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Abstract—We consider the problem of high dimensional black-
box optimisation via Estimation of Distribution Algorithms
(EDA) and the use of heavy-tailed search distributions in this
setting. Some authors have suggested that employing a heavy
tailed search distribution, such as a Cauchy, may make EDA
better explore a high dimensional search space. However, other
authors have found Cauchy search distributions are less ef-
fective than Gaussian search distributions in high dimensional
problems. In this paper, we set out to resolve this controversy.
To achieve this we run extensive experiments on a battery of
high-dimensional test functions, and develop some theory which
shows that small search steps are always more likely to move
the search distribution towards the global optimum than large
ones and, in particular, large search steps in high-dimensional
spaces nearly always do badly in this respect. We hypothesise
that, since exploration by large steps is mostly counterproductive
in high dimensions, and since the fraction of good directions
decays exponentially fast with increasing dimension, instead one
should focus mainly on finding the right direction in which to
move the search distribution. We propose a minor change to
standard Gaussian EDA which implicitly achieves this aim, and
our experiments on a sequence of test functions confirm the good
performance of our new approach.

I. I NTRODUCTION

Estimation of Distribution Algorithms (EDA) represent a
branch of stochastic optimization heuristics that, in contrast
to classical Evolutionary Algorithms, build and sample proba-
bility models of the good individuals in each generation [10].
By model building, EDA tries to learn the structure of the
search space in order to guide the search towards promising
areas [1]. A comprehensive overview of EDA techniques and
applications may be found in [7].

EDA is known to have good properties as long as the search
space is low dimensional, but it is notoriously bad in high
dimensions due to excessive computational resource require-
ments [3], [9], [11]. In an attempt to remedy this, several
authors have proposed employing heavy-tailed distributions in
the sampling step of EDA instead of the more commonly used
Gaussian. For instance, [20] proposes a univariate continuous
EDA (UMDAc) with Lévy sampling. Furthermore, in later
work by [18], Cauchy sampling has been reported to be
superior to Gaussian in high dimensions. Cauchy is a very
heavy tailed distribution that has no finite mean. From the
conclusions of these works it appears as though the ability to
make long jumps should be beneficial for high dimensional
search. Though, we should note that, the study in [18],

although termed ‘high dimensional’ by the authors, it only
considered problems of up-to 32 dimensions.

On the other hand, other work [6] has found that Cauchy’s
long jumps virtually never lead to better solutions in high
dimensional search spaces. In fact, the list of negative find-
ings about Cauchy-based search in high dimension does not
end here: In [6], the authors analyzed the volume of the
level sets of the Cauchy vs. Gaussian densities, for both
isotropic and anisotropic Cauchy distributions, with respect
to their effectiveness when utilized in searching for optima
in multimodal objective functions in an (1+1) EA. Moderate
dimensions were considered, up to 20, but the results have led
the authors to conclude with the conjecture that, for global
optimization, heavy tails are only useful if the large variations
take place mainly in a low dimensional subspace and the low
dimensional space contains the better optima. Also, [14] com-
pared BIPOP-CMA-ES having a Gaussian probabilistic model,
against Cauchy EDA, and concluded that BIPOP-CMA-ES
dominates the Cauchy EDA performance regardless of the
particular optimization conditions. The maximum dimension
considered in this study was 40. Furthermore, [15] compared
Cauchy EDA against G3PCX algorithms that use Gaussian
on the BBOB noiseless testbed (up-to 40 dimensions), and
reported that G3PCX won in 6 out of 10 cases tested.

Low dimensional studies in turn (up-to 3 dimensions) are
pretty consistent to find Cauchy superior to Gaussian when
the population is relatively far from the optimum – see for
instance [5], [13], [16], [22]. But in high dimensions we
see a controversy in the existing literature. One issue is that
the mentioned previous comparisons were done with different
algorithms so it is hard to distill a global picture. Secondly,
evidence about the merits of Cauchy vs. Gaussian based search
is largely missing in the literature on problems larger that
40 dimensions. What will happen on problems with 50-1000
dimensions?

In this paper we set out to resolve the above controversy,
and we conduct a thorough investigation into the performance
of multivariate Cauchy EDA in high dimensions up to 1000
dimensional problems in comparison with its Gaussian coun-
terpart. We shall use a scalable variant of EDA called EDA
with Model Complexity Control (EDA-MCC) [3] for our
purpose, and create a Cauchy sampling variant of it.
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II. PRESENTATION OF THE ALGORITHM USED IN THIS

WORK

We chose EDA-MCC [3] as the algorithmic tool for our
experiments, because it is scalable and applicable to both low
and high dimensional problems, and it was previously demon-
strated to work well up to 500 dimensions. This allows us to
vary the problem size and observe the trends in performance
comparatively for Gaussian and Cauchy search distributions.
Among alternatives that could be used, the random projection
ensemble based EDAs [9], [17] were specifically designed for
high dimensional problems. Since testing in low dimensional
regimes (e.g. 2 to 20) would defeat the purpose of the random
projection technique, this would limit our experiments.

Algorithm 1 The Pseudocode of a generic EDA
(1) Sett ← 0.
(2) SetP ← GenerateN points randomly to give an initial
population.
Do

(3) Evaluate fitness for allN points inP
(4) Select the best individualsP sel from P
(5) Calculate the sample statisticsθ̂ of P sel

(6) Sample new populationPnew from the
distribution with parameterŝθ

(7) P ← Pnew

Until Termination criteria are met

In its original form, EDA-MCC employs a multivariate
Gaussian search distribution, which for scalability purposes
is modeled / approximated as a product distribution on non-
overlapping subspaces. These are created by randomly parti-
tioning the search variables that have correlations into disjoint
groups. The variables that only have correlations smaller than
the threshold in absolute value are modeled as univariate
product distributions.

Before proceeding further, we should mention that cor-
relation only captures linear dependencies and will miss
any nonlinear ones. In a separate study we experimented
with employing Mutual Information estimates instead, but
observed only marginal improvements at a considerably higher
computation cost [21], most likely because very accurate
estimates of the dependency structure are not so crucial in
a heuristic search that aims for finding approximate solutions.
It is straightforward to modify this strategy to sample from

independent multivariate Cauchy blocks instead, which we do
for the purpose of our experiments. The pseudo-code of a
generic EDA is given in Algorithm 1, and Algorithm 2-3a-
3b summarize EDA-MCC. Our only modification is in the
multivariate modeling, namely step (c) of Algorithm 3a, to
allow for multivariate Cauchy sampling in the subspaces. We
implemented the multivariate Cauchy sampling by making use
of the Gaussian scale-mixture representation of the Cauchy
density [12], and sampling this generatively:

Cauchyx(µ,Σ) =

∫

u>0

Nx (µ,Σ/u) Gau (1/2, 1/2) du (1)

Algorithm 2 EDA-MCC
Inputs: θ, c, mc, sampling
(1) Sett ← 0.
(2) SetP ← GenerateN points uniformly randomly in the
search box to give an initial population.
Do

(3) Evaluate the fitness of allN points inP
(4) P sel ← Select the fittestm < N individuals from

P using truncation selection.
(5) Split the search variables in 2 groups:

(a) Estimate thed × d correlation matrix C from
a random subset of sizemc ≤ m of P sel.

(b) Split {1, ..., d} = Tu

⋃

Ts as follows:
Tu ← {i : ∀j 6= i, C(i, j) < θ}
Ts ← {1, ..., d} − Tu

(6) Wu ← P sel

|Tu
//P sel restricted to variables inTu

Ws ← P sel

|Ts
//P sel restricted to variables inTs

Pnew

|Ts
← call SM(Ws, c, sampling)

Pnew

|Tu
← call WI(Wu)

(7) P ← Pnew

Until Termination criteria are met
Output: P

Algorithm 3a Subspace Modeling of strongly correlated
variables

function SM
Inputs: Ws, c, smp

L ← dimensionality ofWs

Randomly partition theL variables ofWs into L/c
non-intersecting subsets,Ws1

,...,WsL/c

for i = 1 to L/c
(a) µi ← sample mean fromWsi

(b) Σi ← sample covariance (c × c) from Wsi

(c) If smp = ‘Gaussian’,s(i)
1 , ..., s

(i)
N

iid∼ N(µi,Σi)
Elsesmp = ‘Cauchy’ with µi as location
parameter &Σi as dispersion parameter:
s
(i)
1 , ..., s

(i)
N

iid∼ Cauchy(µi,Σi)

(d) S|(i−1)·c+1:i·c ← [s
(i)
1 , ..., s

(i)
N

]
endfor

Output: S
end function

whereu may be regarded as an hidden variable, and Ga(·) is
the Gamma density.

III. E XPERIMENTS

We set out to resolve the controversy about the comparative
merits of multivariate Gaussian vs. Cauchy search distribu-
tions in high dimensions. Towards this end, we conducted
experiments on 7 benchmark functions taken from the CEC05
competition [19] – these are listed in Table I – and we
varied the problem dimensionality from 20 up to 1000. Among
the functions tested, 4 are unimodal, and 3 multi-modal. All



Algorithm 3b Univariate Modeling of weakly correlated
variables

function WI
Inputs: Wu

L ← dimensionality ofWu

for i = 1 to L
(a) Estimateµi ← samplemean(Wu|i)
(b) Estimateσ2

i = samplevariance(Wu|i)

(c) Draw ui
1, ..., u

i
N

iid∼ N(µi, σ
2
i )

(d) U|i ← (ui
1, ..., u

i
N

)
endfor

Output: U
end function

TABLE I: Scalable test functions from the CEC’05 collection.
Problem Name

P01 Shifted Sphere Function

P02 Shifted Schwefel’s Problem 1.2

P03 Shifted Rotated High Conditioned Elliptic Function

P04 Shifted Schwefel’s Problem 1.2 with Noise in Fitness

P05 Shifted Rosenbrock’s Function

P06 Shifted Rastrigin’s Function

P07 Expanded Extented Griewank Function plus Rosenbrock

the global optima are within some given box constrains. All
problems are minimization. More details on the functions may
be found in [19].

A. Roadmap and parameter settings

Our first experiments were conducted on the Shifted Rosen-
brock Function to replicate the findings of [18] in the settings
considered there (i.e varying dimensions up to 32). The
purpose of this experiment was to see if the version of EDA we
are using is consistent with their findings. Once confirmed, we
further looked at the Shifted Rosenbrock Function in higher
dimensions to get a more complete picture. As we shall see,
the conclusion turns out to be very different in the higher
dimensional regime.

We then conducted experiments on a good number of
benchmark problems to test if the above finding is observed
more generally. The following set of dimensions (problem
sizes) were used to conduct our experiments,{20, 30, 40, 50,
100, 200, 300, 400, 500, 1000} for all problems.

All experiments were ran with three different population
sizes {300, 1000, 2000} in order to make sure that the
observed behavior is not a byproduct of a particular choice of
population size. A budget of10000 × d function evaluations
was set in all experiments, whered is the dimension of the
problem. This was the recommended budget size in [19] for
the CEC’05 competition.

The following tunable parameters were set in accordance
with the recommendations in [3]: The thresholdθ to decide
if a search variable has weak or strong correlations is set
to 0.3, the number of selected individuals (m) is set to half
of the population size, and the sample size used to estimate

correlations (mc) is set to 100. However, we did not go by
the recommendation of [3] in setting the maximum group
size,c. The reason will be explained shortly. Instead, we set
c = min(⌈d/5⌉), ⌈N/15⌉), whereN is the population size.
The performance criterion is the difference (gap) between
the fitness of the best individual found and the true global
optimum. Each experiment was run 25 times (with random
independent restarts) and we report the average and standard
deviation of these differences.

1) A note on setting the max group size,c in EDA-MCC:
We believe the following must be a typo on page 811 in [3],
for their 500-dimensional experiments, where the block size
is claimed to be set toc = 100 and the number of selected
individuals ism = 100. In our experience this setting does
not work, and indeed this setting would mean to estimate
100×100 covariance blocks from only 100 points which leads
to a singular covariance estimate (its rank is at most 99 due
to the degree of freedom lost by estimating the mean). Thus
one needs to either reduce the block sizec or to increase
the population sizeN : Since the latter is undesirable we
took c = min(⌈d/5⌉, ⌈N/15⌉. With our setting, now we
have c × c = min(⌈d/5⌉, ⌈N/15⌉) × min(⌈d/5⌉, ⌈N/15⌉)
covariance blocks to estimate fromm = ⌈N/2⌉ points.

IV. RESULTS AND DISCUSSION

A. Results on shifted Rosenbrock: Confirming the findings of
[18], and developing a more complete picture

Following [18], we start by running experiments on the
shifted Rosenbrock function up to 32 dimensions. As we
already mentioned, [18] reported superior performance when
employing the Cauchy search distribution as opposed to the
Gaussian when tested in this dimensionality range. Although
they use a different optimization algorithm and different
parameter setting than ours, we were able to confirm their
finding. Table II presents our results obtained with the pop-
ulation sizeN = 2000, along with a statistical analysis. We
see that the Cauchy search distribution performs significantly
better than the Gaussian up to 100 dimensions in this case.

TABLE II: Ranksum Statistical test for performance compar-
ison between Gaussian and Cauchy on Shifted Rosenbrock
function with Budget =10000×d and Population size = 2000.

Dimension Cauchy Gaussian Ranksum Test
mean std mean std H P-Value

20 20.3619 21.5225 23.8297 31.5721 1 3.12E-24
30 1.15E+04 4.95E+04 5.30E+04 9.35E+04 1 2.13E-21
40 8.03E+03 6.32E+04 5.18E+04 5.40E+04 1 3.45E-30
50 338.7745 976.4567 5.66E+04 7.39E+04 1 1.54E-33
100 8.04E+03 4.76E+04 1.55E+05 1.65E+05 1 3.56E-32
200 5.44E+10 5.85E+09 2.31E+05 1.93E+05 1 2.56E-34
300 4.53E+11 2.01E+10 3.88E+05 2.79E+05 1 2.56E-34
400 9.18E+11 4.34E+10 7.72E+05 4.38E+05 1 2.56E-34
500 1.35E+12 4.89E+10 1.14E+06 6.06E+05 1 2.56E-34
1000 3.77E+12 1.29E+11 5.03E+06 1.66E+06 1 7.07E-18

However, we also see from Table II that the extrapolation
suggested in [18] to higher dimensional problems than those
tested by the authors, actually fails. Instead, we see a crossing
point at aroundd = 100, after which exactly the opposite



conclusion becomes true: The Gaussian search distribution
performs significantly better than the Cauchy at problem
dimensions larger thand = 100, up to d = 1000.

We found the above conclusion consistently (up to slight
shifts of the crossing point) when choosing other population
sizes as well. This will be apparent in the next subsection
where summary plots of results obtained with three different
population sizes will be presented. Moreover, as we shall see,
the finding that Gaussian performs better than Cauchy in high
(beyond 100) dimensional problems is also observed for all
benchmark problems tested.

B. Results of an extensive empirical study

Having found an interesting pattern of comparative behavior
in the previous section on the shifted Rosenbrock function,
we then performed similar comparative experiments on all
functions from Table I in order to see if our finding holds
more generally. Figure 1 presents all these results in a compact
format. Here we display the differences between the fitness
value achieved with Gaussian (fg) and with Cauchy (fc)
search distributions respectively. By fitness value we mean
the average of the best fitness in the last generation, as
averaged over 25 independent runs. Whenever this difference
(fg − fc), is positive it means that Cauchy outperformed
Gaussian (recall, we do minimization so smaller fitness is
better), and vice-versa – wheneverfg − fc is negative then
Gaussian outperformed Cauchy. The 7 plots correspond to the
7 benchmark problems tested, and each curve on these plots
corresponds to a particular choice of population size. Since
the fitness differences are much larger whend is large, we
also show a zoomed version of the lower dimensional regime
in order to better see the details.

From Figure 1 we see that the comparative behavior of
the two search distributions in the high dimensional regime,
as observed in the previous section, consistently holds up
on all functions tested, and with all population sizes tested.
That is, the differences in the fitness values (fg − fc) are
positive in the dimension range 20-50 in most cases, meaning
that Cauchy tends to be better in this regime. But, as the
dimension exceeds 50 or 100, the differences become negative
and remain negative, indicating that Gaussian is now better
than Cauchy. We can also see from figure 1 that the results
with smaller population size yield the largest contrast between
the performances of these two search distributions.

We therefore conclude on the basis of these results that
Cauchy may be better than Gaussian in low dimensional prob-
lems, but Gaussian is superior in high dimensional problems.
Statistical tests (omitted for space constraints) confirmed that
these differences are statistically significant.

C. Further results when the optimum is shifted much further
away

Since Cauchy sampling in optimisation is expected to have
an advantage over Gaussian when long jumps are beneficial,
we also tried to modify the test problems by shifting the global
optimum and increasing the search box sizes from [−102 102]
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(a) Shifted Sphere Function
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(b) Shifted Schwefel’s Problem 1.2
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(c) Shifted rotated Elliptic Function
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(d) Shifted Schwefel’s Problem 1.2 With
Noise in fitness
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(e) Shifted Rosenbrock Function
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(f) Shifted Rastrigin Function
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Fig. 1: Differences between the average (from 25 repeated
runs) of the best fitness values achieved by the Cauchy (fc)
and by the Gaussian (fg) EDAs, as the dimension is varied, for
seven test problems. The smaller plots superimposed represent
zoomed versions of the same results in the range of 20-50
dimensions.

up to [−107 107], to see if Cauchy’s long jumps will pay off.
We found this is not the case, and Cauchy search makes very
slow progress in all cases tested. Example results are given
in Figure 2. These experiments conclude that Cauchy long
jumps does not help in high dimensions, which agrees with



the findings in [6]. That is, the chances for a long jump to
turn out lucky vanish with increasing dimension, and in the
next section we show that in fact this issue is unavoidable.
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Fig. 2: Comparisons of Gaussian vs. Cauchy search distribu-
tions on problems with highly shifted optima and increased
sizes of the search box.

V. UNDERSTANDING THE REASONS FOR OUR

EXPERIMENTAL FINDINGS

Here we show why large search steps are, in general, more
likely to perform worse than smaller ones and explain the role
that the problem dimensionality plays in this issue.
We start by considering a search distribution that selects

Fig. 3: Proof by picture – the probability that‖x⋆ − p′‖ <
‖x⋆ − p⋆‖ is monotonically decreasing in the step size of the
search.

new candidate solutions from the uniform distribution on a
sphere of fixed radius,r, about a current population member
– why this captures the essential behaviour of Gaussian high-
dimensional search will be explained shortly – and we look
at the effect of varyingr. More precisely we consider the
probability of the event that a new candidate solution is closer
to the global (or any particular local) optimum than the current
population member. See Figure 3 – the pointx⋆ is the global
optimum in the search space, the pointp⋆ is the centre (mean)
of the current population, and the shaded circle represents
the ball of radiusR := ‖x⋆ − p⋆‖ centred onx⋆. Clearly

a new candidate solutionp′ is closer to the global optimum
than p⋆ if and only if it lies within this ball, that is when
‖x⋆ − p′‖ < R. In Figure 3 we see this intersection in bold
for several choices ofr – in 2 dimensions this intersection is
an arc, in 3 it is a spherical cap, and in 4 or more dimensions
it is a hyperspherical cap. Now, what is the probability of
the event‖x⋆ − p′‖ < R? Denote bySd−1

r the sphere about
p⋆ of radius r in R

d: When p′ is drawn from the uniform
distribution on Sd−1

r , this probability is the proportion of
the surface of the whole sphere comprising the intersection,
namely the quotient of the surface area of the hyperspherical
cap to the sphereSd−1

r . For a fixed value of‖x⋆ − p⋆‖, and
for any problem dimensionalityd ≥ 2, this probability is
monotonically decreasing inr for r ∈ (0, 2R)1 and, of course,
it is zero for values ofr > 2R in any dimension. Thus if the
search direction from a current solution is chosen uniformly
at random then, irrespective of any other consideration, larger
step sizes are always more likely to take us further from the
global optimum than smaller step sizes. How fast does this
probability decay as a function of the step size or of the
dimensionality? Define the angle of the hyperspherical cap
at p⋆ to be2θr, and note that the proportion of the sphere of
radiusr covered by this cap is the same as the proportion of
the unit sphere covered by a cap on the unit sphere also with
angle2θr. Therefore Pr{‖x⋆ − p′‖ < R} ≤ exp(−d

2

2 cos2 θr)
where the RHS follows from Lemma 2.2 of [2] which upper
bounds this latter quantity. By simple trigonometry one finds
thatcos θr = r/2R, and thus we obtain the following theorem:

Theorem 1 (Most Search Steps are Bad). Let x⋆, p⋆ be two
fixed points inR

d with the Euclidean distance between them
R := ‖x⋆ − p⋆‖. Let p′ = p⋆ + z wherez is sampled from the
uniform distribution on the hypersphere of radiusr. Then:

Pr {‖x⋆ − p′‖ > ‖x⋆ − p⋆‖} > 1 − exp

(

−d2r2

8R2

)

(2)

This means that, for any fixed setting ofR, the probability
of sampling a point closer to the global optimum than the
current reference point decays exponentially quickly in both
the search radius (step size)r, and the dimensionalityd. It
also means that, for any choice of relative step sizer/R,
the proportion of good directions (i.e. directions that get
us closer to the optimum than the reference point) decays
exponentially quickly in the problem dimension. Therefore, if
the step direction is random, large steps in high-dimensional
search spaces are far less likely to take us closer to the global
optimum than small steps, and thus for high-dimensional
search we would expect that with very high probability heavy-
tailed distributions such as the Cauchy will perform poorly.
This suggests that exploration by large steps is mostly coun-
terproductive in high dimensions and instead one should focus
mainly on finding the right direction in which to move the
search distribution.

Now we discuss some possible reasons why a Gaussian
search distribution does better. From high dimensional prob-

1In dimension 1 this probability is exactly 0.5 for a step of sizer ∈ (0, 2R).



ability theory it is known that high dimensional probability
distributions may look very different from their low dimen-
sional versions, and may therefore behave in a counter-intuitive
manner. We conjecture the good performance of the Gaussian
search may be due to its good concentration property, which
the Cauchy distribution lacks. This property means that in high
dimensions most of the points sampled from the distribution
lie within a thin shell at approximately equal distance from
the center of the distribution - in other words although in
high dimensions we will not generate new points very close
to the mean, neither will we generate points very far from
the mean either. Figure 4 demonstrates this empirically. We
sampled 100,000 points from a 10, 100, 200 and 1000-
dimensional standard Gaussian and plotted the histogram of
Euclidean distances from the origin (centre of the distribution).
We see from the figure that all of these distances are close
to approximately

√
d (

√
10 = 3.16,

√
100 = 10,

√
200 =

14.14,
√

1000 = 31.66). So, as the dimensionality increases
we have most of the points within a shell that gets thinner
and thinner relative to the average distance from the centre.
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(a) D = 10,c = 2
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||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(b) D = 100,c = 20
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||x|| : x ~ Gaussian
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(c) D = 200 ,c = 20
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||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(d) D = 1000 ,c = 20

Fig. 4: Comparison of the histograms of Gaussian vs. Cauchy
norms asd increases. The values of the parameterc chosen
here (i.e. the dimension of independent multivariate Cauchy
components) correspond to a population size of 300 (although
we observed no qualitiative difference for other choices).We
used 100,000 sample points to create these histograms.

We then repeated the same experiment with 10, 100,
200 and 1000-dimensional Cauchy norms where 70% of the
components of the points were sampled from independentc-
dimensional multivariate standard Cauchy distributions and the
remaining 30% from independent standard Gaussian – this
mimics a typical SM & WI split from our Cauchy-EDA-MCC
simulations. We superimposed these histograms on the same
plots with the Gaussian norms in Figure 4. From Figure 4 it

is very apparent that the Gaussian norms are all clamped in
a narrow range, whereas the Cauchy norms are increasingly
spread out. This will have implications on the implicit search-
ing strategy associated with these two distributions, as weshall
discuss in the remainder of this section.

Take the Gaussian case first. More formally, for a generic
non-degenerate2 d×d covariance matrixΣ, let X ∼ N(0,Σ).
Then the expected norm can be approximated as follows:

E[||X||] ≤
√

E[||X||2] =
√

Tr(Σ) (3)

using Jensen’s inequality. Indeed, applying the linearity
of expectation, we haveE[||X||2] = E[

∑d

i=1 X2
i ] =

∑d

i=1 E[X2
i ] =

∑d

i=1(Σii) = Tr(Σ).
Note that in the caseΣ = I we have

√

Tr(Σ) =
√

d. This is
why we saw the averages of Gaussian norms at approximately√

d in Figure 4. Furthermore, the following lemma shows that
with high probability ‖X‖ is close to

√

Tr(Σ) (in absolute
difference relative to the spectral norm ofΣ).

Lemma 1. Let X ∈ Rd where X has entries drawn from
a multivariate Gaussian with mean zero andΣ covariance.
Then,∀ǫ ∈ (0, 1),

Pr

{
∣

∣

∣

∣

∣

‖X‖−
√

Tr(Σ)

∣

∣

∣

∣

∣

≥ ǫ
√

λmax(Σ)

}

≤ 2 exp

[

− ǫ2

2

]

(4)

This probability inequality was mentioned in [8] without
proof. In the Appendix we derive it from Lemma 1 of [4].

Now, Lemma 1 implies that in Gaussian EDA search, a large
fraction of the new generation lies in a thin shell at the same
distance from the center of the population – therefore selection
of the fittest points essentially selects the promisingdirections.
These two elements – using all of the available resources to
select directions, and then ensuring a steady move of size just
below

√

Tr(Σ) from the center of the population from one
generation to the next – provide Gaussian EDA a well focused
strategy that is beneficial and resource-efficient. Moreover, as
we approach a local optimumTr(Σ) will decay, so in fact
Gaussian EDA automatically tunes the search granularity over
successive generations.

By contrast, the Cauchy density does not have good con-
centration properties. This is very apparent from the numerical
experiment in Figure 4. While we see a reasonably high
density region in the case ofd = 10, as d increases, the
heavy tails of the distribution in all directions dissolve any
high density region. Therefore, Cauchy based search has no
ability to prioritize selecting good directions.

In the sequel we shall put the above explanation to a test:
We shall create a new search distribution for EDA that takes to
the extreme the clever implicit searching strategy of Gaussian
EDA that we just uncovered. If our reasoning above is correct,
then the new search distribution might perform even better in
high dimensions.

2Note that the model complexity control on the covariance estimates in
EDA-MCC ensures that the covariance estimates are indeed non-degenerate –
of course, provided that we set the parametersc andm wisely (as discussed
in an earlier section).



VI. EDA WITH UNIFORM SEARCH DISTRIBUTION ON A

HYPERSPHERE

Rather than searching in a thin shell at some constant
distance from the center of the population, let us search
precisely on the hypersphere with the same radius. Based on
our analysis in the previous section, from eqs. (3)-(4), we
define the search distribution as a uniform distribution on the
sphere of radius

√

Tr(Σ), where, as before,Σ is the covariance
estimated from the selected individuals. This way, when the
high fitness individuals are selected they represent exactly the
high fitness directions at granularity equal to the radius. The
subsequent generation then makes a steady move towards the
average of the selected directions, just like it was the casefor
Gaussian based search.

We tested and validated the performance of this new EDA
variant in an extensive series of experiments, comparatively
with both the Gaussian and the Cauchy EDA variants dis-
cussed earlier. We first present detailed results on the search
process for the Shifted Rosenbrock function in Figure 5,
with three different population sizes, each tested on four
different dimensions of the problem, from low to high. As
conjectured, we can see that the uniform sphere based search
strategy becomes increasingly efficient in high dimensionsand
outperforms both Cauchy and Gaussian based EDA search as
the dimensionality of the problem increases. We confirmed
using ranksum tests that these differences are statistically
significant. This is because in an exponentially increasing
search space, when only having a linearly increasing budget
it becomes more and more important to prioritize the task
of selecting good directions. We also see that this effect is
very robust and not influenced by the particular choice of
population size. All plots represent average of best fitnessas
computed from 25 independent runs. The total budget was set
to 104 · d, whered is the dimension of the problems.
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Fig. 5: Differences between the average (from 25 repeated
runs) of the best fitness values achieved by the Gaussian (fg)
and by the Uniform on Sphere (fs) EDAs, as the dimension is
varied, for the Shifted Rosenbrock function. The smaller plots
superimposed represent zoomed versions of the same results
in the range of 20-50 dimensions.

Finally, in Figure 6 we demonstrate the results of large scale
experiments in 1000-dimensions on the remaining 6 bench-
mark function listed in Table I. Here we used a population

size of N = 300. Again we see that UniformSphere-EDA
consistently and significantly outperforms the other two EDA
variants. From these results, and recalling our rationale for
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(b) Shifted Schwefel’s Problem 1.2
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(c) Shifted Rotated High Conditioned
Elliptic Function
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(d) Shifted Schwefel’s Problem 1.2
with Noise in Fitness
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(e) Shifted Rastrigin’s Function
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(f) Expanded Extended Griewank’s
plus Rosenbrock’s Function (F8F2)

Fig. 6: Comparison of Gaussian EDA-MCC, Cauchy EDA-
MCC and UniformSphere-EDA on 1000-dimensional prob-
lems. The population size was 300, and each curve is the
average of the best fitness values from 25 independent runs.
The budget of function evaluations was104 ·d, whered is the
dimension of the problem.

creating this new EDA version, we conclude that our study
resolved the controversy about the merits of Gaussian against
Cauchy EDA search in high dimensional problems, and as a
byproduct our new EDA variant also gives us new insights
about how to approach high dimensional EDA search.

VII. C ONCLUSIONS

In this paper, we conducted a large empirical study to
benchmark the performance of Cauchy and Gaussian search
distributions in EDA using a scalable black-box EDA op-
timizer. Our empirical results suggest that Cauchy search
distributions perform particularly badly in high-dimensional
spaces. To explain this phenomenon we developed theory that
explains why large search steps are inefficient in high dimen-
sional search spaces, and we showed that this inefficiency is



unavoidable in practice. We argued that a Gaussian search
distribution has an in-built prioritizing strategy that implicitly
focuses resources within a generation on selecting good search
directions: This strategy is a by-product of the concentration
property of Gaussian norms in high dimensions. On the other
hand, Cauchy norms lack good concentration properties and
make a high proportion of (very) large steps, and this results
in an increasingly inefficient search strategy when the problem
dimension increases. Based on our theoretical insights and
understanding of high dimensional domains, we proposed
a minor modification to the standard Gaussian EDA which
enforces search within a generation to all take place at a fixed
radius of the current population centre. Initial experiments on
a battery of test problems indicate that this simple change
improves high dimensional search markedly – fuller evaluation
of the promise of this approach remains for future work.
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APPENDIX – PROOF OFLEMMA 1
Proof. The following bounds [4] hold for the Gaussian square
norm, with the two sides holding with different probabilities.
Here we massage this into a bound on the Gaussian norm and
make the two sides hold with the same probability. From [4]:

Pr

(

‖X‖ ≥
q

(1 + ǫ)Tr(Σ)

)

≤ exp

 

−Tr(Σ)(
√

1 + ǫ − 1)2

2λmax(Σ)

!

(5)

Pr

(

‖X‖ ≤
q

(1 − ǫ)Tr(Σ)

)

≤ exp

 

−Tr(Σ)(
√

1 − ǫ − 1)2

2λmax(Σ)

!

(6)

Now from the LHS of equation 5 and our target, we set:
√

Tr(Σ) + ǫTr(Σ) =
√

Tr(Σ) + τ
√

λmax(Σ)

Solving for ǫ, and replacing it into the RHS of eq.5 gives:
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Taking LCM of the term under the square root, we have
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Now taking LCM of the term inside the square, and simpli-
fying, we get:
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after cancellations. Renameτ by ǫ, and this completes the
proof for one side of Lemma 1. The other side is analogous,
and yields:
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