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Abstract We employ spectral method numerical simulations to examine the dynamical development
of anisotropy of the variance, or polarization, of the magnetic and velocity field in compressible
magnetohydrodynamic (MHD) turbulence. Both variance anisotropy and spectral anisotropy emerge under
influence of a large-scale mean magnetic field B0; these are distinct effects, although sometimes related.
Here we examine the appearance of variance parallel to B0, when starting from a highly anisotropic state.
The discussion is based on a turbulence theoretic approach rather than a wave perspective. We find that
parallel variance emerges over several characteristic nonlinear times, often attaining a quasi-steady level
that depends on plasma beta. Consistency with solar wind observations seems to occur when the initial
state is dominated by quasi-two-dimensional fluctuations.

1. Introduction

A prominent feature of a magnetohydrodynamic (MHD) fluid or plasma under influence of a large-scale mean
magnetic field is the appearance of two kinds of anisotropy, which we refer to as variance anisotropy and
spectral anisotropy. The former type, which is the primary focus of the present paper, refers to the inequality
of the diagonal elements of the variance tensor Vij = ⟨BiBj⟩ − ⟨Bi⟩⟨Bj⟩, for the special case of the magnetic
field vector B, and is sometimes, in wave theory, called “polarization” anisotropy [Coleman, 1968; Belcher
and Davis Jr., 1971; Barnes, 1979]. Angle brackets denote an appropriate average. The second type, spectral
anisotropy, may also be called correlation anisotropy and refers to the inequality of the total energy density
Sii(k) (summed over all diagonal components of the spectral tensor Sij) near wave vector k when the direction
(only) of k is varied [Batchelor, 1970; Robinson and Rusbridge, 1971; Shebalin et al., 1983].

In the present paper we will examine how variance anisotropy emerges in several contexts that are
familiar in plasma and MHD turbulence. For example, we will begin by asking whether freely decaying
(undriven) turbulence that begins with variances fully transverse to the applied mean magnetic field, B0, will
remain in this state. Fluctuations that remain fully transverse are sometimes called “Alfvén modes” or “Alfvénic
modes,” referring to a linear wave perspective [Barnes, 1979], but, in general, they are not required to be
associated with waves. When departures from the transverse variance condition are observed, we address
the issues of how fast parallel variances appear and, in a quantitative sense, what levels of anisotropy are
favored. Following a review of background (section 2) and a description of the numerical methods (section 3),
we examine these questions in section 4, using results from simulations. This leads naturally to discussion of
how variance anisotropy is related to other features such as Alfvén ratio (kinetic to magnetic energy ratio)
and spectral anisotropy. Our attention then turns to results relating to the degree of independence of parallel
and transverse variances. Finally, we discuss the implications of the present series of numerical experiments.
We note that these same questions and issues have also been recently investigated in a companion kinetic
plasma study [Parashar et al., 2016].

2. Motivation and Theoretical Background

While the two kinds of anisotropy can be related (as we discuss below), from a purely kinematic perspective
they are entirely independent. For example, in constructing a synthetic turbulence realization (where syn-
thetic means that any correlations between field components have not been attained dynamically) one is free
to choose a distribution of energy over wave vector, i.e., S(k) ≡ Sii(k), and then after the fact choose how the
variance is distributed. In fact, in a large periodic box, one can always represent the Fourier coefficients of the
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magnetic field, B(x) =
∑

k b̃(k)eik⋅x , using the toroidal-poloidal (aka Craya-Herring) decomposition [Craya,
1958; Herring, 1974; Lee, 1975; Lesieur, 1990; Howes, 2015],

b̃(k) = ik × ẑ
k⟂

b̃t(k) −
k̂ × (k × ẑ)

k⟂
b̃p(k), (1)

where k⟂ = |k × ẑ|, k̂ ≡ k∕k, and a uniform mean magnetic field B0 = B0ẑ is in the ẑ direction. (When k ∥ B0,
we choose the toroidal and poloidal directions to be x̂ and ŷ, respectively.) Then the energy distribution will
be the selected value provided that S(k) = ⟨|b̃t(k)|2 + |b̃p(k)|2⟩. We are still free to choose how this energy
is partitioned between the toroidal component (aka Alfvénic polarization) b̃t(k) and the poloidal component
b̃p(k), and this selection determines the degree of variance anisotropy with respect to the B0 direction, which
is the main emphasis below. Spectral anisotropy is now imposed by selecting how the amplitudes are dis-
tributed over the directions of the wave vector k. Polarization within the perpendicular plane is also affected
by this choice. (For details and the full formulation of the spectral tensor, see, e.g., Oughton et al. [1997].)

Similarly, the velocity field v(x), which is not guaranteed to be solenoidal, consists of toroidal and poloidal
contributions ṽp(k), ṽt(k) as above, but in addition may include a longitudinal part having Fourier amplitudes
of the form ũL(k) = k̂ũL(k).

In the solar wind, the classic examination of the variance anisotropy is due to Belcher and Davis Jr. [1971],
which characterized the full range of possibilities in terms of the eigenvalues of the variance tensor. Analyzing
Mariner data, they found the minimum variance direction to be located very close to the mean magnetic field
direction and the variance ratios in the inertial range to be close to 5:4:1, which is consistent with statistical
axisymmetry about the mean field [e.g., Leamon et al., 1998]. This ratio implies that the perpendicular variance⟨b2

⟂⟩ = ⟨b2
x + b2

y⟩ exceeds the parallel variance ⟨b2
z ⟩ by a factor of about 9 for the interval analyzed. More

extensive studies at MHD scales have shown that the solar wind typically has

Ab =
⟨b2

⟂⟩⟨b2
z ⟩ > 2 (2)

(the isotropic level), at least from 0.3 to 10 AU [Bavassano et al., 1982; Klein et al., 1991, 1993; Horbury et al., 1995;
Bruno et al., 1999; Leamon et al., 1998; Smith et al., 2006; Hamilton et al., 2008; MacBride et al., 2010]. Similar
findings have been obtained for the plasma fluid velocity field v, often with Av = ⟨v2

⟂⟩∕⟨v2
z ⟩ somewhat smaller

than Ab. However, for this case a smaller number of measurements have been reported [e.g., Klein et al., 1991].
(See Oughton et al. [2015, Table 2] for a summary of observational results.)

It is tempting to try to explain the appearance of variance anisotropy in the solar wind in terms of MHD tur-
bulence theory, given that numerous other observed properties involving cascade, cross helicity, Alfvén ratio,
and other quantities have been understood in this way [e.g., Matthaeus and Goldstein, 1982; Sorriso-Valvo et al.,
2007; MacBride et al., 2008; Marino et al., 2008, 2011; Stawarz et al., 2009, 2010; Osman et al., 2011a, 2011b; Wan
et al., 2012; Bruno and Carbone, 2013]. Variance anisotropy is a somewhat atypical property in that it is not read-
ily found in simulations of incompressible turbulence, but rather, one must evidently appeal to compressible
MHD turbulence effects to understand it. One finds, for example, that incompressible MHD with initial data
having both isotropic variances and isotropic spectral distribution of energy does not lead to characteristic
variance anisotropy, whereas compressible MHD does produce this effect [Matthaeus et al., 1996].

An intriguing and subtle result in this regard emerges in the examination of the requirements for a compress-
ible MHD medium to approach the condition of incompressibility at plasma beta (𝛽) low or order 1 [Zank
and Matthaeus, 1992, 1993]. In particular, one of these requirements is that the parallel variance must be
suppressed by at least one power of the small expansion parameters in order that the incompressible limit
be approached smoothly. While there is no guarantee that nature seeks this “nearly incompressible limit,”
the result is suggestive of the interplanetary observations. A related fact is that the parallel variance must
be suppressed in order to derive the so-called reduced MHD (RMHD) equations [Kadomtsev and Pogutse,
1974; Strauss, 1976; Zank and Matthaeus, 1992], which are also incompressible and appropriate for low 𝛽 plas-
mas. The interesting situation emerges that reduction of the parallel variance is evidently a requirement for
approaching a dynamics that is well described by incompressible equations, and yet it also transpires that
freely decaying compressible dynamics tends to evolve, at least partially, toward such a state. A corollary of
these derivations is that when all fast timescales and all long (parallel) wavelength fluctuations are completely
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removed from the 3-D MHD equations [Zank and Matthaeus, 1992], one may recover incompressibility only if
the system completely two dimensionalizes (i.e., the parallel coordinate, z, becomes ignorable). In that case
(and perhaps only in that case) the parallel fluctuations (bz and vz) evolve passively: being influenced by the
2-D transverse motions, but not having a reciprocal influence on those 2-D transverse motions.

The suggestion was made [Matthaeus et al., 1996] that the parallel variance decays more rapidly in low Mach
number compressible MHD due to separation of timescales between the compressible couplings versus the
incompressible couplings. Such a mismatch makes it difficult to resupply energy to the inertial range of the
compressive branch of the cascade. This finding implies that there are relatively weak couplings between
parallel variance fluctuations and perpendicular variance fluctuations in compressible MHD at low turbulent
Mach numbers and moderate to low 𝛽 . This situation is analogous to the reduced coupling between compres-
sive and incompressive motions in compressible hydrodynamics at low Mach number [Ghosh and Matthaeus,
1992]. However, we should note that a reduction of the rate of resupply of the compressive cascade does not
imply that the cascades evolve completely independently. We revisit this point in section 5.

Variance anisotropy has also been studied from the perspective of wave modes. Barnes [1979] and Barnes and
Hollweg [1974] studied the collisionless damping of the classical MHD wave modes when they are subjected to
linear damping obtained from the Vlasov equation. The finding of relevance to the solar wind is that the slow
modes are always heavily damped for interplanetary values of 𝛽 , while fast modes are typically also damped
relatively quickly. Various authors have argued [Howes et al., 2012; Klein et al., 2012] that slow modes in the
solar wind survive only in the limit that they become degenerate with nonpropagating pressure balanced
structures, which of course are not strictly to be considered waves. Indeed, such pressure balanced structures
are already well known in turbulence as an essential element of the nearly incompressible limit alluded to
above [Zank and Matthaeus, 1993]. Kinetic damping, in fact, may provide a ready explanation for the relative
absence of propagating compressible modes in the solar wind, but of course, this explanation ignores turbu-
lence completely. The simplified wave analysis also explains the origin of the term “magnetic compressibility”
for the quantities such as ⟨b2

z ⟩∕⟨b2
⟂ + b2

z ⟩, given that the only incompressible mode present in compressible
MHD—the Alfvén mode—has zero parallel variance.

Variance anisotropy also enters in subtle ways in turbulence theories that are built up from wave theory.
These are characterized by the enforcement of some wave properties, especially the dispersion relation, well
into the highly nonlinear regime. In the context of weak turbulence and so-called critical balanced turbu-
lence [Sridhar and Goldreich, 1994; Goldreich and Sridhar, 1995], one deals from the onset with the Alfvén
mode and therefore exclusively with transverse variances. This approximation is initially a simple assump-
tion but is justified later by an argument based on the fast, slow, and Alfvén linear dispersion relations [see
Goldreich and Sridhar, 1995, section 5.3]. Their conclusion—that shear Alfvén modes produce an indepen-
dent cascade—was subsequently examined in terms of a simplified mode identification scheme [Cho and
Lazarian, 2002, 2003], who supported the same assumption of independence of the cascades of the differ-
ent MHD mode types, for supersonic flows. This interpretation relies, of course, on the fluctuations remaining
adequately described as wave-like, so that the mode identification is meaningful.

While there is a general concurrence that parallel variance in compressible MHD is associated with faster
timescales and the presence of compressive effects, a number of questions and points of possible confusion
persist. For example, it is unclear if the notion of independence of the parallel variance remains realizable
in well-developed turbulence. Moreover, while an incompressible cascade is often viewed as consisting of
modes that are, in some sense, Alfvén waves (or wave-like), it is important to recall that compressibility is
apparently required for a dominant transverse variance to emerge dynamically [Matthaeus et al., 1996] and
that the approach to incompressibility requires bounding of the parallel variance [Zank and Matthaeus, 1992].

The main focus in the present study will be to further explore the connections relating variance anisotropy
to properties of the well-developed turbulence cascade in MHD. We will show how, in decaying turbulence
across a wide range of initial parameters, parallel variance comes into a kind of statistical quasi-equilibrium
with transverse turbulence. The emergence of variance anisotropy favoring transverse polarizations as seen
in the solar wind [Belcher and Davis Jr., 1971] is typically also attended by other related turbulence properties
including systematic connections to spectral anisotropy and Alfvén ratio (residual energy), and variations with
plasma 𝛽 , and we will briefly examine these connections.
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Before delving into a description of the methods and results, we remark that there are other effects, notably
those associated with inhomogeneities of turbulence, that can influence anisotropies, both of the variance
and spectral types. In particular, it is well known that transport effects associated with turbulence in an
expanding medium [Zhou and Matthaeus, 1989; Velli et al., 1989; Tu and Marsch, 1995; Verdini and Grappin,
2015] influence variance anisotropy. At least some of the basic physics of these expansion effects can be seen
even in the WKB theory of Alfvén waves in an expanding wind [Völk and Aplers, 1973]. Recently, the effects
of expansion on the cascade have been explored using expanding box models [Grappin and Velli, 1996; Dong
et al., 2014; Verdini et al., 2015; Verdini and Grappin, 2015]. Here we take a narrower tack, focusing on the
effects associated with homogeneous turbulence [see Oughton et al., 2015], which, although simpler, remain
incompletely understood.

3. Simulations

The study is based on numerical experiments that employ a compressible, three-dimensional (3-D) spectral
method code with a coordinate space resolution of 5123 in a periodic cube of dimensionless side length 2𝜋
and a 𝛾 = 5∕3 polytropic equation of state [e.g., Ghosh et al., 1993]. In a standard notation, the dimensionless
equations are

𝜕𝜌

𝜕t
= −∇ ⋅ (𝜌v), (3)

𝜕v
𝜕t

= v × 𝝎 +
j × B
𝜌

− ∇
[

C1𝜌
𝛾−1 + v2

2

]
+ 1

𝜌

[
𝜈1∇2v + 𝜈2∇(∇ ⋅ v)

]
(4)

𝜕a
𝜕t

= v × B + 𝜂∇2a − ∇Φ, (5)

where𝝎 = ∇×v, B = B0+b, b = ∇×a, and 1∕C1 = (𝛾−1)M2
s , with Ms a dimensionless parameter determining

the initial sonic Mach number.

The main goal is to better understand how the parallel variance ingredient of turbulence either emerges or
evolves when parameters such as mean magnetic field strength B0, turbulent Mach number Ms, and plasma
beta 𝛽 are varied. The range of 𝛽 explored, 0.25–16 for most runsets, is chosen for its relevance to the solar
wind. (The solar wind is probably not a 𝛾 = 5∕3 polytropic fluid; however, we expect that our results are
relatively insensitive to the value of 𝛾 .)

As is well known, spectral method simulations with genuine discontinuities are associated with Gibbs phe-
nomenon overshoot [e.g., Passot and Pouquet, 1987; Ghosh and Matthaeus, 1992; Canuto et al., 1988]. However,
since our simulations have nonzero dissipation coefficients, shocks and other sharp structures (e.g., current
sheets) are spread over at least several grid points. We have chosen the viscosity and resistivity values conser-
vatively to ensure that this is the case. Specifically, for all runs discussed herein, 𝜈1 = 𝜈2 = 𝜂 = 0.002 and for the
initial fluctuations employed this yields initial large-scale Reynolds numbers of ≈ 200. Many one-dimensional
density profiles from various runs have been examined with no indication of any resolution issues.

3.1. Initial Conditions
We have carried out a large number of runs with several different classes of initial conditions (ICs). In all cases
the initial mass density is 𝜌 = 𝜌0 =1 and the initial excited bandwidth range is 3≤ |k| ≤ 9 (in box size units).
Excitation is spectrally isotropic, except for the quasi-2-D classes—see case 4 below. The runsets also differ in
the choice of variance anisotropy, with the initial ṽ(k) and b̃(k) polarizations as follows:

1. toroidal (aka Alfvénic), meaning in the k × B0 direction;
2. isotropic, approximately equal energy in the toroidal and poloidal components (but no longitudinal v

excitation);
3. either of the above but with either half or all of the velocity energy in the longitudinal (compressive) modes

(respectively denoted “Hlong” and “Along” in Table 1); or
4. a mixture of quasi-2-D + quasi-isotropic initial conditions. Here 80% of the energy is in the kz = 0 modes

and toroidally polarized, with the other 20% in the |kz|> 0 modes, with isotropic polarizations. A second IC
of this form uses |kz| ≤1 as the quasi-2-D modes (denoted “q2d-kz0” and “q2d-kz1” in Table 1).

Cases 2 and 3 are similar to lower resolution simulations reported in Matthaeus et al. [1996]. Table 1
lists the major parameters for the runs, organized by runset, along with typical evolved values for some
anisotropy-related quantities to be discussed.
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Table 1. Values of Selected Quantities at t = 2tmax D (Except the Final Two Columns Which Are t = 0 Values)a

IC Type tmax D tb
1∕2

tv
1∕2

Ab Av b2
tor∕b2 v2

tor∕v2 u2
long

∕v2 2Dfrac v2∕b2 𝛿𝜌∕𝜌0 𝛿b∕B0 B0 Ms 𝛽

Toroidal 0.75 0.7 0.65 6.5 5.7 0.8 0.77 0.0077 0.064 0.86 0.013 0.76 1 0.15 44

Toroidal 0.75 0.7 0.65 6.7 5.6 0.81 0.76 0.024 0.066 0.87 0.036 0.76 1 0.25 16

Toroidal 0.8 0.7 0.75 7.7 5.1 0.83 0.73 0.064 0.072 0.85 0.11 0.73 1 0.5 4

Toroidal 0.8 0.7 0.7 8.5 5.9 0.84 0.76 0.081 0.079 1 0.12 0.5 1.4 0.5 2

Toroidal 0.85 0.55 0.65 10 6.5 0.86 0.76 0.1 0.092 1 0.12 0.36 2 0.5 1

Toroidal 0.95 0.4 0.5 11 9 0.88 0.79 0.11 0.097 1 0.11 0.24 3 0.5 0.44

Toroidal 1.1 0.35 0.7 13 10 0.9 0.81 0.1 0.11 0.95 0.11 0.18 4 0.5 0.25

Isotropic 0.75 – – 1.8 1.6 0.56 0.51 0.015 0.057 0.89 0.016 0.69 1 0.15 44

Isotropic 0.75 – – 1.9 1.6 0.56 0.49 0.041 0.059 0.92 0.042 0.68 1 0.25 16

Isotropic 0.75 0.05 – 2.2 1.6 0.6 0.49 0.077 0.061 0.99 0.13 0.66 1 0.5 4

Isotropic 0.8 0.05 – 2.5 1.9 0.63 0.52 0.093 0.075 1.2 0.14 0.45 1.4 0.5 2

Isotropic 0.8 0.05 – 3.2 1.8 0.7 0.51 0.12 0.081 1.2 0.16 0.32 2 0.5 1

Isotropic 0.8 0.05 – 4.7 2 0.77 0.53 0.15 0.079 1.2 0.17 0.22 3 0.5 0.44

Isotropic 0.75 0.05 – 5.1 2.4 0.77 0.55 0.13 0.079 1.3 0.17 0.17 4 0.5 0.25

tor-Hlong 0.85 0.75 – 7 5.4 0.81 0.68 0.17 0.077 1.2 0.074 0.64 1 0.25 16

tor-Hlong 0.75 0.1 – 8.9 5.5 0.84 0.7 0.14 0.078 0.97 0.14 0.5 1.4 0.5 2

tor-Hlong 0.7 0.1 0.05 8.6 6.6 0.83 0.73 0.14 0.083 1.1 0.14 0.35 2 0.5 1

tor-Hlong 0.85 0.05 0.05 9.3 6.8 0.85 0.73 0.15 0.095 1 0.12 0.24 3 0.5 0.44

tor-Hlong 0.75 0.05 0.05 8.7 7.6 0.85 0.74 0.15 0.094 1.1 0.13 0.19 4 0.5 0.25

tor-Along 0.6 0.35 0.1 11 4.7 0.86 0.56 0.35 0.082 1.3 0.09 0.58 1 0.25 16

tor-Along 0.4 0.1 0.1 8.8 5 0.83 0.57 0.34 0.071 1.3 0.19 0.65 1 0.5 4

tor-Along 0.35 0.05 0.1 5.4 7.6 0.73 0.61 0.27 0.069 1.4 0.17 0.34 2 0.5 1

tor-Along 0.35 0.05 0.1 4.8 5.2 0.73 0.61 0.27 0.065 1.1 0.18 0.25 3 0.5 0.44

tor-Along 0.35 0.05 0.1 4.1 5.3 0.8 0.34 0.28 0.067 1.3 0.17 0.18 4 0.5 0.25

q2d-kz0 0.65 0.65 0.5 8.7 4.8 0.86 0.73 0.042 0.42 0.58 0.039 0.85 1 0.25 16

q2d-kz0 0.7 0.1 0.5 8.9 4.4 0.87 0.7 0.08 0.43 0.61 0.11 0.82 1 0.5 4

q2d-kz0 0.7 – 0.45 11 5 0.89 0.74 0.075 0.52 0.63 0.12 0.58 1.4 0.5 2

q2d-kz0 0.7 – 0.4 13 5.6 0.91 0.77 0.076 0.59 0.61 0.12 0.41 2 0.5 1

q2d-kz0 0.6 – 0.3 15 7.8 0.92 0.8 0.076 0.66 0.62 0.11 0.29 3 0.5 0.44

q2d-kz0 0.6 0.05 0.1 20 9.5 0.94 0.81 0.081 0.7 0.6 0.1 0.22 4 0.5 0.25

q2d-kz1 0.8 0.85 0.6 5.9 4.1 0.81 0.71 0.034 0.15 0.64 0.037 0.77 1 0.25 16

q2d-kz1 0.85 0.8 0.6 6.6 3.9 0.82 0.69 0.065 0.15 0.68 0.11 0.73 1 0.5 4

q2d-kz1 0.8 0.7 0.45 7.4 4.5 0.85 0.73 0.064 0.18 0.81 0.11 0.51 1.4 0.5 2

q2d-kz1 0.8 0.1 0.4 10 5.3 0.89 0.76 0.073 0.2 0.83 0.12 0.35 2 0.5 1

q2d-kz1 0.8 – 0.45 13 7.1 0.91 0.8 0.072 0.23 0.9 0.11 0.24 3 0.5 0.44

q2d-kz1 0.75 – 0.4 15 9.6 0.91 0.83 0.07 0.22 0.91 0.11 0.19 4 0.5 0.25
atb,v

1∕2
are the times taken for the corresponding quantity Ab = ⟨b2

⟂⟩∕⟨b2
z ⟩ or Av to approach within 50% (above or below) of its value at 2tmax D. A dashed line

in the t1∕2 columns indicates that Ab,v is always within this range. 2Dfrac is the fraction of the fluctuation energy in the (strictly) 2-D modes and 𝛿b =
√⟨b2⟩. For

readability of the column headings, the ⟨⟩ symbols which should appear around b2, etc., have been suppressed.

We emphasize that our initial conditions are not a sum of linear wave eigenmodes. At each excited wave
vector, the b̃t , b̃p, ṽt , and ṽp are set using independent Gaussian random variables (subject to a spectral shape
function) [see Matthaeus et al., 1996, equation (6)], so that wave eigenmode relationships are not imposed.
This approach stands in contrast to that of Cho and Lazarian [2002, 2003] who initialized simulations using
superpositions of wave modes.

3.2. Diagnostics
All runs have an initial Alfvén ratio rA = Ev∕Eb=1, where Ev= ⟨𝜌v ⋅ v⟩∕2 and Eb = ⟨b ⋅ b⟩∕2 are the fluctuation
kinetic and magnetic energies and ⟨· · ·⟩ is the average over the spatial domain. Other useful quantities
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Figure 1. Evolution of variance anisotropies and fluctuation
energies from a compressible 3-D MHD run with toroidal ICs for
v and b. The run has B0 = 2, Ms = 0.5, and 𝛽 = 1. The (red) tick
on the time axis, near t = 1, is the time of maximum energy
dissipation, tmax D. Note the saturation of the variance anisotropy
after about a nonlinear time, even though the energy shows
significant ongoing decay.

we refer to include the mean-square longitudi-
nal velocity ⟨u2

long⟩ = ∑
k |ũL(k)|2, the toroidal

energies ⟨b2
tor⟩ =

∑
k |b̃t(k)|2 and ⟨v2

tor⟩ =∑
k |ṽt(k)|2, with analogous expressions for the

poloidal energies, and the RMS density fluctua-
tion 𝛿𝜌 = ⟨(𝜌 − 𝜌0)2⟩1∕2. Also revealing are the
Alfvén ratios for the toroidal component and
the 2-D component,

rtor
A =

𝜌0⟨v2
tor⟩⟨b2

tor⟩ , r2D
A =

𝜌0
∑

k |ṽ⟂(kz = 0)|2∑
k |b̃⟂(kz = 0)|2

.

(6)

For this study, we define 2-D to mean the trans-
verse (x and y) components of the kz = 0 por-
tions of v and b. These are sometimes called
the strictly 2-D modes, since they exclude the
contributions from the out-of-plane compo-
nents vz(kz =0) and bz(kz = 0). When the vz

and bz components are included, the fluctu-
ations are termed 2.5-D. Note that the 2-D
and toroidal components are not mutually
exclusive since when kz = 0, the toroidal
component is also a 2-D component.

Conventionally, Alfvén ratios are defined using the kinetic energy rather than the mean-square velocities (and
average density, 𝜌0 = 1) employed in equation (6). We choose these forms for several reasons. First, the den-
sity fluctuations are small and thus are not expected to have a large impact on the Alfvén ratios. Second,
since toroidal fluctuations are solenoidal, their velocity is incompressible, meaning density fluctuations are
not directly relevant to their dynamics. Third, there is the practical point that, as defined, rtor

A and r2D
A are com-

putationally simple to calculate. We also find that for all the runs considered herein there is no significant
difference between the true (total) Alfvén ratio rA = Ev∕Eb and 𝜌0⟨v2⟩∕⟨b2⟩.

4. Results
4.1. Growth and Saturation of Parallel Variance
To set the context, we show in Figure 1 some sample behavior for a “toroidal” run, with B0 = 2, Ms = 0.5, and
𝛽 = 1. Additional characteristics for the run are given on line five of Table 1. The other toroidal IC runs listed
in the table evolve in roughly the same way as this sample run.

The run begins with strictly toroidal fluctuations and thus no parallel variances. From Figure 1 (top) we observe
that the parallel variance of both the magnetic fluctuations and the velocity fluctuations increases until about
10–15% of the fluctuation energy is in the parallel components. This occurs in one or two tmax D, where this is
the time of maximum dissipation for the run, usually a reasonable measure of the actual nonlinear time; a red
tick on the time axis indicates tmax D. It is revealing that after this characteristic time, the variance anisotropies
are rather stable and remain so throughout the time period displayed. This is in contrast to the fluctuation
turbulence energies for the same run, which show ongoing decay (Figure 1, bottom). The contributions from
the velocity, magnetic, and (strictly) 2-D ingredients are all indicated.

A closer look at the generation of parallel variance for the same run is given in Figure 2. In Figure 2 (top row)
we see that the two transverse components are nearly equal, while the parallel variance saturates at levels just
less than one tenth the total for the magnetic field and a little greater than one tenth for the velocity field. The
presence of a parallel variance in solar wind turbulence is often referred to as a “compressive component,”
as it is reminiscent of magnetosonic waves. Indeed, here we see that the relative density fluctuation, initially
zero, increases to about 15% near t = tmax D∕2, somewhat earlier than the time of saturation of the variance
anisotropy, and gently decreases thereafter.
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Figure 2. Time histories for variance-related quantities from the same run used in Figure 1. (top tow) The x, y, z
components are depicted using solid, dashed, and dotted line styles, respectively. (bottom right) The dashed (red)
curve is rtor

A .

From Figure 2 (bottom left) one sees that the toroidal (or Alfvénic) fraction, for both the magnetic field and the
velocity field, decreases a little from its initial value of 100% but remains large throughout the run. Accordingly,
the energy in the longitudinal part of the velocity, ⟨u2

long⟩, remains small, at the ∼10% level in this case. Also
noteworthy is that the longitudinal fluctuations (and the parallel fluctuations) were initially absent: they have
been generated from zero. This indicates that parallel/compressive fluctuations are not just passively advected
by the Alfvénic fluctuations, as has sometimes been argued [e.g., Goldreich and Sridhar, 1995; Lithwick and

Goldreich, 2001].

Figure 2 (bottom right) displays Alfvén ratios associated with three different subsets of the fluctuations and
serves to further describe the nature of the turbulence. The total Alfvén ratio, rA = 𝜌0⟨v2⟩∕⟨b2⟩, hovers near
unity for most of the run. However, the toroidal fluctuations have an Alfvén ratio, rtor

A , that is persistently slightly
under unity. The reason for this, in the present run, is largely due to the 2-D component (a contributor to
the toroidal component), which displays an r2D

A that drops from an initial value of 1 to around r2D
A ∼ 0.7 and

remains at that level or slightly lower. All the runs reported on here display this feature of low r2D
A . This may

be due to the presence of strong current sheets and component reconnection in the 2-D component, as it
has been suggested [Matthaeus and Lamkin, 1986] that low Alfvén ratio is associated with these features. We
consider this further in section 4.3.

4.2. Scalings With 𝜷

Having shown some typical evolution and saturation behavior for quantities of interest, we now present sum-
mary plots indicating how these saturation levels vary with the initial plasma beta, 𝛽 = 1∕(B0Ms)2. For these
dissipative initial value computations, the time-varying 𝛽 generally increases, since energy dissipation causes

OUGHTON ET AL. VARIANCE ANISOTROPY IN COMPRESSIBLE MHD 5047



Journal of Geophysical Research: Space Physics 10.1002/2016JA022496

Figure 3. Anisotropy ratios for the magnetic (Ab —crosses) and velocity (Av —diamonds) fluctuations as a function of 𝛽 .
Each panel is for a different type of ICs. Values are computed at t = 2tmax D. The (blue) symbols on the 𝛽 = 100 axis are
from incompressible B0 = 1 simulations with identical ICs to the rest of the runs employed in that panel. The dotted line
in Figure 3a is the value associated with variance isotropy. The dashed line in Figure 3c is a reference 𝛽−1∕2 scaling.

the Mach number to decrease. The values shown in these summary plots are computed at t = 2 tmax D for
each run. In each figure, results from four particular runsets are displayed, with their IC classes being toroidal,
isotropic, and the two sorts of quasi-2-D + quasi-isotropic.

Figure 3 shows the variance anisotropy ratios, Ab = ⟨b2
⟂⟩∕⟨b2

z ⟩ and Av . For the toroidal ICs case, Figure 3a, one
sees a roughly 𝛽-independent saturation level when 𝛽 ≳ 10, and an increase of the quantities as 𝛽 decreases.
The dotted line in this panel is the value for the case of isotropic variances (Ab = 2), and all values are well
above it. This basic trend is the same in each of the other panels, although for the isotropic ICs the initial vari-
ance isotropy persists at higher 𝛽 for both fields and for most lower values of 𝛽 for the velocity fluctuations. At
a given 𝛽 , Figures 3a, 3c, and 3d also show quantitatively similar values for Av , indicating only a weak depen-
dence on these IC classes; the Ab values show greater quantitative variation across the runsets. In particular,
Figure 3c with quasi-2-D defined as just the kz = 0 modes shows the largest values for Ab.

In all cases shown we have Ab >Av , which is in accord with solar wind observations at MHD scales [Klein et al.,
1991; Bruno et al., 1999]. Furthermore, there is even approximate quantitative agreement between the obser-
vations and those simulations with toroidal ICs or quasi-2-D ICs. Naturally, runs with substantial amounts of
initial ⟨u2

long⟩ have a greater degree of compressive activity and sometimes show more complicated behavior
than the cases displayed in Figure 3 (see Table 1).

The symbols on the 𝛽 = 100 axis are results from B0 = 1 incompressible simulations with the same initial
conditions as the rest of the runs in the panel. These values suggest that as 𝛽 gets large, Ab and Av approach
their incompressible analogs.

Next we consider the scaling of several energy fractions with 𝛽 (Figure 4). It is apparent that the toroidal
energy is always dominant over the poloidal (and longitudinal) energies, with ⟨b2

tor⟩∕⟨b2⟩ ≈ 60–90% and⟨v2
tor⟩∕⟨v2⟩ ≈ 50–80%. This holds for all IC classes investigated, not just those shown in the figure, even when

it is not true of the initial state. (There is one exception: a 𝛽 = 0.25 run, with toroidal b, but purely longitudi-
nal v ICs.) See Table 1. Generally, there is a weak increase of the toroidal fractions with decreasing 𝛽 , with the
isotropic ICs showing the strongest effect. For the poloidal energy fractions (not shown), the behavior is sim-
ilar although the levels are of course small. Again, the magnetic version is usually somewhat larger than the
velocity one.

OUGHTON ET AL. VARIANCE ANISOTROPY IN COMPRESSIBLE MHD 5048



Journal of Geophysical Research: Space Physics 10.1002/2016JA022496

Figure 4. As in Figure 3, except showing fraction of magnetic energy in the toroidal (aka Alfvénic) component (crosses)
and similarly for the mean-square velocity (red diamonds). Also shown are mean-square longitudinal velocity fractions
(green triangles) and the fraction of energy in the strict 2-D modes (dashed line). Most IC classes show relatively weak 𝛽

dependence. As 𝛽 increases, the quantities approach the associated incompressible values shown (in blue) on the
𝛽 = 100 axes.

One also sees that within each studied runset, the energy fraction for the longitudinal velocity, ⟨u2
long⟩∕⟨v2⟩,

is almost independent of 𝛽 , when 𝛽 ≲ 10 (triangles). The same is also true for the relative density fluctuations
(not shown; see Table 1). This may be connected with the Mach number, since the 𝛽 ≲ 10 runs all have the
same initial Ms = 0.5, while the runs with larger 𝛽 have lower values of Ms. Recall that nearly incompressible
(NI) theory predicts 𝛿𝜌 = O(M2

s ) [Zank and Matthaeus, 1993]. In any case, whether the initial velocity has no
longitudinal component or is 100% longitudinal, the systems evolve to states where ⟨u2

long⟩ is a small or mod-
est component, with the toroidal component (of v and b) being energetically predominant. In this sense, the
dynamical importance of the toroidal component is independent of compressive velocity fluctuations that
may or may not be present initially.

Results from low-𝛽 supersonic simulations [Cho and Lazarian, 2002] indicate a similar weak dependence on 𝛽

for (𝛿V)2
fast

∕(𝛿V)2
Alf

, where these are the energies associated with fluctuations polarized in the same sense as
fast modes and Alfvén waves. In our notation this is approximately ⟨u2

long⟩∕⟨v2⟩, because when 𝛽 is small, one
has (𝛿V)2

fast
≈ ⟨u2

long⟩, assuming the usual spectral anisotropy, k ≈ k⟂. The denominator has been replaced
with ⟨v2⟩ ≈ ⟨v2

tor⟩ since the toroidal energy dominates in both their work and ours. On the other hand, Cho
and Lazarian [2002] find that (𝛿V)2

fast
∕(𝛿V)2

Alf
∝ 𝛿b∕B0, whereas we do not observe an equivalent relationship

(see Table 1).

One further feature is indicated in Figure 4: the energy fraction for the 2-D component (dashed lines). For all
cases shown, decreasing 𝛽 leads to a slightly bigger 2-D fraction, although still weaker than the initial level for
the particular run. This latter point suggests that it may be difficult to generate a substantial 2-D component
from states with low initial levels, at least in the absence of driving. On the other hand, when the 2-D fraction
is initially high—as in the “80%” cases of Figure 4c—the t = 2 tmax D levels are still substantial, especially for
𝛽 ≲1. As in the previous figure, B0 = 1 incompressible results are marked on the 𝛽 = 100 axes and reveal that
these are approached at large 𝛽 .

Observational solar wind results at distances of 0.3–1 AU typically indicate that when the fluctuations are
modeled as an admixture of 2-D modes and parallel-propagating slab waves, the 2-D component is domi-
nant, often at the 80–95% level [Bieber et al., 1996] (see Oughton et al. [2015] for a review of similar studies).
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Figure 5. As in Figure 3 except showing the Alfvén ratios rA for all the fluctuations (crosses), the toroidal component
(red diamonds), and the 2-D component (green triangles). Only the dominantly 2-D IC class shows total rA values
quantitatively similar to those observed in the solar wind. At high 𝛽 there is again a strong correspondence with the
values from the incompressible runs (blue symbols on 𝛽 = 100 axis).

Since solar wind fluctuations undergo transport outward from the Sun, the results presented here suggest
that the observed high levels of a 2-D component may also need to be present at small heliocentric distances.
Driving (e.g., by stream shear) is another way that a high 2-D fraction could be generated.

4.3. Relation to Alfvén Ratio (Residual Energy)
Figure 5 illustrates the behavior of the Alfvén ratios at t = 2 tmax D for several types of initial data we have
investigated. In all four panels, one can see the ordering r2D

A ≤ rtor
A ≤ rA, indicating that it is the 2-D modes that

are farthest from kinetic-magnetic energy equipartition. In addition, the 𝛽 dependence of r2D
A is rather weak,

as is its variation with IC type. The situations for rA and rtor
A are more involved, with rtor

A usually less than unity,
and the toroidal ICs and isotropic ICs sometimes having rA > 1 at 𝛽 ≲ 2. Examination of the kz dependence of
rtor

A (not shown) indicates that it is the 2-D component that is responsible for rtor
A being less than unity, with

rtor
A (kz ≠ 0) ≈ 1. As before, the symbols on the 𝛽 = 100 axes denote B0 = 1 incompressible results.

Similar results have been reported for simulations of incompressible homogeneous MHD turbulence [e.g.,
Oughton et al., 1994; Bigot et al., 2008]. In particular, one finds rA ≈ 1 for runs with 𝛿b∕B0 < 1 and that r2D

A < 1
for essentially all values of 𝛿b∕B0 investigated [Bigot et al., 2008; Bigot and Galtier, 2011].

As Figure 5 clearly displays, r2D
A is always significantly smaller than unity and often quantitatively similar to the

level of≈ 1∕2 commonly observed in the solar wind beyond≈ 0.5 AU [Matthaeus and Goldstein, 1982; Roberts
et al., 1987a, 1987b; Perri and Balogh, 2010]. However, it is only for the kz = 0 type quasi-2D ICs, Figure 5c, that
we find a total Alfvén ratio of about this level. Furthermore, there is very little dependence on 𝛽 (or 𝛿b∕B0; see
Table 1) for this IC class.

Thus, our results indicate that of the cases investigated, only dominantly quasi-2-D fluctuations produce
Alfvén ratios that are consistent with solar wind MHD-scale observations. Moreover, this class of ICs also leads
to reasonable quantitative agreement with observed values for Ab and Av .

Various explanations for why rA < 1 have been advanced, including local in k-space dynamo action [Pouquet
et al., 1976; Grappin et al., 2016], small-scale reconnection, with current sheets more intense than the nearby
vorticity coherent structures [Matthaeus and Lamkin, 1986], and a perturbation theory approach that indicates
two counterpropagating Alfvén waves drive a kz = 0 purely magnetic structure [Howes and Nielson, 2013;
Nielson et al., 2013]. For the case of solar wind fluctuations, Yokoi [2011] has shown that an approximately
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distance-independent value of rA ≈ 1∕2 emerges as a consequence of balance between the dominant terms
in a (time steady) transport equation for the energy difference, Ev − Eb (equivalent to rA). On the empirical
side, an observational study [Roberts, 2010] indicates that rA changes with heliocentric radius mostly because
(radial) spectral evolution of Ev(k) is stronger than that for Eb(k).

4.4. Relation to Spectral Anisotropy
In section 1 we remarked that variance anisotropy and spectral anisotropy are independent at a kinematic
level. For example, one may easily construct synthetic spectra that admit one type of anisotropy but not the
other. (Here synthetic means that the Fourier components have not been determined from the dynamical
equations.) However, in the above description of dynamical results, we have found that such connections
do exist. In particular, the 2-D part of the energy spectrum—consisting of those Fourier modes that have
zero parallel wave number—appears to have special status regarding this connection. This highly anisotropic
sample of the spectral wave vectors also shows the strongest variance anisotropy, favoring the perpendicular
variances. The same modes also exhibit the lowest values of Alfvén ratio.

5. Discussion and Conclusions

In this paper we have studied variance anisotropy in compressible 3-D MHD simulations from a few different
perspectives. The first and perhaps most significant result pertains to undriven MHD turbulence initiated with
entirely transverse (toroidal) variances in magnetic and velocity fluctuations. In the MHD regime such a state
is often called “Alfvénic,” referring to the linear modes that admit this transverse property. We find that parallel
variance, absent initially, is generated in timescales comparable to the large-scale eddy-turnover (or nonlinear)
timescale. The level of parallel variance attained is typically near 10% of the perpendicular variance level (with
a range of about 5% to 20%) for the parameters we have examined, and this level remains remarkably stable
during the subsequent decay of the turbulence energy. For runs with varying initial turbulence amplitudes,
𝛿b∕B0 ∼ 0.25–1.0, and varying values of plasma beta, 𝛽 ∼ 0.25–16, this description of the behavior of the
variance anisotropy does not change greatly.

The above result is complementary to an earlier finding [Matthaeus et al., 1996] regarding the evolution of
the same model—compressible MHD with a moderately strong mean magnetic field—when initialized with
an isotropic variance, ⟨b2

⟂⟩ = 2⟨b2
z ⟩, and similarly for the velocity fluctuations. In that case it was found that

the evolution is toward a reduced parallel variance for both v and b and that it occurs on essentially the non-
linear timescale. For ⟨b2

z ⟩ there is also a short adjustment phase during which it drops sharply. This ceases at
t ≈ 0.1 (the same timescale over which the density fluctuations increase from zero) and is followed by a grad-
ual recovery, on the nonlinear timescale, and then subsequent decay. Interestingly, the behavior for t ≳ 0.1 is
suggestively similar to that seen in the cases with transverse initial conditions.

The point to note is that both processes—increase of parallel variance from an initial transverse state and the
reduction of parallel variance from an initial isotropic state—occur on timescales of a few global nonlinear
times, i.e., the turbulent cascade and energy decay timescale. In each case the realized values of parallel vari-
ance are small but by no means negligible, with the RMS parallel fluctuation amplitude about one third to one
half of the RMS value of each of the perpendicular component amplitudes. Not only does this suggest that
the generation and maintenance of the parallel variance is intrinsically a property of turbulence decay and
cascade but it is also rather interesting that the range of relative values of the variances is quite comparable
to the classic “5:4:1” partitioning identified by Belcher and Davis Jr. [1971] in the solar wind.

A second finding is that the magnetic variance anisotropy ratios, Ab = ⟨b2
⟂⟩∕⟨b2

z ⟩, are larger when 𝛽 is small
and essentially monotonically decreasing with increasing 𝛽 . This is completely consistent with a familiar idea
in hydrodynamic turbulence that the mechanical pressure drives the variances toward isotropy, while advec-
tive terms drive energy cascade [Batchelor, 1970]. Decrease of variance anisotropy with increasing 𝛽 is also
observed in the solar wind [Smith et al., 2006], seemingly with a somewhat steeper falloff there, ∼ 𝛽−0.7,
although the solar wind data extended to considerably lower values of 𝛽 compared to the simulation cases we
have reported on. For the simulation values of Av , the trends are the same as the Ab ones, but the monotonic
decrease with increasing 𝛽 is only approximate.

Another point of discussion related to the first topic above is the degree to which, in MHD, the parallel vari-
ance is an independent element of the turbulence, and the related (but not identical) issue of whether highly
oblique Alfvén modes evolve separately from magnetosonic modes. We know that for incompressible 2.5-D

OUGHTON ET AL. VARIANCE ANISOTROPY IN COMPRESSIBLE MHD 5051



Journal of Geophysical Research: Space Physics 10.1002/2016JA022496

MHD the parallel variance is exactly independent [Montgomery and Turner, 1982]. Similarly, in the context of
Reduced MHD [Montgomery, 1982; Zank and Matthaeus, 1992; Schekochihin et al., 2009], which is a weakly
three-dimensional model, with wave vectors slightly removed from 90∘ to the mean field, the parallel variance
ingredient decouples completely at the order of the retained effects. In spite of these suggestive incompress-
ible limiting cases, the compressible results summarized above do not support a conclusion that the parallel
variance fluctuations evolve completely independently as suggested previously based on wave theory or
wave-dominated weak turbulence theory [Goldreich and Sridhar, 1995, 1997; Cho and Lazarian, 2002, 2003].

Indeed, one observation in support of this nonindependence, made here and earlier [Matthaeus et al., 1996],
is that the fully isotropic compressible case evolves toward a stable value of variance anisotropy ratio. The
fact that this ratio is stable and the fraction of parallel variance is not monotonically decreasing with time
implies that parallel variance is being resupplied from the perpendicular variances, since otherwise the decay
rates for the parallel and perpendicular components would be expected to differ. Also implied is that this
energy transfer rate is comparable to some constant fraction of the cascade rate of the total fluctuation energy.
Furthermore, a very similar argument applies to the case examined in the present paper, with initial transverse
variance. Here the conclusion is evidently that the parallel variance is generated on a timescale comparable to
the incompressible turnover time. The overall picture is consistent with the conclusion that parallel variance
is coupled to the incompressible cascade at a suppressed (but nonvanishing) rate, but one that is nonetheless
a nearly constant fraction of the incompressible cascade rate itself.

A stronger assumption, apparently incorrect for the simulations reported on here, made by several authors
[Goldreich and Sridhar, 1997; Lithwick and Goldreich, 2001; Cho and Lazarian, 2002, 2003], that the non-Alfvénic
modes are independent, may have seemed appealing based on linear wave theory. However, that approach
necessarily ignores certain nonlinear effects that are not described in linear theory. Relevant examples are
not difficult to identify. Quasi-two-dimensional pressure balanced parallel velocity shears are nonpropagat-
ing in linear theory but can contribute to a nonlinear cascade [see, e.g., Ghosh et al., 1998a, 1998b], and the
nonlinear incompressible pressure constraint is responsible for nonpropagating density fluctuations known
as pseudosound [Lighthill, 1952; Montgomery et al., 1987].

There are also other avenues to explore regarding variance anisotropy, preponderance of toroidal fluctua-
tions, and Alfvén ratios. In particular, the extent to which the features and behavior we have presented here are
associated with possible linear wave mode activity. This could be pursued by calculating various correlations.
However, even when such correlations are found, there can be a multiplicity of explanations. For example,
density-|B| anticorrelations might indicate either a propagating magnetosonic mode [e.g., Klein et al., 2012] or
a pseudosound nonpropagating response of the density—as described by nearly incompressible (NI) theory
[Zank and Matthaeus, 1993]. Alternatively, depending on how things vary with Mach number, the anticorrela-
tion could indicate a mixture of these, which might be consistent with NI theory, or not. To further complicate
things, the sense of correlation might change with scale and with direction of variance or direction of gra-
dient (wave vector). Wave theorists might also argue that when analyzing the correlation as a function of
wave vector direction, the proper way to do it is relative to local field. We intend to investigate these issues in
the future.

In summary, our current conclusion, stated above, is that the parallel variance fluctuations in MHD admit
a finite strength (although partially suppressed) coupling to the nearly incompressible transverse variance
fluctuations. This conclusion is based on a fully nonlinear assessment and is undistracted by special properties
of linear waves. When the level of parallel variance is not consistent with the amount that is compatible with
the cascade at a specified𝛽 , that level will be achieved in a timescale of a few nonlinear turnover times. It would
be desirable to develop a quantitative theoretical understanding of that favored level of parallel variance for
turbulent compressible MHD as a function of the turbulence parameters. This is deferred to future work.
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