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ABSTRACT

We consider the linear and nonlinear evolution of disturbed magnetic X-type neutral points. The problem is
formulated within a unified analytic and computational framework which highlights the essence of the mag-
netic annihilation process, namely, the coupling of a global convection region to a localized diffusion region
surrounding the neutral point.

An analytic treatment is given for the case of small disturbances of the equilibrium field in the absence of
gas pressure. This problem admits well-defined azimuthal modes which allow a formally exact determination
of the magnetic annihilation rate. It is shown that reconnection can only occur in the case of purely radial
(m = 0) disturbances: the reconnection process is oscillatory and “fast,” depending only logarithmically on the
plasma resistivity ().

We show that the linear theory supports the notion of an initial implosive stage which rapidly releases the
bulk of the energy associated with reconnective field disturbances. This phase is initiated by the advective
focusing of the perturbation energy into the neutral point and culminates in the formation of a cylindrical
diffusion region of area 4 ~ 5 and current density J ~ . This scaling provides a signature for fast linear
reconnection.

Next we consider the breakdown of the linear theory. Although fast reconnection is maintained for low-
amplitude disturbances in noncylindrical geometries, it is shown that finite gas pressure can stall the reconnec-
tion if sufficiently large. This effect, however, may not be critical in more complex X-point geometries. More
seriously, for finite-amplitude displacements the cylindrical current structure close to the neutral point is dis-
torted into a quasi-one-dimensional current sheet whose thickness is limited by resistive diffusion. In this case
fast reconnection is consistent with a flux pileup solution in which the bulk of the energy is released as heat

rather than as the kinetic energy of mass motion.
Subject heading: MHD

1. INTRODUCTION

It is widely accepted that solar flares are initiated by the
rapid collapse of magnetic fields in the low solar corona. As a
result, much theoretical effort has gone into investigating
mechanisms which can release magnetic energy fast enough to
account for the explosive energy release. Early work focused
mainly on the magnetic annihiliation that takes place when
oppositely directed magnetic fields are pushed together by
external “boundary ” forces (Sweet 1958; Parker 1963). It was
soon recognized, however, that resistive diffusion at localized
neutral points must be closely coupled to the global advection
of the outer field if the energy release rate is to be sufficient. A
crucial advance was provided by Petschek (1964), who demon-
strated that field-line reconnection at the origin of an X-type
neutral point allows convectively driven magnetic annihilation
on time scales approaching the Alfvén time scale of the outer
field.

The semiquantitative Petschek analysis has proved highly
contentious over the years—claims have been made that the
model does not provide a valid solution of the MHD
equations—but the mechanism itself appears physically plau-
sible (Vasyliunas 1975; Parker 1979; cf. Biskamp 1986). What
seems to be lacking is a dynamically complete evolutionary
model of the underlying reconnection process. The problem is
that analytic tractability virtually imposes an approximate
steady state treatment in which the uniqueness of the solution
cannot be guaranteed—hence the different quasi-steady anni-
hilation modes of Petschek (1964) and Sonnerup (1973) (see
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Forbes & Priest 1987). Numerical simulations, on the other
hand, are not entirely trouble-free, since a complex diffusion-
advection problem in two or more space dimensions has to be
modeled (see, e.g., DeLuca & Craig 1992). One problem is
determining the scaling of the annihilation rate given that
feasible computations involve unrealistically high plasma
resistivities (e.g., the steady state scalings of Biskamp 1986).
More critically, because a numerical treatment generally
requires assumptions and idealizations that differ from the
analytic approach, it is often quite difficult to integrate the
disparate, often phenomenological, results of reconnection
studies. Priest (1985) implies that the process of magnetic
merging seemed quite well understood until numerical simula-
tions came along to cloud the picture! Probably many of the
discrepancies in the theoretical picture can be expected (Forbes
& Priest 1987) in view of the differing initial and boundary
conditions imposed on the problem.

The purpose of the present paper is to investigate the linear
and nonlinear relaxation of a disturbed X-type neutral point
configuration. This problem has the advantage of allowing a
unified analytic and computational treatment while still con-
taining the essence of the reconnection problem, namely, the
coupling of a global convection region to the localized
diffusion-reconnection region surrounding the neutral point.
Thus, when results can be obtained analytically—for instance,
by linearization about the equilibrium solution (see Craig &
McClymont 1991a)—their general validity can be checked
using a complete nonlinear treatment.
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As physical motivation, we note that although neutral point
topologies will almost certainly be present in the solar corona
given the complexity of observed coronal structures, they may
be in nonequilibrium as a result of continual buffeting by gas-
dynamic and MHD disturbances within the active region
assemblage. Such disturbances may drive changes in the mag-
netic field topology that can only be negated by magnetic
reconnection in the vicinity of a neutral point.

The relaxation problem is formulated mathematically in § 2.
We present a conservative Eulerian formulation of the system
that facilitates a convenient semi-implicit numerical treatment.
In § 3 an analytic description of the advective field evolution is
given, valid for small departures about the equilibrium field;
these results are then augmented by numerical resistive solu-
tions and a discussion of the global energy decay. In § 4 the
limitations of the linear theory are addressed. Our findings are
summarizedin § 5.

2. FORMULATION OF THE PROBLEM

2.1. Neutral Point Equilibria

We imagine an X-type neutral point configuration immersed
in a tenuous background plasma of uniform mass density p,.
Coordinates are chosen so that the field strength vanishes at
the origin and achieves the value B, at the characteristic radial
distance L,. We nondimensionalize with respect to B, and L,
and write the equilibrium field in the dimensionless form

By =(yx). 2.1)

In two-dimensional geometries much simplification is achieved
by working with the planar flux function y rather than with the
magnetic field intensity directly:

B=Vxy/d)=Vy x3z.

The equilibrium flux function for an X-type neutral point is
given by

Vg = 3(? — x2) = —1r? cos (26) (22)

in Cartesian and cylindrical coordinates, respectively.

We imagine the equilibrium field to be subject to a spectrum
of finite-amplitude disturbances. These may disturb the outer
radial boundary to which we assume the field is permanently
threaded or line-tied. The perturbed field must then evolve
dynamically—reconnecting field lines at the neutral point if the
intrinsic topology is not preserved—as it attempts to regain
equilibrium. The time scale for establishing equilibrium is mea-
sured in units of the boundary Alfvén time scale 7, = Ly/v,
[v4 = Bo(4mp,)~ */? in Gaussian units], which is typically a few
seconds under normal coronal conditions.

To allow a convenient mathematical description, the outer
boundary is idealized as a perfect conductor. For linear calcu-
lations the assumption of a circular boundary allows pertur-
bations to be represented by azimuthal modes; on the other
hand, a rectangular boundary is more suitable for finite-
amplitude calculations. Although such boundaries simplify the
geometry of photospheric line-tying, they are topologically
correct and hence should not distort the underlying physics of
the problem.

The key questions concerning the relaxation and resistive
energy release of a disturbed X-type neutral point can only be
answered by a truly global treatment. We imagine that dis-
turbances in the neutral point configuration are driven in such
a way that the flux function is held fixed on the boundaries so
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FiG. 1b

FIG. la

Fi1G. 1.—Initial X-point magnetic field structures. In (@) the equilibrium
field topology has been altered, and field-line reconnections must occur if the
equilibrium is to be achieved; in (b) the original topology has been maintained
but reconnections can still occur in the absence of other damping mechanisms.

the initial field is topologically distinct from the neutral point
equilibrium, hence field-line reconnections are required to
recover the equilibrium. However, we also show in § 3 that
reconnections can still occur for initial displacements that do
not disturb the intrinsic topology.

Figure 1 illustrates two initial X-point configurations. In
Figure la the topology of the equilibrium X-point has been
changed by the addition of a perturbation that alters the
separatrix angle of the field lines; in Figure 1b the field is
distorted in a way that maintains the equilibrium topology.
Solutions describing the dynamic evolution of these fields are
given in§ 3.

2.2. Evolution Equations

The evolution of the disturbed field is governed by the con-
tinuity equation,

Z—¢+V'(pv)=0, 2.3)

the momentum equation,

p(%?+v-Vv>=JxB—Vp—vV, (24)
and the induction equation,
0B
E:Vx(uxB)+nV2B. .5)

These equations are all nondimensionalized with respect to the
far-field boundary values By, Ly, t,. The forcing terms in the
momentum equation describe, respectively, the Lorentz force,
the gas pressure force, and the viscous damping of the plasma.
Aside from the effects of finite resistivity, the viscous damping
term (V) provides the only mechanism for energy loss in the
system. However, in a real plasma the level of viscous damping
is expected to be very small if not negligible.

The only other form of dissipation in the system is due to the
resistive term in the induction equation. In general, the mag-
netic Reynolds number is very large [#~! > 0(108)], which
means that the advection of the coronal field dominates every-
where except in the vicinity of a flow stagnation point. The
importance of finite resistivity is that it allows field-line recon-
nections to occur at magnetic neutral points which greatly
simplify the global plasma field topology.

Under typical coronal conditions the magnetic pressure
dominates the plasma pressure by factors of order 100 or more.
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Accordingly, the Lorentz force is generally the dominant term
in the momentum equation (2.4). In terms of the flux function
the Lorentz force reduces to

Jx B= —V¥Vy, (2.6)
where the current density is given by J = —V?2y3. Rewriting
the induction equation in terms of i gives

0
a—'f =—v-Vy + V. 2.7

This makes it plain that in the absence of resistive effects the
flux function is advected with the flow.

2.3. Conservative Form of the Evolution Equations

The field evolution equations are conservative in the absence
of the generally small viscous and resistive terms. To bring out
this fact, we express the continuity and momentum equations
in terms of the divergence of mass and momentum fluxes,
respectively, and write the Lorentz force as the divergence of
the stress tensor:

Tij = BiBj - %Bzéij = %(Vlll)zéij - l//il//j s

where subscripts on the flux function imply differentiation with
respect to the subscripted variables. Since the induction equa-
tion may be written conservatively in terms of the flux of the
quantity py, we obtain the vectoral form

%—Itj g—f + % =H, (2.8)
where
p 0
pu —v
U= pv |’ H= —wW |’
Py vy
pu pv
Fo|Pw =3 —y3) _ puv + Yy,
puv + ¥, ¥, ’ po>+p—3Wi—y) |’
pyu pyv
and
v=(@wv), V=WV,W).

All dissipation terms are represented by components of the
vector H. Thus, for H = 0, the problem is entirely advective in
nature, and the mass, momentum and py are all conserved
identically within the volume of the neutral point configu-
ration. The problem of simulating Eulerian advective systems
is well studied (Richtmyer & Morton 1967; Roache 1982), and
there is great advantage in retaining the conservative form of
the equations. In § 4 we present computational solutions for
the disturbed neutral point problem assuming a rectangular
outer boundary. For the present we concentrate on an analytic
reduction based on a cylindrical formulation of the linearized
evolution equations.

3. THE LINEARIZED PROBLEM

3.1. Introduction

It is clearly unrealistic to expect closed form global analytic
solutions for the complete fluid equations. To make analytic
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progress, we linearize the MHD equations about the neutral
point equilibrium neglecting gas pressure and viscous effects. A
preliminary discussion of the linearized system, which empha-
sizes the asymptotic decay rate of the field, is given by Craig &
McClymont (1991a). In this approach it is assumed that the
solutions are separable, so that eigenfunctions can be con-
structed from the resulting complex system of ordinary differ-
ential equations. This leads to highly accurate eigensolutions
and an analytic description of the reconnective modes, but the
difficulty remains of establishing the completeness of the
complex radial eigenfunctions (see also Hassam 1991). Thus it
is not clear that arbitrary initial conditions can be represented
using this approach.

In what follows we take a complementary viewpoint: we
regard the linearized problem as defining an initial value rather
than an eigenvalue problem; thus the evolution of an arbitrary
disturbance is described directly without further assumption.
This allows us to explore the validity of the eigensolution
method and to investigate more general questions, for instance,
the early current buildup prior to reconnection (§ 3.5), and the
global energy evolution (§ 3.6).

3.2. Basic Equations
To linearize the problem, we set

Y=yg+y (3.1)

and consider only small departures dy about the equilibrium
Vg, given by equation (2.2). The linearized system reduces to

pot = —VYVg,
U=—v Vg +4qVi, (32

where for the purposes of this section we identify i with the
first-order variation of the flux function. Note that we have
ignored the equation for the perturbed density, since it can
have no influence on the momentum equation in the absence of
gas pressure: in effect the fluid is arbitrarily compressible.
Setting the background plasma density p, = 1 and elimi-
nating the explicit dependence on fluid velocity allows the
system (3.2) to be written as a single third-order equation for ¥ :

Y =rV3y + gV . (33)
Taking cylindrical modes,

sin mf
= ’ 4
4 lp"’{cos mo , 34)
the azimuthal components ,, satisfy
V=1V, + 1V, . (35)

This equation provides our basic theoretical tool for investi-
gating the linearized system.

3.3. Reconnection and the m = 0 Mode

The interplay between the diffusive and advective aspects of
the problem is controlled by the relative magnitude of the
terms on the right-hand side of equation (3.5). In the absence of
diffusive effects, this equation reduces to i,, = r2V2y,,, which is
simply a magnetic wave equation with wave speed proportion-
al to r. Given typical coronal conditions [ie., 7 < O(10~8)],
such wavelike behavior will extend throughout most of the
fluid. Sufficiently close to the neutral point, however, there is
always a domain in which diffusion dominates. This domain
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extends from the neutral point out to a critical radius r, which

scales as
ro=aJ1, (3.6)

where a is a number of order unity. Inside this region topologi-
cal changes are effected as field lines are cut and reconnected at
the neutral point. Ignoring advection completely, we obtain

Vo, 1) = e“‘""J,,,( \/% r> 6.7

as the solution in the diffusion region. Here p,, is a constant
which can only be determined by global considerations, and
the J,, are the mth-order Bessel functions. The important point
is that the m = 0 mode is the only mode which allows a finite
current—equivalently, a nonvanishing displacement in the flux
y—at the neutral point. It follows that only the m = 0 com-
ponent of a disturbance can drive reconnection and hence
effect topological change.

3.4. Boundary Conditions

The inner boundary conditions on the flux function ¥,
namely,

V,0,6)=0 form>0,

W
or
follow immediately from the requirement of a bounded current
density at the origin. These conditions also follow from the
Bessel function solution (3.7) that holds in the vicinity of the
neutral point. On the outer boundary we impose the condition
that the perturbed flux ¥,, be fixed at some constant value for
all time, consistent with line-tying the initial perturbed field. As
equation (3.5) is second order in time, we must impose initial
conditions on both ¥,, and its time derivative. In practice the
time derivative is fixed by specifying a zero initial velocity field.
As a precursor to the full treatment of the problem, we first
study the initial buildup and localization of the current analyti-
cally by neglecting diffusive effects.

0,)=0 form=0, (3.8)

3.5. Analytic Solutions in the W ave Domain

Analytic solutions can be constructed in the case where the
wave zone extends throughout the fluid, ie., for n = 0. On
physical grounds these solutions should provide a good
description of the initial evolution of a localized pulse propa-
gating toward the neutral point. For a real resistive plasma, the
time for a pulse originating on the outer boundary to reach the
edge of the diffusion regionr = r, is given by

Lar 1
T=J;;~—§lnn, (3.9)

on remembering that the wave velocity v =r and r, = a. /5,
with # < a. Hence we expect the ideal solutions derived below
to be valid over a time scale comparable to T. The fact that T
becomes infinite as # — 0 implies that information can never be
“advected ” into the neutral point. The admission of resistive
diffusion into the problem fundamentally changes the picture:
the origin is no longer a forbidden point, information from the
wave domain can diffuse to the neutral point, so the incoming
wave is subject both to resistive attenuation and to reflection
from the origin.
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Wave solutions are obtained by solving
Y = (W) — m?y,, (3.10)
Introducing the change of variables
s=—Inr, @,(st)=y,m1, (3.11)
the wave equation may be rewritten as
B = a;";"' —mo, . (.12)

In this form we see immediately that an isolated mode given by
®,, = cos (w?) sin (Bs) yields a solution, provided that we take
@* = B2 + m2. Such modes automatically guarantee the outer
boundary condition ¥,, = 0, but the inner boundary condition
can be satisfied only by superposing over f. Thus we obtain the
general solution

Unlrs ) = 9,05, 1) = Jwa(ﬂ) sin (Bs) cos [(B* + m?)"*]dB ,
(3.13)

where s = —Inr and from the initial conditions v, = ¥,,(r, 0),
Yu(r,0) =0,

ap=> f " (s, 0) sin (Bs)ds .

In the important special case of purely radial (m = 0) pertur-
bations, equation (3.13) reduces by virtue of the sine transform,
to the usual d’Alembert solution

Y, t) =3[0 —t) + ° +1)], s=—Inr, (3.14)

where we have dropped the m = 0 subscript and the zero
superscript refers to the initial condition, i.e., p° = ¢(s, 0). Note
that @° must be odd to satisfy the outer boundary condition at
s=0.

To understand the current buildup associated with recon-
nective modes, it is instructive to explore the d’Alembert solu-
tions in more detail. In general, equation (3.14) implies a
separation of an initially stationary localized pulse into
outward and inward-propagating components. Once the
outward component reflects off the outer boundary, a “pure”
inward traveling envelope is formed, say

Y, 1) =H(t —Inr). (3.15)

Two interesting results follow from this equation. First, from
the induction equation |v|=|y/r|, and so |v|=|6B|=

| 0y/or|. Hence there is a local and global equipartition of
magnetic and fluid energies with » given by

o= —HVyyr*,

where the prime denotes differentiation with respect to the
function argument and we have used the fact that velocities can
develop only in the direction of the Lorentz force. Second, we
note that the envelope travels toward the neutral point
retaining its amplitude, but steepening because the back of the
pulse travels faster than the leading edge. This means that very
large localized currents must form as the wave approaches the
diffusion region.

Let us consider two concrete examples of the implosive
current buildup: first, we take a global disturbance that con-
taminates the neutral point and hence requires reconnection to
damp out; second, we consider a localized pulse in the outer
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field that maintains the intrinsic topology of the field equi-
librium. These initial magnetic configurations are sketched in
Figure 1. In the first case,

Yo=Kkl -r?, (3.16)

so that y(0) = k, Y(1) = 0. This corresponds to the closing up
of the orthogonal X to an X which makes an angle a with
the x-axis (x < mn/4), as can be seen by the identification k =
—3 cos (2a).To satisfy the outer boundary condition at s = 0,
we require that ¢° satisfy % —z) = —@%z). Substituting
¢0° = k(1 — e~ **) in equation (3.14), we find

_ [k[1 — 7% cosh (21)]
v o) = {ke_Z' sinh (—21In7r)

Next we consider the solution for a pulse initially localized
in the outer field. Specifically, we take

@° =se™% (3.18)

and construct the d’Alembert solution by replacing s with
s+t

It should be stressed that the advective solution will always
provide a good description of the initial development of the
resistive solution, provided # is sufficiently small. Resistive
solutions for each of the initial conditions considered above are
discussed in the next section. The key point is that the advec-
tive motion of a radial magnetic wave toward the origin always
drives a massive current buildup that initiates reconnection.
This initial development—namely, the constant-amplitude
advection of iy toward the origin—is illustrated in Figures 2
and 3 discussed below.

if —lnr>t,

if —lnr<¢. G

3.6. Simulations of the Resistive Fluid

The admission of finite resistivity into the problem means
that information from the wave zone can now diffuse to the
origin. We can think of diffusion becoming the dominant
process when the diffusive speed v, exceeds the wave speed
(which scales as r). On dimensional grounds this occurs when

n
UpR—RT,

r
and so information will cross the diffusion region in unit time.
Thus a localized pulse originating at the outer boundary
reaches the origin on a time scale given by 1 + T, where T is
given by equation (3.9). Hence, for small enough # the
“communication time” between the origin and the outer
boundary scales as In#.

In simulating equation (3.5) for finite #, it is convenient to
work in the s = —Inr variable. Thus we write equation (3.5) in
the form

Om = V20, + 1e*V30,, , (3.19)
where

0w,
o2 " Pm-

Vi, =

In practical simulations we truncate the infinite interval
Smax = 00 by taking s, to be some small fraction of Inr,, with
r. defined as in equation (3.6).

Figures 2 and 3 show the resistive attenuation of the solu-
tions for the initial conditions (3. 15) and (3. 17) discussed above,
with # = 1078, Each plot displays sequential time slices of the
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flux function and the current over roughly 30 Alfvén times. The
initial advective development in both figures is extremely well
described by the d’Alembert solution. As predicted, the local-
ized pulse initially breaks up into separate inward- and
outward-moving waves, but once the outgoing wave reflects off
the outer wall, a pure ingoing pulse is formed which advects
toward the origin. The pulse amplitude decays markedly only
on entering the diffusion region—which occurs after some 8
Alfvén times, in accordance with equation (3.9). Far more spec-
tacular is the initial buildup of current brought about by the
localization of the wave: the maximum current amplitude in
fact scales inversely with # (as discussed in § 4.1 below). In both
solutions the bulk of the energy associated with the dis-
turbance is annihilated during the initial implosive phase.

What are the decay times associated with the resistive energy
dissipation? To answer this question, we compute the evolu-
tion of the global (magnetic plus fluid) energy of the dis-
turbance using the scheme discussed in the Appendix. Figures
4 and 5 show time plots of the total energy for the resistive
solutions under discussion. Both decay curves reflect oscil-
latory behavior on the Inz time scale as predicted. But the
most prominent feature is the steplike decay of the total
energy, especially during the first few bounce times. For large ¢
there is a relatively slow, mean asymptotic decay rate with an
underlying ripple structure (again with the In#n dependence).
This structure is real and can be explained by the fact that the
magnetic and fluid energies are never exactly out of phase for
finite #.

3.7. Eigenfunction Description of Reconnective Modes

It is interesting to compare the present results with the
eigenfunction approach of Craig & McClymont (1991a), which
assumes solutions of the form

¥nlr, t) = Re [f(e*], (3.20)
where f{(r) is complex and oscillation and decay rates are given
by

A= —a+io.

Craig & McClymont show that for sufficiently small # recon-
nective (m = 0) solutions can be constructed by matching the
inner diffusive solution of equation (3.7) to “standing waves”
in the outer field of the form sin (81nr), as suggested by equa-
tion (3.13). In particular, the oscillation and decay rates are
given by

_ @n+ = . ?
B > T T 2m+ 1)

Ingn

respectively, where n is the number of radial nodes. Thus the
decay rate and oscillation frequency are limited by the funda-
mental n = 0 mode, which has no radial crossings. Perhaps not
surprisingly, the decay rate we compute and the radial form of
the simulated solutions are perfectly described by the funda-
mental eigenmode in the limit of large z. Indeed, from the
present “causal” viewpoint the fundamental frequency can be
identified with the “signal travel time” (eq. [3.9]). An impor-
tant point physically is that the oscillation and decay rates are
“fast,” depending only logarithmically on the resistivity.

At first sight it appears that the eigenfunction model does
not provide a good description of the initial evolution, espe-
cially the first localization and diffusion cycle in which the bulk
of the energy is lost (see Figs. 4 and 5). The fundamental eigen-

(3.21)
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FI1G. 2—(a) Time-slice diagram of the evolving flux function assuming ¥® = k(1 — r?) as the initial condition (with k = 1). The time slices are evenly spaced out to
25 Alfvén times. Although the calculation is resistive (7 = 10~ 8), the disturbance propagates advectively until reaching the diffusion region, i.e., over the first 8 Alfvén

times. (b) Time-slice diagram of the current density.

function only becomes accurate at large ¢, once the disturbance
has been globalized by diffusion. However, detailed indepen-
dent calculations (Craig & McClymont 1991b), which rep-
resent a pulse as a superposition of higher n nodes, can mimic
both the steplike energy decay and the rapid initial energy loss
that precedes the slower asymptotic decline. The presence of
rapidly decaying higher nodal contributions implied by an ini-
tially localized wave means that, although the fundamental
decay rate is universally applicable at large ¢, it generally
underestimates the reconnection rate during the first few oscil-
lation cycles.

3.8. Higher m Modes

Higher azimuthal modes are not associated with reconnec-
tion. Thus, in contrast to the fundamental radial modes, it is
possible for higher modes to decay by nonresistive
mechanisms—for instance, damped fluid motions. It is not our
present intention to provide a detailed discussion of non-
reconnective disturbances. We simply point out that higher

azimuthal disturbances are characterized by disturbances in
the outer field, rather than in the vicinity of the neutral point.
Thus, although the presence of added azimuthal nodes
increases the oscillation frequency and decreases the wave-
length of the disturbance which we would expect to increase
the decay rate, this is counterbalanced by the absence of a
strong localization in the vicinity of the neutral point. Craig &
McClymont (1991b) show that for moderate m the oscillation
frequency and damping rate are given by

2 2 2 ﬂs
o’ =p*+m*, a=4m(T+—13’
where
n+1)2n
o ! )2n
nn

The decay rates are reduced slightly below the reconnective
rate, but a logarithmic dependency of the solution is retained.
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FiG. 3a
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FI1G. 3.—(a) Time-slice diagram of the evolving flux function assuming Y° = se™

? as the initial condition with # = 1078, The time axis runs to 37.5 Alfvén times.

In contrast to the initial condition of Fig. 2, this pulse disturbance does not change the intrinsic topology of the neutral point. Nonetheless large currents are driven at

the neutral point—the signature for topological reconnection—as shown in (b).

4. LIMITATIONS OF THE LINEAR THEORY
4.1. Scaling Laws in the Linear Model

We have seen that the linearized theory predicts that fast
reconnection should occur naturally, even for small pertur-
bations: it does not have to be driven continuously by bound-

0f ’ ' ‘
—2F
-4
U gt
I= ]
—8 H B bt i
—10F
-12 ]

0 50 100 150 200
t

F1G. 4.—Plot of the log of the total energy vs. time for the run of Fig. 2. The
dotted line shows the magnetic energy. Note the steplike behavior of the
energy decay and the gradual descent into the asymptotic solution described
by the fundamental radial mode.

ary disturbances contrary to the implications of steady state
models. Also, the reconnective mode is oscillatory in nature:
the fundamental oscillation frequency is determined by the
signal travel time from the outer boundary to the diffusion
region and depends only logarithmically on #. But although
the asymptotic decay rate is determined by the decay of the
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F1G. 5—Plot of the log of the total energy vs. time for the run of Fig. 3. The
steplike nature of this plot is more pronounced than for Fig. 4, owing to the
stronger localization of the initial disturbance. m
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fundamental reconnective mode (eq. [3.20]), the bulk of the
perturbation energy is lost very quickly during the initial
implosive phase.

Let us consider the implosion in more detail. In this phase
the energy of a reconnective perturbation becomes focused
into an increasingly localized cylindrical current spike, while
outside this region the configuration is current-free. This fact
allows us to deduce key properties of linear reconnection on
the basis of simple energetic arguments. At any stage in the
advective collapse we can write the perturbation energy in
terms of the excess magnetic and kinetic energy of the fluid:

OE = 3{6B*) + 3{pv*), @1

where B is the magnitude of the perturbed field, and the angle
brackets (see the Appendix) denote integration over space. Ini-
tially all the excess energy is magnetic, but as the current local-
izes the fluid energy increases until equipartition is achieved
(ie., SE = {OB?)). The current localization is limited only by
resistive diffusion close to the neutral point. If A is the area
enclosing the cylindrical wave, then

(OB?) = OE ~ 6B*4 @2)

is invariant during the phase of current buildup. Since
A ~ nR? ~ nand 6B =~ JR, we deduce that the scalings

1
J~=, A~npg 4.3)
n
should be valid at the time of maximum current buildup. In
this case both the ohmic dissipation rate and the flux annihi-
lation at the neutral point scale independently of any power

of n:
W,=nJ?A~n°% Y=n]~n°.

Likewise, the total current enclosed by the cylindrical wave is
invariant. We can take these scalings as a signature for fast
linear reconnection during the implosive phase.

When does the linear theory break down? The requirement
that the perturbed field remain less than the background field,
imposes the condition

VY| <|Vyg|=r.

Since the advective solution holds only for »? > #, we have that
the initial perturbation amplitude must satisfy ¥ < O(y) to
maintain linearity. That this condition is highly restrictive is a
manifestation of the rapid buildup of the perturbed field close
to the neutral point. We discuss the influence of nonlinear
effects in § 4.3 below. For the moment we consider the ideal-
izations of cylindrical geometry and arbitrary compressibility
within the context of small-amplitude displacements.

4.2. Compressible Plasmas in Noncylindrical Geometries

To investigate whether fast reconnection persists under
more general conditions, we first break the azimuthal sym-
metry by replacing the circular outer boundary by a square
superconductor, but retain the assumption of small-amplitude
reconnective disturbances. Results are obtained via an alter-
nating direction implicit solution (see Craig & Sneyd 1990) of
the resistive induction equation in system (2.8). We also briefly
consider the influence of an adiabatic gas pressure term in the
momentum equation.

In the case of zero gas pressure (8 = 0), it is always possible
to represent an initial perturbation as a superposition of low-
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order azimuthal disturbances, viz.,
Y=Y fule™ .
m

This suggests that the fast reconnective scaling will be obeyed
provided only that the initial displacement contains a signifi-
cant m = 0 component. Figure 6 confirms that the fast scaling
is retained. For f = 0 both the maximum current (over space
and time) and the area over which the current is distributed
(defined as the area for which the current density remains
wit hin a factor of three of the spatial maximum) scale accord-
ing to the fast prediction. Since the asymptotic time depen-
dence of the solution also displays the oscillatory time
development of the linear model, it is clear that simulations
involving rectangular boundaries are completely compatible
with the cylindrically symmetric theory.

It is not true, however, that fast reconnection is independent
of the gas pressure. We find that even small plasma pressures
can wash out the asymptotic oscillatory reconnection phase
(the large-r behavior of Craig & McClymont 1991a and
Hassam 1991). More critically, the initial implosion is
weakened if the gas pressure is sufficiently high: this can be
anticipated theoretically by noting that fVp must scale as f/r?
times the Lorentz force according to solution (3.15). Included
in Figure 6 are the scalings of current and area obtained by
assuming adiabatic pressure of amplitude g = 0.1. The total
current enclosed by the wave is again invariant, but the current
density increases too slowly with decreasing 7 to be consistent
with fast reconnection. The reconnection stalls because the gas
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F1G. 6.—Plot of the current and area scaling as a function of 5. The fast
reconnective scaling predicted by linear cylindrical theory is obtained in rec-
tangular geometry in the case of zero gas pressure and small amplitude dis-
turbances (solid lines). For gas pressures of order f = 0.1, the fast scaling
breaks down: although the total current enclosed by the cylindrical wave
remains constant, the wave area can no longer localize strongly enough to
maintain fast reconnection.
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pressure eventually builds up close to the neutral point
opposing the impulsive collapse. Still higher gas pressures
reduce the reconnection rate more dramatically and lead to
static diffusion rates that scale as 5. This result also holds good
for large-amplitude disturbances.

We cannot, however, use the present results as evidence
against fast reconnection in general. It appears that gas pres-
sure effects are quite dependent on the complexities of the flow
topology, for there is some evidence that two-dimensional,
quasi-periodic, closed X-point topologies may retain fast
reconnective scaling even for incompressible fluids (Biskamp &
Welter 1980; DeLuca & Craig 1992). The stalling of fast recon-
nection in the present case could then arise from the overly
restricted flow pattern imposed by the simple closed geometry.

4.3. Nonlinear Effects

In what follows, we present an argument that unifies the
present analysis with the classical picture of the quasi—one-
dimensional neutral sheet. Although our arguments are mainly
schematic, they are well supported by the detailed solutions of
system (2.8) as well as independent nonlinear simulations
(DeLuca & Craig 1992; Craig & McClymont 1991b).

In general, a reconnective disturbance of the X-point [with
¥ > O(n)] will become nonlinear at some point during the
initial implosion, well before the diffusion phase sets in. As the
disturbance focuses toward the origin, the perturbed field
builds up in amplitude and begins to interact with the back-
ground field, causing cancellation and reinforcement in adja-
cent lobes of the X-point. Accordingly, the imploding wave loses
cylindrical symmetry and becomes quasi—one-dimensional as it
stalls/accelerates in regions of weak/strong magnetic field. The
end result, as illustrated in Figure 7, is the emergence of a
classical current sheet! Thus the current-sheet morphology
changes from a localized “spike” to a quasi-rectangular
“tombstone ” as the problem becomes nonlinear.

The radius at which the cylindrical wave becomes nonlinear
can be estimated from equation (4.2). Setting 6B = By = R,
gives

nR* ~ OE @.4)

Fi1G. 7—Sketch of the breakdown of cylindrical symmetry close to the
neutral point due to finite-amplitude disturbances. An incoming quasi-
cylindrical wave is distorted into a quasi-one-dimensional wave inside R,.
Resistive diffusion eventually limits the thickness of the resulting current sheet.
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which shows that R, scales as (6E)'/*. Inside R, our cylindrical
formulation breaks down in the manner of Figure 7. Equation
(4.1), however, remains valid in the quasi—one-dimensional col-
lapse until resisti ve effects take over. Equation (4.2) also applies
if we interpret 6E as the (invariant) excess magnetic energy
associated with neutral point currents in the limit of small #.
Writing equation (4.2) in the form

OB2LI ~ SE , 4.5)

we identify the length L of the current sheet with R, . Since R, is
invariant for a fixed perturbation, it is the variation of the sheet
thickness | with # that determines the scaling of the inear
reconnection: the thinner the sheet, the faster the magnetic
annihilation.

A simple description of the quasi—one-dimensional collapse
can be obtained by replacing the cylindrical wave equation by
a one-dimensional model in which the wave speed scales as the
linear distance from the neutral line. This model is conserva-
tive, since it underestimates the nonlinear advective speed: for
the one-dimensional ideal collapse to singularity occurs in
finite rather than infinite time (Imshennik & Syrovatskii 1967;
Forbes & Speiser 1979). Equating the diffusion and advection
speeds then gives the skin depth formula ! ~ /2. This leads to
the scaling

J~n~ ¥ A ~gi
and
Wy~ Y~gtt.

This is a flux pileup solution—the magnetic field at the edge of
the sheet scales as 5~ /4—in which the bulk of the excess
energy appears as heat rather than kinetic energy of mass
motion (see DeLuca & Craig 1992). More detailed consider-
ations of the one-dimensional collapse (at least in the absence
of gas pressure; see Bulanov & Ol'shanetskii 1985 or Sakai
1990) tend to enhance rather than diminish the reconnection
rate. Fither way, it appears to be a feature of the nonlinear
collapse that flux pileup is required to maintain the fast
dynamic reconnective scaling.

5. CONCLUSIONS

We have considered the time evolution of a disturbed X-t ype
neutral point. The evolution of the plasma is determined by the
coupling of large-scale advective motions in the outer field to
localized magnetic annihilation in the vicinity of the stagnation
point. In particular, disturbances which upset the intrinsic
topology of the equilibrium field—for instance, by narrowing
the X—can relax only by driving field-line reconnections at the
origin. However, disturbances which maintain the equilibrium
topology can also cause field-line reconnections to occur pro-
vided that other damping mechanisms are weak enough.

We have formulated the relaxation problem for both small-
and large-amplitude disturbances. For sufficiently small per-
turbations the localized current structures which develop at
the neutral point remain cylindrical, but for larger amplitude
disturbances cylindrical symmetry is lost and quasi-one-
dimensional sheets are formed. In either case, the cylindrical
model provides a graphic description of the initial implosive
collapse of the disturbance toward the neutral point.

We have shown that the linearized problem admits well-
defined azimuthal modes, with only the m = 0 mode corre-
sponding to topological reconnection. A universal feature of
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the problem is that small disturbances in the outer field drive
wave motions which strongly localize near the origin, gener-
ating large currents: thus incoming waves are resistively
attenuated as they traverse the diffusion region prior to reflec-
tion from the stagnation point. In this way, advective motions
of the outer field drive fast oscillatory reconnection with a
fundamental frequency w = —=n/lnn and asymptotic decay
rate ?/2.

Perhaps of greater physical significance is the fact that the
bulk of the perturbation energy is lost as a result of the initial
implosion prior to the asymptotic decay. This can be under-
stood in terms of the very fast decay of higher nodal (n > 0)
components in the eigenfunction representation of the initial
conditions. Yet fast linear reconnection is not restricted to
cylindrical geometries: Cartesian formulations maintain all the
characteristics of fast reconnection, in particular the scalings of
current density and current-sheet area (as discussed in § 4). The
effects of finite gas pressure, however, wash out the oscillatory
reconnection phase and, if sufficiently large, can stall—at least
in the present geometry—the initial implosive energy release.
This result also holds good for large-amplitude disturbances,
but its physical significance is compromised by the fact that
more complex magnetic flow topologies may allow fast implo-
sive reconnection to persist even for incompressible plasmas
(DeLuca & Craig 1992). _

In § 5 we considered the breakdown of the linear theory. In
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general, a low-amplitude topological disturbance is manifested
as an inward-propagating cylindrical wave that gradually
steepens and eventually becomes nonlinear at some radius R,
determined by the energy of the perturbation. We can think of
the neutral point focusing the perturbation energy toward the
origin. The outer field is left current-free, but inside R, the
perturbation energy becomes increasingly localized into a
quasi—one-dimensional current sheet whose thickness is
limited by resistive diffusion. The current structure now resem-
bles a rectangular “tombstone” rather than the cylindrical
“spike” of the linear theory. This change in morphology
means that the magnetic flux now has to pile up at the edge of
the sheet in order to maintain fast reconnection: in this case
the length of the sheet, though ultimately limited by the global
geometry, depends mainly on the energy of the perturbation
(via eq. [4.4]), whereas the sheet thickness scales as n'/?> or
faster. In such cases the perturbation energy is mainly con-
verted to heat via Ohmic dissipation rather than to the kinetic
energy of mass motion. DeLuca & Craig (1992) provide con-
crete examples of dynamic flux pileup solutions.

Frequent discussions with Sandy McClymont and Franklin
Sneyd have been greatly appreciated. We would also like to
thank Graham Rickard and Mark Billinghurst for computa-

" tional assistance and Terry Forbes for comments on an early

version of the manuscript.

APPENDIX

GLOBAL ENERGY CALCULATION

The fact that the zeroth-order field is a magnetic equilibrium implies that the first-order energy variations must vanish. This
means that the excess energy of the linearized system is given by the second-order variations of magnetic and kinetic energy, 6>M

and 62K, respectively. The kinetic energy variation is given by

5K = oy,
where {...» = [...dV, with dV = rdrd6 in cylindrical polars. The magnetic energy variation initially appears more complicated:
6*M = 1(6B - 6B) + (6*B - B;) ,

but recasting this equation in the form

5°M = L(6B - 6B)— 1(B - (€ x Jp)>

by introducing the fluid displacement & shows that the second-order contribution {52B - B;) vanishes, since the equilibrium current
Jgis zero. Hence we can write the change in global energy in the simple form

5*U = 1(6B - 6B) + 1(v*) .

To calculate the fluid energy, we first note, from the momentum equation (3.2), that any velocity increment dv is in the direction of
Vg, which is perpendicular to the magnetic field lines. This allows us to write v(r, 6, t) = v,,(r, £) cos m0 (V§/| Vi |), and we can

compute the velocity magnitude from the induction equation via

W

1
v, ) == | 1V, — =) .
w(rs 1) =~ (n Yn— )
Thus a simple space quadrature over the flux function and its derivatives suffices to compute the global energy variation

52U = 4 f (Vo) + o234V .
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