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Abstract. In this paper we present some preliminary work towards the
development of a new evolutionary subsampling technique for solving
the non-intrusive load monitoring (NILM) problem. The NILM problem
concerns using predictive algorithms to analyse whole-house energy us-
age measurements, so that individual appliance energy usages can be
disaggregated. The motivation is to educate home owners about their
energy usage. However, by their very nature, the datasets used in this
research are are massively imbalanced in their target value distributions.
Consequently standard machine learning techniques, which often rely
on optimising for root mean squared error (RMSE), typically fail. We
therefore propose the target-weighted RMSE (TW-RMSE) metric as an
alternative fitness function for optimising load disaggregators, and show
in a simple initial study in which random search is utilised that TW-
RMSE is a metric that can be optimised, and therefore has the potential
to be included in a larger evolutionary subsampling-based solution to
this problem.
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1 Introduction

A significant problem facing modern society is ensuring the efficient use of energy
resources. One area where energy efficiency improvements can be made is in the
domestic arena. If householders understand their own individual energy usages,
down to the level of detail of individual appliances, then they are more likely
to change their behaviour in way that conserves energy [11]. However, the main
problem with this is that a household typically has tens of appliances and power
outlets, and for accurate monitoring and reporting to householders, sub-meters
must be physically installed at each outlet.

Non-intrusive load monitoring (NILM) is an alternative to this that attempts
to replace sub-meters with machine learning algorithms. The algorithms are used
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to train models that predict individual appliance/power outlet energy usage from
the stream of whole-house energy usage that is provided by a typical smart meter.

Although this field has been a focus of research for many years (ever since
Hart’s seminal 1992 paper [5]), it has developed dramatically with the much
more recent advent of smart meters capable of measuring household energy con-
sumption at high frequency. New and massive datasets have been captured and
are currently being analysed in research contexts.

To put the disaggregation problem into a more formal context, let us assume
that there are n appliances and/or power outlets (hereafter simply referred to as
an appliance), labelled A™M, A®) . A and that ith appliance’s energy usage
at time ¢ is Agi). The values of Agi) are unknown (except in the training data)
and to be predicted for each appliance. The only values that are known are the
stream of whole house energy use measurements 21, Zs, ... Z;_o, Zy_1, Zy leading
up to the current time ().

We note that the unit of measurement can be any acceptable measure of
energy usage. In this work, we adopt current, measured in amperes (A), as the
stream to measure and predict. This follows Makonin et al.’s [7] analysis showing
that current is the most reliable measure for data analysis because it fluctuates to
a much lesser degree than other measures such as real power (which is frequently
used in other research works in this field).

The remainder of this paper is organised as follows. In Section 2 a brief
background provided. In Section 3 a new metric named target-weighted RMSE
(TW-RMSE) is introduced to address the problem of imbalance that occurs
in the of regression target variables in most disaggregation datasets. Then, in
Section 4, a random search—based algorithm is presented to select a regression
model that optimizes TW-RMSE. Section 5 evaluates the presented approaches
on the AMPds dataset [7] and makes a complete comparison between RMSE
and TW-RMSE. Lastly, Section 6 concludes the paper.

2 Background

2.1 Load disaggregation

Non-intrusive load monitoring/disaggregation research goes back many years.
One of the first researchers who proposed a disaggregation method was Hart
[5], who stated that in order to decompose the total load into its components,
models of individual appliances and their combinations were needed. He was also
the first to observe that the power consumed by appliances was additive, i.e. if
the loads of all appliances in a household are known, then at any time ¢ the
following equality holds: Z; =", AS).

With the introduction of more powerful computers and significantly more
memory and processing power, disaggregation research took a large step for-
ward. Zeifman [12], for example, proposed an algorithm that uses stepwise power
changes, power surges, and time-on and time-off durations as features. His ap-
proach used historical data for initial training of a disaggregation model. The
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main aspect of his algorithm was the use of approximate semi-Markov models
which could make robust computationally-efficient predictions. The downside of
his algorithm was that it only worked with on/off appliances and not general
appliances which may be in multiple discrete states, or transition continuously
between states.

2.2 AmpDS v2 dataset

The Almanac of Minutely Power dataset (“AMPds”) was introduced by Makonin
et al. [7] in 2013, and a revision (version 2) released sometime afterwards. This
dataset is a record of one house containing both total and submetered power data
from 25 submeters at one minute intervals for two years (from 1 April 2012 until
31 March 2014). The dataset comprises 1,051,200 records and includes, besides
the meter readings, additional data about water usage and climate. As Figure
1 depicts, the measurements of current draw which are the focus of our predic-
tive experiments are highly imbalanced. The figure shows the log frequencies of
current draws for a washing machine for one year’s worth of data.

As mentioned in the Introduction,
a major finding of the authors of
the AMPds dataset and its associ-
ated paper was the fact that cur-
rent provides better quality predic-
tions than real power. Another new
idea in this paper was the introduc-
tion of a novel method for discretis-
ing current draws, to fit the notion of
appliances being like finite state ma- 001 2 3 4 56 7 8 9 10 113 129
chines (i.e. many appliances operate
in discrete states, such as ON/OFF
or LOW/MEDIUM/HIGH). Fig.1: Log frequencies of washing ma-
While a classification approach to chine current draws. Shown are current
solving this problem is reasonable, we draw () vs. the log frequency (in sec-
focus in this paper instead on regres- onds) when that level of current usage
sion and attempt to predict apph— was metered (y)
ance current draw directly. If a good
regression-based solution to the prob-
lem is found, the approach can be
adapted to the classification setting by discretising current using the approach
described by Makonin et al. [7]. Another reason for adopting a regression-based
approach to the problem is that the finite state machine abstraction is not true
for all appliances: some devices clearly vary continuously in their energy usage,
and even for appliances that do appear to operate in discrete states, the number
of and boundaries between each state are not always clear (as Figure 1 attests).
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2.3 Evolutionary machine learning for massive imbalanced
regression problems

To date, few prior works exist on the problem of regression using imbalanced
datasets [1]. This is because most of the classical imbalanced dataset research
in machine learning concerns classification rather than regression. Furthermore,
the authors are unaware of any prior evolutionary machine learning works on
the imbalanced regression problem, let along any works considering the problem
in the context of load disaggregation. This is a potentially rewarding area for re-
search, therefore. Given the paucity of evolutionary approaches to this problem,
some of the few non-evolutionary approaches will be briefly mentioned.

The earliest work on regression with imbalanced data is the paper by Torgo et
al. [10] in which the standard SMOTE algorithm [3] was adapted to a regression
setting. Essentially, the modified SMOTE algorithm under-sampled examples
with target values that occur more frequently in the data. They also consid-
ered the two different ways of creating a balanced sample: under-sampling and
over-sampling. They believed over-sampling was generally better than under-
sampling, especially when small samples were involved. This made sense to the
authors, since by using under-sampling full use of the available data was not
made.

Beyond that, further works concerning imbalanced regression have only been
published very recently. A common approach is to define new metrics for the
problem As justification, Branco et al. [1] argue that performance measures
commonly used in regression, such as Mean Squared Error (MSE) and Mean
Absolute Deviation (MAD) are not adequate for imbalanced regression problems.
This is because they assume a uniform relevance of the target variable domain
and evaluate only the magnitude (and not the direction) of the error.

One approach was presented by Herndndez-Orallo [6], which introduced ROC
space for regression (RROC). RROC space is defined by plotting total over-
estimation and under-estimation on the x and y axes respectively. The author
also proposed area over the RROC curve (AOC) as a metric, but the drawback
of his approach was it only accounted for under-predictions. Another metric
proposed by Ribeiro [9] and Torgo and Ribeiro [10] is based on the concept
of utility-based regression for precision/recall metrics. Utility-based regression
uses the notion of non-uniform relevance of the target variable values across the
domain of the target to define a metric. For example, certain parts of the target
variable domain may be more critical than others; therefore the utility is higher.
This notion of utility led to the proposal of metrics such as the Mean Utility
and the Normalized Mean Utility by Riberio [9], and then to a utility-based
regression algorithm based on regression rule ensembles called ubaRules [9)].

3 Target-weighted RMSE metric

To address the problem of massive imbalance that occurs in the AMPds dataset
we propose a modification to the standard RMSE metric for evaluating regres-
sors. We name the new metric target-weighted RMSE (TW-RMSE).
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The basic idea is related to the notion of macroaveraged accuracy [8] in
information retrieval. Macroaveraged accuracy is a alternative metric for eval-
uating classification models in which individual classes are weighted equally in
the accuracy calculation, as opposed to the weighting being on individual exam-
ples (which is the case for normal or “micro”’-averaged accuracy). As Manning
et al. state, common classification metrics such as the F1 measure fail when
the imbalance is overwhelming. And this is largely because the F1 metric is a
micro-averaging approach. Macroaveraging, on the other hand, is an attempt to
eliminate the problem of massive class imbalance.

Since our problem domain is regression, however, we do not have readily
available class labels to make use of. Therefore we define proxy class labels for
each example by dividing the range of the predictive target variable into equal-
width bins, and we treat an example’s bin as its class label for the purposes of
balancing, resampling, and computing performance metrics.

Furthermore, we allow the user to specify (i) the number of bins and (ii) an
individual weight for each bin. The weights serve a similar purpose to utility
in utility-based regression, in that they allow the user to focus the metric on
particular ranges of current draw. For example, if the user is only interested in
particular states that an appliance may be in, then the weights for the corre-
sponding ranges of current usage can be increased when the metric is calculated.

Once the ranges and weights are set, an RMSE value is calculated for test
example predictions in each range. The TW-RMSE is the weighted average of
these individual RMSE values. Algorithm 1 shows pseudocode for performing
this calculation.

Input: Y = {(y1,91), (y2,93) - .- (Yn,yn)}, a vector of predicted (y;) and actual
(yi) values for n training or test examples; m, number of bins;
w = {w1, w2 ... wn}, a vector of weights for the bins
begin
L min(yi,ys .- yn);
u — maz(y1,ys .- - Yn);
Divide the range (u — l) into m equal-width bins B = {b1,bz...bm};
Assign each (y;,y;) € Y to the appropriate bin in B (using the y; value);
Delete any empty bins from B;
Compute the RMSE r(b;) for the predictions in each b; € B;
t <+ ijeB w;r(b;) where w; € w is bin b;’s weight;

end
Output: ¢, the TW-RMSE metric
Algorithm 1: Algorithm to compute the TW-RMSE metric.

Effectively, this approach should give an unbiased error estimate if the dataset
is imbalanced. As the number of bins is reduced, however, the TW-RMSE metric
becomes an approximation of the RMSE metric: therefore the user must ensure
that the number of bins is set correctly.
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4 Random search-based algorithm to optimise
TW-RMSE

To demonstrate the potential utility of the TW-RMSE metric for appliance
energy usage modelling, we propose a simple random resampling-based algorithm
that uses TW-RMSE to select an optimal training sample for a regressor.

The approach can be divided into two parts. Firstly, Algorithm 2 depicts a
method for creating a balanced resample from the original, highly imbalanced,
training dataset. The approach taken is similar to the algorithm for computing
TW-RMSE, except that instead of binning predictions, this time the examples
in the training set are iteratively resampled into bins that are the same size. A
parameter s governs the overall size of the sample.

Input: X = {(x1,¥7), (X2,¥3) ... (Xn,¥n)}, a training dataset of examples (x;)
and targets (y;); m, number of bins; s, desired sample size (s << n);
begin
L= min(yi, 5 ... yn);
u — maz(yi,ys ... yn);
Divide the range (u — l) into m equal-width bins B = {b1,bz...bm};
Assign each example (xi,y;) € X to the appropriate bin in B (using the y;
value);
Delete any empty bins from B;
S« 0;
repeat
foreach b € B do
if [S| < s then
| Randomly resample one example from b into S
end
end
until [S| > s;
end

Output: S, a balanced resampling of the dataset
Algorithm 2: Algorithm to create a balanced resample of examples.

The second part of the algorithm is a simple random search procedure, pseu-
docode of which Algorithm 3 depicts. The algorithm essentially repeatedly re-
samples the entire training dataset, creating a small balanced resample with
each iteration. A regressor is then trained on each sample, and the TW-RMSE
metric computed for the sample. The regressor with the smallest TW-RMSE is
returned after a fixed number of iterations.

In the next section, it will be shown that this approach results in a significant
decrease in TW-RMSE for most appliances, but that RMSE on the whole is
unchanged (thus validating our rationale for TW-RMSE).
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Input: X = {(x1,¥7), (X2,¥3) ... (Xn,¥yn)}, a training dataset of examples (x;)
and targets (y;); m, number of bins; s, desired sample size (s << n); i,
number of iterations

begin

Stest < a subset of the training data X selected using Algorithm 2;

R < a regressor trained on Spesy;

thest < TW-RMSE of Rpes: evaluated against Spes: calculated using

Algorithm 1;

for iteration < 2...i do

S < a subset of the training data X selected using Algorithm 2;
R <+ a regressor trained on S;
t +— TW-RMSE of R evaluated against S calculated using Algorithm 1;

if t < tpest then
‘ Rbest —R

end

end
end

Output: Rpest, the best regressor obtained.
Algorithm 3: Training algorithm based on random search and model selec-

tion.

5 Evaluation

In order to evaluate the effectiveness of TW-RMSE as a metric for evaluating and
selecting regression models in the presence of imbalance, we performed an ex-
tensive set of experiments on portions of the AMPds v2 dataset [7]. The dataset
itself contains energy usage data (including current, real power and voltage) for
a large number of sub-metered appliances.

We selected nine sub-meters to analyse, specifically the same sub-meters as
previously analysed in a classification setting by Makonin et. al. [7]: the basement
plugs and lights (BME), the clothes dryer (CDE), the clothes washer (CWE),
the dishwasher (DWE), the kitchen fridge (FGE), the HVAC/furnace (FRE),
the heat pump (HPE), the entertainment unit (TVE) and finally the wall oven
(WOE). In each case, we extracted and built predictive models for the current

(A) time series only. These formed our (unknown) AEZ) values for the evaluation.
We also extracted from the dataset the whole-house (WHE) current draw, which
were our (known) Z; values. As mentioned previously, the total length of each
time series, covering two years worth of data sampled once per second in each
case, is 1,051,201 samples.

A sliding window approach was used to generate a dataset suitable for learn-
ing regression models. Essentially, this approach generates examples by “sliding”
a fixed-size window along the WHE series, creating one each example for each
position that the window can occupy. Since the window size we chose was fixed
at 60, each example’s features therefore correspond to whole-house energy usage
for the past 60 seconds.
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Unlike standard time series prediction, however, the prediction target for
each example is not the next WHE value. Instead it is the corresponding sub-
meter reading. Notation-wise, the features are Z;_59, Z;_5s8 ... Z;—1, Z; and the
prediction target is AS) where ¢ is the sub-meter index and ¢ is the current time
in seconds.

This procedure produced a dataset with (1,051,201 - 60 =) 1,051,141 exam-
ples. Since the examples are ordered in time (and therefore the i.i.d. assumption
does not hold), we further divided these examples into two subsequences: the
first 50% of examples (a year’s worth of data) were used for training, and the
second 50% (a second year’s worth of data) for testing. A total of nine datasets
for the nine sub-metered appliances were created in this way.

Fig 2 shows distributions of current in the test data by appliance, which
reinforces seriously imbalanced nature of problem.
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Fig. 2: Distribution of target (i.e. appliance current) values in the test sets. Note
that the y axis shows the log frequencies rather than the raw frequencies.

We used the standard random forest classifier adapted for regression for our
experiments [2]. The number of random trees in the forest is set to 100, and the
number of random features selected per tree was |log2(60) + 1] = 7.

In our first experiment, we trained a random forest regressor on each entire
training set (i.e. we ignored Algorithms 2 and 3), and then we evaluated its
performance on the corresponding test sets.
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Fig.3: RMSE values calculated for each bin in the test sets, using regressor
trained on full training sets.

Appliance RMSE TW-RMSE

Table 1: Test results after training a random forest classifier on the entire training

dataset.

BME
CDE
CWE
DWE
FGE
FRE
HPE
TVE
WOE

0.62
1.09
0.43
0.66
0.54
0.29
1.82
0.43
1.13

4.78
15.26
6.37
3.05
8.06
1.30
45.04
1.20
13.49
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Figure 3 shows the distribution of RMSE by bin across the test data for this
first experiment. This figure illustrates nicely how error generally increases with
current draw. Increased current draw usually corresponds to smaller frequencies
in the datasets.

Table 1 gives values for both RMSE and TW-RMSE (using m = 10 bins and
uniform w; = + weights) computed on the test datasets. These values are useful

m

for determining the effects of Algorithms 2 and 3 in our next experiments.
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Fig.4: RMSE values calculated for each bin in the test sets, using regressor
trained on a balanced resample of the training set selected using Algorithm 2.

Next, we trained the random forests model on a single resample of the training
data (obtained using Algorithm 2) and tested it against the entire test dataset.
The number of bins m and the weights w; are the same as in the previous
experiment, and we set the sample size s = 10, 000. Figure 4 and Table 2 depict
the results.

Two observations can be made from these results. Firstly, TW-RMSE is re-
duced by a significant amount when the regressor is trained on the small resam-
pled training dataset compared to being trained on the entire training dataset.
This is clearly evident graphically when Figures 3 and 4 are compared: for many
appliances, e.g. the wall oven (WOE), the error curve no long approximately
increases with increasing current draw. This graphical difference is reflected in
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Appliance RMSE TW-RMSE

BME  1.07  4.13T7

CDE 347  12.29'

CWE 216  3.10'f

DWE 163  1.84'

FGE 195  4.26'

FRE 046  0.95'

HPE  3.74 37631

TVE 091 085

WOE  4.03  7.11'
Table 2: Test results after training a random forest classifier on a balanced
resample of the training dataset selected using Algorithm 2. Results marked f
indicate an improvement compared to training on the entire training dataset.
Results marked f indicate that the improvement is more than 10%.

changes in the TW-RMSE metric which in all cases is more that 10% and some-
times 50% reduced in magnitude (comparing Tables 1 and 2).

In contrast, comparison between the tables also shows that the RMSE metric
does not decrease at all. In fact, the more balanced subsampling results in an
overall increase of RMSE because of the much greater emphasis given to the
majority of examples in which the appliance is in an off or low energy state.

Appliance RMSE TW-RMSE

BME  1.07  3.40'7

CDE  3.34"  12.02

CWE 2.18 3.13

DWE 157"  1.78f

FGE 1941 4.27

FRE 046  0.67'

HPE  3.84  32.08"

TVE 090" 045

WOE 4.31 7.24
Table 3: Test results after training a random forest classifier using Algorithm 3.
Results marked T indicate an improvement compared to training on only a single
balanced sample. Results marked T indicate that the improvement is more than
10%.

Finally, we ran Algorithm 3 for ¢ = 100 iterations, and the results are shown
in Table 3. Comparing to Table 2, there is a further marked decrease in TW-
RMSE for seven of the sub-meters as a consequence of the random search. The
only appliances that did not show improvement when Algorithm 3 was applied
with 100 as opposed to 1 iteration were the clothes washer (CWE), the kitchen
fridge (FGE) and the wall oven (WOE). However, on the whole, most of the
sub-meter predictions further improve compared to Table 2. This show that the
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TW-RMSE metric, when computed on a training set, is a good indicator of
generalisation performance.

6 Conclusion

This work represents our first step towards the development of an evolutionary
subsampling technique for solving the NILM problem. The main contribution of
interest here is a new fitness metric, namely TW-RMSE, which can counter the
effect of massive imbalance that occurs in typical NILM datasets. A further lesser
contribution is an algorithm inspired by TW-RMSE for generating balanced
random under-samples of examples.

The results here are promising and demonstrate that TW-RMSE has poten-
tial to be a useful fitness metric. Our next steps will be (i) to investigate the
potential sensitivity of the metric to its key parameters, such as the number of
bins; and (ii) to couple TW-RMSE with a more state-of-the-art evolutionary
subsampling algorithm (e.g. a method reviewed by Derrac et al. [4]) in order to
more properly evaluate its potential.
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