting edge

technology that utilizes Computed Numerically Controlled (CNC) machines to add, subtract or

manipulate/fabricate materials. As Neil Gershenfeld at MIT's Center for Bits and Atoms has

argued, this cutting edge technology is inherently analog, not digital!0 Many digital fabrication

machines are as analog as the first analog computers that represented information as continuous

physical properties. These machines; CNC routers, waterjet machines and laser cutters, are as

imperfect as the parts they utilize and actually become increasingly worse as the scale and rate

of production increases. This is a fundamental property of analog systems, as seen in primitive

analog telephone communication and many other noisy analog systems.02 Likewise, today's CNC

fabrication machines rely on continuous (external) information for tool paths and allow errors to

propagate as the system scales and parts increase in size.03

Alternatively a digital system -- as introduced by Shannon, after encountering severe limitations

while working on the Differential Analyser -- is a system that transfers discrete information (0

and 1), can produce reliable systems from unreliable components and utilizes redundancy to

prohibit errors from accumulating. 04 This type of system actually increases its rate of perfection

as the scale increases! Shannon demonstrated this by introducing the idea of a threshold in

relation to the amount of noise errors in a system, explaining that "below a certain amount of

noise, the error rate is effectively zero."05

If we now apply this idea of a digital system back to our materials and fabrication machines we

can imagine a system that does not rely on external intelligence, does not rely on continuous

01 Neil Gershenfeld. Fab: The Coming Revolution on Your Desktop--from Personal Computers
to Personal Fabrication.
02 Neil Gershenfeld. Fab.
03 Neil Gershenfeld. Fab.
04 Neil Gershenfeld. Fab.
05 Neil Gershenfeld. Fab.
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information and does not allow errors to propagate with an increase in scale. Based on digital

logic and Von Neumann's work on self-replicating systems, Gershenfeld explains how a digital

system could actually carry its own assembly instructions, saying "this medium is quite literally

its message, internally carrying instructions on its own assembly. Such programmable materials

are remote from modem manufacturing practice, but they are all around us." He goes on to

describe the ribosome and its sequence of self-programmed folding of proteins as an example of

a self-assembling digital process within our human bodies.0607

There's apattern here. Shannon showed that digital coding can allow an imperfect communications
system to send a message perfectly. Von Neumann and colleagues showed that digital coding can
allow imperfect circuits to calculate perfect answers. And the ribosome demonstrates that digital
coding allows imperfect molecules to build perfect proteins. This is how the living things around
you, including you, form from atoms on up. It's necessary to precisely place 10^25 or so atoms
to make a person, an ongoing miracle that is renewed in every on every day. The role of error
correction in fabrication is as close as anything I know to the secret of life.08

The discovery of building with logic is actually a few billion years old; it's fundamental to the
emergence of life. Current research is now seeking to do the same with functional materials,
creating a fundamentally digital fabrication process based on programming the assembly of
microscopic building blocks. 09

We can now see how digital materials could be utilized and how they differ from analog

counterparts. However, it is probably necessary to further describe why digital materials would

be inherently useful as building blocks for our physical world. To do this we can imagine an

example of using bricks to build a wall. If the wall is sufficiently small we should be able to

successfully build a straight wall. However, if the wall increases size dramatically, such that we

have 10^23 parts, or the desired output of the wall is incredibly complex, we won't be able to

simply rely on the information-less and error prone material of a brick. We could then utilize a

new type of brick, one that contained information within its material. Information that would

instruct us where to place the brick, how it relates to the previous bricks, check for errors in our

placement and guide us in the right direction for achieving our extreme complexity. This type

of material would inherently require some form of digital logic embedded within its material
06 John Von Neuman. Theory of Self-Reproducing Automata. 1966.
07 Neil Gershenfeld. Fab.
08 Neil Gershenfeld. Fab.
09 Neil Gershenfeld. Fab.
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parts to benefit from the previously outlined advantages of digital systems (discrete information

transfer (0 and 1) , increasing perfection of the system as it scales and minimizing the required

information/accuracy to achieve immense complexity), thus offering self-guided-assembly for

large, complex, physical structures.

George Popescu and Neil Gershenfeld have defined a number of key aspects for what makes a

digital material. The essential properties are listed below:

* the set of all the components used in a digital material is finite (i.e. discrete parts).

* the set of the all joints the components of a digital material can form is finite

* the assembly process has complete control over the placement of each component'0

Gershenfeld goes further to explain that we can easily send 1 0^23 bits of information, then asks,

can we successfully build structures with 1 0 A 2 3 number of parts?"

This thesis will attempt to infuse the outlined beneficial characteristics of digital information and

materials/fabrication for self-guided-assembly of complex structures. In the next section I will

outline the current problems associated with our construction/assembly systems, then look at a

number of relevant case studies that have attempted to infuse digital information for assembly.

"Bits to Atoms and Atoms to Bits" - Neil Gershenfeld

10 George A. Popescu. Digital Materials for Digital Fabrication. (Masters of Science Thesis. MIT, 2007)

11 Neil Gershenfeld. Fab.
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01. (30) 4'x 8'Polyethylene sheets to be CNC milled and assembled by hand

Given the increasing complexity of the physical structures surrounding our everyday

environment -- buildings, machines, computers and almost every other physical object that

humans interact with -- the processes of assembling these complex structures are inevitably

caught in a battle of time, complexity and human/machine processing power. If we are to keep

up with this exponential growth in construction complexity we need to develop automated

assembly logic embedded within our material parts to aid in construction. In order to embed our

parts with assembly intelligence we must first understand processes of assembly, the types of

intelligence that are necessary and the mechanisms required to build such systems.

Expanding our notion of digital materials, as discussed previously, we can see that there is an

opportunity to embed information into our material parts in order to accomplish useful and

complex overall configurations from simpler unintelligent and inaccurate parts. This is the
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fundamental backbone of this thesis, through which I will demonstrate a response to increasing

difficulties in assembling increasingly complex structures. I will argue it is not that we should

reduce the complexity of our built structures or increase the complexity of our material parts.

Rather, it is the opposite, we should reduce the complexity of our parts to only include essential

information; information that will guide, direct and be discretely transferred with redundancy and

resultant accuracy for successful self-guided assembly.

The cutting edge technology surrounding the construction industry increasingly strives to make

larger and more complex machinery to build smaller-than-the-machine parts with imperfect

strategies. They fight precision issues with motor/sensor feedback, material tolerances

and inevitable machinery fatigue. Before even taking the parts off the assembly line, the

machines are fighting accumulating error from imperfect tools, measurements and continuous

information. 2 The number of unique elements increases everyday as we read yet another

argument for mass-customized building components.(See Figure 02) Likewise, assembly

teams fight man or machine hours to physically assemble these complex systems with accruing

construction tolerances, seemingly approaching intractable problems. All of these systems are

fighting an uphill battle, one that we can compare to the analog telecommunications industry's

attempt to fight error by improving long-distance telephone lines, trying to reduce noise and

"ever-more clever ways to send their signals."" As previously emphasized, we can learn a

tremendous amount from the paradigm shift of digital information, therefore, we must embed

digital information into our material parts to similarly take advantage of discrete information

transfer, resolving error propagation and simplifying assembly sequences.

12 Neil Gershenfeld. Fab.
13 Neil Gershenfeld. Fab.
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Figure 02. 4'x 8'Aluminum sheets, CNC milled and assembled by hand 2796 individual parts with 5375 rivets.

The information required to build the complex geometries that flood our built environment

embody local, geometric, decision making. Each piece, at the very least, must be numbered

and named with the appropriate nomenclature. This number should either aid the assembler

in describing the proper 3D orientation/position or should indicate the associated drawing/3D

model that will further instruct assembly. Aside from the nomenclature and drawing information

the user needs to be able to orient themselves in reference to the drawing and 3D model such

that they can accurately understand the local orientation of the material part. For example, if the

user has correctly identified the piece and its local adjacent pieces but has incorrectly located

them with respect to the global geometry they may incorrectly place the parts, force the parts into

place or consequently destroy the overall configuration. At each step the assembler needs to be

able to know which piece is next, be able to find that piece in a soup of thousands or hundreds of

thousands of other unique pieces and properly orient themselves as well as the specific piece. All

of this information is directly stored in the user and at best can be partially stored in a numbering

system to be accompanied by a set of drawings or 3D models. Hence, we are losing a battle

against complex physical geometries and we must find ways to let the materials speak to us and

speak to themselves in guiding their assembly, successfully and effectively.

The systems of assembly that are prevalent today include the previously mentioned mass-
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customized parts, electromechanical building materials and large machines to build small parts.

Mass-customized parts can be beneficial because they can allow the parts to be assembled in

only one specific way. However, this technique leads to inevitable failure when you are required

to spend time finding each piece in a soup of parts. Steps are being taken to better encode the

information for finding parts in systems such as Radio Frequency Identification (RFID) and

barcode technologies. 4 However, these fall short of the information required on site to position

each piece in the appropriate place. The second assembly system steps in to fill this gap with

machines that assemble parts or deposit material. For example, Contour Crafting, robotic arms

or any number of future robotic assembly systems demonstrates the vision to build complex

machines that will save humans from excessive labor and mental anguish with our complex

structures." Immediate limitations like the scale of the machine versus the size of the part, cost,

torque and errors/tolerance directly question the feasibility for extremely large-scale projects.

There is a plethora of contemporary research on self-assembling robotics (that will be covered

in the next section) from ID chain robots to lattice robots, even 3D printing conductive and

non-conductive materials that are addressing the idea of robotic material parts to solve complex

assembly issues. Reconfigurable robotics has extremely useful advantages; programmability,

functionality and geometric versatility, however, many of these systems fail in scalability due to

the expensive start-up costs, expert development and repair teams required and insistent failure

with each additional device.(See Figure 03) Consequently, robotic building parts seem idealistic

and inevitably prone to failure either from cost, technological limitations or inevitable failure

with thousands of electromechanical devices. The question then becomes, how can we embed

the advantages of reconfigurable robotics and Programmable Matter to large-scale physical

structures without the reliance on electromechanical devices? This thesis will attempt to answer

this question by embedding digital information into the geometry of passive mechanical material

parts.

This thesis will further outline ways to implement digital information into material parts through

14 Schneider Mike. Radio Frequency Identification (RFID) Technology and its Applications in the Commer-

cial Construction Industry. (University of Kentucky. April 24, 2003).
15 Contour Crafting. http://www.contourcrafting.org/.
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a specific mechanical module and the implementation of digital NAND logic for assembly

information when building complex systems part-by-part. I will emphasize the benefits of

building with digital materials and the potential for a new paradigm of computing through

construction - letting our material parts compute the shapes we want to build. This would

allows us to eliminate the infrastructure of large-machines, electromechanical parts or even the

off-site computing power currently required to generate and build complex physical structures.

The material parts actually compute, encoding local decision making and assembly sequences

through self-guided assembly of Logic Matter.

Figure 03. 8 Person team: Designers, CS, EE, MechE & 16yr old prodigy.
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Introduction

The following section elaborates on the definition of digital materials by looking at four

examples of related work that emphasize contextual solutions to similar problems of physical

assembly, fighting assembly time and error while utilizing the benefits of discrete information

transfer.

Mechanical Self-Assembly
(C. Babbage, A. Turing, L.S. Penrose, J. Von Neumann) - 1950's

Von Neumann initiated a quest to duplicate the amazing ability of natural systems -- DNA/RNA

-- to self-replicate and self-assemble. Developed after the introduction of digital information,

by Shannon and Von Neumann in the 40's, self-replication was examined through a theoretical

perspective with complicated automata models.16 Penrose followed suit by simplifying the

elements for self-assembly and articulating the essential principles:

1. Each unit must have at least 2 states

2. The activated structure must have defined boundaries (beginning & end) - Preventing them

from attaching to the wrong units - non-aperiodic

3. Kinetic energy must be captured and transferred to potential energy

4. Each activated unit must be capable of communicating its state to another unit with which it is

in close contact

5. Must ensure eventual unit contact & latching.

+ Release Mechanisms17

16 John Von Neuman. Theory of Self-Reproducing Automata.
17 L. S Penrose. Self Reproducing Machines. (Scientific American vol.200: pp 105-114, June 1959).
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Penrose's principles lead to the development of his physical implementation of a mechanical

latching system for self-assembly.'I The mechanical latches had two initial units that could be

set to an arbitrary string. A series of additional latches would be loaded into a track and finally

agitated to provide the energy to actuate the latches. As the latches came into contact with

one another, a duplicate of the initial string would be generated. 9 Penrose and Von Neumann

demonstrated that the essential qualities for natural reproduction and cellular self-assembly were

possible in mechanical systems with real world applications.2 0

(V(

Noi

C cj d

I 1W

Figure 04. Mechanical Self-Assembly - L.S. Penrose

18 Penrose, L. S. Self Reproducing Machines.
19 Penrose, L. S. Self Reproducing Machines.
20 Saul Thomas Griffith. Growing Machines. (PHD diss. MIT, 2004).

.................... ...... ................................. : :: r.-
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Biffiard Logic
(E. Fredkin, T Toffoli) - 1982

Von Neumann and Penrose's work on self-replication introduced the potential for physical/

mechanical elements to transfer information or arbitrary strings. Fredkin and Toffoli in 1982

introduced the possibility of actually computing digital information transfers through physical

materials. In their work, billiard balls were demonstrated to have the capability to function as

digital logic gates. The hypothetical billiard balls took two inputs( or physical transformations

representing input) computed and realized a final physical transformation in correlation to the

output. This demonstrated that we can actually discretize the information transfer between

a seemingly continuous environment.2 ' Further, physical environments could now actually

function as computing devices, opening a world of possibilities for digital logic. This thesis

was heavily inspired by the notion that we could infuse physical materials with digital logic

and attempts to go further by implementing the benefits of discrete information for physical

assembly.

Ap

Figure 05. Billiard Logic - Interaction gate - (c) delay (d) nontrivial crossover

21 E. Fredkin and Toffoli, T. 2002. Conservative logic. In Collision-Based Computing, (A.
Adamatzky, Ed. Springer-Verlag, London, 47-81).
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Progmmable Matteir &
Self-Reconfigurable Robotics
(N. Gershenfeld, J. Jacobson, S. Griffith, H. Lipson, D.Raus, K. Stoy etc.) - Current

Stemming from the idea of mechanical self-assembly, a number of influential people and projects

have developed attempting to program materials/robots to reconfigure, self-assemble and

replicate. Neil Gershenfeld explains, the goal, "is to re-implement the functionality of molecular

biology in engineered materials, in order to enlarge the material set, expand operational scales,

ease design, and improve reusability and reconfigurability. Viewed from the bottom up, we

want to build programs out of, rather then into components." 22 This explanation emphasizes the

goals of a field of research called, Programmable Matter. Properly defined, the intention of the

Defense Advanced Research Projects Agency's (DARPA) Programmable Matter program, "is to

demonstrate a new functional form of matter, based on mesoscale particles, which can reversibly

assemble into complex 3D objects upon external command." 23 Put more simply, Programmable

Matter is currently realized through a variety of techniques; reconfigurable robotics, 3D printing

technologies, pick and place assembly machines any many others. The goals of self-assembling

modules are most notably achieved through reconfigurable robotics, or programming robotic

modules that move, connect/disconnect and function in a variety of ways.(See Figure 06)

The field of reconfigurable robotics is flooded with techniques for achieving actuation, flexibility,

high torque strengths to carry neighboring modules and number of other technical necessities.

The modules are usually packed with electronics and motors that allow them to hopefully

function for the lifespan of the live demo. These systems, although impressive, exciting and

approaching functionality, offer little hope in terms of scalability to large applications or complex

structures. Robotics is plagued with high costs, excessive failures in electronics or mechanical

devices and communication issues, making it less than stellar for wide-spread applications.

While the community is steadily overcoming these issues, it is important to look back at the

fundamental principles of self-assembly and self-replication as introduced by Von Neumann

22 Millibiology Project. http://milli.cba.mit.eduI/.
23 Programmable Matter. http://www.darpa.mil/dso/thrusts/physci/newphys/program-matter/index.htm.
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and Penrose as well as the simplicity of computing through physical interaction seen in the

Billiard Logic example. These examples demonstrate that it is possible to embed the same

programmability and functionality as seen in cutting edge reconfigurable robotics projects today,

without the reliance on heavy electromechanical devices. In this thesis I describe a system called

Logic Matter, as a programmable system that embodies many of the self-assembly/replication

possibilities infused in our own biological systems (DNA/RNA) while similarly, not becoming

reliant on the technologies of today, thus affording scalability and robustness.

"[I]n self-reconfigurable robots, even small problems may take a long time because solving them

involves the physical movement of modules and not just the flipping of bits."24

Figure 06. MacroBot - ID Robotic folding chain system with electromechanical actuation.

24 Kasper Story, David Brandt and David J. Christensen. Self-Reconfigurable Robots. )Cambridge, Massachu-
setts : The MIT Press, 2010).

......................... .......... .............................................



[03] Background & Context

Figure 07. Programmable Matter Cartoon - Kenny Cheung - Center for Bits and Atoms, MIT 2009

patial Computing & RALA-
(N. Gershenfeld, J. Bachrach, E. Demaine, D. Darlymple) - 2007

The idea of programmability in the physical world lead to a new model of computing called

Spatial Computing and more specifically the implementation of a programming language called

Reconfigurable Asynchronous Logic Automata (RALA). Darlymple explains, "RALA can be

seen as a generalization of traditional integrated circuits (the current most realistic model of

computing) to where circuits can locally reprogram themselves (making them universal) and

gates synchronize locally (removing the need for a global clock). We argue that a model with

all of these properties is necessary and sufficient for computing to scale optimally according

to the laws of physics."" RALA and other Spatial Computing models combine the worlds of

physical and computer science, relating to the examples of physical logic described previously.

Specifically, RALA is built upon a grid of logic operations (AND, OR, XOR, NAND, Copy,

Delete) that pass, asynchronously, information in multiple directions.2 6 This allows for a

25 David Dalrymple, Erik Demaine, Neil Gershenfeld. Reconfigurable Asynchronous Logic Automata. (MIT,
2009).
26 David Dalrymple, Erik Demaine, Neil Gershenfeld. Reconfigurable Asynchronous Logic Automata.

..........................
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distributed model of computation where the distance between modules actually equals the time

of computation, differing greatly from contemporary computing architectures. 7 This thesis

emerged directly from the idea of RALA, imagining that we could embody the same type of

distributed communication and information transfer in a, real world, physical system. This

distributed physical logic system, Logic Matter, would then be powerful for passing computed

information between modules and thus, an exciting opportunity for physical self-assembly.

_T

00 0 0

~0 0

:*o:o 004yksoo. o0 . 0o00O~c

,o~o Io o o ~ ikoo~io o 0oo~~~~~~

W Oo O O OP o O ) O 0 OP O O ~o 0 00 O 0 O ) O 0 o1 00

Figure 08. R ALA program - Matrix-Matrix Multiplication with Logic Gates as distributed computing

27 David Dalrymple, Erik Demaine, Neil Gershenfeld. Reconfigurable Asynchronous Logic Automata.
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In the previous chapters I discussed a context of work that inspires and questions whether

we can embed self-assembly logic directly into our material parts without the reliance on

electromechanical devices and processing power. In this chapter I will demonstrate that it is

indeed possible and will identify a number of key elements that enable design possibilities, local

design making and mechanical computing. I will also address the main drawback to previous

self-assembly systems -- node failure -- and how we can utilize a system called Hairy Chains as

a resolution. Finally, I will question where the intelligence lies in this system and how we can

maximize the material intelligence by introducing digital information within our material parts.

Imagine doing a jigsaw puzzle with a large number of pieces. You look at the picture on the box

and try to find pieces that match the colors in a particular area to give you clues as to the pieces'

orientation. Standard jigsaw puzzles have all unique pieces that should each fit correctly in one

position. However, now imagine that we remove the image from the puzzle (or similarly, throw

away the box). This eliminates all heuristics for searching/deciding which piece to place next.

You are now left with only a brute force, trial-and-error, method, thus the puzzle has essentially

become intractable. But, what if the pieces told you the next moves to make? When you place

a piece, it would check the previous pieces and then instruct you which piece to place next. This

wouldn't be a very fun puzzle; however it would be an extremely efficient way to successfully

assemble a complex puzzle. If only our pieces could tell us the next steps!...
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Logic for Assembly

With the goal of designing a system that can assemble itself, or instruct another to assemble

itself, the obvious initial questions are; how to store information, how to translate information,

what type of information is needed and how to make local and global decisions. We need a

system that can be informed and inform neighbors, one that can translate input to output as a

physical transformation and one that has a limited number of states. Boolean logic perfectly

embodies these characteristics, specifically digital logic gates, with the unique function of

passing information between gates while combining gates to achieve greater global functionality.

Boolean logic gates take two elements of input, or two voltages (OV & +5V), and performs one

of seven potential logic operations. The possible Boolean logic operations include: NOT, AND,

NAND, OR, NOR, XOR and XNOR.28 Each of these operations takes two streams of input

(voltages or bits) and provide a single output corresponding to the logic operational result of the

two inputs. For example if we are using an AND gate then it requires that both inputs are [1] in

order to return a result of [1]. (This is commonly expressed as saying, "input 1 AND input 2 need

to be [1] in order to return a [1]").

The question then is, why is logic usefulfor assembly? We can answer this by looking at the

characteristics of Boolean logic's input and output information and how this can correspond

to assembly. Logic gates are unique because they provide output not solely based on input,

rather it is based on the combination of the two inputs as well as the description, or decision,

of its own type. This means that the type of gate essentially dictates how it should react given

any one of four input possibilities. Each gate will react differently. For assembly this means

that the placement of a brick in a wall would not be placed at random or based directly on the

last two placements of a brick, rather it would be placed based on the combination of previous

placements as well as an internal/local deciding factor. This decision is physically stored when

the brick is placed, it then acts to potentially inform the next bricks. This in effect means that

28 Paul Scherz. Practical Electronics for Inventors. (New York: McGrawHill, 2000).
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the materials we use to build with are actually informing the next assembly sequences. No

interpretation or error from the user, only pieces informing pieces. Four input possibilities and

only 2 output possibilities, or four brick configurations to dictate 2 possible placements. Thus,

logic provides the local decision making for our system of self-assembly.

Utilizing the correct type of logic gate at the correct moment will enable us to turn right, left,

up or down based on any number of previous configurations. If this is applied to a physical

system (without a processor) one can see how utilizing a geometric/physical form of a logic

gate would enable the system to instruct the next steps for assembly. It is then essential that we

can change the type of gate throughout the system, or possibly utilize the effects of any of the

gates while still only needing one module. This can be done with combinational logic, where

gates are combined with themselves or others to create different gates and higher functionality.29

For example, if you take the output of a NAND gate, split the result, and use it as two inputs

for another NAND gate you can create an AND gate. 0 In this way you can begin to see how a

single gate can be utilized to have any number of local decision making possibilities based on

combinations of previous inputs.(See Figure 09)

The NAND mechanism is the perfect choice for a gate that can utilize combinational logic

because it is considered a "universal" gate, or a gate that has the ability to create any other

gate (NOT, AND, OR, NOR, XOR, XNOR) by combining a series of NAND gates in different

configurations.." (See Figure 11) The universality also means that through repeated inputs we

can get all possible outputs (geometric transformation) and build upon computing mechanisms in

sequence. The next question is how to utilize the functionality of the NAND mechanism within

an individual component, without the reliance of electronic components or motors.

29 Paul Scherz. Practical Electronics for Inventors.
30 Paul Scherz. Practical Electronics for Inventors.
31 Paul Scherz. Practical Electronics for Inventors.
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A B
0 0
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1 0
1 1
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Figure 09. NAND Truth Table with A & B inputs.32

Figure 10. NAND Venn diagram
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Figure 11. NAND Equivalents ofAND, OR, NOR, XOR, XNOR.'

32 Paul Scherz. Practical Electronics for Inventors.
33 NAND Venn Diagram. http://en.wikipedia.org/wiki/File:VennFTTT.svg.
34 Paul Scherz. Practical Electronics for Inventors.
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As the previous example demonstrated, NAND gates are universal, that is they are able to

be combined to form any other gate.35 This is a useful feature in that it allows a user to have

only one type of device and still maintain all possible combinations of input/output. Next I

need to infuse NAND functionality into a geometric unit that allows all possible input/output

configurations and maintain scalability. In order to allow scalability in either direction, large

or small, the unit should not rely on devices, electronics or costly additive parts; rather the

unit should deploy geometric principles that can scale to any size and maintain the mechanical

functionality. This section will explain the geometric principles that will allow the NAND

mechanism to be utilized in a scalable entity.

As discussed in Section 03 on Billiard Logic and Bubble Logic, it has already been demonstrated

that digital logic can be comprised of a physical geometric entity (or relationships between them)

without relying on the traditional transistor/electronics component construction. 6 However, if we

want to be able to describe useful geometries and construct a variety of global structures then we

need to have a geometry that at least packs space perfectly. The geometry must also allow for

the appropriate number of input/output faces that results in the overallfanout of the gate, or the

amount of influence one gate has on the following gates." Finally the geometry of the unit must

embody a geometric transformation in direct relation to the different outputs of the NAND gate.

The perfect realization of these principles is the right-angle tetrahedron.(See Figure 12) First,

the right-angle tetrahedron has the wonderful quality of packing space perfectly and being able

to assemble in a variety of ways to form everything from chains to volumes. The right-angle

tetrahedron also has four identical faces with two opposing axis. The four faces are split into two

groups of two faces straddling the axis that are rotated 90 degrees about one another. Let two

of the faces represent inputs and two of the faces represent outputs. This affords two inputs and

two possible outputs, although at any given time only one of the output faces will be occupied,

depending on the series of inputs received. The occupation of one of the output faces creates

the local geometric transformation (turn left, right, up or down) that is needed to be able to

35 Paul Scherz. Practical Electronics for Inventors.
36 Paul Scherz. Practical Electronics for Inventors.
37 Paul Scherz. Practical Electronics for Inventors.
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describe useful geometries. This transformation can be performed completely passively through

geometries that either restrict or permit access to the face, and thus only allows the user to place

the tetrahedron on the appropriate face, according to the inputs and the NAND functionality.

Finally the right-angle tetrahedron geometry allows a single chain of NAND mechanisms to built

in sequence, or cascaded thus allowing combinational and sequential logic.38

Figure 12 shows the proposed NAND geometry, the right-angle tetrahedron. This geometry has

the ability to compose all of the functionality of a digital NAND gate directly within the single

unit: input, output and digital gate. Depending on the placement of the unit, the geometry can act

in one of the three circumstances, providing information to a neighbor or receiving information,

storing the state of the input and deciding the transformation of the next step. In order to fully

operate the NAND geometry there needs to be two input faces attached to a Gate unit, thus,

three units need to be present to force the transformation of a fourth unit. The specifics of the

mechanism will be described further in Section 05, however, it is important to emphasize the

elements of the base geometry that provides for the possibility of having input, output and

decision making in a single unit.

38 Manu Prakash and Neil Gershenfeld. Microfluidic Bubble Logic. (Science 315 (5813), 832. 9 February
2007).
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Output A - [1]

Output B - [0]

Input B - [0 OR 1]

InputA - [0 OR 1]
Figure 12. Right-angle tetrahedron demonstrating the functionality of a NAND gate through input, output and gate
decisions. Output A and Output B are the two output faces, either [0] or [1]. Input A and Input B are the two input
faces. The input faces can both receive either [0] or [1] at any time. The input faces will dictate the decision in the

Gate unit as to which face (Output A [1] or Output B [0]) will be utilized, direcity based on the NAND truth table.
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Figure 13. Single path assembly of a random growth showing redundant inputs. Single path shown in orange/green
and redundant nodes shown in black.
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Single Path & Redmdancy

The assembly of NAND geometries follows in the sequence of two inputs, one output with an

open face for a second input leading to another output etc. This perpetual cycle results in a

chain-like configuration of input and gate units. The input units are completely redundant and

serve multiple purposes. If the redundant units were removed we would still be left with a single

path of gate units folding in all three dimensions. However, the system would lose a number of

important characteristics that are afforded by the redundant input elements. This section will

look at the qualities of the single path (or chain) configuration as well as the importance of the

redundant tetrahedrons.

In Section 03, I discussed the domains of self-reconfigurable robotics and Programmable Matter

and looked a number of promising opportunities emerging. A number of common robotic

configurations were also discussed (chain, lattice and hybrids), each with positive and negative

attributes.39 It was emphasized that many of these systems rely heavily on electromechanical

devices to solve a myriad of tasks, however, especially in chain configurations; they are limited

in their capabilities to survive mechanical or electrical failure. Many of the chain robotic

systems are limited to the capacity of strength and robustness within each module because if any

of the modules fail then the entire system fails." This is commonly found in any chain or rope

systems. For example, if any point in a rope fails, then the entire rope is broken. Alternatively,

the chain configuration, or single path strategy, has a number of potential benefits due to its

simplicity and versatile geometry.

Geometrically the single path technique allows a one dimensional line to fold into any ID, 2D or

3D configuration simply by folding any node in the chain by a specified angle. This allows the

ID path to describe any number of 3D geometries fairly easily. This also means that the entire

description of complex geometry can be compressed into a single string of information (or joint

39 Kasper Stoy, David Brandt and David J. Christensen. Self-Reconfigurable Robots.
40 Kasper Stoy, David Brandt and David J. Christensen. Self-Reconfigurable Robots.
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angles). The single path technique also means that the physical construction of the system is far

simpler than a lattice type structure where nodes need to connect to multiple neighbors and loads

are distributed in multiple directions. The single path provides an exciting platform for quick

and easy development of a physical and programmable device as well as simplified geometric

descriptions (programmable sequences).

The previously described NAND geometry, the right-angle tetrahedron, follows suit with

the single path typology by continually adding to the last open face and growing in a linear

motion. The linear growth allows for two possible turns at every step; right, left or up and down

depending on the orientation in 3D space. Similarly, this single path of NAND geometries

benefits from the qualities of a single path programmable chain robot, however it attempts to go

a few steps further by introducing redundancy to fight the problem of single node failure. The

input tetrahedrons serve a number of roles through redundancy; structural robustness, work-

arounds for failure and branching opportunities.

The main benefit of the redundant input tetrahedrons is robustness for node failure. As the chain

example illustrates, any node on a chain that fails can lead to entire system failure. However,

if we have redundant tetrahedrons clumping around the outside of the single chain then we can

work-around node failures. I have called this system of redundancy the Hairy Chain model.

Once a unit has failed, either due to mechanical, material or structure failure, the information

and structural loads can be rerouted through the redundant units and around the failure. This

allows the entire system to become more robust and far more scalable. System redundancy

can be seen in a number of biological processes, most notably in DNA sequences with 64 total

nucleotide triplets for only twenty amino acids.4' Likewise, the redundancy of the Hairy Chain

system allows a single path to be scalable, robust and feasible for a variety of applications, while

providing more security that the system will survive several types of system failure.

Similarly, the redundancy of the Hairy Chain provides structural robustness through

41 Neil Gershenfeld. Fab.
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interconnected redundant tetras. As the single path turns in 3D space, the redundant tetras will

start to touch one another (not self-intersect). The interconnection of the tetrahedrons allows the

structural load paths to be distributed outside of the single path and actually branch to other parts

of the chain. Unlike traditional chain systems, this structural redundancy can actually create

networks of structural paths and potential scale to larger loading conditions and aggregation

scales. On the same lines as the network of load paths, the redundant units provide a face for

potential branching. This goes outside of the traditional chain schemes, however if we are

able to branch the single path into a network of paths then it will be possible to describe large

geometric configurations faster and more efficient. For example, if we want to build a surface

it is far easier and more efficient to construct it with opposing directions (U & V), similar to

weaving, than it would be to describing with a single curve (rastering back and forth). The

chain typology is simpler in the sequence of moves and description (i.e. left, left, right, up, up,

left, left etc) when compared with a branching technique, but may be far less efficient. The

redundant tetrahedrons at least provide the opportunity to branch the chain typology into larger

aggregations and circuit possibilities.

The proposed Hairy Chain technique offers a number of beneficial qualities for system

robustness when compared with traditional chain robotic systems. I have outlined the benefits

of redundancy for structural robustness, work-arounds for failure and branching opportunities.

These techniques are specific to the NAND geometry that was previously described but can

be seen as opportunities for pushing many traditional programmable chain systems toward

larger applications and real-world implementation. After demonstrating the valuable qualities

of digital materials and analyzing a number of background examples I have set forth the

groundwork for utilizing the NAND geometry, a right-angle tetrahedron mechanism, through a

single-path redundant framework. In the next chapter will explain the specific implementation

of this system, called Logic Matter and will go more in depth with programmability, geometric

descriptions and computing assemblies.
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User Programmabiity

Logic Matter is a system of physical modules that can be combined with one another to locally

compute the location of a next move based on the previous moves. This system of building

blocks contains both local and global information. The local information is built into the

mechanics and geometry of the module. Each module is a functioning NAND gate and therefore

takes in two elements of input (two previous modules plug-into a single module) which then

dictates the possible placement of the next module. For example, if two modules are placed in

a given orientation that represents [0,0], when you plug-in the 3rd module it would read this

[0,0] of the previous modules and dictate the orientation of the next module to be in the [1]

position. This is taken from a NAND truth table and thus demonstrates the functioning NAND

mechanism.(See Figure 09)

If the local information is the geometry and mechanism of the NAND gate then the global

information is the sequence of input values that add up to any large structure of these modules.

For example if we are attempting to describe a sphere with these modules we would need to

locally know how to place the modules in relation to one another, making sure that each module

is in the accurate position, orientation and has been placed without error. We would also need to

know the global, step-by-step, inputs to repeat hundreds of times in order to accurately describe

the surface of a sphere. The global information can come from a number of sources such as

the physical environment or a pre-determined pattern of 0 and 1 inputs etc.. This section will

attempt to describe a few of the possible sources for global information.

It is important to question how a user could actually program, or construct, these large, complex,

structures. To do this we should look at the information, or construction sequence, that is

required to build such structures and ask where that information might be stored. To make the

point slightly more clear, lets quickly look at the example of building a brick wall. In traditional

brick construction, the global information is solely stored in the human, the brick layer. He must
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know where to place each brick, how many bricks to place in total, how to check for errors and

what local and global configurations are desired. At the opposite end of the spectrum is a fully

automated robotic system that expedites this process by taking a desired goal and interpolates

each move required to achieve this configuration. However, as I will describe, the robotic system

is fundamentally no different than the traditional brick layer in terms of the local and global

information required. I should also note that this robotic system remains an analog system and

thus does not gain any of the important characteristics of a digital system (discrete information

transfer (0 and 1) , increasing perfection of the system as it scales and minimizing the required

information & accuracy) as was discussed in Section 01. Let us expand this idea and dive

deeper into understanding the importance of local and global information for constructing any

complex system.

Figure 14. (c) Gramazio & Kohler; ETH Zurich4 1

42 Gramazio and Kohler. http://www.gramaziokohler.com/.
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User as Information

As seen in the brick example, a pattern, or algorithm, may be defined that is followed step-by-

step to add up to complex global solutions. This pattern may take the form of a sequence of

O's and I's, or other numerically controlled sequence in the case of a robotic constructor, or

simply a set of building instructions for a human. This approach relies solely on the person/

machine constructing the system and puts all information/responsibility in their hands. As Alan

Turing explained, a man doing mathematical calculations has only two pieces of information,

mathematical facts or truths, and instructions for performing the proper steps in the proper

sequence. We can easily see how this method of utilizing local truths and a sequence of steps

could lead to global solutions. This directly relates to the two previous examples of the human

brick layer and the robotic brick layer. Both of these examples take a pattern of moves and

execute them repeatedly, hopefully achieving the goal configuration (as long as errors don't

accumulate without the human or robot noticing). The robotic system only speeds up the human

process, not adding any of the benefits of a truly digital system. We could slightly improve this

system if we utilize a "smarter" robotic constructor that utilizes closed-loop feedback to reduce

and adjust to errors. Likewise, the "smarter" robotic system might also compute online and be

able to react on-demand to obstacles or other live failures.

This direction quickly seems like an uphill battle, fighting the amount of motors and electronics

one can fit on the robotic system, fighting the overall cost of the system and the number of

experts needed to build such a system as well as the scale because your constructor seemingly

needs to be larger than the structure your are building. All of these factors lead to the conclusion

that these systems do not scale well (extremely big or extremely small in terms of the number

of units or the size of each units), although they can demonstrate simple procedures that lead

to globally complex structures. If we remember that goal is to embed this information into our

physical materials as to minimize the information required for the human/constructor, then we

should try to further reduce the information required by the user.

43 H. Wang. 1965. Games, logic, and computers. (Scientific American, 98-106, November).
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Environment as Information

The second obvious source for the required global information comes from external conditions.

This means that some physical factors of the environment are influencing the input at each step.

For example if we look at gravity to directly influence the placement of each module we might

first place a module and look to see if it is falling based on gravity and its current orientation.

If the module is falling place a 1, otherwise place a 0. (i.e. A module placed in space may fall

or not fall depending on its 3D orientation as well as the other supporting modules around it).

Another well-known example is iRobot's Roomba@ robotic vacuum cleaner.(See Figure 15)

The goal configuration is to maximize the coverage of any given room therefore cleaning the

most possible square footage. It might not seem impossible since the robot doesn't know what

the room looks like or what obstacles lie its path. However, we can understand fairly well how

the Roomba@ works simply by looking at the information required and where it is stored. In

this case, the robot may only know to move forward until it hits something, then turn a given

angle and move forward again. Alternatively, the robot could be programmed to spiral or follow

walls until collides with an object, then change angles and continue. If the robot repeats these

context-specific procedures for an extended period of time the amount of square footage covered

(cleaned) should approach 100%. This example well highlights the point that information for

complex global configuration may be stored in the external environment and can be utilized to

inform local moves.
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Computing Through Construction : Logic Matter

We have now seen how local and global information are required to build any complex system

and a number of ways to implement both types of information. I have shown how we can embed

the local assembly information into a physical NAND mechanism through a system called Logic

Matter. From the previous examples we saw ways to implement global information from the

environment to simple pattern algorithms, external computing/robotic devices and globally

specific units that constrain the possible configurations. Now I should expand our understanding

of digital information and demonstrate how to utilize the NAND functionality as means for

embedding the global information for desired goal configurations.

The tools to measure each of the previously described systems should be based on (1) the amount

and type of information the user/constructor needs in order to build any given configuration, (2)

how it restricts or allows error propagation and (3) how the system signifies progress or if the

goal state has been reached. As seen in Figure 17, each system has different types of information

required. I will now demonstrate the programmability of Logic Matter and demonstrate a simple

execution that encompasses the benefits of such a system.

Figure 17. Chart Comparing Types of Physical Programmability & Information Required.

User as Info. Environment as Info. Global Specific Unit Compute as Building

Example Robot Brick Layer Roomba@ Curved Bricks, Logic Matter
Alum. Installation

Amount/Type Location, Orientation, Local Depends on Unit Location, Orientation No Local - NAND Mech.

of Info. Global Pattern No Global Which type of Brick?, Global as Computing
Global Pattern

Error Errors Propagate, Depends on Unit, Error Trapping by Redundancy Stops Errors
Propagation? Potential Closed Loop No Inherent Error Closing Loops, Unit Discrete Info. Passing -

Mechanism Stops Error Stops Errors

Signifies None - Must Know None When Pieces are Gone Redundancy Stops Errors
Progress? Global at All Times Goal is Complete Discrete Info. Passing -
I I_ I_ I IStops Errors
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Figure 15. iRobot Corporation C2010. All Rights Reserved"

Globally Specific Unit

The next logical step would be to implant all information into the material such that the material

specifies exactly the desired output. This may be done with a very specific type of brick that

is designed specifically with a desired goal in mind. Alternatively this could be done with a

minimum number of bricks that each respond to different conditions (i.e. corner conditions,

straight portions, curvature etc.). Each brick would then need to be utilized in a very specific

sequence. This type of system has the possibility of trapping errors from propagating simply by

closing loops. For example, if you are constructing a cylinder out of metal strips that overlap

slightly, you can guarantee that the cylinder will be constructed accurately as long as you force

the last two pieces to touch.(See Figure 16) The cylinder may have local errors within it, but

once the last two pieces connect then you know that you have at least contained the errors

within the cylinder, i.e. closing the loop. Regardless of the error trapping, this type of system

is contrary to our goals because it actually adds more information required at each step. The

constructor would now need to know exactly which brick to use, where to place it, how to check

for errors and where they are in the overall configuration.

44 iRobot Corporation. http://www.irobot.com/.
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Figure 16. Skylar Tibbits, Marc Fornes - Installation in Paris, FR. 500 Aluminum strips w/ aluminum rivets.

If we look at the first suggestion where we only have one brick but it is designed for a very

specific application then we can again remove the decision of which brick to pick-up. For

example, lets say we had a curved brick that could go in two orientations; concave and convex.

Designed for the construction of one dimensionally curved surfaces or walls, this brick would

allow us to decide which orientation to place the brick. This removes one piece of information

from the user, which brick to pick up, because we only have one brick. The main drawback to

this system is that the brick is extremely specific for the type of overall outcome desired. We

can easily see how this could translate to make a sphere or a curved wall, but what if we want

to make a straight wall? We would not be able to use the concave and convex brick for every

application; rather we would need to design specific bricks for each structure. Thus we can see

that we cannot entirely embed the local and global information within our bricks without having

some type of computation embedded in our system that defines the next moves and necessary

pattern. We saw algorithms in the case of the human/robotic brick layers, but could we actually

embed these algorithms directly into our system rather than in an external process?

.........................................
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Previously I described Logic Matter as a right-angle tetrahedron with opposing input and output

faces that represent 0's and l's. I also explained that one needs to place two inputs (either [0,0],

[0,1], [1,0], or [1,1]) into the tetrahedron, then constraining the possible output as the resultant

0 or 1 based on the NAND truth table. This is all constructed through a physical geometry/

mechanism that represents the system's local information. The local information includes,

where and what orientation to place the units as well as the resultant input/output. The unknown

variable is the global information. To incorporate the computability of the system for the global

information we can look to an example where we utilize a binary increment as the global pattern.

The binary increment could simply start at a given number, lets take 128 which in binary is

10000000. Then step-by-step the user would decrement the input values simply following

the binary numbers. If familiar with binary numbers this is as simple as counting ordinary

numbers, and if not, this amounts to following a very simple 0 and 1 pattern that gradually

shifts places (carry bits), much like an abacus or carrying numbers when adding/subtracting.

(See Figure 18) This sequence of decremented binary numbers becomes the global pattern of

inputs. At the moment this seems to be very similar to the original example of the robotic brick

layer following a simple pattern/algorithm. However, the binary decrement provides a few key

opportunities specifically when implemented in Logic Matter - NAND geometries. First, the

binary decrement system tells us exactly when the goal configuration has been reached. This is

signified when the user reaches a point where it can only place all O's and there is no carry bit. In

the case of 128 it would be 00000000. This would only happen after 128 steps. Thus, we do not

need to know anything about the global configuration or measure our progress, we are directly

signaled when we have reached the goal. Next, this system reduces error propagation by using

the binary counting and signifying exactly the next moves rather than remember an arbitrary/

random pattern. As noted in the Hairy Chain and NAND geometry descriptions, this system

forces redundancy with the input units, ultimately reducing the possibility for errors and allowing

the system to work around failure. Further, the NAND mechanism reduces errors through its

specific geometry which will be discussed in the follow sections. Finally, this system produces

global configurations through the specific input/output transformations of the geometry. The
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NAND output dictates either Right, Left, Up or Down moves, depending on the input at each

step, thus resulting in a three dimensional configuration based directly on the global binary

sequence. This binary counting technique could be expanded to any number of patterns as long

as they satisfy these criteria: (1) reduce the amount of information to remember i.e. be repeatable

or incremental, (2) should signify the termination/progress of the configuration, (3) should

dictate the next input steps without ambiguity, (4) should minimize/eliminate error. (Further

discussion will elaborate on potential global patterns that relate to a Turing machine approach,

level-by-level updating output based on memory and input combinations.) Through this example

I have outlined the programmability of Logic Matter in terms of the actual storing of information

and direct computation in the units, not externally driven. I have also demonstrated the reduction

in user information required to build any arbitrary complex configuration while reducing error

propagation and signifying goal termination. This system can be compared to the previously

outlined types of information-construction systems, weighing favorably in terms of the user

programmability and the functionality of the units. Next we will look at the potential global

configurations that can be utilized by such a system.

1 1111111111111110000000I00000000
111111©110000001111111000000001 1110000111100011110001111000
1g100 11001 B 00 110 C 100 11 01 100 1100

Figure 18. Binary Counting as Input Sequences.
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Describing Geometry

*04 *10

Figure 19. Random walk search on Sphere - Single path, green tetrahedrons are gates, white tetrahedrons are input

After incorporating local and global information, the NAND modules should be able to define

useful physical structures. In order to accomplish this goal we need to develop possible

approaches for implementation. There are three main types of geometries that can be described

with Logic Matter; 3D curves, surfaces, and volumes. The first is utilized as a technique to

describe the remaining two typologies. The second is aimed at providing a complete description

of any given input surface. This may be implemented through a variety of techniques including

random walks with greedy heuristics, branching strategies, quad-tree subdivision and many

others. The goal is to provide a simple approach to walking along a surface (with a given

module), avoiding obstacles, avoiding self-intersection while maintaining complete surface

coverage. In this case, the criteria for a successful search strategy would be to maintain a

single path of continuity or at least the minimum amount of single paths. The single path

strategy relates to a technique within reconfigurable robotics and the physical properties of the

tetrahedron modules utilized in this project.
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The next implementation focuses on the interior of a closed volume rather than the surface

treatment. The goal is to fill any arbitrary closed volume perfectly with a given module. There

are also a number of well-known approaches to fill arbitrary volumes; however, the difficulty lies

in the interest to maintain the continuity of a single path. How can we fill an arbitrary volume,

packing perfectly with only a single path? This path should be directly based on a given physical

module or brick. (i.e. a cube would tile different than a tetrahedron) Again, this single path

description of the interior of a closed volume would be then translated as the sequence of moves

for physically constructing a chain of modules (up,left,up,right,down,up,down,up or 011000100).

/8-4

Figure 20. Volume packing with single path description.

Figure 21. Final Hamiltonian path and resulting 1280 cube chain using cubic geometry on wrench solid.45

45 Jonathan Bachrach., V. Zykov, S. Griffith. Folding Arbitrary 3D Shapes with Space-Filling Chain Robots:
Folded Configuration Design as 3D Hamiltonian Path through Target Solid.
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Figure 21 shows two images from a 3D Hamiltonian Path algorithm by Bachrach et. al.. This

algorithm is applied to chain robotics with cube geometries and finding a single path description

that will search through the packed cubes, resulting in a 1 D description of the interior of any

solid 3D geometry. The algorithm works by first packing cubic voxels on the interior of any

closed solid. A similar algorithm will be covered in more depth in the next section, with a slight

modification for surface geometries rather than the interior of closed volumes. After having

packed voxels the algorithm attempts to find a single path that will occupy every possibly

position. The voxels are packed in a meta-module approach where large chunks are first placed

then subdivided evenly to ensure that each meta-module can contain a single path description.

Next, Bachrach et. al. demonstrate a method of incrementally merging, level-by-level, each of

the single paths meta-modules to form the overall single path.4 6 Bachrach et. al explain, "Paths

can be merged if they share a parallel neighboring line segment. In this case, surgery can be

performed on the two paths A and B at the parallel line segments to route the flow between the

two paths." 47 The algorithm finally outputs a single path description of any closed volume that

can be fed into a chain robot for folding sequences, allowing a chain robot to interpolate between

geometric configurations.

This algorithm has been examined and redeveloped for surface applications with a focus on a

simple search technique through the packed geometries rather than the incremental merging. The

following sections will explain further details of surface descriptions and a number of techniques

for single path configurations. Before proceeding I should discuss a final typology of Logic

Matter, that of random growth. The previous implementations assumed that we are attempting

to describe a given geometry: line, surface or volume. However, there may be instances that we

do not have a given geometry and thus should grow from local rules. This relates to a larger

field of self-organizing structures, where global patterns can emerge from only local interactions

between individual elements, or particles. 48 This may also allow useful global configurations
46 Jonathan Bachrach., V. Zykov, S. Griffith. Folding Arbitrary 3D Shapes with Space-Filling Chain Robots:
Folded Configuration Design as 3D Hamiltonian Path through Target Solid.
47 Jonathan Bachrach., V. Zykov, S. Griffith. Folding Arbitrary 3D Shapes with Space-Filling Chain Robots:
Folded Configuration Design as 3D Hamiltonian Path through Target Solid.
48 Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F. Knight, Jr., Radhika
Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss. Amorphous Computing. MIT. 2000.
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to emerge, however the goal of a growing system would be to design local interactions or

decisions for directional growth. At any given point we could impose a heuristic to persuade

the growth to move in a more/less favorable direction, thus imposing an external factor onto the

growth. Growth as a geometric typology directly relates to a number of biological systems and

can offer obvious connections to evolutionary processes to achieve higher functionality or "fit"

global configurations. The main focus of this thesis, however, will be describe known or desired

geometries rather than arbitrary growths, however, it should be noted that linear or branching

growth is certainly a potential area of exploration, one that links to many adjacent disciplines

and may offer exciting opportunities when combined with digital information and computing

possibilities.

In the following section I will explain a more focused look at surface descriptions using a

number of single path techniques. I have elected to emphasize surface construction due to its

versatility for a wide variety of architectural applications and close link to other geometries. If

we are able to sufficiently describe a surface with a high percentage of coverage one can easily

see how this can be translated to closed surfaces, thus describing hollow volumetric geometries.

I will also introduce a specific algorithm that was developed called Pack & Inverse Spiral that

appears to successfully describe any single surface geometry with a high percentage of coverage

and search characteristics with few backtracking steps.
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Surface & Random Walk

Figure 22. Random walk on sphere Surface. Single path, input & gate tetrahedrons.

Figure 23. Pseudo Code for surface descriptions through a random walk.

-Get Surface

-Do:

-Place 2 Output Gates

-For Each Gate:

-Check Dist to Closest Pt on Srf

-Check for Self-Intersection

-Select Min. Cost Tetra

-Place Unit

-Record Corresponding Input

............ ................ . ........................ : ..........
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The first algorithm that was tested for surface description utilizes a random walk and local

heuristics to simply traverse a given surface. An initial surface is given as the input for the

tetrahedron description. Starting tetrahedrons are also input with specific attention to their 3D

coordinates as they will dictate the starting position of the random walk. The first step of the

algorithm places two possible output tetrahedrons.(See Figure 22) For each of the tetrahedrons

the algorithm checks the centroid and resultant distance to the closest point on the surface. The

closest point will be the straight line distance from the centroid of the tetrahedron to a point on

the surface. This distance is compared for both of the tetrahedron centroid points. The closest

distance is selected and the tetrahedron is stored. A last test is performed which will iterate

through all of the stored tetrahedrons to check if the latest tetrahedron has ever been occupied

previously (meaning the 1D chain has intersected itself). If the tetrahedron is found in the

stored list then the alternative output option will be selected. Otherwise, the closest unit will

be selected and the alternate tetrahedron option is removed. This process repeats until a exit

condition is met (percentage of coverage, number of iterations or until the computer crashes!).

This type of algorithm is hardly successful at covering the surface evenly or thoroughly, it is

also computationally expensive and relatively unintelligent as a means for searching the possible

placements to cover a surface. However the code is sufficiently easily to write and the output

can be more dynamic and spatially interesting when compared with the more successful surface

covering techniques.

The random walk algorithm was quickly transformed into a slightly better performing technique

- surface rastering. The surface rastering technique is actually a simple extension to the random

walk, only differing in the heuristics for deciding the next output tetrahedron. I start this

algorithm start by rastering over the entire surface and generating a single string of points that

walks back and forth across the U & V directions of the surface. These raster points are stored

in an array and then fed through the random walk algorithm to decide the local best move. At

each move, both possible tetrahedrons are again placed and the centroids are obtained. The

distances are now checked, not from the closest point on a surface, rather, I compare the distance
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from the centroid to the next point in the raster point array. Whichever tetrahedron has a smaller

distance to the current raster point is placed and stored. This technique would seem to work

quite well given that it makes a local decision that has already been pre-computed to determine

a global description of the surface. However, this places a heavy burden on the spacing of the

raster points in both U and V directions. If the spacing of the raster points is too small in either

direction then the tetrahedrons will start to clump up and veer off course. They may also start to

self-intersect one another or actually block the 1D chain from moving forward and alternatively

have to go in another direction. This will perpetually get worse as the ID chain moves farther

and farther from the desired raster point because the raster points are iterating at a constant speed

regardless of the speed and success of the tetrahedron placements. Conversely if the tetrahedron

spacing is too great then the tetrahedrons may also start to waver from the raster path because

they cannot actually move in a straight line and will thus move in larger diagonals between

points.(See Figure 24)

The first fix would seem to be linking the speed and spacing of the raster path with the speed

and size of the tetrahedrons. However, the speed of placing the tetrahedrons actually depends

on a number of factors and could be hard to calibrate. Likewise the spacing of the raster points

should not solely depend on the placement of the tetrahedrons because it will most likely stay

in one place because it will be the easiest move to minimize the distance between itself and

the tetrahedron. This technique was similarly abandoned to approach something without a

predetermined "path" and something that is less likely to clump or waver from the surface. The

following diagrams show a few successful attempts at describing surfaces with a raster path

algorithm. I will next introduce two algorithms, Pack & Spiral/Inverse Spiral, that proved more

successful and universal for describing complex surface.
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Surface Raster Algorithm

Figure 24. Raster search on a surface - Single path, green tetrahedrons are gates, white tetrahedrons are input

-Get Surface

-Extract U & V Coordinates in Raster

-Do:

-Place 2 Output Gates

-For Each Gate:

-Check Dist to Raster Path

-Check for Self-Intersection

-Select Min. Cost Tetra

-Place Unit

-Record Corresponding Input

Figure 25. Pseudo Code for surface descriptions through a raster path.

........ ........................................................... .... . .. ...... .. ......................................... ::- :::: ..........
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Figure 26. Raster search on Sphere - Single path, green tetrahedrons are gates, white tetrahedrons are input

...... ... .... ..................................... .. .. ..... .. -... ..... ......
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The pack algorithm was designed with the idea that I should be separating the problems of

searching along the surface from perfectly packing the surface. These problems seem to be

connected as the search path should lead to the perfect pack, however through experience

these problems tend to impact and conflict one another. For example, if we look at the random

walk, this is simply a search across the surface that may or may not result in a perfect pack of

tetrahedron units. The random walk may lead to self-intersection or miss regions, causing holes

or clumping to occur. The raster path attempts to blend the two problems; however as was

explained in the previous section, the raster path technique leads to overshooting and veering

off course, resulting in inefficient descriptions of the surface. If I am able to separate the two

problems then we should first look at the issue of packing tetrahedrons onto the surface evenly

and perfectly. Only then can I search through them knowing that the given pack is efficient with

maximum coverage.

The pack algorithm was actually trivial to code as it simply arrays a given set of tetrahedrons

within the bounding box of a given surface. The user initially inputs the surface and an eight

point bounding box is returned. This bounding box takes the largest dimension in all three axis

and returns a cube encompassing these dimensions. Next, a set of tetrahedrons are selected and

the resulting bounding box is returned. The surface bounding box is then divided in all three

dimensions with the tetrahedron bounding box to compute the number of possible tetrahedrons

that can be packed. These three division factors become the number of iterations for copying the

tetrahedrons in the X, Y and Z dimensions. The final sequence of code simply takes each set of

tetrahedrons, checks the centroid distance to the given surface and keeps or deletes them based

on a given threshold dimension. If the centroid distance is farther than the threshold, lets say 12"

(or the actual width of the tetrahedrons depending on the user's criteria), then the tetrahedron is

deleted. This will result in a perfect packing of only the tetrahedrons that are actually touching

the given surface. This lays the ground work for the next step, searching for a perfect, non-self-

intersecting 1D path through each tetrahedron.
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Pack & Spiral/Inverse Spiral Algorithm

Figure 27. Packed tetrahedrons in 3D bounding box of a given surface.

-Select Surface

-Get Bounding Box

-Select Tetras

-Get Bounding Box

-Divide SrfBbox dimensions by Tetra Bbox dimensions

-For x dimension:

-For y dimension:

-For z dimension:

Copy Tetras

Figure 28. Pseudo Code for packing tetrahedrons inside surface bounding box.

............. ........ -- - ___ - - ..::.. - :: Al - _ ..... .......

:4
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Figure 29. Process of describing a given surface
with tetrahedrons inside a distance threshold.

-Select Grid of Tetras

-Select Surface

-For each tetra:

-Get Centroid

-Check distance to closest point on Surface

-If Surface is outside range:

-Delete Tetra

Figure 30. Pseudo Code for removing tetrahedrons outside a distance threshold.

................................................................ ..... . ....
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The first implementation of search through this newly packed surface lead to the spiral algorithm.

The spiral algorithm actually attempts to generate a spiraling path through all of the tetrahedrons

starting at a given center point. This algorithm takes all of the tetrahedrons, the initial surface

and a starting point as input. For a given number of iterations or until the path has occupied

every tetrahedron the code runs and checks possible next moves. Each iteration looks for the

nearest points to the previous tetrahedron. It then checks to see if the potential points are

actually direct neighbors of the starting by checking centroid distances to the current tetrahedron

and making sure the potential unit is within a distance threshold. If the tetrahedron is proved to

be a direct neighbor it double checks that this tetrahedron has never been occupied previously.

This makes sure that the 1D path is not self-intersecting. Finally the algorithm checks to see the

distance between the potential neighbors and the centroid of the surface. The algorithm prefers

to minimize the distance to the centroid in effect creating a spiraling motion outwards. If it

cannot find a neighboring tetrahedron that satisfies each of the conditions then it will backtrack

one step repeatedly until it finds a successful point.

This algorithm initially appeared to be very successful in covering complex surfaces as it

slowing described larger and larger portions of the surface. However, with further iterations it

was realized that the algorithm tends to get stuck in the corners or in one half of a surface. This

is a direct result of the outward spiral. Presumably the algorithm could eventually describe the

entire surface if backtracking was repeated enough times to get out of the corners and difficult

zones. However, the next implementation, the inverse spiral, proved to be a stronger approach

for describing more complex surfaces.

Figure 31. Pack and Spiral progression sketch.

............. - =
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Figure 32. Pack and Spiral pseudo code.

Figure 33. Local Min/Max problems as the single path gets trapped in corner conditions.

-Select Tetra Centroid Points

-Select Surface

-Get Surface Centroid Pt

-Get Starting Point

-Do Until Surface is Covered:

-For each Tetra Pt: #FIND POTENTIAL POINT

-If (Pt not Used):

-If (Neighboring PrevPt):

-If (MIN Dist to Centroid): #SPIRAL

-Make Potential Pt

-If NO Pt Found: #BA CKTRA CK

-Step Back

-Else:

-Take first & add to list

-Draw Temporary Plyline

................................ ................
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Figure 34. Pack and Inverse Spiral progression sketch.

The final implementation took the spiral approach and flipped it to create an inverse spiral. For

the most part the inverse spiral actually has same input and conditional checks as was described

in the spiral algorithm. However, the inverse spiral checks each potential next move for the

farthest distance from the initial starting point (or the centroid of the given surface), rather than

the closest point as was previously described. For example, if we look at each tetrahedron and

ask 1. is it actually neighboring the current tetrahedron that we occupy 2. has it not previously

been occupied by our path and 3. is it farther than any other previously checked tetrahedron, then

we should consider any tetrahedron that satisfies these constraints as a potential next move. For

any given position that we can occupy there can only ever be three possible tetrahedrons that

would satisfy these three constraints; the three touching tetrahedrons on the opposite faces from

where we entered. We decide between these three tetrahedrons in exactly the same manner,

by taking the tetrahedrons with the farthest distance from the given surface centroid. This

effectively creates an inverse spiral. The path initially shoots from the center out to one of the

edges. It then starts congregating in one of the corners until it reaches a point where it can climb

along the edge to the other corner. At this moment the path has generally covered the entire first

corner and the alternative corner is farther from the centroid. It repeats these steps until all of

the corners are complete and it has created a pseudo empty circle around the centroid. It then

spirals inward from the empty circle until it reaches the original centroid and cannot find a free

tetrahedron. At this point the single path has successfully described the given complex surface

with a 1D chain.
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Figure 35. Pack and Inverse Spiral pseudo code.

Figure 36. Pack and Inverse Spiral description of a complex surface.

-Select Tetra Centroid Points

-Select Surface

-Get Surface Centroid Pt

-Get Starting Point

-Do Until Surface is Covered:

-For each Tetra Pt: #FIND POTENTIAL POINT

-If (Pt not Used):

-If (Neighboring PrevPt):

-If (MAXDist to Centroid): #INV SPIRAL

-Make Potential Pt

-If NO Pt Found: #BA CK TRA CK

-Step Back

-Else:

-Take first & add to list

-Draw Temporary Plyline

............ :: .......................... ..................... .................... ............................ ...... .................................................................... ............ ............. .... . .......
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N,

Figure 37. Pack and Inverse Spiral growth sequence, describing a complex surface.
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Pack & Inverse S piral Analysis

To compare the search algorithms we can evaluate the number of points occupied versus the total

number of points available to deduce the percentage of surface coverage. We can also take the

length of the curve as the efficiency of coverage, with preference towards a shorter length curve

because it implies that the path has not wondered or backtracked an exorbitant amount. The pack

and spiral algorithms result in a less than successful approach to the task of full surface coverage.

The first attempt, starting from the centroid of the surface, gives a total surface coverage of

61% with a total number of occupied points at 1,791. The total length of the curve is 19,079

inches. Conversely, the same algorithm when started from the corner of the surface, rather than

the centroid, resulted in 29,134 total inches. The percentage of coverage only increased to 68%

with 1,996 total points occupied out 2,951 total points. This implies that the corner starting point

resulted in an excessive amount of backtracking and inefficient paths because the length of the

line is drastically higher while the percentage of coverage only increased by 8%.

The inverse spiral algorithm compares favorably to the standard spiral algorithm in both the

percentage of surface coverage and the total length of the line. The first inverse spiral attempt

resulted in a 97% surface coverage with a total number of occupied points at 2,854 out of 2,951

total points. The length of the curve was 30,867 inches which is less than double the standard

spiral attempt that only covered half of the surface before getting stuck in the corners. Similarly,

the second inverse spiral attempt ranked well in the surface coverage with 92% and 4,575 points

occupied out of a total, 4,981. These numbers show the relative success of the inverse spiral

technique compared with the spiral and raster approach with respect to the percentage of surface

coverage, efficiency of the single path description and number of backtracks. This technique

should be tested on further surfaces and extreme curvature areas to test its robustness to failure

and getting stuck in local min/max conditions.
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center spiral
Number of Points Total: 2951

Number of Points Occupied: 1791

Percentage of Coverage:61 /
Length of Curve: 19079"

Corner Spiral
Number of Points Total: 2951

Number of Points Occupied: 1996

Percentage of Coverage:68 /
Length of Curve: 29134"

Inverse Spiral 01
Number of Points Total: 2951

Number of Points Occupied: 2854

Percentage of Coverage: 97/

Length of Curve: 30867"

1nverse Spiral 02
Number of Points Total: 4981

Number of Points Occupied: 4575

Percentage of Coverage:92/

Length of Curve: 81241"

Figure 38. Pack and Spiral/Inverse Spiral Analysis.

/
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Computing Through Conastuction

I have demonstrated, through a number of geometric examples, that we can do useful things with

Logic Matter, such as describing the interior and exterior of closed volumes/spaces, describing

complex surfaces as well as any ID, 2D or 3D curves in space. Architecturally and spatially

speaking, the ability to construct and describe a plethora of geometric typologies is useful and

an essential element of any building component. If I am to argue the benefits of Logic Matter

as an aid for assembling these geometries, it is imperative that I show specifically how they

can advance the process of assembly by utilizing the computational abilities and stored digital

information within the NAND mechanism. We have already seen how the entire descriptions of

complex geometry can be translated into a single binary sequence of physical moves (up, down,

left, right). I will now try to go a few steps further and explain the powerful opportunities of

computation that lie in Logic Matter and how these translate to the process of assembly.

In this section I will emphasize four beneficial qualities of computing offered by the NAND

mechanism for physical assembly:

1. Only local knowledge is necessary

2. Material as a storage device

3. Stopping mechanism

4. Single stream processor and hard drive

I will demonstrate these capabilities of computing through five primary examples:

1. Building an infinite line

2. Building a square

3. Failure and disassembly

4. Building infinitely small structures

5. Self-Guided-Replication
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Building an Infinite Line

Figure 39. Infinite Line Example with NAND mechanisms.

As the structures in our environment scale in extreme directions, up or down, with the number of

parts and overall size, it is important that we start thinking about the local information needed,

step-by-step, to build complex global geometries. Let us imagine a scenario where we need

to build an infinitely long, perfectly straight, line (or wall) from an infinite number of small

elements. Through this example we can quickly see a number of problems with our current

construction techniques and why we need to focus on local information. As the length of the

line increases, the difficulty of understanding the global geometry decreases. That is, the farther

along in the process of construction we are, the less we know about what we have already

done. If we suppose that the line has been constructed for 20 miles, it has already become fairly

difficult to ensure that we have proceeded in a perfectly straight manor. (We might use a series of

checkpoints to ensure we have gone straight. However, that only ensures that we can fix some

of our error, not actually dictating that the line has been perfectly straight. Similarly, we might

not even be able to produce the checkpoints in a guaranteed straight line.) It is also difficult to

know exactly how much further we need to go, if in the beginning, we were only told the total

length (precise to some small range, for this example we can imagine that we need to be precise

to a 1/32" and our units are roughly 8" in length). We cannot be sure that we have proceeded

.................................................... ........... ............. ..................................... - -- -- -
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in a straight line because at each step we are only making an estimate of being straight from the

previous pieces that were placed. We also cannot know precisely how much farther we need

to proceed unless we regularly remeasure what we have already constructed. This process of

remeasuring, or knowing the global structure, will often become laborious and/or impossible. In

our infinite line example, the process of remeasuring is nearly impossible because eventually we

do not have tools long enough to measure and if we use a small measuring tool repeatedly, end-

to-end, we will inevitably accrue error. Likewise, we cannot continually trace our steps to figure

out if we have proceeded in a perfectly straight path and most likely we will have strayed from

the path with some high amount of tolerance.

In the future, if we are to build structures larger than humanly possible today, we need to only

rely on local information and be guaranteed of the global consistency. This local information,

in the case of Logic Matter is actually computed through the NAND mechanism. With each

placement of input there is only one possible output. This output dictates the next direction to

proceed with accuracy, consistency and redundancy. The user, constructing the infinite line,

only needs to know the local sequence of inputs because they contain the information needed for

the next series of inputs as well as the guarantee that the global structure has been constructed

accurately. There are two inputs values at each step and an orientation required. The first input

value is directly computed from the last output (therefore this is eliminated from the user), the

orientation is also directly computed from the last output and saves the user from having to know

exactly where to place the next module. If the global sequence of input values is designed in a

specific way, the user also does not need to know the 2nd input value at each step.

1 111111111111111000000000000000
1111111 I100000000 1111111100000000

1 11100001111000011111000011110000
1 1 00B1nar1 1t as110 In Seue f 100 11001100t11e L

Figure 40. Binary Counting as Input Sequences for Infinite Line
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Binary counting can be seen as important example for the infinite line problem that allows the

2nd input value to be removed at each step. Let's say that our infinite line is constructed from a

number of NAND mechanism directly adjacent to one another and that each NAND mechanism

contains one binary digit at each step. We can then imagine that it would be possible to initially

set our NAND bits to an infinitely large binary number simply by creating that binary number

as inputs to the NAND mechanism. For example, if we want to build a line with 32,767 steps

then we can initially set fifteen NAND mechanisms to the sequence: 111111111111111. The next

sequence of inputs would be one less than the previous, 32,766 or 111111111111110 as inputs

to the NAND mechanism. We can imagine that we would do this repeatedly until we do not

have any further carry digits and we land at the state 000000000000000 as inputs. This binary

counting example provides two major advantages when utilized as input. First, this allows

the user to only know the local sequence, thus, the system of units actually stores the current

state and tells the user the next state through a pattern of decreasing l's in standard binary

counting. In this way the user does not need to know anything about the global configuration

to be confident with how to proceed at the next step and guarantee that the global structure

has been constructed in the proper geometric path. Finally, this example of binary counting as

physical input informs the user how much further to proceed and more importantly, when to

stop building! When the user reaches the point when they have all O's as input they know they

have reached the end of the line and they know that the line has been constructed geometrically

precise according to the initially designed length. This demonstrates the possibility and exciting

benefits of computed assembly only through local information.
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Building a Square

To demonstrate the benefits of local and stored information, the complexity of the structure

need not be infinitely long and immeasurable. To take this idea slightly further, we can

imagine constructing a square (or any closed object) from a sequence of inputs. If it is known

that the sequence of inputs to construct a square is alternating seven digits of O's then seven

digits of 1's four times, then we can most likely picture the overall input/output relationship.

(To scale the square we could simply increase the number of repeated digits in a series. For

example, nine digits would increase the length of each side of the square etc.) However, if this

sequence got slightly more complicated or slightly longer, it would be much more difficult to

remember exactly where you are in the overall sequence and what input to place next. If we

are constructing the square with the NAND mechanism, we are in luck because we can rely

on the storage capacity of the materials to tell us what we have previously input, where we are

and what we should place next. Further, this can be entirely done within the local series we are

constructing. The NAND mechanism will eternally store the overall sequence of inputs, simply

by looking at the faces of the input mechanisms utilized. We could imagine that building any

large structure will take a series of days/weeks/months/years and that we will need to stop and

start construction numerous times. If we were required to remeasure and recalculate the place

where we left and decide what the next input should be, we would lose tremendous time and

accuracy due to human error. The NAND mechanism allows us to directly know the output of

the last move and the previous seven moves (or however many local moves are in the repeating

sequence) in order to dictate the only possible next move. At any time we can look back at the

sequence get the stored information and know exactly what to place and how much further we

need to build in order to complete the global configuration.

The example of the square contains one final important characteristic, error trapping. The closed

nature of the square ensures that any errors that were built within the process of assembly will

be contained within the square. Errors may accumulate based on material tolerances, material

stresses or any number of real world symptoms and our NAND mechanism can either attempt
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to deal with these errors directly or worse, the mechanism my add to the errors.(See Section 01

on Digital Information) Any closed geometry provides another layer of error trapping, aside

from the features of the mechanism.(See Section 05 on Globally Specific Units) As the square

is closed and the last unit is forced to connect with the first, we are guaranteed that the errors,

however large they may have grown, will only be contained within the square (as long as we

can force it closed). Likewise, if we connect another square to the first square, we can be sure

that the errors within the first square will not affect the next square or the global structure. This

example demonstrates the benefit of having locally closed aggregations that add up to larger

structures, the potentials for error trapping, local information and the ability to store information

within the NAND mechanism.

Failure and Disassembly

Figure 41. Failure and Disassembly Example. A complex structure with a single point offailure that can be reas-
sembled accurately by reading the adjacent unit's stored information.

The ability to stop and restart an assembly process seamlessly, without recalculating or

remeasuring is an extremely beneficial characteristic of computing and storing information

while building. This can even be utilized after the global configuration has been complete!

In this example we will imagine that a large, extremely complex, structure has been built,

containing an infinitely long and arduous sequence of inputs. If this structure were to eventually

....................... - ........... ::: ' :: -............ ...... .... ........ ...... ............... I .V - ::.- .- - ...... .. .. , ,::"::::::::, , , lI 1''.
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fail or collapse at any point along its length we might imagine that we would find ourselves in

an extremely difficult situation trying to reconstruct the failed portion. However, as we have

already seen, the NAND mechanism computes and stores its state as the materials are assembled,

thus, we can utilize this principle for reconstructing failed portions. We know that the structure

will eternally contain the assembly blueprints because the encoded information (inputs/outputs)

used to construct the assembly will always remain as part of the structure, not degrading over

time or distance. From the stored sequence, we can deduce that there can only be one possible

local move to replace a failed unit that will complete the circuit. Similarly, there is only one

possible face and orientation to place a unit, based on the surrounding inputs/outputs that could

be utilized to re-link the chain. The units that surround the failure will explicitly dictate the

orientation, type of input and eventual output that is needed to fix the failure. We could actually

replace the parts without the blueprints! This is an incredible property of the stored information

within a Logic Matter assembly. We can relate this to the telecommunications industry and the

benefits of digital information for reconstructing broken or lost signal sequences.49

Stored assembly information can be utilized in a variety of ways from providing an external

assembly mechanism the exact instructions for replication to part encoding within disassembly

procedures. We can take the example of the relocation of the London Bridge, where every part

was identified, disassembled and completely relocated to Lake Havasu, Arizona. 0 Logic Matter

already contains all of the information for constructing, disassembling and reassembling the

structure, directly in the material parts. The material parts indicate the process of assembly by

computing through construction! We can imagine a world of applications for structures that can

dictate their instructions for replication and encoded information for disassembly, guarantees on

global configurations and many others. Let's now look at a world of infinitely small structures

and the types of information that might be required.

49 Neil Gershenfeld. Fab.
50 David Crouch and Nina Lubbren.Visual Culture and Tourism. (Oxford, UK: Berg Publishers, 2003).
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Building Infinitely Small Structures

Figure 42. Diagram for Molecular Machinery from K. Eric Drexler ' PHD dissertation: Molecular Machinery and
Manufacturing with Applications to Computing. "

By attempting to build structures that defy the known limits of scale, either large or small, we

will face new assembly challenges, specifically with the amount of information required, the

type of information (discrete or continuous), accruing errors and a plethora of other issues

of assembly. If we imagine building structures at minute scales there emerges an interesting

paradox between the possible types of computation and the devices which we can build. The

first problem lies in the assembler or machine that will need to construct these structures since it

is most likely not possible for a human to manipulate the elements directly. At extremely large

scales we may see the same problem because eventually we cannot build machines that are larger

than the parts we want to produce. In both cases we will need some type of device that can

locally climb, deposit and assemble material without knowledge of the global. The small scale

example better emphasizes the problem that we will eventually need to build functional assembly

"machines" at extremely small scale lengths (possibly biological machines) with extremely

limited computing and storage capacity. Without computing or storage capacity like human

assembly or robotic assembly, how can we code the necessary assembly information to ensure

that we make the correct decisions at each step? Can we use the material as a hard drive to store

51 K. Eric Drexler. Molecular Machinery and Manufacturing with Applications to Computing. (PHD diss.
MIT, 1991).

.................................. ..........
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the information for assembly, identify where we have been and how far we need to go? The

material would literally tell the machine what to do and the machine would simply be used as a

force. Logic Matter offers just that. The information for assembly is embedded directly within

the assembled material, we simply need a machine to be able to read the string and translate the

local sequence into the physical output of the next move. The material dictates the next move

and with certain input sequences the step-by-step inputs are determined simply by reading the

material already placed. This relieves the necessity of having universal computation in the

assembler (human or machine) and distributes information throughout the structure, bit-by-bit

storing and building its own computation.

As a supplemental example of small scale assembly let us look at an opportunity afforded by the

Hairy Chain redundancy, creating scaffoldings for growth. Scaffolding can be seen in a number

of construction applications from the building industry to biological materials. Scaffolds afford

a temporary structure to allow for the construction, assembly or growth of a secondary system.

The redundancy of the input tetrahedrons implies that only the redundant units would need to be

pre-assembled, then the gate units could actually grow or fold within the scaffolding, assuring

that the final configuration was constructed correctly and within the correct local moves (left,

right, up, down). The scaffold material could be made to dissolve or could be less expensive,

while the gate units could be made more permanent, therefore emphasized by dissolving the

redundancy and only leaving the single chain gate geometry. The scaffolding also could allow

the system to be scaled either extremely large, to have a cheap and quick substructure for an

extremely large-scale chain to be folded on the interior. The scaffold actually contains all of

the information required to build the structure, thus eliminating the information required in

the actual gate units as to which direction to fold. On the opposite end, the scaffold could be

approaching the biological scale and allow a protein-like structure to fold or grow within the

information-infused scaffolding. This scaffolding example demonstrates another possible feature

for embedding localized information directly into the assembled materials, thus easing assembly

and guaranteeing accurate, complex structures.
52 Martin P. Vacant. 2008. Biological Scaffolding Material. (U.S. Patent 7,319,035,B2 filed, October 17, 2003
and issued January 15, 2008).
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To expand the idea of the single strand building its own computing device, it is important to

first compare a number of existing computational architectures with respect to the storage

of processing information versus data information. Implementations such as the Harvard

Architecture (construction information and data are stored separate) and Von Neumann

Architecture (construction information and data are stored in the same place - RAM), common

in almost all CPU's today, are opposite in their approach to information and data storage

with advantages and disadvantage in speed, memory usage and robustness." Conversely, the

important aspects of Logic Matter are; (1) stored information in physical materials, or materials

as a hard drive. (2) The information to do the computing, i.e. the digital gates (AND, OR, XOR,

NAND etc.) are built directly into the mechanics of the parts and are utilized by varying the

sequences of inputs and thus the NAND mechanism. (3) The computing is built with the exact

same string of information as the data itself, that is, the string of inputs actually builds the

architecture to compute the same string of inputs. This is significantly different than most of the

current computing models because of the lack of distinction between program information and

data information (or construction/computing information and input sequences). Logic Matter

contains no distinction between the information to build a series of AND, OR, XOR gates that

arise from sequences of NAND mechanism and the same exact string of inputs that the gates

will compute as a result. (4) Logic Matter respects the laws of physics in terms of locality

and time, unlike the common computing models where the laws of physics are suppressed, i.e.

similar information is not stored with proximity to one another and the amount of time to use that

information does not depend on distance. David Darlymple and Neil Gershenfeld from MIT's

Center for Bits and Atoms explain, "Physics inherently allows only local information transfer,

and computation, like every other process, relies on physics."55 Darlymple and Gershenfeld

emphasized the importance of designing a system of computing that relies on the laws of physics

and locality, offering increased speed and parallelization.

53 David Dalrymple. Asynchronous Logic Automata.
54 David Dalrymple. Asynchronous Logic Automata.
55 David Dalrymple. Asynchronous Logic Automata.
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Let us look at a concrete example to help clarify the computational benefits of Logic Matter

with its simultaneous computing and constructing, requiring only a single input string. Field-

programmable gate arrays (FPGAs) are a integrated circuits which consist of a two dimensional

array (or grid) of logic gates.(See Figure 43) As Marchal explains, the FPGAs "can be

programmed at three distinct levels: ( 1 ) the function of the logic cells, (2) the interconnections

between cells, and (3) the inputs and outputs. All three levels are configured via a string of bits

that is loaded from an external source, either once or several times." 56 After the FPGAs have

been "programmed," or wired, to connect the various types of logic gates, a second string of

inputs is fed through the circuit and determine the computed output.(See Figure 44) This has

distinct advantages in terms of reconfiguration and reprogrammability of the circuit, distinct

from the actual computation of the input bits. However, in the case of Logic Matter, we actually

reduce the amount of information to perform the computation to a single string of inputs, rather

than two separate strings (one to program the configuration of the computing device and one to

send the bits to be computed). Logic Matter actually builds the computing device as the bits are

streamed. For example, two bits, [0] and [0], are placed into a Gate unit and dictate the result

[1] which forces the placement of the next Gate to be on the [1] face of the previous Gate. (In the

UP direction) (Essentially this passed an input, [1], into the new Gate. This Gate is now waiting

for a second input.) The first Gate has just acted as a functioning NAND mechanism (0 & 0 =

1). If we then place a new input, [1], into the latest Gate we will get an output of [0]. (1 & 1

0). That means that the two NAND mechanism in serial have acted directly as an AND Gate

or an OR Gate because the initial inputs of [0] and [0] have ultimately resulted in the output of

a [0] after two Gates of computation. In this example we can see how the sequence of inputs

([0],[0],[1],[1]) as well as the functionality of the NAND mechanism actually constructed the

logic gates and architecture for computation simultaneously while computing the exact same

sequence of inputs!

56 Pierre Marchal. Field-Programmable Gate Arrays. (Communications of the ACM; Apr99, Vol. 42 Issue 4).
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Out

Figure 43. Field-programmable Gate Array. Two dimensional array of digital logic gates. ?

Out

Figure 44. Routed Field-programmable Gate Array. First input sequence has dictated the gate connections. A sec-
ond input sequence will base the bits to be computed "

57 Adrian Thompson. An evolved circuit intrinsic in silicon entwined with physics. (COGS University of Sus-
sex Brighton, UK).
58 Adrian Thompson. An evolved circuit intrinsic in silicon entwined with physics.
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Self-Guided-Replication

As previously described in Section 03, there have been a number of attempts at synthetic (non-

biological) self-replication systems, not to mention the countless examples of biological self-

replication processes (i.e. DNA replication).59 Most notably, Von Neumann's work and L.S.

Penrose's Mechanical Self-replication system where mechanical latches were demonstrated to

be able to duplicate an arbitrary input string.6061(See Figure 04) Penrose further described the

necessary requirements for any self-replicating system:

First, the replicating structure must be built by assembling simpler units present in the
environment. Secondly, more than one design can be built from the same set of units though
the only replicating structure that can be automatically assembled will be one exactly copying a
previously existing structure.62

The proposed NAND mechanism of Logic Matter provides the unique property of material

storage, containing the sequence of information used to construct any arbitrary configurations.

This offers the key ingredient to accomplish self-replication because the actual structures contain

the blueprints for an identical copy. The assembler (human or machine) can throw away their

initial knowledge, blueprints or input sequence that was used to construct the first structure,

because the second, third and infinite number of further structures can be built by directly reading

from the first assembly. The redundant input tetrahedrons store the sequence of inputs that could

be used as a direct read-write procedure to produce the inputs for duplicate structures. We could

imagine that a machine could be built (on any number of scales) that would only read the local

information from the materials, step-by-step working its way along the single path, producing a

simultaneous action/procedure on a duplicate structure. This would eventually create the perfect

duplicate configuration that could be then used for another duplicate and so on.

Logic Matter may not be able to claim full self-replication, seeing that it does not have self-

locomotion or electronic programmability. However, the example of using the material as a

59 Saul Thomas Griffith. Growing Machines.
60 L. S. Penrose. Self Reproducing Machines.
61 John Von Neuman. Theory of Self-Reproducing Automata.
62 L. S. Penrose. Self Reproducing Machines.



[05] Logic Matter

storage device clearly demonstrates the possibility of self-guided-replication, where the system

informs another assembler (either human or machine) the explicit sequence of instructions to

build a duplicate structure. Self-guided-replication might have applications spanning from the

automation of manufacturing complex structures to biological realms and replicating natural

scaffolding construction, most of which will not be addressed in this thesis.63 However, it is

important to emphasize self-guided-replication as an exciting potential of Logic Matter and

computing through construction. Through examples like building an infinite line and self-

replication we have seen that Logic Matter, a system of programmable physical logic gates, can

be utilized for useful geometric descriptions and applied to a plethora of applications by utilizing

local computing for assembling complex structures.

The following Figures; Figure 46, Figure 47, Figure 48 and Figure 49 show attempts at

computing larger assemblies through varying techniques of binary inputs. Figure 46 and

Figure 47 show the sixteen possible combinations of repeating binary inputs with four

initial placeholders. All combination between 0000 to 1111 were tested for their resulting

configurations. All of the repeating patterns result in straight lines or repeating structures, a

somewhat obvious output of the binary inputs, however if they are utilized in combination they

can be made to turn in any direction and to describe straight line segments of any geometry.(See

Figure 48) Figure 48 and Figure 49 show gradient inputs of the number of O's and l's in an

input sequence. These results are far more interesting spatially and far more complex, making

it harder to guess the relationship between input to output. As seen in the simple repeating

patterns, most of the configurations are not necessarily useful, however if they are utilized in

sequence we could potentially realize exciting potentials for describing complex geometries with

simple input sequences. These input sequences should hopefully contain the beneficial qualities

as seen in the infinite line example where we can not only guarantee the success of the structures

we are creating, but the input can actually inform the assembler of the next moves, store the

information of the past and announce the completion of the assembly.(See Figure 39)

63 Saul Thomas Griffith. Growing Machines.
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[0] N

[0]

[]

Step 1. Input sequence is read from initial structure

[1]

[0]

Initial Structure with Stored
Input Sequences

1st Duplicate Structure

Step 2. Inputs are built based on a
1:1 map of initial structure

Step 3. Repeat
[0]

[0

[1 [0]

2nd Duplicate Structure

[0]

Figure 45. Self-Guided-Replication. A single sequence is read and written to generate duplicate structures.
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00000000...

00010001...

00100010...

00110011...

01000100...

01010101...

01100110...

01110111...

Figure 46. 0- 7 binary numbers as a repeating input pattern.

................................................ ........ .... . .... ............
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10001000...

10011001...

10101010...

10111011...

11001100...

11011101...

11101110...

11111111 ...

Figure 47. 8-15 numbers as a repeating input pattern.

a
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Pattern: 1010010001000010000010000001...

Spacing: 1 2 3 4 5 6

Linear Increase

Pattern: 10101001001000100010000100001...

Spacing: 1 1 2 2  3 3 4 4

As x increases....x/2 = #0's

Pattern: 1010101001001001000100010001.

Spacing: 1 1 2 2 2 3 3 3

As x increases....x/3 = #0's

Pattern: 10101010100100100100...

Spacing: 1 1 1 1 2 2 2 2

As x increases....x/4 =#0's

Pattern: 10101010101001001001001001...
UU1l] I'LLL

Spacing: 1 1 1 1 1 2 2 2 2 2

As x increases....x/5 = #0's

Pattern: 1010101010101001001001001001001...
U L L LL -'L U L 1- L---

Spacing: 1 1 2 2 2 2 2 2

As x increases....x/6 = #0's

Figure 48. Binary gradient sequences & resultant spatial output. Orange units are inputs with value 1.

...... .. .. .. .. .... ..
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1-Spacing: 2 4 6 8

Pattern: oooli1ii0ii1i100i1ii1...

0-Spacing: 1 2 3 4

I-Spacing: 1 1 1 A t

Pattern: 00001000100000100010001000000...

0-Spacing: 4 3 5 3 3 6

1-Spacing: 1 1 1 1 1 1

Pattern: 000010001000100000100010001...

0-Spacing: 4 3 3 5 3 3

1-Spacing: I 1 1 1 1

Pattern: 0000100010000010001000100000L...

0-Spacing: 4 3 5 3 3 5

1-Spacing: 1 I 1 1 1

Pattern: 0000010000100000010000100001...

0-Spacing: 5 4 6 4 4

1-Spacing:

Pattern: 000000010000001000000001000000...

0-Spacing: 7 6 8 6

Figure 49. Binary gradient sequences & resultant spatial output. Orange units are inputs with value 1.
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Mechanics
Physical Mechanism - Blocking Pin Technique

I have outlined the importance of digital logic and why to use the NAND gate as well as the

geometry that can be used to represent the NAND functionality. I then described where the

information is stored, how to describe surfaces, volumes and circuits as well as the computation

provided by such a system. It is now important to outline the specificity of the designed

mechanism that allows for the computational functionality and spatial configurations.

As previously described, the optimal geometry for representing NAND functionality is the right-

angle tetrahedron due to its four faces and symmetries. This offers two faces for inputs and two

possible faces for output. The mechanism was generated by adding and subtracting elements to

the primitive tetrahedron as to allow or restrict rotational transformation. The goal of the NAND

mechanism is to take two incoming tetrahedron faces as input (either [0] or [1]) and make the

appropriate digital logic output (according to the NAND truth table) by allowing or blocking the

input of a new tetrahedron upon one of the output faces. This results in the placement of a new

tetrahedron upon a completed tetrahedron (meaning two input tetrahedrons have been inserted

and the digital gate is able to compute an output) in either an up [1] or down [0] position (relative

to the orientation in 3D space). Throughout all of the attempted mechanisms a strategy was used

to simplify the NAND truth table to two states: (A) anything that can be input to result in a [1]

output and (B) anything that can be input to result in a [0] output. This means that if a face [0] is

ever plugged-in, it can only result in one possible output, a [1]. This led directly to the design of

the blocking pin technique.

The proposed mechanical design highlights each of the details that allow for the NAND

functionality.(See Figure 51) I will now outline each of the elements and their respective roles,

either acting as input, output or as a gate. First, I will describe the input/output faces because

they perform the majority of the work. The input faces are recessed to receive the [0] or [1]
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faces of another tetrahedron. The recess signifies its role as input while the output faces extrudes

outwards to emphasize the output action. The recess and extrusion also act as a channel to direct

and force the incoming/outgoing tetrahedron in the appropriate position. The inner faces of the

recess and extrusion are slanted to auto align the unit as it slides in place. These faces also focus

the insertion of the input tetrahedrons to perform the blocking action and allow the appropriate

output transformation.

The blocking pin is located on the tip of the [0] output face. The pin is an extruded rectangle

that intersects the triangular output face. When the [0] face is inserted into an input face of

an adjacent tetrahedron (acting as a Gate) it slides through a female slot. These female slots

are located on both tips of the input faces and were created with a Boolean operation from an

extruded rectangle that intersected the input face (the exact dimensions of the male blocking

pin). The height of the male blocking pin is designed specifically to slide through the female slot

of the adjacent tetrahedron (Gate) and terminates approximately 0.25" past the output face on the

other side. This extended portion acts to restrict the placement of the next tetrahedron and acts

as the essential element for the NAND functionality.

The extension of the male blocking pin forms a right-angle extrusion on the output face. This

extrusion restricts the placement of the newly placed tetrahedron upon the output face of the

gate unit. The right angle piece corresponds to a right angle Boolean on one of the input faces.

This Booleaned portion fits snuggly onto the right angle of the male blocking pin. This allows

the placement of the new unit in an upward position (or left/right position depending on the

orientation of the unit in 3D space). If the new unit was attempted to be placed in the downward

position it would be blocked by the right angle piece because it does not have a corresponding

Boolean slot. This effectively means that any time a [0] output face is inserted into an adjacent

tetrahedron that is acting as a gate it will only allow an upward placement on the [1] output face.

Likewise if there are no [0] output faces (meaning there are two [1] faces) inserted into a gate

tetrahedron then it must go the opposite direction and result in a [0] placement. This corresponds

to the NAND truth table and demonstrates its complete functionality.
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The next details of the designed NAND mechanism are the graphical annotations to identify

input/output faces as well as the orientation required. There are two graphical elements utilized

for easing the user's operation. First, to identify the output faces, each is labeled with a "0" and

"1" number, respectively. This easily allows the user to decide which output face should be

inserted into an adjacent tetrahedron. Any two sequence combination of [0] and [1] can be input

simultaneously to produce one of two output configurations/transformations. The second graphic

label is a triangle placed on one of the input faces to identify the orientation of an incoming

tetrahedron after a NAND operation has been completed. For example, when two faces ([0]

and [0]) are input into a tetrahedron acting as a gate it will result in a [1] output. This forces

the next tetrahedron to be placed in the [1] position through the male blocking pin. However,

if the required orientation was not identified then the newly placed tetrahedron could go in 1 of

2 orientations and thus would not be consistent throughout the assembly. This triangle graphic

instructs the user to always place the new tetrahedron with its orientation such that the triangle

points towards the male blocking pin of previous gate unit.

The final elements of the NAND mechanism are the positive and negative detents that allow

for a snug, snap-in-place, fit between tetrahedrons. There are two male detents located on the

output faces ([0] and [1]) on each unit. There are corresponding female detents located on the

input faces of each unit. Similarly there are two larger male detents located on these input faces

that will lock into place on the female Booleaned slots that sometime receive the male blocking

pin. This is to ensure a tight fight when no blocking pin (no [0] faces) have been inserted. All

of the detents and tapered faces help to auto-align the pieces, minimizing error propagation and

accumulated tolerances. The detents also embody the fasteners that connect units and allow a

strong global configuration.
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Figure 51. 1. Female slots to receive (2) male peg 2. Male peg on negative face (5) 3. Half notch to allow positive
output and receive male peg (2) 4. Half clip to allow negative output - only when no male pegs (2) exist 5. Negative

Face (Output) 6 Positive Face (Output) 7. Input face
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Prototype
Fabricating the Prototype

In previous section I described the physical qualities of the NAND mechanism and how they

enable the functionality of digital logic to be discretely passed between elements. I will elaborate

on this functionality by showing a physical prototype, the fabrication process for creating the

prototype as well as the aggregated potentials of the overall assembly. First, I should explain the

details for fabricating physical NAND mechanisms.

While developing the numerous iterations of the NAND mechanism units were tested through

a variety of 3D printing technologies, making it possible to iteratively improve and test new

latches, detents and other mechanical elements for the NAND functionality.(See Figure 51) The

current version was eventually reached through tolerance improvements and better latching

mechanisms, leading to the final prints on an InVisionTM 3-D printing machine. This machine

outputs plastic parts with a wax based support material. This machine has a high level of

precision and gives sharp edges and a hard plastic solid object. This printer was used specifically

for the precision, strength and waxy finish, all beneficial properties for the next step in

fabrication, molding. After cleaning the printed part, it was suspended inside of a plastic box that

was roughly 1/2" larger in all dimensions. (See Figure 53) This plastic box was used as the shell

that houses a rubber mold. Once the printed piece was secured with a 3/8" dowel, suspending

it inside the middle of the plastic box, liquid rubber was poured into the box, surrounding the

printed mechanism. The rubber was poured to the exact mid-way line of the printed part and left

to dry overnight. Another layer of liquid rubber was then poured on top of the dried first half.

Once fully dried this allowed for the two rubber parts to be separated from one another easily.

A single line was cut along the vertical seam of the rubber to easily release the print from the

two part rubber mold. After removing the print, the two part rubber mold contained the exact

impression of the print with a high degree of precision. The 3/8" dowel was also removed to

reveal a 3/8" hole in the rubber that was later used as the pour spout for liquid plastic.
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Figure 52. Roto molding sphere constructed from MDF wood.

Figure 53. Releasing the two part rubber mold after spinning it in the roto molding sphere.

. ................................................................................ ., ... ...................... .::::::: ................. .......... ........................................... ................. ......
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The two part rubber mold was then placed back together and inserted into the plastic bounding

box. 80 grams of liquid plastic was poured into the rubber mold through the 3/8" spout. A rubber

cap was placed into the spout and the mold and surrounding plastic box were rotated repeatedly

in two directions. The rotation allows the liquid plastic to coat all of the mold's negative spaces.

This process is repeated continually for 10 minutes then opened to reveal a hardened plastic

positive of the NAND mechanism.

In order to relieve the rotating process, a sphere was constructed to be rolled on the floor and

similarly spin the mold in two directions.(See Figure 52) The sphere was constructed from 1/2"

MDF wood circular sections that are notched and snap-together. Two of the half-circular sections

are not permanently connected to the rest of the sphere and allow access to insert the mold.

After plugging the rubber spout, the plastic box was quickly inserted into the wooden sphere,

the two half-circular sections snapped in place and the ball was rolled randomly on the ground

for 10 minutes. The rolling process greatly reduced the amount of energy required to rotate the

somewhat heavy mold in multiple directions for any length of time.

After 10 minutes passed the sphere was opened and the mold removed. The positive plastic

part was removed, still warm from the chemical reaction of the plastic, and let cooled for a few

minutes. A quick cleaning was performed with a knife to remove any plastic burrs. The final

piece contains every element of the printed unit, with high precision and crisp edges.(See Figure

57) A colored die was used to darken half of the units to a charcoal grey color, signifying the

functionality of the units as they are assembled. The grey color signifies the mechanisms that

are acting as Gates and the white identifies the Input mechanisms. Next I will explain the overall

assembly and demonstrate the functionality of the NAND mechanism and physical prototype.
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Figure 54. First half of rubber mold, poured into plastic bounding box, surrounds the 3D printed positive.

Figure 55. First half of rubber mold, poured into plastic bounding box, surrounds the 3D printed positive.
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Figure 56. Two part rubber mold and 3D printed positive.
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Figure 57. Grey and white plastic positives after roto molding.

Figure 58. Grey and white plastic positives after roto molding.
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Figure 59. White plastic positives after roto molding.

Figure 60. Grey and white plastic positives after roto molding.
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Programming the Mechanism

The process of programming the Logic Matter, NAND mechanisms, is relatively simple. As

explained in Section 04 on NAND geometry and Section 05 on the NAND mechanism, the

proposed NAND geometry is a right-angle tetrahedron and has four equal faces, separated into

two sides. This translates into two faces of input and two faces of output. The two faces of

output include [0] and [1] indicated both by a graphical symbol as well as the physical blocking

pin feature.(See Section 05 on the NAND mechanism) The output faces are also denoted by

extruding outward from the unit, creating a male triangle.(See Figure 51) Conversely, the female

faces are denoted with a negative impression the unit, or a female triangle. The mechanisms are

"programmed" by the user placing an output face of one unit into the input face of another unit.

This directly indicates that the receiving tetrahedron is acting as a Gate and has just received

a [0] or [1] as input. The user then places a second tetrahedron output face [0] or [1] into the

same Gate, on the open input slot. The Gate has now been fully programmed and will output the

resulting NAND logic.(See Figure 09) The following diagrams; Figure 61 and Figure 62,show

the only two possible output configurations from two different input configurations (out of 4

possible configurations).

In Figure 61, from top left to bottom right, the progression from two inputs [0] and [0] to the

output [1] is shown through a physical demonstration. The process stars by placing a single

[0] face into the Gate mechanism. The [0] face contains the blocking pin mechanism that has

been inserted into the female slot of the Gate unit. A second tetrahedron's [0] face is inserted

into the Gate, similarly with the blocking pin mechanism sliding into the female slot. The Gate

now contains two NAND units with two blocking pins. The two blocking pins dictate the only

possible output configuration to be towards the [1] face (in Figure 61 this is denoted in the last

image where the tetrahedron is place in the upward position). The [1] output is expressed when

the next tetrahedron is attempted to be placed and will only fit in one position, the [1] position.

The next example will demonstrate inputs [1] and [1] with an output of [0].
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In Figure 62, from top left to bottom right, the progression from two inputs [1] and [1] to the

output [0] is shown through a physical demonstration. The user places a single [1] output face

into a Gate unit. Likewise, a second tetrahedron and [1] output face are inserted into the same

Gate unit. The [1] output faces do not contain the blocking pin mechanism.(See Figure 51)

After the Gate has received both inputs, [1] and [1], it has now been programmed and is ready

to execute the output. The output is executed by the user placing the next tetrahedron in the

only possible position [0] (in Figure 62 this is denoted in the last image where the tetrahedron

is placed in the downward position). This successfully demonstrates two of the possible four

NAND input/output configurations. The remaining two inputs can be [0],[1] and [1],[0] which

will act in the exact same manor as the [0],[0] sequence that was previously demonstrated. The

blocking pin mechanism of the [0] face essentially ensure that any instance that contains at least

one [0] face will force the output configuration to turn toward the [1] face. This is useful because

it means that the NAND mechanism will perform exactly as the truth table dictates; (NOT AND)

anything other than two [1] inputs will result in a [1] output, or anything with at least one [0]

input will result in a [1] output.(See Figure 09)
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Figure 61. 4 Logic Matter modules demonstrating programmability of base configuration [0,0]= 1. The final con-
figuration demonstrates a 180 degree vertical rotational difference from output =0.
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Figure 62. 4 Logic Matter modules demonstrating programmability of base configuration [1,1] = 0. The final con-
figuration demonstrates a 180 degree vertical rotational difference from output = 1.

ULAII 1C=

101

................................................ : ................ ........................................................ ............... ............................... ...... .... ....



[05] Logic Matter

Overall Assembly

After being able to successfully program a NAND mechanism, it is important to show a larger

assembly of NAND mechanisms, demonstrating a number of useful qualities of Logic Matter

in terms of geometric descriptions and computation. In this section I will describe a working

prototype made from sixty NAND mechanisms, explain the process of assembly and finally,

show important characteristics of computing through assemblies. First, let us look at the process

of assembly and the individual inputs to create the overall configuration.

The prototype assembly followed a repeating pattern of input rather than the gradient of inputs

(0 or 1) as explained in previous sections.(See Figure 48) (See Figure 49) The repeating pattern

was decided upon because of its simplicity and the desired final configuration. The overall

configuration is a single path that turns in all three dimensions while spanning +/- 18" in an

arch-like path. The repeating pattern of inputs consisted of seven O's followed by seven l's

repeated twice. There are four sections of the prototype each made through on of the seven bit

input strings (either seven O's or seven l's). Each one of the sections is a straight line, however

when they connect they create a three dimensional single line. The key aspect of the input

sequence is the repeated seven bit pattern. This seven bit pattern emphasizes the importance of

local knowledge, as explained in the previous sections.(See Section 04 on Computing Through

Construction) At any given point in the construction the user only needs to know seven bits

of information. Depending on their place within those seven bits they are informed of their

next move. If the user is at the start of the entire sequence then they know that they have seven

more O's to place. At the next step the user knows that they have placed one 0 input and need to

continue for six more O's. At the end of the seven bit sequence they know that they need to flip

the bit and start inputting seven l's. If this pattern continued indefinitely the user would only be

required to know the seven bits of information and could eliminate any global knowledge. This

would ensure that the previous sections had been made correctly and that the material informs

them of the next steps. Unfortunately, the repeating seven bit sequence does not demonstrate the
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stopping capabilities, as described in Section 05 on Computing Through Construction, however

we can assume the user was told the number of steps to repeat. Ultimately, the input sequence

should inform the user of the stopping point, thus reducing a further element of information that

the user is required to retain. For this prototype this was not shown for reasons of simplicity.

Another important aspect of the working prototype is the material's ability to store the overall

input sequence, or material as a storage device. The user repeatedly places an input unit

(redundant white tetrahedrons) to complete the NAND mechanism at each step, thus dictating the

next orientation according to the NAND functionality and the recorded inputs. The redundant

inputs remain in place, acting as redundant structure, mechanism to allow failed units to be

bypassed as well as a recording of the construction sequence. The information storage can be

extremely useful in terms of unit failure because each failed unit can easily be replaced without

the original construction information (blueprints), knowing that there is only one possible face

and orientation that will fit in-place.(See Section 05 on Computing Through Construction) In the

event of node failure, the surrounding units dictate the input/output relationships that define the

only possible replacement unit. The storage of assembly information is also vital for complex

construction projects that take several working periods. The assemblers can stop and start at

will without losing their place or having to remeasure the overall. The previous units and inputs

dictate the local positions and the next steps. Finally, the material storage capacity could allow

an exact copy of the working prototype to be built without the initial sequence. A human or

machine could directly read the first assembly and make a perfect copy, simply by reading and

writing step-by-step from each of the white input mechanism. This shows promising avenues

for mass-produced assembly by simplifying the construction process and the information that is

required to be stored in the machines or humans that assemble the structures.

Finally, the working prototype demonstrates the single stream construction of instructions and

data for computing. The single stream of input takes the form of the repeating seven O's and

seven l's. This in turn, because of the properties of the NAND mechanism, allow computing to

be performed on the string, while accruing multiple levels of digital gates based on the pattern
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of inputs. If we look at a few steps of input it should help to emphasize the point. If the user

places two 1 inputs into a grey Gate unit, the output results in a 0 passed into a new grey Gate

unit. This successfully demonstrates the NAND input/output functionality. Next, the user

passes another 1 into the open slot of the latest grey Gate. This results in a 1 output, similarly

functioning as a NAND mechanism. Both steps resulted in a functioning NAND mechanism,

however the global configuration acted as either an AND or and OR Gate because the initial

inputs were [1,1] and the final output, after two steps, was a [1]. This shows that a number

of NAND mechanism can act as different gates and that the computing devices are actually

configured directly as the input string is passed, unlike the two strings, instruction and data, that

we saw in the Field Programmable Gate Arrays and common to most computer architectures

today.(See Figure 43)64

64 Adrian Thompson. An evolved circuit intrinsic in silicon entwined with physics.
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Figure 63. Assembly animation from 60 individual units to final global configuration.
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Figure 64. 60 unit working prototype demonstrating three dimensional single path.

Figure 65. Prototype detail with white redundant tetrahedrons as input and grey gate tetrahedrons.
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Figure 66. 60 unit working prototype demonstrating three dimensional single path.
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Computation

Logic Matter can be analyzed in terms of its potential for computation as well as it ability to

describe geometry and function as a physical assembly system. In this section I will attempt to

decompose the potentials of Logic Matter as a system of computation by relating it to a number

of important examples including; the abacus, Wang Tiles, jigsaw puzzles and DNA computing.

The abacus is one of the earliest examples of a physical aid used for making calculations. 65 The

human actually performs calculations in their head while sliding the different beads of the abacus

to remember the state, sum and any carried numbers.66 The abacus can be used to calculate

addition, subtraction, multiplication, division, square roots and cube roots of any number.67 This

device attempts to minimize the amount of information the user is required to remember while

maximizing the amount to be physically computed. The human remembers a simple algorithm

but can achieve far quicker and greater calculations than if they were left alone. Logic Matter

relates to this example as a device to store information, process the input/output of binary

information through digital logic gates and interact with the user, informing them of the resultant

next moves. Logic Matter goes further than simple calculations as it can actually compute logic

operations based on binary input/output and can be used as combinational and sequential logic

to form complex logical circuits. Similar to the abacus, Logic Matter could be used a simple

device to work hand-in-hand with the user, computing simultaneously as elements are placed,

restricting moves and allowing only the proper computed output, then waiting again for the

user's input. The benefits of the device lie in the sequence of inputs that are fed into the system,

and the operations that are performed on the inputs, dictating the next inputs, storing the state

of the system and processing future decisions. Similar to modem computing devices, Logic

Matter utilizes a series of instructions and data sequences, however, uniquely, Logic Matter only

requires a single strand of inputs to build the instruction hardware (sequence of NOT, AND,

65 A Brief History of the Abacus. http://www.ee.ryerson.ca/~elf/abacus/history.html.
66 A Brief History of the Abacus. http://www.ee.ryerson.ca/~elf/abacus/history.html.
67 Kei-Chen, Lee. HOW TO LEARN LEE'S ABACUS. Lee's Abacus Correspondence School. (Taiwan,
China, 1958).
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OR, NAND, XOR, XNOR gates) and process the data (sequences of O's and l's). This could

potentially lead to faster computing and fewer errors while fetching data and instructions.

The next model of computing that can be compared with Logic Matter is Wang Tiles. Wang

Tiles were introduced by Wang in 1965 as a series of colored edge tiles that can be tiled only

in accordance to their neighbor's colored edges.68 The question was asked, how many tiles and

of what color combinations are required to perfectly tile an infinite plane.69 Wang tiles were

initially demonstrated to be solvable through only periodic tiling, and then later were extended

to include certain aperiodic tiling, or non-repeating patterns.7 0 Aperiodic tiling has sparked

interested in a number of people due to their inherent link to applications in DNA computing.7

Wang tiles were further demonstrated to be Turing complete, or simulate a single tape Turing

machine.72 Being Turing complete ensures that rules followed in sequence from an arbitrary

sequence of inputs can produce the output of any calculation.7 3
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Figure 67. Figure 1: a) Eight Wang Tiles that can stochastically tile the plane; b) A small portion of the plane with a
valid tiling.4

68 H. Wang. 1965. Games, logic, and computers. (Scientific American. 98-106, November).
69 H. Wang. 1965. Games, logic, and computers.
70 Michael F. Cohen, Jonathan Shade, Stefan Hiller, Oliver Deussen. Wang Tiles for Image and Texture Gen-
eration. (Microsoft Research, Wild Tangent, University of Washington and Dresden University of Technology).
71 Michael F. Cohen. Wang Tiles for Image and Texture Generation.
72 Michael F. Cohen. Wang Tiles for Image and Texture Generation.
73 Turing Complete. http://c2.com/cgi/wiki?TuringComplete.
74 Michael F. Cohen. Wang Tiles for Image and Texture Generation.
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Wang Tiles are extremely similar to Logic Matter in that they define moves and provide

constraints for neighboring moves based on unit interactions and orientation of the placed

unit. Wang Tiles are said to have an infinite number and type of tiles whereas Logic Matter

utilizes only one type of tile to describe any arbitrary geometry. A single tile eases the coloring

constraints associated with Wang Tiles; however the input/output NAND mechanism adds an

additional layer of logic to the possible global configurations. After each placement of a Wang

Tile, the space becomes increasing constrained based on neighboring colors. With Logic Matter,

the space is not additively constraining (except based on self-intersection) rather, each step only

constrains the next move then provides one output and waits for a second. The second unit then

constrains the possible placement and repeats. The global geometry attempting to be described

through Logic Matter -- resulting in a series of binary input/output strings or instructions -- is

actually the most globally constraining principle. The geometry constrains the possible moves

and produces a series of inputs. Conversely, a gradient input string constraints the direction of

growth as well as the possible moves at each step. These methods of constraining input can

relate to a jigsaw puzzle, as described in Section 04, where each piece constrains the next moves

and there is only one possible configuration of the pieces. Jigsaw puzzles have been shown to be

NP-Complete and directly equivalent to other types of edge-matching puzzles. It can easily be

imagined that jigsaw puzzles or any complex assembly of units would be far simpler and faster

to solve if each move not only constrained the next moves, but informed the user of the move

to make. This means that costly search and backtracking can be eliminated when decided the

next moves. Logic Matter attempts to infuse this local decision making and information storage

directly into our puzzle pieces, or material parts to aid in the assembly of puzzle-like three

dimensional structures.

We saw that Logic Matter can be seen as comparatively close to Wang Tiles in terms of

complexity and embedded computing, while offering a third dimension of geometric adjacency.

We can thus deduce that with reasonable extensions Logic Matter should prove to be similarly

complete as a model of computation. We will look at a final example of DNA computation that

will hopefully further articulate the implied universality.

111



[06] Analysis

As noted in previous sections (Section 03, Section 04), Logic Matter can be well associated with

micro scale structures, more specifically the encoding of DNA/RNA into single strand sequences.

DNA computation has been introduced by a number of individuals including: Abelson et. al's

Amorphous Computing, Knight and Sussman's Cellular Logic Gates, Rothemund's DNA

origami and work on DNA Turing Machines and many others.757 677 Amorphous computing

aimed at building arbitrary computational models from less-than perfect individual components.

Knight, Sussman and Rothemund have demonstrated that we can do useful computing through

logic in cellular structures, even demonstrating DNA as a complete Turing Machine.7879

Rothemund also showed that we can actually describe useful geometries and force DNA to fold

to form arbitrary single path strands. There are obvious correlations with Logic Matter in terms

of the single strand typology and the embedded instructions of DNA sequencing, however, I

should go slightly further to demonstrate the elements of a Turing machine within Logic Matter.

The essential elements of a Turing machine include; a tape, head, table and state register. The

tape obviously compares to the single strand of the NAND mechanism, possibly extending

infinitely in either direction. Each NAND mechanism stores the state of its position through its

interaction with adjacent elements. The occupied face registers the current state. The head is

not directly implemented (other than the user); however a simple extension could be imagined

that would travel along the tape and read, element-by-element, the instructions for the next

steps. Similarly, the head could also be defined as the last unit placed at any moment, because

it actually reads the state of the previous and decides the fate of the next. The table can relate

to the possible input sequences at any given move and the relationship with the previous moves.

There are four possible input combinations and two possible output combinations. The current

implementation of Logic Matter obviously has restrictions that differ from the DNA and Wang

Tile examples but it should be emphasized that both strongly point to the possible extension of

Logic Matter as a powerful model of computation, potentially capable of being Turing Complete.

75 Harold Abelson. Amorphous Computing.
76 Thomas K. Knight. Cellular Gate Technology. (MIT Artificial Intelligence Laboratory. July 1997).
77 Paul W. K. Rothemund. A DNA and restriction enzyme implementation of Turing Machines. (CalTech).
78 Thomas K. Knight. Cellular Gate Technology.
79 Paul W. K. Rothemund. A DNA and restriction enzyme implementation of Turing Machines.
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Physical Properties

The specifics of the NAND mechanism and any aggregation with a large number of parts can

be analyzed in terms of the efficiency to describe geometries, as well as its performance for

programmability. The proposed mechanism, right-angle tetrahedron geometry and linearity

of the assembly does not offer excessive efficiency, rather it imposes an extremely redundant

overall configuration. For any global configuration there will be twice as many modules used

than were actually necessary to describe the single path. That is a direct result of the redundant

input tetrahedrons, allowing the geometric and digital logic transformation at each step. The

powerful opportunities of redundancy have already been mentioned, however it is important

to realize the limitations of such a redundant system.(See Section 03) In terms of cost per

module, the units could be manufactured fairly efficiently and inexpensively (depending on

the fabrication technique), however it is inevitable that the global configuration will cost twice

as much as necessary. This leads to the possibility that the redundant tetrahedrons could be

utilized on-demand at each step and removed after activating the gate. They could be only left in

moments of extreme loading or points that required higher redundancy.

In the construction of larger NAND circuits, the different configurations of the universal NAND

to construct the other gates mandates that inputs and outputs be split and distributed between

connected gates.(See Figure 09) This imposes a direct problem with the proposed mechanism

because we are limited to linear growth, rather than offering points for branching at each step.

Previously, I discussed that the redundant tetrahedrons could offer the moments of branching,

but it is unclear at this point of the functionality of the universal NAND could be utilized simply

through the redundant inputs. Alternatively, the splitting of output traces could be thought of

as a complete copy of the path so far, where the entire string would be duplicated and used as

the input to the last module. This is even more redundant than the original string but allows the

fanout of more complex circuits to be created with the NAND mechanism.

113



[06] Analysis

Another limitation of the proposed mechanism is the limitation for loops, or flow control. The

programmability of the assembly sequence is somewhat limited by the on-the-fly computing

nature of the designed NAND mechanism. This does not allow for a programmed sequence

to actually loop back to itself and re-influence the entire string. After each node is computed

(two inputs leading to one output) that gate is considered fixed or complete. That means that

no other inputs/outputs can have an effect on that unit. This ultimately means that the global

configurations are permanent and cannot be reconfigured. This is known to be a major drawback

to the current implementation and would hopefully be addressed in the very first revision of the

system. However, one exciting work-around that could lead to even more exciting results is the

idea of the "snake eating its own tail", where the units at the beginning of a long sequence are

actually removed and utilized at the end. This would allow the structure to be reprogrammed

and actually loop through itself for recursive influence. This idea has not been fully tested but

potentially offers an exciting way for reprogrammability and broader functionality as a device for

computing.

Specifically as a physical, user-interactive, device for computing, Logic Matter will most likely

not become influential due to the immense number of modules needed for powerful computation

and fairly slow speeds due to users actually assembling the structure. However, in principle, if

it is deployed as a system of assembly that utilizes the infused nature of computing, it should

prove to be far faster and more accurate than traditional means of construction when attempting

to build large or complex structures. The time saved from look-up tables, reading blueprints or

3D models, excessive scouring for parts in piles of thousands of pieces, the eminent remeasuring

and time lost to errors argue the benefits of Logic Matter for efficiency while building complex

assemblies. The emphasis has been placed on complex assemblies due to the inherent difficulty

in assembling these structures. Complex assemblies better demonstrate the benefits of Logic

Matter as opposed to simple structures that are produced fairly easily and successfully with

traditional assembly systems.
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Correlations could be drawn from the work on Amorphous Computing and their initial thoughts

on the usefulness as a tool for cellular computing:

"Thus, we do not anticipate that cellular computing in itself will be a good way to solve
computationally difficult problems. On the other hand, the ability to organize cells into precise
patterns and to cause cells to secrete chemical components could be the foundation for the
engineering construction of complex extracellular structures and precise control of fabrication
at the subnanometer level."80

Finally, opportunities may be afforded through Logic Matter as a low energy, low set-up and

minimal information storage system for assembly. To build a global configuration, Logic Matter,

requires little to no energy, other than the physical labor of placing parts because electricity and

motors have been eliminated. This allows infrastructure to be removed and enables opportunities

for communities without established technologies to build complex, functional structures while

benefiting from the same technological advantages that we receive through our digital machines.

Finally, the information required to build such structures can literally be removed from the

user, minimizing the number of assemblers (human or machine) required and the information,

confusion and foreseen errors common in today's assembly systems. Further improvements to

reduce the complexity of the physical NAND mechanism could help to eliminate even more

information/confusion from the user as well as ease the process of fabricating excessive numbers

of modules required to build substantial structures.

80 Harold Abelson. Amorphous Computing.
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In this thesis I have attempted to illustrate opportunities in the assembly of complex structures,

arguing the inevitable flaws of our current assembly and construction systems while leveraging

the well-known benefits of digital information and self-assembly. I argued that if we want to

build more complex structures than humanly possible today, then we need to embed discrete

assembly information (and computation) directly into our material parts. I outlined a context of

work, the demands of today's complex physical environment and tomorrows desired structures,

necessitating infused digital logic within our material parts. I then introduced the foundation

of this thesis, a system called Logic Matter that offers possibilities for the assembly of large-

scale complex structures by embedding discrete assembly information into physical NAND

mechanisms. I described the designed NAND mechanism and demonstrated its functionality

and programmability. Useful applications were outlined by showing the decoded descriptions of

any arbitrary geometry (lines, surfaces and volumes) through a sequence of NAND mechanism.

A method of computing through construction was developed that enables a number of exciting

potentials in physical assembly of complex structures, including: local knowledge, material

as a storage device, stopping mechanisms, single stream processor plus hard drive and self-

replication. Finally, I showed a working prototype that embodied the geometric descriptions and

on-the-fly computing embodied in a physical implementation of digital logic for assembly: Logic

Matter.
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Fuftue Work

Throughout the development of this thesis a number of potential applications and exciting areas

of future research have emerged. In this section I would like to touch on a few of the possible

area of future work as well as reemphasize applications of Logic Matter at extremely small

scales, large scales and extremely precise assemblies. First let us look at extremely small scale

applications.

The inherent information storage, self-guided-replication possibilities and single stream hard

drive/processor combination provide powerful tools for small scale structures due to the power

of computing that is embedded directly in the materials. As noted in Section 05 on Self-Guided-

Replication, extremely small-scale assembly machines (actual mechanism that can occupy our

blood stream and perform a myriad of tasks) may be built in the future and most likely won't

pack universal computation into each device. Logic Matter provides a powerful possibility of

packing computation directly into the deposited materials rather than the device. Further, if the

machines are actually depositing natural materials rather than synthetic geometries, we might be

able to utilize the scaffolding principles, discussed in Section 05, to build temporary structures

that allow proteins to grow/fold within the confines of the informative scaffold. The scaffold

could infuse local decision making and dictate folding sequences for naturally grown proteins,

much like the impressive power of the Ribosome to decode our bodies RNA into a sequence

of folds to create complex proteins.81 This argues for the ultimate application of constructing

complex, highly functional, biological structures from unreliable and inconsistent elements!

As seen in previous sections (Section 03, Section 04, Section 05) large number of corollary

projects have addressed the idea of molecular computing such as Abelson et. al's Amorphous

Computing, Knight and Sussman's Cellular Logic Gates and Rothemund's DNA origami and

81 Carl Branden, John Tooze. Introduction to Protein Structure. (New York: Garland Publishing Inc.. 1991).
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work on DNA Turing Machines. 2 3 s4 These projects offer an interesting correlation to the

proposed system of Logic Matter in that they are aimed at functional geometric descriptions by

embedding information computing into materials, thus allowing imperfect parts to interact and

add to larger, perfect, structures. When combined with ideas in synthetic biology and unresolved

problems in protein folding, the informed folding of arbitrary single strand sequences in Logic

Matter becomes increasing exciting and plausible!

We can envision applying this technology to the construction of molecular-scale electronic structures.
One plausible way to construct complex, information rich electronic systems is to first fabricate a
largely passive but information-rich molecular-scale "scaffold" consisting of selectively self-
assembling engineered molecules. This scaffolding would be used to support fabrication of molecular
conductive and amplification devices interconnected as the engineer requires. Proteins represent good
candidates for scaffolding components; they are chemically and thermally stable and have exquisitely
selective binding domains.85

A second exciting avenue for Logic Matter is the construction of three dimensional, functioning,

circuits. Due to the nature of the working NAND mechanism, Logic Matter offers the materials

necessary to build arbitrary circuits. The main emphasis of this thesis has been on computing

directly for assembly -- not necessarily focusing on the output sequence after being computed.

However, functioning NAND circuits could potentially offer useful computation and circuit

schematics. This may require that the configurations branch, loop or be reconfigurable, all of

which are not directly embedded in the current generation of the designed NAND mechanism,

although, they could be easily be implemented in future. (See Section 03 on branching). The

current NAND mechanism still can perform circuit assembly, simply by copying large chunks

of the sequence and using it for input, representing branching or fanout in the circuit diagram.

I have tested the implementation of a half-adder circuit that successfully adds any two digit

number (0+0=0, 0+1=1, 1+0=1, 1+1 = 2).(See Figure 68)

82 Harold Abelson. Amorphous Computing.
83 Thomas K. Knight. Cellular Gate Technology.
84 Paul W. K. Rothemund. A DNA and restriction enzyme implementation of Turing Machines.
85 Harold Abelson. Amorphous Computing.
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~Sum = 2X[O]+[1] = 1

Figure 68. Successful falf-adder circuit construction from NAND mechanisms.

The circuit description might be given as a graphic representation of the circuit or a translated

syntax, then the search strategy could be to arrange and grow the NAND mechanism such that

the circuit traces are maintained. The information would be passed through the appropriate

gates and a successful output would be realized. For example, the adder might be desired and

the modules would be constructed in a way as to realize the adder circuit in 3D space while

concurrently computing the addition of the input binary numbers. The resultant output is the

combination of 3D configuration and final carry bits, dictating the result of the computation.

Three dimensional circuit construction might have potential applications for schematic testing of

circuits before prototyping. Logic Matter would thus become a tool to aid users in circuit design.

The circuits might also be functioning while embedded directly into our physical environment

of walls, building and infrastructure. Computing materials could allow our walls to be passing

information, deciding on environmental conditions and dictating adaptive spatial transformations

as output. A major area for further development is in the reconfiguration of the overall assembly.

The current design only allows computing to be performed directly as the units are placed. That

implies that the final configuration can no longer perform computation. If we want to perform

larger computations or have larger inputs (from sensors or environmental influences) then we

need to have reconfigurable systems that can feedback to themselves, and adjust the processed

information. This would require functional loops in the system, possibilities for disassembly

and a redesigned mechanism that could store energy for the bit switching. This has been largely

unexplored in this thesis but could inspire exciting topics for future work.

On the large-scale, Logic Matter has obvious applications in terms of precision construction and
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localized building, rather than constantly requiring global information (how far have we gone,

have we veered off course etc). (See Section 05 on Building an Infinite Line). Structures are

becoming increasingly larger, digging deeper into the earth and higher into space.(See Figure 69)

Consequently, these structures can no longer rely on the error prone construction techniques of

our current industries. Logic Matter, offers a system of assembly that empowers the construction

team to have greater guarantees in the accuracy of their work, requires less skilled labor and

knowledge of the global configuration while leading to few mistakes and communication issues.

The inherent nature of Logic Matter is scaleless, the functioning of the mechanism depends

solely on geometry that can scale in any direction, large or small. The units could be directly

scaled in size or in number of parts, while still maintaining the computing functionality and

transfer of information. However, if we want to utilize a variety of scales in our system -- units

functioning as larger structural elements with hierarchy of scales and functions -- the interface

between differently scaled units would need to be designed and tested. This transition between

differently scaled units still remains unexplored and offers promising avenues for future research.

Figure 69. Space Elevator8 6

86 Space Elevator Reference. http://blog.lib.umn.edu/wheeO113/architecture/images/06_SpaceElevator.jpeg.
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