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ABSTRACT
Interactive system design is typically more successful if it is an
iterative process involving collaboration between multi-disciplinary
teams with different viewpoints. While some sub-teams may focus
on the creative aspects of the user interface design and other sub-
groups on the implementation of required functionality, all must
ensure that they are working towards the same goal. They must also
satisfy the requirements and needs of all stakeholders. Although
many suggestions have been made as to how such design might be
supported in a more formal way (such as by using a model-driven
process), less focus has been given to managing the co-ordination
of design sub-teams following a creative process. In this paper we
propose a semi-formal framework to describe and to compare design
spaces, and the external design representations within those spaces.
The framework is based on ideas from interaction design and on
formal refinement approaches. It suggests a distinction of design
options into alternatives and variants to describe and guide processes
of idea generation and convergence within, and between, different
design sub-spaces and sub-groups. We provide a small example
to illustrate our approach and to show how it can be implemented
by using standard formal approaches alongside less formal design
notations and human-computer interaction processes.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces—
theory and methods.; D.2.4 [Software Engineering]: Formal Meth-
ods.

Keywords
Interaction design; design spaces; refinement; formal methods; user-
centred design.

1. INTRODUCTION
The field of human-computer interaction (HCI) accommodates di-

verse approaches or schools of thought to interactive system design,
each with their own justification and their own focus of attention.
In user-centred design (UCD), for example, the design process is
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depicted as an iterative process with some form of user and other
stakeholder involvement. External design representations such as
scenarios and prototypes are seen as essential means to establish
a shared understanding among participants during the design pro-
cess [17]. Design representations are also studied in interaction
design research, but with more interest on their role in the design-
ers’ exploration of design spaces and in their decision making [16].
Engineering approaches to HCI, in contrast, put much emphasis
on technical aspects, e.g., on a separation between the user inter-
face (UI) part and the application part of the interactive artifact.
Here, formal models such as task and UI models and systematic
transformation and refinement steps are employed to ensure desired
properties of the system under consideration [6]. Although the
above mentioned, and other, approaches generally acknowledge that
interactive system design requires different viewpoints and an elab-
orated division of labour, there are gaps or even tensions between
them due to their specific goals, assumptions, activities, resources,
and outcomes. For example, Dix et al. [12] point out that “the ideal
model of iterative design, in which a rapid prototype is designed,
evaluated and modified until the best possible design is achieved...
is appealing” but that it is also important to use “more principled
approaches” or formal techniques to be able to overcome bad ini-
tial design decisions and understand the reasons behind usability
problems, not just detect the symptoms.

In this paper, we are interested in developing a better under-
standing of the interplay of such heterogeneous design practices for
successful interaction design. The starting point is the assumption
that however intangible a design process might be there always
emerges at least a minimum set of requirements (expressed in some
way) which must be satisfied by the final design. Therefore, the col-
laborative and iterative design process must not only acknowledge
different design practices resulting in diverse design representations
ranging from UI sketches to formal system models, but it must
also ensure that where design decisions are made a) they are con-
sistent with existing requirements or satisfy new constraints, and
b) their why/when/what is recorded for future reference or back-
tracking. What we consider is the designers’ ability to compare
different design representations and understand how they are re-
lated and whether or not they satisfy some initial or evolving design
specifications.

Our work is guided by the concept of design space as it is used in
interaction design. It describes the designers’ moves as intertwined
steps of problem setting and problem solving. Design is seen as
a goal-directed exploration of emerging, and often externally rep-
resented, options and constraints. It is an iterative generation and
convergence of concepts or design ideas [5]. At the same time, the
presented work is anchored in refinement approaches from formal
approaches to HCI and from computer science in general [27]. As a
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result, the paper provides a semi-formal framework that extends the
common ideas of interaction design spaces with a more elaborated
description of their structure, the relationships between external de-
sign representations, and the nature of design options and decision
making. In particular, the new framework takes into consideration
the collaboration of heterogeneous sub-teams who populate design
sub-spaces. Participants in such complex design spaces are engaged
in multiple designer-user relationships when it comes to the cre-
ation and use of the different design representations. Sub-teams
are provided with various design representations from outside their
sub-space which inform their local activities and which they partly
have to refine. They in turn share their results with others to achieve
the overall design goals.

The framework suggests a distinction between alternatives and
variants as two different types of design options. Basically, design
options that are considered within a design sub-space are called
alternatives if a decision is locally made to keep only one of them in
the further design process and share it with others. In contrast, a set
of design options are called variants if they refine the same design
concept and if they are kept in the design process by providing
an adequate representation to other sub-spaces. Alternatives and
variants are an important means to balance idea generation and
convergence within and across design sub-spaces. They help to
support different viewpoints and to avoid premature commitments.
To give a simple example, UI designers may provide a user interface
which offers different ways (variants) to perform a certain task and
it is the user who decides in a specific task situation which of the
possible execution paths to follow.

The paper starts with a background and related work section
before introducing the general ideas of the framework for interaction
design spaces and illustrating them with a more substantial example
design scenario. The semi-formal description of the framework
describes the ideas more precisely. The concepts presented, such
as refinement relationships between external design representations
and alternatives and variants acknowledge both the local work of
design sub-teams and their collaboration. They thus make possible
a more effective integration of the designers’ different expertise and
contributions to a design project. The framework particularly aims
at supporting a better integration of formal HCI methods and more
informal design approaches. It is suggested in the discussion part
that the framework helps to reflect upon existing design practices
or to plan future ones. The paper closes with some conclusions and
with a brief outline of future work.

2. BACKGROUND AND RELATED WORK
In this section, we briefly review existing concepts of design

spaces that help explain the nature of design activities and their
outcomes. We discuss the role of external design representations in
collaborative settings and we examine the concept of refinement as
a means to relate such design representations.

2.1 Design Spaces
There are different views on the concept of design space. In

the literature on engineering interactive systems and UI design, a
design space is often understood as being defined along a set of
dimensions. For example, Nigay and Coutaz [23] suggest a design
space for multi-modal systems in terms of level of abstraction, use
of modalities and fusion. Such orthogonal dimensions and corre-
sponding values identify potential design constraints and provide
classifications of particular interactive systems (e.g., a classification
of multi-modal systems in [23] or of ephemeral user interfaces in
[14]). Design spaces, in this sense, provide a vocabulary for char-
acterising (certain aspects of) systems. They are tools for choosing

Figure 1: Representation of a design space as QOC-diagram. The
gray boxes refer to the chosen solution with each such box standing
for the selected option for one design question.

Figure 2: The designer’s moves in a design space: Laseau’s overlap-
ping funnels.

the right design in a specific design context.
Other, and in the context of this paper more relevant, approaches

understand design spaces as related to specific design problems or
projects. For MacLean et al. [20], a design space is “an explicit
representation of alternative design options, and the reasons for
choosing among those options”. The authors point out that “HCI
design is much more informal, more open-ended and more poorly
understood than some other domains”. Therefore, they and other
advocates of design rationale suggest that the result of a design
process should be conceived as a design space rather than a single
specification or product. The QOC-notation [21] is one of the
most popular notations for design space exploration and supports
a structured representation of design ideas (Options) along design
Questions. Criteria help to assess the pros and cons of each option.
Figure 1 shows a schematic QOC-diagram.

According to Buxton [5], designers need to bring creativity to
both the creation of distinct options and the definition of criteria or
heuristics to choose between those options. While design represen-
tations such as QOC-diagrams depict how options and criteria are
related to each other they do not explicitly represent the process of
their creation and use. The funnel model of Figure 2 (e.g., in [5])
puts more emphasis on the designer’s goal-directed actions. The
generation of design options (concept generation) is represented by
the elaboration funnel and has to be in balance with decision making
(concept convergence) in the reduction funnel. The chosen design
solution is represented by the focal point. Refined versions of the
funnel model assume some front-end work resulting in a product
design specification. This is the starting point for an alternation
between concept generation and concept convergence step-wise
leading to finer levels of granularity in the design (see [5] for an
overview). Westerlund [26] points out, though, that “the initial brief,
assignment or problem that is one constraint on the design space will
not be stable during the process”. He also criticises design space
models using the funnel-metaphor for their focus on one goal and



one final solution, which may impede a diversity of design ideas.
Although the above brief review shows that there is no common

definition of design spaces it reveals a shared understanding of it as
a conceptual tool to understand and guide design activities. Some
authors still distinguish between problem space and solution space.
However, it is generally acknowledged that design problems are
typically ‘wicked’ problems [25] requiring an intertwined ‘problem
setting’ and ‘problem solving’ and that external representations are
of importance in such creative processes. Therefore, similar to other
approaches, no such distinction is made in this paper.

2.2 External Design Representations
External representations are ubiquitous in interaction design [13].

Gaver [16] describes the dual function of design representations
(referred to by him as proposals) as follows. “Proposals may vary
widely in their specificity, from evocative and unrealisable sketches,
to abstract representations of intention, to relatively complete spec-
ifications or scenarios. In each case, the role of design proposals
is both to create and constrain.” Westerlund [26] even considers a
design space as the set of “all possible design proposals that would
be regarded as meaningful to use by some people in relevant con-
texts”. In his view, proposals that work lie within the design space,
proposals that do not work are outside the design space. Designers
externalise ideas to further shape or discard them, but externalisation
also enables designers to work collaboratively. Design representa-
tions can be shared, negotiated, and agreed on [15], and then they
can serve as a brief for further elaboration and refinement of what
the interactive system under design will and will not be [16]. Two
aspects are discussed in more detail below: first, multi-disciplinary
design teams and their use of design representations, and second,
implications for the refinement of design proposals until the final
product is reached.

2.2.1 Multi-disciplinary Design Teams
Designing interactive software requires knowledge of the applica-

tion domain and expertise in different areas of psychology, software
engineering and many other fields. Typically, multi-disciplinary
teams considering a design from diverse viewpoints come up with
more successful solutions [19]. Of course, such diversity can also
result in ‘culture clashes’ due to different professional backgrounds
[2]. Mackay [19] states, for example, that “scientists are trained to
seek explanations of existing phenomena, engineers are trained to
provide technical solutions to well-defined problems, and designers
are trained to explore a design space and find solutions that ‘work’.”
The author recommends complementing educational programs in
single disciplines by instructional formats that support an under-
standing and appreciation of other disciplines and discuss possible
interactions with them [19]. Bellotti et al. [2] argue that for an
effective collaboration, a revision of each others’ assumptions can
be necessary. As an example, they refer to the conventional notion
in the software engineering community that “formal methods are
only useful if used within a structured development context from the
beginning of a project, through refinement, to implementation”. Dif-
ferent views of formal methods, and more specifically refinement,
are discussed below.

Design representations for multi-disciplinary work need to sup-
port the creation of a shared understanding among all collaborators1,
but at the same time they have to serve the local needs of specialised
sub-teams. One way to increase each others’ receptivity is to develop
methods that ‘couple’ models and representations from different
approaches such as task models and UI models in model-based de-
1It should be emphasised, though, that there is no need for heteroge-
neous design sub-teams to find full consensus.

sign [6, 24] or formal modeling and prototyping [9]. However, the
co-evolution of different types of design representations that is es-
sential to interleave the activities of heterogeneous design sub-teams
in an effective way is still poorly understood [10]. In this paper, we
use a relaxed version of refinement to relate design representations
and to support the idea of design as a goal-directed activity in the
sense that however intangible a design process might be there al-
ways emerges a set of requirements which is expressed in some way
and must be satisfied. Additionally, our framework of interaction
design spaces borrows inspiration from Morgan’s idea of client-
programmer relationships [22] mentioned in the next sub-section to
describe collaboration at a sufficiently abstract level.

2.2.2 Refinement
The concept of refinement is central to many formal software

engineering development methods. At its simplest it describes the
transformation from initial specification to final implementation.
Formally this requires a specification language with associated re-
finement theory or algebra which is used to describe how a less
concrete specification can be transformed into something closer to
an implemented system. This is repeated until finally the implemen-
tation is reached.

Different types of refinement can be used depending on the nature
of the transformations required, e.g. data refinement, operation
refinement, trace refinement etc. In the example we give here for our
framework we will focus on data refinement, specifically step-wise
refinement, where a relation (often referred to as a ‘retrieve relation’
or ‘abstraction relation’) can be used to define how the abstract and
the more concrete specification are related to each other at each
step, where each step is an allowable operation of the system being
specified. The algebra ensures that properties that are true of the
specification remain true in the implementation and so provide the
structure for guaranteeing correctness throughout the development
lifecycle, see [27, 8] for more detailed explanations.

The idea of refinement has been generalised leading to more lib-
eral approaches to be used over a wider set of problems. Morgan
[22] suggests banishing the distinction between specifications, sub-
specifications and programs and considering all of them as contracts
which have to be negotiated between clients and programmers. “A
program has two roles: it describes what one person wants, and what
another person (or computer [if the program is executable code])
must do” [22]. Refinement, in Morgan’s understanding, is about
maintaining utility rather than hiding substitutions of abstract spec-
ifications of a system’s functions and behaviour by more concrete
ones: the client gets at least what they had before or even better.
According to this view, transformations are considered in terms of
levels of abstraction, removal of nondeterminism, concretisation of
data types etc. A similar, less formal approach has been taken more
recently in [3]. Here, Bowen and Reeves apply a lightweight notion
of refinement to UI design by relating informal representations such
as UI sketches and UI prototypes to formal models of the overall
system to ensure that, in a process based on division of labour, UI
and system designers are working towards the same end goal. We
are similarly interested in integrating different design practices.

What we will describe is not refinement in its traditional sense,
but the ability to consider different design representations which
may emerge from a design process and understand how they are,
and need to be, related to each other. In this paper we take some of
the key formal ideas - such as data refinement and retrieve relations,
and frame them within a design environment. We are not so much
focussed on ensuring correctness of an implementation in terms
of its behaviours, but rather an adherence to design and functional
requirements in an evolutionary and collaborative design space. We



discuss this further later.

3. THE FRAMEWORK
We first describe the objectives of the suggested framework, intro-

duce the key ideas and concepts, and illustrate them with an example
design scenario. The semi-formal description that follows states
the ideas more precisely and thus provides more opportunity for
reflecting upon them.

3.1 Objectives
This paper aims at better understanding the interplay of hetero-

geneous design practices for successful interaction design. The
concept of design space is taken as a starting point since it explains
design as a goal-directed activity but with interleaved problem set-
ting and problem solving. The creation of design ideas and the
definition of appropriate criteria to assess them are equally valued
for finding a good solution. The objective of the framework is to
enrich this understanding of design spaces by a more detailed con-
sideration of some of the above discussed points. This gives rise to
the following questions:

• While the mediating role of external design representations
is generally acknowledged, current design space approaches
put less emphasis on the question of how representations in
an iterative design process have to be related to ensure that
the final representation or product has required properties and
the overall design goal has been achieved. We have seen that
formal approaches to software engineering and interaction
design provide methods for a stepwise refinement of models.
How can we integrate such refinement ideas into a collabora-
tive design process with multiple viewpoints?

• Few design space approaches explicitly consider consequences
of division of labour in multi-disciplinary work. How can we
support specialised and collaborative work, reconcile partly
heterogeneous practices, and make competent decision mak-
ing possible in a distributed process of idea generation and
convergence within and across sub-teams?

3.2 Key Ideas
Central elements of a design space are external design represen-

tations, in whatever form they appear (written specifications, UI
sketches, prototypes, task models, user models, QOC diagrams
etc.). In what follows, we briefly refer to all such representations as
designs.

3.2.1 User-Designer Relationship
Each design space has an entry point and an exit point indicating

the underlying user-designer relationship. Figure 3 illustrates a
single design space with designs depicted by ellipses. Via the entry
point, the user provides the designer with some designs representing
requirements. The designer in turn is expected to provide designs
at the exit point which somehow satisfy those requirements. The
designer’s activities within the design space result in new (local)
designs which they can relate to each other but also discard again.
We introduce the notion of a ‘valid’ design space where everything
contained within it (all possible designs) could lead to a satisfactory
final design. These may be partial designs, in that they only consider
some parts of a solution, in which case they do not satisfy all
requirements, but rather they do not break any.

3.2.2 Alternatives and Variants
Designs within the design space may be independent options sat-

isfying the same requirements but in different ways. They may also

Figure 3: User-designer relationship and (unrelated) designs in a
single design space.

be assessments of such options supporting the designer’s decision
making. A set of options is called alternatives if the designer is able
to make a decision and only one of them leaves the design space
as the currently selected one at the exit point. Options are called
variants if all of them are provided to the user to let them decide
which one to apply in a specific situation. In other words, a single
solution at the exit point represents a closed process of generating
possible solutions and choosing a good one while variants stand for
a somewhat open decision process. In the latter case, the designer
provides options to the user which share some common elements,
but not all, to satisfy the requirements. However, the designer is
aware that it is beyond their competency to make a selection or that
a selection would unnecessarily limit the user’s activities, including
their creativity. This awareness is especially important in multi-
disciplinary work as discussed with the introduction of complex
design spaces below.

3.2.3 Relating Designs: Creativity, Design Goals and
Iterations

There is an implication in Figure 3 that we move from an entry
point on the left towards the exit point on the right, and that designs
exiting are more ‘refined’ (closer to an implementable solution)
than those at the entry point. However, this does not mean that
within the design space we work from left to right. Within the
space the designers move back and forth in levels of abstraction and
may experiment with different (perhaps conflicting) ideas before
finalising some elements and leaving the design space. When we
talk about ‘designing’ we mean all, and any, activities that may
occur as part of the creative process of transforming an initial idea
into an implementable solution. In the context of this paper, we are
most interested in how designers relate designs in the design space
to ensure that there is a ‘chain’ of refined designs from the entry
point to the exit point to ensure desired properties of the final result
(i.e., to achieve the design goals). Iterations are necessary if no
refined design can be found or agreed on (a perhaps more usual than
unusual situation). Iterations in this sense require some involvement
of the user and often a revision of the designs in the entry point.
Such ‘cycles’ are indicated in Figure 3.

3.2.4 Types of Refinement
We talk about ‘refinement’ in this paper in the most general

sense. That is, the concretisation of any form of designs in the
direction of an implementation. We therefore consider some of the
principles of refinement (removal of non-determinism, principle of
substitutivity, satisfaction of expressed requirements and relations
between designs) as guides within the design process or as a means
to compare designs and understand their differences. In order to



consider any sort of relationship between different designs we do,
of course, need a vocabulary to do so, as well as an understanding
of what properties we are interested in which will form that relation.
Three types of refinement are suggested.

1. Refinements based on formal methods to ensure that we build
the system in the right way (correctness).

2. Lightweight notions of refinement for a transition between
informal and formal designs.

3. Refinements that are based on validation techniques to ensure
that we build the right system.

‘Traditional’ formal methods make refinements of the first type
possible but work on formal system specifications only. Refine-
ments of the second type support an integration of informal and
formal interaction design approaches to mitigate their disadvantages.
On the one hand, formal methods are often perceived as limiting
the creativity of interaction designers, on the other hand, informal
approaches may lack the required discipline to provide quality de-
sign [11]. An example of a lightweight refinement mechanism is
given in [3] which allows UI designers to retain valued techniques
such as UI sketching and prototyping whilst providing a formal
underpinning. Rittel [25] and others recommend embedding formal
design methods (‘first generation’ methods) into what they call ‘sec-
ond generation’ methods to validate a design. Second generation
methods for refinements of the third type include design rationale
methods that help the understanding of a design problem from mul-
tiple viewpoints and the finding of a good solution by comparing
different possibilities. Refined designs could be, for example, QOC-
diagrams [21] (see background section) or Softgoal Interdependency
Graphs (SIG) [7] which not only show the transformation of a set of
non-functional requirements into functional requirements but also
the argumentation process behind it. We later describe some of
the refinement methods in more detail while applying them in our
example design scenario.

3.2.5 Complex Design Spaces

Figure 4: Complex design space with sub-spaces.

So far, we have considered simple user-designer relationships
and our model of a single design space may be sufficient here, but
not for the description of collaborative design processes. In multi-
disciplinary work, different sub-teams may be working relatively
independently on different elements of the problem before combin-
ing their results together at a later time. In other words, there is
no one monolithic design space but rather it consists of sub-spaces
belonging to the sub-teams. A current prototype, for example, may
be the output from one design sub-space and become the input to
a different one together with other designs provided by other sub-
teams. Figure 4 illustrates this situation. T1 - T5 are all design

sub-spaces (such as that shown in Figure 3) which are linked in
several ways. Firstly they are all part of a larger design space and as
such represent designs for the same set of initial requirements (or
evolving requirements due to iterations), secondly designs enter and
exit these sub-spaces within the larger design space. As such there
is a recursive nature to the approach where within T1 - T5 there may
be further design spaces, and so on.

Our model of complex design spaces takes into consideration that
single design sub-spaces, and hence sub-teams, will not exist for a
whole development life-cycle and that a design process typically is
characterised by a complex network of user-designer relationships.
One person can be active in different groups and play the role of
user in some design contexts and the role of designer in others. In
participatory design, for example, ‘users’ (that is people who use
the end product) are actively involved in the design process and take
over designer roles as well. As another example, task-modelers in a
task-based design approach may be in a user-designer relationship
with UI-designers expecting them to consider their task descriptions
in the UI-designs.

Another consequence of multi-disciplinary collaboration that be-
comes more visible with complex design spaces is that sub-teams
must be aware of both their local design goals and the goals of the
overall design process. Iterations can take place at different levels of
the hierarchy of design sub-spaces and need to result in the revision
of corresponding designs. Specialised sub-teams must be able to
distinguish between decisions that should be made by themselves
within their local design space to reduce complexity in a reasonable
way and decisions which should be left to others because their view-
points and ideas might be important. In other words, sub-teams must
be able to recognise alternatives and variants in order to properly
distribute the generation of ideas and to inform their assessment
and decision making within and across design sub-spaces. We will
illustrate this in the example design scenario below.

3.3 Illustration of the Framework: An Exam-
ple Scenario

Here we introduce an example design problem and show how the
framework we have presented may be used to support the design.
The example is that of implementing a graphical tool for UML
class diagrams, such as might be used by computer science students
learning UML. From initial discussions with potential end-users of
such a tool we elicit the following requirements:

• D1: The tool should support creating and editing of a re-
stricted set of UML class diagrams. Users should be able to
add and remove classes which are characterised by unique
names. Users should also be able to add and remove inheri-
tance relationships between classes.

• D2: The tool should support common modelling strategies of
the users.

For reasons of brevity we deal only with the tool’s add-functions in
the rest of this example but readers should assume the corresponding
delete-functions are similarly described and included. Figure 5
illustrates the design sub-spaces for our design scenario with the
sub-teams and their goals. The design team, T is split into 2 sub-
teams, T1 and T2. Sub-team T2 is similarly split into two further
sub-teams, T21 and T22. In the framework, collaboration within
and between different sub-groups is understood by looking at how
designs are distributed and refined. In the following, we discuss the
creation and use of the designs indicated in Figure 5. The designs
in the entry and exit points of the sub-spaces are depicted by gray
ellipses, those created within sub-spaces are colored in light gray.



Figure 5: Design teams and sub-spaces in the scenario.

3.3.1 Sub-space T1 “Functional core design”
T1 are responsible for formally specifying the proposed system.

As we can see from Figure 5, their starting point for this is D1. They
begin by considering the system observations as a set of classes
which can be related in a superclass/subclass hierarchy. The key
components of this specification, D3, are given below using the Z
specification language [1]:

UMLModel
class : PCLASS
superclass : CLASS↔ CLASS

AddClass
∆UMLModel
i? : CLASS

i? < class
class′ = class∪{i?}
superclass′ = superclass

AddInheritanceRelation
∆UMLModel
super? : CLASS
sub? : CLASS

super? ∈ class ∧ sub? ∈ class
super? , sub?
superclass′ = superclass∪{super? 7→ sub?}
class′ = class

First a type called CLASS is given, then the system is defined by
an observation called class, which is any element of the powerset
for this type, and another called superclass which is a relation
between classes. The AddClass operation allows for a new class to
be added if it does not already exist and the AddInheritanceRelation
operation enables two distinct classes to be put into a super/sub class
relationship.

Subsequently T1 produce a second specification D4. They add
operations to enable the identification of superclasses as well as to
consider whether or not a model is valid. This states that if a class is
the superclass in a hierarchical relationship with another class, then
it cannot also be the subclass of that same class. This is added as a

validity check rather than a constraint to enable users of the system
to model in a manner that they think is correct and then find out
if indeed they are correct, rather than blocking them by disabling
invalid operations.

The new specification, D4, has a different system description
which no longer considers classes as distinct entities, but rather as
part of a relation of super/sub classes.

UMLModel
superclass : CLASS↔ PCLASS

Operations AddClass and AddInheritanceRelation are changed to
reflect this.

T1 also define two new operations in D4: isSuperClass which is
used by IsValidUMLModel, e.g.

isValidUMLModel
ΞUMLModel
valid! : BOOL

valid! = ∀c1,c2 ∈ domsuperclass ∧
isSuperClass(c1,c2) • isSuperClass(c2,c1) = false

D3 follows the initial requirements given in D1. T1 could prove
this formally using model-checking (over a restricted set of class
names) to show that new classes can be added but only names that
are unique are permitted (in fact we can see from observation alone
that the predicate i? < class in the AddClass operation meets this
condition). Similarly, T1 can show that inheritance relations can be
added. Although D4 introduced differences from D3, it is a data
refinement of D3 and this can be shown formally using the stepwise
refinement approach described earlier. A retrieve relation is created
between the UMLModel schemas of D3 and D4 and T1 show that
this relation continues to hold after each of the operations: AddClass
and AddInheritanceRelation. The relation describes how every ele-
ment in the class set of D3 is in the domain of the superclass relation
of D4, and that for every pair in D3’s superclass relation there is a
corresponding pair that can be extracted from the superclass relation
of D4.

Consider the case where three classes: ‘A’, ‘B’ and ‘C’ have
been added where ‘A’ is the superclass of ‘B’ and ‘C’. In D3 this is
represented by the class observation having the value {A, B, C} and
the superclass observation having the value {A 7→ B, A 7→ C}. In D4
the single superclass observation has the value {A 7→ {B,C}, B 7→ /0,
C 7→ /0 }. Once this relation is established sub-team T1 prove the
refinement by showing that if the relation holds after initialisation
(as described above) then it continues to hold after the AddClass or
AddInheritanceRelation operations occur. So, if a new class ‘D’ is
added, using D3’s operation the class observation becomes {A, B, C,
D} and the superclass observation remains unchanged. Using D4’s
operation the superclass observation becomes {A 7→ {B,C}, B 7→ /0,
C 7→ /0, D 7→ /0 }.

For this small example we can ‘see’ that the retrieve relation
continues to hold after the AddClass operation and can do the same
for AddInheritanceRelation. Usually we are dealing with more
complex data types and operations and T1 would need to perform
a formal proof of this, but inclusion of this is beyond the scope of
this paper. The property is trivially true for the isValidUMLModel
operation as the Ξ before UMLModel means that all observations of
the system remain unchanged (we often refer to such an operation
as skip). As these properties do then hold for D3 and D4 then the
refinement likewise holds.

The team T1 may continue developing other ideas (alternatives)
to refine D3, for example by abstracting both classes and super-



classes to a single entity (an observation called ‘elements’) to allow
for an "Add" operation that can be used to either add a class or an
inheritance relation (design D5). Or, they may instead have a design
D6 where an inheritance relation can be added where only the super-
class already exists and the subclass is then automatically created
as part of the operation. In order to prove refinement now, T1 must
consider more than just data refinement (as there are parameterised
operations), however the principles remain the same. That is, using
one of the existing refinement approaches for Z they continue to
prove that the refinement holds between these different designs.

Eventually sub-team T1 discuss pros and cons of the alternatives
D4 - D6 and agree on D4 to leave the exit point of their sub-space
(see Figure 5). In other words, T1 considered the three options as
alternative refinements of D3 among which they have to choose
without the need to involve the whole team T.

3.3.2 Sub-space T2 “Create and evaluate UI-prototype”
Meanwhile, T2 are responsible for the UI prototype. Specifically

sub-team T21 have the goal to create a UI-prototype and sub-team
T22 have to investigate UML modelling strategies which should be
supported by the UI. They found two ways a user might choose to
build their UML class diagram: A) create classes and then link them
into hierarchies, and B) create a parent class and then create all of its
subclasses. T22 may provide their results to the whole sub-team T2
(D7 in Figure 5) as a task model in CTT-notation [24] (see Figure
6).

Figure 6: UML-modelling strategies (CTT-model).

Sub-team T21 explore different options available for creating and
visualising elements in the UI and enabling the user to manipulate
them, for example:

• having a tool bar to drag and drop classes and hierarchies

• using mouse click and drags to create classes and links

• menu driven commands for all editing functions

• clickable visual representations of classes for editing

Figure 7 shows two of the UI-designs they are considering (D8
and D9 in Figure 5). In order to consider the relationship between
the designs D1, D8, and D9 (that is the relationship between the
UI-designs and functional requirements) sub-team T21 need a mech-
anism for describing the key elements of the UI-designs.

T21 use presentation models [4] for their notation, as they provide
a lightweight mechanism for describing both designs and imple-
mentations of interactive systems with a formal underpinning. A
presentation model describes an interface design by way of its com-
ponent widgets, their types and their behaviours. So the presentation
model for any design is a collection of tuples where each tuple
represents one widget and consists of:

(widgetname, category, (behaviours))

The name is an identifier for the widget, the category indicates
whether it is something a user interacts with to cause behaviour

Figure 7: D8 and D9 Prototypes.

(like clicking on a button) or something which provides feedback
to a user (like a display) and the behaviours are all behaviours
that are generated by, or responded to, by the widget. In this way
the presentation model describes both the visual elements of the
interface and all behaviours. Its underlying semantics also provide
a mechanism for a complete, unambiguous specification of the
interactive system being designed, although that is not our primary
focus in this work. The presentation models for the two prototype
designs in Figure 7 are, therefore:

D8 is
addClassBtn, ActionControl, (S_AddClass)
addHierarchyBtn, ActionControl, (S_AddHierarchy)
D9 is
NewClassMenuItem, ActionControl, (S_AddClass)
RClickAction, ActionControl, (S_AddHierarchy)

Using the presentation models sub-team T21 can, therefore, con-
sider the aspects of the designs which they consider important when
comparing them in some way - perhaps to look at concretisation of
ideas, or compare different design approaches as they do here. T21
can ‘prove’ (in a light-weight manner) that the behaviours of the
UI-prototypes D8 and D9 are the same, based on the presentation
models. They use the semantic function PModelBEH to extract the
set of all behaviours from the models and then compare them, in
this case:
D8BEH = {S AddClass,S AddHierarchy}
D9BEH = {S AddClass,S AddHierarchy}
So we see that both prototypes have the same intended behaviour
and their difference is in the design of user controls and actions.
Similarly, T21 can show that both designs are valid i.e., they satisfy
the requirements of D1.

D8 and D9 provide two different ways to allow the user to build
the same set of UML class models. However, sub-team T21 are
reluctant to decide which of the design optionsis preferable. They
are aware that the knowledge of sub-team T22 about UI modelling
strategies is needed to further evaluate them. Therefore, they decide
to consider the designs D8 and D9 as variants (with respect to D1)
to provide to the whole sub-team T2.

We stop the description of the example scenario at this point.
Sub-team T2 may continue, for example, with usability tests or with
creating a design rationale (design D10 in Figure 5) to analytically
evaluate the UI-designs D8 and D9 and to decide on one of them.
The task model D7 may serve here as one of the criteria for assess-
ment to ensure that the requirements of D2 are considered. The
design process may continue by bringing together the designs for
the functional core and the UI-part and implementing them. This
may include a redesign of the UI-prototype to allow users to perform
UML-model validity checks as additionally suggested by sub-team
T1 in their design D4. We will refer back to the example scenario in
the next section which introduces a semi-formal description of the
proposed framework for interaction design spaces. In particular, we
will further characterise the refinements carried out.



3.4 Semi-Formal Description of the Framework
In this section, we define a design space with respect to a given

design project. Let D be the set of external design representations
created and used in such a project (shortly referred to as designs)
and S be the set of involved stakeholders. Furthermore, we assume
a set of refinement approaches R containing formal, lightweight
and valid refinement approaches (R = RF ∪RL ∪RV ).

Definition 1 (Design Space)
A design space DS is a 7-tuple (DT,UT,D,Pentry,Pexit,DSS,
DRel), where

• DT ⊆S is the designer team and UT ⊆S is the user team
of DS.

• D⊆D is a finite set of designs that is in DS accessible by DT
(created and/or used by DT).

• Pentry ⊆ D is a finite set of designs which is provided by UT
via the entry point and represents external design constraints
and requirements.

• Pexit ⊆ D is a finite set of designs which is provided to UT
via the exit point and represents the design outcome.

• D\ (Pentry∪Pexit) is the set of internal designs of DS which
is only accessible by DT but not by UT .

• DSS is a finite set of design sub-spaces {DS1,DS2, ...,DSn}.
Each design sub-space DSi = (DTi,UTi,Di,P

entry
i ,Pexit

i ,
DSSi,DReli) with i ∈ {1, ..,n} is a design space itself, where

– DTi ⊆ DT and UTi ⊆ DT ,

– Di ⊆D and Di∩D = Pentry
i ∪Pexit

i ,

– The sets of internal designs of the design sub-spaces are
pairwise disjoint.

• DRel⊆Refine×D×D is a set of refinement relations between
designs of D that is created by DT (Refine ∈R).

We shortly write d1 v d2 if (v,d1,d2) ∈ DRel (design d2
refines design d1). More specifically, we write d1 vF / vL
/vV d2 if vF∈RF , vL∈RL , and vV∈RV respectively.

Strictly speaking, Definition 1 gives a static view on design spaces
and rather defines design space states. A dynamic view on design
spaces would, for example, include the ‘history’ of a design space
(e.g., as a sequence of states) and design activities changing the
state of design spaces. Such activities include creating new designs
within a design space, removing designs from it, modifying the set
of refinement relations, providing designs via the entry point or exit
point, modifying designs in the entry or exit point (via iterations),
modifying designer and user teams etc. In the context of this paper,
a static view of design spaces is sufficient to convey the main ideas.

Simple and complex design spaces.
A design space is called simple design space if the set of design

sub-spaces is empty. In this case, all members of the designer team
are familiar with all designs ever created and used within the design
space. Otherwise the design space consists of a hierarchy of sub-
spaces and there are further sub-teams in such complex design spaces
creating (and possibly discarding) internal designs only visible to
them. In the example in Figure 5, D = {D1,D2, ...,D10} is the set
of all designs, {D1,D2,D4,D10} is the set of designs accessible
by the designer team T, {D1,D3,D4,D5,D6} is accessible by the
designer team T1 and {D1,D2,D7,D8,D9,D10} by T2. According

to Definition 1, a stakeholder can be part of both a designer and a
user team, and complex design spaces can even span intertwined
networks of such user-designer relationships.

The following definition of the flattened version of a design space
hides the complexity of complex spaces and describes the overall set
of refinement relations of a design space DS that is created by both
the designer team of DS and the sub-teams of possible sub-spaces
of DS. It makes use of the transitivity property of refinements, that
is, if there are designs d1,d2,d3 where d1 v d2 and d2 v d3 (v∈R)
then d1 v d3 holds.

Definition 2 (Flattened version of a design space)
Let DS = (DT,UT,D,Pentry,Pexit,DSS,DRel) be a design space.
DSF = (DT,UT,D,Pentry,Pexit,DRelF) is the flattened version of
DS where the following condition holds for DRelF:
For each DSi ∈ DSS let DSF

i = (DTi,UTi,Di,P
entry
i , Pexit

i ,DRelFi )
be the flattened version of DSi (i = 1, ...,n). Then DRelF = DRel ∪⋃

i=1,...,n {d v d′ | (v,d,d′) ∈ DRelFi ,d ∈ Pentry
i ,d′ ∈ Pexit

i }.

Further characteristics of design spaces.
Based on previous definitions, a number of definitions are now

introduced describing design spaces and their quality in more detail.
First, we consider the completeness of design spaces.

Definition 3 (Complete design space)
Let DS = (DT,UT,D,Pentry,Pexit,DSS,DRel) be a design space
with Pexit , /0 and DRelF be the set of refinement relations from
the flattened version of DS. DS is said to be complete if each
DSi ∈DSS is a complete design space and if for each design d ∈ Pexit

the following condition holds: for all d′ ∈ Pentry there exists a
(v,d′,d) ∈ DRelF .

Definition 4 (Valid design space)
Let DS = (DT,UT,D,Pentry, /0,DSS,DRel) be a design space with
DRelF be the set of refinement relations from the flattened version
of DS. DS is said to be valid if each DSi ∈ DSS is a valid design
space and if for all internal designs d ∈ D \Pentry the following
condition holds: there exists a nonempty set {d1, ...,dn} ⊆ Pentry

(n > 0) where (v,di,d) ∈ DRelF (i = 1, ...,n).

While a valid design space can potentially lead to a satisfactory
solution, a complete design space provides a set of such solutions
at the exit point. If a design space cannot be shown to be valid
the designer team needs to discard some internal designs at least.
However, if a design team cannot create a complete design space at
all, it has to start a new iteration with the user team and re-negotiate
the designs of the entry point.

Definition 4 of valid design spaces may lead us to consider par-
tially complete design spaces where designs in the exit point refine
only some of the designs in the entry point. In other words, no de-
sign(s) is provided that unifies the consideration of all requirements
and constraints. Instead, a set (or sets) of refined designs leaves
the entry point and is provided to other sub-teams. For the sake of
space, we do not provide a formal definition of this here.

The design options of a design space provide information about
the exploratory activities of the design team (concept generation).
The distinction of alternatives and variants provide additional infor-
mation about decision making processes (concept convergence).

Definition 5 (Design options)
Let DS = (DT,UT,D,Pentry,Pexit,DSS,DRel) be a design space and
DRelF be the set of refinement relations from the flattened version



of DS. Dopt ⊆ D \ (Pentry ∪Pexit) is a set of design options with
respect to d (d ∈ D \Dexit and d < Dopt) if for each d′ ∈ Dopt we
have (v,d,d′) ∈ DRelF .

Definition 6 (Design alternative)
Let DS = (DT,UT,D,Pentry,Pexit,DSS,DRel) be a complete design
space and DRelF be the set of refinement relations from the flattened
version of DS. A design d′ ∈ Pexit is called design alternative
with respect to a design d if there exists a set of design options
Dopt with respect to d and the following conditions hold: 1) there
exists a d1 ∈ Dopt such that (v,d1,d′) ∈ DRelF , and 2) there exists
no other design d2 ∈ Dopt such that there exists a d′′ ∈ Pexit with
(v,d2,d′′) ∈ DRelF .

Definition 7 (Design variants)
Let DS = (DT,UT,D,Pentry,Pexit,DSS,DRel) be a complete design
space and DRelF be the set of refinement relations from the flattened
version of DS. The designs d1,d2 ∈ Pexit (d1 , d2) are called design
variants with respect to a design d if there exists a set of design
options Dopt with respect to d with d′1,d

′
1 ∈ Dopt and d′1 , d′2 such

that (v,d′1,d1) ∈ DRelF and (v,d′2,d2) ∈ DRelF .

In the above example scenario, all of the mentioned design (sub-
)spaces are valid and sub-spaces T1, T2, T21, and T22 are also
complete. The functional requirements of D1 can be expressed
formally via the specification(s) of sub-team T1. We can then use
formal refinement theories such as those described in [27, 8]. Fur-
thermore, designs D4, D5, and D6 are options with respect to D3
and D4 is the alternative that leaves the exit point (internal idea
generation and convergence).

We can similarly consider these requirements (D1) in the designs
created by sub-team T21 using the refinement theory for presentation
models [3] based on intended behaviours (shown above). This
is an example of lightweight refinement, D8 and D9 are options
with respect to D1. Both designs leave the sub-space as variants
supporting idea generation and convergence across sub-teams. The
requirements of D2 are considered more formally in D7. However,
the task model is a result of discussions with end-users, observations
etc. While this is not obviously a type of refinement (based on
the three descriptions given previously) it does allow for other,
established, design formalisms to be incorporated into our approach.

Typically we are most interested in the difference between designs
at the entry and exit points of the design spaces as these are where
decisions are in some sense finalised, but we might similarly be
interested in specific designs within the space if we want to use a
design rationale approach to assist with the design enumeration and
choice activities. D10 is a QOC-diagram with D8 and D9 as options,
and D7 used in the criteria part. As such it is a valid refinement
of D8, D9, and D7 containing the decision for D8 and a record
of the reasons behind this decision. The use of task models in
QOC-diagrams has been discussed elsewhere, e.g., in [18].

4. DISCUSSION AND FUTURE WORK
Multi-disciplinary design work is challenging and requires com-

plementing education and expertise in single disciplines with an
appreciation and understanding of other disciplines [19]. The sug-
gested framework describes design activities at an abstract level
in terms of design spaces, designs, refinement relationships etc. It
also generalises the relationship between designers and users by
considering a network of such relationships with the participants
typically acting in different roles (as discussed, e.g., in end-user
programming contexts). This general view allows design teams

and other stakeholders to reflect upon, or plan, the overall design
process.

As mentioned in the background section, common design space
models using the funnel-metaphor may impede a diversity of de-
sign ideas due to their focus on one goal and one final solution
[26]. Alternatives and variants in our framework provide a more
relaxed view on the designer’s goal-directed activities by allowing
the convergence of design ideas within and across design sub-spaces.
Therefore, these concepts support the awareness of expertise and
possible contributions of different collaborators and help avoid pre-
mature design decisions.

Of course, abstraction has its price. Note that we deliberately
have not said anything about how, for example, requirements are
expressed but refer to any kind of external design representation as a
design. This may have implications when we wish to use (any type
of) refinement if there is ambiguity or conflict in the requirements
hidden by this ambiguity. Similarly, we have necessarily omitted
detailed technical proofs of refinement relations because they do
not fit in this paper. However both the choosing of suitable formal
notations and refinement mechanisms, as well as the conducting of
such proofs can bring their own challenges.

Our intention then is to show how we can rely on these existing
principles rather than fully elaborate on them here. However, for
more practical use the framework needs to be ‘instantiated’ by
certain types of designs and refinements (as indicated in the example
scenario). Interesting research questions in this context are about
the composition or merging of designs and about the opposite of
splitting out parts of a design. How can refinements of different types
be combined? Future work also includes the consideration of other
useful characteristics of design spaces than those given in the paper.
One such could be the ‘degree of multi-disciplinarity’ that reveals
the way different refinement approaches are intertwined. What we
provide in this paper is a framework to enable reasoning about such
heterogeneous design spaces. Empirical studies are necessary to
elaborate the applicability of the approach and to further develop it.

5. CONCLUSION
In this paper we have presented a semi-formal framework for

interaction design processes. This includes formal, informal and
mixed notations for describing design spaces, designs and the re-
lationships between designs. It is not our intention to provide a
new process for design, but rather to find ways of capturing the
different concerns and diversity of design representations that arise
within existing design processes. We then use this as a mechanism
for supporting typical creative and iterative design for interactive
systems. This enables us to support such a process by enabling
comparison of different designs and differing levels of formality as
well as recording design decisions and relating all of these back to
initial and emerging requirements.
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