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ABSTRACT 

The basis of this dissertation is a review of the 

quantum mechanical formulation of damping and stimulation, 

particularly in non-linear optical processes. The basic 

problems of the quantum theory of damping are discussed, 

and the formalism for the quantum theory is introduced. 

The study of a particular example, that of a damped simple 

harmonic oscillator, provides an introduction to the 

handling of the basic tool, the master equation. 

The physical aspects of the non-linear processes 

are contained in the systems' photon statistics, and the 

master equation provides several approaches for obtaining 

these. This theory is then used to formulate a quantum 

mechanical model of Raman scattering by phonons, and to 

thus obtain the photon statistics of the scattered 

radiation. 
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INTRODUCTION 

We usually try to account for damping in quantum 

systems phenomenologically, which is not a very success­

ful approach for many systems. By allowing the damping 

to be described by interaction with a heat bath, we obtain 

a formalism by which damping can be treated successfully. 

This ' method is used widely in the theory of non-linear 

optical processes, particularly in laser processes. 

Haken (1970) gives a comprehensive discussion of the 

method and its applications. 

Using a form of perturbation theory, we can derive 

an equation of motion (the "Master Equation") for the 

density matrix describing our ·damped system. By adopting 

a particular form for the bath, or reservoir, we obtain 

a working equation. We follow Louisell (1969), who takes 

the bath to be a large number of simple harmonic oscillators. 

The master equation gives us an operator equation for 

the density matrix. It is convenient to reduce this to a 

c- number equation, and this may be done in several ways, 

depending on the information required and on the initial 

conditions of the system. Once the equation is solved, we 

have a complete statistical description of the system, 

since the average of any dynamical variable (e.g. photon 

number) may be found. This theory may then be applied to 

the non-linear process of Raman scattering, which is the 

inelastic scattering of light by a medium. 
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Until Walls' paper (Walls 1972), the only work on 

Raman scattering using a master equation type approach 

was that of Shen (1967) who dealt explicitly with 
( 

electronic type interactions. A thorough classical 

description of the stimulated Raman effect has been given 

by Bloembergen and Shen (1964 and 1965) and this allows 

the photon-phonon damping to be easily introduced pheno­

menologically. This is not the case in a quantum approach, 

and earlier papers (Walls 1970, Mishkin and Walls 1969) 

accounted for the interaction by considering coupling to 

a single phonon mode only. This approach is particularly 

deficient when describing the stokes - antistokes coupling, 

since it allows coupling through a single mode only. The 

master equation approach allows interaction with a whole 

phonon reservoir, and this is much nearer reality. By 

solving the master equation, the stokes and antistokes 

fields' statistics, and hence a complete description of 

the effect, is obtained. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
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1. QUANTUM THEORY BACKGROUND 

1.1 The Density Matrix:- Quantum Statistical Mechanics 

(Dirac 1958) 

In general, the processes we study are noisy (due 

mainly to spontaneous emission). Thus, even though initial 

conditions may be known exactly, we cannot obtain exact 

information about the system's state at any later time • . 

For this reason a statistical approach is necessary. We 

consider an ensemble of a large number of systems similar 

to the one describing the process of interest, with each 

system being set up in an identical manner to the others 

(i.e. all have the same initial conditions). If lw(t)> 

represent possible pure states of the system, let Pw be 

the distribution of these states throughout the ensemble. 

Let M be · some dynamical quantity of interest. In a pure 

state l~(t)>, M's average value is <M> = <1/J(t)IMII/J(t)>. 

For the average value of M with the system in its mixed 

state, we make the standard hypothesis of statistical 

mechanics. That is: 

<M> = the ensemble average of <1/J(t)IMII/J(t)> 

i.e. <M> = E p~ <1/J(t)IMII/J(t)> represents the 
1/J 

actual average value of Min our real system. 



4 

This may be written 

We then define our density operator by 

Then 

e :. ~ p ... \'f''><'f I· 

< M"7 -::. ir ( tv1 e_ 1 . 

1.2 Second Quantization (Dirac 1958) 

(1.1.1.) 

(1.1.2.) 

In the light-scattering processes, we describe the 

light as an electric field, and carry out second quanti-

zation. We consider a free electromagnetic field, in a 

cavity, so that eigenvalue expansions may be used. The 

fields E and B may be described by the magnetic vector ... ... 
potential A and the scalar potential~. In the absence ... 
of free charges, it is convenient to work in the coulomb 

gauge, in which V.A = O, and 

~ ( ', -t) ~ - ~ ~' t, t > ' ~ c c, t) "! ti x e '!, t:J . (1.2.1.) 

The Maxwell's equations then yield 

D A (r e) -= o ,.., .. , (1.2.2.) 

Sturm-Liouville eigenfunction theory shows that in the 

cavity, a general solution of (1.2.2.) is 

where 

The ~~<t) are orthogonal w.r.t. the weighting function 

E~: , or, since wk and c are constants, ( e.~ may vary 
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spatially and/or temporally) 

Possible mode functions ~~~) are ....... 

where =k is a unit polarization vector. 

Redefining a few constants, we may write 

(1.2.3.) 

Second quantization involves the canonical quantization 

of ~· This means o~ and CA: become operators a!, a1 
and the canonical commutation rules for A give the 

following commutation rules: 

(a~,ai 1 :: [9/, a/ J ..:: o , [ a~ ,o;.1 -= )>~~· (1.2.4.) 

These (boson) commutation rules imply a"' may be inter-

preted as a "destruction" operator, and Q~ as a "creation" 

operator. If we let nk be the number of quanta in the 

mode of the field described by IJ~'r) e.,.i,w 11 t- , then a basis 

of pure states of the field is of the form { IV\,,ri .. , ... .. ,V\"t"' )l 

and Q14 1n,, V\1,
1 
... , 'nv, ... 'l ':; f;w I,", ri,, ..... , 1'111-1, ..... 7 , 

ut l'l'\,1 tli1 ... 1 Vii., .. :) ~ .fl'i1c.~ I l\'\,,th, .... , \'\1o+ 1, .. "7. 

(1.2.5.) 

(1.2.6.) 

The vacuum state \o'? of a mode is defined by a ... lo'? = o · 

From the Lagrangian formulation, we may obtain the free 

field Hamiltonian: 

H = ~) (Ei+ B~) c:i\!: :: ~'hw ... (aJaic. + ,k) (1. 2. 7.) 
v ~ 

In the second quantized form, we have the field as follows: 

(1.2.8.) 
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Note: If we define canonical co-ordinates and momenta 

(1.2.9.) 

then the Hamiltonian for a single mode, \.\' '\:..u,1< (0~1c+3i.) 

becomes LI :, ~ ( ?. Q '2, p '2,) 
n :i. U)k. r" + " . 

which is a simple harmonic oscillator Hamilton. Thus 

in the second quantization, a field mode is formally 

equivalent to a simple harmonic oscillator. 

1.3 Coherent States of the Field (Glauber 1963) 

We may define nth order correlation functions for 

the electric field: 

S'"'(-x,, .. .'X:u,) :Tr(eE-l-:i,) .... E-(?Ct.)t'+(-xt't ... ) .... 'c ... ('X,_n)] • (1.3.1.) 

where: E- and E+ are the -ve and +ve frequency components 

respectively of (1.2.8.), and 

By a simple analogy with classical optics, we may 

say that the field exhibits nth order coherence if all 

corr elation functions up to the nth factorize. i.e. if . s0
,,"", ... -x.,:"" -= t, 5 \.i\-x,, ... -x.1,;1 c = ,, 1, ... , Y\. 

There exist certain pure states in which the field 

exhibits coherence to all orders. These states are known 
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as coherent states of the field. For a s i ngle mode, they 

are written I°'-., and alo(.'7 -:o<I01.'7 . • For a number of modes, 

(1.3.2.) 

~t 6 c( > ~;11'2, .... 

In terms of number states lh> 

(1.3.3.) 

Using ~m l Y''7 -:: b M" we have 
l, - '04.- Ii\ 11, \< ~ \1'4"' I ~ e, r (1.3.4.) 

so that the coherent states do not form an orthogonal set. 
w 

However, using the completeness relation z,~~~~1a1 . for 

the number states, we can show 

(1.3.5.) ~ W' 'P,~<"' I ,. 1 

where . a'%"'= di(14~)d.<!YY't~). so that the coherent states do 

form a complete set. (In fact the set is over-complete.) 

This makes the coherent states extremely useful. 

NOTE: As defined, the coherent states are in the 

Heisenberg picture. In the Schrodinger picture they are 

I L') I -,w(t:-t.)) ( 
,;..; w -= o(. e · 1 • 3 • 6 • > 

where w is the wk of the mode in question. 

1.4 Damping and Stimulation (Louisell 1964) 

Cons ider the Heisenberg equations of motion for 

for a free field in a cavity: 

c:Aa. 1. ( 1 
cit ':I ~~ Q", H : -i..W"(A"' 
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Thus and where 

is the Schrodinger picture operator. 

Thus which does not violate 

the uncertainty principle for canonically conjugate 

operators. 

In order to describe any damping of the mode, we 

might attempt to add phenomenological damping terms, 

guided by classical damping: 

QQw. ': . 1. a 
a+ -~ '°•Qk - ';l.. " ' 

da! ::. . + ~ +. 
clt 

\.W1e,0.1c. -~a1c. 

and This gives a ... m II Q14e·~VJ1ot _'t;,..t 

Then [a"t\:),Q:(t)1 ~e-~t This violates the uncertainty 

principle since for large t, e-'lc ~ O 

This is because the phenomenological terms account 

only for the action of the mode a ... on the loss, but not 

vice-versa. 
I 

For t ~ "'i : mode "lifetime", only the action 

of the mode on the loss is important, and the above method 

is suitable, since e-~t is not close to zero. For t '>'> { 

the mode has certainly acted on the loss, which now acts 

back on the mode. For a self-consistent theory of damping 

we must look further than the phenomenological approach. 
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2. THE QUANTUM THEORY OF DAMPING 

2.1. The Damping Mechanism (Louisell 1969) 

The loss mechanism for a system (optical field 

m9des in our case) may be represented by a heat bath, or 

reservoir, with which the system may interact. We enclose 

the system and reservoir in a cavity, so that the normal 

mode decomposition may be used. 

The complete Hamiltonian may be written as 

H =HS+ HR+ V (2.1.1.) 

where HS= free Hamiltonian for system 

HR= free Hamiltonian for reservoir 

V = system-reservoir interaction Hamiltonian. 

2.2 Density Matrix Equation of Motion (Dirac 1958) 

Let l~(t)> be pure states of the complete system 

plus reservoir. 

Then the density matrix is Ps,R = r P~l~><~I. 
~ 



10 

In the ensemble, the Pt are time independent, hence 

ik ~t~,r\ : ~ O.u [~-\\ ~It,';,, <"11 + lo/~\~ ?><,IJ.,I] . 
~ ~ P ot 

Now the I~) are in the Schrodinger picture, so we have 

with the adjoint relation:-

using 

Hence we obtain the equation of motion for e ~,~. 
·~ ~~,11. • l~ e 1 ~ '1>t ' ~,;i • 

(2.2.1.) 

2.3 The Reduced Density Operator. The Master Equation 

(Louisell 1969) 

e-s,11o contains information about the system and the 

reservoir. Clearly, the reservoir information is unwanted 

information as far as we are concerned, since: 

In general we are interested in system operators Mslt) 

only: 

<M-slt)) -= T,.s,~( Ms (c) 6,,~ te)1 . 

: Ir~ [ tv\s(t) Trii. ~s, 12 lt:11 · 

Define the reduced density operator for the system by 

Then 

f 1 lt) = Tr 11. C €-s1it {t\J. 

<Ms lt)) = \vs l Ms H;)~s(t)) , 

(2.3.1.) 

(2.3.2.) 

We proceed to use (2.2.1.) to obtain an equation 

for es (tJ, As a first step, we transform to the inter­

action picture, (see e.g. Merzbacher, 1961) which removes 

high frequency motion due to the free Hamiltonians: 
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Define the unitary operator 

Let 

Then 

"Xm-: l.A·'lt) €s,Q.li,) LAW · 

es,Qm-:: Ult)'1 ltH.A-'lt\. (2.3.3.) 

Substituting (2.3.3.) into (2.2.1.) gives the 

following equation of motion for ;( It\. 

i~ ~le)-= Cvtt, ;x.wJ . c 2. 3. 4. > 

where \I It) -:: lr'(l) V U (t) . is the interaction Hamiltonian 

in the interaction picture. 

We transform (2.3.4.) to an integral equation: 
t 

\It) = i J [ \Ill'), t-lt'\] cH' ~ "Xlo). 
0 

and proceed as in normal perturbation theory by iteration. 

Two iterations yield: 

t 

'XII:) -::"'X lo) .I, ~Ii.) r VU·'', "Xto) Jd\:.\ 
O t i'' 

+.l. ( ( (VU:') LVl-t'') '°X(t'')11d-l''cH,' ( 2 .3.5.) a~,1 jo t ., ' 
We could keep on iterating, but this standard technique does 

not converge sufficiently quickly to yield exponential 

behaviour. Instead we use a different technique. 

Differentiating (2.3.5.) gives: 
i 

~l<\ i \: vm ;,: to\ 1, trb' l ( Vlt\, [ lilt'1, A lP)]1 clt' < 2. 3. 6. l 

To remove the reservoir information, we now trace (2.3.6.) 

over the reservoir: 

where 

~m ~ iTrQ. Lvm, 1:lo)1. 

+(±)~~~v~ LV(H,lVU,')-, 1WlJ]dt\ 

S (t.) ::: \y 1t 1 Lt) 

0 

:: Tri [Lr'(c.)E\Qlt\LAL~)1. 

:: l,f'ttl e~ (t) Ute). 

(2.3.7.) 
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We assume the system-reservoir interaction is turned on 

at t = O. Then 'X(a)=e~; ii\o) -=6,Lo)toU·hd =-S(c)io(Hit). 

i.e. because there is no interaction at t = O, the 

operator factorizes. We have taken the reservoir to be 

at thermal equilibrium at t = O, so the reservoir density 

operator at t = 0 is 

f
0

(H~) a e><p(-i) /rrRt~xp(-i)1. (2.3.8.) 

which is the normalized Boltzmann distribution. 

We choose a representation in which HR is diagonal, 

and put any diagonal elements of V(t) into H
8 

+ HR, so 

that V(t) has only zeros on the diagonals. Then 

"Tr
14

[V(tli"X(o)] ::Tr~LV(iJ,'$(o)~o(4n.)1 = C · 

We now assume that Vis so small, and the reservoir so 

large, that the reservoir remains in thermal equilibrium. 

Then the reservoir is always described by \o<+iR-). 
If V = 0, we would have ";((!:):: SU ~oCH"') • However, V 'IO • 

But V<<H8 ·and HR, he~ce we may write 

'):(F) = SlUf11CH1t) + ~'XLt) · 

where ~1m -= o, V). 

Now S(t)-=Trit"XU), ;. b ,i,q) =)' ir.zA'X(t.)=O· 

Using the above, equation (2.3.6.) becomes: 

~(I)?.: di; l' 1.\ • [ ~ lll, l V LP), $Ct')~· (ti~) , ~ ':ta' )1] c!.\1 

Retaining only those terms up to O(V 2 ) we obtain: 

(2.3.9.) 

(2.3.10) 

~ll,)~ dG1 1:\y\Z L\Jlt), [vtP), ~W)1otHiin1cH' (2.3.11) 

(2.3.11) is an integro-differential equation for S(t), 

showing that~ at present (and hence Sin the future) 

depends on the whole of the past history of S. (S appears 
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integrated from Oto ton the R.H.S. of (2.3.11». 

In practice, the reservoir correlation times are 

such that the system very rapidly loses all knowledge of 

its past; i.e. the damping of the system is Markovian. 

Hence we may use S(t) in the R.H.S., there being no 

contribution for t \<t. 
~5(~ I ( [ ] ' ~ = ,~)i j 1';,12., VU\J lVlt'), Slt )f 0rnrl) 1 dt (2.3.12) 

0 

This is the "Master equation" for ~,lt) in the interaction 

picture, and is valid to O(V 2 ). 

2.4 Example: A Damped Simple Harmonic Oscillator 

We take the bath to be a large assembly of simple 

harmonic oscillators with which a system comprising a 

single harmonic oscillator interacts. (This form of 

interaction is well known classically.) 

Using the standard boson operators for simple 

harmonic oscillators, we may write the Hamiltonians: 

\-\s .: 1'wo (C\+o .-ls_). 

1-\ a. 

v 
= r~~j(b/b.;+\} . 
: ~ l\ '\I 'Q~L' • h C :, ".> ?J ' • • 

(2.4.1.) 

w
0 

is the resonant frequency of the system oscillator 

w. is the frequency of the jth bath oscillator. Vis a 
J 

phenomenological interaction Hamiltonian. Its physical 

applicability can be seen as follows: 

The term a-+bj represents the destruction of a bath 

quantum with a system quantum being created simultaneously. 

The terms in the hermitian conjugate (which must be 
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included in order that V be hermitian) represent reverse 

processes. K. is a coupling constant (K.<<w.) which 
J J J 

measures the coupling between the system oscillator and 

the jth bath oscillator. We expect that~. is appreciably 
J 

different from zero only for j 5.~. Wj ~wo. 

where 

In the interaction picture, we have: 

=;i~\A-'tnCA•bjUL~) + f ~~*v\-1l\)o.6fLHt) 

~ Cl)(p [-~cl Wo n'-ci +- ; Wj ~ f bj )1 . 

Rearrangement yields terms such as e ~WoO+o t c/ e- i, W0 0..4~t ' 

Having earlier solved the Heisenberg equations of 

motion for a free field mode we can readily evaluate such 

terms. Recalling section (1.4), we see that for Ho~ 
in the Heisenberg hv.,"' (aJai.. ·~) > 

picture. aJ is the Schrodinger picture operator a~-+(o) . 

But we know also that any Heisenberg operator AHU) is 

connected with its Schrodinger picture counterpart As by 

Hence 

We may 

where 

AH lt) "" ~>'f' [ ~1-\~t/"] A~ e)(p (- 'i. t\<> t/~ 1 

a;lfl : e•1.U1<0.ito.~c al e - ~wi.:o.! 01c. C 

thus write 

. v LI:) • ~~lt) at i ~st (t)c~ 

Gl(,) ::: ~~· e-i.lwrwoHb, 
v :, J ;) 

. + . ,..,+ : e 1,W1<.0.1<0.1< A.1. Q.,-v\.U"1.4"Qk 

::: . u."•'1... ~Wk,C. 

(2.4.2.) 

Upon inserting V(t) into the master equation (2.3.12) we 

find we have to evaluate terms such as 

Tv11 ['o.1.,~\ft~olti\'1)] -: 4b.d,I" ',A 

' lr~ ( b;."H:,wifo ( I-Iii)] ': ~ b/ bt'W\ '7'4 ' 

etc, on the R.H.S. 

These may be easily evaluated, using the following: 



15 

In the number state representation, if A is a reservoir 
DO OQ 

operator, Tr LA1 o:: ~ ~ ••••• <Vl,1Yl.,, ..... \AIV'l,,"'~; . .... ';> ·• 
11. n,rc. ti..:::o 

bib~, ~fb~ etc. are reservoir operators, hence this 

is applicable. We find: 

(i) (ii) <b/'o~ /~ • 0 (2.4.3.) 

(iv) < b, l.)~'7Q...: S1,.,,(H~.t) 

where 

As an example, we evaluate the 4th term of the R.H.S. of 

the Master equation: 
I It \ 

This is ,~,,j T,.it{st~)~o<''rtn )v(~')VmL:H · 
b 

= -su;) C°Tr(t \f, lHi<) c~ U'\ a\ S •t P)o.1 lSlt)~ + + S1"l n a]\ dl' 
~ t 

:: ·SU\a+a~\ir,. \\ol\411.)SLi')~Hl~dt' - 'SU:)a-4Q ~_Tv~Ho(Hsi)S(t')S~lUtdt' 

-'Sl~) (lQ+ ~:TrJ~,.(1-11\)Sit')~(t\Jdt' - '5lt)aC,\ LtlVii {t.lH. )s+a')s~rntcl~' . 
Using the results (2.4.3.) and definitions (2.4.2.) we 

see 
It ... {~0(1{9,)SW'Sll)\ -- <SW\S(t))R = 0 

TrAHolH11.)S~ll1\~\~1\ = <s~(l')S~(t)',~~o . , , 
l I -dvi·-wo){c-t, Tt,J16lH,.)Slt)~~ll:h :<~(1;')S+lff1R-: ~ 'K'/(i+'n_, )e J 

Trii\~ott{~\j*lt1~ltl,-:a<S+W)~lt\'>Q ~ ~ 11'.;(i -~\· e~h"j·wo)<t'-tl· 
J 

To evaluate the sums, we make two assumptions. The first 

is that the reservoir modes are sufficiently close 

together in w space that the sum over w. may be replaced 
""J 

by an integral over w: i.e. ~{lwj) ~ i flw )'jt"" )dur 

J --
where f is some function of the wJ's and ~(ui) is the w-space 

density of reservoir modes. .. 
Thus ~ 1\jl' (1.r=i_;)e-~h.,.,J•I.UoHt'-t) ~ ~-oo\'X(w)l,.L\4-';;lv.)lalw)e-~(w•woh'c:Aw-

J M • v 
and ~ \1(./ "., e ~tw;-w.Hi'-c) ~ ~ \1l.tw)l1. hlw) etl'-") e.,~l.w-w.'>u dw-

J -~ ~ 

where I.A-:. l:.'-t 
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W t th t ! i(u.?•We)lA e no e a e oscillates rapidly except near 

w" u.;0 , so only those values of w near w
0 

contribute to 

the integrals. We thus make a second assumption, which 

are 

slowly varying functions of w near w = w. 
0 00 r ( , -tl.1.U·1AJ0)\A , ( ) r ,,-Uw-wo)~ .• Then _~)ll.w.i)I'\ l+°hlW')l(jlw)(, clw- ~ \~two)! l~hlWo) ~lWc.) ~;' cAw 

r"' -i - ~Lw-w.,) lA l - f 04 
~wi-wo'w-and J \~tu.,)\ hLw)~Lv.,)~ d.w ~ ll<.lwo)I h~wo)'jLwo) ~ ... e.. clw 

-.. 
From the theory of distribution, it is well known that 

...,~ r"',, :!~t.A .J "~' • • ( I ) ~" )~ ~~ is a representation of O\~ ,the -~ 
Dirac delta function. ... oO 

Since w is a constant~ 
0 

~ t -t ~<.w-w«>hA c4w -= ~ e., -t ~ ~ u ctv.i' = ':l.:n Mu.) · 
-.o -..o 

If we write 
(2.4.4.) 

the 4th term in the master equation becomes 

- Sll)a+~ ~l 1+ ~) S\t\A) cU·' - "5 U·) OC4 t )sf; ( ~( lA)clt' 
O O 

= - \t\+n)Slt-\a+o - %.. j; slO~a+ (2.4.5.) 

since L\tu.) °'~, = 1. 
The other terms in the master equation can be 

obtained in an analogous manner, yielding the following 

interaction - picture master equation for ~,the oscillator's 

(2.4.6.) 

We can convert this result to the Schrodinger picture by 

etc,. along 

with 
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S(I;)- = ~)<p( trn ... ~~,'Z.H1esrn e'i<p[-%rns+l-iQHl 

' (.Xp { l ~O.~Q t) e-. U) Cl,.,Xp {~ (Wo 0.\-Qt) 

%1 ~ L,(
11LwJrl"',e-st~l1 " ~tl0s u. 

Using all this in (2.4.6.) gives the following Schrodinger 

picture master equation: 

~(t)-= -i: Wo [c.+a,e) +l ([C'4.e~?1 +-L4,e~Q·1) + ~h ~tC\,ei), c/] · ( 2. 4-. 7.) 

This example may be used to describe the damping of an 

electric field mode in a cavity due to interaction with 

all other field modes, since a quantized field mode is 

analogous to a simple harmonic oscillator. The _above 

equations may be obtained from the familiar interaction 

Hamiltonian: 

" 1 the polarization is 

This S.H.O. example extends quite generally to other 

cases. We often find that the interaction mechanism can 

be decomposed into a large number of normal modes. These 

are then quantized, giving a reservoir of oscillators as 

in the above example. This is the case for the Raman 

scattering, which is discussed in Chapter 4. 
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3. PHOTON STATISTICS 

As mentioned earlier, the electric field may be 

described by either of two complete s ets, the number 

states ~ \~'?} . , or the coherent states { loe.-,) In 

evaluating the photon statisti~s, that i s, the field's 

reduced density matrix, of our light field system, we 

may make use of either description. The initial conditions 

dictate which description is more convenient. 

3.1 The P-Representation {Glauber 1963) 

Even though the coherent states are not orthogonal 

the y are over-complete, so they form a possible represent-

ation for states and operators of the field; e.g. we may 

write any field operator A as A=*''l~~<-<IAl'3"71"')-<~ld'lo<d1 13 

If the operator is diagonal in this representation, 

A-: :k )al.,c..) \p.,',<"'' cPo< , "'°') ~,<"'\A \tA. "'?. 

We assume the system's density matrix may be written in 

this form. i.e. 

eL~l -= ~ Ptoi.1i:) 101.:,<D<ldlo<. , (3.1.1.) 

say. (for a single field mode). 

This is the "P-representation" for p, and '\>(o1.,t) is the 

P-function which may be time dependent. Not all systems 

will possess a P-representation. The P-function is useful 

because it has some of the properties of a classical 

probability distribution:-

Consider the (ensemble) average of a normally ordered 

operator Mlt) :-
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(a normally ordered operator is one in which the 

commutation relations have been used to_ place all creation 

operators to the left of annihilation operators in each 

term. This eliminates vacuum fluctuations) 

<Mlt)) ~ Trl e M) : T~ \ ~ Ptot.1~)\°"'?<t>(l M(!.)d.1.o< ) . 

: ~ \'!\ lo1.) PL,,, t) cl i.oi. . (3.1.2.) 

- that is, the 

operators o, o+ in M are replaced by the numbers o<., o<.'* 

(3.1.2.) is rather like a classical averaging procedure. 

(Note that the Hermiticity of p implies P must be real.) 

However, since P may take negative values, and the -{ \ll(."}} · 

are not an orthogonal set, Pis not a true probability 

function. 

To describe systems of more than one mode, the 

definition (3.1.1.) is easily extended: 

eLo : ~ Pt«,11)(1) .... I e) l.i.,Jot'1J .. .. ..,<'«,, °'1, .. .. I d 1 o<, cP~1.·· ·· . 

This gives the joint density operator for the system, and 

is the joint P function. To obtain the 

P function for a smaller number of modes we sum out P 

over the modes not required. e.g. for a two mode system, 

P(ot.,;t) = ~ P(o1.,,"'"1, t) c\'ol1.. is the P function for mode one. 

A Fokker-Planck Equation for P: 

If we substitute etl-) 2 ~ P(t"i,e) lt"'P<{"ll r <A\1.fnto our 

master equation, we obtain a Fokker-Planck type equation 

for 'P(~o1,\), analogous to Fokker-Planck equations for 

classical damped and driven systems. 

e.g. In the damped simple harmonic oscillator case, we 

have a single mode, hence eL4l=)P(~,i-)l,t,<.~\d'~ is used. 

We use the following results (see Appendix) 



~ P(oi. )o~a l .. c,<o1. 1 d'°' 

J P\jll.) lo<.><"'I Cl+ad 1 o1. 

)'Pl.l.\a \.x")-<..,.i.lCA~d2c< 

j P(i,I.) a•\-1..'X-l.\C\cP.-<. 
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:: f1,<.)<o<l1.c,1,.:t~- i~o1. ) Plo.)GP.o<, 

= ( \o1."'7<D< 1 lK <><. - ~ 'It o(ll l Plor.) cA1o1. 
) ()O' 

-= 5 \oi.)< °'1 ~O\ 'lo<.) P C,i.l d2 c,1. ( 3. 1. 3. ) 

{' t) c) ,>'1 
-:: ) 1o1.-,<°' 1 ( 1 ... ~o1. - ~"'°' -~~ ~"' + ~i..r') P(o1.) d '"'- . 

Any others follow from the a,ci' commutations. 

Inserting the P-representation for pinto the Schrodinger 

picture master equation (2.4.7.) and using (3.1.3.), we 

obtain: 

. j\o(.),<o1.\\~ -(,!, + ~wo)~""o<. -( l-~wo )~:* o<. lt.-'i( V\ 'b:Dd.>4 ~ ~(d.1 t) d2o<. ::: 0 

This is true for all times only if the term { .... · · ~ P(c{, ~) 

vanishes. i.e. 

~: = \\+~wo):~C,tP) +(1-~wo)!~ ... (o1."P)+~~.:.~c,1.'* (3.1.4.) 

This is the Fokker-Planck equation for the damped 

oscillator. The Fokker-Planck equation may be solved to 

give a completely general solution, with constants evalu-

ated from the initial conditions. This has been done by 

Louisell. (Louisell 1969) 

Another useful method is the "Green's function" 

· method, (Wang & Uhlenbeck 1945) for which we assume the 

system is initially in a coherent state, \«.o) , say. 

Then 

(Glauber 1963) 

The solution of (3.1.4.) subject to this initial condition 
I r -l 0( - o(. 0 Q, - ( i: Wo .. it;,. ) t f J 

is 'P<c1.1t) ~ 'ilW'll-e,-)'t)~~xpt n-(1-~-~t) . · (3.1.5.) 

An outline of the method for solution is given in the 

appendix. 
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3.2 Equations for pin the Number State Representation 

In the interaction picture, the number states are 

, n'\"~ = t)<p [-~ t rl~+ H~)11~"7 

-: \YI., e.xp(-~t(t'\wo)1 · 

Hence, taking the m, n th matrix element < wdi;._~~·-··· \ '"'""1·..t 

of the master equation (in the interaction picture) for 

the simple harmonic oscillator gives the following differ­

ential - difference equation for the matrix elements e~n~ 
<m\e \\'\.., . 

-\c.<W\+Y'\)e~"' + c \-:l~-+,)h'\u)1se~"',IH' · (3.2.1.) 

where A -= ) ~ c -= 't ln +,) . 

' Similar equations are obtained from master equations for 

other systems. 

In many cases we need only know the diagonal elements 

of p because the system operator we are studying is 

diagonal in the number state representation. An example 

is the number of photons in a single mode system: 

<v,(t)') -: Tv-("'e) -= 'Tr(()-t"e) 

;;: ~<hla\~e IVI'). 

:: ~ -:z: < h \ C.\ + °' \ n-,') .::. ""\ e \ Y\ ') 

~"' 
(since the completeness of the number states means -:t,\""7<r.1-::\) ... 

<Y\ \a+ei 1~"7 : 't; ~ ......... \<: r. l~) = a+a is diagonal · 

"" . • <h l~l'7 -:: t Y\e" ... Lt) (3.2.2.) 
1>: .. 

To obtain ey, ... a) we set m = n in the equation of motion for 

the elements e~ ... lt) • In the case of the oscillator, 

(3.2.1.) we obtain: 

(3.2.3.) 
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A solution for this equation, subject to the initial 

condition (i.e: system initially in a 

vacuum state) is: 

~~.,ll-) : t~ ( 1-c'tt)1""/ ( \,\,~ l \-e-~cnMI • (3.2.4.) 

(Pike 1970). 

A general method of solution of such equations can 

be found in most books on probability (e.g. Bailey 1964). 

NOTE: 

( 1) (a) The P-representation and Fokker-Planck equation 

approach is best suited to systems which are initially in 

.. a coherent state, because the Green's function solution 

is readily obtained. 

(b) The number state representation approach is 

best suited to systems whose initial conditions are 

specified in terms of number states, since the solution 

of equations of type (3.2.3.) follows more readily from 

such conditions. 

(2) The example of the simple harmonic oscillator is 

that of a damped system. The above formalism also covers 

stimulated systems if we make the substitutions 

(3.2.Sa) 

(3.2.Sb) 

(3.2.Sa) is equivalent to the damping constant becoming a 
• - ( two/k,T )-1 gain constant. Since V'I = e -1 , ( 3. 2. Sb) is 

equivalent to replacing the bath by a reservoir at negative 

temperature. 

This will be seen more clearly in the work on Raman 

scattering. (see section 4.5) 
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3.3 Connection Between P(a,t) and the pmn (t) 

we have e """' w :: ) p L,1., ~ )<. m \ oi')<.o<. I YI.., cA'i °' ' 
Using (1.3.3.) this gives: 

o 'J.) = ?? r Pto1. ~),:,<. h, "'" Y'I ~-11{.'°'<::1?"" ,~,,ri;. ~""!ri~ } , 

3.4 Further C-Number Equations of Motion 

(3.3.1.) 

We may obtain equations of motion for expectation 

values directly from the master equation. These equations 

can then be solved, giving expectation values without 

having to calculate p. 

We may write the master equation (2.3.12) as 

~\, = Mle) say in the Schrodinger picture, 

where pis the system's reduced density operator. 

Let A be a system operator, not explicitly time 

dependent. 

Then 
c)~ A "7 
.'bt 

· i.e. ~/\';, -= Tv l f\ Ml o)] . 
~ t '-, 

(3.4.1.) 

(3.4.1.) gives a differential equation for <A>, first 

order in time. 

3.5 The Diagonal Elements of pin the !a> Representation 

If p has a P-representation, we have 

~lt) = ~ Pt,~,t) \,,C><'"'-loflo{ 

The diagonal elements of p are <~l,e I !3"7 · in the coherent 

state representation. 
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<~\e I~> :: ~ Plot,O<~lo<'>-<o1. l13'7ci
2

o<., 

i: ) p ld-11.:) l "- f> I°" 7 l 2. d. 1 °' . 
I i1 -1~·~1

2 

section (1.3), <~ loi.> i: e 

<~1 e 1~"7 = ~ P(.;..)U e - lo4-p 
1\1 1o<... 

3.6 A Note on Averages 

so we have 

(3.5.1.) 

. Since averages of observables are physical quantities, 

we expect them to be independent of the picture in which 

they are calculated. (Pictures are corrected by unitary 

transformations.) 

This is in fact true, as the following shows: 

Consider a variable Min one picture, with the corresponding 

variable in some new picture being M', say. Now if U is ' 

the unitary transformation connecting the two pictures, 

Hence: 

<M'> ::Ty CeM) r.Ty(u-•u,e_u-•uM) 

=ir ( ueu-'UM \A-,) 

=1d( M') 

::i <M''). 

<[)1Y'IU., t.r'u • 1. 

by cyclic props. 

This fact is useful in work such as in (3.2), where the 

interaction picture is used. 
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4. RAMAN SCATTERING 

4.1 Introduction 

Raman scattering is the inelastic scattering of 

light by optical vibrations in a medium. The mechanism 

which couples the light field to the medium's vibrations 

is the polarizability of the medium, which is modulated 

by the vibrations. A simple study of a gaseous diatomic 

molecular medium gives the qualitative aspects:-

If the molecular polarizability tensor is ~~ , then the 

induced in a molecule by the 

light field 

In a gas, the molecules are free, so o<:.s is a function 

of the nuclear separation only. If Q is the instantaneous 

departure from equilibrium separation of the two nuclei, 

we may expand c<5 thus: 

where 

• • (4.1.1.) 

which shows how the vibration (represented by the Q 

co-ordinate) and the optical field are coupled. 
1 

The term "''J Q EJ gives first order Raman scattering, 

the next'term gives second order scattering, and so on. 

Which orders occur, and their strength, is determined by 

the · size s of the 
1 ,. 

°''J'°'.:J,····· coefficients, which are 

determined by molecular symmetries. In general, in Raman 
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, active media, ~t, that is first order scattering, dominates. 

We may write 

(4.1.2.) 

In terms of energy level transitions, light quant a are 

absorbed by transitions between molecular vibrational 

levels in the medium, and new light quanta are emitted. 

Two first order processes occur: 

Ca) Stokes Emission 
/'.\···-···--·--··--· --~-

\>lwo...i 

I 
"vlUli.., , V-:.1 Fig. I' 

I 

1'Wvil, 

.I 'V: 0 

The levels v are the vibrational quantum levels. 

Cb) Antistokes Emission 
---··· ,, I\--~--·-·---··--

'hUl· "" 

2 

~ 1'wo1,1,f 
Fig. 3 

Wo1,.1,+ v:. 

~ 
/'\ 

l\w11·,. 
'Jso ,, 

In case (a), the molecule is excited vibrationally by the 

ingoing quantum • Wo~<w;,.,' · 

In case (b), the molecule is initially excited, and is 

de-excited by the ingoing quantum. w0 1,.1,~ "'> Wi,. 

In the case of scattering in a solid medium, or in more 

complex molecular gases, we use a normal co-ordinate 
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decomposition for the vibration co-ordinate Q. (In a 

diatomic molecular gas, Q ~s already its own normal 

co-ordinate under the simple harmonic potential assumption.) 

4.2 Raman Scattering and the Master Equation 

In order to use the master equation to describe the 

process, we must carry out the scattering in a cavity. 

Raman Hamiltonian: 

We take the Hamiltonian (4.2.1.) 

For a single molecule, 

or (4.2.2.) 

(4.2.2.) is a microscopic-variable equation, wi th~ being 

the local field at a molecule. The E of (4.2.1.) is the ... 
macroscopic field. ~local and ~mac are related by the 

Lorentz factor ,~~.2 ) , where n = average refractive index 
3 

in optical range. 

the 

i.e. 

or: 

Macroscopic polarization is then ! -::: N~ 

number of molecules in the sample. 

'P ~ of..e.N (~'2) E. + ~1 N Q ,,,,,.~1 ) E. 
- ,...,, 3 ,-J -· 3 ' 

- - N 

r=t~·~.Q~ say 

where °' is redefined to include N \~in) 3, -
Hence the Hamiltonian Hof (4.2.1.) becomes 

H :: }~·~-~ di't ~ ) ~. ~.Q g di?>£ . 

where N is 

(4.2.3.) 

(4.2.4.) 

Quantization of Molecular Vibrations (see e.g: Ziman 1969) 

We make 

modes: 

a standard decomposition 

Q(\"):: :ctq(\.,)e.. (~,!., 
- I. \' ... 

of Q into normal 

We now quantize the vibration, by setting 

\(~) = (1~ .. 11.J (~ .. ,b!) 

(4.2.6.) 

(4.2.7.) 
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The are ordinary boson operators. The quantized 

normal modes are phonons:- b~ destroys a phonon of wave-

L :. vector ~, o:.. creates a phonon of wave-vector ~, ..O.~ is 

the frequency of the phonon~· Mk is an effective mass. 
-

We shall see that the set of phonons behaves as a reservoir 

for the interaction. 

In the Hamiltonian (4.2.4.) we insert the expression 

(4.2.6.) using (4.2.7.), for Q, and the expression (1.2.8.) 

for E. -
The term ~ ~· t.E ~:r. yields the following: 

Hs -= Z ~w-(a t<:4. +~ ). 
j J J ;.) 

which is the free electric field Hamiltonian. 

{4.2.8.) 

The term ~ ~, ~.Q ~cl?>,:_. gives the interaction Hamiltonian 
"' 

V between the field and the phonons. 

To the Hamiltonian (4.2.4.) we must add the free-phonon 

Hamiltonian, which is 

kR. :: 'Z ~.nll (bJ b~-.i) . 
\( - . . . (4.2.9.) 

We thus see that the interaction is describable in the 

formalism of Chapter 2. 

4.3 Stokes Emission 

Since antistokes emission depends on the Stokes 

emission (see 4.1), if there is initially rio antistokes 

present, we may ignore the presence of antistokes radiation 

for a short time. We can thus consider the electric field 

to consist of stokes and laser photons only. We will deal 

with standing waves, so we may take the stokes and laser 

radiation to be in monochromatic modes. Thus, if the 

laser mode has frequency w~ , and the stokes mode has 
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Hamiltonian must be hermitian, in order to be an observable. 

(ii) From (4.2.4.) we find that the coupling constant K. 
J 

is given by 

( 
t u.l i.W~ \\ \ ~k · Y' -l' 

\\:: l1..D.jMj I ~ e ,..r - ~\, (t). ~.~s('!'.) ~~.!:. 

= ( ~W1,.,W~ \\. e'-. c,< €,5 f e ~ (~'.'> 1-ij- ~ .. ).,r d;r (4.3.3.) 

V11.\0.}'\j C1.~sl - ~·"' JV - ' 
We see that K. is only significant when k~ + k; ~ ki. 

J - -J ~ 

To (4.3.1.) and (4.3.2.) we add the free phonons' Hamil-

tonian 

(4.3.1+.) 

The number of phonons is the number of molecules times 

the number of degrees of freedom per molecule, which is 

of the order of 10 23
• Hence we are justified in taking 

the aggregate of phonons to be a reservoir in thermal 

equilibrium, unperturbed by the interaction. 

Thus our laser-stokes-phonon interaction is describable 

by the approach of chapter 2. In fact, if we compare 

equations (4.3.1.) - (4.3.4.) with equations (2.4.1.), we 

see that the laser-stokes system is exactly analogous to 

the damped oscillator system if we make the identification 

+· 
Q ~ Cti.Us 

We can proceed as in section (2.1+) to derive the analogous 

master equation 
os o (( . • [ .;. ._ ., ) 
~C SI "5. Q\.a5.\,s, QI- U.s) + QI.QS ''$Ql-~S_l 

+ )' ~ ([a\.ll/, s l, Cli.-4-as J . 
We assume the reservoir spectrum is such that 

11<.lw)l,.V\Cw) 5lw) 

n = ~ (w\,-VJ•.'l ' 

is flat near 

(4.3.5.) 
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To make the problem further tractable, we must make the 

parametric approximation:- We assume that the laser is 

undepleted. That is, we replace a\. by its expectation 

value t\.e-~wLt 

(4.3.6.) 

where \{::: \f \.1 1 'i . ( 4. 3 • 6 • ) is in the interaction picture. 

·Some equations of Motion 

(i) Destruction operator a 5 : 

;~~., : \y (~5 t\} (see section 3.4) 

-:: 191 -< a~')· using C 4. 3. 6. ) 

. . <°'6(t);-= <~lo)")€. Kfl,t. 

(ii) Number operator ns: 

i)~s"'> -:: \y (V\, ~ ). 
i>t. ~ "bl; 

:: l<,~"') i' l<..(Y\~1) 

. . 
by (4.3.6.) 

(4.3.7.) 

(4.3.8.) 

The 
\il.b term <~(o)') e represents stimulated emission, 

. k. kt . . . 1 . since is +ve, so e gives exponentia gain to <n5 >. 

The term (Yl..i)(eh-,). represents spontaneous emission noise, 

since this term exists even if <n&(o)) = O (i.e. if there are 

no stokes photons initially present.) 

In practice, the exponential gain would be limited in time, 

since the fact there is gain will cause depletion of the 

laser, so the parametric approximation will not remain 

valid. In practice, a "steady state" situation will result 

eventually. 
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4.4 Stokes Radiation Photon Statistics 

Fokker-Planck Equation 

into the master 

equation (4.3.6.), and proceed as in section (3.1), we 

obtain the following Fokker Planck equation for the stokes' 

P-function 

~ -= -\ (g-.,1. <><- ~ tlti o<")~ ~ K,~~') ~~0.li. (4.4.1.) 

If the stokesJ mode is iriitially coherent (i.e. 

'P("",ho)-= ~>1-(°'-o<.o) say), the solution is: 

I [-\dt:-o<oei\i:htli] 
?toi.,t) = 1i{V::i.il(e~t,) ~-xp <Y1~1)Ce.."'t-,) .. 

(4.4.2.) 

(see appendix) 

This is a Gaussian, with complex,time varying mean o<oe"1it 

and time varying variance 

This is the P-representation for a chaotic state (i.e. one 

of maximum entrepy). (Glauber 1963) 

· Thus the initially coherent state becomes chaotic, due to 

the noise of spontaneous emission. 

Number State Equations for p 

Taking them, nth matrix element of each side of 

the master equation (4.3.6.) yields the following equation: 

~t" : td~Y\ \~ ewi-1,n-1 - -s:_ Pd~V\•"2.) e"'n 
L ~ -';2.C(m .. l'\)eml'\ .+( [('M,HHM,1)] e~H,,n.-1· (4.4.3.) 

where A:::\<.(~.,) and C-:: k~ 

If the stokes mode is initially in the vacuum state, (i.e. 

fv,n,(o) -: ~""" b1-,o ) the solution of the equation for the 

diagonal elements, viz 
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is: (4.4.5.) 

(e.g. Bailey 1964). 

Using the result (3.3.1.), it is possible to obtain the 

elements f..,."(l) from the P-function:-

Using (3.3.1.) and (4.4.2.) we have, for an initially 

coherent mode, 

This integral is evaluated in the appendix. The result is:-

(4.4.6.) 

where tr1 is the confluent hypergeometric function, and 

ro-:: \~ol, ~o..; M~o<.o 

Since the particular coherent state o<o• o coincides with 

the vacuum state, ( 4. 4. 6.) can give us ,e""n(t) for an initial 

vacuum state. 

We set cxo=o in (4.4.6.) (i.e. Y'o=~o.:o ). Noticing that 

we obtain 

(4.4.7.) 

We see that the result (4.4.5.) for fn~t)is regained. 'Also, 

we see that the density matrix remains diagonal as the 
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interaction proceeds. This is not unexpected, as we see 

from (4.4.3.):- the elements ?m~ are only coupled along 

lines parallel to the diagonal. Hence an initially 

diagonal density matrix (which is the case for a vacuum 

state initially) will remain diagonal. 

Expression for <alp!a> 

Using the P-function we may obtain an expression 

for ,<,°' I e lo<.'> the diagonal elements of pin the la> 

representation. Using (3.5.1.) and (4.4.2.), we have, 

for an initially coherent state, 
I \ :z. [ - I (? ~o e.... 1--l-i. t I '2.1 

<"'-'e 1"4"7 :r il\n4-1)(~~~-1) )~x\'(-\~f>I ) '°f ln+1)(e,"t-1) ) 

Using the integral relation i~dt~~:~p[-}'.1~1-i+Y~+~r*1 
I ("')..) = -<Z."0 -

)A I ,Alt, ' 

~1e1K) 

where A 

:s [c "~ 1) (<., "'"-1)tt1<Z.xp l-\""1,.- A'"'•\ ,.e, \<.e -4-­

: (C~+1)(e"-t-,)1·1 

,we have 

Note that for an initially vacuum state stokes mode, 

(o<o ~o) 

' 
(4.4.5.) becomes a gaussian. 

4.5 Comparison: Damped and Stimulated Processes 

It is interesting to compare damped processes, such 

as the damped oscillator, with stimulated processes, such 

as the stokes radiation as discussed above. If we compare 

the appropriate master equations, (2.4.7.) and (4.3.6.), 

we see that (4.3.6.) is obtained by replacing -y by k and 

T by-Tin (2.4.7.). (The change T + -T means n + (n + 1). 

Thus the stimulated process is described formally in the 

same manner as the damped process, except now the coupling 
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is of opposite sign, and the heatbath is now a reservoir 

at negative temperature. 

4.6 The Coupled Stokes and Antistokes Fields 

The build up of stokes radiation means increasing 

excitation of phonons, so that antistokes emission becomes 

more likely. For this reason, we should include the 

antistokes' field in our calculations. 

We thus consider the following problem, which is 

the field E =EL+ E8 + EA, with free Hamiltonian 

interacting with the 

phonon reservoir, with free Hamiltonian ~~.O.j Cb}bj +~) . 
.) 

The subscript A denotes antistokes operators. Inserting 
. E . ~ -(w~t . lh ( - \.w,t · Sf .,.:w,.{ 

the expression..,= 1.J:f'w.a\.~~lr)~ +"·h.ws Qs~ !)~ + 1. 5:~a11~At,t)e. . 

+h.c. into the interaction part of the Hamiltonian (4.2.4.) 

gives our interaction Hamiltonian in terms of the field and 

reservoir operators. As before, we make the rotating wave 

approximation: 

\J "'f\"\.Q;~ ~.tb,t t 'hC\\.O.,_+~J. ~Ab;+ h.c. 
:, J v 

(4.6.1.) 

where, similarly to (4.3.3.) 

·~A ~ ( 'F\u.,1-w~ }~:i.. e e f e ~t~·-k.; - ~d·t ..i1 .. 
~j Y"1"!,..(l,tv\·t t ,..1. • ~ .... A J ~ .:.. , 

., J \. A. '" 'V 

of (4.3.3.) 

We proceed to derive the master equation as before, again 

making the parametric approximation for tractability. The 

master equation in the interaction picture is: 
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(4.6.2.) 

+ Vik...~ L Ca,\~], O.s1 \- Y\ kA,._ L LO.I\~ -S 1, ~l\+1 · 

+ ~ \(.,~e·'l~~wttlo},s1, ~+] \, ~ ~I\S e,,'l~O.wlt(C\~~51, 0~1 , 

where: l<.~s-:: ?..i'\'~(w 0 ) l\<S(w,)l-z lfi.1'2. 

K.A.-.-= ?.:n~lwol lk"'two')l'lf1.\'l. 

Ks: = k.A s -: ?.. i\ 5 Lu, 0) \( I\ (We,) K:. !, ( I.O c, ') I !;1,. \ l 

h -:: hlWc,J 

As in section (2.4), we must assume that 

functions of w near w = w. 
0 

are flat 

is an allowed frequency mismatch, 

obtained by varying the laser input frequency, and/or 

the cavity resonances. 

4.7 Some Equations of Motion 

{ i) Coupled equations for <'Q~';> and <O.A+"l. 

~~O.i') = Tr (Q~ ~) -:: ~s .(Q,s') ~ K~A. <0.1,.•'7 e,;'l.,Aw t { 4. 7 .1.) 

d.(o,~•'7 -:: 1 ((t + c'.)E7) ~ -kA;.,<.O.f '> - ~ <o. ') €. 7..Ct~wt , ar r I\ 1)t '1 ~ 1, 

We may ignore small dispersion effects in the gain constants, 

and set ks,-=- k P,,A -: kA~ -= ks A -= k , say. 

Setting and 

becomes 

"'-!2, J 1: l 
- l \(/2,+ 'I.. ~W) D {4.7.2.) 

(4.7.2.) may be solved in the standard manner to yield 
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s olutions which are linear combinations of time varying 

exponentials. The time variation is given by the e.igen­

values of the coefficient matrix in (4.7.2.) - i.e.: 

/\ ~ ±~(/lu..1?.- ~kt>.wl\ (4.7.3.) 

The solution is: 

and ,, -:. ~D. +("-1-;i.+aw)1 Mo)+ "-14 fl>(o)\ /k "). · 

t'l. -:: ~ l 1' - ( "'l~t (6w) 1 Po.lo\ - k.1.,_ Blo) \ / k?,. · 

If t:::.w~.., I<., ( 4. 7. 3. ) reduces to 

(4.7.4.) · 

In this case, A and B become uncoupled, (4.7.4.) reducing 

to Al~)".:: t\(o)~').l = A.lo).e'l(p((t~1>>+kf"1.)t]. (4.7.6.) 

" t . i.e: <4~(~)') :: ~a.llo)",e. h 

~lt) ~ 13lo)e:"t -= glc,)e.xpL-Cio.w,i.~/~)t]. (4.7.7.) 

i.e: <<;\:(~)'> = <u;lo)'Je.--"ht · 

We have two waves, one of gain constant ~, the other .of 

k -2. If we compare (4.7.6.) with (4.3.7.), we see that the 

first wave is almost wholely stokes in character. The 

second, attenuated, wave is almost wholelyantistokes in 

character. Thus in the case of a large frequency mismatch, 

the waves uncouple into separate stokes and antistokes 

waves. 

According to (4.7.3.), if t>w=o there is no gain. 

This is because the laser depletion has not been taken 

into account. A classical analysis (Walls 1970) which takes 

the depletion into account shows that there is a non-zero 

gain even with 6.v.J = o However, this gain is still 

small, and the main gain occurs for large !:>vs • 
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(ii) Photon Numbers and Correlations 

We can obtain equations of motion for the photon 

numbers <n~({:)) : <ei,-4as7> <r.t11(0';,:.(QA-4-CAA'> · 

correlation functions <CA-. a$ '7 , <o..l o..~+'l 

~\. <o.!o,..'7 = -K~~<:ap.,\,,..") +: ~11." ~ 

and for the 

- ~A e-1~owt <a:a~-;,, - k.~~ e 'l (~wt< C4.\ Cts ~. 

cl + 
c3:t<C4sas'7 :: ~s(h+1) ._ ~s <a!,~a,'>. 

L K~ e.· '2.~ .bwt < r. + ~'- L \<.p,._s e). "~ t -
T ::2, '-"P.,: a, / ....- :2.. <.o." Q.) I 

\(s~ K~t:1. 
:i <ap., ~ '? - :i."' <.ctp, a~') 

\::_j~ /,., ~o. ~......_ _ K111r.. <,..· ~" t-'--. 
'2. '""" s I :;i" V\A '-"S I ' 

,. ~ e '2..~~""'t < o.~· a,- - a, a;..., -k.A5 h Q.. 1.u~u,t 

As before we shall ignore dispersion in the J<'s, setting 

all equal J<. Let + t to A = <~It\ 0.A 'l 
' 

B = <Qs C\s ':1 

c = <or,..a~1-e ').~~wt 

' 
D = < a j) .. ~he-2 awt . 

We then obtain the non-homogenous system 

A -k'. 0 
k'. k'. A Rn -2 -2 

B 0 )<' k' k'. 
B k'.Cn+1> 2 2 d = k k' 

+ (4.7.8.) 
dt c 2 -2 2itiw 0 c k'.Cn+~> 

D k' J<' 0 -2itiw D k'Cn+~> 2 -2 

We can make this an homogenous system by defining 

A' = A-n, B' = B + cn+1>, to get:-

A' -k 0 ~ ]t 
A' -2 -2 

B' 0 +k k'. k' B' d 2 2 
dt = ]< (4.7.9.) 

c }< 
2illw 0 c 2 -2 

D k' k 0 -2itiw D 2 -2 

We can further simplify by setting 
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W = A'+B', X = A'-B', Y = C+D, Z = C-D, to obtain 

d 
dt 

w 

x 

y 

z 

= 

0 

-k 

0 

0 

-k 

0 

k 

0 

0 0 'I w 

-k 0 x 

0 2itiw y 

2itiw 0 z 

( 4 .7. 10) 

The solutions of (4.7.10) are exponentials ,with time 

dependence given by the eigenvalues A of the matrix of 

coefficients. i.e: 
---· k '\ -:: "t t G 6w l I :i: J I + k1,iw-i ] :2. (4.7.11.) 

For tiw>>k, the solutions again separate into waves of 

almost wholely stokes or antistokes character. 

4.8 Fokker Planck Equation 

This is derived in an analogous manner to the previous 

cases:-

We assume the joint stokes-antistokes density matrix has 

a P-representation 

i.e: elt) ~ ~'Pl~,r~t) \p1.'llp'l~l<~IG\1~c\i~ . (4.8.1.) 

where la> is an eigenstate of aA and 16> is an eigenstate 

of as. 
Substituting (4.8.1.) into the master equation and 

proceeding as in Chapter 3, we obtain the following Fokker­

Planck equation for the coupled stokes and antistokes fields: 

i = ~-("t~+\.~w)~ ~ +(~/2. .. ~t..w) ~°'J 
k ( " c) " ]2_ \ "' - u

1 

+i',;2. ~ c>;z~ -~.:>~*' ~ l;i..Y\ c>~J'.k 

+"12Cri4-1)"<::112>~K - \<(""\) 0U:0~ C1t.s.2.> 

+ complex conjugate} P~,~Jt)· 

where o<. s: c<. e C:.o.wt ' ~ "' f ~ ~Awt . 
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The solution of this equation, subject to both modes 

being initially coherent is outlined in the appendix . 
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5. CONCLUSIONS 

The quantum theory of damping and stimulation is 

a self-consistent theory, applicable to systems perturbed 

by small interactions. We see that the results it yields 

agree with those expected classically (e.g. an exponential 

decay or increase in average photon number is the quantum 

version of an exponential decay or increase in a classical 

field intensity). Further, in non-linear optical processes, 

the effects due to spontaneous emission are described self-

consistently by the quantum formalism. In classical theory, 

we have to add spontaneous emission in an ad hoc manner. 

The approximations made in the theory are in most 

cases highly valid ones. A main short coming is the 

necessity to make the parametric approximation in order 

that a problem may become tractable. However, even this 

approximation is valid for processes of low efficiency, 

d f . 1 h . . an or times t<k, t e rise time constant. 

Application of the Louisell damping and stimulation 

model to the Raman scattering process yields results which 

agree closely with the classical standing wave results. 

The model successfully describes the coupling of the stokes 

and antistokes fields through the phonon bath. Furthermore, 

the quantum analysis yields the spontaneous Raman effect, 

as well as the stimulated effect, in a self-consistent 

manner. The classical analysis describes only the stimu-

lated effect, and hence is only applicable in situations 
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where the stimulated effect dominates. (e.g: in a Raman 

laser well above threshold.) 

The work in Chapter 4 on the Raman effect is appli­

cable to standing wave problems only: the fields are 

taken to be monochromatic modes. To study travelling wave 

problems, we would have to represent the fields by wave­

packets. An outline of this method is given in several 

papers on travelling wave frequency conversion (Tuck~r 

and Walls 1969, Von Foerster and Glauber, 1971). 

In our description we ignored higher order stokes 

and antistokes fields. Experimentally, these can be 

suppressed (Bloembergen 1964) so this is valid. For 

Raman scattering by atoms, a similar approach to Chapter 4 

may be used, replacing the phonons by atoms, and obtaining 

atomic matrix elements in the tracing out process (Shen 

19ij9). 



APPENDICES 

A. The P-Representations of Equation (3.1.3.) 

1. Since it is obvious that 

J p ~) a lol. ',<,oi. l a+ 01o(. : Jo<.*"' ? I~) Io< '><o(, I ol. '2."' 

2. Consider l tll +ol.) \o4'"l~"' I : -

~ + ~ 
\o(."> <oJ. I ::. e - OI, o1. e °'" , o "'<o I e.. o< o. 

• •• (?~'14 ~"")l°"-"><"'t:: ( ;~,. ~"')~Q.-°''\,<.eo<.a\o....,<ole~"'a ~. 

Hence 

Now 

* + "' = e-o<. o<. eo1.e,1 \o"><o\Q..,O( 0 o. 

~ P(c,1.) \c,c.', <«I°' d.•o1. 

J ? (.,i.. )\d.'1<'. o1. I a cte><. ~ 

(Al) 

since P = 0 at infinity if pis to be a true density 

operator. 

• • • ~P(o(.Hoi."'7<o<\od~o<. ,:, ~\oi."7<"'1("'- ~"" ... )pG,r.)o.1
c(., (A2) 

Now } ~("") \4)(.'?~ \ aa. id. 1"' = I PC,1 .. )u "'?<.a(. I ( 1 +o;~ a) cf'c,( . 

( using the ~,a.+ commutat ion relations) 

:: S t>(o1.Hoe~-<~1( l-+a~) ~:i°' 
since <o<\ 0.+ ~ o<, ._, ..C:o<..I. 

.. ~ ,P(ot,) \~"'7<ci<. I o.o.4- d,'l~ :, 

( using (A2)') 

:: ) \,1,"'7~1{ \ -too,,<'' - :o4. .... ~ >it \ P"'-l o\2.p(, ( A3) 

The other results of (3.1.3.) are obtained in a similar 

manner . 



B. Solution of Fokker Planck Eq uations 

If we set a= x +ix, S = x + ix ,.~., all x. real, 
l 2 3 \ 1 

i = l,2, •••• ,2n, say, 

we can always reduce a Fokker Planck equation to the form 
~? -= - ...; . . ~ b,i 'v) J.. tY .• oi P . 
~t :--- ~ M.J ....,,,__ + ,- ~ ~ l," 1• ~~;)-:x:. C Bl) 

" .> o~... ~ J v J 

the matrices M = (M •. ) and T = (T,,) are real. 
1] 1] 

where 

We diagonalize M with an orthogonal matrix S (Mis skew 

symmetric in general ) to get 

')... = d1a~(")..,,111., ... . -:>-,) -= SMs-1 

Using the orthogonality of S, we obtain 

where 

Similarly, ~~t,.~'P :: :f.~6~ - ~ 
·• ,; ~ ~i:~-:t.., i. j :.) ~IJ,~"j' 

where ( 6,j ) -= S t' s' 
Hence (Bl) becomes 

o? -- -<: ""\,~'!') L< i:')"l.j' 
"),.t - ~ A" ~ ... ,. + -'<- 6,; - (B2) 
v • 0

"• i. j "~v~~IT..>' 

We wish to solve (B2) subject to the -initial condition 

Pc-x. 1 , ... -x1. .. ,c-:c) -= <oL-x,-':t, 0
) S<-xz..--x,.:J ... ~<-:rx ... --x;,.J . 

:: S(~,-v,0 ) ~lv:i.-'-'1-") .... ~(v1."-V'1.C:,) . 

Wang & Uhlenbeck (1945) show that the solution of this 

problem is a 2n dimension Gaussian distribution in the 

variables v
1

,v
2

, •••• ,v
2
n, with 

averages v. = v. 0 exp(Ait) 
1 1 r 

variances (u-.-u4)(v.;-Vj) :: -~~'~">.j ( 1-~xp{(,.~~)._,)t.l] . 

We substitute for the vj in terms of the xk to obtain our 

final answer. 
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C. Calculation of Pmn, section (4.4) 

and 

(Cl) 

'2.'!f 

Using ~ e CmiS ~xfi ~x.. (:.(Q~ ~ d~ :: L ~ ~.:n Jh-, l,c.) 

0 

(see, e.g. Watson 1966) 

(Cl) becomes )1'( ~tm-"'' 'JM-h (D.fi.ror> 

The r integration is then 

~~ r tm+MI) i')Cf [-( l +A)Y'I, 1 :r~ ... l1·~ ~ l"'V'o )dr ( C2) 
f'( VH·') \ .9.. )V 1 

\~ Jv (ed.) e"p (-p1 t:1J ~.M-i d.t :: "i '.:l~ 1. f
1 

( -«~", v+1.,-~~ ) 
o ';l.~M°(\V\.1) I 

Using 

(see, e.g. Watson 1966) 

(C2) becomes 

The result for Pmn then follows. 
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