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ABSTRACT 
We consider the linear and nonlinear evolution of disturbed magnetic X-type neutral points. The problem is formulated within a unified analytic and computational framework which highlights the essence of the mag­netic annihilation process, namely, the coupling of a global convection region to a localized diffusion region surrounding the neutral point. An analytic treatment is given for the case of small disturbances of the equilibrium field in the absence of gas pressure. This problem admits well-defined azimuthal modes which allow a formally exact determination of the magnetic annihilation rate. It is shown that reconnection can only occur in the case of purely radial (m = 0) disturbances: the reconnection process is oscillatory and "fast," depending only logarithmically on the plasma resistivity (,,). We show that the linear theory supports the notion of an initial implosive stage which rapidly releases the bulk of the energy associated with reconnective field disturbances. This phase is initiated by the advective focusing of the perturbation energy into the neutral point and culminates in the formation of a cylindrical diffusion region of area A - 17 and current density J - 17 - i. This scaling provides a signature for fast linear reconnection. Next we consider the breakdown of the linear theory. Although fast reconnection is maintained for low­amplitude disturbances in noncylindrical geometries, it is shown that finite gas pressure can stall the reconnec­tion if sufficiently large. This effect, however, may not be critical in more complex X-point geometries. More seriously, for finite-amplitude displacements the cylindrical current structure close to the neutral point is dis­torted into a quasi-one-dimensional current sheet whose thickness is limited by resistive diffusion. In this case fast reconnection is consistent with a flux pileup solution in which the bulk of the energy is released as heat rather than as the kinetic energy of mass motion. 

Subject heading: MHD 
1. INTRODUCTION 

It is widely accepted that solar flares are initiated by the rapid collapse of magnetic fields in the low solar cl.'.>rona. As a result, much theoretical effort has gone into investigating mechanisms which can release magnetic energy fast enough to account for the explosive energy release. Early work focused mainly on the magnetic annihiliation that takes place when oppositely directed magnetic fields are pushed together by external "boundary" forces (Sweet 1958; Parker 1963). It was soon recognized, however, that resistive diffusion at localized neutral points must be closely coupled to the global advection of the outer field if the energy release rate is to be sufficient. A crucial advance was provided by Petschek (1964), who demon­strated that field-line reconnection at the origin of an X-type neutral point allows convectively driven magnetic annihilation on time scales approaching the Alfven time scale of the outer field. The semiquantitative Petschek analysis has proved highly contentious over the years----claims have been made that the model does not provide a valid solution of the MHD equations-but the mechanism itself appears physically plau­sible (Vasyliunas 1975; Parker 1979; cf. Biskamp 1986). What seems to be lacking is a dynamically complete evolutionary model of the underlying reconnection process. The problem is that analytic tractability virtually imposes an approximate steady state treatment in which the uniqueness of the solution cannot be guaranteed-hence the different quasi-steady anni­hilation modes of Petschek (1964) and Sonnerup (1973) (see 
385 

Forbes & Priest 1987). Numerical simulations, on the other hand, are not entirely trouble-free, since a complex diffusion­advection problem in two or more space dimensions has to be modeled (see, e.g., DeLuca & Craig 1992). One problem is determining the scaling of the annihilation rate given that feasible computations involve unrealistically high plasma resistivities (e.g., the steady state scalings of Biskamp 1986). More critically, because a numerical treatment generally requires assumptions and idealizations that differ from the analytic approach, it is often quite difficult to integrate the disparate, often phenomenological, results of reconnection studies. Priest (1985) implies that the process of magnetic merging seemed quite well understood until numerical simula­tions came along to cloud the picture! Probably many of the discrepancies in the theoretical picture can be expected (Forbes & Priest 1987) in view of the differing initial and boundary conditions imposed on the problem. The purpose of the present paper is to investigate the linear and nonlinear relaxation of a disturbed X-type neutral point configuration. This problem has the advantage of allowing a unified analytic and computational treatment while still con­taining the essence of the reconnection problem, namely, the coupling of a global convection region to the localized diffusion-reconnection region surrounding the neutral point. Thus, when results can be obtained analytically-for instance, by linearization about the equilibrium solution (see Craig & McClymont 1991a)-their general validity can be checked using a complete nonlinear treatment. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1992ApJ...393..385C


1
9
9
2
A
p
J
.
.
.
3
9
3
.
.
3
8
5
C

386 CRAIG & WATSON Vol. 393 

As physical motivation, we note that although neutral point topologies will almost certainly be present in the solar corona given the complexity of observed coronal structures, they may be in nonequilibrium as a result of continual buffeting by gas­dynamic and MHD disturbances within the active region assemblage. Such disturbances may drive changes in the mag­netic field topology that can only be negated by magnetic reconnection in the vicinity of a neutral point. The relaxation problem is formulated mathematically in§ 2. We present a conservative Eulerian formulation of the system that facilitates a convenient semi-implicit numerical treatment. In§ 3 an analytic description of the advective field evolution is given, valid for small departures about the equilibrium field; these results are then augmented by numerical resistive solu­tions and a discussion of the global energy decay. In § 4 the limitations of the linear theory are addressed. Our findings are summarized in § 5. 
2. FORMULATION OF THE PROBLEM 

2.1. Neutral Point Equilibria 
We imagine an X-type neutral point configuration immersed in a tenuous background plasma of uniform mass density p0 • Coordinates are chosen so that the field strength vanishes at the origin and achieves the value B0 at the characteristic radial distance L0 • We nondimensionalize with respect to B0 and L0 and write the equilibrium field in the dimensionless form 

BE
= (y, x) .  (2.1) 

In two-dimensional geometries much simplification is achieved by working with the planar flux function 1/1 rather than with the magnetic field intensity directly: 
B = V x (1/1/i.) = VI/I x i. . 

The equilibrium flux function for an X-type neutral point is given by 
1/1 E = f(y2 

- x2) = - f r2 cos (20) (2.2) 
in Cartesian and cylindrical coordinates, respectively. We imagine the equilibrium field to be subject to a spectrum of finite-amplitude disturbances. These may disturb the outer radial boundary to which we assume the field is permanently threaded or line-tied. The perturbed field must then evolve dynamically-reconnecting field lines at the neutral point if the intrinsic topology is not preserved-as it attempts to regain equilibrium. The time scale for establishing equilibrium is mea­sured in units of the boundary Alfven time scale -r A = L0/v A [ v A = Bo(4np0

)- 1 12 in Gaussian units], which is typically a few seconds under normal coronal conditions. To allow a convenient mathematical description, the outer boundary is idealized as a perfect conductor. For linear calcu­lations the assumption of a circular boundary allows pertur­bations to be represented by azimuthal modes; on the other hand, a rectangular boundary is more suitable for finite­amplitude calculations. Although such boundaries simplify the geometry of photospheric line-tying, they are topologically correct and hence should not distort the underlying physics of the problem. The key questions concerning the relaxation and resistive energy release of a disturbed X-type neutral point can only be answered by a truly global treatment. We imagine that dis­turbances in the neutral point configuration are driven in such a way that the flux function is held fixed on the boundaries so 

FIG. la FIG. lb 

FIG. !.-Initial X-point magnetic field structures. In (a) the equilibrium 
field topology has been altered, and field-line reconnections must occur if the 
equilibrium is to be achieved; in (b) the original topology has been maintained 
but reconnections can still occur in the absence of other damping mechanisms. 

the initial field is topologically distinct from the neutral point equilibrium, hence field-line reconnections are required to recover the equilibrium. However, we also show in § 3 that reconnections can still occur for initial displacements that do not disturb the intrinsic topology. Figure 1 illustrates two initial X-point configurations. In Figure la the topology of the equilibrium X-point has been changed by the addition of a perturbation that alters the separatrix angle of the field lines; in Figure lb the field is distorted in a way that maintains the equilibrium topology. Solutions describing the dynamic evolution of these fields are given in§ 3. 
2.2. Evolution Equations 

The evolution of the disturbed field is governed by the con­tinuity equation, 
op 
- + V · (pv) = 0 , 
at 

the momentum equation, 
(2.3) 

p( :: + v · Vv) = J x B - Vp - v V, (2.4) 
and the induction equation, 

oB 
at= V x (v x B) + 17V2B. (2.5) 

These equations are all nondimensionalized with respect to the far-field boundary values B0 , L0 , TA. The forcing terms in the momentum equation describe, respectively, the Lorentz force, the gas pressure force, and the viscous damping of the plasma. Aside from the effects of finite resistivity, the viscous damping term ( JI) provides the only mechanism for energy loss in the system. However, in a real plasma the level of viscous damping is expected to be very small if not negligible. The only other form of dissipation in the system is due to the resistive term in the induction equation. In general, the mag­netic Reynolds number is very large [17- 1 > 0(108)], which means that the advection of the coronal field dominates every­where except in the vicinity of a flow stagnation point. The importance of finite resistivity is that it allows field-line recon­nections to occur at magnetic neutral points which greatly simplify the global plasma field topology. Under typical coronal conditions the magnetic pressure dominates the plasma pressure by factors of order 100 or more. 
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No. 1, 1992 DYNAMIC RECONNECTION AT X-TYPE NEUTRAL POINTS 387 
Accordingly, the Lorentz force is generally the dominant term in the momentum equation (2.4). In terms of the flux function t/1 the Lorentz force reduces to 

J x B = - V2t/1Vt/J , (2.6) 
where the current density is given by J = -V2t/Jz. Rewriting the induction equation in terms of t/1 gives 

(2.7) 
This makes it plain that in the absence of resistive effects the flux function is advected with the flow. 

2.3. Conservative Form of the Evolution Equations 
The field evolution equations are conservative in the absence of the generally small viscous and resistive terms. To bring out this fact, we express the continuity and momentum equations in terms of the divergence of mass and momentum fluxes, respectively, and write the Lorentz force as the divergence of the stress tensor: 

Tii 
= B;Bi - fB2c5;i 

= f{Vt/1)2c5ii - V'iV'i
, 

where subscripts on the flux function imply differentiation with respect to the subscripted variables. Since the induction equa­tion may be written conservatively in terms of the flux of the quantity pt/I, we obtain the vectoral form 

where 

and 

au oF oG 
-+-+--H 
at ox oy - ' 

v = (u, v) , V = (V, W) . 

(2.8) 

All dissipation terms are represented by components of the vector H. Thus, for H = 0, the problem is entirely advective in nature, and the mass, momentum and pt/J are all conserved identically within the volume of the neutral point configu­ration. The problem of simulating Eulerian advective systems is well studied (Richtmyer & Morton 1967; Roache 1982), and there is great advantage in retaining the conservative form of the equations. In § 4 we present computational solutions for the disturbed neutral point problem assuming a rectangular outer boundary. For the present we concentrate on an analytic reduction based on a cylindrical formulation of the linearized evolution equations. 
3. THE LINEARIZED PROBLEM 

3.1. Introduction 
It is clearly unrealistic to expect closed form global analytic solutions for the complete fluid equations. To make analytic 

progress, we linearize the MHD equations about the neutral point equilibrium neglecting gas pressure and viscous effects. A preliminary discussion of the linearized system, which empha­sizes the asymptotic decay rate of the field, is given by Craig & McClymont (1991a). In this approach it is assumed that the solutions are separable, so that eigenfunctions can be con­structed from the resulting complex system of ordinary differ­ential equations. This leads to highly accurate eigensolutions and an analytic description of the reconnective modes, but the difficulty remains of establishing the completeness of the complex radial eigenfunctions (see also Hassam 1991). Thus it is not clear that arbitrary initial conditions can be represented using this approach. In what follows we take a complementary viewpoint: we regard the linearized problem as defining an initial value rather than an eigenvalue problem; thus the evolution of an arbitrary disturbance is described directly without further assumption. This allows us to explore the validity of the eigensolution method and to investigate more general questions, for instance, the early current buildup prior to reconnection (§ 3.5), and the global energy evolution (§ 3.6). 
3.2. Basic Equations 

To linearize the problem, we set 
(3.1) 

and consider only small departures c5t/J about the equilibrium t/1 E, given by equation (2.2). The linearized system reduces to 
Pov= -V2t/1Vt/lE , 

"' =  -v . Vt/IE + r,V2t/l , (3.2) 
where for the purposes of this section we identify t/1 with the first-order variation of the flux function. Note that we have ignored the equation for the perturbed density, since it can have no influence on the momentum equation in the absence of gas pressure: in effect the fluid is arbitrarily compressible. Setting the background plasma density p0 = 1 and elimi­nating the explicit dependence on fluid velocity allows the system (3.2) to be written as a single third-order equation for if,: 

((! = r2V2t/l + r,V2(/J . (3.3) 
Taking cylindrical modes, 

t/1 = V'm{sin me, 
cos me' 

the azimuthal components t/lm satisfy 
if!m = r2V2t/lm + r,V21/!m . 

(3.4) 

(3.5) 
This equation provides our basic theoretical tool for investi­gating the linearized system. 

3.3. Reconnection and the m = 0 Mode 
The interplay between the diffusive and advective aspects of the problem is controlled by the relative magnitude of the terms on the right-hand side of equation {3.5). In the absence of diffusive effects, this equation reduces to I/Im = r2V2t/Jm, which is simply a magnetic wave equation with wave speed proportion­al to r. Given typical coronal conditions [i.e., r, ·� 0 (10-8)], such wavelike behavior will extend throughout most of the fluid. Sufficiently close to the neutral point, however, there is always a domain in which diffusion dominates. This domain 
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388 CRA IG & WATSON Vol. 393 
extends from the neutral point out to a critical radius r e which scales as 

(3.6) 
where a is a number of order unity. Inside this region topologi­cal changes are effected as field lines are cut and reconnected at the neutral point. Ignoring advection completely, we obtain 

t/J m(r, t) = e-µmtJm( tr) (3.7) 
as the solution in the diffusion region. Here µm is a constant which can only be determined by global considerations, and the J m are the mth-order Bessel functions. The important point is that the m = 0 mode is the only mode which allows a finite current-equivalently, a nonvanishing displacement in the flux t/J-at the neutral point. It follows that only the m = 0 com­ponent of a disturbance can drive reconnection and hence effect topological change. 

3.4. Boundary Conditions 
The inner boundary conditions on the flux function V'm, namely, 

t/1 m (O, t) = 0 for m > 0 , 
0tm (0, t) = 0 for m = 0 , (3.8) 

follow immediately from the requirement of a bounded current density at the origin. These conditions also follow from the Bessel function solution (3. 7) that holds in the vicinity of the neutral point. On the outer boundary we impose the condition that the perturbed flux V'm be fixed at some constant value for all time, consistent with line-tying the initial perturbed field. As equation (3.5) is second order in time, we must impose initial conditions on both V'm and its time derivative. In practice the time derivative is fixed by specifying a zero initial velocity field. As a precursor to the full treatment of the problem, we first study the initial buildup and localization of the current analyti­cally by neglecting diffusive effects. 
3.5. Analytic Solutions in the Wave Domain 

Analytic solutions can be constructed in the case where the wave zone extends throughout the fluid, i.e., for 1'/ = 0. On physical grounds these solutions should provide a good description of the initial evolution of a localized pulse propa­gating toward the neutral point. For a real resistive plasma, the time for a pulse originating on the outer boundary to reach the edge of the diffusion region r = r e is given by 
1 1 dr 1 

T= -�--ln11, , v 2 (3.9) 
on remembering that the wave velocity v = r and r e = aJ�, with 1'/ � a. Hence we expect the ideal solutions derived below to be valid over a time scale comparable to T. The fact that T becomes infinite as 1'/ --+ 0 implies that information can never be "advected" into the neutral point. The admission of resistive diffusion into the problem fundamentally changes the picture: the origin is no longer a forbidden point, information from the wave domain can diffuse to the neutral point, so the incoming wave is subject both to resistive attenuation and to reflection from the origin. 

Wave solutions are obtained by solving 
iflm = r (rt/1',,,) ' - m2t/lm . 

Introducing the change of variables 
s = -lnr , <p m(s, t) = t/lm(r, t) , 

the wave equation may be rewritten as 
.. 02<p m 2 <p m = os 2 - m <p m . 

(3.10) 

(3.11) 

(3.12) 
In this form we see immediately that an isolated mode given by <p m = cos (wt) sin (/3s) yields a solution, provided that we take w 2 = [3 2 

+ m2 . Such modes automatically guarantee the outer boundary condition V'm = 0, but the inner boundary condition can be satisfied only by superposing over [3. Thus we obtain the general solution 
V'm(r, t) = <p m(s, t) = f" a (/3) sin ([3s) cos [t (/3 2 + m2

)
1 i2J d/3 , 

(3.13) 
where s= -lnr and from the initial conditions V'm = t/lm(r, 0), rfrm(r, 0) = 0, 

2 
i
"° a (/3) = - <p m(s, 0) sin ([3s) ds . 

7t O 

In the important special case of purely radial (m = 0) pertur­bations, equation (3.13) reduces by virtue of the sine transform, to the usual d' Alembert solution 
t/J (r, t) = ![<p 0 (s - t) + <p 0(s + t)], s = -ln r , (3.14) 

where we have dropped the m = 0 subscript and the zero superscript refers to the initial condition, i.e., <p 0 = <p (s, 0). Note that <p 0 must be odd to satisfy the outer boundary condition at 
s = 0. To understand the current buildup associated with recon­nective modes, it is instructive to explore the d' Alembert solu­tions in more detail. In general, equation (3.14) implies a separation of an initially stationary localized pulse into outward and inward-propagating components. Once the outward component reflects off the outer boundary, a "pure" inward traveling envelope is formed, say 

t/J (r, t) = H (t - ln r) . (3.15) 
Two interesting results follow from this equation. First, from the induction equation l v l = ltfr/r l, and so l v l = l<>BI = I o t/J /or 1- Hence there is a local and global equipartition of magnetic and fluid energies with v given by 

v = -H'Vt/J E/r 2 , 
where the prime denotes differentiation with respect to the function argument and we have used the fact that velocities can develop only in the direction of the Lorentz force. Second, we note that the envelope travels toward the neutral point retaining its amplitude, but steepening because the back of the pulse travels faster than the leading edge. This means that very large localized currents must form as the wave approaches the diffusion region. Let us consider two concrete examples of the implosive current buildup: first, we take a global disturbance that con­taminates the neutral point and hence requires reconnection to damp out; second, we consider a localized pulse in the outer 
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No. 1, 1992 DYNAM I C  RE CONNE CT ION AT X-TYPE NEUTRA L PO INTS 389 
field that maintains the intrinsic topology of the field equi­librium. These initial magnetic con figurations are sketched in Figure 1. In the first case, 

t/1 0 = k (l -r 2)' (3.16) 
so that t/1 (0) = k, t/J (l) = 0. This corresponds to the closing up of the orthogonal X to an X which makes an angle ex with the x-axis (ex < n/4), as can be seen by the identi fication k = 
-! cos (2ex). To satisfy the outer boundary condition at s = 0, we require that <p 0 satisfy <p 0( -z) = -<p0(z). Substituting <p o= k (l -e- 2•) in equation (3.14), we find 

.,, ) -{k [l - r 2 cosh (2t)J if -lnr > t ,  'l' (r t - (3.17) ' ke- 21 sinh ( -2 lnr) if -lnr < t. 
Next we consider the solution for a pulse initially localized in the outer field. Speci fically, we take 

(3.18) 
and construct the d' Alembert solution by replacing s with 
s ± t. It should be stressed that the advective solution will always provide a good description of the initial development of the resistive solution, provided 1'/ is sufficiently small. Resistive solutions for each of the initial conditions considered above are discussed in the next section. The key point is that the advec­tive motion of a radial magnetic wave toward the origin always drives a massive current buildup that initiates reconnection. This initial development-namely, the constant-amplitude advection of t/J toward the origin-is illustrated in Figures 2 and 3 discussed below. 

3.6. Simulations of the Resistive Fluid 
The admission of finite resistivity into the problem means that information from the wave zone can now diffuse to the origin. We can think of diffusion becoming the dominant process when the diffusive speed v D exceeds the wave speed (which scales as r). On dimensional grounds this occurs when 

Vn � !1 � r ,  r 
and so information will cross the diffusion region in unit time. Thus a localized pulse originating at the outer boundary reaches the origin on a time scale given by 1 + T, where T is given by equation (3.9). Hence, for small enough 1'/ the "communication time" between the origin and the outer boundary scales as In '7· In simulating equation (3.5) for finite 1'/, it is convenient to work in the s = - In r variable. Thus we write equation (3.5) in the form 

(3.19) 
where 

V2 iJ2<pm 2 
'Pm = os2 - m 'Pm . 

In practical simulations we truncate the in finite interval 
Smax = 00 by taking Smax to be some small fraction ofln r e, With r e de fined as in equation (3.6). Figures 2 and 3 show the resistive attenuation of the solu­tions for the initial conditions (3.15) and (3.17) discussed above, with 1'/ = 10- 8

. Each plot displays sequential time slices of the 

flux function and the current over roughly 30 Alfven times. The initial advective development in both figures is extremely well described by the d' Alembert solution. As predicted, the local­ized pulse initially breaks up into separate inward- and outward-moving waves, but once the outgoing wave reflects off the outer wall, a pure ingoing pulse is formed which advects toward the origin. The pulse amplitude decays markedly only on entering the diffusion region-which occurs after some 8 Alfven times, in accordance with equation (3.9). Far more spec­tacular is the initial buildup of current brought about by the localization of the wave: the maximum current amplitude in fact scales inversely with 1'/ (as discussed in§ 4.1 below). In both solutions the bulk of the energy associated with the dis­turbance is annihilated during the initial implosive phase. What are the decay times associated with the resistive energy dissipation? To answer this question, we compute the evolu­tion of the global (magnetic plus fluid) energy of the dis­turbance using the scheme discussed in the Appendix. Figures 4 and 5 show time plots of the total energy for the resistive solutions under discussion. Both decay curves reflect oscil­latory behavior on the In 1'/ time scale as predicted. But the most prominent feature is the steplike decay of the total energy, especially during the first few bounce times. For large t there is a relatively slow, mean asymptotic decay rate with an underlying ripple structure (again with the In 1'/ dependence). This structure is real and can be explained by the fact that the magnetic and fluid energies are never exactly out of phase for finite '1· 

3.7. Eigerifunction Description of Reconnective Modes 
It is interesting to compare the present results with the eigen function approach of Craig & Mc Clymont (199la), which assumes solutions of the form 

t/lm(r, t) = Re [f (r)e ,.,] , (3.20) 
where f (r) is complex and oscillation and decay rates are given by 

A = -ex + iw . 
Craig & Mc Clymont show that for sufficiently small 1'/ recon­nective (m = 0) solutions can be constructed by matching the inner diffusive solution of equation (3. 7) to "standing waves" in the outer field of the form sin (/3 In r), as suggested by equa­tion (3.13). In particular, the oscillation and decay rates are given by 

(2n + 1 )n w 2 w = - In 1'/ ' ex = 2(n + 1) ' (3.21) 
respectively, where n is the number of radial nodes. Thus the decay rate and oscillation frequency are limited by the funda­mental n = 0 mode, which has no radial crossings. Perhaps not surprisingly, the decay rate we compute and the radial form of the simulated solutions are perfectly described by the funda­mental eigenmode in the limit of large t. Indeed, from the present "causal" viewpoint the fundamental frequency can be identi fied with the "signal travel time" (eq. [3.9 ]). An impor­tant point physically is that the oscillation and decay rates are " fast," depending only logarithmically on the resistivity. At first sight it appears that the eigen function model does not provide a good description of the initial evolution, espe­cially the first localization and diffusion cycle in which the bulk of the energy is lost (see Figs. 4 and 5). The fundamental eigen-
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FIG. 2.---{a) Time-slice diagram of the evolving flux function assuming r;,0 = k( l - r2) as the initial condition ( with k = 1). The time slices are evenly spaced out to 
25 Alfven times. Although the calculation is resistive ( 11  = 10- 8), the disturbance propagates advectively until reaching the diffusion region, i.e., over the first 8 Alfven 
times. (b) Time-slice diagram of the current density. 

functi on only bec omes accurate at lar ge t, onc e  the disturbance has been gl obalized by diffusi on. H owever, detailed indepen­dent calculati ons ( Crai g & Mc Clym ont 1991b), which rep­resent a pulse as a superp ositi on of hi gher n n odes, can m imic b oth the steplike ener gy decay and the rapid initial ener gy l oss that precedes the sl ower asymptotic decline. The presence of rapidly decayin g hi gher n odal c ontributi ons implied by an ini­tially l ocal ized wave means that, alth ou gh the fundamental decay rate is universally applicable at lar ge t, it generally underestimates the rec onnecti on rate durin g the first few oscil­lati on cycles. 
3.8. Higher m Modes 

Hi gher azimuthal m odes are n ot ass ociated with rec onnec­ti on. Thus, in c ontrast to the fundamental radial m odes, it is p ossible for hi gher m odes to decay by n onresistive mechanisms-for instance, damped fluid m oti ons. It is n ot our present intenti on to pr ovide a detailed discussi on of n on­rec onnective disturbances. We simply p oint out that hi gher 

azimuthal disturbances are characterized b y  disturbances in the outer field, rather than in the vicinity of the neutral p oint. Thus, alth ou gh the presence of added azimuthal n odes increases the oscillati on frequency and decreases the wave­len gth of the disturbance which we w ould expect to increase the decay rate, this is c ounterbalanced by the absence of a str on g l ocalizati on in the vicinity of the neutral p oint. Crai g & Mc Clym ont (1991b) sh ow that for m oderate m the oscillati on frequency and dampin g rate are given by 

where 
2 132 2 /3 3 

co = + m ' ex = 4m(n + 1) ' 

/3 = _ (n + 1)2n . In 11 
The decay rates are reduced sli ghtly bel ow the rec onnecti ve rate, but a l ogarithmic dependency of the s oluti on is reta ined. 
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FIG. 3.--{a) Time-slice diagram of the evolving flux function assuming l{,0 = se-•' as the initial condition with I'/ =  10-s. The time axis runs to 37.5 Alfven times. 
In contrast to the initial condition of Fig. 2, this pulse disturbance does not change the intrinsic topology of the neutral point. Nonetheless large currents are driven at 
the neutral point-the signature for topological reconnection-as shown in (b). 

4. LIMITATIONS OF THE LINEAR THEORY 

4. 1 .  Scaling Laws in the Linear Model 
We have seen that the line ari ze d  the ory predi cts that fast re connec ti on shoul d  oc cur n atur ally , even for sm all per tur ­bati on s :  i t  doe s  n ot have to be driven con tin uously by boun d-
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FIG. 4.-Plot of the log of the total energy vs. time for the run of Fig. 2. The 
dotted line shows the magnetic energy. Note the steplike behavior of the 
energy decay and the gradual descent into the asymptotic solution described 
by the fundamental radial mode. 

ary di stur ban ce s con tr ary to the impli cati on s  of ste ady state m odel s. Al so, the re conne ctive m ode i s  oscill atory in n ature : the fun damen tal oscill ati on freq uency i s  de termine d by the sign al tr avel time from the outer boun dary to the di ffusi on regi on an d depen ds only l og ari thmic ally on r,. B ut al though the asymp toti c  dec ay r ate i s  de termine d by the de cay of the 
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FIG. 5.-Plot of the log of the total energy vs. time for the run of Fig. 3. The 
steplike nature of this plot is more pronounced than for Fig. 4, owing to the 
stronger localization of the initial disturbance. 
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392 CRA IG & WATSON Vol. 393 
fundamental reconnective mode (eq. [3.20 ]), the bulk of the perturbation energy is lost very quickly during the initial implosive phase. Let us consider the implosion in more detail. In this phase the energy of a reconne ctive perturbation becomes focused into an increasingly localized cylindrical current spike, while outside this region the configuration is current- free. This fact allows us to deduce key properties of linear reconnection on the basis of simple energetic arguments. At any stage in the advective collapse we can write the pertu rbation energy in terms of the excess magnetic and kinetic energy of the fluid : 

/;E = !(JB 2) + !(pv 2 ) , (4.1) 
where JB is the magnitude of the perturbed field, and the angle brackets (see the Appendix) denote integration over space. Ini­tially all the excess ener gy is magnetic, but as the current local­izes the fluid ener gy increases until equipartition is achieved (i.e., /;E = (JB 2)). The current localization is limited only by resistive diffusion close to the neutral point. If A is the area enclosing the cylindrical wave, then 

(4.2) 
is invariant during the phase of current buildup. Since 
A �  nR2 � nri and JB � JR, we deduce that the scalings 

1 J -- A -17 rJ' (4.3) 
sh ?uld be valid at the time of maximum current buildup. I n  th is case both the ohmic dissipation rate and the fl ux a nnihi­lation at the neutral point scale in dependently of any po wer of 17 :  

W,, = 11J2 A -17 °, if! = 17 J -11° . 
Likewise, the total current enclosed by the cylindrical wave is invariant. We can take these scalings as a signature for fast linear reconnection during the implosive phase. When does the linear theory break down ? The requirement that the perturbed field remain less than the background field, imposes the condition 

I Vt/1 1  < I VI/IEI = r . 
Since the advective solution holds only for r2 > 17, we have that the initial perturbation amplitude must satisfy 1/1 < 0(17) to maintain linearity. That this condition is highly restrictive is a manifestation of the rapid buildup of the perturbed field close to the neutral point. We discuss the influence of nonlinear effects in§ 4.3 below. For the moment we consider the ideal­izations of cylindrical geometry and arbitrary compressibility within the context of small-amplitude displacements. 

4.2. Compress ible Plasmas in Noncyl indr ical Geometr ies 
To investigate whether fast reconnection persists under more general conditions, we first break the azimuthal sym­metry by replacing the circular outer boundary by a square superconductor, but retain the assumption of small-amplitude reconnective disturbances. Results are obtained via an alter­nating direction implicit solution (see Craig & Sneyd 1990) of the resistive induction equ ation in system (2 .8). We also briefly consider the influence of an adiabatic gas pressure term in the momentum equation. In the case of zero gas pressure ( P  = 0), it is al ways possible to represent an initial perturbation as a superposition of l ow-

order azimuthal disturbances, viz., 
1/1 = L fm(r)e imO 

m 

This suggests that the fast reconnective scaling will be obeyed provided only that the initial displacement contains a signifi­cant m = 0 component. Figure 6 confirms that the fast scaling is retained. For P = 0 both the maximum current (over space and time) and the area over which the current is distributed (defined as the area for which the current density remains within a factor of three of the spatial maximum) scale accord­ing to the fast prediction. Since the asymptotic time depen­dence of the solution also displa ys the oscillatory time development of the linear model, it is clear that simulations involving rectangular boundaries are completely compatible with the cylindrically symme tric theory. It is not true, however, that fast reconnection is independent of the gas pressure. We find that even small plasma pressures can wash out the asymptotic oscillatory reconnection phase (the large-t behavior of Craig & Mc Clymont 1991a and Hassam 1991). More critically, the initial implosion is weakened if the gas pressure is sufficiently high: this can be anticipated theoretically by noting that pv p must scale as P/r 2 

times the Lorentz force according to solution (3.15) . Included in Figure 6 are the scalings of current and area obtained by assuming adiabatic pressure of amplitude p = 0.1. The total current enclosed by the wave is again invariant, but the current density increases too slowly with decreasing 17 to be consistent with fast reconnection . The reconnection stalls because the gas 
4 .----------------- 0 

- - 1 
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Q L____ ___ -::21 _ _ ___ _J, _____ _JIL__--' -4 
-3 -4 

log 1 0 (TJ)  
FIG. 6.-Plot of  the current and area scaling as  a function of  r, .  The fast 

reconnective scaling predicted by linear cylindrical theory is obtained in rec­
tangular geometry in the case of zero gas pressure and small amplitude dis­
turbances ( solid lines). For gas pressures of order p = 0. 1 ,  the fast scaling 
breaks down : although the total current enclosed by the cylindrical wave 
remains constant, the wave area can no longer localize strongly enough to 
maintain fast reconnection. 
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pre ssure eventually bu ild s up cl ose to the neutral p oint opp osing the impul sive c ollap se .  Still h igher ga s pre ssure s reduce the rec onnection rate m ore dramatically and lead to static d iffu sion rate s that scale a s  17. Th is re sult al so h old s g ood for large-ampl itude d isturbance s. We cann ot, h owever, u se the pre sent re sults a s  ev idence aga in st fa st rec onnection in general . It appear s that ga s pre s­sure effects are qu ite dependent on the c omplex itie s of the fl ow top ol ogy, for there is some ev idence that tw o-d imen sional, qua si-per iod ic, cl osed X-p oint top ol ogie s  may reta in fa st rec onnective scal ing even for inc ompre ssible flu id s  ( B iskamp & Welter 1980 ; De Luca & Cra ig 1992) . The stall ing of fa st rec on­nection in the pre sent ca se c ould then ar ise from the over ly re str icted fl ow pattern imp osed by the simple cl osed ge ometry. 

4.3. Nonlinear Effects 
In what foll ow s, we pre sent an argument that un ifie s the pre sent analy sis w ith the cla ssical p icture of the qua si-one­d imen sional neutral sheet. Alth ough our arguments are ma inly schematic, they are well supp orted by the deta iled solution s of sy stem (2.8) a s  well a s  independent n onl inear simulation s ( De Luca & Cra ig 1992 ; Cra ig & Mc Clym ont 1991b). In general, a rec onnective d isturbance of the X-p oint [w ith 1/1 > 0(17)] w ill bec ome n onl inear at some p oint dur ing the in itial impl osion, well before the d iffu sion pha se sets in. A s  the d isturbance focu se s  toward the or ig in, the perturbe d field bu ild s up in ampl itude and beg in s  to interact w ith the back ­gr ound field, cau sing cancellation and re in forcement in adja­cen t l obe s of the X-p oint. Acc ord ingly, the impl od ing wave l ose s cyl indr ical symmetry and bec ome s qua si-one-d imen sional a s  it stall s/accelerate s in reg ion s  of weak /str ong magnetic field. The end re sult, a s  illu strated in F igure 7, is the emergence of a cla ssical current sheet ! Thu s the current- sheet m orph ol ogy change s from a l ocal ized " sp ike " to a qua si-rectangular "tomb stone " a s  the pr oblem bec ome s n onl inear. The rad iu s  at wh ich the cyl indr ical wave bec ome s n onl inear can be e stimated from equation (4.2). Setting oB = B E = R c g ive s 

(4 .4) 

r = 1 

Fm. 7.�Sketch of the breakdown of cylindrical symmetry close to the 
neutral point due to finite-amplitude disturbances. An incoming quasi­
cylindrical wave is distorted into a quasi-one-dimensional wave inside Re . 
Resistive diffusion eventually limits the thickness of the resulting current sheet. 

wh ich sh ow s that R c scale s a s  ( oE) 1i4• In side R c our cyl indr ical formulation break s d own in the manner of F igure 7. Equation (4.1), h owever, rema in s  val id in the qua si-one-d imen sional c ol ­lap se until re sistive e ffects take over. Equation (4.2) al so appl ie s  if we interpret oE a s  the ( invar ia nt) exce ss magnetic energy a ssoc iated w ith neutral p oint currents in the l im it of small 17. Wr iting equation (4.2) in the fo rm 
oB 2 LI � oE , (4.5) 

we identify the length L of the current sheet w ith Rc. S ince R c is invar iant for a fixed perturbation, it is the var iation of the sheet th ickne ss l w ith 17 that determ ine s the scal ing of the � rec onnection: the th inner the sheet, the fa ster the magnetic ann ih ilation. A simple de scr iption of the qua si-one-d imen sional c ollap se can be obta ined by replac ing the cyl indr ical wave equation by a one-d imen sional m odel in wh ich the wave speed scale s  a s  the l inear d istance from the neutral l ine. Th is m odel is c on serva­tive, since it undere stimate s the n onl inear advective sp eed : for the one-d imen sional ideal c ollap se to singular ity occur s in fin ite rather than infin ite time ( lm shenn ik & Syr ovatsk ii 1967 ; F orbe s & Spe iser 1979) . Equating the d iffu sion and advection speed s then give s the sk in depth formula l � 17 1 12 • Th is lead s to the scal ing 

and 
J _ 11 - 3

14, A _  11 1 12 

W,, _ 
11

0, !fr _  
17

114 • 

Th is is a flux p ileup solution -the magnetic field at the edge of the sheet scale s a s  17 - 1 14-in wh ich the bulk of the exce ss energy appear s a s  heat rather than k inetic energy of ma ss m otion ( see De Luca & Cra ig 1992). M ore deta iled c on sider­ation s of the one-d imen sional c ollap se (at lea st in the ab sence of ga s pre ssure ; see Bulan ov & Ol'shanetsk ii 1985 or Saka i 19 90) tend to enhance rather than d im in ish the rec onnection rate. E ithe r way, it appear s to be a feature of the n onl inear c olla pse that flux p ileup is requ ired to ma inta in the fa st dynam ic rec onnective scal ing. 
5. CONCLUSIONS 

We have c on sidered the time ev olution of a d isturbed X-type neutral p oint. The ev olution of the pla sma is determ ined by the c oupl ing of large- scale advective m otion s in the outer field to l ocal ized magnetic ann ih ilation in the v ic in ity of the stagnation p oint. In particular, d isturbance s wh ich up set the intr in sic top ol ogy of the equ il ibr ium fiel d- for in stance, by n arr ow ing the X--can relax only by dr iv ing field-l ine rec onnection s at the or ig in. H owever, d isturbance s wh ich ma inta in the equ il ibr ium top ol ogy can al so cau se field-l ine rec onnection s to occur pr o­v ide d that other damp ing mechan ism s  are weak en ough. We have formulated the relaxation pr oblem for b oth small­and large-ampl itude d isturbance s. F or suffic iently small per­turbation s the l ocal ized current structure s wh ich devel op at the neutral p oint rema in cyl indr ical, but for larger ampl itude d isturbance s cyl indr ical symmetry is l ost and qua si-one­d imen sional sheets are fo rmed. In e ither ca se, the cyl indr ical m odel pr ov ide s a graph ic de scr iption of the in itial impl osive c ollap se of the d isturban ce toward the neutral p oint. We have sh own that the l inea rized pr oblem adm its well­defi ned a zimuthal m ode s, w ith only the m = 0 m ode c orre­spond ing to top ol og ical rec onnection. A un iver sal feature of 
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394 CRAIG & WATSON Vol. 393 
the problem is that small disturbances in the outer field drive wave motions which strongly localize near the origin, gener­ating large currents : thus incoming waves are resistively attenuated as they traverse the diffusion region prior to reflec­tion from the stagnation point. In this way, advective motions of the outer field drive fast oscillatory reconnection with a fundamental frequency w = - n/ln 17 and asymptotic decay rate w2/2. Perhaps of greater physical significance is the fact that the bulk of the perturbation energy is lost as a result of the initial implosion prior to the asymptotic decay. This can be under­stood in terms of the very fast decay of higher nodal (n > 0) components in the eigenfunction representation of the initial conditions. Yet fast linear reconnection is not restricted to cylindrical geometries : Cartesian formulations maintain all the characteristics of fast reconnection, in particular the scalings of current density and current-sheet area (as discussed in§ 4). The effects of finite gas pressure, however, wash out the oscillatory reconnection phase and, if sufficiently large, can stall-at least in the present geometry-the initial implosive energy release. This result also holds good for large-amplitude disturbances, but its physical significance is compromised by the fact that more complex magnetic flow topologies may allow fast implo­sive reconnection to persist even for incompressible plasmas (DeLuca & Craig 1992). In § 5 we considered the breakdown of the linear theory. In 

general, a low-amplitude topological disturbance is manifested as an inward-propagating cylindrical wave that gradually steepens and eventually becomes nonlinear at some radius Rc determined by the energy of the perturbation. We can think of the neutral point focusing the perturbation energy toward the origin. The outer field is left current-free, but inside Rc the perturbation energy becomes increasingly localized into a quasi-one-dimensional current sheet whose thickness is limited by resistive diffusion. The current structure now resem­bles a rectangular "tombstone" rather than the cylindrical "spike" of the linear theory. This change in morphology means that the magnetic flux now has to pile up at the edge of the sheet in order to maintain fast reconnection : in this case the length of the sheet, though ultimately limited by the global geometry, depends mainly on the energy of the perturbation (via eq. [4.4]), whereas the sheet thickness scales as 17 112 or faster. In such cases the perturbation energy is mainly con­verted to heat via Ohmic dissipation rather than to the kinetic energy of mass motion. DeLuca & Craig (1992) provide con­crete examples of dynamic flux pileup solutions. 
Frequent discussions with Sandy McClymont and Franklin Sneyd have been greatly appreciated. We would also like to thank Graham Rickard and Mark Billinghurst for computa­tional assistance and Terry Forbes -for comments on an early version of the manuscript. 

APPENDIX 
GLOBAL ENERGY CALCULATION 

The fact that the zeroth-order field is a magnetic equilibrium implies that the first-order energy variations must vanish. This means that the excess energy of the linearized system is given by the second-order variations of magnetic and kinetic energy, l>2 M and {)2 K, respectively. The kinetic energy variation is given by 
l>2K = <fv2) '  

where < . . .  ) = J . . .  dV, with dV = r dr dO in cylindrical polars. The magnetic energy variation initially appears more complicated : 
l>2M = f<l>B · l>B) + <l>2B · BE) ,  

but recasting this equation in the form 
l>2M = t<l>B " l>B) - t<l>B " (: X JE)) 

by introducing the fluid displacement : shows that the second-order contribution < l>2 B · BE) vanishes, since the equilibrium current JE is zero. Hence we can write the change in global energy in the simple form 
l>2 U = f<l>B • l>B) + f<v2) 

To calculate the fluid energy, we first note, from the momentum equation (3.2), that any velocity increment dv is in the direction of Vt/IE , which is perpendicular to the magnetic field lines. This allows us to write v(r, 0, t) = vm(r, t) cos mO (Vl/,/1 Vt/J I), and we can compute the velocity magnitude from the induction equation via 

Thus a simple space quadrature over the flux function and its derivatives suffices to compute the global energy variation 
l>2 U = t f [(Vt/I J2 + v;,]dV . 
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