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Abstract—We consider the problem of high dimensional black- although termed ‘high dimensional’ by the authors, it only

box optimisation via Estimation of Distribution Algorithms  considered problems of up-to 32 dimensions.
(EDA) and the use of heavy-tailed search distributions in this

setting. Some authors have suggested that employing a heavy On the other hand, other work [6] has found that Cauchy’s
tailed search distribution, such as a Cauchy, may make EDA long jumps virtually never lead to better solutions in high
better explore a high dimensional search space. However, other dimensional search spaces. In fact, the list of negative find
authors have found Cauchy search distributions are less ef- ings about Cauchy-based search in high dimension does not
fective than Gaussian search distributions in high dimensional )
problems. In this paper, we set out to resolve this controversy. end here: In [6], the authors analyzgd the v.o.Iume of the
To achieve this we run extensive experiments on a battery of level sets of the Cauchy vs. Gaussian densities, for both
high-dimensional test functions, and develop some theory which isotropic and anisotropic Cauchy distributions, with esp
shows that small search steps are always more likely to movetg their effectiveness when utilized in searching for optim
the search distribution towards the global optimum than large in multimodal objective functions in an (1+1) EA. Moderate
ones and, in particular, large search steps in high-dimensional . . .
spaces nearly always do badly in this respect. We hypothesisedmensmns were con3|dereq, up to 20,. but the results hdve le
that, since exploration by large steps is mostly counterproductie  the authors to conclude with the conjecture that, for global
in high dimensions, and since the fraction of good directions optimization, heavy tails are only useful if the large vidas
decays exponentially fast with increasing dimension, instead one take place mainly in a low dimensional subspace and the low
should focus mainly on finding the right direction in which to  4imensional space contains the better optima. Also, [14}-co
move the search distribution. We propose a minor change to - . L
standard Gaussian EDA which implicitly achieves this aim, and pargd BIPOP-CMA-ES having a Gaussian probabilistic model,
our experiments on a sequence of test functions confirm the good @gainst Cauchy EDA, and concluded that BIPOP-CMA-ES
performance of our new approach. dominates the Cauchy EDA performance regardless of the
| INTRODUCTION partl(_:ular opt|m|_zat|on conditions. The maximum dimemsio
o o ] considered in this study was 40. Furthermore, [15] compared
Estimation of Distribution Algorithms (EDA) represent 8Cauchy EDA against G3PCX algorithms that use Gaussian

branch of stochastic optimization heuristics that, in castt ,, ihe BBOB noiseless testbed (up-to 40 dimensions), and
to classical Evolutionary Algorithms, build and samplel@o reported that G3PCX won in 6 out of 10 cases tested.

bility models of the good individuals in each generation][10 ) ) o i _

By model building, EDA tries to learn the structure of the LOW dimensional studies in turn (up-to 3 dimensions) are
search space in order to guide the search towards promisfi§tty consistent to find Cauchy superior to Gaussian when
areas [1]. A comprehensive overview of EDA techniques aﬁﬁe population is relatively far from thg optlr_num — See for

applications may be found in [7]. instance [5], [13], [16], [22]. But in high dimensions we

EDA is known to have good properties as long as the searif€ 2 controversy i_n the existing literature. One is_sue_ais th
space is low dimensional, but it is notoriously bad in higﬁle mentioned previous comparisons were done with difteren

dimensions due to excessive computational resource eequt!gorithms so it is hard to distill a global picture. Second
ments [3], [9], [11]. In an attempt to remedy this, SeVerfgwdence abc.)ut_the.merlts qf Cauchy vs. Gaussian basechsearc
authors have proposed employing heavy-tailed distrinstia 'S largely missing in the literature on problems larger that
the sampling step of EDA instead of the more commonly usé§ dimensions. What will happen on problems with 50-1000
Gaussian. For instance, [20] proposes a univariate cangmu 9imensions?

EDA (UMDAc) with Lévy sampling. Furthermore, in later In this paper we set out to resolve the above controversy,
work by [18], Cauchy sampling has been reported to @nd we conduct a thorough investigation into the perforraanc
superior to Gaussian in high dimensions. Cauchy is a ven§ multivariate Cauchy EDA in high dimensions up to 1000
heavy tailed distribution that has no finite mean. From tt@imensional problems in comparison with its Gaussian coun-
conclusions of these works it appears as though the ahidlityterpart. We shall use a scalable variant of EDA called EDA
make long jumps should be beneficial for high dimensionalith Model Complexity Control (EDA-MCC) [3] for our
search. Though, we should note that, the study in [1§urpose, and create a Cauchy sampling variant of it.
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Il. PRESENTATION OF THE ALGORITHM USED IN THIs  Algorithm 2 EDA-MCC
WORK Inputs: 0, ¢, me, sampling
(1) Sett «— 0.
(2) SetP «— GenerateV points uniformly randomly in the
search box to give an initial population.

We chose EDA-MCC [3] as the algorithmic tool for our
experiments, because it is scalable and applicable to bath |
and high dimensional problems, and it was previously demon-
strated to work well up to 500 dimensions. This allows us to
vary the problem size and observe the trends in performance
comparatively for Gaussian and Cauchy search distribsition
Among alternatives that could be used, the random projectio
ensemble based EDAs [9], [17] were specifically designed for
high dimensional problems. Since testing in low dimendiona
regimes (e.g. 2 to 20) would defeat the purpose of the random
projection technique, this would limit our experiments.

(3) Evaluate the fitness of alV points in P
(4) Pt — Select the fittesin < N individuals from
P using truncation selection.
(5) Split the search variables in 2 groups:
(a) Estimate thel x d correlation matrix C from
a random subset of sizac < m of P
(b) Split{1,...,d} = T, |UTs as follows:
T, «— {i:Vj#1i,C(i,j) < 0}
T, —{1,...d} — T,
(6) Wy, — P‘Sﬁf //Ps¢t restricted to variables iff,

Algorithm 1 The Pseudocode of a generic EDA

) Seu 0 W, «— Pgel [Ipsel restricted to variables iff
(2) SetP «— GenerateN points randomly to give an initial oo Ts , s
population. PITS «— call SM(W, ¢, sampling)
Do P|“T’iw «— call Wi(IW,,)

(7) P — Pnew

(3) Evaluate fitness for alN points in P

(4) Select the best individualg**! from P Until Termination criteria are met
(5) Calculate the sample statisti¢sof P! Output: P
(6) Sample new populatio®™* from the
distribution with parameterg Algorithm 3a Subspace Modeling of strongly correlated
(7) P « prev variables
Until Termination criteria are met function SM

Inputs: W, ¢, smp
L « dimensionality ofi¥,
Randomly partition the. variables ofiW, into L/c
non-intersecting subset®/;,,...W;, .
fori=1toL/c
(a) pu; «— sample mean fromV,
(b) 3; «— sample covariance: (x ¢) from W,

In its original form, EDA-MCC employs a multivariate
Gaussian search distribution, which for scalability psg
is modeled / approximated as a product distribution on non-
overlapping subspaces. These are created by randomly parti
tioning the search variables that have correlations insfutit
groups. The variables that only have correlations sméilan t

. . y (2 i) iid
the threshold in absolute value are modeled as univariate (€) If smp = ‘Gaussian’s{”, ..., s & N(u;, %)
product distributions. Else smp = ‘Cauchy’ with ;; as location
Before proceeding further, we should mention that cor- pqrametgr &izz as dispersion parameter:
relation only captures linear dependencies and will miss sg‘),...,sg\? ~ Cauchyp;, 3;)
any nonlinear ones. In a separate study we experimented (d) S|(i—1)-c41:iee = [sg“,...,sg@)}

with employing Mutual Information estimates instead, but endfor

observed only marginal improvements at a considerablydnigh Output: S

computation cost [21], most likely because very accurateend function

estimates of the dependency structure are not so crucial in

a heuristic search that aims for finding approximate sahstio

It is straightforward to modify this strategy to sample fronwhereu may be regarded as an hidden variable, an¢ da
independent multivariate Cauchy blocks instead, which we the Gamma density.

for the purpose of our experiments. The pseudo-code of a

generic EDA is given in Algorithm 1, and Algorithm 2-3a-

3b summarize EDA-MCC. Our only modification is in the [Il. EXPERIMENTS

multivariate modeling, namely step (€) of Algorithm 3a, 10 \ye set out to resolve the controversy about the comparative
allow for multivariate Cauchy sampling in the subspaces. Wgerits of multivariate Gaussian vs. Cauchy search distribu
implemented the multivariate Cauchy sampling by making U§8s in high dimensions. Towards this end, we conducted
of the Gaussian scale-mixture representation of the Cauclyeriments on 7 benchmark functions taken from the CEC05
density [12], and sampling this generatively: competition [19] — these are listed in Table | — and we
varied the problem dimensionality from 20 up to 1000. Among

Cauchy, (1, %) = g N (1, 5/u) Ga, (1/2,1/2)du (1) the functions tested, 4 are unimodal, and 3 multi-modal. Al




Algorlthm 3b Univariate MOdeling of Weakly correlated correlations ’(TLC) is set to 100. However, we did not go by

variables the recommendation of [3] in setting the maximum group
function WI size,c. The reason will be explained shortly. Instead, we set
Inputs: Wy _ _ ¢ = min([d/5]), [N/15]), where N is the population size.
L - dimensionality ofiV/,, The performance criterion is the difference (gap) between
fori=1toL the fitness of the best individual found and the true global
(a) Estimatey; < samplemear{W,;) optimum. Each experiment was run 25 times (with random
(b) Estimateo? = samplevariancgW,;) independent restarts) and we report the average and stiandar
(c) Drawut, ..., uk, ud N(pi,o?) deviation of these differences.
d) Uj; — (uf,...,uly) 1) A note on setting the max group sizén EDA-MCC:
endfor We believe the following must be a typo on page 811 in [3],
Output: U for their 500-dimensional experiments, where the block siz
end function is claimed to be set te = 100 and the number of selected

individuals ism = 100. In our experience this setting does

TABLE I: Scalable test functions from the CEC'05 collection”©! work, and_mdeed this setting would mean to_ estimate
100 x 100 covariance blocks from only 100 points which leads

Problem| Name . . . . .
- - to a singular covariance estimate (its rank is at most 99 due
P01 Shifted Sphere Function . .
. , to the degree of freedom lost by estimating the mean). Thus
P02 Shifted Schwefel's Problem 1.2 . . .
. : " . . one needs to either reduce the block sizer to increase
P03 Shifted Rotated High Conditioned Elliptic Function h lati . . he | . desirabl
P04 Shifted Schwefel’s Problem 1.2 with Noise in Fitness the popu athn sizelV: Since t e atter Is u_n esirable we
PO5 Shifted Rosenbrock’s Function took ¢ = mm([{i/S], [N/15]. With our setting, now we
P06 Shifted Rastrigin’s Function have.C xe = mln([d/ﬂ_, [N/15]) x mln([d/{ﬂ., [N/15])
P07 || Expanded Extented Griewank Function plus Rosenbrock covariance blocks to estimate from — (N/ﬂ points.

IV. RESULTS ANDDISCUSSION

the global optima are within some given box constrains. AR. Results on shifted Rosenbrock: Confirming the findings of
problems are minimization. More details on the functiongy md18], and developing a more complete picture

be found in [19]. Following [18], we start by running experiments on the
A. Roadmap and parameter settings shifted Rosel_wbrock function up to 32_ dimensions. As we
our fi . q d he Shifted R already mentioned, [18] reported superior performancerwhe
ur first e_xperlment_s were con u_cte ont & shitte (.)Seé}hploying the Cauchy search distribution as opposed to the
brock Function to replicate the findings of [18] in the s@tin Gaussian when tested in this dimensionality range. Althoug

considered t_here (|._e varying dlmeQS|ons up to 32). TQﬁey use a different optimization algorithm and different
purpose of this experiment was to see if the version of EDA rameter setting than ours, we were able to confirm their

are using is consistent Wi.th their findings. Once qonfirme@I, inding. Table Il presents our results obtained with the pop-
further looked at the Shifted Rosenbrock Function in highei . - «i ey — 2000, along with a statistical analysis. We

dimensions to get a more complete piciure. As we shall S&®e that the Cauchy search distribution performs significan

the conplusmn Furns out to be very different in the h'gherfetter than the Gaussian up to 100 dimensions in this case.
dimensional regime.

We then conducted experiments on a good number of

benchmark problems to test if the above finding is observd@BLE II: Ranksum Statistical test for performance compar-
more generally. The following set of dimensions (problerffOn between Gaussian and Cauchy on Shifted Rosenbrock
sizes) were used to conduct our experimefi2§), 30, 40, 50, function with Budget =10000 x d and Population size = 2000.

Dimension Cauchy Gaussian Ranksum Test
100, 200, 300, 400, 500, 10p@or all problems. mean std mean std H  P-value
All experiments were ran with three different population 20 20.3619 215225 238297 315721 1  3.12E-24
. . 30 1.15E+04 4.95E+04 5.30E+04 9.35E+04 1 2.13E-21
sizes {300, 1000, 200p in order to make sure that the 8.03E+03  6.32E+04 5.18E+04 540E+04 1  3.45E-30
observed behavior is not a byproduct of a particular chofce o 50 338.7745 9764567 5.66E+04  7.39E+04 1  1.54E-33
. . . . 100 8.04E+03 4.76E+04 1.55E+05 1.65E+05 1 3.56E-32
population size. A budget of0000 x d function evaluations 200 5 AAE+10  5.85E+09 231E+05 1.93E+05 1  2.56E-34
was set in all experiments, whetkis the dimension of the 300 4.53E+11  2.01E+10 3.88E+05 2.79E+05 1  2.56E-34
. . . 400 9.18E+11 4.34E+10 7.72E+05 4.38E+05 1 2.56E-34
problem. This was the recommended budget size in [19] for 5qq 135E412  4.89E+10 114E+06 606E+05 1  2.56E-34
the CEC’05 competition. 1000 3.77E+12  129E+11 5.03E+06 166E+06 1  7.07E-18

The following tunable parameters were set in accordance
with the recommendations in [3]: The thresh@ldo decide However, we also see from Table Il that the extrapolation
if a search variable has weak or strong correlations is setggested in [18] to higher dimensional problems than those
to 0.3, the number of selected individuala)(is set to half tested by the authors, actually fails. Instead, we see @iags
of the population size, and the sample size used to estimpt@nt at aroundd = 100, after which exactly the opposite



conclusion becomes true: The Gaussian search distributinn
performs significantly better than the Cauchy at proble
dimensions larger thad = 100, up tod = 1000. -
We found the above conclusion consistently (up to sliglo
shifts of the crossing point) when choosing other poputatic™ -

sizes as well. This will be apparent in the next subsecti(E’;‘

where summary plots of results obtained with three differe -
population sizes will be presented. Moreover, as we shall s =
the finding that Gaussian performs better than Cauchy in hi
(beyond 100) dimensional problems is also observed for all
benchmark problems tested.

B. Results of an extensive empirical study

Having found an interesting pattern of comparative belravi -
in the previous section on the shifted Rosenbrock functio e
we then performed similar comparative experiments on
functions from Table | in order to see if our finding holds
more generally. Figure 1 presents all these results in a aomp
format. Here we display the differences between the fitne
value achieved with Gaussiaryy) and with Cauchy fc)
search distributions respectively. By fitness value we meal
the average of the best fithess in the last generation, as
averaged over 25 independent runs. Whenever this differet
(fg — fo), is positive it means that Cauchy outperforme
Gaussian (recall, we do minimization so smaller fitness
better), and vice-versa — whenevgg — fc is negative then
Gaussian outperformed Cauchy. The 7 plots correspond to
7 benchmark problems tested, and each curve on these p
corresponds to a particular choice of population size. &in
the fitness differences are much larger wheis large, we
also show a zoomed version of the lower dimensional regir...
in order to better see the details.

From Figure 1 we see that the comparative behavior of
the two search distributions in the high dimensional regime
as observed in the previous section, consistently holds up
on all functions tested, and with all population sizes tste
That is, the differences in the fitness valugg ¢ fc) are
positive in the dimension range 20-50 in most cases, meaning
that Cauchy tends to be better in this regime. But, as the
dimension exceeds 50 or 100, the differences become negativ
and remain negative, indicating that Gaussian is now better
than Cauchy. We can also see from figure 1 that the results
with smaller population size yield the largest contrasteein
the performances of these two search distributions. U

We therefore conclude on the basis of these results tha
Cauchy may be better than Gaussian in low dimensional pr
lems, but Gaussian is superior in high dimensional proble
Statistical tests (omitted for space constraints) confiritiet
these differences are statistically significant.

fg - fc

ms

C. Further results when the optimum is shifted much further
away

u
Dimensions

= W = Popsize 300
=—&— Popsize 1000
Popsize 2000

100 200 300 400 500 600 700 800 900 1000
Dimensions

(a) Shifted Sphere Function

1 xe‘f,\\\
N\
N,

Diensions

= W = Popsize 300
== Popsize 1000
Popsize 2000

fg - fc

100 200 300 400 500 600 700 800 900 1000

Dimensions

fg - fc

£l

0 w0 o0
Dimensions

0 80 o0

(b) Shifted Schwefel's Problem 1.2

BN

= W = Popsize 300
== Popsize 1000
Popsize 2000

b

0 4
Dimensions

= W = Popsize 300
== Popsize 1000
Popsize 2000

100 200 300 400 500 600 700 800 900 1000

Dimensions

Noise in fitness

Dimensions

= W = Popsize 300
=—#— Popsize 1000
Popsize 2000

fg - fc

n(c) Shifted rotated Elliptic Function (d) Shifted Schwefel's Problem 1.2 With

Dimengsions

= W = Popsize 300
=—#— Popsize 1000
Popsize 2000

100 200 300 400 500 600 700 800 900 1000

Dimensions

fg - fc

ig-1

20

(e) Shifted Rosenbrock Function

100 200 300 400 500 600 700 800 900 1000

Dimensions

(f) Shifted Rastrigin Function

= B = Popsize 300
=== Popsize 1000 ’
Popsize 2000| "
.

.
.

30 40
Dimensions

50

= W = Popsize 300
== Popsize 1000
Popsize 2000

100 200 300 400 500 600 700 800 900 1000

Dimensions

(g) Exp. Ext. Griewank Fn + Rosenbrock

Fig. 1: Differences between the average (from 25 repeated
ps) of the best fitness values achieved by the Caug¢hy (
abnd by the Gaussiarf ) EDAs, as the dimension is varied, for
ab- )

seven test problems. The smaller plots superimposed mires
Zoomed versions of the same results in the range of 20-50
dimensions.

up to [-107 107], to see if Cauchy’s long jumps will pay off.

Since Cauchy sampling in optimisation is expected to haVe found this is not the case, and Cauchy search makes very
an advantage over Gaussian when long jumps are beneficdw progress in all cases tested. Example results are given
we also tried to modify the test problems by shifting the globin Figure 2. These experiments conclude that Cauchy long

optimum and increasing the search box sizes frer0g 102]

jumps does not help in high dimensions, which agrees with



the findings in [6]. That is, the chances for a long jump ta new candidate solutiop’ is closer to the global optimum
turn out lucky vanish with increasing dimension, and in ththan p* if and only if it lies within this ball, that is when
next section we show that in fact this issue is unavoidable.|z* — p’|| < R. In Figure 3 we see this intersection in bold
for several choices of — in 2 dimensions this intersection is
an arc, in 3 it is a spherical cap, and in 4 or more dimensions
it is a hyperspherical cap. Now, what is the probability of
e the event|z* — p/|| < R? Denote byS¢~! the sphere about
p* of radiusr in R%: Whenyp' is drawn from the uniform
distribution on S¢-1, this probability is the proportion of
the surface of the whole sphere comprising the intersection
namely the quotient of the surface area of the hyperspherica
S — cap to the spheré?~". For a fixed value of|z* — p*||, and
for any problem dimensionalityl > 2, this probability is
monotonically decreasing infor € (0,2R)* and, of course,
Fig. 2: Comparisons of Gaussian vs. Cauchy search distriltiuis zero for values of- > 2R in any dimension. Thus if the
tions on problems with highly shifted optima and increaseskarch direction from a current solution is chosen unifgrml
sizes of the search box. at random then, irrespective of any other consideratiageta
step sizes are always more likely to take us further from the
global optimum than smaller step sizes. How fast does this
V. UNDERSTANDING THE REASONS FOR OUR probability decay as a function of the step size or of the
EXPERIMENTAL FINDINGS dimensionality? Define the angle of the hyperspherical cap
Here we show why large search steps are, in general, magg* to be 26,., and note that the proportion of the sphere of
likely to perform worse than smaller ones and explain the rofadiusr covered by this cap is the same as the proportion of
that the problem dimensionality plays in this issue. the unit sphere covered by a cap on the unit sphere also with
We start by considering a search distribution that selegifgle20,.. Therefore Pf||z* — p/|| < R} < exp(_i;COS2 0,)
where the RHS follows from Lemma 2.2 of [2] which upper
bounds this latter quantity. By simple trigonometry one $ind
thatcos 6, = r/2R, and thus we obtain the following theorem:

Fitness ~ Optimal fitness

Fitness — Optimal fithess

Generations

(a) Rosenbrock; Shift = 10000 (b) Sphere; Shift = 300000

Theorem 1 (Most Search Steps are Bad)et z*, p* be two
fixed points inR? with the Euclidean distance between them
R := ||z* —p*||. Letp’ = p* + 2 wherez is sampled from the

uniform distribution on the hypersphere of raditisThen:
X* @ d2’1”2
Prifa” =yl > o =) > 1- e (-5 ) @

This means that, for any fixed setting Bf the probability
of sampling a point closer to the global optimum than the
current reference point decays exponentially quickly ithbo
the search radius (step size) and the dimensionalityl. It
also means that, for any choice of relative step SiZ&,

i i » the proportion of good directions (i.e. directions that get
Fig. 3: Proof by picture — the probability thgt:* — p'|| < g closer to the optimum than the reference point) decays
[|* — p*|| is monotonically decreasing in the step size of thg,yqnentially quickly in the problem dimension. Therefdfe
search. the step direction is random, large steps in high-dimersion

) . ) o search spaces are far less likely to take us closer to thalglob
new candidate solutions from the uniform distribution on Bptimum than small steps, and thus for high-dimensional
sphere of fixed radius;, about a current population membeisg oy we would expect that with very high probability heavy
— why this captures the essential behaviour of Gaussian highyeq gistributions such as the Cauchy will perform poorly
dimensional search will be explained shortly — and we 100f,;5 5 ggests that exploration by large steps is mostly <oun
at the effect of varyingr. More precisely we consider theyg o4 ictive in high dimensions and instead one shouldsfoc
probability of the event that a new candidate solution isefo mainly on finding the right direction in which to move the
to the global (or any particular local) optimum than the eatr search distribution.
population member. See Figure 3 — the paintis the global oy we discuss some possible reasons why a Gaussian

optimum in the search space, the pgintis the centre (mean) gearch distribution does better. From high dimensionabpro
of the current population, and the shaded circle represents

the ball of radiusR := ||z* — p*|| centred onz*. Clearly  !Indimension 1 this probability is exactly 0.5 for a step oksize (0, 2R).



ability theory it is known that high dimensional probabjilit is very apparent that the Gaussian norms are all clamped in
distributions may look very different from their low dimen-a narrow range, whereas the Cauchy norms are increasingly
sional versions, and may therefore behave in a counteitirgu spread out. This will have implications on the implicit sear
manner. We conjecture the good performance of the Gaussiiag strategy associated with these two distributions, ashved
search may be due to its good concentration property, whidlscuss in the remainder of this section.

the Cauchy distribution lacks. This property means thaighh Take the Gaussian case first. More formally, for a generic
dimensions most of the points sampled from the distributioron-degenerated x d covariance matrix, let X ~ N (0, X).

lie within a thin shell at approximately equal distance fromThen the expected norm can be approximated as follows:

the center of the distribution - in other words although in

high dimensions we will not generate new points very close Elllx1 < \/E[HXHQ] - \/Tr(Z) ®)
to the mean, neither will we generate points very far fromising Jensen’s inequality. Indeed, applying the linearity
the mean either. Figure 4 demonstrates this empirically. We¢ expectation, we haveE[||X|]?] = E[Zle X? =
sampled 100,000 points from a 10, 100, 200 and 1OO€E¢:1E[XZ_2] :Zd (Zi) = Tr(x).

>€ Amax(z)} < 29Xp [_ej‘| (4)

Frequency
Frequency

Frequency
Frequency

dimensional standard Gaussian and plotted the histogram Ohote that in thelgésg = I we have,/Tr(Z) = V/d. This is
Euclidean distances from the origin (centre of the distiin). \yhy we saw the averages of Gaussian norms at approximately
We see from the figure that all of these distances are clogg in Figure 4. Furthermore, the following lemma shows that
to approximatelyv/d (V10 = 3.16,v100 = 10,v/200 = wjth high probability | X|| is close to/Tr(X) (in absolute
14.14,+/1000 = 3166) So, as the dimenSionality increaseaifference relative to the Spectra| norm E’
we have most of the points within a shell that gets thinner )
and thinner relative to the average distance from the centré€Mma 1. Let X € Ed where X has entries drawn from
a multivariate Gaussian with mean zero abdcovariance.
Then,Ve € (0,1),
| h e
: rof - 77
i This probability inequality was mentioned in [8] without
) proof. In the Appendix we derive it from Lemma 1 of [4].
Now, Lemma 1 implies that in Gaussian EDA search, a large
L v Norm fraction of the new generation lies in a thin shell at the same
(@) D=10,c=2 (b) D = 100,¢ = 20 dlstanqe from the center qf the population — the.re'fore'ﬂehzc
of the fittest points essentially selects the promiglirgctions
] These two elements — using all of the available resources to
: A e select directions, and then ensuring a steady move of site ju
* * below /T'r(¥) from the center of the population from one
? generation to the next — provide Gaussian EDA a well focused
strategy that is beneficial and resource-efficient. Morea®
. we approach a local optimurfir(X) will decay, so in fact
os Gaussian EDA automatically tunes the search granularigy ov
o ; T successive generations. .
_ _ _ _ By contrast, the Cauchy density does not have good con-
(c) D =200 ,c =20 (d) D = 1000 ,c = 20 . . -2 :
centration properties. This is very apparent from the nicakr
Fig. 4: Comparison of the histograms of Gaussian vs. Caucéyperiment in Figure 4. While we see a reasonably high
norms asd increases. The values of the parametehosen density region in the case aof = 10, as d increases, the
here (i.e. the dimension of independent multivariate Caucheavy tails of the distribution in all directions dissolvaya
components) correspond to a population size of 300 (althougigh density region. Therefore, Cauchy based search has no
we observed no qualitiative difference for other choic®¥. ability to prioritize selecting good directions.
used 100,000 sample points to create these histograms.  In the sequel we shall put the above explanation to a test:
We shall create a new search distribution for EDA that takes t
We then repeated the same experiment with 10, 1G@e extreme the clever implicit searching strategy of Ganss
200 and 1000-dimensional Cauchy norms where 70% of tE®A that we just uncovered. If our reasoning above is cojrect
components of the points were sampled from independentthen the new search distribution might perform even beiter i
dimensional multivariate standard Cauchy distributioms the high dimensions.
remaining 30% from independent standard Gaussian — this
mimics a typical SM & WI split from our Cauchy-EDA-MCC ’Note that the model complexity control on the covariance eséimin
. . . . EDA-MCC ensures that the covariance estimates are indeedegenerate —
simulations. We superlmposed these hlstograms on the Sacﬁn&)urse, provided that we set the parameteasid m wisely (as discussed
plots with the Gaussian norms in Figure 4. From Figure 4 iit an earlier section).



V1. EDA WITH UNIFORM SEARCH DISTRIBUTION ON A size of N = 300. Again we see that UniformSphere-EDA
HYPERSPHERE consistently and significantly outperforms the other twoAED

Rather than searching in a thin shell at some constafriants. From these results, and recalling our rationafe f

distance from the center of the population, let us search
precisely on the hypersphere with the same radius. Based ~~
our analysis in the previous section, from eqgs. (3)-(4), Wiy w |

define the search distribution as a uniform distributionfo® t & |~ —cauchy |
sphere of radiug/Tr(3), where, as before; is the covariance
estimated from the selected individuals. This way, when th
high fitness individuals are selected they represent gxtwd|
high fitness directions at granularity equal to the radidse T
subsequent generation then makes a steady move towards T enaratins T enarations e
average of the selected directions, just like it was the baise (a) Shifted Sphere Function (b) Shifted Schwefel's Problem 1.2
Gaussian based search.

We tested and validated the performance of this new ED,
variant in an extensive series of experiments, compatgtive § ) — Cauchy
with both the Gaussian and the Cauchy EDA variants dlc* . - --Gaussian
cussed earlier. We first present detailed results on thelseal £ Z. U. Sehere
process for the Shifted Rosenbrock function in Figure 5 .
with three different population sizes, each tested on fOL“’w‘
different dimensions of the problem, from low to high. As ™ *' B D, == S
conjectured, we can see that the uniform sphere based sea.... Generations o’ Generations
strategy becomes increasingly efficient in high dimensars (c) Shifted Rotated High Conditionéd) Shifted Schwefel's Problem 1.2
outperforms both Cauchy and Gaussian based EDA search%\" tic Function with Noise in Fitness
the dimensionality of the problem increases. We confirme™
using ranksum tests that these differences are statlgtica 3. — Cauchy
significant. This is because in an exponentially increasin Sagzﬂz[‘e
search space, when only having a linearly increasing budg
it becomes more and more important to prioritize the tas
of selecting good directions. We also see that this effect i § "
very robust and not influenced by the particular choice o &
population size. All plots represent average of best fitraesss e L T emertions o
computed from 25 independent runs. The total budget was sef(e) shifted Rastrigin's Function (f) Expanded Extended Griewank’s
to 10* - d, whered is the dimension of the problems. plus Rosenbrock’s Function (F8F2)

Fig. 6: Comparison of Gaussian EDA-MCC, Cauchy EDA-
MCC and UniformSphere-EDA on 1000-dimensional prob-
lems. The population size was 300, and each curve is the
average of the best fitness values from 25 independent runs.
The budget of function evaluations wag? - d, whered is the
dimension of the problem.
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. - S creating this new EDA version, we conclude that our study
2 0w B resolved the controversy about the merits of Gaussian sigain

Dimensions Dimensions

100 200 300 400 500 600 700 800 900 1000 100 200 300 E;?méur‘])sigur:s 700 800 900 1000 Cauchy EDA SeaI'Ch |n h|gh dlmenSIOI’]al problemS’ and as a

Dimensions

(a) Uniform Sphere vs. Cauchy  (b) Uniform Sphere vs. Gaussian Pyproduct our new EDA variant also gives us new insights

about how to approach high dimensional EDA search.
Fig. 5: Differences between the average (from 25 repeated

runs) of the best fitness values achieved by the Gausgign ( . CONCLUSIONS

and by the Uniform on Spher¢ §) EDAs, as the dimension is In this paper, we conducted a large empirical study to
varied, for the Shifted Rosenbrock function. The smalletpl benchmark the performance of Cauchy and Gaussian search

su
in

perimposed represent zoomed versions of the same rediiributions in EDA using a scalable black-box EDA op-

the range of 20-50 dimensions. timizer. Our empirical results suggest that Cauchy search
distributions perform particularly badly in high-dimeaosal

Finally, in Figure 6 we demonstrate the results of largeescapaces. To explain this phenomenon we developed theory that

experiments in 1000-dimensions on the remaining 6 benaxplains why large search steps are inefficient in high dimen
mark function listed in Table I. Here we used a populatiosional search spaces, and we showed that this inefficiency is



unavoidable in practice. We argued that a Gaussian sealth) M. L. Sanyang and A. Kén. Heavy tails with parameter adaptation

distribution has an in-built prioritizing strategy that piicitly
focuses resources within a generation on selecting gocrdfseqlg]
directions: This strategy is a by-product of the conceiunat
property of Gaussian norms in high dimensions. On the other
hand, Cauchy norms lack good concentration properties aI@g
make a high proportion of (very) large steps, and this result
in an increasingly inefficient search strategy when the lprab
dimension increases. Based on our theoretical insights é%?J
understanding of high dimensional domains, we proposed
a minor modification to the standard Gaussian EDA whic
enforces search within a generation to all take place at d fi
radius of the current population centre. Initial experitseon [22]
a battery of test problems indicate that this simple change
improves high dimensional search markedly — fuller evédwmat
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APPENDIX— PROOF OFLEMMA 1

of the promise of this approach remains for future work.  proof. The following bounds [4] hold for the Gaussian square
norm, with the two sides holding with different probab#i
REFERENCES Here we massage this into a bound on the Gaussian norm and
make the two sides hold with the same probability. From [4]:
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