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Abstract

This thesis explores the properties of critical sets of the full n-Latin square

and related combinatorial structures including full designs, (m,n, 2)-balanced

Latin rectangles and n-Latin cubes.

In Chapter 3 we study known results on designs and the analogies between

critical sets of the full n-Latin square and minimal defining sets of the full

designs.

Next in Chapter 4 we fully classify the critical sets of the full (m,n, 2)-

balanced Latin square, by describing the precise structures of these critical

sets from the smallest to the largest.

Properties of different types of critical sets of the full n-Latin square are

investigated in Chapter 5. We fully classify the structure of any saturated

critical set of the full n-Latin square. We show in Theorem 5.8 that such a

critical set has size exactly equal to n3 − 2n2 − n. In Section 5.2 we give a

construction which provides an upper bound for the size of the smallest critical

set of the full n-Latin square. Similarly in Section 5.4, another construction

gives a lower bound for the size of the largest non-saturated critical set. We

conjecture that these bounds are best possible.

Using the results from Chapter 5, we obtain spectrum results on critical

sets of the full n-Latin square in Chapter 6. In particular, we show that a

critical set of each size between (n− 1)3 + 1 and n(n− 1)2 + n− 2 exists.

In Chapter 7, we turn our focus to the completability of partial k-Latin

squares. The relationship between partial k-Latin squares and semi-k-Latin

squares is used to show that any partial k-Latin square of order n with at most

(n− 1) non-empty cells is completable.

As Latin cubes generalize Latin squares, we attempt to generalize some

of the results we have established on k-Latin squares so that they apply to

k-Latin cubes. These results are presented in Chapter 8.
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‘Ofa lahi atu mo e hūfaki.
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Chapter 1

Introduction

The colourful history of Latin squares goes (at least) as far back as the year

1000, when they were being engraved on amulets by certain Arab and Indian

communities and were deemed to have the power to cast out evil spirits [95].

It appears that the oldest book to contain Latin squares is “Shams al-Ma’arif

al-Kubra” (or “The sun of great knowledge”) by the Arab Sufi, Ahmad ibn

Aliibn Yusuf al-Buni, published around the year 1200 [95]. Whether it was

their supposedly super-natural powers or their entertaining value that was

drawing attention to these combinatorial structures, Latin squares have, nev-

ertheless, developed into a major subject in combinatorics with a number of

useful applications.

The earliest referenced literature on Latin squares, however, was published

in the eighteenth century. In 1723, the solution to the old card problem of

arranging 16 cards of a deck of playing cards (consisting of the Aces, Kings,

Queens and Jacks) in a 4 × 4 array so that each denomination and each suit

appears only once in each row and column (equivalently, a pair of mutually or-

thogonal Latin squares of order 4), was published in a new edition of Ozanam’s

four-volume treatise [71]. In 1779, Euler posed The Problem of the 36 Officers

in [49] which initiated a systematic development of the study of Latin squares.

This was carried on by Cayley [25] in 1890, who showed that the multiplica-

tion table of a group is an appropriately bordered special type of Latin square.
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The theory of Latin squares was also instrumental in the development of finite

geometries which started early in the nineteenth century.

In the 1930s, a major application of Latin squares was opened by Fisher

[51] who used them and other combinatorial structures in the design of statis-

tical experiments. More recently, Latin squares have been used in processor

scheduling for massively parallel computer systems [82], used as error-detecting

and error-correcting codes in wireless message transmission [14], proposed for

various cryptographic schemes [13, 37, 78, 67] and hash functions [92, 93], and

put forward as a possible secret-sharing scheme [33, 87, 54].

Latin squares have also evolved into various natural generalizations; one of

which is the main subject of this thesis.

1.1 Latin arrays

For convenience, we adopt the notation N(a) for the set of positive integers

{1, 2, ..., a}.

Figure 1.1: A tripartite multigraph

We assume the reader is familiar with standard definitions in graph the-

ory (see Appendix 10.1). Let G be a tripartite multigraph with partite sets
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R = {r1, r2, ..., rm}, C = {c1, c2, ..., cn} and S = N(t). We refer to any decom-

position of G into triangles as a Latin array. Suppose that G is the tripartite

graph in Figure 1.1 with partite sets R = {r1, r2, r3, r4}, C = {c1, c2, c3, c4}

and S = {1, 2, 3, 4}. Then the following triangle decomposition of G:

L(G) = {{r1, c1, 2}, {r1, c1, 3}, {r2, c2, 1}, {r2, r2, 1}, {r3, c3, 3},

{{r3, c4, 1}, {r4, c1, 1}, {r4, c1, 2}, {r4, c2, 2}, {r4, c4, 1}}

corresponds to the array:

2,3 2,3 2,3 2,3

1,1

3 1

1,2 2 1

with rows and columns indexed by R and C. Here each triangle of the form

{ri, cj, s} corresponds to the occurrence of the symbol s in cell Li,j, where

ri ∈ R, cj ∈ C and s ∈ S. We can thus think of L(G) as either an array or as a

set of ordered triples. We may also replace each triangle of the form {ri, cj, s}

with the ordered triple (i, j, s). For example, the Latin array above may also

be represented as

L(G) = {(1, 1, 2), (1, 1, 3), (2, 2, 1), (2, 2, 1), (3, 3, 3),

{(3, 4, 1), (4, 1, 1), (4, 1, 2), (4, 2, 2), (4, 4, 1)}.

We switch freely between these equivalent representations.

A Latin array is such a very general structure that many of the main

combinatorial structures in this thesis can be defined as a type of Latin array.

If G is a simple complete tripartite graph with:

• m ≤ n and n = t, then L(G) is a Latin rectangle of order n.

• m = n = t, then L(G) is a Latin square of order n.
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An example of a Latin square of order 5 is given below.

2 1 5 3 4

3 5 2 4 1

5 2 4 1 3

1 4 3 5 2

4 3 1 2 5

Note that each element of S occurs exactly once in each row and column of a

Latin square.

Another generalization of Latin squares is formed if m = n = t and there

are k edges between each vertex from distinct partite sets of G. Here, L(G)

is a multi-Latin square of order n and index k (or a k-Latin square of order

n). Equivalently, a k-Latin square of order n is an n× n array of multisets of

cardinality k from N(n) with each symbol occurring exactly k times in each

row and exactly k times in each column (see [22]). The following is an example

of a 3-Latin square of order 4.

1,2,4 1,2,3 2,3,4 1,3,4

1,1,3 2,2,4 1,3,4 2,3,4

2,4,3 1,3,4 1,2,2 1,3,4

4,2,3 1,3,4 1,3,4 1,2,2

Note that if G above is a complete tripartite simple graph (i.e. k = 1), L(G)

is a 1-Latin square or simply a Latin square. If k = n and L(G) = {(r, c, s) |

r ∈ R, c ∈ C, s ∈ S} = R × C × S, then we define the corresponding n-Latin

square of order n containing N(n) in each cell to be the full n-Latin square.

The following is the full 4-Latin square.
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1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

The next structure corresponds to a complete tripartite multigraph, G,

where each vertex of R is connected exactly t times to each vertex of C and

exactly n times to each vertex of S; and each vertex of C is connected exactly

m times to each vertex of S. Here, L(G) is thus an m×n array of multisets of

size t such that each element of N(t) occurs n times in each row and m times

in each column. We refer to L(G) as a (m,n, t)-balanced Latin rectangle (or an

m × n t-balanced Latin rectangle). The example below is a (4, 5, 3)-balanced

Latin rectangle.

1,2,3 1,1,2 2,2,3 1,2,3 1,3,3

1,2,2 1,2,3 1,2,3 1,2,3 1,3,3

1,3,3 1,2,3 1,2,3 1,1,3 2,2,2

1,2,3 2,3,3 1,1,3 2,2,3 1,1,2

Thus, for an (m,n, t)-balanced Latin rectangle, L(G) is a (possibly multi-)set

of ordered triples (r, c, s) ∈ N(m)×N(n)×N(t), such that:

• for each r ∈ N(m) and c ∈ N(n), there are t triples of the form (r, c, s);

• for each r ∈ N(m) and s ∈ N(t), there are n triples of the form (r, c, s);

• for each c ∈ N(n) and s ∈ N(t), there are m triples of the form (r, c, s).

In the array form, we may trivially construct an (m,n, t)-balanced Latin

rectangle for any m,n, t ≥ 1 by placing the set N(t) in each cell of an m × n

array, which gives the full (m,n, t)-balanced Latin rectangle. Clearly the full

(n, n, n)-balanced Latin rectangle is also the full n-Latin square.
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An (m,n, t)-balanced Latin rectangle is also known as an exact (n,m, t)

Latin rectangle [3, 4].

The last Latin structure we define under the umbrella of Latin arrays is a

semi-Latin square. A semi-Latin square of order n and index k (or a semi-k-

Latin square of order n) is a triangle decomposition of a complete tripartite

multigraph where |R| = |C| = n, S = N(kn), k edges connect each vertex of R

to each vertex of C, and each vertex of either R or C is connected exactly once

to each vertex of S. In the array form, a semi-Latin square is an n× n array

of sets of cardinality k (subsets of N(kn)) such that each element of N(kn)

occurs exactly once in each row and each column. The following example is a

semi-3-Latin square of order 4.

1,4,5 2,6,10 3,7,8 9,11,12

2,3,11 1,4,9 5,6,12 7,8,10

6,7,9 3,8,12 1,10,11 2,4,5

8,10,12 5,7,11 2,4,9 1,3,6

Other combinatorial structures which are also Latin arrays include school

timetables [63] and match-tables [65].

Since each of the above structures is a type of Latin array, we can give a

general definition of a partially filled-in Latin array. A partial Latin array is

any partial decomposition of G into triangles (that is, any set of edge-disjoint

triangles in G). Equivalently, we may think of a partial Latin array as any

triangle decomposition of a tripartite multigraph H where H ⊆ G. Thus:

• a partial Latin square of order n is an n×n array such that each element

ofN(n) occurs at most once in each row and at most once in each column;

• a partial k-Latin square of order n is an n× n array of multisets of size

at most k such that each element of N(n) occurs at most k times in each

row and at most k times in each column;

• a partial (m,n, t)-balanced Latin rectangle is an m×n array of multisets
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of size at most t such that each element of N(t) occurs at most n times

in each row and at most m times in each column; and

• a partial semi-k-Latin square is an n × n array of sets of size at most k

such that each element of N(kn) occurs at most once in each row and at

most once in each column.

For any partial Latin array, we may ask whether or not it completes to a

Latin array with the same parameters. That is: ‘Does a partial decomposition

of G into triangles complete to a decomposition of G into triangles?’ If L(G)

is a partial Latin array and there is an unique Latin array L′(G) such that

L(G) ⊆ L′(G), then we say that L(G) is a defining set of L′(G). If upon

removing any triangle from L(G), the partial Latin array formed is no longer

a defining set, then we say that a defining set L(G) is a critical set of L′(G).

In particular, a defining set of the full n-Latin square has a unique com-

pletion to the n-Latin square L of order n that is the full n-Latin square.

We identify any partial Latin array as saturated if each cell is either empty

or contains N(t). Thus a critical set of the full n-Latin square is saturated if

each cell is either empty or contains N(n). Otherwise it is non-saturated. The

following squares are examples of saturated and non-saturated critical sets re-

spectively, each for the full 4-Latin square (see Section 5.1 and Section 5.2).

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

We may similarly define critical sets for the full (m,n, t)-balanced Latin rect-

angle as being either saturated or non-saturated.

Because each cell of a multi-Latin square contains a multiset, we ask the

reader to take note of the following multiset notations. If we denote the mul-

tiplicity of an element s in a multiset A by νA(s), then:
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• νA∩B(s) = min{νA(s), νB(s)},

• νA∪B(s) = max{νA(s), νB(s)},

• νA\B(s) = max{0, νA(s)− νB(s)},

• νA⊎B(s) = νA(s) + νB(s),

where A ⊎ B is the multiset sum of the multisets A and B. The size or the

number of entries in a Latin array L, denoted by |L|, is the cardinality of the

multiset sum of the multisets in each cell of L (i.e. the sum of multiplicities

of each element over all the cells). The size of any partial Latin array L(G) is

also the number of edges between R and C used in triangles. Thus the above

critical sets have sizes 36 and 28, respectively.

1.2 Trades in Latin arrays

We may think of a trade as one of a pair of disjoint (partial) triangle decom-

positions of a tripartite multigraph. Thus to construct a trade for a Latin

array, we simply take two distinct triangle decompositions of the array and

delete any triangles common to both sets. We formally define a trade in a

Latin array as follows. For a tripartite multigraph G, if L(G) is a triangle

decomposition of G, then a trade, T , in L(G) is defined as T = L(G) \ L′(G)

where L′(G) is some triangle decomposition of G distinct to L(G). The trade,

T ′ = L′(G) \ L(G), in L′(G) is called the disjoint mate of T . We may refer to

the pair (T, T ′) as a bitrade.

For example, let G be the tripartite graph in Figure 1.2 and let
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Figure 1.2: The graph G

L(G) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 3), (1, 3, 2), (1, 3, 3),

}(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 3), (2, 3, 2), (2, 3, 3),

{(3, 1, 3), (3, 1, 3), (3, 2, 2), (3, 2, 2), (3, 3, 1), (3, 3, 1)}

=

1,2 1,3 2,3

1,2 1,3 2,3

3,3 2,2 1,1

and

L′(G) = {(1, 1, 3), (1, 1, 3), (1, 2, 1), (1, 2, 1), (1, 3, 2), (1, 3, 2),

}(2, 1, 1), (2, 1, 1), (2, 2, 2), (2, 2, 2), (2, 3, 3), (2, 3, 3),

{(3, 1, 2), (3, 1, 2), (3, 2, 3), (3, 2, 3), (3, 3, 1), (3, 3, 1)}

=

3,3 1,1 2,2

1,1 2,2 3,3

2,2 3,3 1,1

.
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Then T = L(G) \ L′(G) and T ′ = L′(G) \ L(G) (in the array form below) is a

bitrade.

1,2 3 3

2 1,3 2

3,3 2,2

T

3,3 1 2

1 2,2 3

2,2 3,3

T ′

If T = L(G) \ L′(G) contains only 4 elements of the form

{(r, c, s), (r, c′, s′), (r′, c, s′), (r′, c′, s)},

we refer to such a trade as an intercalate. Since by definition, there must be

at least two symbols in each row and column of a trade, an intercalate is the

smallest possible trade in any given Latin array.

Observe that in the array form above, we may define a bitrade as a pair

of non-empty partial Latin arrays which are disjoint, have the same number

of entries in corresponding cells, and whose corresponding rows and columns

contain the same multisets of symbols. For this reason, replacing a trade by

its disjoint mate in a Latin array yields another Latin array of the same graph.

It also implies that if the complement of a partial Latin array contains a trade

then it may be completed in more than one way. So naturally, there is a strong

connection between trades and defining/critical sets of Latin arrays as shown

by the following lemmas.

Lemma 1.1 A partial Latin array D is a defining set of a Latin array L if

and only if it intersects every trade in L.

Proof. Suppose that D is a defining set of L and there exists a trade T in L

such that D∩T = ∅. Then D is also contained in the Latin array (L \T )∪T ′

and thus is not a defining set. Conversely, suppose that D is a partial Latin

array contained in both L and L′ where L ̸= L′. Then T = L \ L′ is a trade

with disjoint mate L′ \ L and D ∩ T = ∅. �
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Lemma 1.2 A partial Latin array C is a critical set of a Latin array L if C

is a defining set of L and each element of C belongs to a trade in L.

Proof. By definition, any critical set is a defining set. Suppose that (r, c, s) ∈

C is not contained in any of the trades in L. Then (from the previous lemma)

C \ {(r, c, s)}, which intersects every trade in L, is a smaller defining set and

thus C is not a critical set. �

The above lemmas generalize an analogous result on Latin squares (see for

example [19]).

1.3 Equivalence classes of Latin arrays

We now discuss equivalences of Latin arrays, that is, we look at ways in which

two Latin arrays have identical structures (i.e. are combinatorially equivalent).

Let G and G′ be isomorphic tripartite graphs (see Appendix 10.1). If G′

can be obtained by permuting two or more elements in at least one of the

partite sets (with the partite sets fixed) of G, then the Latin arrays L(G) and

L(G′) are isotopic. Simply put, we obtain an isotopic Latin array by permut-

ing the rows, columns and/or symbols of the original array. For example, the

two Latin arrays below are isotopic as we simply switch the first two rows of

the first array to obtain the second.

2,3 2,3 2,3 2,3

1,1

3 1

1,2 2 1

≡

1,1

2,3 2,3 2,3 2,3

3 1

1,2 2 1

The set of all Latin arrays of the same order can be partitioned into equiv-

alent classes called isotopy classes, such that two arrays in the same class are

isotopic.

On the other hand, if we can obtain G′ by permuting the partite sets of G

then L(G) and L(G′) are said to be conjugates or parastrophes. Equivalently,
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we can obtain the conjugates of a Latin array L(G) by reordering the triples

in L(G). We formally define these six conjugates below.

• L = L(G),

• L∗ := {(j, i, s)|(i, j, s) ∈ L},

• −1L := {(s, j, i)|(i, j, s) ∈ L},

• L−1 := {(i, s, j)|(i, j, s) ∈ L},

• −1(L−1) := {(j, s, i)|(i, j, s) ∈ L},

• and (−1L)−1 := {(s, i, j)|(i, j, s) ∈ L}.

(The above notation is used in [38].)

Finally, if G′ is obtained by a combination of the two types of permutations

we defined above, then the corresponding arrays are said to be main class

equivalent, paratropic or belong to the same species [94].

For example, the following Latin array L(G) is obtained from the graph in

Figure 1.1.

L(G) = {(1, 1, 2), (1, 1, 3), (2, 2, 1), (2, 2, 1), (3, 3, 3),

{(3, 4, 1), (4, 1, 1), (4, 1, 2), (4, 2, 2), (4, 4, 1)}

=

2,3 2,3 2,3 2,3

1,1

3 1

1,2 2 1

By swapping the sets R and C and swapping the symbols 1 and 2 in S we

obtain:
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L(G) = {(1, 1, 1), (1, 1, 3), (2, 2, 2), (2, 2, 2), (3, 3, 3),

{(4, 3, 2), (1, 4, 2), (1, 4, 1), (2, 4, 1), (4, 4, 2)}

=

1,3 2,3 2,3 2,3

2,2 1,2

3

2 2

.

So L(G′) is isotopic to a conjugate of L(G) and therefore L(G′) and L(G) are

main class equivalent.

Some Latin arrays are also equivalent to orthogonal arrays. An orthogonal

array OA(r, n, k) is a r × kn2 array such that in any two rows, each ordered

pair from N(n) occurs exactly k times.

Thus a Latin square L of order n is an orthogonal array OA(3, n, 1) which

has a column (r, c, s) if and only if the cell Lr,c contains s.

We can also use the idea of an orthogonal array to define multi-Latin

squares. A k-Latin square L of order n is an orthogonal array OA(3, n, k)

which has a column (r, c, s) if and only if the cell Lr,c contains s.

The orthogonal array OA(3, 3, 1) below:

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 3 1 2

corresponds to the Latin square

1 2 3

2 3 1

3 1 2

while (the following orthogonal array) OA(3, 3, 3)
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1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

3 3 3 3 3 3 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

corresponds to the full 3-Latin square

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

.

Since the three rows of an orthogonal array of a Latin/multi-Latin square

L corresponds to its rows, columns and symbols respectively, permuting the

rows of the orthogonal array of L maps L to one of its conjugates.

For example, let L be the 3-Latin square of order 3 below:

1,2,2 1,2,3 1,3,3

1,1,3 1,2,3 2,2,3

2,3,3 1,2,3 1,1,2

.

Then the conjugates of L are:

L∗ =−1 (L−1) = (−1L)−1 =

1,2,2 1,1,3 2,3,3

1,2,3 1,2,3 1,2,3

1,3,3 2,2,3 1,1,2

,

−1L = L, and
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L−1 =

1,2,3 1,1,2 2,3,3

1,1,2 2,3,3 1,2,3

2,3,3 1,2,3 1,1,2

.

1.4 Aims and outcomes

A principal aim of this thesis is to examine the properties of critical sets of

the full n-Latin square. This idea is motivated by the analogous concept of

full designs (see [2, 47, 56, 77, 80]). For block size k, a full design simply

consists of all the possible subsets of size k from the foundation set N(v)

(formal definitions of full designs are given in Chapter 3). In [47], it is shown

that any minimal defining set for a design is the result of an intersection of

the design with a minimal defining set of the full design of the same order (see

Lemma 3.4 from Chapter 3). For Latin squares, in fact, the same result holds.

We first show in the following theorem that the intersection of a Latin array L

with a defining set of another Latin array L′ of the same order where L ⊂ L′,

is a defining set of L.

Theorem 1.3 Let L and L′ be two Latin arrays such that L ⊂ L′. If C is a

defining set of L′ Then L ∩ C is a defining set for L.

Proof. Suppose there exist two distinct Latin arrays L and M based on the

same tripartite graph G such that each contain L ∩ C. Let T = L \ M and

T ′ = M \ L. Then (L′ \ T ) ⊎ T ′ is a Latin array based on the same tripartite

graph as L′ that contains C but is not equal to L′. Thus C is not a defining

set, a contradiction. �

Since every Latin square of order n is a subset of the full n-Latin square,

the following corollary is immediate.
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Corollary 1.4 Let C be a defining set of the full n-Latin square and let L be

a Latin square of the same order. Then L ∩ C is a defining set for L.

For example, let C and L respectively be the saturated critical set of the

full 4-Latin square and 4× 4 Latin square below:

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

C

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

L

Then

C ∩ L =

1 2 3 1

4 1 2

3 4 1

is a defining set of L.

We can even go further and show that any critical set of a Latin square

of order n is the result of the intersection of a defining set of the full n-Latin

square and the Latin square.

Theorem 1.5 Let Ln be the full n-Latin square and let L be a Latin square

of the same order. If C is a critical set of L, then there exists a defining set,

Dn of Ln such that Dn ∩ L = C.

Proof. Let Dn = (Ln \L)∪C. Since C is a critical set of L, Dn is a defining

set of Ln and since C ⊂ Dn, Dn ∩ L = C. �

The study of critical sets of the full n-Latin square thus has the potential to

yield information on critical sets in Latin squares, which have been extensively
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studied (see Chapter 2 for a survey). Initially, one of the main objectives of

this thesis was to study the defining sets (of Latin squares) that result from

intersecting the critical sets of the full n-Latin square with Latin squares of

the same order. In particular, we aimed to construct a defining set, D, of

the full n-Latin square such that for some Latin square L of the same order,

D ∩ L is a critical set of L with size ⌊n2/4⌋; the conjectured optimal size of

the smallest critical sets of Latin squares ([84, 8, 81]). It turned out that this

is quite a simple task and the following corollary of Theorem 1.5 gives such

a construction. In this thesis, a Latin square L of order n is said to be back

circulant if L = {(r, c, r + c− 2 (mod n) + 1)|r, c ∈ N(n)}.

Corollary 1.6 Let Ln be the full n-Latin square and let Bn be the back cir-

culant Latin square of the same order. If C = {(r, c, r + c − 1)|r + c ≤

⌊n/2⌋+1}∪{(r, c, r+c−n−1)|r+c ≥ n+⌊n/2⌋+2}, then Dn := (Ln\Bn)∪C

is a defining set of Ln, Dn ∩Bn = C is a critical set of Bn and |C| = ⌊n2/4⌋.

We illustrate this result in the following example:

For n = 4,

Bn =

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

and C =

1 2 4

2

3

=⇒ Dn = (Ln \ Lb) ∪ C =

1,2,3,4 1,2,3,4 1,2,4,4 1,2,3

1,2,3,4 1,2,4 1,2,3 2,3,4

1,2,4 1,2,3 2,3,4 1,3,4

1,2,3 2,3,4 1,3,4 1,2,3,4

thus Dn ∩ Lb = C.
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Since this was straightforward to show, we turned our focus to other prop-

erties of the critical sets of the full n-Latin square. We have at least provided

partial answers to the following questions:

• What is the size of the smallest/largest critical set of the full n-Latin

square?

• What are the combinatorial structures that generalize (or are generalized

by) multi-Latin squares and which results have analogies between these

structures?

• What are the properties of trades in these different combinatorial struc-

tures?

• For a given natural number n, what critical set sizes exist between the

smallest and largest critical set of the full n-Latin square?

For the most part, the answers to the above questions became the various

chapters of this thesis.

In Chapter 2, we summarize some of the results from the literature on (or

related to) critical sets of Latin squares. As clearly implied by Lemma 1.1 and

Lemma 1.2, any results including Latin trades were of particular interest in

this chapter. We also give a brief account of the evolution of bounds on the

sizes of the smallest/largest critical sets of this combinatorial structure.

Chapter 3 explores relevant results on designs. Here we explore analogies

of critical sets of the full n-Latin square and minimal defining sets of the full

designs. In the last section of this chapter, we provide a correction to the proof

of one of the defining set constructions from [2].

In Chapter 4 we define sets of partialm×n arrays which completely describe

the structure of all critical sets of the full (m,n, 2)-balanced Latin rectangle.

Theorem 4.2 and Theorem 4.3 show that a partial (m,n, 2)-Latin rectangle is

a critical set of the full (m,n, 2)-balanced Latin rectangle if and only if it is

such an array. As (m,n, n)-balanced Latin rectangles are n-Latin rectangles,
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our aim here was to study the structure of the less complex critical sets of

the full (m,n, 2)-balanced Latin rectangles then try to generalize these results

to the full n-Latin rectangle. Although we did not fully succeed, we obtained

significant partial results in Chapter 5.

In an analogous set-up to Chapter 4, we discuss the properties of the dif-

ferent critical sets of full n-Latin squares in Chapter 5. In Section 5.1, we fully

classify the structure of any saturated critical set of the full n-Latin square.

We show in Theorem 5.8 that such a critical set has size exactly equal to

n3 − 2n2 − n. In Section 5.2 we give a construction which provides an upper

bound of (n− 1)3 +1 for the size of the smallest critical set of the full n-Latin

square and we conjecture that this is best possible. Section 5.4 gives a lower

bound of n3 − n2 − 3n+4 for the size of the largest non-saturated critical set.

Chapter 6 is a survey of the spectrum of sizes of critical sets for the full

n-Latin square. By studying and generalizing the structures of critical sets

of small orders, we provide constructions that complete the lower half of the

spectrum from (n − 1)3 + 1 to n(n − 1)2 + 1. Latter constructions in this

chapter give sizes between n(n − 1)2 + 2 and n3 − n2 − 3n + 4 but there are

still undetermined values in this part of the spectrum.

Motivated by the fact that a critical set of the full n-Latin square is a

completable partial n-Latin square, we study completability of partial k-Latin

squares in Chapter 7. In particular we give a generalization of Evans’ conjec-

ture for multi-Latin squares. We show that any partial multi-Latin square of

order n and index k with at most (n− 1) entries or at most (n− 1) non-empty

cells is also completable.

Chapter 8 discusses k-Latin cubes, which can be thought of as three di-

mensional generalizations of k-Latin squares. Our focus here is to attempt to

generalize known results on Latin squares (and results from other chapters) so

that they apply to Latin cubes. Furthermore we generalize these Latin cubes

to multi-Latin cubes where each layer is a multi-Latin square.
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Finally in Chapter 9 we summarize the main results of this thesis and

suggest open problems for future research.



Chapter 2

Known results on Latin squares

In this chapter we review the literature on Latin squares with a focus on the

critical sets of these combinatorial structures. The concept of a critical set

in a Latin square was introduced by the statistician, J. A. Nelder [83], in

1977. In his note, he posed the question, “for a given Latin square of order n,

what is the cardinality of a smallest critical set and, conversely, what is the

cardinality of a largest critical set?” Over the years, Nelder’s question became

a much studied open problem and has been studied by various authors such

as Curran and van Rees [35], Smetaniuk [88], C. Colbourn, M. Colbourn, and

Stinson [31] between 1978 and 1983 and in recent years by Cooper, Donovan

and Seberry [33], Keedwell [72], Mahmoodian [62] and Cavenagh [19].

Moreover, as alluded to by the authors of [9] and [43], critical sets may be a

useful way of reducing the storage space required for the Latin squares.

2.1 Latin trades

The idea of a Latin trade was first used to study critical sets of Latin squares

[72]. Just as Latin squares are Latin arrays, a Latin trade is a trade in a Latin

array that is a Latin square. Informally, a trade in a Latin square is a subset

T which can be removed and replaced with a (disjoint) subset T ′ to create a

distinct Latin square. Thus we define a Latin trade (also known as a Latin

interchange) as a non-empty partial Latin square T with a disjoint mate T ′
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such that they each occupy the same set of non-empty cells, and corresponding

rows and columns contain the same sets of symbols. For example:

T

1 2 3

2 1 3

3 2 1

3 1 2

and

T ′

3 1 2

1 3 2

2 1 3

2 3 1

Observe that if a Latin square L contains a trade T , then replacing T by T ′

gives another Latin square of the same order. A Latin trade on a 2 × 2 sub-

square is called an intercalate. An intercalate is the smallest possible type of

Latin trade and has only two symbols. That is,

T = {(r, c, s), (r, c′, s′), (r′, c, s′), (r′, c′, s)}

and T ′ = {(r, c, s′), (r, c′, s), (r′, c, s), (r′, c′, s′)}

where (r, c, s) ∈ L. For example:

T

1 2

2 1

and

T ′

2 1

1 2

2.2 scs(n)

For a Latin square of order n, the size of the smallest possible critical set is

denoted by scs(n) [83]. It is conjectured that scs(n) = ⌊n2

4
⌋ ([84, 8, 81]) and

this conjecture has been verified computationally up to n = 8 in [84, 35, 8, 1]

and [10]. The table below gives examples of critical sets which meet this bound.
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n conjectured

scs(n)

2 1
1 1

3 2

1 1

2

4 4

1 2 1

2

3

...
...

...

n
⌊
n2

4

⌋

1 2 · · · k 2

2 · · · k

· · · k

k

k + 1

k + 1 · · ·

k + 1 · · · n− 2

k + 1 · · · n− 2 n− 1

where k = ⌊n/2⌋
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The general form of such a critical set is defined as follows:

L = {(r, c, r+c−1)|r+c ≤ ⌊n/2⌋+1}∪{(r, c, r+c−n−1)|r+c ≥ n+⌊n/2⌋+2}

In [42], Donovan and Cooper proved that such a partial Latin square is a

critical set of the back circulant Latin square of the same order (see [27, 42]).

One of the first lower bounds on scs(n) was scs(n) ≥ n + 1 for n ≥ 5 [34].

Fu, Fu and Roger [53], improved this result by showing that scs(n) ≥ 7n−3
6

for

n > 20.

As every critical set C of a Latin square L intersects every Latin trade

in L (by Lemma 1.1), determining Latin trades within a Latin square is an

important tool in the identification of its critical sets. In [19], Cavenagh uses

this fact to show that any critical set with an empty row has at most one empty

row, at most one empty column and at most one empty cell. Subsequently, he

showed that scs(n) ≥ 2n−32. In 2007, Cavenagh [20] established a superlinear

lower bound for scs(n) showing that

scs(n) ≥ n

⌊
(log n)

1
3

2

⌋
.

This result is the best known lower bound for scs(n) for general n.

We consider the analogous function for the full (m,n, 2)-balanced Latin

rectangle in Section 4.5 and for the full n-Latin square in Section 5.2 and

Section 5.3. We denote the size of the smallest critical set of a k-Latin square

of order n as scs(n, k).

2.3 lcs(n)

The size of the largest possible critical sets of a Latin square of order n is

denoted lcs(n). The precise value of lcs(n) is also undetermined for general

n. Stinson and van Rees [91] showed that for all n ≥ 1, lcs(n) ≥ 4n − 3n.

They established the result using a doubling construction method to yield the

so-called 2-critical sets. Each element of these 2-critical sets is contained in
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an intercalate within the Latin square that intersects the critical set precisely

at that element. In [62] Hatami and Mahmoodian used a non-constructive

method to show that:

lcs(n) ≥ n2
(
1− 2+ln 2

lnn

)
+ n

(
1 + 2 ln 2+ln(2π)

lnn

)
− ln 2

lnn

= n2 − (2+ln 2)n2

lnn
+ o

(
n2

lnn

)
Ghandehari et al [55] improved this result to lcs(n) ≥ n2 − (e+ o(1))n

5
3 .

A trivial upper bound on lcs(n) is n2−n. This result is a direct consequence

of the fact that every row/column must have at least one empty cell. Bean

and Mahmoodian, [12], improved this result to lcs(n) ≤ n2−3n+3 and Horak

and Dejter, [68], showed that lcs(n) ≤ n2 − 7n−
√
n−20
2

. The latter result is the

best known upper bound on lcs(n).

Other papers such as [11] and [44] introduce the idea of verifying the spec-

trum of possible sizes of critical sets. In [44], Donovan and Howse proved that

for all n there exist critical sets of order n and size s, such that ⌊n2

4
⌋ ≤ s ≤ n2−n

2
,

except if s = n2

4
+ 1, n even [11]. A more recent result in [46] is that there

exist critical sets of size s and order 2n such that 4n−1 ≤ s ≤ 4n − 3n.

In Section 4.5 we determine the exact size of the largest critical set of the

full (m,n, 2)-balanced Latin rectangle, and a lower bound for that of the full

n-Latin square is given in Section 5.4. We denote the size of the largest critical

set of a k-Latin square of order n as lcs(n, k).

2.4 Completable partial Latin squares

In general, determining if a partial Latin square is completable to a Latin

square is NP-complete (see [30]). In 1945, M. Hall [60] used Hall’s theorem

[61] (also discussed in Appendix 10.2) to show that any Latin rectangle can

be completed to a Latin square of the same order.

Theorem 2.1 [60] Every m × n Latin rectangle of order n can be completed

to a Latin square of order n
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In [64], Hilton and Johnson showed that if the non-empty cells of a partial

Latin square form a rectangle with no empty cells, then Hall’s Condition (see

Appendix 10.2) is a necessary and sufficient condition for a completion. They

achieved this result by showing that in such a case Hall’s condition is equivalent

to Ryser’s condition [86], given by the following theorem.

Theorem 2.2 [86] Let P be a partial Latin square of order n whose non-empty

cells are those in the upper left r× s rectangle R, for some r, s ∈ N(n). Then

P is completable if and only if ν(σ) ≥ r + s − n for each symbol σ ∈ N(n),

where ν(σ) is the number of times that σ appears in R.

Hilton and Vaughan [66] extended Theorem 2.2 by showing that if in such

an r × s rectangle, at most one cell in each column is empty, then Hall’s

Condition is once again a necessary and sufficient condition for a completion.

In 1960, Evans [50] conjectured that any partial Latin square of order n

with at most n− 1 entries can be completed. This well-known conjecture was

proved by Smetaniuk [89] in 1981.

Theorem 2.3 [89] If A is a partial Latin square of order n with at most n−1

entries, then A can be completed to a Latin square of order n.

Alternate proofs for Theorem 2.3 are given by Häggkvist [59] for large n

and Anderson and Hilton [5] for all n.

More results on completable partial Latin squares [7, 28, 58] were triggered

by Daykin and Häggkvist when they conjectured in [36] that any
1

4
-dense

partial Latin square can be completed (where an ϵ-dense partial Latin square

is one in which each symbol, row, and column contains no more than ϵn-many

non-empty cells). In [7], the author uses a novel technique derived from [70]

to show that all 9.8× 10−5-dense partial Latin squares are completable. Very

recently, Dukes [48] improved this result by showing that any 0.0288-dense

partial Latin square can be completed to a Latin square.

The completability of partial k-Latin squares is studied in Chapter 7.
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2.5 Premature partial Latin squares

A partial Latin square is premature if it cannot be completed to a Latin square

of the same order, but is completable when a single entry of any one of its cells

is removed. We thus may think of a premature partial Latin square as a

minimally incompletable partial Latin square.

Since any partial Latin square of order n and size at most n − 1 can be

completed (by Theorem 2.3) and premature partial Latin squares of order n

and size n exist [15], for example:

1 · · ·

1 · · ·
...

...
. . .

...
...

· · · 1

· · · 2

and

1 2 · · · n-1

· · · n

...
...

. . .
...

...

· · ·

· · ·

,

the following lemma is immediate.

Lemma 2.4 The smallest premature partial Latin square of order n is of size

n.

Introduced in [15], several papers have been written on premature partial

Latin squares (see [16, 26, 41]) mainly focusing on the size of a maximum

premature partial Latin square. In [15] the authors show that a maximum

premature partial Latin square of order n has size asymptotic to n2 and always

has at least 3n − 4 empty cells. In the same paper they conjectured that the

number of empty cells in a premature partial Latin square is at least n3/2. The

authors of [16] showed that a premature partial Latin square containing a row

with n− 1 filled cells contains at least 4n− 10 empty cells. The lower bound

on the number of empty cells is further improved in [26] to 7n/2− o(n).

In Chapter 7, we explore the more general premature partial k-Latin squares.
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Block Designs

A block design (or simply a design) is a combinatorial structure consisting

of a set and a family of its subsets where the elements of these subsets meet

certain regularity conditions modelling a certain application. Historically, this

application is (related to) the design of statistical experiments [32, 90]. Other

applications where block designs have been used include algebraic and finite

geometry [69], software testing [29], and cryptography [18]. In this chapter

we explore some of the known results on block designs which are precursors

to results in this thesis. Section 3.1 discusses the different types of trade in

block designs and how they may be constructed. In Section 3.2, we discuss the

relationship between trades and defining sets of designs. Section 3.3 explores

the properties of the defining sets of full designs. Here we highlight the analo-

gous results to the defining sets of full designs since, in some sense, full designs

are analogous to full n-Latin squares. Section 3.4 provides some constructions

from the literature [2, 76, 47] that give minimal defining sets of the (v, 3, v−2)

full design. In the the last section we provide a correction to the proof of one

of the defining set constructions from [2].

Formally, for v ≥ k ≥ t > 0, we define a t-(v, k, λ) design (or a t-design),

as a pair (V,B) where V = {1, 2, ..., v} (elements of V are called points) and B

is a set of b k-subsets of V called blocks, where each point appears in exactly

r blocks and each t-subset of V appears in exactly λ blocks.
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A design is identified by the parameters t, v, k, λ, b and r. We refer to the

parameters v, λ and b as the order, index and size of the design, respectively.

The following lemma is well-known.

Lemma 3.1 For a t-(v, k, λ) design, D:

1. rv = bk,

2. λ
(
v
t

)
= b

(
k
t

)
.

Proof. We prove our first claim by counting in two ways the sum of the

cardinalities of elements of B. The obvious way is to multiply the number of

blocks b by the size k of each block. Alternatively, since each of the v-elements

of the base set V appears r times in B, the sum of the cardinalities of elements

of B is also rv.

For our second claim, we count the number of times each t-subset of V

appears in B. Firstly, there are
(
v
t

)
ways of choosing a t-subset from V and

each of these t-subsets appears in exactly λ blocks. On the other hand, there

are
(
k
t

)
distinct t-subsets in each of the b blocks of B, hence λ

(
v
t

)
= b

(
k
t

)
. �

We refer to a design as a simple design if it contains no repeated block. A

simple design of index 1 is known as a Steiner design. The following 2-(7, 3, 1)

design is an example of a Steiner design.

V = {1, 2, 3, 4, 5, 6, 7} and

B = {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {2, 3, 5}, {2, 6, 7}, {3, 4, 6}, {4, 5, 7}}.

In this chapter we focus only on simple designs with t = 2 in which case a

design is simply referred to as a (v, k, λ) design.

3.1 Trades in block designs

We next discuss the idea of trades in a (v, k, λ) design. Let T1 and T2 be

subcollections of m blocks of the set V = N(v). We say that T1 and T2 are
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2-balanced if each pair of V is contained in the same number of blocks of T1

and of T2. If T1 and T2 are disjoint and 2-balanced, then T = {T1, T2} is a

(v, k, λ) trade where T1 and T2 are said to be trade mates.

A simple way to construct a (v, k, λ) trade is by finding the set difference

between two designs. Suppose that two (v, k, λ) designs are defined as D1 =

(V,B1) and D2 = (V,B2) with B1 ̸= B2. Similar to Latin arrays, the two

collections defined by B1 \B2 and B2 \B1 are disjoint and 2-balanced and are

therefore trade mates (see Section 1.2). The following example demonstrates

how such a trade can be constructed.

Let

V = {1, 2, 3, 4, 5, 6},

B1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6},

{2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}, and

B2 = {{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 4, 6}, {2, 3, 4},

{2, 3, 6}, {2, 4, 5}, {3, 5, 6}, {4, 5, 6}}.

Then clearly

B1 ∩B2 = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}},

T1 = {{1, 2, 3}, {1, 2, 4}, {1, 5, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}, and

T2 = {{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {2, 3, 4}, {3, 5, 6}, {4, 5, 6}}.

Similar to a design, we refer to a trade as being a simple trade if none of its

blocks is repeated and a Steiner trade if no pair of V occurs more than once

in either trade mate. The trade constructed above is an example of one that

is simple but not Steiner.

A Steiner trade of the form

T = {{u,w, x}, {u, y, z}, {v, w, y}, {v, x, z}}

and

T ′ = {{v, w, x}, {v, y, z}, {u,w, y}, {u, x, z}}
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for distinct symbols u, v, w, x, y, z, is called a Pasch trade. This is the smallest

possible trade in a block design.

3.2 Defining sets of designs

In this section we use the notation from [2].

The concept of a defining set of a (v, k, λ) design mirrors that of a Latin

array (see Section 1.1). That is, a set of blocks that is a subset of an unique

(v, k, λ) design D is a defining set of D. We denote this by dD. If no proper

subset of dD is also a defining set of D, then dD is said to be a minimal

defining set denoted by dmD. A defining set of minimum size is called a

smallest defining set denoted by dsD.

Defining sets and trades of designs are closely linked. The following lemma

(analogous to Lemma 1.1 and Lemma 1.2) introduced by Gray in [56] sums

up this connection.

Lemma 3.2 Let D1 be a subset of the blocks of the design D = (V,B). Then

1. D1 is a defining set of D = (V,B) if and only if D1 intersects every trade

contained in B.

2. D1 is a minimal defining set of D if and only if D1 is a defining set and

for every block b1 ∈ D1, there is a trade T such that T ∩D1 = {b1}.

Proof. 1. Suppose that D1 is a defining set of D. If T1 ⊆ B and T2 are

trade mates and D1 ∩ T1 = ∅, then D1 ⊆ B \ T1 and thus D1 is also a

subset of the design T2 ⊎ (B \ T1), a contradiction.

2. Suppose that D1 is a minimal defining set of D and there exists a block

b∗ ∈ D1 such that T ∩D1 ̸= {b∗} for each trade T . Then D1 \ {b∗} also

intersects every trade in D and thus a defining set with less blocks than

D; a contradiction.

�



32

The following lemmas (analogous to Theorem 1.3 and Theorem 1.5 respec-

tively), round up the properties of the defining sets of designs we need to

discuss in this section.

Lemma 3.3 [57] Let A and B be sets of blocks with A ⊆ B. If D is a defining

set of B, then D ∩ A is a defining set of A.

Proof. Any trade T contained in A is also contained in B. By Lemma 3.2, T

intersects D and thus intersects D∩A also, so D∩A is a defining set of A. �

Lemma 3.4 [47] Let A and B be sets of blocks with A ⊆ B. If D is a minimal

defining set of A, then there exists a minimal defining set D∗ of B such that

D∗ ∩ A = D.

Proof. Let D∗ = D∪B \A. Clearly D∗ is a defining set of B. For each y ∈ D

there is a trade, T , in A which intersects D only at y and thus D∗ \ {y} is

not a defining set of B. Suppose that for each x ∈ D∗ ∩ (B \ A), D∗ \ {x} is

not a defining set of B. Then D∗ is a critical set of B. Otherwise there exists

x ∈ D∗ ∩ (B \ A) such that D∗ \ {x} is a defining set of B. Remove x from

D∗. Recursively apply the last step until D∗ is a minimal defining set of B. �

As pointed out in [47], the two results above are of particular relevance

when B is a full design and the subset A is a simple design of the same order.

3.3 Full Designs

In this section, we discuss and compare some of the known results and prop-

erties of full designs to those of the full n-Latin squares.

We start by defining the more general quasi-full design which is any (v, k,
(
v−2
k−2

)
)

design. A full design is the unique simple quasi-full design where B is made

up of all possible k-tuples of the elements of V . Below is an example of the

full design of order 5.

Example 3.5 Let v = 5 and k = 3. Thus λ =
(
3
1

)
= 3 and
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B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},

{2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {2, 3, 4}}.

Since all possible k-tuples are contained in the blocks of a full design, it

follows that every simple (v, k, λ) design is contained in a full design of the

same order, and by Lemma 3.3, any defining set of the full design will contain

a defining set of any design of the same order. Furthermore, by Lemma 3.4,

if all defining sets of a full design can be classified then intersected with any

design of the same order, we get a list of all the defining sets of the design. Of

course, if we can determine the minimal defining sets of the full design directly,

then fewer steps would be needed in this process. With that said, it is clear

that studying the minimal defining sets of full designs (as in [2, 47, 80]) gives

valuable information about the minimal defining sets of all (v, k, λ) designs.

3.4 Constructions of defining sets of full de-

signs

For this section we give a survey of constructions for the minimal defining sets

of the full (v, 3, v − 2) design.

Construction 3.6 [2]

Let V = {0, 1, ..., v − 1} and

F (V ) = {{x, y, z} | x, y, z ∈ V, x, y, z distinct}

where v ≥ 6. Define

D1 = F (V \ {0}) \ {{1, 2, x} | 3 ≤ x ≤ v − 1}.

The set D1 contains
(
v
3

)
− (v2 − v − 4)/2 = (v3 − 6v2 + 5v + 12)/6 blocks.
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Example 3.7 For v = 6, we exclude the ten blocks containing 0 and the

blocks {1, 2, 3}, {1, 2, 4}, and {1, 2, 5}. Thus

D1 = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Construction 3.8 [76]

Let V = {0, 1, ..., v − 1} and

F (V ) = {{x, y, z} | x, y, z ∈ V, x, y, z distinct}

where v ≥ 5. Define

D2 = F (V \ {0}) \ F ({1, 2, 3, 4}).

The set D2 contains
(
v
3

)
− (v2 − 3v + 10)/2 = (v3 − 6v2 + 11v − 30)/6 blocks.

Example 3.9 For v = 6, we exclude the ten blocks containing 0 and the

blocks

F ({1, 2, 3, 4}) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}},

thus

D2 = {{1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

In a way, the exclusion of every block containing 0 in the above construc-

tions is similar to removing the entries of a row or column of a full n-Latin

square. In Section 5.1 of Chapter 5, we will show that a saturated partial

n-Latin square is a defining set of the full n-Latin square if and only if it con-

tains no cycle of empty cells. Thus, although not a critical set, such a partial

n-Latin square is a defining set of the full n-Latin square.

Three other constructions of minimal defining sets of the (v, 3, v − 2) full

design are given in [47] where Construction 3 gives the same minimal defining

set as D1 and Constructions 4 and 5 are for v > 6. In [2], the authors give

minimal defining sets for 3 ≤ v ≤ 5 and smallest defining sets for v = 6, 7.

These results are summarized below.

Let d3(v) be the size of the full (v, 3, v − 2) design. Then
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• For 3 ≤ v ≤ 5, d3(v) = 0;

• d3(6) = 6; and

• d3(7) ≤ 15.

The last result is correct as stated in Theorem 6 of [2], however the proof

has an error which we correct in the next section.

3.5 A correction to a defining set construction

Firstly, the defining set of the full (7, 3, 5) design given in the proof as

S = {{1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4},

}{2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 4, 5}, {2, 4, 6},

{{2, 4, 7}, {2, 5, 7}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}

does not intersect the Pasch trade

T = {{1, 2, 3}, {2, 5, 6}, {1, 6, 7}, {3, 5, 7}}

and

T ′ = {{1, 7, 3}, {7, 5, 6}, {1, 6, 2}, {3, 5, 2}}.

So by Lemma 3.2, S cannot be a defining set. An alternative proof to Theorem

6 of [2] is given below.

Theorem 3.10 d3(7) ≤ 15.

Proof. Changing the block {1,4,5} of S to {2,5,6} yields a correct defining

set as we now show.

Let

V = {1, 2, ..., 7}

and

S = {{1, 3, 6}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5},

}{2, 3, 6}, {2, 3, 7}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7},

{{2, 5, 6}, {2, 5, 7}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}.
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To complete the proof we simply need to show that S is a defining set

of the full (7, 3, 5) design, D = (V,B). We start by assuming that S can be

extended to a quasi-full design D′ = (V,B′) and then we show that D′ = D.

Let S ′ = B′−S, s′i be the number of blocks of S ′ containing the element i, and

s′i,j be the number of blocks of S ′ containing the pair i, j. We observe that:

• s′6 = 6, s′6,7 = 5, s′1,6 = s′2,6 = 2 so {1, 6, 7}, {2, 6, 7} ∈ S ′.

• s′2 = 6, s′1,2 = 5, s′2,3 = s′2,4 = s′2,5 = 1, s′2,6 = s′2,7 = 2 so the five

remaining blocks containing 2 also contain 1 and thus

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7} ∈ S ′.

• s′3,6 = s′4,6 = s′5,6 = 1 so the three remaining blocks of S ′ containing 6

are {3, 6, 7}, {4, 6, 7}, {5, 6, 7}.

Consider

S ′′ = S ′ \ {{1, 6, 7}, {2, 6, 7}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6},

S ′ \ {{1, 2, 7}, {3, 6, 7}, {4, 6, 7}, {5, 6, 7}}.

For v = {2, 6}, s′′v = 0 so only five elements appear in the blocks of S ′′. Also

B \P3(V ) ⊆ S ′′ where P3(V ) is the set of all the 3-subsets of set V . Hence the

blocks of T = (B \ P3(V ), P3(V ) \B) are based on at most five elements. But

since every trade must be based on at least six elements, B \ P3(V ) = ∅ and

thus D = D′. �



Chapter 4

Critical sets of (m,n, 2)-balanced

Latin rectangles

In this chapter we turn our focus to critical sets of (m,n, t)-balanced Latin

rectangles. Any (m,n, t)-balanced Latin rectangle R used in this chapter may

be represented in two ways. Firstly, as an m × n array of multisets, with

the set in cell Rr,c containing λ occurrences of element s if and only if the

triple (i, j, s) has multiplicity λ in R (see the Introduction). We may also

represent an (m,n, t)-balanced Latin rectangle as an edge-coloured bipartite

graph. Given an (m,n, t)-balanced Latin rectangle R, such a graph BR has

partite sets N(m) and N(n), with λ edges of colour s between vertices r and

c whenever the triple (r, c, s) has multiplicity λ in R. Figure 4.1 gives the two

representations of the following (2, 3, 3)-balanced Latin rectangle.

R = {(1, 1, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3),

}(1, 3, 2), (1, 3, 3), (1, 3, 3), (2, 1, 2), (2, 1, 3), (2, 1, 3),

{(2, 2, 1), (2, 2, 2), (2, 2, 3)(2, 3, 1), (2, 3, 1), (2, 3, 2)}.

We will switch freely between these equivalent representations in this chapter,

using whichever form makes proofs easier to follow.

As (n, n, n)-balanced Latin rectangles are n-Latin squares of order n, our

aim is to study the structure of the critical sets of the full (m,n, 2)-balanced
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Figure 4.1: A (2, 3, 3)-balanced Latin rectangle

Latin rectangle and apply these results to the full n-Latin square in Chapter 5.

In this chapter, we focus on the case t = 2; F is always the full (m,n, 2)-

balanced Latin rectangle and a saturated partial (m,n, 2)-balanced Latin rect-

angle is one where each non-empty cell contains the entries {1, 2}. The next

result, shown in [23], is analogous to Theorem 1.3.

Here we define A(R,S) (where R and S are integral vectors of orders m

and n respectively) as a set of all m× n 2-Latin rectangles with entries either

1 or 2, and with row and column sums prescribed by R and S.

Theorem 4.1 Let C be a defining set of F and let A ∈ A(R, S) be an

(m,n, 2)-balanced Latin rectangle with |R| = m and |S| = n. Then A ∩ C

is a defining set for A.

Proof. Suppose that A ∩ C is not a defining set for A. Then there exists

an (m,n, 2)-balanced Latin rectangle A′ ∈ A(R, S) such that A′ ̸= A and

A∩C ⊂ A′. Let T = A\A′ and T ′ = A′ \A. Since A∩C ⊂ A∩A′, T ∩C = ∅.

Now T and T ′ are partial (m,n, 2)-balanced Latin rectangles with the same

set of occupied cells, with 1 and 2 occurring the same number of times in each

row and column. Thus G := (F \ T ) ⊎ T ′ is an (m,n, 2)-balanced Latin

rectangle. Furthermore since T ∩ C = ∅, C ⊂ G. Since G ̸= F , C is not a

defining set for F , a contradiction. �
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In [23], the symbol 2 of an element of A(R,S) is replaced by 0 to give a

(0, 1)-matrix. Thus the results in this chapter also give us useful information

in identifying defining sets in (0, 1)-matrices.

In Section 4.1, we give examples of critical sets of full (n, n, 2)-balanced

Latin rectangles of small orders highlighting the similarities in their struc-

tures. We then generalize these examples to give the precise structure of a

critical set of the full (m,n, 2)-balanced Latin rectangle in Section 4.2. We

do this by describing sets of partial m × n arrays A[a, b] where a and b are

vectors of non-negative integers satisfying certain properties. Then in Theo-

rem 4.2 and Theorem 4.7, we show that if (a, b) is a pair of “good” vectors (see

Definition 4.2), then a partial (m,n, 2)-balanced Latin rectangle is a critical

set of the full (m,n, 2)-balanced Latin rectangle if and only if it is an element

of A[a, b]. This gives a classification of such critical sets. Section 4.3 gives

the analogous result (on (m,n, 2)-balanced Latin rectangles) to Lemma 1.2

and we use this result in Section 4.4 to prove Theorem 4.2. In Section 4.5

we show that when m,n ≥ 2, the size of the smallest critical set of the full

(m,n, 2)-balanced rectangle is (m − 1)(n − 1) + 1 and the size of the largest

critical set of the full (m,n, 2)-balanced Latin rectangle is 2(m − 1)(n − 1).

To conclude this chapter we generalize the definition of A[a, b] for the full

(m,n, 2)-balanced Latin rectangle (in Section 4.2) to construct critical sets of

the (m,n, t)-balanced Latin rectangle.

Section 4.2 to Section 4.5 is joint work with Nicholas Cavenagh and is

published in [23].

4.1 Examples of critical sets of the full (n, n, 2)-

balanced Latin rectangle

In this section we give examples of critical sets of the full (n, n, 2)-balanced

rectangle for 2 ≤ n ≤ 4. We then describe some patterns which we generalize

formally in the next section.
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1,2 1,2 1,2 2

1 1,2

1,2 1,2 1,2

1,2 1,2

1,2 1,2 1,2

1,2

1,2

1,2 1,2

1,2

1,2

1,2 1,2

1,2

1 1 1

1,2

1,2 1,2

1 1 1

1 1,2

1,2 1,2 1,2

1 1 1

1,2 1,2 1,2

1 1 1

1 1 1

2 2

1 1,2

1,2 1,2 1,2

2 2

1 2

1,2 1,2 1,2

1,2 2

1 1

1,2 1 1,2

For n = 4, eight of the critical sets are saturated and some of the non-

saturated critical sets are given below.

1,2 1,2 1,2

1,2 1,2 1,2

1 1 1 1,4

1,2 1,2 1,2

1,2 1,2

1,2

1 1 1 1,4

1,2 1,2

1,2 1,2

1,2 1,2

1 1 1 1,4

1,2 1,2 1,2

1,2 1,2

1,2

1 1 1 1,4

1,2 1,2 1,2

1,2

1,2 1,2

1 1 1 1,4

1,2 1,2

1,2 1,2 1,2

1,2

1 1 1 1,4

1,2 1,2

1,2 1,2

1,2 1,2

1 1 1 1,4

1,2 1,2

1,2 1,2

1,2 1,2

1 1 1 1,4

1,2 1,2 1,2

1 1 1 1,4

1 1 1 1
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1,2 1,2

1,2

1 1 1 1,4

1 1 1 1

1 1,2 1,2

1 1,2

1 1,2

1,4 1 1 1,4

1,4 2 2 2,4

1 1,2 1,2

1 1,2

1 1,2

1 1,2 1,2

1 1,2

1 1,2

1,4 1 1 1,4

1,4 2 2 2,4

1 1,2 1,2

1 1,2

1 1,2

1 1,2 1,2

1

1,4 1 1 1,4

1 1 1 1

1,2 1,2 2,4

2

1 1 1,4

1 1 1

1 1,2

1 1,2

1,4 1 1 1,4

1 1 1 1

1,2 2,4

1,2 2

1 1 1,4

1 1 1

1 1 1,2

1 1

1,4 1,4 1 1,4

1 1 1 1

1 1,2 2,4

1 2

1,4 1 1,4

1 1 1 1,4

1,2 1,4 2,4 2,4

2 2

1 1 2 2

1 1

1,4 2,4 2 2,4

1 2 2

1 1 1,2

1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2

1 2 2

1 1 2

1 1 1

2 2

1 1 2

1 1 1

1 1 1

2

1 1 1

1 1 1

1 1 1

We make the following observations. For n = 3, 4, a saturated critical set

contains the most entries in each case and the last critical sets for both values

of n contain the smallest number of entries with sizes 2(n−1)2 and (n−1)2+1
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respectively. For n = 5,

1,2 1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2 1,2

and

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

are also the largest and smallest critical sets of the full (5, 5, 2)-balanced Latin

square. We can generalize this observation as follows:

1. The partial (n, n, 2)-Latin square

1, 2 1, 2 · · · 1, 2

1, 2 1, 2 · · · 1, 2

...
...

. . .
...

...

1, 2 1, 2 · · · 1, 2

· · ·

of order n and size 2(n− 1)2 is a critical set of the full (n, n, 2)-balanced

Latin square.

2. The partial (n, n, 2)-Latin square

· · · 2

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

...

1 1 · · · 1

of order n and size (n−1)2+1 is a critical set of the full (n, n, 2)-balanced

Latin square.
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We will later prove that these are the largest and smallest critical sets, respec-

tively, in Section 4.5.

Observe that each critical set example presented so far in this chapter may

be described as in Figure 4.2 where each grey block is a saturated critical set

of the corresponding full 2-balanced Latin rectangle of the same size. We make

use of this observation in the next two sections to fully describe the critical

sets of the full (m,n, 2)-balanced rectangle (see [23]).

2

. . .

1

Figure 4.2: Critical set of the full (m,n, 2)-balanced Latin rectangle

4.2 The general structure of a critical set

In this section, we describe arrays which will ultimately classify all critical

sets of the full (m,n, 2)-balanced rectangle (up to a reordering of the rows and

columns).

Henceforth, (a, b) = ((a1, a2, . . . , ak), (b1, b2, . . . , bk)) is always a pair of

integral non-negative vectors such that
∑k

i=1 ai = m and
∑k

i=1 bi = n. We

use the vectors a and b to define partitions of the sets N(m) and N(n). For

each I ∈ N(k), let RI = N(
∑I

i=1 ai) \ N(
∑I−1

i=1 ai) and CI = N(
∑I

i=1 bi) \

N(
∑I−1

j=1 bi). Note that if aI = 0 (bI = 0) then RI (respectively, CI) is empty.

Definition 4.1 We define A[a, b] to be the set of all m×n arrays A with the

following structure. Let r ∈ RI and c ∈ CJ where I, J ∈ N(k).

• If I > J , cell Ar,c = 1.
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• If I < J , cell Ar,c = 2.

• If I = J , cell Ar,c is either empty or Ar,c = {1, 2}, subject to the follow-

ing. Let BI be a bipartite graph with partite sets given by RI and CI ,

with edge {r, c}, r ∈ RI , c ∈ CI existing if and only if cell Ar,c is empty.

Then BI is a tree.

The following is an example of two elements of A[(3, 2, 1), (3, 1, 3)]; both

critical sets of the full (6, 7, 2)-balanced Latin rectangle.

1,2 1,2 2 2 2 2

1,2 1,2 2 2 2 2

2 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1

1,2 1,2 2 2 2 2

1,2 2 2 2 2

1,2 2 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1

We sometimes describe an array A in A[a, b] in terms of blocks so that

each cell of a block is either empty or contains the same entries. For each

I, J ∈ N(k), the block AI,J is the subarray of A induced by the rows RI and

columns CJ . That is, AI,J = {Ar,c | r ∈ RI , c ∈ CJ}. The blocks of the form

AI,I are said to form the main diagonal blocks. (Observe from Theorem 5.6,

each block AI,I is a critical set of the full 2-balanced Latin square of the same

size). Thus all cells below the main diagonal blocks contain 1 and all those

above contain 2.

Definition 4.2 We say that a pair of vectors (a, b) is good if:

(C1) for each i ∈ N(k), ai > 0 or bi > 0;

(C2) if ai = 0 then ai−1 ≥ 2, bi−1 ≥ 1 (if i > 1) and ai+1 ≥ 2, bi+1 ≥ 1 (if

i < k); and

(C3) if bi = 0 then bi−1 ≥ 2, ai−1 ≥ 1 (if i > 1) and bi+1 ≥ 2, ai+1 ≥ 1 (if

i < k).
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For a good pair of vectors, observe that for each I at least one of RI or CI is

non-empty.

Next we show that given a pair of good vectors (a, b), a partial (m,n, 2)-

Latin rectangle is a critical set of the full (m,n, 2)-balanced Latin rectangle if

and only if it is an element of A[a, b].

Theorem 4.2 Let (a,b) be a pair of good vectors. Then any element of A[a, b]

is a critical set of the full (m,n, 2)-balanced Latin rectangle.

Theorem 4.3 Up to a reordering of the rows and columns, any critical set

of the full (m,n, 2)-balanced Latin rectangle is an element of A[a, b] for some

pair (a, b) of good vectors.

Theorem 4.8 of Section 4.4 proves Theorem 4.2. A proof of Theorem 4.3 is

given in [23]. Together these theorems give a classification of the critical sets

of the full (m,n, 2)-balanced Latin rectangle.

4.3 Trades in (m,n, 2)-balanced Latin rectan-

gles

As with other combinatorial designs, trades play an important role in identify-

ing defining sets and critical sets of (m,n, 2)-balanced Latin rectangles. (see,

for example, [21]).

Recall from Section 1.2 that a trade in the full (m,n, 2)-balanced rectangle

F is some non-empty T ⊂ F such that there exists a disjoint mate T ′ where

T ′ ∩ T = ∅ and (F \ T ) ⊎ T ′ is an m × n balanced 2-rectangle (which is

clearly not full). An intercalate in the full (m,n, 2)-balanced rectangle is the

set T = {(r, c, s), (r, c′, s′), (r′, c, s′), (r′, c′, s)} where s ̸= s′ and s, s′ ∈ {1, 2}.

The following lemma is simply a special case of Lemma 1.1 and Lemma 1.2.

Lemma 4.4 Let F be the full (m,n, 2)-balanced rectangle. Then the set D

is a defining set of F if and only if D ⊆ F and D intersects every trade
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within F . A defining set D of the full (m,n, 2)-balanced rectangle is in turn a

critical set if and only if, for each (r, c, e) ∈ D, there is a trade T in the full

(m,n, 2)-balanced rectangle such that T ∩D = {(r, c, e)}.

Let BF denote the bipartite edge-coloured graph corresponding to F . For

a full (m,n, 2)-balanced rectangle, BF can be thought of as a bipartite graph

with partite sets N(m) and N(n) with one red edge and one blue edge (cor-

responding to entries 1 and 2, respectively) between each pair of vertices from

different partite sets.

Consider the subgraphs BT and BT ′ of BF equivalent to a trade T with

disjoint mate T ′ (respectively) in F . Since BT ′ is obtained from BT by switch-

ing the colour on each edge of BT , it follows that each vertex in T is incident

with the same number of blue and red edges. Suppose that there exist vertices

v and w such that there exist both a red edge and a blue edge in T of the

form {v, w}. Then there also exists an edge of each colour on {v, w} in T ′,

contradicting the fact that T ∩ T ′ = ∅. It follows that BT is the union of

properly edge-coloured cycles. A properly edge-coloured cycle is an even cycle

with edges coloured alternately red and blue (i.e. each vertex in the cycle is

adjacent to one red edge and one blue edge). We call a properly edge-coloured

even cycle (and the corresponding array) a trade cycle and we have proven the

following.

Lemma 4.5 Any trade within F is the union of cell-disjoint trade cycles.

Corollary 4.6 Any minimal trade is a trade cycle.

4.4 Existence of critical sets

In this section we give a proof of Theorem 4.2. That is, we show that any

element of A[a, b] is indeed a critical set of the full (m,n, 2)-balanced Latin

rectangle, where (a, b) is a good pair of vectors. We make use of the theory of

trades developed in the previous section.
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Lemma 4.7 Let (a, b) be a good pair of vectors. Let A be an array in A[a, b]

and suppose that cell Ar,c = 1 only. Then there exists a row r′ < r and a

column c′ > c satisfying one of the following cases:

1. Ar′,c = 1 and Ar,c′ , Ar′,c′ are each empty;

2. Ar,c′ = 1 and Ar′,c, Ar′,c′ are each empty;

3. Ar′,c′ = 2 and Ar,c′ , Ar′,c are each empty; or

4. Ar′,c′ is empty, Ar′,c = 1 and Ar,c′ = 1.

Proof. We illustrate the above cases below.

c c′

r′ 1

r 1

c c′

r′

r 1 1

c c′

r′ 2

r 1

c c′

r′ 1

r 1 1

Let r ∈ RI and c ∈ CJ ; by definition I > J (see Section 4.2). First, suppose

that both |RJ | ≥ 1 and |CI | ≥ 1. Then selecting r′ ∈ RJ and c′ ∈ CI such

that Ar′,c and Ar,c′ are empty, cell Ar′,c′ must contain 2. This results in Case

3 above.

Next, suppose that |RJ | = 0. Since I > J , J < k, so since (a, b) is a good

pair of vectors, |RJ+1| ≥ 2 and |CJ+1| ≥ 1. If I = J + 1, since BJ+1 is a tree

and is thus connected, there exists r′ ∈ RJ+1 and c′ ∈ CJ+1 such that Ar′,c′

and Ar,c′ are each empty. Then cell Ar′,c lies in block AI,J and thus contains

entry 0 only. This results in Case 1. If |RJ | = 0 and I > J + 1, then let Ar′,c′

be an empty cell in block AJ+1,J+1. Then Ar,c′ and Ar′,c are in blocks AI,J+1

and AJ+1,J , each of which contains only 1’s. Case 4 follows.

Otherwise |CI | = 0. Then |CI−1| ≥ 2 and |RI−1| ≥ 1. Block AI,I is empty

and each other block of the form AI,J ′ with J ′ < I contains only 1’s. Suppose

that J = I − 1. Thus, since BI−1 is a tree, there is a row r′ ∈ RI−1 and a

column c′ ̸= c in CI−1 such that Ar′,c′ and Ar′,c are empty. Since Ar,c′ contains

only entry 1 we have Case 2. If J < I − 1, let c′ ∈ CI−1 and let r′ ∈ RI−1
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where Ar′,c′ is empty. Then Ar,c′ and Ar′,c each only contain entry 1, so we

have Case 4. �

Theorem 4.8 Let A be an element of A[a, b] where (a, b) is a good pair of

vectors. Then A is a critical set of the full (m,n, 2)-balanced Latin rectangle.

Proof. Suppose first that A is not a defining set of the full (m,n, 2)-balanced

Latin rectangle. Then there exists an (m,n, 2)-balanced Latin rectangle F ′ ̸=

F such that A ⊂ F ′. Let T = F \ F ′ and T ′ = F ′ \ F . Observe that the

non-empty cells of T (and T ′) are precisely the cells of F ′ which contain either

{1, 1} or {2, 2}.

Without loss of generality, let the cell F ′
i,j contain {1, 1}. Then, since the

total number of 1’s and 2’s in each row and column is fixed, there exists a

column j′ ̸= j such that F ′
i,j′ = {2, 2}. Similarly, there exists a row i′ ̸= i such

that F ′
i′,j′ = {1, 1}.

By finiteness there exists a list of distinct cells

F ′
i(1),j(1), F

′
i(1),j(2), F

′
i(2),j(2), . . . , F

′
i(µ),j(µ), F

′
i(µ),j(µ+1)=j(1)

where F ′
i(a),j(a) = {1, 1} and F ′

i(a),j(a+1) = {2, 2} for each a ∈ N(µ).

Because of the structure of A, for each a ≥ 1 either i(a) ∈ RI and i(a+1) ∈

RJ for some I and J with J > I or cells Ai(a),j(a+1) and Ai(a+1),j(a+1) belong to

the same main diagonal block. Moreover, either j(a) ∈ CI and j(a + 1) ∈ CJ

for some J > I or cells Ai(a),j(a) and Ai(a),j(a+1) belong to the same main

diagonal block. Since µ > 1, either i(µ) ∈ RJ and i(1) ∈ RI with I < J or the

entire trade is contained within a main diagonal block. If the former holds,

cell Ai(µ),j(1) contains 1 only, a contradiction, and if the latter holds there is a

cycle in the graph BI (for some I), also a contradiction.

We next show that A is a minimal defining set. That is, we remove each

entry from A and show that it is no longer a defining set.

Case 1: The cell Ar,c contains one element. By symmetry we may assume

without loss of generality, that Ar,c = 1 and let A′ = A \ {Ar,c}. In each of the
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Cases 1 to 4 given in Lemma 4.7, F \ A′ contains a trade cycle (on the four

cells given by that lemma). So by Lemma 4.4, A′ is not a critical set of F .

Case 2: The cell Ar,c contains two elements. Thus Ar,c belongs to a block

of the form AI,I . Since BI is a tree, there is a trade cycle using either Ar,c = 1

or Ar,c = 2 and entries in cells which are empty in A.

By Lemma 4.4, A is a critical set of F . �

4.5 The smallest and largest critical set

Having now classified the structure of any critical set in the full (m,n, 2)-

balanced Latin rectangle F , we now determine the smallest and largest possible

size of such a structure.

To this end, for m,n > 1 we define R1
mn and R2

mn to be the unique elements

of A[m−1, 1; 1, n−1] and A[1,m−1;n−1, 1], respectively. Below is the partial

array R1
34.

2 2 2

2 2 2

1

From Theorem 4.8, both R1
mn and R2

mn are critical sets of the full (m,n, 2)-

balanced rectangle. Observe that they each have size (m− 1)(n− 1) + 1. We

next show that R1
mn and R2

mn are critical sets of the full (m,n, 2)-balanced

rectangle of minimum size and are unique in this property.

Lemma 4.9 If m,n > 1 then the size of the smallest critical set of the full

(m,n, 2)-balanced Latin rectangle is (m− 1)(n− 1) + 1. Up to a reordering of

rows and columns, R1
mn and R2

mn are the unique critical sets with this property.

Proof. Let C be a critical set of the full (m,n, 2)-balanced Latin rectangle

and let e be the number of empty cells in C. From Theorem 4.2, the graph
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B0 corresponding to the empty cells forms a forest, so e ≤ m + n − 1. If

e = m+ n− 1, then B0 is a tree on m+ n vertices. Thus each non-empty cell

contains 2 elements and |C| ≥ 2(mn−m− n+ 1) > (m− 1)(n− 1) + 1, with

equality only possible in the case m = n = 2. Otherwise, e ≤ m + n − 2 and

|C| ≥ mn−m− n− 2 = (m− 1)(n− 1) + 1, with equality only possible if B0

has two components and no cells containing {1, 2}.

Next, suppose that C is a critical set of the full (m,n, 2)-balanced Latin

rectangle of size (m− 1)(n− 1)+ 1 where (m,n) ̸= (2, 2). From above, B0 has

precisely two components, each of which is a complete bipartite graph and thus

a star (see Appendix 10.1). So C ∈ A[(a1, a2), (b1, b2)] and either a1 = b2 = 1

or a2 = b1 = 1. �

Observe that in the case m = n = 2, any element of A[(2), (2)] also gives a

critical set of minimum possible size.

We next show that a saturated critical containing exactly 2(m− 1)(n− 1)

entries is a largest critical set of the full (m,n, 2)-balanced Latin rectangle.

Lemma 4.10 If m,n > 1 then the size of the largest critical set of the full

(m,n, 2)-balanced Latin rectangle is 2(m− 1)(n− 1).

Proof. Let C be a critical set of the full (m,n, 2)-balanced Latin rectangle

and without loss of generality, let m ≤ n. By inspection, in the case m = 2,

|C| = n or 2(n−1) thus |C| ≤ 2(m−1)(n−1). Observe also that for m,n ≥ 3,

if each non-empty cell of C contains only one entry then from Section 4.2,

|C| ≤ mn− 3) < 2(m− 1)(n− 1). We therefore only need to prove the lemma

in the case where at least one of the non-empty cells of C contains {1, 2} and

m,n ≥ 3.

Suppose that C contains only one x× y main diagonal block with x, y ≥ 2.

Then by Section 4.2, every cell outside the main diagonal block of C is either

empty or contain only one entry, thus:



51

|C| ≤ 2(x− 1)(y − 1) +mn− xy

= mn+ xy − 2x− 2y + 2

= mn+ (m− k)(n− l)− 2(m− k)− 2(n− l) + 2

(where k = m− x ≤ m− 2 and l = n− y ≤ n− 2)

= 2mn− 2m− 2n+ 2 + kl − kn− lm+ 2k + 2l

≤ 2mn− 2m− 2n+ 2 + l(m− 2)− kn− lm+ 2k + 2l

= 2mn− 2m− 2n+ 2− kn+ 2k

≤ mn+mn− 2m− 2n+ 2

= 2(m− 1)(n− 1),

with equality possible when x = m and y = n.

Otherwise, there exist two blocks in C, one containing an x1 × y1 main

diagonal block and the other an x2 × y2 main diagonal with x1, x2, y1, y2 ≥ 2.

In which case

|C| ≤ 2mn− 2(x1 + y1 − 1)− 2(x2 + y2 − 1)− x1(n− y1)− x2(n− y2)

≤ 2mn− 2(2 + y1 − 1)− 2(2 + y2 − 1)− 2(n− y1)− 2(n− y2)

= 2mn− 4n− 4

< 2mn− 2m− 2n+ 2

= 2(m− 1)(n− 1).

�

We illustrate the last part of the above proof in the following example.

Let the partial (x1 + x2, n, 2)-Latin rectangle in Figure 4.3 be x1 + x2 rows

of a critical set C of the full (m,n, 2)-balanced Latin rectangle, containing an

x1 × y1 and an x2 × y2 main diagonal blocks.
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y1 columns︷ ︸︸ ︷
11212121212121212

y2 columns︷ ︸︸ ︷
11212121212121212

x
1

r
o
w
s

︷
︸︸

︷
11
12
32
12
12
12
12
12 1 · · · 1 1,2 · · · 1,2 2 · · · 2 2 2 · · · 2

...
. . .

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

1 · · · 1 1,2 · · · 1,2 2 · · · 2 2 2 · · · 2

1 · · · 1 · · · 2 · · · 2 2 2 · · · 2

x
2

r
o
w
s

︷
︸︸

︷
11
12
32
12
12
12
12
12 1 · · · 1 1 · · · 1 1 1,2 · · · 1,2 2 · · · 2

...
. . .

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

1 · · · 1 1 · · · 1 1 1,2 · · · 1,2 2 · · · 2

1 · · · 1 1 · · · 1 1 · · · 2 · · · 2

Figure 4.3: x1 + x2 rows of C

Then observe that in these rows, x1 + x2 + y1 + y2 − 2 cells are empty

and x1(n − y1) + x2(n − y2) cells contain only one entry. Furthermore, if

m > x1 + x2 then every other cell in the y1 + y2 columns containing these two

main diagonal blocks contain only one entry as well (see Section 4.2), thus

|C| ≤ 2mn− 2(x1 + y1 − 1)− 2(x2 + y2 − 1)− x1(n− y1)− x2(n− y2).

4.6 Critical sets of full (m,n, t)-balanced Latin

rectangles

We conclude this chapter with a generalization of Theorem 4.8 to the full

(m,n, t)-balanced Latin rectangle. For this purpose we redefine A[a, b] as

follows:

Definition 4.3 Let r ∈ RI and c ∈ CJ where I, J ∈ N(k).

• If I > J , cell Ar,c = N(k − 1).

• If I < J , cell Ar,c = N(k) \ {1}.

• If I = J , cell Ar,c is either empty or contains N(k), subject to the fol-

lowing. Let BI be a bipartite graph with partite sets given by RI and CI ,
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with edge {r, c}, r ∈ RI , c ∈ CI existing if and only if cell Ar,c is empty.

Then BI is a tree.

The following theorem follows from Theorem 4.8.

Theorem 4.11 Let A be an element of A[a, b]. Then A is a critical set of

the full (m,n, t)-balanced Latin rectangle.

For example, the element of A[(2, 1, 2), (4, 1, 2)] below is a critical set of the

full (5, 7, 4)-balanced Latin rectangle.

1,2,3,4 1,2,3,4 1,2,3,4 2,3,4,1 2,3,4,1 2,3,4,1

2,3,4,1 2,3,4,1 2,3,4,1

1,2,3 1,2,3 1,2,3 1,2,3 2,3,4 2,3,4

1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3,4

1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Note that not every critical set of the full n-Latin squares is an element of

A[a, b] (see Chapter 6 for other examples).



Chapter 5

Critical sets of the full n-Latin

square

This chapter explores properties of the different critical sets of the full n-Latin

square. In Section 5.1, we investigate first the more structured critical sets

where each non-empty cell contains N(n). Recall from the Introduction that

any partial n-Latin rectangle with this property is referred to as being satu-

rated. By studying the saturated critical sets of the more general full balanced

rectangles, we determine the exact size of these structures. In Theorem 5.8, we

show that a saturated critical set for the full n-Latin square has size exactly

equal to n3 − 2n2 − n.

In Section 5.2, we turn our focus on the non-saturated case. We calculate

a lower bound for the smallest size of any 2× n sub-rectangle of a critical set

of the full n-Latin square. Using this result, we show that a lower bound for

the smallest size of a critical set of the full n-Latin square is (n3−2n2+2n)/2.

In Section 5.3 we generalize the smallest critical set of the full 2-balanced

Latin square from Section 4.5 to give a construction which provides an upper

bound of (n− 1)3 +1 for the size of the smallest critical set of the full n-Latin

square; we conjecture this is best possible. Finally in Section 5.4, we give a

lower bound for the size of the largest critical set of the full n-Latin square.

This lower bound of n3 − n2 − 3n + 4 is the size of largest critical set of the
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full-n-Latin square we were able to construct (see Section 4.6).

Parts of Section 5.1, Section 5.2 and Section 5.3 are published in [24].

5.1 Saturated critical sets

In this section, we present the exact size of a saturated critical set of the full

n-Latin square by showing that these critical sets always contain exactly 2n−1

empty cells.

The following squares are examples of saturated critical sets of the full 4-

Latin square.

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

Listed below are the saturated critical sets of the full n-Latin squares (n =

2, 3, 4) up to main class equivalence.

n = 2

1,2 1,2

n = 3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3

1,2,3
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n = 4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

The number of saturated critical sets for full n-Latin squares appears to

grow rapidly as n increases. Nevertheless some important properties of these

saturated critical sets are outlined in the following lemmas.

Let C be a saturated critical set of the full n-Latin square, L. Then the

following results hold:

Lemma 5.1 Every row/column of C must have at least one empty cell.

Proof. Consider a row, with n− 1 full cells, in a saturated defining set. This

means that each symbol of the set N(n) has occurred n − 1 times in this

row so, by the definition of a multi-Latin square, the empty cell is forced to

contain N(n) also. It follows then that any defining set with a row containing
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no empty cell cannot be a critical set as removing the entries of a cell from

this row results in another defining set. �

Corollary 5.2 Any row and any column of C contain, in total, at least two

empty cells.

Proof. Without loss of generality, let row r1 and column c1 of a defining set

of the full n-Latin square contain, in total, two empty cells with r1 containing

only one empty cell. By methods used in the proof of Lemma 5.1, the empty

cell of r1 is forced to contain N(n) and the other empty cell, being the only

empty cell of c1, is forced to follow suit. �

Motivated by the properties highlighted by the results above, the following

construction will always provide a saturated partial n-Latin square, P , with

each row/column containing at least one empty cell with the number of empty

cells in any row and column combined at least 2.

Construction 5.3

For an n× n array P

• Leave cell P1,1 empty.

• For 2 ≤ i ≤ n, leave cells Pi,i−1 and Pi,i empty.

• Fill all other cells with N(n).

For n = 4, we leave P1,1, P2,1, P2,2, P3,2, P3,3, P4,3 and P4,4 empty as shown

below.

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4

Saturated partial n-Latin squares constructed this way are always of size

n3 − 2n2 − n. In Corollary 5.7, we will show that not only is P a saturated
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critical set of the full n-Latin square; the size of any saturated critical set of a

full n-Latin square is n3 − 2n2 − n.

Next we remind the reader of an array of multisets that generalizes the

full n-Latin square (see the Introduction and Chapter 4). A partial (m,n, t)-

balanced Latin rectangle is an m× n array of multisets of size t such that each

symbol of N(t) occurs at most n times in each row and at most n times in

each column. If each symbol of N(t) occurs exactly n times in each row and

exactly n times in each column, then such an array is a (m,n, t)-balanced Latin

rectangle. An example of a (4, 5, 3)-balanced Latin rectangle is given below.

1,1,2 1,1,3 2,3,3 1,2,3 2,2,3

1,2,3 2,2,3 1,3,3 2,2,3 1,1,1

1,2,2 1,2,3 1,1,2 1,2,3 3,3,3

3,3,3 1,2,3 1,2,2 1,1,3 1,2,2

If each cell contains N(k), we refer to such a rectangle as a full (m,n, t)-

balanced Latin rectangle. Thus the full n-Latin square is the full (n, n, n)-

balanced Latin rectangle.

Given a saturated partial (m,n, t)-balanced Latin rectangle, L, with rows

r1, r2, ..., rl and columns c1, c2, ..., cm, we define Ge(L) = (V1 ∪ V2, E) (where

V1 = {r1, r2, ..., rl} and V2 = {c1, c2, ..., cm} to be the bipartite graph that

corresponds to the empty cells of L. That is, edge {ri, cj} is in Ge(L) if and

only if the cell Li,j of L is empty. We say that there is a cycle in L if and only

if there is a cycle in Ge(L).

For example, let L be the partial 3× 3 3-balanced Latin rectangle below.

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3

The empty cells L1,1, L2,1, L2,2, L3,2, L3,3, L1,3, L1,1 form a cycle in L repre-

sented by the bipartite graph:
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Figure 5.1: The graph Ge(L)

We first show that any saturated partial (m,n, t)-balanced Latin rectan-

gle with each non-empty cell containing N(t) (as in the above example) is a

defining set if and only if it contains no cycle of empty cells.

Theorem 5.4 Let k ≥ 2. A saturated partial (m,n, t)-balanced Latin rectan-

gle is a defining set if and only if it contains no cycle of empty cells.

Proof. Suppose that a saturated defining set of a (m,n, t)-balanced Latin

rectangle, D, contains a cycle of empty cells and let these empty cells be

Di(1),j(1), Di(1),j(2), Di(2),j(2), ..., Di(µ),j(µ), Di(µ),j(1)

such that

{ri(1), cj(1)}, {ri(1), cj(2)}, {ri(2), cj(2)}, ..., {ri(µ), cj(µ)}, {ri(µ), cj(1)}

is the edge sequence of the corresponding cycle inGe(D). We need to show that

D now also completes to a non-full (m,n, t)-balanced Latin rectangle. Such a

completion can be achieved by filling Di(1),j(1), Di(2),j(2), ..., Di(µ),j(µ) with the

multiset (N(t) \ {x}) ⊎ {y} and the remaining empty cells of the cycle with

(N(t) \ {y}) ⊎ {x}, where x ̸= y : x, y ∈ N(t). Thus D can not be a defining

set.

Conversely, let D be a saturated partial (m,n, t)-balanced Latin rectangle

with no cycle of empty cells. Then Ge(D) also contains no cycles and has at
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least one vertex of degree 1 by Theorem 10.1. So D has a row or column with

only one empty cell, and this empty cell is forced to contain N(t), obtaining

another saturated partial (m,n, t)-balanced Latin rectangle with no cycle of

empty cells. Recursively, since D is finite, D has an unique completion. �

Observe that the saturated partial Latin square,

1, 2, 3

1, 2, 3

1, 2, 3

not only completes to the full 3-Latin square; labeling the empty cells

E1, E2, ..., E6,

E1 1, 2, 3 E6

E2 E3 1, 2, 3

1, 2, 3 E4 E5

and choosing x = 1 and y = 2, it also completes to

2, 2, 3 1, 2, 3 1, 1, 3

1, 1, 3 2, 2, 3 1, 2, 3

1, 2, 3 1, 1, 3 2, 2, 3

.

Consequently, a saturated critical set of the (m,n, t)-balanced Latin rect-

angle, being a defining set, must contain no cycle. We next show that adding

an empty cell to such a critical set creates a cycle, thus increasing the number

of possible completions it has.

Lemma 5.5 Let C be a saturated critical set of the full (m,n, t)-balanced Latin

rectangle. Then deleting the entries of any cell which contains N(t) creates a

cycle in C.
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Proof. Suppose that a saturated partial (m,n, t)-balanced Latin rectangle, D,

uniquely completes to the full (m,n, t)-balanced Latin rectangle and we can

add another empty cell to D (i.e. delete the entries of a cell which contains

N(t)) without forming a cycle. Then by Theorem 5.4, the new saturated

partial rectangle is also a defining set with a smaller size, so D is not a critical

set by definition. �

If a simple connected bipartite graph, G, with no cycle contains the maxi-

mum number of edges for this property, then G is by definition a tree. Since

Ge(C) for a saturated critical set, C, fits into this category, we use this prop-

erty in the next theorem to determine the number of empty cells in a saturated

critical set.

Theorem 5.6 Let C be a saturated critical set of the (m,n, t)-balanced Latin

rectangle. If |E| is the number of empty cells in C, then

|E| = m+ n− 1.

Proof. By Theorem 5.4 and Lemma 5.5, Ge(C) is connected but has no cycle

i.e. Ge(C) is a tree with m + n vertices. Thus, by Theorem 10.2, Ge(C) has

m+ n− 1 edges. �

Since the full n-Latin square is also an (n, n, n)-balanced Latin rectangle,

the following theorem is immediate.

Theorem 5.7 Let C be a saturated critical set of the full n-Latin square. If

|E| is the number of empty cells in C, then |E| = 2n− 1.

And since an n-Latin square of order n contains n3 entries, we can eas-

ily work out the size of any saturated critical set of order n from the above

theorem.

Theorem 5.8 A saturated critical set of of the full n-Latin square has size

s = n3 − 2n2 − n.

Note that in this section we have also classified the structure of any satu-

rated critical set of the full n-Latin square.
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5.2 Sub-rectangles of critical sets of the full

n-Latin square

We next analyze critical sets for the full n-Latin square which are not neces-

sarily saturated. Here, we determine the upper bound for the smallest size of

any 2× n sub-rectangle of a critical set of the full n-Latin square. Using this

result, we show in Theorem 5.21 that a lower bound for the smallest size of

the the critical sets of the full n-Latin square is

|C| ≥ n3 − 2n2 + 2n

2
.

To work towards determining this upper bound, we explore the properties

of the sub-rectangles within these critical sets. A necessary condition for a

sub-rectangle of any critical set to guarantee an unique completion is that its

complement contains no trade (see Section 1.2). It is therefore a sensible first

step to determine the properties a 2× 2 sub-square of a critical set of the full

n-Latin square must possess to satisfy this condition. We remind the reader

that a trade in a 2× 2 sub-array is of the form:

{(r, c, s), (r, c′, s′), (r′, c, s′), (r′, c′, s)},

(r ̸= r′, c ̸= c′ and s ̸= s′) and is known as an intercalate.

Lemma 5.9 Any 2 × 2 sub-array within a defining set of the full n-Latin

square must contain no intercalates in its complement.

Proof. If not, the intercalate may be replaced with the set of triangles

{(r, c, s′), (r, c′, s), (r′, c, s), (r′, c′, s′)}

and more than one completion is possible. �

This idea is illustrated in the following example.
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Let A be the the partial full-Latin square below.

1,1 1,2

1

Then its complement,

1,2 1,2

1,2 1,2

contains an intercalate and thus A has two completions:

1,1 2,2

2,2 1,1
and

1,2 1,2

1,2 1,2
.

It is therefore necessary to avoid the occurrence of an intercalate in the

complement of any 2 × 2 sub-array of any defining set of the full n-Latin

square. We can achieve this in two ways; either the union of the elements of at

least one of the diagonally opposite pairs of cells is the set N(n) or the union

of the elements of the two diagonally opposite pairs of cells are equal with size

n− 1. The 2× 2 sub-arrays below are examples of each case;

1,2,...,n 1,2,...,n
,

1,2,...,x 1,2,...,y

y + 1,y + 2,...,n− 1 x+ 1,x+ 2,...,n− 1

for some x, y ≤ n− 1.

Thus the minimum size for one of these 2× 2 sub-arrays is n. We formally

present this idea in the following lemmas.

Lemma 5.10 Let S be a 2× 2 sub-array of a defining set of the full n-Latin

square with size at most n − 1. Then the complement, S̄, of S contains an

intercalate.
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Proof. At least one symbol s appears in each cell of S̄ and at least one symbol

s′ ̸= s appears in at least three cells of S̄. Thus, S̄ contains an intercalate. �

The following is an example of when |S| = n− 1. Let n = 5 and let

S =
1,2,3 1,2,3

4
.

Then

S̄ =
4,5 1,2,3,4,5

1,2,3,4,5 1,2,3,5

contains the intercalate:

5 4

4 5

and S completes to

1,2,3,4,4 1,2,3,5,5

1,2,3,5,5 1,2,3,4,4

as well.

Based solely on the above lemma, a weak lower bound for the size of a

partial n-Latin square, P , with no intercalates in its complement (with
(
n
2

)2
distinct 2× 2 sub-arrays), is n3

4
(since each cell occurs a total of (n− 1)2 times

in these sub-arrays).

We next work on improving this bound. More useful properties are given

in the following lemma.

Lemma 5.11 Let S be the 2×2 sub-array of a defining set of the full n-Latin

square, with cells S1,1, S1,2, S2,1, S2,2 as shown below.
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S1,1 S1,2

S2,1 S2,2

Then S̄ contains no intercalate if and only if at least one of the following holds:

(1) |S1,1 ∪ S2,2| = n,

(2) |S2,1 ∪ S1,2| = n,

(3) S1,1 ∪ S2,2 = S2,1 ∪ S1,2 and |S1,1 ∪ S2,2| = |S2,1 ∪ S1,2| = n− 1.

Proof. Suppose S̄ contains an intercalate. Then |S̄1,1∩S̄2,2| ≥ 1, |S̄1,2∩S̄2,1| ≥

1, and either S̄1,1 ∩ S̄2,2 ̸= S̄1,2 ∩ S̄2,1 or |S̄1,1 ∩ S̄2,2|, |S̄1,2 ∩ S̄2,1| ≥ 2. Thus

|S1,1 ∪ S2,2| ≤ n− 1, |S1,2 ∪ S2,1| ≤ n− 1 and either S1,1 ∪ S2,2 ̸= S1,2 ∪ S2,1 or

at least one of these sets is of size at most n− 2.

Conversely, suppose that conditions (1), (2) and (3) of the lemma are false.

If |S1,1 ∪ S2,2| = |S1,2 ∪ S2,1| = n− 1 then S1,1 ∪ S2,2 ̸= S1,2 ∪ S2,1. Otherwise,

either |S1,1 ∪ S2,2| or |S1,2 ∪ S2,1| is of size of at most n − 2. In both cases,

there exists two distinct symbols a, b ∈ N(n) such that a /∈ S1,1 ∪ S2,2 and

b /∈ S1,2 ∪ S2,1; thus S̄ contains the intercalate

a b

b a
.

�

Corollary 5.12 Let C be a defining set of the full n-Latin square. If each

sub-array of C is required to satisfy one of the conditions of Lemma 5.11, then

C is a critical set.

We now take the union of the two cells in each column of the 2×2 subsquare

described in the above lemma to form two sets, and we deduce the relationship

between these two sets in the following corollary. This result will be useful in

exploring 2×m sub-rectangles.
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Corollary 5.13 Let S be a 2 × 2 sub-array of a critical set of the full-Latin

square with cells S1,1, S1,2, S2,1, S2,2 (as in the statement of Lemma 5.11) and

let S1 = S1,1 ∪ S2,1 and S2 = S1,2 ∪ S2,2. Then either |S1 ∪ S2| = n or

|S1 ∪ S2| = n− 1 and |S| ≥ 2(n− 1).

We now apply this result to more general 2×m sub-rectangles of defining

sets of full n-Latin squares. First we describe the structure of these sub-

rectangles in the cases when one of the columns has at most one entry. In the

results below, without loss of generality, we assume the rows and columns of the

sub-rectangle are indexed by N(2) and N(m). We also define Sj = S1,j ∪ S2,j

(j ∈ N(m)).

Corollary 5.14 Let S be two rows of a critical set of the full n-Latin square,

n ≥ 2. For any j ∈ N(n), if:

(1) |Sj| = 0 , then either |Sk| = n or |S1,k| = |S2,k| = n− 1 for all k ̸= j.

(2) |Sj| = 1 , then |Sk| ≥ n− 1 for all k ̸= j.

Lemma 5.15 Let S be two rows of a critical set of the full-Latin square of

order n, n ≥ 2, such that for all j, k ∈ N(n), |Sj ∪ Sk| = n − 1. Then

|S| ≥ n(n− 1).

Proof. By Corollary 5.13, each 2 × 2 sub-array of S is of size of at least

2(n−1). Now, there are
(
n
2

)
sub-arrays in S with each column occurring n−1

times in these sub-arrays. So

|S| ≥
n!

(n−2)!2!
× 2(n− 1)

n− 1
= n(n− 1)

�

For the more general cases, we will use the following results which apply

to sets in general.

Lemma 5.16 Let S1 and S2 be subsets of N(n). If |S1|, |S2| ≥ n − 1 then

either |S1 ∩ S2| ≥ n− 1 or |S1 ∪ S2| = n.
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Proof. The lemma is clearly true if at least one set is of size n. If both sets

are of size n− 1 then either S1 = S2 or N(n) \S1 ⊂ S2 and thus |S1 ∪S2| = n.

�

The following technical lemma will be useful later in determining the size of

the 2× n sub-rectangles.

Lemma 5.17 Let S = {S1, S2, ..., Sm} be a set of subsets of N(n) such that:

|
m∩
i=1

Si| = n− x;

for some x ∈ N(n), and

Si ∪ Sj = N(n)

for all i, j ∈ N(m) such that i ̸= j. Then

m∑
i=1

|Si| = mn− x.

Proof. Let T =
∩m

i=µ Si. Then every element of N(n) not in T is an element

of all but one element of S. Thus

m∑
i=1

|Si| = m(n− x) + (m− 1)x = mn− x.

�

Corollary 5.18 Let S be a 2 × m sub-rectangle of a critical set of the full-

Latin square of order n ≥ 2, such that for all j, k ∈ N(n), |Sj ∪Sk| = n. Then

|S| ≥ (m− 1)n.

Proof. Without loss of generality, let |S1| = x. Then |
∩m

i=2 Si| ≥ n− x so by

Lemma 5.17,
m∑
i=2

|Si| ≥ (m− 1)n− x and thus |S| ≥ (m− 1)n. �

We now show that the size |S| of any two rows of a critical set of the full

n-Latin square is at least (n− 1)2 + 1.

Lemma 5.19 Let S be two rows of a critical set of the full-Latin square of

order n ≥ 2. Then |S| ≥ (n− 1)2 + 1.
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Proof. Let the columns of S be indexed with cj, j ∈ N(n), and let m be

the largest integer such that there exists m columns, each with at most n− 2

entries in S. We split our proof according to the cases m = 0, m = 1 and

2 ≤ m ≤ n.

Case 1: m = 0.

Then clearly |S| ≥ n(n− 1) ≥ (n− 1)2 + 1.

Case 2: m = 1.

Without loss of generality, let |c1| = x, 0 ≤ x ≤ n − 2. If x = 0, then by

Corollary 5.14, |S| ≥ n(n− 1). Else |S| ≥ x+ (n− 1)2 ≥ (n− 1)2 + 1.

Case 3: 2 ≤ m ≤ n

Without loss of generality, let |cj| ≤ n−2 for all j ∈ N(m). By Corollary 5.13,

|Sx ∪ Sy| = n for all x, y ∈ N(m), x ̸= y. So by Corollary 5.18,
m∑
i=1

|Si| ≥

n(m− 1), and thus

|S| =
m∑
i=1

|ci|+
n∑

i=m+1

|ci|

≥
m∑
i=1

|Si|+ (n−m)(n− 1)

≥ n(m− 1) + (n−m)(n− 1)

= (n− 1)2 +m− 1

≥ (n− 1)2 + 1.

�

The following is an example of two rows of the full 5-Latin square contain-

ing exactly 17 entries:

1

2,3,4,5 2,3,4,5 2,3,4,5 2,3,4,5
.

In fact, for n ≥ 3, any two rows of the full n-Latin square with (n− 1)2+1

entries has this structure. We prove this claim in the next lemma.
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Lemma 5.20 Let S be two rows of a critical set of the full n-Latin square,

where n ≥ 3. If |S| = (n− 1)2 + 1 then S is conjugate to:

1 · · ·

2, 3,...,n · · · 2, 3,...,n 2, 3,...,n
.

Proof. Without loss of generality, letm be the number of columns with size at

most n−2 and let |cj| ≤ n−2 for all j ∈ N(m). By Corollary 5.13, |Sx∪Sy| = n

for all x, y ∈ N(m), x ̸= y. So by Corollary 5.18,
m∑
i=1

|Si| ≥ n(m− 1) and thus

n(m− 1) + (n−m)(n− 1) ≤ |S| = (n− 1)2 + 1 =⇒ m ≤ 2.

We next show that m = 1. Consider the first three columns (c1, c2 and

c3 respectively) of S. Since |ck| ≥ n − 1 for all k such that 4 ≤ k ≤ n,

|c1| + |c2| + |c3| ≤ 2n − 1. Suppose that m = 2. Then |c1| + |c2| ≤ n and

by Corollary 5.13, |c1| + |c2| = n =⇒ |c3| = n − 1 =⇒ |Sx ∪ Sy| = n

for all x, y ∈ N(3), x ̸= y. Thus by Corollary 5.18, |c1| + |c2| + |c3| ≥ 2n, a

contradiction. Now suppose thatm = 0. Then clearly |c1|+|c2|+|c3| ≥ 3(n−1).

Thusm = 1, |S1| = 1 and by the first two conditions of Lemma 5.11, S assumes

the prescribed structure. �

To conclude this section, we use the above results to formulate a lower

bound for the size of the smallest critical set of the full n-Latin square.

Theorem 5.21 Let C be a critical set of the full n-Latin square. Then

|C| ≥ n3 − 2n2 + 2n

2
.

Proof. Being an n × n array, C has
(
n
2

)
distinct pairs of rows with each row

occurring in n− 1 pairs. Thus by Lemma 5.19,

|C| ≥
(
n
2

)
((n− 1)2 + 1)

n− 1
=

n

2
((n− 1)2 + 1) =

n3 − 2n2 + 2n

2

�
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5.3 An upper bound for the size of the small-

est non-saturated critical set

We begin this section by constructing a non-saturated critical set of the full n-

Latin square; a generalization of the smallest critical set of the full 2-balanced

Latin square (see Section 4.5). This critical set has size (n− 1)3 + 1 with the

final row and column combined, containing only the symbol n occurring in

the cell where they intersect and any cell neither in the final row nor the final

column containing N(n− 1). Let C be such a critical set.

1,2,...,n− 1 1,2,...,n− 1 · · · 1,2,...,n− 1

1,2,...,n− 1 1,2,...,n− 1 · · · 1,2,...,n− 1

...
...

. . .
...

...

1,2,...,n− 1 1,2,...,n− 1 · · · 1,2,...,n− 1

· · · n

Figure 5.2: The critical set C.

Clearly C has size (n− 1)3 + 1. We only need to show that it is a critical

set of the full n-Latin square.

Theorem 5.22 C is a critical set of the full n-Latin square.

Proof. We first show that C is a defining set of the full n-Latin square. Sup-

pose we try to complete one of the first n−1 cells of column m, m ∈ N(n−1),

with the symbol s, s ∈ N(n − 1). Then cell Cn,m is now forced to contain

at least two copies of the symbol n and for some k ∈ N(n − 1), k ̸= m, cell

Cn,k, must not contain the symbol n. This implies that column k can only

have at most n − 1 n’s so C cannot complete to a multi-Latin square. Thus

for all i, j ∈ N(n − 1), Ci,j is forced to contain N(n). Cells in the final row

and column follow suit.
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We next show that C is a minimal defining set. Suppose we remove the

symbol x, x ∈ N(n − 1), from cell Cp,q, p, q ∈ N(n − 1). Then the 2 × 2

sub-array formed by the cells Cp,q, Cp,n, Cn,q, and Cn,n does not meet the

conditions stated by Corollary 5.13 and thus C cannot be a critical set of the

full n-Latin square. On the other hand, if the symbol n is removed from Cn,n,

then again, by Corollary 5.13, any 2× 2 sub-array containing Cn,n cannot be

contained in a critical set of the full n-Latin square. �

We next show that the size of a smallest critical set of the full n-Latin

square is exactly (n− 1)3 + 1 for n = 2, 3.

Lemma 5.23 The exact size of a smallest critical set of the full n-Latin square

for n ∈ {2, 3} is (n− 1)3 + 1.

Proof. For n = 2, by observation the only critical sets of the full 2-Latin

squares are:

1,2 1,2
,

1,2 1,2
and

1,2 1,2

2

up to main class equivalence.

For n = 3, we have seen earlier in the chapter that a critical set of size 9

exists. Now, suppose that C is a critical set of the full 3-Latin square with only

8 entries. Then two of the rows of C contain at most 5 of these entries and by

Lemma 5.20, one of these two rows contains only one entry. This implies that

the third row must contain 4 entries, a contradiction. �

In the special case when a critical set, C, of the full n-Latin square contains

only n−1 elements of N(n), C contains at least n(n−1)2 entries. An example

of such a critical set of the full 5-Latin square is given below.
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1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

Lemma 5.24 Let C be a critical set of the full n-Latin square containing only

n− 1 elements of N(n). Then |C| ≥ n(n− 1)2.

Proof. Without loss of generality, suppose that the symbol 1 does not occur

in C and the symbol 2 occurs at most n(n−1)−1 times in C. Then there exists

two cells, Ci,j and Ci′,j′ of C, such that i ̸= i′, j ̸= j′ and neither cell contains

the symbol 2. Thus the cells Ci,j, Ci,j′ , Ci′,j′ and Ci′,j form an intercalate in

the complement of C. So each symbol occurring in C occurs at least n(n− 1)

times and thus |C| ≥ n(n− 1)2. �

Motivated by the above results, we conjecture that the size of a smallest

critical set of the full n-Latin square is indeed (n− 1)3 + 1.

Conjecture 5.25 The size of a smallest critical set of the full n-Latin square

is (n− 1)3 + 1.

5.4 A lower bound for the size of the largest

non-saturated critical set

For the last section of this chapter we remind the reader of the critical sets

of the full n-Latin square from Theorem 4.11 which generalizes Theorem 4.8

to the full (m,n, t)-balanced Latin rectangle. By defining A[a, b] as we did

in this section, any element of this array where m = n = t is a critical set of

the full n-Latin square. In particular, the following partial n-Latin square P ,

an element of A[(2, n − 2), (2, n − 2)], is a critical set and moreover, P is the
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largest critical set we have constructed for the full n-Latin square. While the

following lemma is in fact a corollary of Theorem 4.11, we also exhibit a proof

for completeness.

Lemma 5.26 Let P be the partial n-Latin square of order n below:

1,2,...,n 2,3,...,n · · · 2,3,...,n

2,3,...,n · · · 2,3,...,n

2,3,...,n 2,3,...,n 2,3,...,n · · · 2,3,...,n

...
...

...
. . .

...

2,3,...,n 2,3,...,n 2,3,...,n · · · 2,3,...,n

Then P is a critical set of the full n-Latin square with size n3 − n2 − 3n+ 4.

Proof. Observe that all but 4 cells of P contain n − 1 entries and one is

saturated. Thus |P | = (n2 − 4)(n− 1) + n = n3 − n2 − 3n+ 4 as claimed. To

complete the proof, we need to show that P is a minimal defining set. We first

confirm that P completes uniquely to the full n-Latin square.

Since each cell of row 3 to row n contains {2, 3, ..., n}, each is forced to

contain N(n). Similarly, so do the remaining cells of columns 3 to n. Thus

each empty cell is forced to follow suit.

Finally, we show that each entry of P is necessary for its unique completion.

Observe that each cell containing {1, 2, ..., n} is an element of the subsquare

1,2,...,n 1,2,...,n

and each cell containing {2, 3, ..., n} is an element of

2,...,n 2,...,n
,

2,...,n

2,...,n 2,...,n
or

2,...,n

2,...,n 2,...,n

Thus by Corollary 5.12, P is a critical set of the full n Latin square. �
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Corollary 5.27 Let lcs(n, n) be the largest critical set of the full n-Latin

square. Then lcs(n, n) ≥ n3 − n2 − 3n+ 4.

After exploring many different examples of critical sets of the full n-Latin

square, we conjecture that:

Conjecture 5.28 The size of the largest critical set of the full n-Latin square

is n3 − n2 − 3n+ 4.



Chapter 6

Spectrum of critical sets of the

full n-Latin square

In this chapter we study a spectrum of possible sizes of critical sets for the

full n-Latin square. We focus on determining the possible sizes between the

conjectured smallest and largest critical set of the full n-Latin square of sizes

n3 − 3n2 + 3n and n3 − n2 − 3n+ 4 respectively (refer to Conjecture 5.25 and

Conjecture 5.28). This gives a potential spectrum of size at least (n − 1)2 +

(n− 2)2. We will show that from size n3 − 3n2 + 3n to n(n− 1)2 + n− 2 the

spectrum is complete. However, for sizes at least n(n− 1)2 +n− 1, it remains

an open problem whether each size exists. Lemma 6.5 only gives some of the

sizes in this part of the spectrum.

We start by reminding the reader of the general structure of the smallest

critical set (see Section 5.3) and the largest critical set (see Section 4.6) of the

full n-Latin square that we have constructed in this thesis.

1,...,n− 1 1,...,n− 1 · · · 1,...,n− 1

1,...,n− 1 1,...,n− 1 · · · 1,...,n− 1

...
...

. . .
...

...

1,...,n− 1 1,...,n− 1 · · · 1,...,n− 1

· · · n
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1,...,n 2,...,n · · · 2,...,n

2,...,n · · · 2,...,n

2,...,n 2,...,n 2,...,n · · · 2,...,n

...
...

...
. . .

...

2,...,n 2,...,n 2,...,n · · · 2,...,n

The examples below are critical sets of the full Latin square of orders 3 and

4 respectively. In both cases, we present a critical set of each size in the range

claimed by the above conjecture except for a critical set of size 39 for the full

4-Latin square.

n = 3:

1,3 2,3 2,3

2,3 2,3

2,3 2,3

1,3 1,2

2,3 1,2

3 2,3

1,2 1,3 2,3

1 3 2,3

1,2 2,3 2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 2,3,1

1,2,3 2,3

2,3 2,3 2,3

n = 4:

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

2,3,4 2,3,4 1,2,3

2,3,4 2,3,4 1,2,3

4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1 3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

1 3,4 3,4 2,3,4

2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4
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1,2,3,4 1,2,3,4 1,1,3,4 1,2,3,4

3,4 3,4 2,3,4

2 2,3,4 2,3,4 2,3,4

2 2,3,4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,1,3,4 1,2,3,4

4 2,3,4 2,3,4

2,3 2,3,4 2,3,4 2,3,4

2,3 2,3,4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,1,3,4 1,2,3,4

4 4 2,3,4

2,3 2,3,4 2,3,4 2,3,4

2,3 2,3,4 2,3,4 2,3,4

1,2,3,4 1,2,3,4 1,1,3,4 1,2,3,4

2,3,4 2,3,4

2,3,4 2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4 2,3,4

1,1,3,4 1,1,3,4 1,1,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,1,3,4 2,3,4,4

1,2,3,4 1,2,3,4 1,1,3,4 2,3,4,4

2,3,4

2,3,4 2,3,4 2,3,4 2,3,4

1,2,3,4 1,1,3,4 2,3,4,4 2,3,4,4

1,2,3,4 2,3,4,4 2,3,4,4

2,3,4 2,3,4

2,3,4 2,3,4 2,3,4 2,3,4

1,2,3,4 1,1,3,4 2,3,4,4 2,3,4,4

2,3,4,4 2,3,4,4

2,3,4 2,3,4 2,3,4 2,3,4

2,3,4 2,3,4 2,3,4 2,3,4

The above examples (particularly for n = 4) not only gave us most of the

sizes we were after, but they all have generalizable structures which form the

basis for the main results of this chapter.

First we prove the following lemma which is also useful for later results in

this chapter.

Lemma 6.1 Let P be a partial n-Latin square of order n such that for some

m, 1 ≤ m ≤ n− 1:

Pi,1 = {1} (1 ≤ i ≤ m);

and Pi,j = {2, 3, ..., n} (m ≤ i ≤ n, 2 ≤ j ≤ n);
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1,...,n · · ·
...

...
. . .

...

1,...,n · · ·

2,3,...,n · · · 2,3,...,n

...
...

. . .
...

2,3,...,n · · · 2,3,...,n

Then in any completion of P to the n-Latin square of order n, each cell of the

last n−m rows of P contains N(n).

Proof. Since the last n − 1 cells of each of the last m rows of P can only

contain at most n − 1 occurrences of 1, each empty cell of the first column

contains at least one 1. However, since there are already m occurrences of 1 in

the first column, each of these empty cells contain exactly one 1. Subsequently,

each cell of the last m rows is forced to contain N(n). �

Henceforth in this chapter, we will show that the partial n-Latin square,

P , we use in each result (Lemma 6.2 to Lemma 6.5) is not only a critical

set of the full n-Latin square but these chosen critical sets span a consecutive

set of integers in our spectrum. For convenience we denote the contents of

a non-empty cell of P by PNE, and we will show in each lemma that there

exists a sub-square, S, of P such that PNE ∈ S and each entry of PNE satisfies

Corollary 5.12.

Lemma 6.2 For n ≥ 3, let P be a partial n-Latin square of order n such that:

P1,1 = {1}; Pn,1 = {n};

Pi,j = {2, 3, ..., n} (2 ≤ i ≤ n, 2 ≤ j ≤ n− 1);

and Pi,n = {1, 2, ..., n− 1} (2 ≤ i ≤ n− 1).
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1,3,...,n · · · 1,2,...,n− 1

2,3,...,n · · · 2,3,...,n 1,2,...,n− 1

...
...

. . .
...

...

2,3,...,n · · · 2,3,...,n 1,2,...,n− 1

n 2,3,...,n · · · 2,3,...,n

Then P is a critical set of the full n-Latin square with size (n− 1)3 + 2.

Proof. We first show that P is a defining set of the full n-Latin square.

By Lemma 6.1, the last n − 1 columns forms a saturated sub-rectangle of P

and thus P completes uniquely to the full n-Latin square.

Next we show that each entry in P is necessary for this unique completion.

If:

PNE = {1}, S =
1,3,...,n

2,3,...,n− 1
;

PNE = {n}, S =
1,3,...,n 1,2,...,n− 1

n
;

PNE = {2, 3, ..., n}, S =
2,3,...,n 2,3,...,n− 1

;

PNE = {1, 2, ..., n− 1}, S =
1,3,...,n 1,2,...,n− 1

n
;

or

S =
1,3,...,n 1,2,...,n− 1

n
;

thus by Corollary 5.12, P is a critical set.

The size of P is clearly as stated so the proof is complete. �
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Lemma 6.3 For n ≥ 3, let P be a partial n-Latin square of order n such that

for some m, 1 ≤ m ≤ n− 2:

P1,m+1 = P2,1 = {1};

P1,j = {1, 2} (1 ≤ j ≤ m);

P2,j = {3, 4, ..., n} (2 ≤ j ≤ m+ 1);

P2,j = {2, 3, ..., n} (m+ 2 ≤ j ≤ n);

and Pi,j = {2, 3, ..., n} (3 ≤ i ≤ n, 2 ≤ j ≤ n).

1,2 1,2 1,2 · · · 1,2 1 · · ·

1 3,...,n 3,...,n · · · 3,...,n 3,...,n 2,...,n · · · 2,...,n 2,...,n

2,...,n 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n 2,...,n

...
...

...
. . .

...
...

...
. . .

...
...

2,...,n 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n 2,...,n

Then P is a critical set of the full n-Latin square and |P | = (n− 1)3 +m+ 2.

Proof. We first show that P is a defining set of the full n-Latin square.

By Lemma 6.1, each cell of the last n− 2 rows and that of the last n−m− 2

columns is forced to contain N(n). This forces each of the cells containing

{3, 4, ..., n} to contain exactly one 1 (and the square to be a superset of the par-

tial n-Latin square in Lemma 6.1) thus by Lemma 6.1, P completes uniquely

to the full n-Latin square.
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Next we show that each entry in P is necessary for this unique completion.

If:

PNE = {1}, S =
1 3,...,n

3,...,n 2,...,n
or

1 3,...,n

3,...,n 2,...,n
;

PNE = {1, 2} or {3, ..., n}, S =
1,2 1

1,...,n 3,...,n
or

1,2 1

3,...,n 3,...,n
;

PNE = {2, ..., n}, S =
2,...,n 2,...,n

or
3,...,n 2,...,n

2,...,n
;

thus by Corollary 5.12, P is a critical set.

Observe that since m cells contain {1, 2}, 2 cells contain {1}, m cells contain

{3, ..., n}, and (n− 2)(n− 1) + n−m− 1 cells contain {2, ..., n},

|P | = 2m+ 2 +m(n− 2) + [(n− 2)(n− 1) + n−m− 1](n− 1)

= (n− 1)3 +m+ 2.

�

Another critical set is formed if cell P1,2 of the above partial n-Latin square

is empty and P1,3 = P1,4 = ... = P1,n = {2} as below:

1,2 1,2 1,2 · · · 1,2 1 · · ·

3,...,n 3,...,n · · · 3,...,n 3,...,n 2,...,n · · · 2,...,n

2 2,...,n 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n

...
...

...
. . .

...
...

...
. . .

...

2 2,...,n 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n

Observe that for such a partial n-Latin square,

|P | = 2m+ n− 1 +m(n− 2) + [(n− 2)(n− 1) + n−m− 1](n− 1)

= (n− 1)3 +m+ n− 1,
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thus (n− 1)3 + n ≤ |P | ≤ (n− 1)3 + 2n− 3.

We next generalize the above observation in the following lemma by re-

placing the entries {2}, {1, 2} and {3, ..., n} by {2, 3, ..., n}, {1, 2, ..., k} and

{k + 1, k + 2, ..., n} respectively. In doing so we add another n2 − 3n+ 2 sizes

(in succession) to our spectrum.

Lemma 6.4 For n ≥ 3, let P be a partial n-Latin square of order n such that

for some m (1 ≤ m ≤ n− 2) and k (2 ≤ k ≤ n):

P1,m+1 = {1};

P1,j = {1, 2, ..., k} (1 ≤ j ≤ m);

P2,j = {k + 1, k + 2, ..., n} (2 ≤ j ≤ m+ 1);

P2,j = {2, 3, ..., n} (m+ 2 ≤ j ≤ n);

Pi,1 = {2, 3, ..., k} (3 ≤ i ≤ n);

and Pi,j = {2, 3, ..., n} (3 ≤ i ≤ n, 2 ≤ j ≤ n).

1,...,k 1,...,k · · · 1,...,k 1 · · ·

k+1,...,n · · · k+1,...,n k+1,...,n 2,...,n · · · 2,...,n

2,...,k 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n

...
...

. . .
...

...
...

. . .
...

2,...,k 2,...,n · · · 2,...,n 2,...,n 2,...,n · · · 2,...,n

Then P is a critical set of the full n-Latin square and |P | = (n − 1)3 + kn −

n− 2k +m+ 3.

Proof. We first show that P completes uniquely to the full n-Latin square.

By Lemma 6.1, the last n−m− 1 columns complete to form a saturated sub-

rectangle of P . This in turn forces each of the other non-empty cells of the

second row to contain at most one copy of each element of {2, 3, ..., k} which

gives a superset of the critical set in Theorem 5.22.
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Next, we show that each entry of P is necessary for this unique completion.

If:

PNE = {1}, S =
1 k+1,...,n

k+1,...,n 2,...,n
;

PNE = {2, ..., k}, S =
k+1,...,n k+1,...,n

2,...,k 2,...,n
;

PNE =
{1, ..., k} or

{k + 1, ..., n}
S =

1,...,k 1

k+1,...,n k+1,...,n
;

or

S =
1,...,k 1

k+1,...,n k+1,...,n
;

PNE = {2, ..., n}, S =
k+1,...,n k+1,...,n

2,...,n 2,...,n
;

or

S =
k+1,...,n k+1,...,n

2,...,k 2,...,n
;

thus by Corollary 5.12, P is a critical set.

To determine the size of P , observe that m cells contain {1, ..., k}, 1 cell con-

tains {1}, m cells contain {k + 1, ..., n}, (n − 2) cells contain {2, ..., k} and

(n− 2)(n− 1) + n−m− 1 cells contain {2, ..., n}, thus

|P | = km+ 1 +m(n− k) + (n− 2)(k − 1)

+[(n− 2)(n− 1) + n−m− 1](n− 1)

= n3 − 3n2 + kn+ 2n− 2k +m+ 2

= (n− 1)3 + kn− n− 2k +m+ 3.

�
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We next explore a generalized structure of the critical set we discussed in

Section 5.4. This structure gives many of the sizes in the last (n− 2)2 sizes of

the spectrum (i.e. sizes between n(n− 1)2 + 1 and n3 − n2 − 3n+ 4).

Lemma 6.5 For n ≥ 3, let P be a partial n-Latin square of order n such that

for 2 ≤ l,m ≤ n− 1:

Pi,j = {1, 2, ..., n} (1 ≤ i ≤ l − 1, 1 ≤ j ≤ m− 1);

and Pi,j = {2, 3, ..., n} (l + 1 ≤ i ≤ n, m+ 1 ≤ j ≤ n).

1,2,...,n · · · 1,2,...,n 2,3,...,n · · · 2,3,...,n

...
. . .

...
...

...
. . .

...

1,2,...,n · · · 1,2,...,n 2,3,...,n · · · 2,3,...,n

· · · 2,3,...,n · · · 2,3,...,n

2,3,...,n · · · 2,3,...,n 2,3,...,n 2,3,...,n · · · 2,3,...,n

...
. . .

...
...

...
. . .

...

2,3,...,n · · · 2,3,...,n 2,3,...,n 2,3,...,n · · · 2,3,...,n

Then P is a critical set of the full n-Latin square with size n(n − 1)2 + (n −

l)(n−m).

Proof. P is clearly a defining set of the full n-Latin square thus we first need

to prove it is also a critical set. Since each cell containing {1, 2, ..., n} is con-

tained in a subsquare

1,2,...,n 1,2,...,n

and each cell containing {2, 3, ...,n} is contained in a subsquare conjugate to

2,3,...,n 2,3,...,n
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or the bottom right cell of

2,3,...,n

2,3,...,n 2,3,...,n

then by Corollary 5.12, P is a critical set of the full n-Latin square.

Next observe that (l − 1)(m − 1) cells contain {1, 2, ..., n} and n2 − lm cells

contain {2, 3, ..., n}, thus:

|P | = (l − 1)(m− 1)n+ (n2 − lm)(n− 1)

= n3 − n2 + n− ln−mn+ lm

= n(n2 − 2n+ 1) + n2 − ln−mn+ lm

= n(n− 1)2 + (n− l)(n−m).

�

By combining Lemma 6.2, Lemma 6.3, Lemma 6.4 and Lemma 6.5, we

have the following spectrum result.

Theorem 6.6 For all n there exists a critical set C of the full n-Latin square

with size |C| where (n− 1)3 + 1 ≤ |C| ≤ n(n− 1)2 + n− 2.

Proof. By Theorem 5.22 and Lemma 6.2, critical sets of sizes (n−1)3+1 and

(n − 1)3 + 2 exist. By Lemma 6.3, |C| = (n − 1)3 +m + 2 (1 ≤ m ≤ n − 2),

so a critical set of each size from (n − 1)3 + 3 to (n − 1)3 + n also exists. By

Lemma 6.4, |C| = (n − 1)3 + kn − n − 2k + m + 3 (1 ≤ m ≤ n − 2 and

2 ≤ k ≤ n), thus for:

• m = 1, k = 2, |C| = (n− 1)3 + n;

• m = n− 2, k = n, |C| = n(n− 1)2 (= (n− 1)3 + (n− 1)2).

With each size between (n − 1)3 + n and n(n − 1)2 given by different values

m and k, we have now established the existence of each the first (n − 1)2

sizes in the spectrum. The final part is given by Lemma 6.5 where |C| =
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n(n− 1)2 + (n− l)(n−m). Since n− l, n−m ∈ N(n− 2), (n− l)(n−m) = x

for all x ∈ N(n− 2). �

Furthermore, the dependence of |P | on the product (n − l)(n − m) (2 ≤

l,m ≤ n−1), implies that only (n−2)(n−1)/2 out of the (n−2)2 sizes in the

top part of the potential spectrum are given by the above structure; leaving

(n2 − 5n + 6)/2 sizes undetermined. For example, when n = 4, |P | ̸= 39

and when n = 5, three of the nine values of |P | (i.e. 85, 87 and 88) are

undetermined.

We summarize this chapter with the following table:

Order Size of Number of

(n) potential spectrum undetermined holes

3 5 0

4 13 1

5 25 3

6 41 6

7 61 10

8 85 15

9 113 21

10 145 28

...
...

...

n (n− 1)2 + (n− 2)2 (n2 − 5n+ 6)/2



Chapter 7

Completability of partial

multi-Latin squares

As we discussed in Section 2.4, any Latin square of order n with at most n− 1

entries can be completed. This result has since been generalized to semi-Latin

squares in [39] and a partial generalization to Latin cubes is given in [40]. On

the other hand, a partial Latin square of order n filled with n or more symbols

may be incompletable. For example:

1 2 2

1

1

1

1

2

As a direct consequence of the optimal size of the completable Latin square,

incompletable Latin squares contain at least n entries.

This chapter explores the completability of partial k-Latin squares (i.e.

whether a given partial multi-Latin square is completable or incompletable)

which, even for k = 1, is an NP-complete problem [30]. In Section 7.1, we

generalize Evans’ conjecture to include multi-Latin squares. We show that any
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partial multi-Latin square of order n and index k with at most (n− 1) entries

is also completable. In Section 7.2, we investigate the incompletable partial

Latin squares with minimal sizes. We present constructions of incompletable

partial k-Latin squares of order n and size k(n− 1) + 1 in Section 7.2 and we

conjecture this to be the optimal size.

Subsection 7.1.1 and Section 7.2 have been submitted for publication ([85]).

An observation while exploring partial Latin squares with no completions

is that they all contain more than one symbol. In fact, it is easy to show that

a partial Latin square L filled in with only one symbol s is completable. In the

next section we will show that a partial k-Latin square containing only one

symbol is also completable.

7.1 Completable partial multi-Latin squares

In this section we first show that a partial multi-Latin square containing only

one symbol also completes to a multi-Latin square of the same order; then we

generalize Theorem 2.3 to a partial k-Latin square of order n with at most

n− 1 entries.

Lemma 7.1 Let P be a partial k-Latin square of order n containing only one

symbol s which occurrs at most kn − 1 times. Then there exists a partial k-

Latin square P ′ of the same order and size kn, also containing only the symbol

s, such that P ⊆ P ′.

Proof. We first observe that, by the definition of a k-Latin square, each sym-

bol s occurs at most k times in each cell, at most k times in each row, and at

most k times in each column of P . Moreover, s occurs kn times in a partial

k-Latin square if and only if it occurs k times in each row and k times in each

column.

Without loss of generality, let s = 1 and let ri be a row of P that contains at

most k − 1 occurrences of the symbol 1. This implies that we have at most

kn − 1 occurrences of the symbol 1 in P and that at least one column of P
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contains at most k−1 occurrences of the symbol 1. Let cj be one such column.

Then we can add a 1 to the intersection of ri and cj i.e. cell Li,j.

The process can be repeated until each row/column of P contains k occurrences

of 1. �

The next construction completes any partial k-Latin square P ′ from the

above construction to a k-Latin square L of the same order, by recursively

permuting the columns cyclically, adding one modulo n to each symbol.

Construction 7.2 Let P be a partial k-Latin square of order n and size kn

containing only one symbol s. We complete P to a k-Latin square L as follows.

For 1 ≤ i, j ≤ n and 1 ≤ h ≤ n − 1, if s occurs λ times in cell Pi,j then

s+ h (mod n) occurs λ times in cell Li,j+h (mod n).

We use the above construction to complete the following partial 3-Latin

square containing only the symbol 1. For k = n = 3 and s = 1, if

P ′ =

1,1,1 1,1,1

1,1,1

1,1 1

then

L =

1,3,3 1,1,2 2,2,3

2,2,2 3,3,3 1,1,1

1,1,3 1,2,2 2,3,3

.

Combining Lemma 7.1 and Construction 7.2, we can now show that any

partial k-Latin square containing only one symbol completes to a k-Latin

square of the same order.

Theorem 7.3 A partial multi-Latin square P filled in with only one symbol s

is completable.
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Proof. By Lemma 7.1, we only need to show that our claim is true when

P has size kn i.e. it suffices to show that the multi-Latin square L from

Construction 7.2 is indeed valid.

We shall divide our proof to two parts; showing that:

1. each symbol occurs k times in each row and k times in each column of

L.

2. each cell of L contains k symbols.

Let |si,j| be the number of times the symbol s occurs in cell Li,j and with-

out loss of generality, let s = 1. We observe that, in each row,

n∑
j=1

|1i,j| = k, for 1 ≤ i ≤ n,

and in each column,

n∑
i=1

|1i,j| = k, for 1 ≤ j ≤ n.

Next,

|1i,j| = |2i,j+1 (mod n)| = |3i,j+2 (mod n)| = ... = |ni,j+n−1 (mod n)|

=⇒ |1i,j−1 (mod n)| = |2i,j|, |1i,j−2 (mod n)| = |3i,j|, ..., |1i,j−n+1 (mod n)| = |ni,j|

for 1 ≤ i, j ≤ n. Thus the number of occurrences of each symbol in any row

of L is given by

n∑
j=1

|si,j| =
n∑

j=1

|1i,j−s+1 (mod n)| = k, for 1 ≤ i ≤ n;

and in each column

n∑
i=1

|si,j| =
n∑

i=1

|1i,j−s+1 (mod n)| = k, for 1 ≤ j ≤ n.
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Finally, Construction 7.2 implies that each cell Li,j contains |1i,j| occur-

rences of symbol 1, |2i,j| = |1i,(j+1) (mod n)| occurrences of symbol 2, ..., and

|ni,j| = |1i,(j+n−1) (mod n)| occurrences of symbol n. That is, each cell contains

n∑
j=1

|1i,j| = k

symbols. �

7.1.1 A generalization of Evans’ conjecture

We finish this section with a generalization of Evans’ conjecture for multi-Latin

squares. Here, we are particularly interested in [39], where Kuhl and Denley

generalized Evans’ conjecture to include semi-Latin squares.

Recall that a partial semi-Latin square of order n and index k is an n× n

array of sets of size at most k, such that each symbol of a set of size nk occurs

at most once in each row and at most once in each column. Such an array is a

semi-Latin square if each set is of size k, and thus each symbol occurs exactly

once in each row and in each column (see Section 1.1). The following is an

example of a semi-Latin square of order 4 and index 3.

1,4,5 2,6,10 3,7,8 9,11,12

2,3,11 1,4,9 5,6,12 7,8,10

6,7,9 3,8,12 1,10,11 2,4,5

8,10,12 5,7,11 2,4,9 1,3,6

Henceforth, we will refer to a semi-Latin square with index k as a semi-k-

Latin square. (This clashes with the definition of multi-Latin squares given in

[39] - see also below. Since semi-Latin square is by far the most common term

in the literature, we adhere to it.) Semi-Latin squares are a generalization of

Latin squares, since a semi-1-Latin square is simply a Latin square.

Kuhl and Denley’s generalization of Evans’ conjecture is given below:
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Theorem 7.4 Let S be a partial semi-k-Latin square of order n with at most

n− 1 non-empty cells each containing k entries. Then S can be completed.

We approach this generalization by transforming a k-Latin square of order

n with at most n− 1 entries into a semi-Latin square of order n and index k,

and show that under certain conditions it completes to a semi-Latin square,

using Kuhl and Denley’s result. We first illustrate these transformations with

the following example.

Let M be the partial 3-Latin square of order 4 given below:

1,3,3 3,1,2 2,2,3 2,2,3

1 3,3,3 1,1,2 2,2,3

1,2,2 1,3,3 2,2,3

1,2,2 1,3,3 2,2,3

.

1. Transform M to a partial semi-3-Latin square S = M∗ of the same order

by replacing each occurrence of a symbol s with a symbol from {s1, s2, ..., sk}

so that each symbol of this set occurs at most once in each row and in each

column of M∗.

11 ,3,3 31 ,1,2 2,2,3 2,2,3

12 3,3,3 1,1,2 2,2,3

1,2,2 1,3,3 2,2,3

1,2,2 1,3,3 2,2,3

2. Transform S to a partial semi-3-Latin square S ′ by filling in each non-empty

cell of S.

11, 13, 21 31, 12, 22 2,2,3 2,2,3

12, 22, 23 3,3,3 1,1,2 2,2,3

1,2,2 1,3,3 2,2,3

1,2,2 1,3,3 2,2,3
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3. Complete S ′ to a semi-k-Latin square using Theorem 7.4.

11, 13, 21 31, 12, 22 23, 32, 33 41, 42, 43

12, 22, 23 21, 32, 33 41, 42, 43 11, 13, 31

31, 32, 33 41, 42, 43 11, 12, 13 21, 22, 23

41, 42, 43 11, 13, 23 21, 22, 31 12, 32, 33

4. Replace each occurrence of the symbols from {s1, s2, ..., sk} with the symbol

s to form a completion of M to a 3-Latin square.

1,1,2 3,1,2 2,3,3 4,4,4

1,2,2 2,3,3 4,4,4 1,1,3

3,3,3 4,4,4 1,1,1 2,2,2

4,4,4 1,1,2 2,2,3 1,3,3

The next step is to show that we can always perform the above transfor-

mations to any partial k-Latin square M of order n and size at most n − 1.

Thus we first show that M can be transformed into a partial semi-k-Latin

square of the same order. As in the example, we aim to do this by replacing

each occurrence of a symbol s with a symbol from {s1, s2, ..., sk} so that each

symbol of this set occurs at most once in each row and in each column. We

denote such a transformed partial semi-k-Latin square by M∗.

Lemma 7.5 Let M be a partial k-Latin square of order n. Then M can be

transformed into a partial semi-k-Latin square of the same order by replacing

each occurrence of a symbol s with a symbol from {s1, s2, ..., sk} so that each

symbol of this set occurs at most once in each row and in each column of M∗.

Proof. Let the rows and columns of M be indexed with {r1, r2, ..., rn} and

{c1, c2, ..., cn} respectively and let Gs(M) = (V,E) be a bipartite multigraph

with V1 = {r1, r2, ..., rn} and V2 = {c1, c2, ..., cn} such that the multiplicity of

edge {ri, cj} of Gs(M) is equal to the number of times the symbol s occurs in
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cell Mi,j. Then Gs(M) is of degree at most k and therefore is k-edge-colourable

by Theorem 10.5. Thus the lemma holds as each occurrence of the symbol s in

any row or column is represented by an unique colour in the proper colouring

of Gs(M). �

The proof of our main result (Theorem 7.7) will require the use of Theo-

rem 7.4, which states that a semi-k-Latin square of order n with at most (n−1)

non-empty cells each containing k entries can be completed. With Lemma 7.5,

a partial k-Latin square of order n with at most n− 1 entries transforms into

a semi-k-Latin square of order n with at most n− 1 non-empty cells. We now

show that we can always fill in these non-empty cells so that each contains k

entries.

Lemma 7.6 Let S be a partial semi-k-Latin square of order n with at most

n−1 non-empty cells. Then S is a subset of a partial semi-k-Latin square S ′ of

the same order such that if cell Si,j is non empty then cell S ′
i,j is of cardinality

k.

Proof. Suppose that cell Si,j is non-empty with cardinality of at most k − 1.

Then in S ′, there are at most k(n− 1)− 1 entries in the same row or column

as cell S ′
i,j. So at least k+ 1 symbols do not occur in either row i or column j

hence cell S ′
i,j can be filled in. �

With the above lemma completing the preliminary results needed, we now

prove our main result in this chapter.

Theorem 7.7 Let M be a partial k-Latin square of order n with at most n−1

entries from N(n). Then M can be completed to a k-Latin square of order n.

Proof. By Lemma 7.5 we transform M to a partial semi-k-Latin square M∗ of

order n with at most k(n−1) from the set
∪n

s=1{s1, s2, ..., sk}. By Lemma 7.6,

we fill in the non-empty cells of M∗ so that each contains k symbols from the

set
∪n

s=1{s1, s2, ..., sk}. We complete this partial semi-k-Latin square to a semi-

Latin square by Theorem 7.4. Then replacing each occurrence of the symbols



95

from {s1, s2, ..., sk} with the symbol s, for 1 ≤ s ≤ n, gives a completion of M .

�

Based on Construction 7.12 and Construction 7.13, which will show the

existence of a non-completable partial k-Latin square of order n and size k(n−

1) + 1, and motivated by the fact that a k-Latin square of order n contains

k times more entries than a Latin square of the same order, we make the

following conjecture:

Conjecture 7.8 A partial k-Latin square of order n with at most k(n − 1)

entries can be completed.

In the special case where all of the k(n− 1) entries are contained in n− 1

(full) cells, the partial k-Latin square is certainly completable. The following

result which formalizes this particular case is analogous to Theorem 7.4 and

generalizes Theorem 7.7. The proof is very similar to that of Theorem 7.7 and

is therefore omitted.

Theorem 7.9 A partial k-Latin square of order n with at most n − 1 non-

empty cells can be completed.

A strategy that we explored towards possibly proving the above conjecture

for the general case was to try to partition a partial k-Latin square into k

partial Latin squares. Observe that if a partial k-Latin square P of order n

with at most k(n−1) entries is fully separable into k partial Latin squares each

of order n and size n−1 then each one of these partial Latin squares complete

to a Latin square by Theorem 2.3. Moreover, the join of the completions of

these partial Latin squares give a completion of P . The join of two k-Latin

squares L′ and L′′, denoted by L′ ⊕ L′′, refers to the 2k-Latin square L of the

same order, such that Li,j = L′
i,j ⊎L′′

i,j. We say that a k-Latin square L is fully

separable if there exist k Latin squares L1, L2, ..., Lk, all of the same order,

such that L = L1 ⊕ L2 ⊕ ...⊕ Lk (see [22]).
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Lemma 7.10 Let P be a fully separable partial k-Latin square of order n and

size k(n− 1) that separates to k partial Latin squares each of size n− 1. Then

P completes to a k-Latin square of order n.

Proof. By Theorem 2.3, each partial Latin square completes to the Latin

squares {L1, L2, ..., Lk} respectively and L = L1 ⊎L2 ⊎ ...⊎Ln is a completion

of P to a k-Latin square of the same order. �

We illustrate the proof of the above lemma with the following example.

Let P be the fully separable partial 3-Latin square below.

P =

1,1 2,2

2 1,1,2

3 2,2

Then

P = P 1 ⊕ P 2 ⊕ P 3 =

1

2

1

⊕

1

1 2

⊕

1

3 2

.

Now P 1, P 2, and P 3 complete to the Latin squares

1 3 2

3 2 1

2 1 31

⊕

1 2 3

2 3 1

3 1 2

⊕

2 1 3

3 2 1

1 3 2

respectively. And

P 1 ⊕ P 2 ⊕ P 3 =

1,1,2 1,2,3 2,3,3

2,3,3 2,2,3 1,1,2

1,2,3 1,1,3 2,2,3

is a completion of P .
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Unfortunately the above approach cannot always succeed directly. Con-

sider the example below of a partial 3-Latin square, L of order 6 and size 13.

1,1,2

1 1,1,3

2,2 3,3 2,3

1,1,3 1,1,3 1,1,3 1,1,3

Observe that in order to partition L into 3 partial Latin squares L1, L2

and L3 we should be able to replace each occurrence of a symbol s in L with a

symbol sk to form a semi-Latin square L∗, where k ∈ N(3) and sk is put in Lk

in the partition of L. Without loss of generality, let L∗
1,1 = {11, 12, 23}, then

L∗ is forced to contain:

11, 12, 23

13 11, 12, 33

21, 22 31, 32 23, 33

.

Then L cannot be fully separated since the entries of L3,3 are forced by the

structure of L to be put in the same cell of L3. For similar reasons, the follow-

ing partial k-Latin (sub-)square, P of order n and size 4k+1 (which generalizes

the one above) also cannot be separated into k partial Latin squares.

s1, ..., s1︸ ︷︷ ︸
(k−1)-times

, s2

s1 s1, ..., s1︸ ︷︷ ︸
(k−1)-times

, s3

s2, ..., s2︸ ︷︷ ︸
(k−1)-times

s3, ..., s3︸ ︷︷ ︸
(k−1)-times

s2, s3

This example motivates the following conjecture:
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Conjecture 7.11 A partial k-Latin square of order n and size at most 4k is

fully separable and thus completable.

7.2 Premature partial k-Latin squares

Recall from Section 2.5 that a premature partial Latin square is a partial Latin

square that cannot be completed to a Latin square of the same order, but is

completable upon the removal of any one of its entries. In this section we

explore the more general premature partial multi-Latin squares.

Following a similar strategy to finding critical sets of the full n-Latin square,

we first studied premature partial (n, n, 2)-balanced Latin squares of small

orders. Listed below are some such structures for n = 2, 3, 4, 5.

n = 2

1,2

2,2

n = 3

1,1 1,2

2,2 2

1,1 1,2

1,1

2,2

n = 4

1,1

1

2,2 2,2 1,2
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n = 5

1,1

1,1

2,2 2,2 2 1,2

1,2

The first example for n = 3 and the ones for n = 2, 4, and 5 are incom-

pletable since the intersection of the first column and the non-empty row is

forced by the row to be filled in with the entry {1, 1} forcing the first column

to contain n + 1 occurrences of the symbol 1. As for the other example for

order 3, it is easy to see that both the empty cells of row/column 3 are forced

to have entries {1, 2} making it impossible to complete. It can also be shown

that deleting any symbol from any cell results in a completable partial k-Latin

square.

While exploring premature partial k-Latin squares for k ≥ 2, we discovered

other interesting patterns. Among the examples found, two patterns stood out

and are given below for n = 2, 3, 4.

n = k = 2

1,1

2,2

n = k = 3

1,1,1 1,2,3

2,2,2 3 ,

1,1,1 1,2,3

1,1,1

2
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n = k = 4

1,1,1,1 1,2,3,4

2,2,2,2 3,3,3,3 4
,

2,2,2,2 1,2,3,4

2,2,2,2

2,2,2,2

4

The following constructions generalize the examples above.

Construction 7.12

For an n× n array, P :

• Fill in cell P1,1 with the entry 1, 1, ..., 1︸ ︷︷ ︸
k−times

.

• For 2 ≤ i ≤ n− 1, fill in cell P2,i with the entry i, i, ..., i︸ ︷︷ ︸
k−times

.

• Fill in cell P2,n with the entry n.

Construction 7.13

For an n× n array, Q:

• For 1 ≤ i ≤ n− 1, fill in cell Qi,i with the entry x, x, ..., x︸ ︷︷ ︸
k−times

, x ∈ N(k).

• Fill in cell Qn,n with the entry y, y ̸= x; y ∈ N(k).

We next show that any partial Latin square constructed by the above

constructions is indeed a premature partial Latin square. Observe that any

partial k-Latin square from either construction has size k(n− 1) + 1.

Lemma 7.14 Let P be a partial k-Latin square of order n generated by Con-

struction 7.12. Then P is a premature partial k-Latin square of order n.
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Proof. Observe that P is of the form:

1, ..., 1︸ ︷︷ ︸
k times

· · ·

2, ..., 2︸ ︷︷ ︸
k times

3, ..., 3︸ ︷︷ ︸
k times

· · · n− 1, ..., n− 1︸ ︷︷ ︸
k times

n

...
...

...
. . .

...
...

We first show that P is incompletable. By the definition of a row of a partial

k-Latin square, cell P2,1 is forced to contain at least one occurrence of the

symbol 1 which already occurs k times in column 1, so P is incompletable. We

next show that removing any one of the entries of P guarantees completability.

Let s be the the entry we remove from P . We split this part of the proof into

the cases s = 1, 2 ≤ s ≤ n− 1 and s = n.

Case 1: s = 1.

P completes to the k-Latin square below:

1,...,1,n 1,n,...,n · · · n-2,...,n-2 n-1,...,n-1

1,n,...,n 2,...,2 · · · n-1,...,n-1 1,...,1,n

...
...

. . .
...

...

n-2,...,n-2 n-1,...,n-1 · · · n-4,...,n-4 n-3,...,n-3

n-1,...,n-1 1,...,1,n · · · n-3,...,n-3 n-2,...,n-2

Case 2: 2 ≤ s ≤ n− 1.

Without loss of generality, let s = 2. Then P completes to the k-Latin square

below:
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1,...,1 2,n,...,n 2,...,2,n 3,...,3 · · · n-1,...,n-1

2,n,...,n 1,2,...,2 3,...,3 4,...,4 · · · 1,...,1,n

2,...,2,n 3,...,3 4,...,4 5,...,5 · · · 2,n,...,n

...
...

...
...

. . .
...

n-2,...,n-2 n-1,...,n-1 1,...,1 2,n,...,n · · · n-3,...,n-3

n-1,...,n-1 1,...,1,n 2,n,...,n 1,2,...,2 · · · n-2,...,n-2

Case 3: s = n.

For this case, P completes by Theorem 7.9. �

Lemma 7.15 Let Q be a partial k-Latin square of order n generated by Con-

struction 7.13. Then Q is a premature partial k-Latin square of order n.

Proof. Any partial k-Latin square constructed by Construction 7.13 has the

following general structure:

1, ..., 1︸ ︷︷ ︸
k times

· · · 1,...,2

1, ..., 1︸ ︷︷ ︸
k times

· · ·

...
...

. . .
...

...

· · · 1, ..., 1︸ ︷︷ ︸
k times

· · · 2

.

Since each of the first n− 1 rows and columns of Q contain k occurrences

of the symbol 1, cell Qn,n which already contains the symbol 2, is forced to

contain all the k occurrences of the symbol 1 for the nth row (column), thus

Q is incompletable. We next show that Q is a subset of at least one k-Latin

square of the same order if we remove any one of its entries. By the symmetry

of Q we only have two cases to prove.

Case 1: s = 1.

Without loss of generality, we remove an entry from cell Q1,1. Then Q com-
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pletes to the following k-Latin square:

1,...,1,2 2,...,2,n 3,...,3 · · · n− 1,...,n− 1 1,n,...,n

n,...,n 1,...,1 2,...,2 · · · n− 2,...,n− 2 n− 1,...,n− 1

n− 1,...,n− 1 2,n,...,n 1,...,1 · · · n− 3,...,n− 3 n− 2,...,n− 2

...
...

...
. . .

...
...

3,...,3 4,...,4 5,...,5 · · · 1,...,1 2,...,2,n

1,2...,2 3,...,3 4,...,4 · · · n,...,n 1,...,1,2

.

Case 2: s = 2

Q completes to a k-Latin square by Theorem 7.9. �

In Section 7.1, we showed in Theorem 7.7 that like Latin squares, any k-

Latin square of order n and size at most n − 1 is completable. We thus have

the following result:

Corollary 7.16 The size of the smallest premature k-Latin square of order n,

spm(k, n) satisfies the inequality

spm(k, n) ≥ n.

Since premature partial k-Latin squares of order n and size k(n − 1) + 1

exist for all n ≥ 2, we get an upper bound for the size of the smallest premature

partial k-Latin square.

Theorem 7.17 The size of the smallest premature k-Latin square of order n,

spm(k, n) satisfies the inequality

spm(k, n) ≤ k(n− 1) + 1.

It may just be pure coincidence that:

• a partial Latin square of order n and size at most n − 1 is completable

[89];
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• our conjectured sufficient condition for a completable partial k-Latin

square (with k times more entries than a Latin square of the same order)

is to contain at most k(n− 1) entries(see Section 7.1); and

• the smallest premature partial k-Latin square of order n found has size

k(n− 1) + 1;

but it is enough motivation for the next conjecture.

Conjecture 7.18 The size of the smallest premature k-Latin square of order

n is k(n− 1) + 1.



Chapter 8

Latin cubes and multi-Latin

cubes

In this chapter we discuss a three dimensional generalization of a Latin square

referred to in the literature as a Latin cube. As Latin cubes generalize Latin

squares, our focus here is to attempt to generalize known results on Latin

squares (and results from other chapters) so that they apply to Latin cubes.

Furthermore we generalize these Latin cubes to multi-Latin cubes where each

layer is a multi-Latin square.

In Section 8.1, we briefly summarize some of the relevant known results

on Latin cubes from the literature. Trades in Latin cubes are explored, with

analogous results to Lemma 1.1 and Lemma 1.2 given in Section 8.2. We

discuss, in Section 8.3, equivalences in Latin cubes by generalizing Section 1.3.

In Section 8.4 we investigate partial Latin cubes with at least one completion

to a Latin cube of the same order. In particular, we show that the size of any

critical set of a Latin cube of order at least 3 is bounded below by its order.

We then conclude the chapter with some results on partial multi-Latin cubes

(where the layers are partial multi-Latin squares) with a focus on the critical

sets of the full n-Latin cube.
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8.1 Known results on Latin cubes

Informally, we may think of a Latin cube of order n as n layers of Latin squares

of order n stacked on top of each other so that none of the symbols is directly

above or below itself. That is, in a Latin cube L of order n with layers L1,

L2,...,Ln; the set {L1
i,j, L

2
i,j, ..., L

n
i,j} has size n; such a set is referred to as a file.

We first introduce a more general stack of Latin squares of orders n. For

1 ≤ k ≤ n, a n× n× k Latin cuboid (or Latin parallelepiped) of order n is an

n × n × k (i.e. n rows, n columns and k layers) array such that each symbol

from a set of size n occurs exactly once in each row, exactly once in each

column and at most once in each file. An n× n× n Latin cuboid, where each

symbol occurs exactly once in each file, is a Latin cube of order n. Observe

that an n× n× 1 Latin cuboid is equivalent to a Latin square of order n.

The examples below are Latin cubes of orders 2 and 3 respectively.

1 2

2 1

2 1

1 2

1 2 3

3 1 2

2 3 1

2 3 1

1 2 3

3 1 2

3 1 2

2 3 1

1 2 3

For the Latin cube of order 3 above, removing at least one layer results in

a Latin cuboid.

Displaying each layer of a Latin cube side by side may be effective for small

orders, but this becomes unwieldy for large orders. We therefore sometimes

record Latin cubes by indices (as used in [6]). This way, we can write the Latin

cube of order 2 in the above example as L = (Li,j,k) with

L1,1,1 = L1,2,2 = L2,2,1 = L2,1,2 = 1 and L1,2,1 = L1,1,2 = L2,1,1 = L2,2,2 = 2.

We interpret Li,j,k as the symbol occurring in the ith row, jth column and kth

layer. Alternatively, we may also represent a Latin cube as a set of ordered

quadruples, (i, j, k, s), where Li,j,k = s.

While every Latin rectangle completes to a Latin square (see [60]), the

analogous result does not apply to Latin cuboids. Kochol in [73, 74, 75] con-
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structs Latin cuboids that cannot complete to Latin Cubes. In [75], he proved

the following result:

Theorem 8.1 [75] For any k and n satisfying n
2

< k ≤ n − 2 there is a

non-completable n× n× k Latin cuboid.

Kochol also conjectured that all non-completable n× n× k Latin cuboids

are made up of at least n
2
+1 layers. This was disproved by the authors of [17]

with the following results:

Theorem 8.2 [17] For all m ≥ 4, there exists a non-completable 2m×2m×m

Latin cuboid.

Theorem 8.3 [17] For all even m /∈ {2, 6}, there exists a non-completable

(2m− 1)× (2m− 1)× (m− 1) Latin cuboid.

8.2 Trades in Latin cubes

Formally, a trade in a Latin cube L of order n is some non-empty partial Latin

cube T ⊂ L such that there exists a disjoint mate T ′ where T ′ ∩ T = ∅ and

(L \ T ) ⊎ T ′ is a Latin cube, L′ of the same order. A trade is therefore the

set difference between two Latin cubes of the same order i.e. T = L \ L′ and

T ′ = L′ \ L. For example, let L be the Latin cube of order 3 in Section 8.1

and let L′ be the Latin cube of order 3 below:

1 2 3

2 3 1

3 1 2

3 1 2

1 2 3

2 3 1

2 3 1

3 1 2

1 2 3

.

Then:

T = 3 1 2

2 3 1

2 3 1

3 1 2

3 1 2

2 3 1
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and

T ′ = 2 3 1

3 1 2

3 1 2

2 3 1

2 3 1

3 1 2 .

Note that if T is a trade in a Latin cube, each non-empty layer of T is a

Latin trade in the corresponding layers of L.

An intercalate in a Latin cube is the set

T = {(i, j, k, s), (i, j′, k, s′), (i′, j, k, s′), (i′, j′, k, s),

(i, j, k′, s′), (i, j′, k′, s), (i′, j, k′, s), (i′, j′, k′, s′)}

where s ̸= s′ and s, s′ ∈ N(n). Structurally, an intercalate is a two-layered

Latin cube where each layer is an intercalate of a Latin square. An Example

of this structure is the Latin cube of order 2.

Regardless of the difference in structure, trades are equally essential in

identifying defining sets and critical sets of a Latin cube. The following results

are analogous to Lemma 1.1 and Lemma 1.2 with analogous proofs (which we

omit).

Lemma 8.4 A partial Latin cube D is a defining set of a Latin cube L if and

only if it intersects every trade in L.

Lemma 8.5 A partial Latin cube C is a critical set of a Latin cube L, if C is

a defining set of L and each element of C belongs to a trade in L.

8.3 Equivalences in Latin cubes

In this section we describe equivalences in Latin cubes. These are similar to

the two types of equivalence classes in Latin squares (discussed in Section 1.3)
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but since a Latin cube is, by definition, an ordered quadruple, the equivalence

classes here contain more elements.

We say that two Latin cubes are in the same isotopy class if one can be

obtained by permuting the rows/columns/layers/symbols of the other.

Furthermore, the conjugates of a Latin cube are described by the different

permutations of its ordered quadruple. That is, for a Latin cube L consisting

of quadruples of the form (i, j, k, s), re-ordering each quadruple, gives all the

23 other Latin cubes in the conjugacy class of L. For example, if L is the 3×3

Latin cube below:

1 2 3

3 1 2

2 3 1

2 3 1

1 2 3

3 1 2

3 1 2

2 3 1

1 2 3

,

then replacing each quadruple (i, j, k, s) with (j, k, s, i) gives:

1 2 3

2 3 1

3 1 2

3 1 2

1 2 3

2 3 1

2 3 1

3 1 2

1 2 3

which is conjugate to L.

Thus in a Latin cube, any statement that is true for the rows also applies

to the columns, layers and symbols of the cube. We exploit this property

throughout this chapter.

8.4 Completable partial Latin cubes

As with Latin squares, we are interested in partially filled in Latin cubes. A

partial Latin cube of order n is an n×n×n cube such that each symbol from a

set of size n occurs at most once in each row, at most once in each column and

at most once in each file. For a partial Latin cube to be completable, at the very

least, the partial Latin squares forming its layers must each be completable.
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Thus, an interesting conjecture on completing partial Latin cubes of order n

is obtained by generalizing Evans’ conjecture to Latin cubes.

Conjecture 8.6 [79] If P is a partial Latin cube of order n with at most n−1

entries, then P can be completed.

The above conjecture has not been proved for all values of n but it is

certainly true for partial Latin cubes of orders 3 and 4 as we show below.

Lemma 8.7 A partial Latin cube P of order 3 with size at most 2 can be

completed to a Latin cube of the same order.

Proof. For the proof of this lemma, it suffices to look only at the case when

|P | = 2. Thus we only need to break this proof into two cases. In Case 1,

both entries are contained in the same layer/row/column index of P . In Case

2, the two entries are in different layers, different rows and different columns.

Case 1.

Without loss of generality, let both entries be contained in the same layer.

Then, by Theorem 2.3, this layer completes to a Latin square of order 3,

and the other two complete to isotopies of this Latin square obtained from

permuting either its rows or columns.

Case 2. The two entries are in different layers, different rows and different

columns.

Let the non-empty layers be P1 and P2 and without loss of generality, let P1,1,1

and P2,2,2 be the non-empty cells of P . Then by Theorem 2.3, there exists a

Latin square, L1 of order 3, such that P1 ⊆ L1 and L2,2,1 ̸= P2,2,2. Since P2 only

contains one entry, permuting the appropriate rows of L1 gives a completion

of P2. By default, the cells of P3 are filled with the remaining symbols from

each file. �

Lemma 8.8 A partial Latin cube P of order 4 with size at most 3 can be

completed to a Latin cube of the same order.



111

Proof. We may assume that |P | = 3; (otherwise add extra entries to P ). We

break this proof into three cases. In Case 1, all the entries are contained in the

same layer/row/column index of P . In Case 2, exactly two layers (equivalently,

rows or columns) of P are non-empty, and in Case 3, each entry is unique

and contained in a different layer, different row and different column. From

Section 8.3, these cases are exhaustive.

Case 1.

In a similar way to Case 1 of the previous proof, one way of completing P is

by completing the non-empty layer first then permuting the rows/columns of

this Latin square to get a completion for each of the other layers.

Case 2.

Let the non-empty layers of P be P1 and P2 with P1 containing two of its

entries. If the non-empty cell of P2 is Pi,j,2 for some i, j ∈ N(3), then by

Theorem 2.3, there exists a completion L1 of P1 where Li,j,1 ̸= Pi,j,2. By

permuting the appropriate rows of L1 we can obtain a completion for each of

the other layers.

Case 3.

Without loss of generality, let 1,2 and 3 be in cells P1,1,1, P2,2,2 and P3,3,3 re-

spectively. Then the Latin cube:

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

2 3 4 1

1 2 3 4

4 1 2 3

3 4 1 2

3 4 1 2

2 3 4 1

1 2 3 4

4 1 2 3

4 1 2 3

3 4 1 2

2 3 4 1

1 2 3 4

is a completion of P . �

For orders at least 5, the approach we used in the previous two lemmas be-

comes too complicated. The closest results in attempts to prove Corollary 8.6

for the general case are by Denley and Kuhl [79] and by Denley and Öhman

[40]. These results are given below.
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Theorem 8.9 [79] Let P be a partial Latin cube of order n with at most n−1

entries such that all filled cells appear in distinct files. Then P can be completed

to a Latin cube of order n.

Theorem 8.10 [40] Let P be a partial Latin cube all of whose at most n− 1

entries are contained in either a single layer or the same column of each non-

empty layer. Then P is completable.

Our next step was to try and construct critical sets of Latin cubes of small

orders. Below is an example of a critical set of order 3.

Example 8.11

1 1 1

2

2 1 1 1 1 1

From initial observations, a partial Latin cube of order 3 with at most

2 entries seems likely to have more than one completion. This is certainly

true if both entries are in a single layer as permuting the two Latin squares

formed when completing the two empty layers, forms a second completion.

The following lemma is immediate.

Lemma 8.12 Any completable partial Latin cube with at least two empty lay-

ers has more than one completion.

The above result also applies to completable partial Latin cubes with

at least two rows/columns of the same indices, empty in each layer. Of

course, such a partial Latin cube may be obtained by simply permuting the

rows/columns and the layers of the first Latin cube. The following lemma

confirms that partial Latin cubes of order 3 and size at most 2 do indeed have

more than one completion. More importantly it tells us that the size of a

smallest critical set of a Latin cube of order n (n ≥ 3) is at least n. Observe

that in the case of a Latin cube of order 2, the size of the smallest critical set

is 1.
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Lemma 8.13 A critical set P of a Latin cube of order n ≥ 3 contains at least

n entries.

Proof. If |P | ≤ n− 2 then by Lemma 8.12, if P is completable then it has at

least two completions. Thus we only need to show that there are also at least

two completions when |P | ≤ n − 1. Again by Lemma 8.12, if |P | ≤ n − 1,

each entry is unique and no pair of entries are contained in the same layer or

file. So without loss of generality, we may assume that symbol i is contained

in cell Pi,i,i for all i ∈ N(n− 1). After filling in the cells of the first column of

the first layer P1 so that P1,j,1 = j for all j ∈ N(n), then there are at least two

completions of P1. Observe that these completions do not contain symbol i in

cell Pi,i,j (i ̸= j). Let L1 and L2 be two distinct such completions of P1. Then,

cyclically permuting the columns of L1 or L2 gives two distinct completions of

P to a Latin cube. �

In the following example, we illustrate the proof of the above lemma for a

partial Latin cube of order 3 containing 2 entries.

Let

P =

1 1 1

P1

1 1

2

P2

1 1 1

P3

.

Then

L1 =

1 2 3

2 3 1

3 1 2

or

1 3 2

2 1 3

3 2 1

;
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L2 =

3 1 2

1 2 3

2 3 1

or

2 1 3

3 2 1

1 3 2

;

L3 =

2 3 1

3 1 2

1 2 3

or

3 2 1

1 3 2

2 1 3

.

Thus the critical set of order 3 given in Example 8.11 is a smallest critical set

for Latin cubes of this order.

Corollary 8.14 The size of the smallest critical set of a Latin cube of order

3 is 3.

We next show an example of a partial Latin cube of order 4 and size 6 that

is also a critical set, and may even be a critical set of minimum size for order

4. The following is an example of one such partial Latin cube.

1 3 3 3

2

3 3 2

4

3 3 3

1

3 3 3 2

Lemma 8.15 Let P be the partial Latin cube of order 4 and size 6 above.

Then P is a critical set of a Latin cube of the same order.

Proof. By inspection, P has a unique completion to the Latin cube below:
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1 3 2 4

2 4 3 1

4 2 1 3

3 1 4 2

3 1 4 2

1 3 2 4

2 4 3 1

4 2 1 3

4 2 1 3

3 1 4 2

1 3 2 4

2 4 3 1

2 4 3 1

4 2 1 3

3 1 4 2

1 3 2 4

so P is a defining set. To complete the proof; we need to show the existence

of at least one more completion upon the removal of any single entry. The

following table gives a subsequent (second) completion for the removal of the

entries in cells P1,1,1, P1,4,2, and P4,1,2 respectively.

removed second completion

entry of P

P1,1,1

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

1 4 3 2

3 2 1 4

2 3 4 1

4 1 2 3

3 2 1 4

1 4 3 2

4 1 2 3

2 3 4 1

2 1 4 3

4 3 2 1

1 2 3 4

3 4 1 2

P1,4,2

1 3 4 2

2 4 1 3

4 2 3 1

3 1 2 4

2 1 3 4

3 2 4 1

1 4 2 3

4 3 1 2

4 2 1 3

1 3 2 4

3 1 4 2

2 4 3 1

3 4 2 1

4 1 3 2

2 3 1 4

1 2 4 3

P4,1,2

1 3 2 4

2 4 3 1

4 2 1 3

3 1 4 2

4 1 3 2

1 2 4 3

3 4 2 1

2 3 1 4

2 4 1 3

3 1 2 4

1 3 4 2

4 2 3 1

3 2 4 1

4 3 1 2

2 1 3 4

1 4 2 3
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If either P1,2,1, P2,1,1 or P4,4,3 is removed, then a second completion of P is

given by Lemma 8.12. �

A critical set of this size is relatively small considering the size of the

smallest critical set of a Latin square of the same order is 4. Combined with

the fact that at least 3 of the layers must be non-empty, it seems reasonable

to conjecture that any critical set of a Latin cube of order 4 has size at least

5.

8.5 Multi-Latin cubes

In this section we introduce the idea of a multi-Latin cube; a natural general-

ization of Latin cubes where we allow the cells of the cube to contain multiple

entries. A partial multi-Latin cube of order n and index k is an n×n×n array

of multisets of size at most k, such that each symbol from a set of size n occurs

at most k times in each cell, at most k times in each row, at most k times in

each column and at most k times in each file. A multi-Latin cube of order n

and index k (or a k-Latin cube of order n) is a partial k-Latin cube such that

each symbol from a set of size n occurs k times in each row, k times in each

column and k times in each file. In a k-Latin cube of order n, each layer is

a k-Latin square of the same order. The following is an example of a 2-Latin

cube of order 3.

1,1 2,3 2,3

2,2 1,3 1,3

3,3 1,2 1,2

2,2 1,3 1,3

3,3 1,2 1,2

1,1 2,3 2,3

3,3 1,2 1,2

1,1 2,3 2,3

2,2 1,3 1,3

An n-Latin cube of order n where each cell contains N(n), is referred to as

the full n-Latin cube. Similarly, each layer of the full n-Latin cube is the full

n-Latin square. For example, the full 3-Latin cube is given below.



117

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3 1,2,3

The following result generalizes Theorem 1.3. We also omit this proof as

it is analogous to the proof of that theorem.

Theorem 8.16 Let C be a defining set of the full n-Latin cube and let L be

any Latin cube of order n. Then L ∩ C is a defining set for L.

8.5.1 Critical sets of the full n-Latin cube

Compared to critical sets of Latin cubes, critical sets of the full n-Latin cube

were much easier to construct. The following lemmas give constructions for

critical sets for any full Latin cube of order n. We start by letting one layer of

the critical set empty.

Lemma 8.17 Let P be a partial n-Latin cube of order n with one empty layer

and let each of the n − 1 non-empty layers of P be a critical set of the full

n-Latin square. Then P is a critical set of the full n-Latin cube.

Proof. Let Ln be the full n-Latin square. Then each of the non-empty layers

of P completes to Ln, forcing the empty layer to complete to Ln as well, so P

is a defining set of the full n-Latin cube. So now we need to show that P is a

minimal defining set. Suppose that Pi is one of the non-empty layers of P and

remove an entry from one of the non empty cells of Pi such that it now also

completes to a non-full n-Latin square, L. If T = Ln \L and T ′ = L\Ln, then

by completing Pi to L, the empty layer to (Ln \ T ′) ⊎ T , and the remaining

layers to Ln gives a non-full n-Latin cube completion of P . Thus P is a critical

set of the full n-Latin cube. �

An important part of the second half of the above proof is showing that

a Latin trade T and its disjoint mate T ′ are contained in two of the layers;
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guaranteeing a second completion. Since the reason for the existence of this

second completion is clearly stated in this proof, we simply present this result

as the following corollary.

Corollary 8.18 Let P be a partial n-Latin cube with layers P1, P2, ..., Pn such

that each cell of P is a subset of N(n). Let P̄i = Ln \ Pi where Ln is the full

n-Latin square. If there exists two partial n-Latin squares T and T ′ such that:

1. the pair (T, T ′) is a bitrade,

2. T ⊆ P̄i and T ′ ⊆ P̄i′,

then P has at least two completions.

Equivalences in multi-Latin cubes are similar to those in Latin cubes dis-

cussed in Section 8.3. Thus, for a partial n-Latin cube P , if we define E(P̄ )

to be the equivalence class of P̄ then any element of E(P̄ ) can replace P̄ in

Corollary 8.18. We illustrate this idea in the following example:

Let P̄ r = P̄k,j,i be the conjugate of P̄ formed by permuting its rows and

layers. For the partial 3-Latin cube of order 3 below:

2,3 1,2,3 1,3

1,3 1,2,3 2,3,1

1,2,3 1,2,3

1,2,3 1,3 2,3

1,2,3 2,3 1,3,1

1,2,3 1,2,3

1,3 2,3 1,2,3

2,3,1 1,3,1 1,2,3 ,

P̄ =

1 1,2,3 2

2 1

1,2,3 1,2,3

1,2,3 2 1

1 2

1,2,3 1,2,3

2 1

1 2

1,2,3 1,2,3 1,2,3

contains no bitrade while in
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P̄ r =

1 1,2,3 2

1,2,3 2 1

2 1 1,2,3

2 1,2,3 1

1,2,3 1 2

1 2 1,2,3

1,2,3

1,2,3

1,2,3 1,2,3 1,2,3

,

T = P̄ r
1 and T ′ = P̄ r

2 . As none of the entries of the cells of P is a multiset

the obvious completion of P is to the full 3-Latin cube. However, replacing T

with T ′ and vice versa in the full 3-Latin cube gives another completion which

we display below.

2,2,3 1,2,3 1,1,3

1,1,3 1,2,3 2,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,1,3 2,2,3

1,2,3 2,2,3 1,1,3

1,2,3 1,2,3 1,2,3

1,1,3 2,2,3 1,2,3

2,2,3 1,1,3 1,2,3

1,2,3 1,2,3 1,2,3

Another result on full n-Latin square that we can use here is Theorem 5.22.

Again, if we let n − 1 layers of a partial Latin cube of order n be the criti-

cal sets described in Theorem 5.22 with the remaining layer empty, then by

Lemma 8.17, the partial Latin cube is a critical set of the full n-Latin cube.

Corollary 8.19 Let P be a partial n-Latin cube of order n with one empty

layer and let each of the n− 1 non-empty layers of P be of the form:

1, 2, ..., n− 1 · · · 1, 2, ..., n− 1 1,2,...,n-1

...
. . .

...
...

1, 2, ..., n− 1 · · · 1, 2, ..., n− 1

· · · n

.

Then P is a critical set of the full Latin cube of order n.

Each non-empty layer in the above critical set is the critical set of the full

n-Latin square with the smallest size we have found. So this analogous result

for the full n-Latin cube follows.
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Corollary 8.20 The size of the smallest critical set of a full Latin cube of

order n satisfies the inequality scs ≤ (n− 1)[(n− 1)3 + 1].

8.5.2 Saturated critical sets

If each non-empty cell of a critical set of the full n-Latin cube contains N(n),

then by Theorem 5.7 and Lemma 8.17, the following construction gives one

type of these critical sets.

Construction 8.21

1,2,...,n · · · 1,2,...,n 1,2,...,n

...
. . .

...
...

· · ·

· · ·

1,2,...,n · · · 1,2,...,n 1,2,...,n

...
. . .

...
...

1,2,...,n · · · 1,2,...,n

· · ·

...

1,2,...,n · · · 1,2,...,n 1,2,...,n

...
. . .

...
...

1,2,...,n · · · 1,2,...,n

· · ·

Corollary 8.22 The partial n-Latin cube of order n given by Construction 8.21

is a saturated critical set of the full n-Latin cube.

We have also found other forms of these types of saturated critical sets. In

particular, the following is a saturated critical set of the full 3-Latin cube.

1,2,3 1,2,3

1,2,3

1,2,3 1,2,3

1,2,3

1,2,3

1,2,3

1,2,3 1,2,3

Lemma 8.23 Let P be the saturated partial 3-Latin cube above. Then P is a

critical set of the full 3-Latin cube.
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Proof. We first show that P is a defining set of the full n-Latin cube. Without

loss of generality, suppose that P1,1,3 = {1, 1, 2}. Then the third layer must

complete to:

1,1,2 2,3,3 1,2,3

2,3,3 1,1,2 1,2,3

1,2,3 1,2,3 1,2,3

.

Thus P1,2,1 = {1, 1, 2}. This in turn forces the first layer to be:

1,2,3 1,1,2 2,3,3

2,3,3 1,2,3 1,1,2

1,1,2 2,3,3 1,2,3

,

which violates the definition of a 3-Latin cube as the entry 3 occurs more than

three times in the file {P2,1,1, P2,1,2, P2,1,3}. Thus P1,1,3 = {1, 2, 3}. Hence, the

third layer completes to the full 3-Latin square forcing the other two layers to

follow suit. We now show that P is a minimal defining set. Observe that other

than P3,3,3, every other non-empty cell is contained in a partial sub-cube of P

conjugate to:

1,2,3 1,2,3 1,2,3 1,2,3

.

Thus if we remove any of the entries of any one of these cells, then by Corol-

lary 8.18, P has at least two completions. On the other hand, if we remove

an entry of P3,3,3, then without loss of generality, another completion of P is

given below.

1,2,3 1,2,3 1,2,3

2,2,3 1,2,3 1,1,3

1,1,3 1,2,3 2,2,3

2,2,3 1,2,3 1,1,3

1,1,3 1,2,3 2,2,3

1,2,3 1,2,3 1,2,3

1,1,3 1,2,3 2,2,3

1,2,3 1,2,3 1,2,3

2,2,3 1,2,3 1,1,3
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Corollary 8.24 The size of the smallest saturated critical set of the full 3-

Latin cube is at most 21.

Since the size of the critical set of the full 3-Latin cube given by Construc-

tion 8.21 is 24, Lemma 8.23 raises the interesting open question below:

Open question: What is the size of smallest saturated critical set of the full

n-Latin cube?

In the following results, P is a saturated partial n-Latin cube. We construct

a partial n-Latin square f(P ) = P ′ where symbol k ∈ P ′
i,j if and only if

Pi,j,k = N(n). Note that P ′ is a subset of the full n-Latin square and thus the

process is reversible, i.e. f−1 is well-defined.

Theorem 8.25 Let P ′ be a partial n-Latin square. Suppose that there is a

Latin trade T and disjoint mate T ′ such that T and T ′ contain two distinct

entries and T ∪T ′ ⊆ P̄ ′. Then f−1(P ′) is not a defining set for the full n-Latin

cube.

Proof. This theorem follows from Corollary 8.18. �

Corollary 8.26 If P ′ is a defining set for the full n-Latin square then f−1(P ′)

is a defining set for the full n-Latin cube.

We illustrate this corollary with the following example:

Let

P ′ =

1,2

2,3 2,3

2,3 2,3

.

Then
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P =

1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

1,2,3 1,2,3

which is clearly a defining set of the full n-Latin cube.

The converse of Corollary 8.26 however, is not true. The following partial

3-Latin square:

1,2 2,2

1 3

3 2,3

which corresponds to the saturated partial 3-Latin cube from Lemma 8.23 also

completes to:

1,2,3 1,2,3 1,2,3

2,2,3 1,2,3 1,1,3

1,1,3 1,2,3 2,2,3

and thus not a defining set of the full 3-Latin square.



Chapter 9

Conclusion

In this chapter I summarize the main results in this thesis. I also include here

the main conjectures and open questions that have been raised during my

research, with the hope that they will stir enough curiosity and hence research

interests in this subject.

In a nutshell, my thesis explored the properties of the critical sets of the

full n-Latin square and other combinatorial structures that either generalize

or are generalized by multi-Latin squares. The original inspiration was the

following well-known result on designs (a special case of Lemma 3.4) which

largely motivated my interest in the critical sets of the analogous full n-Latin

squares.

Lemma 9.1 Let A be a design and let B be a full design of the same order.

If D is a minimal defining set of A, then there exists a minimal defining set

D∗ of B such that D∗ ∩ A = D.

It was already known then that the analogous result for Latin squares gives

a defining set of the Latin square (see Theorem 1.3). The question was whether

the intersection can be a critical set of the Latin square. This question did not

turn out to be difficult to answer. In Chapter 1, we showed that we can easily

construct a defining set, D, of the full n-Latin square such that for some Latin

square, L of the same order, D ∩ L is a critical set of L with minimum size.
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In fact we showed that any critical set of a Latin square of order n is the

result of the intersection of a defining set of the full n-Latin square and the

Latin square.

Theorem 9.2 Let Ln be the full n-Latin square and let L be a Latin square

of the same order. If C is a critical set of L, then there exists a defining set,

Dn of Ln such that Dn ∩ Lb = C.

Having solved the initial research question, we turned our attention to

studying the size and structure of critical sets of the full n-Latin square. Strate-

gically we approached this task by exploring the structure of critical sets of

not only full n-Latin squares with small orders, but also those of full Latin

rectangles with cells containing less than n entries.

In Chapter 4 we were able to fully classify the critical sets of the full

(m,n, 2)-balanced Latin rectangle by Theorem 4.2 and Theorem 4.3. Here we

used the notion of a pair of good vectors (a, b) (see Definition 4.2) to give

the necessary and sufficient condition for a critical set of the full (m,n, 2)-

balanced Latin rectangle. That is, a partial (m,n, 2)-balanced Latin rectangle

is a critical set of the full (m,n, 2)-balanced Latin rectangle if and only if it is

an element of the set of arrays A[a, b] described in Definition 4.1.

Building on the results of Chapter 4 we showed in Chapter 5 that the size of

a saturated critical set is always equal to n3− 2n2−n. In addition to that, we

showed that for the critical sets of the full n-Latin square, (n3−2n2+2n)/2 ≤

scs(n, n) ≤ (n− 1)3 + 1 and n3 − n2 − 3n+ 4 ≤ lcs(n, n) ≤ n3 − 3.

We thus made the following conjectures:

Conjecture 5.25 The size of the smallest critical set of the full n-Latin square

is (n− 1)3 + 1.

Conjecture 5.28 The size of the largest critical set of the full n-Latin square

is n3 − n2 − 3n+ 4.

Next in Chapter 6 we attempted to establish a spectrum of critical sets of
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all sizes between the conjectured bounds above. We presented constructions of

critical sets of the full n-Latin square and showed that from size n3− 3n2+3n

to n(n−1)2+n−2 the spectrum is complete. It remains an intriguing problem

though to determine whether each size exists for sizes between n(n−1)2+n−1

and n3 − n2 − 3n+4. Many of the sizes in this part of the spectrum are given

by the construction in Lemma 6.5.

A critical set of the full n-Latin square is of course a completable par-

tial n-Latin square; Chapter 7 explored the completability of partial k-Latin

squares. After showing in Lemma 7.5 that any partial k-Latin square can be

transformed into a semi-k-Latin square of the same order, we were able to

show in Theorem 7.7 that any partial k-Latin square of order n with at most

n− 1 entries from N(n) can be completed to a k-Latin square of order n.

Furthermore, we showed in Theorem 7.9 that any partial k-Latin square of

order n with at most n− 1 non-empty cells can be completed.

We also looked into premature partial k-Latin squares in this chapter and

our results here led to the following conjecture:

Conjecture 7.18 The size of the smallest premature k-Latin square of order

n is k(n− 1) + 1.

Of course if this conjecture is true then the conjecture below which we

made earlier in Chapter 7 follows.

Conjecture 7.8 A partial k-Latin square of order n with at most k(n − 1)

entries can be completed.

In Chapter 8, we focused on generalizing known results on Latin squares

(and results from other chapters) to Latin cubes. For instance, ‘Can we solve

(the equivalent of) Evans’ conjecture for Latin cubes?’. We considered the

following conjecture:
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Conjecture 8.6 [79] If P is a partial Latin cube of order n with at most n−1

entries, then P can be completed.

In Section 8.4 we showed that a critical set of a Latin cube of order n ≥ 3

must contain at least n entries.

By generalizing the results on the critical sets of the full n-Latin square

from Chapter 5, we also showed that the size of the smallest critical set of a

full Latin cube of order n is at most (n− 1)[(n− 1)3 + 1].

However if the critical set is saturated, then Lemma 8.23 raises the inter-

esting open question below:

Open question: What is the size of smallest saturated critical set of the full

n-Latin cube?

Unlike n-Latin squares, this appears to be a more difficult question.



Chapter 10

Appendices

10.1 Appendix A: Some graph theory defini-

tions and results

A graph is an ordered pair, G = (V,E), where V is a finite set of the vertices

or nodes of the graph and E is the set of unordered pairs of elements of V , i.e.

E ⊆ {{u, v} : u, v ∈ V }, called the edges of the graph. Visually, we represent

each vertex by a point and each edge by a line connecting two points. Two

vertices v1 and v2 of a garph are neighbours or adjacent if connected by an

edge and the number of edges incident on a vertex v is called the degree of v

denoted by δ(v).

We say that a graph G = (V,E):

• is k-regular if δ(v) = k for all v ∈ V .

• is simple if and only if {∀v ∈ V : {v, v} /∈ E} (i.e. no loop edges) and

each element of E is distinct (i.e. no multiple edges).

• contains a perfect matching if there exists a set of distinct edges of G in

which every vertex is incident to exactly one edge.

• has a proper edge colouring if there is a mapping f from E into some

finite set C such that two edges of E which are incident to the same

vertex have different colours.
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• is k-edge-colourable if there exists a finite set C such that |C| ≤ k.

• isomorphic to a graph H if there exists an edge-preserving bijection,

f : V (G) → V (H) (between their respective vertex sets) such that any

two vertices u and v of G are adjacent if and only if f(u) and f(v) are

adjacent in H.

Figure 10.1: The graph G = (V,E)

Let e1, e2, ..., en−1 be edges of a graph G = (V,E) for which there is a

sequence υ1, υ2, ..., υn ∈ V such that ei = {υi, υi+1} for i = 1, 2, ..., n − 1.

The sequence of edges e1, e2, ..., en−1 is called a path in G and the sequence

of vertices υ1, υ2, ..., υn is called the vertex sequence of the path. A path with

vertex sequence υ1, υ2, ..., υn, υ1 (where the only repeated vertex in the vertex

sequence is υ1) is called a cycle.

A graph G = (V,E) is:

• connected if every pair of distinct vertices is joined by a path.

• a tree if it is simple, connected and contains no cycle.

We next discuss the idea of a subgraph. A graph, G′ = (V ′, E ′), is a

subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. For example:

Let G be the graph in Figure 10.1, and G′ = (V ′, E ′) be a simple graph

with V ′ = {v1, v2, v3} and E ′ = {{v1, v2}, {v2, v3}}. Then G′ is a subgraph of
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G.

A set of triangle subgraphs of G such that each edge of G belongs to

exactly one triangle is called a triangle decomposition of G (see Section 1.1 for

an example).

In this thesis, a Latin structure may also be represented as a bipartite graph

or a tripartite graph. We define a k-partite graph as a graph whose vertices

can be divided into k disjoint sets such that no two vertices from the same set

is joined by an edge. 2-partite and 3-partite graphs are called bipartite and

tripartite graphs respectively. A complete k-partite graph is one in which there

is an edge between every pair of vertices from different disjoint sets. These

graphs are denoted by Ks1,s2,...,sk where si is the size of each disjoint set. The

graph K1,k is called a star.

Figure 10.2: A bipartite graph

with V1 = {v1, v3, v5} and V2 = {v2, v4, v6}.

10.1.1 Some known results on trees

The following are known results on trees that we exploited in this thesis.

Theorem 10.1 Every tree has at least one node of degree 1.

Proof. Let Tn be a tree with n vertices, vi, where n ≥ 1 and 1 ≤ i ≤ n.

If n = 1, then δ(v1) = 1 since by definition a tree is simple and cannot

have loop edges.
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Otherwise if n > 1 then we show that the longest path, P , in Tn has a node

of degree 1.

Assume that P is the longest path in T with vertex sequence

υ1, υ2, ..., υk−1, υk.

Since P is a subgraph of Tn, P is simple. Suppose that δ(υk) > 1. Then, υk

has another neighbor ω ̸= υk−1. If ω is a vertex in P then we have a cycle in

Tn, but this is impossible since Tn is a tree. On the other hand, if ω is not

in P , then there exists a path Q, with vertex sequence υ1, υ2, ..., υk, ω, longer

then P . In both cases, we have a contradiction, so δ(υk) = 1. �

Theorem 10.2 If T is a tree with n vertices then T has n− 1 edges.

Proof. We prove this theorem by induction.

Let Tn be a tree with n vertices and E(n) = n− 1, be the number of edges

of T. Then for n = 1, E(1) = 0 is obviously true.

Now we need to show that if E(k), k ≥ 1, is true then E(k+1) is also true.

So our induction hypothesis is that E(k) = k − 1.

Let Tk+1 be any tree with k+1 vertices. Since Tk+1 is a tree and trees have

no cycles, then by Theorem 10.1, at least one vertex of Tk+1 must be of degree

1. Suppose that v is one such vertex. Then removing v from Tk+1 leaves us

with Tk which, by the induction hypothesis, is also a tree with k− 1 edges. So

E(k + 1) = E(k) + 1 = k − 1 + 1 = k. �
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10.2 Appendix B: Hall’s theorem

Let R1, R2, ..., Rn be subsets of N(n). We define a system of distinct represen-

tatives (denoted by SDR) for the family (R1, R2, ..., Rn) to be an ordered set

(r1, r2, ..., rn) of elements of the set N(n) such that:

• ri ∈ Ri for all i ∈ N(n);

• ri ̸= rj for i ̸= j.

For example, if R1 = {1, 2}, R2 = {1, 2, 3} and R3 = {2, 3}. Then the

possible SDRs of (R1, R2, R3) are (1, 2, 3), (1, 3, 2) and (2, 1, 3).

Let R1, R2, ..., Rn be sets with symbols from the set N(n) and let

R(I) =
∪
i∈I

Ri

for I ⊆ N(n). Then the family (R1, R2, ..., Rn) satisfies Hall’s condition if for

all I ⊆ N(n);

|R(I)| ≥ |I|.

The following theorem was proved by P. Hall [61] in 1935.

Theorem 10.3 [61] Let R1, R2, ..., Rn be sets with symbols from the set N(n).

Then there exists an SDR for (R1, R2, ..., Rn) if and only if Hall’s condition

holds.

For a bipartite graph G = (V,E) with partite sets V1 and V2 where N(A)

(for some set A ⊆ V1, V2) is the set of neighbours of A, Hall’s theorem may be

phrased as follows:

Theorem 10.4 Let G = (V,E) be a bipartite graph with partite sets V1 and

V2. Then G has a perfect matching if and only if |N(A)| ≥ |A| for all subsets

A of V1.

The theorem below is a well-known result on bipartite multigraphs that we

use in the proof of Lemma 7.5.
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Theorem 10.5 A bipartite multigraph G of degree at most k is k-edge-

colourable.

Proof. Observe that if G is not k-regular then we can simply add dummy

edges to form a bipartite multigraph G′ that is k-regular. It suffices therefore,

to show that the theorem holds if G is k-regular. Clearly, Hall’s condition is

satisfied thus G contains a perfect matching by Theorem 10.4. We colour all

edges of this matching with one colour then remove them from G to obtain

a (k − 1)-regular bipartite graph. We repeat this process k times and we are

done. �
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