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Abstract This paper presents a framework for compositional nonblocking verification of

discrete event systems modelled as extended finite-state machines (EFSM). Previous results

are improved to consider general conflict-equivalence based abstractions of EFSMs commu-

nicating both via shared variables and events. Performance issues resulting from the conver-

sion of EFSM systems to finite-state machine systems are avoided by operating directly on

EFSMs, deferring the unfolding of variables into state machines as long as possible. Several

additional methods to abstract EFSMs and remove events are also presented. The proposed

algorithm has been implemented in the discrete event systems tool Supremica, and the paper

presents experimental results for several large EFSM models that can be verified faster than

by previously used methods.

Keywords Extended finite-state machines, Model checking, Nonblocking, Compositional

verification, Supervisory control theory.

1 Introduction

Many discrete event systems are safety-critical, where failures can result in huge financial

losses or even human fatalities. Logical correctness is a crucial property of these systems,

and formal verification is an important part of guaranteeing it. This paper focuses on the

verification of the nonblocking property [24].

Formal verification requires a formal model, and finite-state machines (FSM) are widely

used to represent discrete event systems [24]. FSMs describe the behaviour of a system using

states and transitions between these states. The transitions are associated to events through
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which the FSM can interact with other FSMs and the outside world. For systems with data

dependency, it is natural to extend FSMs with variables and guards. This results in extended

finite-state machines (EFSM), which interact through events and bounded discrete variables.

EFSMs, also referred to as extended finite-state automata (EFA), have been similarly defined

by several researchers [5, 6, 25, 27, 30].

EFSMs facilitate the modelling of complex discrete event systems that include counters

or other quantitative variables. The state spaces of such systems can be huge, yet they can

be modelled concisely with only a few state machine diagrams. On the other hand, the

formal verification of these systems remains a challenge, because technically verification

must take all possible combinations of variable values into account, often resulting in state-

space explosion.

Various approaches have been proposed to overcome state space explosion. With sym-

bolic model checking, the explicit enumeration of states is avoided using a symbolic rep-

resentation [3, 17], typically consisting of ordered binary decision diagrams [4], making it

possible to explore much larger state spaces [28].

With compositional verification [11] and abstract interpretations [7], the model is sim-

plified before or during verification in an attempt to reduce combinatorial complexity. The

nonblocking property considered in this paper requires special types of abstraction for com-

positional verification to work. Abstraction based on conflict equivalence [16] is more ef-

fective than general abstract interpretations [7] or bisimulation equivalence [18]. While it is

well-known that nonblocking verification and similar model checking problems are NP [10],

and the worst-case complexity of compositional verification is even worse, experimental

results [9, 14, 26] show that compositional nonblocking verification can efficiently verify

several large FSM models that cannot be verified by standard monolithic verification.

Compositional verification can also be applied to systems modelled as EFSMs, after

converting the EFSMs to a set of FSMs [25]. However, the conversion can increase the

number of events significantly, and in some cases takes longer than the verification [20].

Recently, a direct method for compositional verification of EFSM models has been pro-

posed [19, 21], which removes the need to convert EFSMs to FSMs. In [19], symbolic ob-

servation equivalence is used as the only abstraction method. This is generalised to conflict

equivalence in [21], where a general framework for compositional verification of EFSMs

communicating only via shared variables is introduced.

This paper is an extended version of [21]. It proposes a framework and an algorithm

for compositional nonblocking verification of systems modelled as EFSMs that do not only

communicate via shared variables but also via shared events.

– Firstly, this paper introduces normalisation to treat communication via shared vari-

ables [21], or via events [9], or combinations of these, in a uniform way. After nor-

malisation, the conflict-preserving abstractions for FSMs [9, 14, 23, 26] can be gener-

alised for EFSM systems. While in [21], partial unfolding of variables is limited to local

variables, i.e., variables used by only one component, after normalisation this can be

generalised to allow unfolding of arbitrary variables, even if they are shared between

several components (Prop. 8).

– Secondly, this paper proposes more ways to simplify EFSM components while preserv-

ing the nonblocking property. In addition to the FSM-based abstraction based on [9,

14, 23, 26] (Prop. 5), four further methods (Props. 9–12) are introduced to simplify or

remove events in a normalised EFSM system, which increase the possibility of abstrac-

tion.
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– Lastly, this paper combines all the abstraction methods in an algorithm (Algorithm 1)

for compositional nonblocking verification of EFSM systems. The algorithm is imple-

mented in Supremica [1], and has been used successfully to verify several large systems.

The algorithm’s performance is compared with the previously used BDD-based [28] and

FSM-based algorithms [9, 14].

This paper is structured as follows. Section 2 introduces the notation and concepts for

EFSMs, and Section 3 gives a motivating example to informally illustrate compositional

nonblocking verification and abstraction of EFSM systems. Next, Section 4 explains the

normalisation procedure. Then Section 5 presents the principle of compositional nonblock-

ing verification and describes different methods to simplify EFSM systems while preserving

the nonblocking property. Afterwards, Section 6 combines these results in an algorithm for

compositional nonblocking verification of EFSM systems, and Section 7 presents the exper-

imental results. Finally, Section 8 adds some concluding remarks. The appendix contains

formal proofs of all propositions contained in the paper.

2 Preliminaries

2.1 Finite-State Machines

The standard means to model discrete event systems [24] are finite-state machines (FSM),

which synchronise on shared events [12]. Events are taken from an alphabet Σ . The special

silent event τ /∈ Σ is not included in Σ unless explicitly mentioned using the notation Στ =
Σ ∪ {τ}. Further, Σ ∗ is the set of all finite traces of events from Σ , including the empty

trace ε . The concatenation of two traces s, t ∈ Σ ∗ is written as st.

Definition 1 A finite-state machine (FSM) is a tuple G = 〈Σ ,Q,→,Q◦,Qω〉, where Σ is a

set of events, Q is a finite set of states, → ⊆ Q×Στ ×Q is the state transition relation,

Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is the set of marked states.

The transition relation is written in infix notation x
σ
→ y, and is extended to traces in Σ ∗τ

by x
ε
→ x for all x ∈ Q, and x

sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q. The transition relation

is also defined for state sets X ⊆ Q, for example X
s
→ y means x

s
→ y for some x ∈ X .

When two or more FSMs are brought together to interact, lock-step synchronisation in

the style of [12] is used.

Definition 2 Let G1 = 〈Σ1,Q1,→1,Q
◦
1,Q

ω
1 〉 and G2 = 〈Σ2,Q2,→2,Q

◦
2,Q

ω
2 〉 be two FSMs.

The synchronous composition of G1 and G2 is

G1 ‖G2 = 〈Σ1∪Σ2,Q1×Q2,→,Q◦1×Q◦2,Q
ω
1 ×Qω

2 〉 (1)

where

(x1,x2)
σ
→ (y1,y2) if σ ∈ Σ1∩Σ2, x1

σ
→1 y1, and x2

σ
→2 y2 ; (2)

(x1,x2)
σ
→ (y1,x2) if σ ∈ (Σ1 \Σ2)∪{τ} and x1

σ
→1 y1 ; (3)

(x1,x2)
σ
→ (x1,y2) if σ ∈ (Σ2 \Σ1)∪{τ} and x2

σ
→2 y2 . (4)

Hiding is the act of replacing certain events by the silent event τ .
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Definition 3 Let G = 〈Σ ,Q,→,Q◦,Qω〉 be an FSM, and let ϒ ⊆ Σ . The result of hiding ϒ
from G is

G\ϒ = 〈Σ \ϒ ,Q,→\ϒ ,Q◦,Qω〉 , (5)

where→\ϒ is obtained from→ by replacing all events in ϒ with the silent event τ .

This paper concerns verification of the nonblocking property, which is commonly used

in supervisory control theory of discrete event systems [24]. A system is nonblocking if,

from every reachable state, it is possible to reach a marked state, i.e., a state in Qω .

Definition 4 An FSM G = 〈Σ ,Q,→,Q◦,Qω〉 is nonblocking if, for every trace s ∈ Σ ∗τ and

every state x ∈ Q such that Q◦
s
→ x, there exists a trace t ∈ Σ ∗τ such that x

t
→ Qω .

2.2 Extended Finite-State Machines

Extended finite-state machines (EFSM) are similar to conventional finite-state machines,

but augmented with updates associated to the transitions [5, 25]. Updates are formulas con-

structed from variables, integer constants, the Boolean literals true and false, and the usual

arithmetic and logic connectives.

A variable v is an entity associated with a bounded discrete domain dom(v) and an

initial value v◦ ∈ dom(v). Let V = {v0, . . . ,vn} be the set of variables with domain dom(V ) =
dom(v0)×·· ·× dom(vn). An element of dom(V ) is also called a valuation and is denoted

by v̂ = (v̂0, . . . , v̂n) with v̂i ∈ dom(vi), and the value associated to variable vi ∈V is denoted

v̂[vi] = v̂i. The initial valuation is v◦ = (v◦0, . . . ,v
◦
n).

A second set of variables, called next-state variables and denoted by V ′ = {v′ | v ∈V }
with dom(V ′) = dom(V ), is used to describe the values of the variables after execution of a

transition. Variables in V are also referred to as current-state variables to differentiate them

from the next-state variables in V ′. The set of all update formulas using variables in V and V ′

is denoted by ΠV .

For an update p ∈ ΠV , the term vars(p) denotes the set of all variables that occur in p,

and vars′(p) denotes the set of all variables whose corresponding next-state variables occur

in p. For example, if p ≡ x′ = y+ 1 then vars(p) = {x,y} and vars′(p) = {x}. Here and in

the following, the relation ≡ denotes syntactic identity of updates to avoid ambiguity when

an update contains the equality symbol =. An update p without any next-state variables,

vars′(p) = /0, is called a pure guard. Usually it is understood that variables that do not appear

as next-state variables remain unchanged, and the execution of a pure guards does not change

any variables. To get this interpretation, the following notion of extension is used.

Definition 5 Let p ∈ΠV be an update. The extension of p to W ⊆V is

ΞW (p) ≡ p∧
∧

v∈W\vars′(p)
v′ = v . (6)

The extension is constructed syntactically by adding to the update p equations v′ = v

for all variables v ∈W that do not already appear as next-state variables in p. For example,

Ξ{x}(x = 1)≡ x = 1∧x′ = x and Ξ{x,y}(x
′ = y+1)≡ x′ = y+1∧y′ = y. Another important

way to rewrite updates is substitution, which performs syntactic replacement of subformulas.

Definition 6 A substitution is a mapping [z1 7→ a1, . . . ,zn 7→ an] that maps variables zi to

terms ai. Given an update p ∈ ΠV , the substitution instance p[z1 7→ a1, . . . ,zn 7→ an] is the

update obtained from p by simultaneously replacing each occurrence of zi by ai.
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For example, (x′ = x+ y)[x′ 7→ 1,x 7→ 0]≡ 1 = 0+ y.

With slight abuse of notation, updates p ∈ ΠV are also interpreted as predicates over

their variables, and they are evaluated to F or T, i.e., p : dom(V )×dom(V ′)→ {F,T}. For

example, if V = {x} with dom(x) = {0,1}, then the update p ≡ x′ = x+ 1 means that the

value of the variable x in the next state will be increased by 1 over its current-state value. Its

predicate p(x,x′) evaluates to true as p(0,1) = T and to false as p(1,1) = F.

Definition 7 An extended finite-state machine (EFSM) is a tuple E = 〈Σ ,Q,→ ,Q◦,Qω〉,
where Σ is a set of events, Q is a finite set of locations, → ⊆ Q × Σ ×ΠV ×Q is the

conditional transition relation, Q◦ ⊆ Q is the set of initial locations, and Qω ⊆ Q is the set

of marked locations.

The expression q0
σ :p
−−→ q1 denotes the presence of a transition in E, from location q0 to

location q1 with event σ and update p. Such a transition can occur if the EFSM is in loca-

tion q0 and the update p evaluates to T, and when it occurs, the EFSM changes its location

from q0 to q1 while updating the variables in vars′(p) in accordance with p; variables not

contained in vars′(p) remain unchanged. This can be implemented by first assigning next-

state variables such that the update formula p is satisfied, and after the transition assigning

the values of the next-state variables to the corresponding current-state variables.

For example, let x be a variable with domain dom(x) = {0, . . . ,5}. A transition with

update x′ = x+ 1 changes the variable x by adding 1 to its current value, if it currently is

less than 5. Otherwise (if x = 5) the transition is disabled and no updates are performed. The

update x = 3 disables a transition unless x = 3 in the current state, and the value of x in the

next state is not changed. Differently, the update x′ = 3 always enables its transition, and the

value of x in the next state is forced to be 3.

Given an EFSM E = 〈Σ ,Q,→ ,Q◦,Qω〉, its alphabet is also denoted by ΣE = Σ . The

variable set of E is vars(E) =
⋃

(q0,σ ,p,q1)∈→ vars(p), and it contains all the variables that

appear on some transitions of E.

Usually, reactive systems are modelled as several components interacting with each

other. Such a model is called an EFSM system.

Definition 8 An EFSM system is a collection of interacting EFSMs,

E = {E1, . . . ,En} . (7)

The alphabet of the system E is ΣE =
⋃

E∈E ΣE , and the variable set of E is vars(E ) =⋃
E∈E vars(E).

In the synchronisation of EFSMs, similar to FSMs, shared events between two EFSMs

are synchronised in lock-step, while other events are interleaved. In addition, the updates are

combined by conjunction.

Definition 9 Given two EFSMs E1 = 〈Σ1,Q1,→1,Q
◦
1,Q

ω
1 〉 and E2 = 〈Σ2,Q2,→2,Q

◦
2,Q

ω
2 〉,

the synchronous composition of E1 and E2 is E1 ‖ E2 = 〈Σ1 ∪ Σ2,Q1 ×Q2,→,Q◦1 ×Q◦2,
Qω

1 ×Qω
2 〉, where:

(x1,x2)
σ :p1∧p2−−−−−→ (y1,y2) if σ ∈ Σ1∩Σ2, x1

σ :p1−−→1 y1, and x2
σ :p2−−→2 y2 ; (8)

(x1,x2)
σ :p1−−→ (y1,x2) if σ ∈ Σ1 \Σ2 and x1

σ :p1−−→1 y1 ; (9)

(x1,x2)
σ :p2−−→ (x1,y2) if σ ∈ Σ2 \Σ1 and x2

σ :p2−−→2 y2 . (10)
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Using Def. 9, the global behaviour of a system E = {E1, . . .En} is expressed as ‖E =
E1 ‖ · · · ‖En.

The standard approach to verify the nonblocking property of EFSMs evaluates all vari-

able values. This is done by flattening, which introduces states for all combinations of loca-

tions and variable values [3].

Definition 10 Let E = 〈Σ ,Q,→ ,Q◦,Qω〉 be an EFSM with variable set vars(E) =V . The

monolithic flattened FSM of E is U(E) = 〈Σ ,QU ,→U ,Q
◦
U ,Q

ω
U 〉 where

– QU = Q×dom(V );

– (x, v̂)
σ
→U (y, ŵ) if E contains a transition x

σ :p
−−→ y such that ΞV (p)(v̂, ŵ) = T;

– Q◦U = Q◦×{v◦};
– Qω

U = Qω ×dom(V ).

The inclusion of the variable values v̂ in the states of the monolithic flattened FSM

ensures the correct sequencing of transitions. The use of ΞV (p) as opposed to p in the

definition of →U ensures that a variable x can only change its value if its corresponding

next-state variable x′ appears in the update p. The monolithic flattened FSM of an EFSM

system E = {E1, . . . ,En} is U(E ) =U(E1 ‖ · · · ‖En). Using these definitions, the nonblock-

ing property is also defined for EFSMs and EFSM systems.

Definition 11 An EFSM E or an EFSM system E is nonblocking if the monolithic flattened

FSM U(E) or U(E ), respectively, is nonblocking.

3 Motivating Example

This section demonstrates the process of EFSM-based compositional nonblocking verifi-

cation using a simple manufacturing system modelled as interacting extended finite state-

machines. The manufacturing system consists of four devices CB1, CB2, M1, and M2 as

shown in Fig. 1. CB1 and CB2 are sections of a conveyor belt. The total capacity of the

conveyor belt is given by a parameter N ≥ 1, where it is assumed that N = 2 in the remain-

der of this section. Workpieces are loaded onto CB1 (event l1) from outside the system, and

transported over to CB2 (event l2). When workpieces enter CB2, a part detection sensor de-

termines the type of workpieces (events p1 and p2). When workpieces leave CB2, type 1

workpieces are loaded into machine M1 (event s1), and type 2 workpieces are loaded into

machine M2 (event s2). The machines M1 and M2 then process their workpieces and output

them from the system ( f1 and f2).

The EFSM model consists of the EFSMs CB1, CB2, M1, and M2 as shown in Fig. 1. It

uses variables v1 and v2 with domain {0, . . . ,N} to represent the number of workpieces on

conveyor section CB1 and CB2, respectively, and a variable t with domain {0,1,2} to keep

track of the type of workpiece as determined by the sensor at CB2.

The update v1+v2 < N∧v′1 = v1+1 for event l1 in CB1 enforces the capacity restriction

of the conveyor belt by preventing the loading of another workpiece onto CB1 unless both

conveyor sections combined have less than N workpieces, v1 + v2 < N, and if the event l1
occurs, it increases the number of workpieces on CB1 by 1, v′1 = v1 + 1. For illustration,

CB2 contains a transition to the blocking state ⊥ to represent that conveyor section CB2

exceeds the capacity limit. It becomes part of the nonblocking verification to confirm that

this transition is never taken.
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CB1 CB2

M1

M2

l1 l2

f1

f2

s1

s2

CB1 M1

l1 : v1 + v2 < N ∧v′1 = v1 +1
l2 : 0 < v1 ∧v′1 = v1 −1

s1 : t ′ = 0∧v′2 = v2 −1

f1

CB2 M2

⊥

s1 : t = 1∧0 < v2

s2 : t = 2∧0 < v2

l2 : v2 < N ∧v′2 = v2 +1

l2 : v2 = N
p1 : t = 0∧ t ′ = 1
p2 : t = 0∧ t ′ = 2

s2 : t ′ = 0∧v′2 = v2 −1

f2

Fig. 1 Manufacturing system example.

C1 C2

l1 : v1 + v2 < N ∧v′1 = v1 +1
l21 : 0 < v1 ∧v′1 = v1 −1
l22 : 0 < v1 ∧v′1 = v1 −1

⊥

s1 : t = 1∧0 < v2

s2 : t = 2∧0 < v2

l21 : v2 < N ∧v′2 = v2 +1

l22 : v2 = N
p1 : t = 0∧ t ′ = 1
p2 : t = 0∧ t ′ = 2

Fig. 2 Normalised EFSMs obtained from CB1 and CB2.

The model in Fig. 1 is blocking, because the part recognition procedure is not imple-

mented correctly in CB2. In the following, it is demonstrated how the compositional non-

blocking verification algorithm finds this fault and shows that the system is blocking without

exploring the full state space.

Before EFSM-based compositional nonblocking verification starts, the preprocessing

step of normalisation transforms the model in such a way that each event corresponds to a

unique update. This facilitates reasoning about a composed system as it shows directly what

effect the execution of events has on all the variables.

In order to normalise a system, the first step is to normalise individual components.

The EFSM CB2 is not normalised, because the event l2 corresponds to two different updates

v2 <N∧v′2 = v2+1 and v2 =N. To normalise CB2, event l2 is replaced by two new events l21

and l22, where the update of l21 is v2 <N∧v′2 = v2+1 and the update of l22 is v2 =N. Having

replaced l2 in CB2, the transition labelled with l2 in CB1 is replaced by two transitions

labelled l21 and l22, both of which have the update 0 < v1 ∧ v′1 = v1− 1 of the original l2-

transition in CB1. These steps result in two EFSMs C1 and C2, shown in Fig. 2, which replace

CB1 and CB2 in the system. This way of normalising components individually preserves the

synchronous composition of the system except for the renaming of events.

Now the EFSMs are individually normalised, as each event has a unique update within

each EFSM. Yet, the system as a whole is not yet normalised, because s1 has the update

t = 1∧0 < v2 in C2 and another update t ′ = 0∧v′2 = v2−1 in M1. To normalise the system,

the update of each event is replaced by the conjunction of the updates of the event in all the
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N (C1) N (C2)

replacements
f

l1
l21
l22

l21

l22
p1
p2

s1
s2

⊥

N (M1) N (M2)

f1

s1 s2

f2

Event Update

l1 v1 + v2 < 2∧v′1 = v1 +1

l21 0 < v1 ∧v′1 = v1 −1∧v2 < 2∧v′2 = v2 +1

l22 0 < v1 ∧v′1 = v1 −1∧v2 = 2

s1 t = 1∧0 < v2 ∧ t ′ = 0∧v′2 = v2 −1

f1 true

s2 t = 2∧0 < v2 ∧ t ′ = 0∧v′2 = v2 −1

f2 true

p1 t = 0∧ t ′ = 1

p2 t = 0∧ t ′ = 2

Fig. 3 Normalised manufacturing system for N = 2.

N (M1)\{ f1} M̃1 N (M2)\{ f2} M̃2

s1

τ

s1

s2

τ

s2

Fig. 4 Abstraction results of N (M1) and N (M2).

components it occurs in. For example, after normalisation the update of event s1 becomes

t = 1∧0 < v2∧ t ′ = 0∧ v′2 = v2−1 . (11)

This conjunction is well-defined for each event since, after the first step above, events have

unique updates in each component. Fig. 3 shows the normalised form of the system. Normal-

isation makes it unnecessary to write the updates on the transitions. Instead, the information

about the updates of the events is given in the table in Fig. 3.

Now the EFSM system is normalised, and nonblocking verification can start. This is

done by constructing an abstraction of the synchronous composition of the system in sev-

eral small steps. At each step, either EFSMs are abstracted and replaced by EFSMs with less

transitions or locations, or variables are unfolded, replacing them by EFSMs and produc-

ing simpler updates. Synchronous composition is computed step by step on the abstracted

EFSMs. In the end, all the variables are unfolded and the final result is a single abstracted

FSM, which is simpler than the result of flattening the original EFSM system would be,

while it has the same property of being nonblocking or not. Then standard monolithic non-

blocking verification is applied to this abstracted FSM.

After normalisation, the system is E = {N (C1),N (C2),N (M1),N (M2)} as shown in

Fig. 3. In the first step of compositional nonblocking verification, individual EFSMs are ab-

stracted if possible. Event f1 only appears in N (M1). Such events are referred to as local

events. If the update of a local event is true, then transitions labelled by that event are always

executable and execution will not change the value of any variable. Thus, local events corre-

sponding to true updates can be hidden, that is, replaced by the silent event τ . After hiding

the local event f1 in N (M1), the two states of N (M1) can be merged using the conflict-

preserving abstraction method of observation equivalence [18]. The same steps are applied

to N (M2). Fig. 4 shows the EFSMs N (M1)\{ f1} and N (M2)\{ f2} resulting from hiding

and the resulting abstractions M̃1 and M̃2.

Events l1, p1, and p2 are also local. However, these events cannot yet be hidden because

of their nontrivial updates. Since the abstraction methods greatly benefit from hiding, the

next step is to simplify updates of some events to make hiding possible.
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T

l

s1s2

p1p2
0 12

TC

l21

l21 l21

l22

l22

l22s1s2

p1p2

⊥

⊥

⊥

⊥
⊥

TC \{p1, p2}

l21

l21 l21

l22

l22

l22s1s2

⊥

⊥

⊥

⊥
⊥

ττ

q0

q1

q2q3

T̃C

l21

l21l21

l21
l22l22

l22

s1s2

q12q13

⊥

Event Update

l1 v1 + v2 < 2∧v′1 = v1 +1

l21 0 < v1 ∧v′1 = v1 −1∧v2 < 2∧v′2 = v2 +1

l22 0 < v1 ∧v′1 = v1 −1∧v2 = 2

s1 0 < v2 ∧v′2 = v2 −1

s2 0 < v2 ∧v′2 = v2 −1

p1 true

p2 true

Fig. 5 The components after unfolding t.

The only variable in the updates of p1 and p2 is t. This observation suggests to unfold

the variable t, removing this variable from the updates, so that the events p1 and p2 can be

hidden and more abstraction becomes possible. Partial unfolding replaces a variable by a

new EFSM, called the variable EFSM, which has one location for each value in the domain

of the unfolded variable, and transitions that reflect the way the variable is updated by the

corresponding events. The variable EFSM T for t, shown in Fig. 5, has three locations cor-

responding to dom(t) = {0,1,2}. The variable t changes from 0 to 1 and from 0 to 2 by

executing events p1 and p2, respectively, and from 1 to 0 on the occurrence of s1, and from

2 to 0 on the occurrence of s2. Now the updates of these events can be simplified as the

variable EFSM T contains the effect the events have on the variable t. The results are shown

in the table in Fig. 5: the updates of s1 and s2 are simplified to no longer include t, and the

updates of p1 and p2 become true. However, p1 and p2 are no longer local events as they

now appear in the variable EFSM T and in N (C2).

So, now the synchronous composition TC = T ‖N (C2) is constructed, shown in Fig. 5,

which has local events p1 and p2 that can now be hidden because of their true updates.

Hiding results in the EFSM TC \ {p1, p2}, also shown in Fig. 5. All the states ⊥ can be

merged since the system will be blocking if it ends up in any of these states. Also, the

only states that can be reached from q1 are q2 and q3, and they can only be reached by the

silent event τ . Such a state can be removed by the Only Silent Outgoing Rule as only the

τ-successor states are relevant for conflict equivalence [9]. The EFSM TC \ {p1, p2} can

thus be simplified to T̃C in Fig. 5.

Next, the composition T̃C ‖ M̃1 ‖ M̃2 is found to be equal to T̃C, and it results in the

events s1 and s2 being local. From the table in Fig. 5, it can be observed that the updates of

s1 and s2 only depend on the variable v2. Thus, the variable v2 is unfolded, which results in

the variable EFSM V2 shown in Fig. 6. The event l1 with update v1+v2 < 2∧v′1 = v1+1 does

not change the value of the variable v2, so it appears on two selfloop transitions in EFSM

V2. Firstly, the case v2 = 0 gives rise to a selfloop on state 0 with an update that simplifies

to v1 < 2∧ v′1 = v1 +1, and secondly the case v2 = 1 gives rise to a selfloop on state 1 with

simplified update v1 < 1∧ v′1 = v1 + 1. To keep the system normalised after unfolding, the

event l1 is renamed and replaced by two new events l10 and l11 each with a unique update.

This renaming also affects component N (C1), where the transition labelled l1 is replaced

by transitions with both the new events, resulting in C′1 in Fig. 6. The other events l21, s1,

9
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l11
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⊥q0
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q2

τ

τ

T̃CV

l10 l11l21
l21

⊥τ q12

Event Update

l10 v1 < 2∧v′1 = v1 +1

l11 v1 < 1∧v′1 = v1 +1

l21 0 < v1 ∧v′1 = v1 −1

l22 0 < v1 ∧v′1 = v1 −1

s1 true

s2 true

Fig. 6 The components after unfolding v2.

V1

0 1 2

l10

l10
l11

l21 l21

C′
1 ‖ T̃CV ‖V1 l10l10

l11

l21

l21

l21

ττ

Fig. 7 The final abstracted system after unfolding v1.

and s2 also have two transitions each, but their updates simplify to the same expression in

each case, which means that there is no need for further renaming.

After composition of V2 and T̃C ‖ M̃1 ‖ M̃2 = T̃C, events s1 and s2 can be hidden, re-

sulting in TCV \ {s1,s2} shown in Fig. 6. Here, states q1 and q2 have equivalent outgoing

transitions. These states can be merged using observation equivalence [18], resulting in the

abstraction T̃CV also shown in Fig. 6. The event l22 becomes always disabled after synchro-

nisation of V2 and TC′, so it is removed from the model. This confirms that the transition

q0
l2→⊥ in CB2 never occurs.

After all these abstractions, only the EFSMs C′1 and T̃CV and the variable v1 remain.

The final step is to unfold v1, which results in the variable EFSM V1 shown in Fig. 7, where

all updates are true. The synchronous composition of C′1, T̃CV , and V1, also shown in Fig. 7,

is blocking. This essentially shows that the system blocks if a second workpiece enters CB2

by executing l2, before the previous workpiece is released by executing s1 or s2. As the final

abstraction result is blocking, it is concluded that the original model in Fig. 1 is blocking.

The largest component created during the compositional steps to obtain this result is TC in

Fig. 5 with nine locations and ten transitions. In contrast, standard monolithic verification

would have to flatten the entire system at once, which creates a blocking FSM with 44 states

and 104 transitions.

This example demonstrates how EFSM-based compositional verification works. In the

sequel, Section 4 explains formally the normalisation process, and Section 5 describes the

abstraction methods.
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4 Normalisation

The first step of the compositional nonblocking verification algorithm proposed in this paper

is normalisation, which rewrites an EFSM system in such a way that each event has its own

distinct update. This makes it possible to examine directly the effect that executing an event

has on the variables, greatly simplifying the processing of EFSM systems during the later

steps of compositional verification.

Definition 12 An EFSM system E is normalised if for all transitions x1
σ :p1−−→ x2 and y1

σ :p2−−→
y2 it holds that p1 ≡ p2. An EFSM E is normalised if the EFSM system {E} is normalised.

Definition 13 For a normalised EFSM or EFSM system E, the expression ∆E(σ) denotes

the unique update associated with the event σ ∈ ΣE . Moreover, for all σ ∈ ΣE such that there

does not exist any transition x
σ :p
−−→ y in E, it is defined that ∆E(σ)≡ false.

If an EFSM system E is normalised, then each event associates to a unique update,

and ∆E (σ) is well-defined. Then the association of updates to events can be maintained

separately, and EFSMs can be represented without updates on transitions, as it is done in the

figures in Section 3. In a normalised EFSM system, synchronous composition also becomes

simpler, because there is no need to combine update formulas.

Definition 14 Let E1 = 〈Σ1,Q1,→1,Q
◦
1,Q

ω
1 〉 and E2 = 〈Σ2,Q2,→2,Q

◦
2,Q

ω
2 〉 be EFSMs.

The normalised synchronous composition of E1 and E2 is E1 ‖̇E2 = 〈Σ1 ∪Σ2,Q1×Q2,→,
Q◦1×Q◦2,Q

ω
1 ×Qω

2 〉, where:

(x1,x2)
σ :p
−−→ (y1,y2) if σ ∈ Σ1∩Σ2, x1

σ :p
−−→1 y1, and x2

σ :p
−−→2 y2 ; (12)

(x1,x2)
σ :p
−−→ (y1,x2) if σ ∈ Σ1 \Σ2 and x1

σ :p
−−→1 y1 ; (13)

(x1,x2)
σ :p
−−→ (x1,y2) if σ ∈ Σ2 \Σ1 and x2

σ :p
−−→2 y2 . (14)

In normalised synchronous composition, events and updates are treated as one entity,

and synchronisation between transitions in two EFSMs is only possible when the events and

updates are the same. In a normalised system, where all updates are uniquely determined

by the event, this works like synchronous composition of FSMs (Def. 2): EFSMs can be

composed by considering only the events, ignoring the updates. Normalised synchronous

composition of a normalised EFSM system results in a normalised EFSM that produces the

same flattening result as EFSM synchronous composition (Def. 9). This is confirmed by the

following proposition.

Proposition 1 Let E be a normalised EFSM system. Then U(‖E ) =U(‖̇E ).

By Prop. 1, if the system is normalised, the computation of the synchronous compo-

sition can be simplified using normalised synchronous composition. This paper concerns

the verification of the nonblocking property of EFSM systems. As normalised synchronous

composition produces the same flattening results as synchronous composition by Prop. 1,

it follows in combination with Def. 11 that normalised synchronous composition preserves

the nonblocking property of an EFSM system.

If a given EFSM system E is not normalised, it can be transformed into a normalised

system by the two-step process of normalisation explained in the following. In the first

step, individual EFSM components are normalised, and in the second step, the system is

normalised as a whole. First, individual EFSMs are normalised by introducing new events

and using a renaming.
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Definition 15 Let Σ1 and Σ2 be two alphabets. A renaming of Σ1 to Σ2 is a surjective map

ρ : Σ2→ Σ1.

If an EFSM E ∈ E is not normalised, then some event σ in E is linked to more than one

update. To normalise E, new events σi /∈ ΣE are introduced for each update pi associated

with σ and a renaming is created that maps these new events to the original event σ , i.e.,

ρ(σi) = σ . This results in a renamed EFSM F such that ρ : ΣF → ΣE and ρ(F) = E, and

∆F(σ) is well-defined for each σ ∈ ΣF .

Example 1 EFSM CB2 in Fig. 1 is not normalised since l2 corresponds to two different

updates v2 < N ∧ v′2 = v2 + 1 and v2 = N. To normalise CB2, new events l21 and l22 are

created, and the renaming ρ is introduced such that ρ(l21) = ρ(l22) = l2 and ρ(σ) = σ for

all σ /∈ {l21, l22}. This results in the renamed EFSM C2 shown in Fig. 2, with ∆C2
(l21) ≡

v2 < N∧ v′2 = v2 +1 and ∆C2
(l22)≡ v2 = N.

After applying a renaming to some component E in a system E , a corresponding inverse

renaming needs to be applied to all the remaining system components E ′ 6= E of E , to

comply with the event modification.

Definition 16 Let E = 〈ΣE ,Q,→ ,Q◦,Qω〉 be an EFSM, and let ρ : Σ ′E → ΣE be a renam-

ing. Then ρ−1(E) = 〈Σ ′E ,Q,ρ−1(→),Q◦,Qω〉 where ρ−1(→) = {(x,σ , p,y) | x
ρ(σ):p
−−−−→ y}.

The EFSM ρ−1(E) is obtained by replacing transitions labelled by a replaced event σ
with transitions labelled by all the events replacing it.

Example 2 After normalising CB2 in Fig. 1, the EFSM CB1 is replaced by C1 = ρ−1(CB1),
which is obtained by replacing the l2-transition by two transitions labelled l21 and l22, both

of which have the update 0 < v1∧v′1 = v1−1 of the original l2-transition in CB1. The EFSM

C1 = ρ−1(CB1) is shown in Fig. 2.

The following proposition confirms that the structure of an EFSM system remains un-

changed when a single EFSM is normalised using the combination of renaming and inverse

renaming described above. The behaviour of the original system can be regained by applying

the renaming to the synchronous composition of the renamed system.

Proposition 2 Let E and F be EFSM systems, and let ρ : ΣF → ΣE be a renaming,

such that E = {E1,E2, . . . ,En} and F = {F1,ρ
−1(E2), . . . ,ρ

−1(En)} and ρ(F1) = E1. Then

ρ(‖F ) = ‖E .

The repeated application of Prop. 2 to all components of an EFSM system with appro-

priate renamings results in a system where each EFSM is normalised individually. Yet, the

system as a whole is not necessarily normalised as events shared between different EFSMs

may be associated with different updates in their EFSMs. Therefore, a second step is needed

to normalise the whole system.

Definition 17 Let E = {E1, . . . ,En} be an EFSM system such that all Ei = 〈Σi,Qi,→i,
Q◦i ,Q

ω
i 〉 for 1 ≤ i ≤ n are individually normalised. The normalised form of E is N (E ) =

{N (E1), . . . ,N (En)} where N (Ei) = 〈Σi,Qi,→
N
i ,Q

◦
i ,Q

ω〉 and →N
i = {(x,σ ,∆N (E )(σ),

y) | x
σ :p
−−→i y} and ∆N (E )(σ) =

∧
i:σ∈Σi

∆Ei
(σ).

12



The normalised system is obtained by assigning to each event a single update, which

is the conjunction of the updates corresponding to the event in the different EFSMs. Under

the assumption that the individual EFSMs in a system are individually normalised, the nor-

malised system N (E ) obtained by Def. 17 fulfils the requirement of a normalised system

given in Def. 12. The update of each event after normalisation is essentially the update that

would have been calculated by synchronous composition. Then, since the normalisation of

individual components preserves the synchronous composition, the complete normalisation

process also preserves the structure of synchronous composition of the system as a whole.

Example 3 After normalisation of the system in Section 3, the updates of the events l21

and l22 are the conjunction of the updates of these events in C1 and C2. For example, event l21

is associated with 0 < v1∧v′1 = v1−1 in C1 according to Example 2 and with v2 < N∧v′2 =
v2 +1 in C2 according to Example 1, so its update in the normalised system is ∆N (E )(l21)≡
0 < v1∧ v′1 = v1−1∧ v2 < N∧ v′2 = v2 +1 as shown in the table in Fig. 3.

The following proposition confirms that the behaviours of an EFSM system E and its

normalised form N (E ) are identical if normalised synchronous composition is used to de-

scribe the behaviour of the normalised system.

Proposition 3 Let E be an EFSM system such that each E ∈ E is normalised. Then ‖E =
‖̇N (E ).

The first step to normalise a system is to normalise individual components. Prop. 2 con-

firms that the behaviours of a system before and after normalisation of each component are

identical up to renaming of the events. As renaming preserves the nonblocking property,

normalisation of individual EFSMs does not change the nonblocking property of the sys-

tem. When all individual components of a system are normalised, next the operation N (·)
is applied to associate each event with a unique update in the system. Prop. 3 guarantees

that the normalised system behaviour as described using normalised synchronous composi-

tion is identical up to isomorphism to the original system behaviour. Moreover, Prop. 1 and

Def. 11 together guarantee that normalised synchronous composition preserves the non-

blocking property. Therefore it follows from Props. 1–3 that the normalisation procedure

preserves the nonblocking property of an EFSM system. Proofs of Props. 1–3 are given in

Appendix A.

5 EFSM-Based Compositional Verification

The objective of compositional nonblocking verification is to determine whether a nor-

malised EFSM system

E = {E1,E2, . . . ,En} . (15)

is nonblocking. If a given system is not normalised, it can be normalised without affecting

the nonblocking property as explained in Section 4. The straightforward approach to verify

whether the system (15) is nonblocking, is to monolithically flatten the system and check for

each reachable state whether it is possible to reach a marked state. However, this technique

is limited by the state-space explosion problem.

In an attempt to alleviate state-space explosion, compositional verification [9] seeks

to repeatedly rewrite individual components, and for example, replace E1 in (15) by an

abstraction F1, and then to analyse the simpler system {F1,E2, . . . ,En}.
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The abstraction steps to simplify the individual components Ei must satisfy certain con-

ditions to guarantee that the verification result is preserved. One equivalence to support

nonblocking verification is conflict equivalence [16].

Definition 18 Two EFSMs (or FSMs) E and F are said to be conflict equivalent, written

E ≃conf F , if for any EFSM (or FSM) T , it holds that E ‖T is nonblocking if and only if

F ‖T is nonblocking.

Due to the congruence properties of conflict equivalence [16], components of an FSM

system can be replaced by conflict equivalent components while preserving the nonblocking

property. This follows directly from Def. 18 when T represents the rest of the system. It is

straightforward to lift this result to EFSMs.

Proposition 4 Let E = {E1, . . . ,En} and F = {F1,E2, . . . ,En} be EFSM systems such that

E1 ≃conf F1. Then E is nonblocking if and only if F is nonblocking.

If no abstraction is possible, then some components are composed to create local events

or some variables are unfolded to simplify some updates. The resulting EFSMs are ab-

stracted again, and the procedure continues until all the variables of the systems are un-

folded and the system is simple enough to be verified monolithically. To ensure correctness,

all these operations are performed in such a way that the nonblocking and normalisation

properties of the system are preserved.

The above-mentioned abstraction methods of FSM-based abstraction, synchronous com-

position, and variable unfolding are described in more detail in the following Sections 5.1,

5.2, and 5.4. Section 5.3 describes the method of update simplification, which is closely

linked to variable unfolding. Finally, Section 5.5 proposes four further methods to reduce

the number of events and transitions in an EFSM system.

5.1 FSM-Based Conflict Equivalence Abstraction

Compositional nonblocking verification is well-developed for systems modelled as interact-

ing finite-state machines [9, 14]. Several abstraction methods for FSM-based compositional

nonblocking verification with efficient implementations are known. This section shows how

these methods can be applied directly to EFSMs without first flattening or unfolding any

variables.

Definition 19 Let E = 〈Σ ,Q,→ ,Q◦,Qω〉 be a normalised EFSM. The FSM form of E is

the FSM ϕ(E) = 〈Σ ,Q,→ϕ ,Q
◦,Qω〉, where x

σ
→ϕ y if x

σ :p
−−→ y for some x,y ∈ Q.

The FSM form of an EFSM is obtained by simply disregarding all updates. This differs

from the flattened FSM (Def. 10), where variable values are expanded and updates evaluated.

The conversion to FSM form and back is a straightforward operation that does not incur any

blow-up, yet it makes it possible to apply FSM simplification to EFSMs. The transformation

relies on the system being normalised, because in a normalised system each event has a

unique update, making it possible to disregard the updates.

Most abstraction methods defined for FSMs [9] use local events, i.e., events that only

appear in one FSM in the system. Local events can be hidden because they do not interact

with other components of the system. In an EFSM system, even though local events are not

shared with other components, the variables in their updates can still result in interaction;
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Fig. 8 Example of FSM-based conflict equivalence abstraction.

only local events with true update can be hidden. Therefore, when transforming an EFSM

to an FSM, the local events with true updates are collected in a set ϒ and hidden from the

transformed FSM. Then the FSM is simplified based on the following result.

Proposition 5 Let E = {E1,E2, . . . ,En} be a normalised EFSM system and let ϒ ⊆ Σ1 such

that (Σ2 ∪ ·· · ∪Σn)∩ϒ = /0 and ∆E (σ) ≡ true for all σ ∈ϒ . Let F = {F1,E2, . . . ,En} be

a normalised EFSM system such that ϕ(E1) \ϒ ≃conf ϕ(F1) \ϒ . Then E is nonblocking if

and only if F is nonblocking.

To summarise Prop. 5, to apply the conflict-preserving abstraction defined for FSM on

EFSM, first the set ϒ is identified as the set of events with true updates that appear only

in the EFSM E1 to be simplified. Next, the FSM form of E1 is obtained by disregarding

all updates, and the events in ϒ are hidden from the FSM form ϕ(E1). Then the conflict

equivalence abstraction methods developed for FSMs are used to simplify ϕ(E1), resulting

in an FSM ϕ(F1). This FSM is interpreted as an EFSM, F1, which is added back to the

system. Prop. 5 provides a general method to simplify an EFSM in a normalised system

while preserving the nonblocking property. A proof is given in Appendix B.1.

Example 4 Consider the normalised EFSM system E = {E1,E2} in Fig. 8. It can be ob-

served from Fig. 8 that the events α and γ only appear in the EFSM E1, and ∆E (γ) ≡ true.

Therefore, the set of local events to be hidden is chosen as ϒ = {γ}. To apply the abstraction

methods defined for FSMs, the EFSM E1 is transformed to the FSM form ϕ(E1) based on

Def. 19, and event γ is hidden, resulting in ϕ(E1) \ϒ shown in Fig. 8. The two states q0

and q1 in ϕ(E1) \ϒ can now be merged using the conflict-preserving Silent Continuation

Rule [9], resulting in the abstracted FSM Ẽ1 in Fig. 8. Afterwards, the FSM Ẽ1 is trans-

formed back to an EFSM with the same structure as Ẽ1 and the silent event τ is replaced by

the local event γ as shown in E ′1.

To ensure normalisation, the silent event τ is only used in FSMs and not in EFSMs.

Therefore, the τ events are replaced by ordinary events when the FSM is converted back to

an EFSM. Any local event with true update can be used for this replacement, and an original

EFSM whose FSM form contains a τ-transition must contain at least one such event.

5.2 Partial Composition

Synchronous composition is the simplest step in compositional nonblocking verification. It

is always possible to replace some components of an EFSM system by their composition.

This operation does not reduce the state space, but it is necessary when all other means

of simplification have been exhausted. The following result follows directly from the defi-

nitions. The EFSM systems before and after normalised synchronous composition are not

only equivalent with respect to nonblocking, but also identical up to isomorphism.
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Proposition 6 (Partial Composition) Let E = {E1, . . . ,En} be an EFSM system, and let

F = {E1 ‖̇E2,E3, . . . ,En}. Then ‖̇E = ‖̇F .

Prop. 6 states that the composition of two EFSMs in an EFSM system does not change

the behaviour of the system. It is also clear that the system stays normalised as normalised

synchronous composition does not affect the updates of events. In combination with Prop. 1,

it is guaranteed that the nonblocking property of the system is preserved after composing a

part of a system using this operation. A proof is given in Appendix B.2.

5.3 Update Simplification

An important aspect to reasoning about EFSM systems is the symbolic manipulation of

updates, in order to keep the formulas as simple as possible. This is achieved by rewriting

updates into logically equivalent updates, while keeping in mind that variables that do not

appear as next-state variables in an update remain unchanged in a normalised system.

Definition 20 Let p,q ∈ΠV be two updates.

– p and q are logically equivalent, written p⇔ q, if it holds that p(v̂, ŵ) = q(v̂, ŵ) for all

valuations v̂, ŵ ∈ dom(V ).
– p and q are logically equivalent with respect to W ⊆ V , written p ⇔W q, if ΞW (p)

and ΞW (q) are logically equivalent.

Example 5 The updates p ≡ x = 1 and q ≡ x = 1∧ x′ = 1 are not logically equivalent,

because for valuations v̂[x] = 1 and ŵ[x] = 0, e.g., it holds that p(v̂, ŵ) = T but q(v̂, ŵ) = F.

Yet, bearing in mind that the update p ≡ x = 1 leaves the variable x /∈ vars′(p) unchanged,

these two updates have the same effect. The extension Ξ{x}(p)≡ x = 1∧ x′ = x is logically

equivalent to q≡ x = 1∧ x′ = 1, and therefore p and q are logically equivalent with respect

to W = {x}, i.e, p⇔{x} q.

Two updates being logically equivalent does not necessarily mean that they are logically

equivalent with respect to W , nor does the converse hold in general.

Updates can be simplified automatically by standard methods of propositional reason-

ing, theorem proving, or binary decision diagrams [4, 13]. The following proposition con-

firms that replacing updates by updates logically equivalent with respect to the full variable

set V does not effect the nonblocking property of the system.

Proposition 7 (Update Simplification) Let E = {E1, . . . ,En} and F = {F1, . . . ,Fn} be

normalised EFSM systems with Ei = 〈Σi,Qi,→
E
i ,Q

◦
i ,Q

ω
i 〉 and Fi = 〈Σi,Qi,→

F
i ,Q

◦
i ,Q

ω
i 〉.

Let V = vars(E ) = vars(F ) and ∆E (σ) ⇔V ∆F (σ) for all σ ∈ ΣE = ΣF , and →F
i =

{(x,σ ,∆F (σ),y) | x
σ :∆E (σ)
−−−−−→E

i y}. Then E is nonblocking if and only if F is nonblock-

ing.

The EFSMs in E and F in Prop. 7 have the same events and states, the only difference

is that updates in E are replaced in F by updates logically equivalent with respect to all

variables, maintaining normalisation by consistently making the same replacement for each

event. A proof of Prop. 7 is given in Appendix B.3.
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5.4 Variable Unfolding

This section describes the abstraction that removes a variable from an EFSM system. It has

been shown [21] that unfolding a variable that only appears in one EFSM, called a local

variable, preserves conflict equivalence. Here, this idea of partial unfolding is generalised

to allow unfolding an arbitrary variable, even if it is shared between several EFSMs. In a

normalised EFSM system, this can be achieved by replacing the variable with a variable

EFSM that keeps track of the variable values.

Definition 21 Let z be a variable, and let Σ be a set of events. The variable alphabet of z

with respect to Σ is Uz(Σ) = Σ ×dom(z)×dom(z).

Definition 22 Let E be a normalised EFSM system. The normalised variable EFSM of

z ∈ vars(E ) is

UE (z) = 〈Uz(Σz),dom(z),→z,{z
◦},dom(z)〉 (16)

where

Σz = {σ ∈ ΣE | z ∈ vars(∆E (σ))} ; (17)

→z = {(a,(σ ,a,b),Ξ{z}(∆E (σ))[z 7→ a,z′ 7→ b],b) |

z ∈ vars(∆E (σ)) and a,b ∈ dom(z) } .

(18)

Furthermore, the variable renaming map ρz : ΣE ∪Uz(Σz)→ ΣE for z is defined by ρz(σ) =
σ for all σ ∈ ΣE and ρz((σ ,a,b)) = σ for all (σ ,a,b) ∈Uz(Σz).

The variable EFSM uses the domain of the unfolded variable z as its set of locations.

Events σ that have the variable z in their update are modified to have the form of (σ ,a,b)
to keep track of the value of the variable when the event is executed, where a,b ∈ dom(z)
are the values of z before and after the transition, respectively. If z′ does not appear in the

update ∆E (σ), then the extension operation Ξ{z} adds the condition z′ = z to ensure that the

value of z remains unchanged. Afterwards, the substitution [z 7→ a,z′ 7→ b] inserts the variable

values corresponding to the source and target states of the transitions into the updates. The

resulting updates can typically be simplified using Prop. 7.

For example, unfolding the variable v2 with domain {0,1,2} in the example of Section 3

results in the variable EFSM V2 with three locations 0, 1, and 2 as shown in Fig. 6. By

executing l1 with update v1 +v2 < 2∧v′1 = v1 +1, the value of v2 does not change. Event l1
is replaced by two new events (l1,0,0) and (l1,1,1), which are presented as l10 and l11 in

Section 3. The update of (l1,0,0) is (v1 +v2 < 2∧v′1 = v1 +1)[v2 7→ 0,v′2 7→ 0]≡ (v1 +0 <
2∧ v′1 = v1 +1), which can be simplified to v1 < 2∧ v′1 = v1 +1 using Prop. 7.

When a variable is unfolded, updates are changed and new events are introduced. Then

the following event replacement operation Uz(E) is used to ensure that the EFSMs in the

system after partial unfolding use the new events. This operation replaces transitions labelled

with the original events σ by new transitions labelled with each of the new events (σ ,a,b),
in a similar way as the inverse renaming ρ−1 in Def. 16.
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E UE (x) Ux(E)

replacements

α

α

β

(α ,0,0)

(α ,1,1)

(α ,0,1)(α ,1,0)
(β ,0,1)(β ,1,0)

(β ,0,0)

(β ,1,1)

0

1
(α ,0,0)

(α ,0,0)

(α ,1,1)

(α ,1,1)

(α ,0,1)

(α ,0,1)

(α ,1,0)

(α ,1,0)

(β ,0,1)
(β ,1,0)

(β ,0,0)

(β ,1,1)

Event Update

α y′ = x+1

β x′ = y+1

(α ,0,0) y′ = 1

(α ,0,1) false

(α ,1,0) false

(α ,1,1) false

(β ,0,0) false

(β ,0,1) y = 0

(β ,1,0) false

(β ,1,1) y = 0

Fig. 9 Example of unfolding a variable x.

Definition 23 Let E = 〈ΣE ,Q,→ ,Q◦,Qω〉 be an EFSM, and let z be a variable. The expan-

sion of E after unfolding z is defined by

Uz(E) = 〈Σ
U ,Q,→U ,Q◦,Qω〉 ; (19)

ΣU =Uz(ΣE ∩Σz)∪ (ΣE \Σz) (20)

→U = {(x,(σ ,a,b),Ξ{z}(∆E (σ))[z 7→ a,z′ 7→ b],y) |

z ∈ vars(∆E (σ)) and x
σ :∆E (σ)
−−−−−→ y and σ ∈ ΣE ∩Σz } ∪

{(x,σ , p,y) | x
σ :p
−−→ y and σ ∈ ΣE \Σz } . (21)

Example 6 Fig. 6 in Section 3 shows the expansion C′1 =Uv2
(N (C1)), which replaces the

EFSM N (C1) in Fig. 3 after unfolding v2.

Given these definitions, a variable z is unfolded by adding the variable EFSM UE (z) to

the system, and replacing all EFSMs E by their expansions Uz(E).

Definition 24 Let E = {E1, . . . ,En} be a normalised EFSM system and z ∈ vars(E ). The

result of unfolding z in E is

E \ z = {UE (z),Uz(E1), . . . ,Uz(En)} (22)

where UE (z) is defined as in Def. 22 and Uz(Ei) is defined as in Def. 23.

Proposition 8 (Variable Unfolding) Let E be a normalised EFSM system, and let z ∈
vars(E ). Then E is nonblocking if and only if E \ z is nonblocking.

Prop. 8 confirms that the nonblocking property of the system is preserved after unfolding

a variable. A proof can be found in Appendix B.4.

Example 7 Consider the EFSM E in Fig. 9 with updates shown in the table, which is part of

a normalised system E . Assume dom(x) = dom(y) = {0,1} and x◦ = y◦ = 0. Unfolding the

variable x results in the variable EFSM UE (x) with locations 0 and 1 in Fig. 9. The event α
with update y′ = x+1 is replaced by four new events:

(α ,0,0) with update Ξ{x}(y
′ = x+1)[x 7→ 0,x′ 7→ 0]≡ y′ = 0+1∧0 = 0⇔V y′ = 1

(α ,0,1) with update Ξ{x}(y
′ = x+1)[x 7→ 0,x′ 7→ 1]≡ y′ = 0+1∧1 = 0⇔V false

(α ,1,0) with update Ξ{x}(y
′ = x+1)[x 7→ 1,x′ 7→ 0]≡ y′ = 1+1∧0 = 1⇔V false

(α ,1,1) with update Ξ{x}(y
′ = x+1)[x 7→ 1,x′ 7→ 1]≡ y′ = 1+1∧1 = 1⇔V false
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X ′ E ′

(α ,0,0)

(β ,1,1)

(β ,0,1)

0

1

(α ,0,0)

(α ,0,0)

(β ,1,1)
(β ,0,1)

Event Update

(α ,0,0) y′ = 1

(β ,0,1) y = 0

(β ,1,1) y = 0

Fig. 10 Example of removing events with false update.

The update of the event (α ,1,1) is false because y′ = 2 is not possible as dom(y) = {0,1}.
Similarly, event β is replaced by four new events. The new events and their simplified up-

dates are shown in the table in Fig. 9. Since partial unfolding introduces new events to

the system, the EFSM E needs to be modified to use the new events. Thus, E is replaced

by Ux(E), also shown Fig. 9.

5.5 Event Simplification

Generally, reducing the number of events in a system increases the possibility of abstraction.

This section proposes four different methods to reduce the number of events.

It can happen after abstraction and simplification that the updates of some events become

false. Such events can be removed from the system and their transitions deleted. This event

removal is implemented by the following operation of restriction.

Definition 25 The restriction of EFSM E = 〈Σ ,Q,→ ,Q◦,Qω〉 to Ω ⊆ Σ is E|Ω = 〈Ω ,Q,
→|Ω ,Q◦,Qω〉 where

→|Ω = {(x,σ , p,y) ∈→ | σ ∈Ω } . (23)

The restriction of E = {E1, . . . ,En} to Ω is E|Ω = {E1|Ω , . . . ,En|Ω}.

Proposition 9 (false-Removal) Let E be a normalised EFSM system, and let Λ ⊆ ΣE be

a set of events such that for all λ ∈Λ at least one of the following conditions holds:

(i) ∆E (λ )≡ false;

(ii) There exists E ∈ E such that λ ∈ ΣE , but there does not exist any transition x
λ :p
→ y

in E.

Then E is nonblocking if and only if E|ΣE \Λ is nonblocking.

Based on Prop. 9, events with false updates can be removed from the system while

preserving the nonblocking property. Likewise, events that in some EFSM do not appear

on any transition and therefore are always disabled, can be removed. A proof is given in

Appendix B.5.

Example 8 Consider again the EFSMs Ux(E) and UE (x) in Fig. 9. The updates of events

(α ,0,1), (α ,1,0), (α ,1,1), (β ,0,0), and (β ,1,0) are false. Thus, these events an their tran-

sitions can be entirely removed from the system. Fig. 10 shows the simplified EFSMs X ′

and E ′ obtained from UE (x) and Ux(E), respectively, by removing the events with false

updates.
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E1 E2 E1|Σ1\{β} E2|Σ1\{β}

α
β

γ

β

σ γ

α

σ

Event Update

α y′ = y+1

β y = 1

γ y′ = x

σ y = 2

Fig. 11 Example of selfloop removal.

In compositional nonblocking verification of FSM systems, events that only appear on

selfloops are immediately removed because no state change is possible by these transitions.

This is not possible in an EFSM system. Even though no location change is possible by self-

loop-only events, if the updates contain next-state variables, the execution of these events

can still change the system state by changing the variable values. An event can be removed

from an EFSM system if it causes no location changes, which means it appears only on

selfloop transitions, and if it causes no changes of variable values, which is guaranteed if

the update of the event is a pure guard, i.e., contains no primed variables.

Definition 26 An EFSM E = 〈Σ ,Q,→ ,Q◦,Qω〉 is selfloop-only for λ ∈ Σ if x
λ :p
→ y implies

x = y and vars′
E
(p) = /0. EFSM E is selfloop-only for Λ ⊆ Σ if E is selfloop-only for each

λ ∈Λ . An EFSM system E is selfloop-only for Λ ⊆ Σ if each E ∈ E is selfloop-only for Λ .

An EFSM is selfloop-only for an event, if the event appears only in selfloops and the

update of the event is a pure guard. The following proposition confirms that selfloop-only

events can be removed without affecting the nonblocking property of an EFSM system. A

proof can be found in Appendix B.5.

Proposition 10 (Selfloop Removal) Let E be a normalised EFSM system that is self-

loop-only for Λ ⊆ ΣE . Then E is nonblocking if and only if E|ΣE \Λ is nonblocking.

Example 9 Consider the normalised EFSM system E = {E1,E2} in Fig. 11, where the

alphabets of E1 and E2 are Σ1 = {α ,β ,γ} and Σ2 = {β ,σ}. Assume dom(x) = dom(y) =
{0,1}. The events α and β only appear on selfloops in the entire system, and the update of β
is pure guard. Using Prop. 10, the event β can be removed from the system. Thus, EFSMs

E1 and E2 are replaced by E1|Σ1\{β} and E2|Σ2\{β} shown in Fig. 11. Note that, although

event α also appears only on selfloops in the entire system, its update is not a pure guard,

and consequently this event cannot be removed.

Using Props. 9 and 10, it is possible to remove an event from the system. The following

results make it possible to combine some events and replace them by a single event.

Proposition 11 (Event Merging) Let E = {E1, . . . ,En} be a normalised EFSM system

with Ei = 〈Σi,Qi,→i,Q
◦
i ,Q

ω
i 〉, let Ek ∈ E , and let ρ : ΣE → Σ ′ be a renaming such that the

following conditions hold for all σ1,σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

(i) ∆E (σ1) = ∆E (σ2);

(ii) for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all x,y ∈ Qi it holds

that x
σ1:∆E (σ1)
−−−−−−→i y if and only if x

σ2:∆E (σ2)
−−−−−−→i y.

Then E is nonblocking if and only if ρ(E ) is nonblocking.
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ρ(X ′) ρ(E ′)

(α ,0,0)

β

β

0

1

(α ,0,0)

(α ,0,0)

β

Event Update

(α ,0,0) y′ = 1

β y = 0

Fig. 12 Example of event merging.

By Prop. 11, all events with the same update can be merged and replaced by the same

event if they appear on transitions with the same source and target states in all the EFSMs

of the system except for one EFSM Ek. A proof is given in Appendix B.5.

One of the applications of event merging, Prop. 11, is after variable unfolding as events

introduced by variable unfolding appear on different transitions only in the variable EFSM.

For example, after unfolding the variable v2 in Fig. 6 in Section 3, event s2 is replaced by

two new events (s2,1,0) and (s2,2,1) both with the same update true. Using Prop. 11, these

events can be merged back into s2. Therefore, there is no need to introduce new events in

the first place, and only s2 is used in Fig. 6.

Example 10 Consider again the EFSMs E ′ and X ′ in Fig. 10. The updates of events (β ,0,1)
and (β ,1,1) are the same, and these events appear on different transitions only in the

EFSM X ′. Thus, the renaming ρ is introduced such that ρ((β ,0,1)) = ρ((β ,1,1)) = β
and ρ(σ) = σ for all σ /∈ {(β ,0,1),(β ,1,1)}. The resulting simplified EFSMs ρ(E ′) and

ρ(X ′) are shown in Fig. 12.

Proposition 12 (Update Merging) Let E = {E1, . . . ,En} be a normalised EFSM system

with Ei = 〈Σi,Qi,→i,Q
◦
i ,Q

ω
i 〉. Let ρ be a renaming such that the following conditions hold

for all σ1,σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

(i) vars′(∆E (σ1)) = vars′(∆E (σ2)),
(ii) for all i = 1, . . . ,n it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all x,y ∈ Qi it

holds that x
σ1:∆E (σ1)
−−−−−−→i y if and only if x

σ2:∆E (σ2)
−−−−−−→i y

Further let F = {F1, . . . ,Fn} such that Fi = 〈ρ(Σi),Qi,→
F
i ,Q

◦
i ,Q

ω
i 〉where→F

i = {(x,ρ(σ),

∆F (ρ(σ)),y) | x
σ :∆E (σ)
−−−−−→ y} and ∆F (µ) ≡

∨
σ∈ρ−1(µ) ∆E (σ) for all µ ∈ ΣF . Then E is

nonblocking if and only if F is nonblocking.

By Prop. 12, two events with the same next-state variables in their updates that appear

on transitions with the same source and target states in the entire system can be replaced

by a single new event. The update of the new event is the disjunction of the updates of the

replaced events. The condition on the next-state variables ensures that the set of unchanged

variables, i.e., variables not occurring as next-state variables, is preserved. A proof can be

found in Appendix B.5.

Example 11 Consider the normalised EFSM system E = {E1,E2} in Fig. 13 with dom(x)=
dom(y) = {0,1}. Events α1 and α2 appear on the same transitions throughout E , and

vars′
E
(α1) = vars′

E
(α2) = /0. In order to use Prop. 12, the new event α and the renaming ρ

are introduced such that ρ(α1) = ρ(α2) = α , ρ(β ) = β , and ρ(γ) = γ . The update of the

merged event α is y = 0∨y = 1⇔V true, and as a result the EFSM E1 can be replaced by F1

in Fig. 13.
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E1 E2 F1

α1
α2

ββ γγ
γ ββ γγ

α

Event Update

α1 y = 0

α2 y = 1

β y′ = x

γ y = 1

α true

Fig. 13 Example of update merging.

Algorithm 1 EFSM-based compositional verification

1: input E = {E1,E2, . . . ,En}, V = vars(E )
2: E ← normalise(E )
3: while |E |> 1 ∨ |V |> 0 do

4: 〈Vc,Ec〉 ← selectCandidate(E )
5: if Vc 6= /0 then

6: v← selectVariable(Vc)
7: V ←V \{v}
8: E← unfold(v)
9: else

10: E ← E \Ec

11: E← synchronise(Ec)
12: end if

13: removeEvents(E ∪{E})
14: ϒ ← getLocalEvents(E,E )
15: E← simplify(E,ϒ )
16: removeEvents(E ∪{E})
17: E ← E ∪{E}
18: end while

19: monolithicVerification(E )

6 Algorithm

This section applies the results from the previous sections to give an algorithm for composi-

tional nonblocking verification of EFSM systems. An overview of the approach is shown as

Algorithm 1. Given an EFSM system, the algorithm repeatedly unfolds variables, composes

EFSMs, and applies abstraction to the resultant EFSMs. While doing this, it maintains an

event tree data structure to keep track of the events and their updates, and the renamings

generated by partial unfolding.

The first step of Algorithm 1 is to normalise the system. The normalise() procedure in

line 2 performs the normalisation and initialises the event tree, which at the beginning only

links each event to its unique update. Then the main loop in lines 3–18 repeatedly unfolds

variables or composes EFSMs, and simplifies EFSMs, until only a single EFSM is left. In

each iteration, the selectCandidate() procedure in line 4 heuristically selects a candidate

representing a subsystem to simplify, which consists of a set Vc of variables and a set Ec of

EFSMs, the composition or unfolding of which is predicted to have potential for the most

simplification. If the selected subsystem contains variables, then the selectVariable() pro-

cedure in line 6 heuristically identifies the best variable to unfold, which is then removed

from the system and unfolded by the unfold() procedure in lines 7–8. If the selected can-

didate contains no variables, then it consists of only EFSMs, which are removed from the

system and composed in lines 10–11. In both cases, the EFSM E resulting from unfolding

or composition is sent for abstraction in lines 13–17.
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Abstraction starts by calling the procedure removeEvents() in line 13, which applies

update simplification (Prop. 7), removes events with false updates (Prop. 9), removes self-

loop-only events (Prop. 10), and merges events (Props. 11 and 12). These steps can change

both the EFSM E and the remaining components of E , while at the same time updating

the event tree. Afterwards, the simplify() procedure called in line 15 computes a conflict-

preserving abstraction of E according to Prop. 5. As abstraction may change or remove

transitions, it may result that some events only appear as selfloops or that there are groups of

events on transitions with the same source and target states. Therefore, the removeEvents()

procedure is applied again to the abstracted EFSM in an attempt to remove more events.

The loop terminates when E contains only one EFSM and all the variables are unfolded.

The final EFSM can be considered as an FSM as there are no more variables in the system,

so it is passed to standard FSM-based nonblocking verification in line 19. In the following,

each of the procedures mentioned above is explained in more detail.

The selectCandidate() method in line 4 uses the following steps to select the most

promising candidate, which consists of a set Vc of variables and a set Ec of EFSMs to be

composed or unfolded.

(i) The first step is to search the system for variables that appear only as (primed) next-

state variables or only as (unprimed) current-state variables in the entire system. If

a variable only appears as next-state variable then all states in the variable EFSM are

bisimilar [18], so the variable EFSM can immediately be simplified to a single-location

EFSM. If a variable only appears as current-state variable, then it never changes its

value. Then all locations except the initial locations are unreachable in the variable

EFSM, which again can be simplified to a single-location EFSM. If the system con-

tains variables that only appear as current-state or only as next-state variables, then the

selectCandidate() procedure returns all these variables in Vc, while Ec is an empty set.

(ii) The second step is to search for local variables, i.e., for variables that appear in the

updates of only one EFSM. As the system is normalised, events with a local variable

in their updates appear in only one EFSM. Unfolding local variables simplifies their

updates, which may result in some updates becoming true, increasing the possibility

of hiding and abstractions in later steps. Yet, after unfolding a local variable, its events

in the EFSM are shared with the variable EFSM.

If the system contains local variables, the selectCandidate() procedure returns the local

variables in Vc, while Ec is an empty set. Subsequently, one of these variables will

be unfolded in line 8. To exploit the benefit of this unfolding, the selectCandidate()

procedure also ensures that, in the next iteration of the main loop after unfolding a

local variable and simplifying the resultant EFSM, the next candidate only consists of

the variable EFSM and the EFSM that has the local variable.

(iii) If there are no variables that appear only primed or only unprimed, and no local vari-

ables, the final step is to use a strategy called mustL [9], which tries to improve the

potential of abstraction by making events local. For each event σ , all EFSMs with σ in

the alphabet and all variables in the update of σ are selected, so that σ becomes a local

event if the selected EFSMs and variables were to be composed. This gives several

candidates, one for each event, and the following heuristics are used to select the best

candidate among them.

minF selects the candidate with the smallest number of other EFSMs and variables

linked via events to the candidate’s EFSMs and variables [21]. This heuristic

attempts to minimise event sharing between the candidate and the rest of the

system.

23



E1 E2 N (E1) N (E2)

α : y′ = 1

β : y′ = x+1

α : true

α : true

α

β

α

α

Event Update

α y′ = 1

β y′ = x+1

Presentation of the table as event tree:

α

y′ = 1

β

y′ = x+1

Fig. 14 Normalisation and initial event tree.

minS selects the candidate with the smallest estimated number of states in its syn-

chronous composition. The number of states in the synchronous composition is

estimated as the product of the sizes of the domains of the variables and the num-

bers of locations of the EFSMs, multiplied by the ratio of the number of events

the candidate shares with the rest of the system over the total number of events

of the candidate [9].

The selectCandidate() procedure first employs the minF heuristic, and if minF gives

equal preference to two candidates, then the minS heuristic is used to break the tie.

If the candidate returned by the selectCandidate() procedure contains variables, only one

of these variables will be unfolded. Line 6 calls the selectVariable() procedure, which uses

another set of heuristics to identify the most promising variable:

maxE selects a variable that appears in the update of the largest number of events.

maxS selects a variable that appears in the largest number of selfloops.

minD selects a variable with the smallest domain.

The maxE heuristic enables more update simplification, which increases the chance of up-

dates becoming true and thus the possibility of hiding. As the contributions of the conflict

equivalence abstraction methods are high in simplifying the system, and they are greatly de-

pendent on hiding, maxE is the first heuristic that is applied. If maxE gives equal preference

to two variables, then the maxS heuristic is used to break the tie. maxS attempts to boost

the performance of selfloop removal, which also may increase the performance of conflict

equivalence abstraction. In the case that both maxE and maxS give equal preference to two

variables, the minD heuristic is used in order to create the smallest possible variable EFSM.

Example 12 Consider the EFSM system E = {E1,E2} in Fig. 14. Normalisation produces

N (E1) and N (E2) with the updates shown in the table. As variable x only appears unprimed

and variable y only appears primed in the updates, the selectCandidate() procedure returns

Vc = {x,y} and Ec = /0 as the selected candidate. As this candidate has variables, next the

selectVariable() procedure is called in line 6 to select a variable, which starts by evaluating

the maxE heuristic. In this case, x only occurs in the update of β , while y occurs in the

updates of both α and β , so y is selected for unfolding.

According to Def. 22, partial unfolding by the unfold() procedure in line 8 generates for

each event σ with the variable v in its update, several new events of the form (σ ,a,b). Sub-

sequently, all the components of the system need to be changed by replacing σ with these

new events according to Def. 24. To improve performance, this replacement is done by mod-

ifying the event tree only. The new events (σ ,a,b) are added with their updates to the event

tree as children of the original event σ . Other EFSMs using σ remain unchanged, with the
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(α ,1,1)
(β ,1,1)
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α
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(β ,2,1)
x = 0

(β ,1,2)
x = 1

(β ,1,1)
x = 0

Fig. 15 Result of unfolding y and associated event tree.

interpretation that any transition labelled σ represents transitions with all the descendants

of σ stored in the event tree. In this way, the replacement of events and the associated blow-

up in the number of transitions is postponed until the synchronous composition of EFSMs

containing σ with the variable EFSM. Often, the replacement can be avoided altogether, as

some of the new events can be removed or merged before they are needed in synchronous

composition.

Example 13 Consider the normalised EFSM system E = {N (E1),N (E2)} in Fig. 14 with

dom(x) = {0,1}, x◦ = 0, dom(y) = {1,2}, and y◦ = 1. Normalisation produces N (E1)
and N (E2) with the updates stored separately in an event tree that initially consists of two

root nodes with the two events α and β and their updates, as shown in Fig. 14. Unfolding of

the variable y produces events of the form (α ,a,b) and (β ,a,b), which are added as children

of α and β to the event tree. Fig. 15 shows the variable EFSM UE (y) and the updated event

tree. At this point, the EFSMs N (E1) and N (E2) are left unchanged.

The removeEvents() procedure called in line 13 attempts to simplify the EFSMs and the

event tree as much as possible before proceeding further with simplification. It first simpli-

fies all the updates according to Prop. 7 and removes all events with false updates according

to Prop. 9. Next, selfloop removal is applied, which removes events that have pure guards

as updates and that only appear as selfloops in the entire system (Prop. 10). Afterwards,

the removeEvents() procedure merges events and updates using Props. 11 and 12. An ex-

act implementation of these propositions requires a search of transitions of all the EFSMs.

To improve performance, the removeEvents() uses the event tree. Only events that have the

same parent and no children in the event tree are considered for merging. By the construction

of the event tree, the children of an event σ are implicitly present in all EFSMs containing

the parent event σ , but they appear on exactly the same transitions as the parent event, so

these EFSMs do not need to be checked to determine whether merging is possible according

to Props. 11 and 12. More precisely, the removeEvents() procedure first searches for child-

less events with the same parent and the same next-state variables in their updates. Each

group of such events becomes a merge candidate. Within a merge candidate, all events with

the same update p are replaced by a single event with update p (Prop. 11), and the remaining

events that appear on transitions with the same source and target states are replaced by a new

event with an update that is the disjunction of the updates of the replaced events (Prop. 12).

Example 14 Consider the EFSM system E = {N (E1),N (E2),UE (y)} with the EFSMs

shown in Figs. 14 and 15, where dom(x) = {0,1} and x◦ = 0. First, the removeEvents() pro-

cedure removes events (α ,1,2) and (α ,2,2) as their updates are false. Next, events (α ,1,1)
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Fig. 16 Result of the removeEvents() procedure applied to UE (y).
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Fig. 17 Synchronous composition of N (E1) and Y using event tree.

and (α ,2,1) both have the parent α and the update true. These events can be merged accord-

ing to Prop. 11, and as they are the only children of α they are replaced by their parent α
with update true. Further, the events (β ,1,1) and (β ,2,1), and (β ,1,2) and (β ,2,2) have

the same update and the same parent. The removeEvents() procedure merges events (β ,1,1)
and (β ,2,1) into a new event β0, and merges (β ,1,2) and (β ,2,2) into a new event β1. Then

β is assigned as the parent of β0 and β1 in the event tree. Fig. 16 shows the EFSM Y that

results from UE (y) and the event tree after these modifications.

After event removal and update merging, the simplify() procedure called in line 15 at-

tempts to simplify the EFSM E based on conflict equivalence. First, the getLocalEvents()

procedure called in line 14 computes the set ϒ of events to be hidden. According to Prop. 5,

these are events with true update that only appear in E. Then the EFSM is converted to FSM

form while hiding these events. As the updates are stored separately from the EFSM E in

the event tree, E is simply considered as an FSM and the events in ϒ are replaced by τ . Then

the conflict preserving abstraction methods [9] are applied to this FSM. Using the event tree,

the resultant FSM can again be considered as an EFSM.

The synchronise() procedure, called in line 11, performs normalised synchronous com-

position, ignoring updates, and taking the event relationships in the event tree into account.

If the set Ec of EFSMs to be composed contains an EFSM containing a parent event and

an EFSM containing its children, then the procedure replaces all occurrences of the parent

event with its children while computing the normalised synchronous composition.

Example 15 Consider the normalised EFSM system E = {N (E1),N (E2),Y} with the

EFSMs shown in Figs. 14 and 16, and assume that the EFSMs Y and N (E1) are to be

composed. During synchronous composition, based on the event tree, event β in N (E1) is

replaced by β0 and β1, resulting in EFSM E ′1, while Y remains unchanged. Fig. 17 shows

the EFSM E ′1 and the result E ′1 ‖Y of normalised synchronous composition.
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7 Experimental Results

The EFSM-based compositional nonblocking verification has been implemented in the dis-

crete event systems tool Supremica [1]. It has been tested on some large EFSM models and

compared to an FSM-based compositional algorithm [14] and a BDD-based algorithm [28].

This section shows the results of the experiments.

The following list gives an overview of the test cases used to compare the algorithms.

These include complex industrial models and case studies, and some scalable models with

very large state spaces.

pml3 A system consisting of three parallel manufacturing lines each processing workpieces

of a particular type [21]. Each line has 49 serially connected machines. The parallel lines

share 50 buffers with capacity 2 or 3.

prime-sieve A distributed version of the Sieve of Eratosthenes for generating prime num-

bers [20]. The models considered here contain filters for the first 4, 6, or 8 prime num-

bers, enabling them to find prime numbers less or equal to 120, 288, or 528, respectively.

prime-sieve4b is a faulty blocking version of the program, while the others are correct

and nonblocking.

production-cell A model of part of a metal-processing plant consisting of seven manufac-

turing devices [8].

profisafe-ihost-b Part of the PROFIsafe protocol for fail-safe communication [15]. Con-

sidered here are two EFSM models of a blocking version of the PROFIsafe input-host

with sequence numbers ranging from 0 to 127 or 255.

psl An assembly cell for toy cars, which are built up from seven parts [22]. The cell has three

robots, which pick up parts from two intakes, assemble them in a fixture, and thereafter

place the complete car at an outlet. psl-big is a model of the uncontrolled plant, psl-n is

the nonblocking system with supervisor updates added to the EFSMs. psl-b is a blocking

version obtained from psl-n by removing some of the supervisor updates, psl-restart is

an uncontrolled plant with additional transitions to facilitate resynchronisation of the

system.

round-robin EFSM model of a token-passing resource allocation protocol with a ring of

300 or 400 processes [11].

tline A scalable version of the transfer line with rework cycles [27]. The system consists of

500 serially connected cells linked by buffers. Each cell has three machines and a test

unit that can reject workpieces up to 3 or 4 times.

Table 1 shows experimental results for nonblocking verification of the above models

using the EFSM-based compositional nonblocking verification algorithm proposed in Sec-

tion 6 and two other methods. The table shows for each model the number of EFSMs (|E |),
the number of variables (|V |), the size of the largest variable domain (|dom|), whether or not

the model is nonblocking (Nbl), and the performance data for the different algorithms. The

experiments were run on a standard desktop computer using a single core 3.3 GHz CPU and

not more than 2 GB of RAM. Runtime was limited to 20 minutes: if this time was exceeded,

or the process ran over the limit of 2 GB RAM, the attempt was aborted and the table entries

left blank.

The EFSM column shows the runtimes of the EFSM-based compositional nonblocking

verification and the total number of EFSM transitions encountered during the run. The im-

plementation proceeds as described in Section 6 and selects the subsystems to compose and

the variables to unfold following the heuristics in the order presented. That is, candidates for

composition are selected according to the minF heuristic, and if this gives the same priority
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Table 1 Experimental results for different nonblocking verification algorithms.

Model Flattening+FSM BDD EFSM

Name |E | |V | |dom| Nbl Flatten Verify Transitions Time Nodes Time Transitions

pml3 〈2〉 153 200 4 yes 1.5 s 2.0 s 59,132 2.9 s 23,594

pml3 〈3〉 153 200 4 yes 2.8 s 25.2 s 553,616 6.3 s 116,691

prime-sieve4b 6 10 121 no 6.0 s 2.5 s 371,454 3.5 s 780,241 2.8 s 203,060

prime-sieve4 6 10 121 yes 5.9 s 2.3 s 405,400 5.0 s 712,594 2.7 s 200,438

prime-sieve6 8 14 289 yes 130.4 s 23.0 s 3,291,713 74.2 s 6,503,464 19.6 s 1,598,433

prime-sieve8 10 18 529 yes 137.7 s 6,945,315

production-cell 17 32 3 no 0.3 s 1.1 s 38,594 0.4 s 46,538 0.8 s 4,567

profisafe-ihost-b 〈127〉 4 17 128 no 345.8 s 206.8 s 5,584,320 5.5 s 4,034,794 28.6 s 1,444,584

profisafe-ihost-b 〈255〉 4 17 256 no 101.2 s 3,079,912

psl-big 1 37 14 no 0.5 s 0.5 s 5,299 1.6 s 92,356 1.5 s 10,217

psl-b 1 37 14 no 54.1 s 349.4 s 380,847 35.0 s 5,448,127 5.5 s 190,695

psl-n 1 37 14 yes 54.6 s 370.1 s 458,162 38.5 s 5,517,392 5.8 s 229,080

psl-restart 1 37 14 no 0.6 s 3.5 s 129,490 1.1 s 120,690 4.2 s 182,946

round-robin 〈300〉 901 1 300 no 1.5 s 87.3 s 14,720 69.7 s 11,119

round-robin 〈400〉 1201 1 400 no 2.0 s 210.6 s 19,620 166.5 s 14,819

tline 〈3〉 1501 3001 4 yes 27.2 s 56.1 s 1,379,328 98.6 s 2,841,834

tline-b 〈3〉 1501 3001 4 no 27.2 s 851.6 s 3,460,482 99.3 s 2,843,887

tline 〈4〉 1501 3001 5 yes 43.5 s 109.2 s 5,312,091 156.2 s 10,410,971

tline-b 〈4〉 1501 3001 5 no 44.4 s 898.1 s 12,029,935 157.8 s 10,419,370

for two candidates, then the minS heuristic is used to break the tie. Likewise, the order for

the variable selection heuristics is first maxE, then maxS, and finally minD. The number of

transitions shown in the table is the sum of the transition numbers of the EFSMs E encoun-

tered in line 13 of Algorithm 1, before abstraction, plus the number of transitions of the final

EFSM in line 19.

For comparison, the table also contains runtimes for the following two alternative algo-

rithms from previous work, which are also implemented in Supremica.

FSM The FSM-based compositional algorithm converts the EFSM model to a set of FSMs

and then applies the compositional algorithm [9]. The EFSM model is modularly flat-

tened by creating a collection of location FSMs and variable FSMs [19]. Location

FSMs use the EFSM locations as states but replace the updates with events. The vari-

able FSMs use the domain of a variable as their states space and keep track of the

value of that variable. Differently from Section 5.4 above, the flattened FSM system has

events of the form (σ ; v̂; ŵ) for each update p of event σ in EFSM E and all valuations

v̂ ∈ dom(vars(p)) and ŵ ∈ dom(vars′(p)) such that p(v̂, ŵ) = T. In the worst case, the

number of events created for an update is the product of the sizes of the domains of its

variables. Table 1 shows the total number of transitions encountered during verification,

obtained in the same way as for the EFSM column, and in two further columns the times

spent to flatten the system (Flatten) and to verify the flattened FSM system (Verify). The

total runtime is the sum of these two columns.

BDD The BDD-based algorithm converts the EFSM model to a symbolic representation in

the form of Binary Decision Diagrams (BDDs) [4] and explores the full state space sym-

bolically [17]. The implementation includes several performance improvements, most

importantly an initial variable ordering based on the FORCE heuristics [2] and a dis-

junctive partitioning of the transition relation in a form optimised for discrete event

systems [28]. Table 1 shows the total runtime of BDD-based verification and the total
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Fig. 18 Runtimes for manufacturing systems with conveyor capacity N = 10 and increasing number of cells.

number of BDD nodes encountered. BDD nodes require a similar amount of memory as

transitions, so that their number gives a measure of the memory requirements similar to

the numbers of transition encountered by the other two algorithms.

Table I shows that the EFSM-based compositional algorithms successfully verifies all

the examples in this experiment, in most cases faster than the two other algorithms. The

transition numbers encountered by the EFSM-based algorithm are usually smaller than those

encountered by the FSM-based algorithm, as is to be expected from the deferred unfolding

and event tree techniques.

However, the EFSM algorithm needs to perform symbolic computation and can take

more time even with fewer numbers. For examples like pml3 〈2〉, production-cell, and

round-robin the runtimes of the FSM-based and EFSM-based algorithms are similar. These

models have got simple updates, so that the number of events in the flattened FSM system

is small and the flattening times are small, and as a result, the FSM-based and EFSM-based

algorithms verify the models in similar ways.

This effect can also be observed with the psl models. The models psl-b and psl-n are ob-

tained by calculating a supervisor and attaching some or all its updates to psl-big, resulting

in EFSMs with a large number of extremely complicated updates. As it can be observed from

the table, the psl-big and psl-restart models, which have much fewer and simpler updates,

can be flattened significantly faster than psl-b and psl-n. In these cases, the FSM-based al-

gorithm encounters fewer transitions than the EFSM-based algorithm, suggesting that the

FSM-based method can perform more accurate simplification for these simple models. For

psl-b and psl-n, the large large number of events in the flattened FSM system causes the

FSM-based compositional algorithm to perform poorly, while both the EFSM-based com-

positional and the BDD algorithm cope well with the complicated updates.

The BDD algorithm is not impeded by complicated update formulas, as these only cause

a moderate increase in the complexity of the symbolic model. However, it is limited by the

size and search depth of the state space, and fails to verify large scaled-up models such as

pml, round-robin and tline.

The nonblocking verification algorithms have also been applied to a scalable version of

the manufacturing system example in Section 3. The system consists of M serially connected

cells linked by conveyor belts. Each cell m for 1 ≤ m ≤ M has two conveyor belt sections

CBm
1 and CBm

2 and two machines Mm
1 and Mm

2 . Initially workpieces are picked up by the
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conveyor belt CB1
1 to enter cell 1, and completed workpieces from Mm

1 or Mm
2 in cell m are

placed on the next conveyor CBm+1
1 . Fig. 18 shows the runtimes for instances with 1–1000

serially connected cells and fixed conveyor belt capacity N = 10, and Fig. 19 shows the

runtimes for instances with conveyor belt capacity 2–100 and a fixed number of 100 serially

connected cells.

The EFSM-based compositional algorithm successfully reveals the blocking conditions

of manufacturing systems with up to 1000 serially connected cells and conveyor belt ca-

pacity up to 100. However, the runtime does not grow linearly in the number of connected

cells because of the complexity of the MustL and MinF heuristics. The preselection heuristic

MustL produces up to |Σ | candidates, and the evaluation of MinF takes time proportional to

the number of events of the candidate. Therefore, the complexity of the component selection

heuristic is quadratic in the number of events. The FSM-based algorithm has more events

to process and therefore suffers more from this effect, and in addition most of its runtime is

taken up by the flattening process. The difference is more noticeable when the conveyor belt

capacity increases than when the number of cells increases, because the number of events

grows quadratically in the size of the domain of the variable N and only linearly in the num-

ber of cells. The BDD algorithm cannot handle more than 60 serially connected cells and

therefore is not shown in these figures.

Table 2 shows the runtimes of the EFSM-based compositional nonblocking verification

algorithm using different heuristics for the selection of composition candidates and vari-

ables. In this experiment, the standard ordering of the heuristics is changed such that the

indicated heuristic is used first. In the maxS columns, the order of variable selection heuris-

tics is first maxS, then maxE, and finally minD; and in the minD columns, the order is first

minD, then maxE, and finally maxS.

The results suggest that, in many cases the variable ordering heuristics have little or no

effect on the runtime. On the other hand, while the algorithm fails to verify some of the

models using minS, it successfully verifies all the examples using minF. It appears that the

minF heuristic is better at increasing the number of local events and thus the possibility of

abstraction.
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Table 2 Runtimes with different composition candidate and variable selection heuristics.

minF minS

maxE maxS minD maxE maxS minD

pml3 〈2〉 2.88 s 3.10 s 3.01 s

pml3 〈3〉 6.34 s 33.99 s 6.42 s

prime-sieve4b 2.80 s 2.82 s 2.84 s 2.82 s 2.81 s 2.80 s

prime-sieve4 2.67 s 2.68 s 2.68 s 2.68 s 2.69 s 2.70 s

prime-sieve6 19.64 s 19.95 s 19.78 s 19.88 s 19.72 s 19.71 s

prime-sieve8 137.70 s 136.51 s 137.86 s 137.43 s 137.17 s 137.15 s

production-cell 0.84 s 0.85 s 0.86 s 0.74 s 0.75 s 0.74 s

profisafe-ihost-b 〈127〉 28.64 s 29.06 s 29.88 s 23.69 s 23.11 s 23.54 s

profisafe-ihost-b 〈255〉 101.19 s 102.04 s 97.70 s

psl-big 1.51 s 1.47 s 1.39 s 1.46 s 1.45 s 1.61 s

psl-b 5.49 s 8.14 s 84.10 s 9.42 s 9.46 s 112.44 s

psl-n 5.82 s 8.01 s 88.44 s 10.42 s 8.98 s 115.39 s

psl-restart 4.15 s 4.20 s 46.67 s 4.25 s 4.14 s 32.92 s

round-robin 〈300〉 69.72 s 68.97 s 69.74 s

round-robin 〈400〉 166.48 s 166.95 s 166.57 s

tline 〈3〉 98.56 s 96.69 s 97.06 s

tline-b 〈3〉 99.31 s 97.17 s 97.75 s

tline 〈4〉 156.22 s 155.91 s 155.93 s

tline-b 〈4〉 157.85 s 157.52 s 156.56 s

8 Conclusions

A general framework for compositional nonblocking verification of extended finite-state

machines (EFSMs) has been presented, which supports the verification of large models con-

sisting of several EFSMs that interact both via shared events and shared variables. Normali-

sation is introduced, which makes it possible to unfold arbitrary variables and apply abstrac-

tion methods developed previously for ordinary finite-state machines to EFSMs, without

the need to flatten the system and the associated overhead. Various methods of abstraction

are presented that simplify individual system components while preserving the nonblocking

property of the whole system.

These results are combined in an algorithm for compositional nonblocking verification

of EFSM systems. This algorithm gradually composes the system and applies conflict equiv-

alence abstraction to the components, unfolds variables, and removes events if possible.

The algorithm has been implemented and its performance compared with two other well-

developed algorithms. The experimental results suggest that the EFSM-based algorithm can

outperform FSM-based and BDD-based methods for large systems with complex update

formulas on their transitions.

In future work, the authors would like to improve the algorithm using better symbolic

abstractions and considering special properties of updates. Another area of interest is to

extend the method and apply it to the compositional synthesis of supervisors for EFSM

systems.
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Appendices

A Normalisation

This appendix contains the proofs of the propositions concerning normalisation presented in Section 4. First
Prop. 1 confirms that EFSMs obtained by normalised synchronous composition in Def. 14 and by standard
synchronous composition in Def. 9 produce identical flattened FSMs. Next, Prop. 2 confirms that the structure
of an EFSM system is preserved after normalisation of individual components. Finally, Prop. 3 confirms that
the normalised system is identical to the original system.

Proposition 1 Let E be a normalised EFSM system. Then U(‖E ) =U(‖̇E ).

Proof It follows from Defs. 9, 10, and 14 that U(‖E ) and U(‖̇E ) have the same event and state sets, including
initial and marked states. It remains to be shown that they also have the same transitions.

To show this, write E = {E1, . . . ,En}, and Σi = ΣEi
and ∆i = ∆Ei

for 1≤ i≤ n.

First let (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖E ). By Def. 10 this means (x1, . . . ,xn)

σ :p
−−→ (y1, . . . ,yn)

in ‖E such that ΞV (p)(v̂, ŵ) = T, where p ≡
∧

i:σ∈Σi
∆E (σ) by Def. 9 and by the fact that E is normalised.

Consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi. If σ ∈ Σi, then xi
σ :∆E (σ)
−−−−−→ yi in Ei. If σ /∈ Σi,

then xi = yi. Then (x1, . . . ,xn)
σ :∆E (σ)
−−−−−→ (y1, . . . ,yn) in ‖̇E by Def. 14, and as ΞV (

∧
i:σ∈Σi

∆E (σ))(v̂, ŵ) =

ΞV (p)(v̂, ŵ) = T, it holds that ΞV (∆E (σ))(v̂, ŵ) = T. Thus, (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖̇E ) by

Def. 10.
Conversely, assume (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in U(‖̇E ). By Def. 10 this means (x1, . . . ,xn)

σ :p
−−→

(y1, . . . ,yn) in ‖̇E such that ΞV (p)(v̂, ŵ) = T. Consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi. If

σ ∈ Σi, then by Def. 14 it follows that xi
σ :p
−−→ yi in Ei. If σ /∈ Σi, then xi = yi. By Def. 9, it follows that

(x1, . . . ,xn)
σ :

∧
i:σ∈Σi

p

−−−−−−→ (y1, . . . ,yn) in ‖E , and as ΞV (p)(v̂, ŵ) = T, it follows that ΞV (
∧

i:σ∈Σi
p)(v̂, ŵ) = T.

Thus, (x1, . . . ,xn, v̂)
σ :p
−−→ (y1, . . . ,yn, ŵ) in U(‖E ) by Def. 10. ⊓⊔

Proposition 2 Let E and F be EFSM systems, and let ρ : ΣF → ΣE be a renaming, such that E = {E1,
E2, . . . ,En} and F = {F1,ρ

−1(E2), . . . ,ρ
−1(En)} and ρ(F1) = E1. Then ρ(‖F ) = ‖E .

Proof Let

E = ‖E = E1 ‖ · · · ‖En ; (24)

F = ‖F = F1 ‖F2 ‖ · · · ‖Fn = F1 ‖ρ−1(E2)‖ · · · ‖ρ−1(En) . (25)

Clearly ΣE = ΣE = ρ(ΣF ) = ρ(ΣF ), and from ρ(F1) = E1 it follows that E and ρ(F) have the same state
sets, including initial and marked states. It remains to be shown that E and ρ(F) have the same transitions.

First assume (x1,x2, . . . ,xn)
σ :p
−−→ (y1,y2, . . . ,yn) in E =E1‖· · ·‖En. By Def. 9 it holds that p=

∧
i:σ∈ΣEi

pi

where xi
σ :pi−−→ yi in Ei whenever σ ∈ ΣEi

. Consider two cases.

– If σ ∈ ΣE1
then x1

σ :p1−−−→ y1 in E1. Since ρ(F1) = E1, there exists µ ∈ ΣF1
such that ρ(µ) = σ and

x1
µ :p1−−−→ y1 in F1. Now consider two cases for each 2 ≤ i ≤ n: either σ ∈ ΣEi

or σ /∈ ΣEi
. If σ ∈ ΣEi

then xi
σ :pi−−→ yi in Ei, and since ρ(µ) = σ it holds by Def. 16 that xi

µ :pi−−→ yi in ρ−1(Ei). If σ /∈ ΣEi
then

µ /∈ ρ−1(ΣEi
) = Σρ−1(Ei)

and xi = yi. Combining the above observations for all i, it follows by Def. 9

that (x1,x2, . . . ,xn)
µ :p
−−→ (y1,y2, . . . ,yn) in F , which implies (x1,x2, . . . ,xn)

σ :p
−−→ (y1,y2, . . . ,yn) in ρ(F).
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– If σ /∈ΣE1
then x1 = y1. As ρ is surjective by Def. 15, there exists µ ∈ΣF such that ρ(µ)=σ . Then since

ρ(ΣF1
)=ΣE1

, it holds that µ /∈ΣF1
. Now consider two cases for each 2≤ i≤ n: either σ ∈ΣEi

or σ /∈ΣEi
.

If σ ∈ ΣEi
then xi

σ :pi−−→ yi in Ei, and since ρ(µ) = σ it holds by Def. 16 that xi
µ :pi−−→ yi in ρ−1(Ei). If

σ /∈ ΣEi
then µ /∈ ρ−1(ΣEi

) = Σρ−1(Ei)
and xi = yi. Combining the above observations for all i, it follows

by Def. 9 that (x1,x2, . . . ,xn)
µ :p
−−→ (y1,y2, . . . ,yn) in F , which implies (x1,x2, . . . ,xn)

σ :p
−−→ (y1,y2, . . . ,yn)

in ρ(F).

Conversely assume (x1,x2, . . . ,xn)
σ :p
−−→ (y1,y2, . . . ,yn) in ρ(F). Then there exists µ ∈ ΣF such that

ρ(µ) = σ and (x1,x2, . . . ,xn)
µ :p
−−→ (y1,y2, . . . ,yn) in F . By Def. 9 it holds that p≡

∧
i:µ∈ΣFi

pi where xi
µ :pi−−→ yi

in Fi whenever µ ∈ ΣFi
. Consider two cases for E1:

– If µ ∈ ΣF1
then x1

µ :p1−−−→ y1 in F1. Since ρ(µ) = σ , it follows that x1
σ :p1−−−→ y1 in ρ(F1) = E1.

– If µ /∈ ΣF1
then σ = ρ(µ) /∈ ρ(ΣF1

) = ΣE1
and x1 = y1.

Now consider two cases for each 2≤ i≤ n:

– If σ ∈ ΣEi
then µ ∈ ρ−1(ΣEi

) = ΣFi
and therefore xi

µ :pi−−→ yi in Fi = ρ−1(Ei). Since ρ(µ) = σ , it holds

by Def. 16 that xi
σ :pi−−→ yi in Ei.

– If σ /∈ ΣEi
then µ /∈ ρ−1(ΣEi

) = ΣFi
and xi = yi.

Combining the above observations for 1≤ i≤ n, it follows by Def. 9 that (x1,x2, . . . ,xn)
σ :p
−−→ (y1,y2, . . . ,yn)

in E1 ‖ · · · ‖En = E. ⊓⊔

Proposition 3 Let E be an EFSM system such that each E ∈ E is normalised. Then ‖E = ‖̇N (E ).

Proof It follows from Defs. 9, 14, and 17 that ‖E and ‖̇N (E ) have the same event and state sets, including
initial and marked states. It remains to be shown that they also have the same transitions.

To show this, write E = {E1, . . . ,En}, and Σi = ΣEi
and ∆i = ∆Ei

for 1≤ i≤ n.

First assume (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖E . Then by Defs. 9 and 17, it holds that p≡

∧
i:σ∈Σi

∆i(σ)≡

∆N (E )(σ). Consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi. If σ ∈ Σi, then xi
σ :∆i(σ)
−−−−→ yi in Ei, and

since Ei and N (Ei) by Def. 17 have the same alphabet, it holds that xi

σ :∆N (E )(σ)
−−−−−−−→ yi in N (Ei). If σ /∈ Σi,

then σ is not in the alphabet of N (Ei) and xi = yi. Then (x1, . . . ,xn)
σ :∆N (E )(σ)
−−−−−−−→ (y1, . . . ,yn) in ‖̇N (E ) by

Def. 14, and as ∆N (E )(σ)≡ p, it holds that (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇N (E ).

Conversely, assume (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇N (E ) where p≡ ∆N (E )(σ)≡

∧
i:σ∈Σi

∆i(σ). Con-

sider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi. If σ ∈ Σi, then by Def. 14 it follows that xi
σ :p
−−→ yi

in N (Ei), and since Ei and N (Ei) have the same alphabet, it holds that xi
σ :∆i(σ)
−−−−→ yi in Ei. If σ /∈ Σi, then σ

is not in the alphabet of Ei and xi = yi. By Def. 9, it follows that (x1, . . . ,xn)
σ :

∧
i:σ∈Σi

∆i(σ)
−−−−−−−−−→ (y1, . . . ,yn) in ‖E ,

and as
∧

i:σ∈Σi
∆i(σ)≡ p, it holds that (x1, . . . ,xn)

σ :p
−−→ (y1, . . . ,yn) in ‖E . ⊓⊔

B EFSM-Based Compositional Verification

This appendix contains the proofs of the results concerning abstraction methods presented in Section 5.
Each of the following subsections contains the proofs for the propositions in the corresponding subsection of
Section 5.

B.1 FSM-Based Conflict Equivalence Abstraction

This section contains the proof of Prop. 5 in Section 5.1, which states that the nonblocking property of
an EFSM system is preserved when the FSM form of a single component is simplified subject to conflict
equivalence of FSMs. This proof requires modular reasoning about the unfolded EFSM system to exploit the
conflict equivalence of FSM forms.

This reasoning is facilitated using an alternative way to unfold an EFSM system, called modular unfold-

ing, where the variables are unfolded to a single variable FSM while the EFSMs are only replaced by their
FSM forms.
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Definition 27 Let E be a normalised EFSM system with variable set V = vars(E ). The variable FSM for E

is VE = 〈ΣE ,dom(V ),→V ,{v
◦},dom(V )〉 where v̂

σ
→V ŵ if ΞV (∆E (σ))(v̂, ŵ) = T.

Definition 28 Let E = {E1, . . . ,En} be a normalised EFSM system. The modular unfolding of E is

ϕ(E1)‖ · · · ‖ϕ(En)‖VE . (26)

The variable FSM VE has all possible valuations of the variables of E as its states and in its transitions
encodes all the constraints imposed by the updates. This makes it possible to replace each EFSM Ei by its
FSM form ϕ(Ei) according to Def. 19, resulting in the system (26) of FSMs that interact in standard FSM
synchronous composition (Def. 2). The following Lemma 13 shows that this modular unfolding is isomorphic
to the EFSM system unfolding U(E ). Then the modular unfolding can be used to decompose an EFSM system
into FSMs and prove Prop. 5.

Lemma 13 Let E = {E1, . . . ,En} be a normalised EFSM system. Then U(E ) = ϕ(E1)‖ · · · ‖ϕ(En)‖VE .

Proof Let E = {E1, . . . ,En} with Ei = 〈Σi,Qi,→ i,Q
◦
i ,Q

ω
i 〉, let E = U(E ) = U(‖̇E ) by Prop. 1, and let

F = ϕ(E1)‖· · ·‖ϕ(En)‖VE . Since Ei and ϕ(Ei) have the same alphabet Σi, it follows that ϕ(E1)‖· · ·‖ϕ(En)
and E also have the same alphabet ΣE =

⋃n
i=1 Σi. The alphabet of VE also is ΣE , which implies that ΣE =ΣE =

ΣF . Moreover, by Def. 27 it holds that QE =Q1× . . .×Qn×dom(V ) =QF , Q◦E =Q◦1× . . .×Q◦n×{v̂
◦}=Q◦F ,

and Qω
E = Qω

1 × . . .×Qω
n ×dom(V ) = Qω

F . It is left to show that→E =→F .

First let (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in E = U(‖̇E ). This means by Def. 10 that (x1, . . . ,xn)

σ :p
−−→

(y1, . . . ,yn) in ‖̇E where p ≡ ∆E (σ) and ΞV (p)(v̂, ŵ) = T. The latter means by Def. 27 that v̂
σ
→V ŵ in VE .

Now consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi. If σ ∈ Σi, it follows by Def. 14 that xi
σ :p
−−→

yi in Ei, which implies xi
σ
→ yi in ϕ(Ei). If σ /∈ Σi then xi = yi. Thus, (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in

ϕ(E1)‖ · · · ‖ϕ(En)‖VE = F .

Conversely, let (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in F = ϕ(E1)‖· · ·‖ϕ(En)‖VE . This means (x1, . . . ,xn)

σ
→

(y1, . . . ,yn) in ϕ(E1)‖ . . .‖ϕ(En) and v̂
σ
→ ŵ in VE . Consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi.

If σ ∈ Σi then by Def. 2 it follows that xi
σ
→ yi in ϕ(Ei). Then by Def. 19 it holds that xi

σ :p
−−→ yi in Ei, where

p ≡ ∆Ei
(σ) ≡ ∆E (σ) as E is normalised. If σ /∈ Σi then xi = yi. Thus, (x1, . . . ,xn)

σ :p
−−→ (y1, . . . ,yn) in ‖̇E

by Def. 14. Furthermore, as v̂
σ
→ ŵ in VE , it holds by Def. 27 that ΞV (p)(v̂, ŵ) = ΞV (∆E (σ))(v̂, ŵ) = T. It

follows by Def. 10 that (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖̇E ) = E. ⊓⊔

Proposition 5 Let E = {E1,E2, . . . ,En} be a normalised EFSM system and let ϒ ⊆ Σ1 such that (Σ2 ∪·· ·∪
Σn)∩ϒ = /0 and ∆E (σ)≡ true for all σ ∈ϒ . Let F = {F1,E2, . . . ,En} be a normalised EFSM system such
that ϕ(E1)\ϒ ≃conf ϕ(F1)\ϒ . Then E is nonblocking if and only if F is nonblocking.

Proof Let
ϕ(E1)\ϒ ≃conf ϕ(F1)\ϒ . (27)

Because of symmetry it is enough to show that, if E is nonblocking then F is nonblocking. Therefore assume
that E is nonblocking, which means that U(E ) is nonblocking. By Lemma 13,

U(E ) = ϕ(E1)‖ · · · ‖ϕ(En)‖VE (28)

is nonblocking. As ∆E (υ)≡ true for all υ ∈ϒ , it holds by Def. 27 that v̂
υ
→ v̂ in VE for all v̂ ∈ dom(vars(E ))

and all υ ∈ϒ , and these events appear on no other transitions in VE . These events are pure selfloop events
in VE and can be removed [29], i.e.,

U(E ) = ϕ(E1)‖ · · · ‖ϕ(En)‖VE = ϕ(E1)‖ · · · ‖ϕ(En)‖VE |Ω (29)

is nonblocking, where Ω = ΣE \ϒ . Now consider T = ϕ(E2) ‖ . . . ‖ ϕ(En) ‖VE |Ω . Then it follows from
(Σ2 ∪·· ·∪Σn)∩ϒ = /0 and Ω ∩ϒ = /0 that

(ϕ(E1)\ϒ )‖ϕ(E2)‖ . . .‖ϕ(En)‖VE |Ω (30)

is nonblocking. Note that VE =VF . Since ϕ(E1)\ϒ and ϕ(F1)\ϒ are conflict equivalent (27), it follows that

(ϕ(F1)\ϒ )‖ϕ(E2)‖ . . .‖ϕ(En)‖VF |Ω (31)

is nonblocking. Again since (Σ2 ∪ ·· ·∪Σn)∩ϒ = /0 and Ω ∩ϒ = /0 and the events in ϒ are pure selfloops in
VE =VF , it follows that

ϕ(F1)‖ϕ(E2)‖ . . .‖ϕ(En)‖VF |Ω = ϕ(F1)‖ϕ(E2)‖ . . .‖ϕ(En)‖VF =U(F ) (32)

is nonblocking, i.e., F is nonblocking. ⊓⊔
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B.2 Partial Composition

This section proves that the synchronous composition of two components in an EFSM system preserves the
nonblocking property of the system as stated in Prop. 6 in Section 5.2. In this proof, it is shown that the results
of unfolding before and after partial synchronous composition are not only equivalent but identical.

Proposition 6 (Partial Composition) Let E = {E1, . . . ,En} be an EFSM system, and let F = {E1 ‖̇E2,

E3, . . . ,En}. Then ‖̇E = ‖̇F .

Proof It follows from Def. 14 that ‖̇E and ‖̇F have the same event and state sets, including initial and
marked states. It remains to be shown that they also have the same transitions. Throughout the proof, let
Σi = ΣEi

for 1≤ i≤ n.

First, let

(x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) (33)

in ‖̇E . By Def. 14, this means for each 1 ≤ i ≤ n that either σ ∈ Σi and xi
σ :p
−−→ yi or σ /∈ Σi and xi = yi.

Consider four cases for E1 and E2.

– If σ ∈ Σ1∩Σ2, then x1
σ :p
−−→ y1 in E1 and x2

σ :p
−−→ y2 in E2, and by Def. 14 it holds that (x1,x2)

σ :p
−−→ (y1,y2)

in E1 ‖̇E2.

– If σ ∈ Σ1 \Σ2, then x1
σ :p
−−→ y1 in E1 and x2 = y2, and by Def. 14 it holds that (x1,x2)

σ :p
−−→ (y1,x2) =

(y1,y2) in E1 ‖̇E2.

– If σ ∈ Σ2 \Σ1, then x1 = y1 and x2
σ :p
−−→ y2 in E2, and by Def. 14 it holds that (x1,x2)

σ :p
−−→ (x1,y2) =

(y1,y2) in E1 ‖̇E2.

– If σ /∈ Σ1 ∪Σ2, then σ is not in the alphabet of E1 ‖̇E2 and (x1,x2) = (y1,y2).

Combining the above observations for E1 ‖̇E2 and E3, . . . ,En, it follows by Def. 14 that ((x1,x2),x3, . . . ,

xn)
σ :p
−−→ ((y1,y2),y3, . . . ,yn) in ‖̇F .

Conversely, let

((x1,x2),x3, . . . ,xn)
σ :p
−−→ ((y1,y2),y3, . . . ,yn) (34)

in ‖̇F . Consider four cases for E1 and E2.

– If σ ∈ Σ1 ∩Σ2, then by Def. 14 it holds that (x1,x2)
σ :p
−−→ (y1,y2) in E1 ‖̇E2, and furthermore x1

σ :p
−−→ y1

in E1 and x2
σ :p
−−→ y2 in E2.

– If σ ∈ Σ1 \Σ2, then by Def. 14 it holds that (x1,x2)
σ :p
−−→ (y1,y2) in E1 ‖̇E2, and furthermore x1

σ :p
−−→ y1

in E1 and σ /∈ Σ2 and x2 = y2.

– If σ ∈ Σ2 \Σ1, then by Def. 14 it holds that (x1,x2)
σ :p
−−→ (y1,y2) in E1 ‖̇E2, and furthermore σ /∈ Σ1 and

x1 = y1 and x2
σ :p
−−→ y2 in E2 and

– if σ /∈ Σ1 ∪Σ2, then by Def. 14 it holds that x1 = x2 and y1 = y2.

Furthermore, for 3≤ i≤ n it follows from (34) by Def. 14 that either σ ∈Σi and xi
σ :p
−−→ yi or σ /∈Σi and xi = yi.

Combining the above observations for E1, . . . ,En, it follows by Def. 14 that (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn)

in ‖̇F . ⊓⊔

B.3 Update Simplification

This section proves the correctness of update simplification as stated in Prop. 7 in Section 5.3. The proof uses
the following lemma, which shows two EFSM systems with logically equivalent updates with respect to all
variables have isomorphic monolithic flattening results.

Lemma 14 Let E = {E1, . . . ,En} and F = {F1, . . . ,Fn} be normalised EFSM systems with Ei = 〈Σi,Qi,

→E
i ,Q

◦
i ,Q

ω
i 〉 and Fi = 〈Σi,Qi,→

F
i ,Q

◦
i ,Q

ω
i 〉. Let V = vars(E ) = vars(F ) and ∆E (σ)⇔V ∆F (σ) for all

σ ∈ ΣE = ΣF , and→F
i = {(x,σ ,∆F (σ),y) | x

σ :∆E (σ)
−−−−−→E

i y}. Then U(E ) =U(F ).
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Proof Clearly, U(E ) and U(F ) by construction both have the same event alphabet ΣE , and they have the

same state sets, including initial and marked states. Also note that E and F are normalised, so U(E )=U(‖̇E )

and U(F ) = U(‖̇F ) by Prop. 1. It remains to be shown that U(E ) and U(F ) have the same transitions.

Because of symmetry it is enough to show that, if (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) then (x1, . . . ,xn,

v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(F ).

Assume (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) =U(‖̇E ). By Def. 10, this means (x1, . . . ,xn)

σ :∆E (σ)
−−−−−→

(y1, . . . ,yn) in ‖̇E and ΞV (∆E (σ))(v̂, ŵ) = T. Then by construction, (x1, . . . ,xn)
σ :∆F (σ)
−−−−−→ (y1, . . . ,yn) in ‖̇F

and ∆E (σ)⇔V ∆F (σ). The latter means ΞV (∆E (σ))⇔ ΞV (∆F (σ)) by Def. 20, i.e., ΞV (∆F (σ))(v̂, ŵ) =

ΞV (∆E (σ))(v̂, ŵ) = T. It follows by Def. 10 that (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖̇F ) =U(F ). ⊓⊔

Proposition 7 (Update Simplification) Let E = {E1, . . . ,En} and F = {F1, . . . ,Fn} be normalised EFSM
systems with Ei = 〈Σi,Qi,→

E
i ,Q

◦
i ,Q

ω
i 〉 and Fi = 〈Σi,Qi,→

F
i ,Q

◦
i ,Q

ω
i 〉. Let V = vars(E ) = vars(F ) and

∆E (σ)⇔V ∆F (σ) for all σ ∈ ΣE = ΣF , and→F
i = {(x,σ ,∆F (σ),y) | x

σ :∆E (σ)
−−−−−→E

i y}. Then E is nonblock-
ing if and only if F is nonblocking.

Proof By Def. 11, E is nonblocking if and only if U(E ) is nonblocking, and F is nonblocking if and only
if U(F ) is nonblocking; and by Lemma 14, it holds that U(E ) =U(F ). It follows that E is nonblocking if
and only if F is nonblocking. ⊓⊔

B.4 Variable Unfolding

This section proves that unfolding of a variable in an EFSM system preserves the nonblocking property of
the system as stated in Prop. 8 in Section 5.4. The key step to prove this result is contained in Lemma 15,
which shows that the FSMs obtained from completely unfolding the system before and after partial unfolding
have essentially the same transition relations. The link between these transition relations is established by
extending or restricting valuations to add or remove the variable to be unfolded. The following two definitions
are needed for this purpose.

Definition 29 Let v̂ : V →D be a valuation. For a variable set W ⊆V , the restriction v̂|W : W →D is defined
by v̂|W [v] = v̂[v] for all v ∈W .

Definition 30 Let V = V1 ∪̇V2 be a variable set, and let v̂1 : V1 → D1 and v̂2 : V2 → D2 be two valuations.
The extension v̂1⊕ v̂2 : V → D1 ∪D2 is defined by

(v̂1⊕ v̂2)[v] =

{
v̂1[v], if v ∈V1 ;

v̂2[v], if v ∈V2 .
(35)

Lemma 15 Let E = {E1, . . . ,En} be a normalised EFSM system and z ∈ vars(E ). Then (a,x1, . . . ,xn, v̌)
σ
→

(b,x1, . . . ,xn, w̌) in ρz(U(E \ z)) if and only if (x1, . . . ,xn, v̌⊕{z 7→ a})
σ
→ (x1, . . . ,xn, w̌⊕{z 7→ b}) in U(E ).

Proof Let V = vars(E ), and let v̂ = v̌⊕{z 7→ a} and ŵ = w̌⊕{z 7→ b}, which means v̂[z] = a and ŵ[z] = b.
Also write Ei = 〈Σi,Qi,→i,Q

◦
i ,Q

ω
i 〉 for 1≤ i≤ n. Note that E and E \z are normalised, so by Prop. 1 it holds

that U(E ) =U(‖̇E ) and U(E \ z) =U(‖̇(E \ z)).

First let (a,x1, . . . ,xn, v̌)
σ
→ (b,y1, . . . ,yn, w̌) in ρz(U(E \ z)) = ρz(U(‖̇E \ z)). Note that E \ z = {UE (z),

Uz(E1), · · · ,Uz(En)} by Def. 24. Consider two cases.

(i) σ ∈ Σz. Then z ∈ vars(∆E (σ)) by Def. 22, and (a,x1, . . . ,xn, v̌)
(σ ′,a′ ,b′)
−−−−−→ (b,y1, . . . ,yn, w̌) in U(E \ z) =

U(‖̇(E \ z)) for some (σ ′,a′,b′) ∈Uz(Σz) such that ρz((σ
′,a′,b′)) = σ . By definition of ρz it holds that

σ ′ = σ . By Def. 10, it holds that

(a,x1, . . . ,xn)
(σ ,a′ ,b′) :∆E \z((σ ,a′,b′))
−−−−−−−−−−−−−−→ (b,y1, . . . ,yn) in ‖̇ (E \ z) =UE (z) ‖̇Uz(E1) ‖̇ · · · ‖̇Uz(En) (36)

and ΞV\{z}(∆E \z((σ ,a′,b′)))(v̌, w̌) =T. As (σ ,a′,b′) = (σ ′,a′,b′)∈Uz(Σz) is in the alphabet of UE (z),
it follows that

a
(σ ,a′ ,b′) :∆E \z((σ ,a′,b′))
−−−−−−−−−−−−−−→ b in UE (z) . (37)
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Then it follows from Def. 22 that a′ = a and b′ = b, and ∆E \z((σ ,a,b))≡ Ξ{z}(∆E (σ))[z 7→ a,z′ 7→ b].
Note that

ΞV (∆E (σ))(v̂, ŵ) = ΞV (∆E (σ))(v̌⊕{z 7→ a}, w̌⊕{z 7→ b})

= ΞV\{z}(Ξ{z}(∆E (σ)))(v̌⊕{z 7→ a}, w̌⊕{z 7→ b})

= ΞV\{z}(Ξ{z}(∆E (σ)))[z 7→ a,z′ 7→ b](v̌, w̌)

= ΞV\{z}(Ξ{z}(∆E (σ))[z 7→ a,z′ 7→ b])(v̌, w̌)

= ΞV\{z}(∆E \z((σ ,a,b)))(v̌, w̌)

= ΞV\{z}(∆E \z((σ ,a′,b′)))(v̌, w̌)

= T .

Now consider some Ei with 1 ≤ i ≤ n. If σ ∈ Σi then since σ ∈ Σz also (σ ,a′,b′) ∈ Uz(Σi) so that

(σ ,a′,b′) is in the alphabet of Uz(Ei) by Def. 23. It follows from (36) that xi

(σ ,a′ ,b′):∆E \z((σ ,a′ ,b′))
−−−−−−−−−−−−−−→ yi

in Uz(Ei), which implies xi
σ :∆E (σ)
−−−−−→ yi in Ei by Def. 23. Otherwise, if σ /∈ Σi then (σ ,a′,b′) is not in

the alphabet of Uz(Ei) and xi = yi. Having shown the above for all 1 ≤ i ≤ n, it can be concluded by

Def. 14 that (x1, . . . ,xn)
σ :∆E (σ)
−−−−−→ (y1, . . . ,yn) in E1 ‖̇ · · · ‖̇En = ‖̇E .

(ii) σ /∈ Σz. Then z /∈ vars(∆E (σ)) by Def. 22, and (a,x1, . . . ,xn, v̌)
σ ′
→ (b,y1, . . . ,yn, w̌) in U(E \ z) =

U(‖̇(E \ z)) for some σ ′ ∈ ΣE \z \Uz(Σz) such that ρz(σ
′) = σ . By definition of ρz it holds that

σ ′ = σ ∈ ΣE . By Def. 10, it holds that

(a,x1, . . . ,xn)
σ :∆E \z(σ)
−−−−−−→ (b,y1, . . . ,yn) in ‖̇ (E \ z) =UE (z) ‖̇Uz(E1) ‖̇ · · · ‖̇Uz(En) (38)

and ΞV\{z}(∆E \z(σ))(v̌, w̌) = T. As σ ∈ ΣE , it is clear that σ /∈Uz(Σz) and thus σ is not in the alphabet

of UE (z), which implies a = b. Also by (38), there must exist i such that xi

σ :∆E \z(σ)
−−−−−−→ yi in Uz(Ei),

which given σ ∈ ΣE implies xi

σ :∆E \z(σ)
−−−−−−→ yi in Ei by Def. 23 where ∆E \z(σ) ≡ ∆E (σ) as E is nor-

malised. As z /∈ vars(∆E (σ)), it holds that ΞV (∆E (σ))(v̂, ŵ) = ΞV (∆E (σ))(v̌⊕{z 7→ a}, w̌⊕{z 7→
b}) = ΞV\{z}(∆E (σ))(v̌, w̌) = ΞV\{z}(∆E \z(σ))(v̌, w̌) = T.

Now consider some Ei with 1≤ i≤ n. If σ ∈Σi then since σ /∈Σz it follows from (38) that xi

σ :∆E \z(σ)
−−−−−−→ yi

in Uz(Ei), which implies xi
σ :∆E (σ)
−−−−−→ yi in Ei by Def. 23. Otherwise, if σ /∈Σi then σ is not in the alphabet

of Uz(Ei) and xi = yi. Having shown the above for all 1 ≤ i ≤ n, it can be concluded by Def. 14 that

(x1, . . . ,xn)
σ :∆E (σ)
−−−−−→ (y1, . . . ,yn) in E1 ‖̇ · · · ‖̇En = ‖̇E .

In both cases, it has been shown that (x1, . . . ,xn)
σ :∆E (σ)
−−−−−→ (y1, . . . ,yn) in ‖̇E and ΞV (∆E (σ))(v̂, ŵ)=T. Then it

follows by Def. 10 that (x1, . . . ,xn, v̌⊕{z 7→ a}) = (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) = (y1, . . . ,yn, w̌⊕{z 7→ b})

in U(‖̇E ) =U(E ).

Conversely let (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) =U(‖̇E ). Then it holds by Def. 10 that

(x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇E = E1 ‖̇ · · · ‖̇En (39)

where p≡ ∆E (σ) and ΞV (p)(v̂, ŵ) = T. Consider two cases.

(i) σ ∈ Σz. Note that z∈ vars(∆E (σ)) = vars(p). Then by Def. 22 it holds that a
(σ ,a,b):p′
−−−−−→ b in UE (z) where

p′ ≡ Ξ{z}(p)[z 7→ a,z′ 7→ b] and ρz((σ ,a,b)) = σ . Note that ΞV\{z}(p′)(v̌, w̌) = ΞV\{z}(Ξ{z}(p))[z 7→

a,z′ 7→ b])(v̌, w̌)= (ΞV (p)[z 7→ a,z′ 7→ b])(v̌, w̌)=ΞV (p)(v̌⊕{z 7→ b}, w̌⊕{z 7→ b})=ΞV (p)(v̂, ŵ)=T.

Now consider some Ei with 1≤ i≤ n. If σ ∈ Σi, it follows from (39) that xi
σ :p
−−→ yi in Ei, which implies

xi
(σ ,a,b):p′
−−−−−→ yi in Uz(Ei) by Def. 23 as σ ∈ Σz. Otherwise, if σ /∈ Σi then σ is not in the alphabet of Ei

and xi = yi. Having shown the above for all 1≤ i≤ n, it can be concluded by Def. 14 that

(a,x1, . . . ,xn)
(σ ,a,b):p′
−−−−−→ (b,y1, . . . ,yn) in UE (z) ‖̇Uz(E1) ‖̇ · · · ‖Uz(En) = ‖̇(E \ z) . (40)

Since ΞV\{z}(p′)(v̌, w̌) = T, it follows by Def. 10 that (a,x1, . . . ,xn, v̌)
(σ ,a,b):p′
−−−−−→ (b,y1, . . . ,yn, w̌) in

U(‖̇(E \ z)) =U(E \ z), which implies (a,x1, . . . ,xn, v̌)
σ
→ (b,y1, . . . ,yn, w̌) in ρz(U(E \ z)).
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(ii) σ /∈ Σz. In this case, by Def. 22 it holds that z /∈ vars(∆E (σ)) = vars(p) and ρz(σ) = σ ∈ ΣE is not in

the alphabet of UE (z). Consider some Ei with 1 ≤ i ≤ n. If σ ∈ Σi, it follows from (39) that xi
σ :p
−−→ yi

in Ei, which implies xi
σ :p
−−→ yi in Uz(Ei) by Def. 23 as σ ∈ Σi \Σz. Otherwise, if σ /∈ Σi then σ is not in

the alphabet of Ei and xi = yi. Having shown the above for all 1≤ i≤ n, it can be concluded by Def. 14
that

(a,x1, . . . ,xn)
σ :p
−−→ (a,y1, . . . ,yn) in UE (z) ‖̇Uz(E1) ‖̇ · · · ‖̇Uz(En) = ‖̇(E \ z) . (41)

From ΞV (p)(v̂, ŵ) = T and z /∈ vars(p) ⊇ vars′(p), it follows that (z′ = z)(v̂, ŵ) = T. This means a =
v̂[z] = ŵ[z] = b and ΞV\{z}(p)(v̌, w̌) = ΞV (p)(v̂, ŵ) = T. Then by Def. 10, it holds that (a,x1, . . . ,xn,

v̌)
σ
→ (a,y1, . . . ,yn, w̌) = (b,y1, . . . ,yn, w̌) in U(‖̇(E \ z)) = U(E \ z), which given ρz(σ) = σ implies

(a,x1, . . . ,xn, v̌)
σ
→ (b,y1, . . . ,yn, w̌) in ρz(U(E \ z)). ⊓⊔

Proposition 8 (Variable Unfolding) Let E be a normalised EFSM system, and let z ∈ vars(E ). Then E is
nonblocking if and only if E \ z is nonblocking.

Proof Let E = {E1, . . . ,En}, let E \ z = {UE (z),Uz(E1), . . . ,Uz(En), according to Def. 24, and let ρz : ΣE ∪
Uz(Σz)→ ΣE be the variable renaming map according to Def. 22.

First assume E is nonblocking, which implies U(E ) is nonblocking. It will be shown that ρz(U(E \z)) is

nonblocking. Assume (a0,x0
1, . . . ,x

0
n, v̌

0)
σ1→ ·· ·

σm→ (al ,xl
1, . . . ,x

l
n, v̌

l) in ρz(U(E \ z)). From Lemma 15 it fol-

lows that (x0
1, . . . ,x

0
n, v̌

0⊕{z 7→ a0})
σ1→ ·· ·

σm→ (xl
1, . . . ,x

l
n, v̌

l⊕{z 7→ al}) in U(E ). Since U(E ) is nonblocking,

there exists a path (xl
1, . . . ,x

l
n, v̂

l)
σl+1
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , v̂

m) in U(E ) such that (xm
1 , . . . ,x

m
n )∈Qω

1 ×·· ·×Qω
n .

From Lemma 15 it follows that (al ,xl
1, . . . ,x

l
n, v̌

l)
σl+1
−−→ ·· ·

σl→ (am,xm
1 , . . . ,x

m
n , v̌

m) in ρz(U(E \ z)) such that

(xm
1 , . . . ,x

m
n ) ∈Qω

1 ×·· ·×Qω
n and v̂i = v̌i⊕{z 7→ ai} for l+1≤ i≤m. Since (xl

1, . . . ,x
l
n, v̂

l) was chosen arbi-
trarily, it holds that ρz(U(E \z)) is nonblocking. Since renaming preserves nonblocking, it holds that U(E \z)
is nonblocking, which implies that E \ z is nonblocking.

Conversely assume E \ z is nonblocking. Then U(E \ z) is nonblocking, which implies ρz(U(E \ z))

is nonblocking. It will be shown that U(E ) is nonblocking. Assume (x0
1, . . . ,x

0
n, v̂

0)
σ1→ ·· ·

σm→ (xl
1, . . . ,x

l
n, v̂

l)

in U(E ). From Lemma 15, it follows that (a0,x0
1, . . . ,x

0
n, v̌

0)
σ1→·· ·

σm→ (al ,xl
1, . . . ,x

l
n, v̌

l) in ρz(U(E \z)), where

v̂i = v̌i⊕{z 7→ ai} for 0≤ i≤ l. Since ρz(U(E \ z)) is nonblocking, there exists a path (al ,xl
1, . . . ,x

l
n, v̌

l)
σl+1
−−→

·· ·
σm→ (am,xm

1 , . . . ,x
m
n , v̌

m) in ρz(U(E \ z)) such that (xm
1 , . . . ,x

m
n ) ∈Qω

1 ×·· ·×Qω
n . From Lemma 15 it follows

that (xl
1, . . . ,x

l
n, v̌

l ⊕{z 7→ al})
σl+1
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , v̌

m ⊕{z 7→ am}) in U(E ) such that (xm
1 , . . . ,x

m
n ) ∈

Qω
1 ×·· ·×Qω

n . Since (xl
1, . . . ,x

l
n, v̂

l) was chosen arbitrarily, it follows that U(E ) is nonblocking, which implies
that E is nonblocking. ⊓⊔

B.5 Event Simplification

This section contains proofs of correctness of the event removal and merging operations in Props. 9–12
in Section 5.5. The common approach to prove that abstractions such as these preserve the nonblocking
property of an EFSM system, is to show that for each path in the EFSM system before abstraction there exists
a corresponding path after abstraction, and vice versa.

First, to prove Prop. 9, which states that false-removal preserves the nonblocking property, it is shown
in Lemma 16 that every path in any EFSM system resulting from restriction can be lifted to a path in the
original system, and conversely it is shown in Lemma 17 that paths in an EFSM system also exist in a system
resulting from false-removal.

Lemma 16 Let E = {E1, . . . ,En} be a normalised EFSM system, let Ω ⊆ ΣE , and let û ∈ dom(vars(E ) \

vars(E|Ω )). Then (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E|Ω ) implies (x1, . . . ,xn, v̂⊕ û)

σ
→ (y1, . . . ,yn, ŵ⊕ û)

in U(E ).

Proof Let F = E|Ω and V = vars(E ) and W = vars(E|Ω )⊆ vars(E ) =V .

Assume (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(F ) = U(‖̇F ). Then σ ∈ Ω , and by Def. 10 it holds that

(x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇F with p≡ ∆F (σ) and ΞW (p)(v̂, ŵ) = T. By Def. 14, it holds that xi

σ :p
−−→ yi

in Ei |Ω for each i such that 1≤ i≤ n and σ ∈ ΣEi
, with p≡ ∆F (σ) and vars(p)⊆ vars(F ) = vars(E|Ω ) =W .
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As → |Ω ⊆ →, it follows that xi
σ :p
−−→ yi in Ei for each i such that σ ∈ ΣEi

. This shows (x1, . . . ,xn)
σ :p
−−→

(y1, . . . ,yn) in ‖̇E by Def. 14. As furthermore ΞW (p)(v̂, ŵ) = T and vars′(p) ⊆ vars(p) ⊆W , it holds that

ΞV (p)(v̂⊕ û, ŵ⊕ û) = T. Thus, (x1, . . . ,xn, v̂⊕ û)
σ
→ (y1, . . . ,yn, ŵ⊕ û) in U(‖̇E ) =U(E ) by Def. 10. ⊓⊔

Lemma 17 Let E be a normalised EFSM system, and let Λ ⊆ ΣE be a set of events such that for all λ ∈Λ
at least one of the following conditions holds:

(i) ∆E (λ )≡ false;

(ii) There exists E ∈ E such that λ ∈ ΣE , but there does not exist any transition x
λ :p
−−→ y in E.

Also let W = vars(E|ΣE \Λ
). Then (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in U(E ) implies (x1, . . . ,xn, v̂|W )

σ
→ (y1, . . . ,

yn, ŵ|W ) in U(E|ΣE \Λ
).

Proof Let E = {E1, . . . ,En} and Ω = ΣE \Λ and F = E|Ω and V = vars(E ). It is clear that W = vars(E|Ω )⊆
vars(E ) =V .

Assume (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) = U(‖̇E ). By Def. 10, it follows that (x1, . . . ,xn)

σ :p
−−→

(y1, . . . ,yn) in ‖̇E with p ≡ ∆E (σ) and ΞV (p)(v̂, ŵ) = T. Note that σ ∈ Λ cannot hold, because if σ ∈
Λ , then either (i) p ≡ ∆E (σ) ≡ false in contradiction to ΞV (p)(v̂, ŵ) = T, or (ii) there exists E = Ek ∈ E

such that σ ∈ ΣE and xk
σ :p
−−→ yk in E = Ek does not hold, in contradiction to (x1, . . . ,xn)

σ :p
−−→ (y1, . . . ,yn)

in ‖̇E by Def. 9. Thus σ ∈ Ω and (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇E|Ω = ‖̇F . As also ΞV (p)(v̂, ŵ) = T and

vars′(p) ⊆ vars(p) ⊆ vars(E|Ω ) = W , it follows that ΞW (p)(v̂|W , ŵ|W ) = T. Thus, by Def. 10 it holds that

(x1, . . . ,xn, v̂|W )
σ
→ (y1, . . . ,yn, ŵ|W ) in U(‖̇F ) =U(F ) =U(E|Ω ). ⊓⊔

Proposition 9 (false-Removal) Let E be a normalised EFSM system, and let Λ ⊆ ΣE be a set of events
such that for all λ ∈Λ at least one of the following conditions holds:

(i) ∆E (λ )≡ false;

(ii) There exists E ∈ E such that λ ∈ ΣE , but there does not exist any transition x
λ :p
−−→ y in E.

Then E is nonblocking if and only if E|ΣE \Λ
is nonblocking.

Proof Note that E and thus E|ΣE \Λ
are normalised, so U(E ) = U(‖̇E ) and U(E|ΣE \Λ

) = U(‖̇E|ΣE \Λ
) by

Prop. 1.
Assume E is nonblocking, which means that U(E ) is nonblocking. It will be shown that U(E|ΣE \Λ

) is

nonblocking. Let (x◦1, . . . ,x
◦
n, v̂
◦)

σ1→ (x1
1, . . . ,x

1
n, v̂

1)
σ2→·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l) in U(E|ΣE \Λ
) =U(‖̇E|ΣE \Λ

) where

(x◦1, . . . ,x
◦
n) ∈ Q◦1 × ·· · ×Q◦n. By Lemma 16, it follows that (x0

1, . . . ,x
0
n, v̂
◦ ⊕ û◦)

σ1→ (x1
1, . . . ,x

1
n, v̂

1 ⊕ û◦)
σ2→

·· ·
σl→ (xl

1, . . . ,x
l
n, v̂

l ⊕ û◦) in U(‖̇E ). Since U(E ) = U(‖̇E ) is nonblocking, there exists a path (xl
1, . . . ,x

l
n,

v̂l⊕ û◦)
σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1)

σl+2
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , ŵ

m) in U(‖̇E ) such that (xm
1 , . . . ,x

m
n )∈Qω

1 ×·· ·×

Qω
n . From Lemma 17 and as (v̂l ⊕ û◦)|W = v̂l , it follows that (xl

1, . . . ,x
l
n, v̂

l)
σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1

|W )
σl+2
−−→

·· ·
σm→ (xm

1 , . . . ,x
m
n , v̂

m
|W ) in U(‖̇E|ΣE \Λ

) and (xm
1 , . . . ,x

m
n ) ∈ Qω

1 × ·· · ×Qω
n . Since (xl

1, . . . ,x
l
n, v̂

l) was chosen

arbitrarily, it follows that U(‖̇E|ΣE \Λ
) =U(E|ΣE \Λ

) is nonblocking, i.e., E|ΣE \Λ
is nonblocking.

Conversely assume E|ΣE \Λ
is nonblocking, which means that U(E|ΣE \Λ

) is nonblocking. Let (x◦1, . . . ,x
◦
n,

v̂◦)
σ1→ (x1

1, . . . ,x
1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l) in U(E ) = U(‖̇E ) where (x◦1, . . . ,x
◦
n) ∈ Q◦1 × ·· · ×Q◦n. By

Lemma 17, it holds that (x◦1, . . . ,x
◦
n, v̂
◦
|W )

σ1→ (x1
1, . . . ,x

1
n, v̂

1
|W )

σ2→ ·· ·
σl→ (xl

1, . . . ,x
l
n, v̂

l
|W ) in U(‖̇E|ΣE \Λ

). As

U(‖̇E|ΣE \Λ
)=U(E|ΣE \Λ

) is nonblocking, there exists a path (xl
1, . . . ,x

l
n, v̂

l
|W )

σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1)

σl+2
−−→

·· ·
σm→ (xm

1 , . . . ,x
m
n , ŵ

m) in U(‖̇E|ΣE \Λ
) such that (xm

1 , . . . ,x
m
n ) ∈ Qω

1 × ·· · ×Qω
n . By Lemma 16, it follows

that (xl
1, . . . ,x

l
n, v̂

l) = (xl
1, . . . ,x

l
n, v̂

l
|W ⊕ v̂l

|V\W )
σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1 ⊕ v̂l

|V\W )
σl+2
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n ,

ŵm ⊕ v̂l
|V\W ) in U(‖̇E ) and (xm

1 , . . . ,x
m
n ) ∈ Qω

1 × ·· · ×Qω
n . As (xl

1, . . . ,x
l
n, v̂

l) was chosen arbitrarily, it fol-

lows that U(‖̇E ) =U(E ) is nonblocking, i.e., E is nonblocking. ⊓⊔

As selfloop removal is also defined using restriction, the proof of Prop. 10 again uses Lemma 16 to lift
paths from an abstracted system to the original system. For the converse, the following Lemma 18 shows that
a path in the original system also exists in the abstracted system after selfloop removal, except possibly for
the deletion of some selfloops.
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Lemma 18 Let E = {E1, . . . ,En} be a normalised EFSM system with event alphabet ΣE = Ω ∪̇Λ , which is

selfloop-only for Λ . Then (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) implies (x1, . . . ,xn, v̂|W )

PΩ (σ)
−−−−→ (y1, . . . ,yn,

ŵ|W ) in U(E|Ω ) where W = vars(E|Ω ).

Proof Let V = vars(E ). Clearly W = vars(E|Ω )⊆ vars(E ) =V .

Assume that (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) = U(‖̇E ). Then by Def. 10 it holds that (x1, . . . ,

xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇E with p≡ ∆E (σ) and ΞV (p)(v̂, ŵ) = T. By Def. 14 it holds that xi

σ :p
−−→ yi for each i

such that 1 ≤ i ≤ n and σ ∈ ΣEi
, and xi = yi for each i such that 1 ≤ i ≤ n and σ /∈ ΣEi

. Consider two cases
for σ : either σ ∈Λ or σ /∈Λ .

– If σ ∈ Λ then PΩ (σ) = ε , and since each Ei is selfloop-only for σ ∈ Λ , it follows from xi
σ :p
−−→ yi in Ei

that xi = yi and vars′(p) = /0. From vars′(p) = /0 and ΞV (p)(v̂, ŵ) =T it follows that v̂= ŵ, which implies

v̂|W = ŵ|W . Given PΩ (σ) = ε , it follows that (x1, . . . ,xn, v̂|W )
PΩ (σ)
−−−−→ (x1, . . . ,xn, v̂|W ) = (y1, . . . ,yn, ŵ|W )

in U(‖̇E|Ω ) =U(E|Ω ).

– If σ /∈ Λ then PΩ (σ) = σ . In this case, it follows from xi
σ :p
−−→ yi in Ei that xi

σ :p
−−→ yi in Ei |Ω , and

thus (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖̇E|Ω . As this transition is in ‖̇E|Ω , it holds that vars′(p)⊆ vars(p)⊆

vars(‖̇E|Ω ) = vars(E|Ω ) =W , so it follows from ΞV (p)(v̂, ŵ) =T that ΞW (p)(v̂|W , ŵ|W ) =T. By Def. 10,

it follows that (x1, . . . ,xn, v̂|W )
PΩ (σ)
−−−−→ (y1, . . . ,yn, ŵ|W ) in U(‖̇E|Ω ) =U(E|Ω ). ⊓⊔

Proposition 10 (Selfloop Removal) Let E be a normalised EFSM system that is selfloop-only for Λ ⊆ΣE .
Then E is nonblocking if and only if E|ΣE \Λ

is nonblocking.

Proof Let E = {E1, . . . ,En} and Ω = ΣE \Λ and V = vars(E ) and W = vars(E|Ω ).
Assume E is nonblocking, which means that U(E ) is nonblocking. It will be shown that U(E|Ω ) is non-

blocking. Let (x◦1, . . . ,x
◦
n, v̂
◦)

σ1→ (x1
1, . . . ,x

1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l) in U(E|Ω ) =U(‖̇E|Ω ) where (x◦1, . . . ,

x◦n) ∈ Q◦1 × ·· · ×Q◦n. By Lemma 16, it follows that (x0
1, . . . ,x

0
n, v̂
◦ ⊕ û◦)

σ1→ (x1
1, . . . ,x

1
n, v̂

1 ⊕ û◦)
σ2→ ·· ·

σl→

(xl
1, . . . ,x

l
n, v̂

l ⊕ û◦) in U(‖̇E ). Since U(E ) = U(‖̇E ) is nonblocking, there exists a path (xl
1, . . . ,x

l
n, v̂

l ⊕

û◦)
σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1)

σl+2
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , ŵ

m) in U(‖̇E ) such that (xm
1 , . . . ,x

m
n ) ∈ Qω

1 × ·· · ×

Qω
n . From Lemma 18 and since (v̂l ⊕ û◦)|W = v̂l , it follows that (xl

1, . . . ,x
l
n, v̂

l)
PΩ (σl+1)
−−−−−→ (xl+1

1 , . . . ,xl+1
n ,

ŵl+1
|W )

PΩ (σl+2)
−−−−−→ ·· ·

PΩ (σm)
−−−−→ (xm

1 , . . . ,x
m
n , v̂

m
|W ) in U(‖̇E|Ω ) and (xm

1 , . . . ,x
m
n ) ∈Qω

1 ×·· ·×Qω
n . Since (xl

1, . . . ,x
l
n,

v̂l) was chosen arbitrarily, it follows that U(‖̇E|Ω ) =U(E|Ω ) is nonblocking, i.e., E|Ω is nonblocking.

Conversely assume E|Ω is nonblocking, which means that U(E|Ω ) is nonblocking. Let (x◦1, . . . ,x
◦
n, v̂
◦)

σ1→

(x1
1, . . . ,x

1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l) in U(E ) =U(‖̇E ) where (x◦1, . . . ,x
◦
n) ∈ Q◦1×·· ·×Q◦n. By Lemma 18,

it holds that (x◦1, . . . ,x
◦
n, v̂
◦
|W )

PΩ (σ1)
−−−−→ (x1

1, . . . ,x
1
n, v̂

1
|W )

PΩ (σ2)
−−−−→ ·· ·

PΩ (σl )−−−−→ (xl
1, . . . ,x

l
n, v̂

l
|W ) in U(‖̇E|Ω ). Since

U(‖̇E|Ω ) =U(E|Ω ) is nonblocking, there exists a path (xl
1, . . . ,x

l
n, v̂

l
|W )

σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1)

σl+2
−−→ ·· ·

σm→

(xm
1 , . . . ,x

m
n , ŵ

m) in U(‖̇E|Ω ) such that (xm
1 , . . . ,x

m
n ) ∈ Qω

1 ×·· ·×Qω
n . By Lemma 16, it follows that (xl

1, . . . ,

xl
n, v̂

l) = (xl
1, . . . ,x

l
n, v̂

l
|W ⊕ v̂l

|V\W )
σl+1
−−→ (xl+1

1 , . . . ,xl+1
n , ŵl+1 ⊕ v̂l

|V\W )
σl+2
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , ŵ

m ⊕ v̂l
|V\W )

in U(‖̇E ) and (xm
1 , . . . ,x

m
n )∈Qω

1 ×·· ·×Qω
n . As (xl

1, . . . ,x
l
n, v̂

l) was chosen arbitrarily, it follows that U(‖̇E ) =
U(E ) is nonblocking, i.e., E is nonblocking. ⊓⊔

The next result to prove is Prop. 11, which states that the nonblocking property of an EFSM system is
preserved by event merging. Again, it needs to be established that for each path in the EFSM system before
abstraction there exists a corresponding path after abstraction, and vice versa. First, Lemma 19 shows that
every path in an EFSM system can be found again after renaming, and afterwards Lemma 20 shows how to
lift a path from the abstracted system after event merging back to the original system.

Lemma 19 Let E = {E1, . . . ,En} be an EFSM system, and let ρ : ΣE → Σ ′ be an arbitrary renaming. Then

(x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) implies (x1, . . . ,xn, v̂)

ρ(σ)
−−−→ (y1, . . . ,yn, ŵ) in U(ρ(E )).

Proof Write V = vars(E) and Σi = ΣEi
for 1 ≤ i ≤ n. Assume (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in U(E ).

By Def. 10, this means (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn) in ‖E where ΞV (p)(v̂, ŵ) = T. By Def. 9, it holds that
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xi
σ :pi−−→ yi for each Ei such that σ ∈ Σi, and xi = yi for each Ei such that σ /∈ Σi, and p≡

∧
σ∈Σi

pi. For σ ∈ Σi it

follows that xi
ρ(σ):pi
−−−−→ yi in ρ(Ei), and therefore (x1, . . . ,xn)

ρ(σ):p
−−−−→ (y1, . . . ,yn) in ‖ρ(E ). As ΞV (p)(v̂, ŵ)=T

and vars(ρ(E )) = vars(E ) =V , it follows by Def. 10 that (x1, . . . ,xn, v̂)
ρ(σ)
−−−→ (y1, . . . ,yn, ŵ) in U(ρ(E )). ⊓⊔

Lemma 20 Let E = {E1, . . . ,En} be a normalised EFSM system with Ei = 〈Σi,Qi,→ i,Q
◦
i ,Q

ω
i 〉, let Ek ∈ E ,

and let ρ : ΣE → Σ ′ be a renaming such that the following conditions hold for all σ1,σ2 ∈ ΣE with ρ(σ1) =
ρ(σ2):

(i) ∆E (σ1) = ∆E (σ2);

(ii) for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all x,y ∈ Qi it holds that x
σ1:∆E (σ1)
−−−−−−→i y

if and only if x
σ2 :∆E (σ2)
−−−−−−→i y.

Then (x1, . . . ,xn, v̂)
µ
→ (y1, . . . ,yn, ŵ) in U(ρ(E )) implies (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in U(E ) for some

σ ∈ ΣE such that ρ(σ) = µ .

Proof First note that E is normalised, which implies by assumption (i) that ρ(E ) is normalised. Therefore,

it holds by Prop. 1 that U(E ) =U(‖̇E ) and U(ρ(E )) =U(‖̇ρ(E )).

Assume (x1, . . . ,xn, v̂)
µ
→ (y1, . . . ,yn, ŵ) in U(ρ(E )) =U(‖̇ρ(E )). Then it holds by Def. 10 that (x1, . . . ,

xn)
µ :p
−−→ (y1, . . . ,yn) in ‖̇ρ(E ) where p ≡ ∆ρ(E )(µ) and ΞV (p)(v̂, ŵ) = T where V = vars(ρ(E )) = vars(E ).

Consider two cases: either µ ∈ ρ(Σk) or µ /∈ ρ(Σk).

– If µ ∈ ρ(Σk), then xk
µ :p
−−→ yk in ρ(Ek) by Def. 14. Then there exists σ ∈ Σk such that ρ(σ) = µ and

xk
σ :p
−−→ yk in Ek.

– If µ /∈ ρ(Σk), then xk = yk by Def. 14. As ρ is surjective by Def. 15, there exists σ ∈ ΣE such that
ρ(σ) = µ . Note that σ /∈ Σk as otherwise µ = ρ(σ) ∈ ρ(Σk).

In both cases there exists σ ∈ ΣE with ρ(σ) = µ , with other properties mentioned in each case. Now consider
two cases for each i 6= k: either σ ∈ Σi or σ /∈ Σi.

– If σ ∈ Σi, then µ = ρ(σ) ∈ ρ(Σi) and thus xi
µ :p
−−→ yi in ρ(Ei) by Def. 14. Then there exists σi ∈ Σi such

that ρ(σi) = µ and xi
σi:p−−→ yi in Ei. As i 6= k and ρ(σi) = µ = ρ(σ), it follows by assumption (ii) that

σ ∈ Σi and xi
σ :p
−−→ yi in Ei.

– If σ /∈ Σi, then µ = ρ(σ) /∈ ρ(Σi) and thus xi = yi by Def. 14.

Combining the above observations for k and all i 6= k, it follows by Def. 14 that (x1, . . . ,xn)
σ :p
−−→ (y1, . . . ,yn)

in ‖̇E . As furthermore ΞV (p)(v̂, ŵ) =T, it follows by Def. 10 that (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖̇E ) =

U(E ). ⊓⊔

Proposition 11 (Event Merging) Let E = {E1, . . . ,En} be a normalised EFSM system with Ei = 〈Σi,Qi,
→ i,Q

◦
i ,Q

ω
i 〉, let Ek ∈ E , and let ρ : ΣE → Σ ′ be a renaming such that the following conditions hold for all

σ1,σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

(i) ∆E (σ1) = ∆E (σ2);

(ii) for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all x,y ∈ Qi it holds that x
σ1 :∆E (σ1)
−−−−−−→i y

if and only if x
σ2:∆E (σ2)
−−−−−−→i y.

Then E is nonblocking if and only if ρ(E ) is nonblocking.

Proof First assume E is nonblocking, which means that U(E ) is nonblocking. It will be shown that ρ(E )

is nonblocking. Let U(ρ(E ))
µ1→ (x1

1, . . . ,x
1
n, v̂

1)
µ2→ ·· ·

µl→ (xl
1, . . . ,x

l
n, v̂

l). By Lemma 20, there exist events

σ1, . . . ,σl such that U(E )
σ1→ (x1

1, . . . ,x
1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l). Since U(E ) is nonblocking, there exists

a path (xl
1, . . . ,x

l
n, v̂

l)
σl+1
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , v̂

m) in U(E ) such that (xm
1 , . . . ,x

m
n ) ∈ Qω

1 × ·· · ×Qω
n . From

Lemma 19, it follows that (xl
1, . . . ,x

l
n, v̂

l)
ρ(σl+1)
−−−−→ ·· ·

ρ(σm)
−−−→ (xm

1 , . . . ,x
m
n , v̂

m) in U(ρ(E )) and (xm
1 , . . . ,x

m
n ) ∈

Qω
1 ×·· ·×Qω

n . Since (xl
1, . . . ,x

l
n, v̂

l) was chosen arbitrarily, it follows that U(ρ(E )) is nonblocking, i.e., ρ(E )
is nonblocking.

Conversely assume ρ(E ) is nonblocking, which means that U(ρ(E )) is nonblocking. Let U(E )
σ1→

(x1
1, . . . ,x

1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l). By Lemma 19, it holds that U(ρ(E ))
ρ(σ1)
−−−→ (x1

1, . . . ,x
1
n, v̂

1)
ρ(σ2)
−−−→
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· · ·
ρ(σl )−−−→ (xl

1, . . . ,x
l
n, v̂

l). As U(ρ(E )) is nonblocking, there exists a path (xl
1, . . . ,x

l
n, v̂

l)
µl+1
−−→ ·· ·

µm
→ (xm

1 , . . . ,
xm

n , v̂
m) in U(ρ(E )) such that (xm

1 , . . . ,x
m
n ) ∈ Qω

1 ×·· ·×Qω
n . By Lemma 20, there exist events σ1+1, . . . ,σm

such that (xl
1, . . . ,x

l
n, v̂

l)
σl+1
−−→·· ·

σm→ (xm
1 , . . . ,x

m
n , v̂

m) in U(E ) and (xm
1 , . . . ,x

m
n )∈Qω

1 ×·· ·×Qω
n . As (xl

1, . . . ,x
l
n,

v̂l) was chosen arbitrarily, it follows that U(E ) is nonblocking, i.e., E is nonblocking. ⊓⊔

Similar to event merging, to prove that update merging preserves the nonblocking property of an EFSM
system as stated in Prop. 12, the relationship between the paths in the system before and after abstraction is
first established. Lemma 21 shows how to construct a path in the abstracted system after update merging from
a path in the original system, and Lemma 22 shows how to do the converse.

Lemma 21 Let E = {E1, . . . ,En} be a normalised EFSM system with Ei = 〈Σi,Qi,→i,Q
◦
i ,Q

ω
i 〉. Let ρ be a

renaming such that the following conditions hold for all σ1,σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

(i) vars′(∆E (σ1)) = vars′(∆E (σ2)),

(ii) for all i= 1, . . . ,n it holds that σ1 ∈Σi if and only if σ2 ∈Σi, and for all x,y∈Qi it holds that x
σ1 :∆E (σ1)
−−−−−−→i

y if and only if x
σ2:∆E (σ2)
−−−−−−→i y

Further let F = {F1, . . . ,Fn} such that Fi = 〈ρ(Σi),Qi,→
F
i ,Q

◦
i ,Q

ω
i 〉 where→F

i = {(x,ρ(σ),∆F (ρ(σ)),y) |

x
σ :∆E (σ)
−−−−−→ y} and ∆F (µ)≡

∨
σ∈ρ−1(µ) ∆E (σ) for all µ ∈ ΣF . Then (x1, . . . ,xn, v̂)

σ
→ (y1, . . . ,yn, ŵ) in U(E )

implies (x1, . . . ,xn, v̂)
ρ(σ)
−−−→ (y1, . . . ,yn, ŵ) in U(F ).

Proof Note that E and F are normalised, so U(E ) =U(‖̇E ) and U(F ) =U(‖̇F ) by Prop. 1.

Let (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) =U(‖̇E ). This means by Def. 10 that (x1, . . . ,xn)

σ :∆E (σ)
−−−−−→

(y1, . . . ,yn) in ‖̇E and ΞV (∆E (σ))(v̂, ŵ) = T where V = vars(E ) = vars(F ). Consider two cases for each Ei:
either σ ∈ Σi or σ /∈ Σi.

– If σ ∈ Σi, then it follows by Def. 14 that xi
σ :∆E (σ)
−−−−−→ yi in Ei. In this case, ρ(σ) ∈ ρ(Σi), and it follows

by construction of→F
i that xi

ρ(σ):∆F (σ)
−−−−−−−→ yi in Fi.

– If σ /∈ Σi then xi = yi by Def. 14, and ρ(σ) /∈ ρ(Σi).

Combining these observations for all i, it follows by Def. 14 that (x1, . . . ,xn)
ρ(σ):∆F (ρ(σ))
−−−−−−−−−→ (y1, . . . ,yn) in

F1 ‖̇ · · · ‖̇Fn = ‖̇F . Furthermore, note that by construction ∆F (ρ(σ)) =
∨

σ ′∈ρ−1(ρ(σ)) ∆E (σ
′), which implies

ΞV (∆F (ρ(σ)))⇔
∨

σ ′∈ρ−1(ρ(σ)) ΞV (∆E (σ
′)) by assumption (i). Then it follows from σ ∈ ρ−1(ρ(σ)) and

ΞV (∆E (σ))(v̂, ŵ) = T that ΞV (∆F (ρ(σ)))(v̂, ŵ) = T. Then it follows from Def. 10 that (x1, . . . ,xn, v̂)
ρ(σ)
−−−→

(y1, . . . ,yn, ŵ) in U(‖̇F ) =U(F ). ⊓⊔

Lemma 22 Let E = {E1, . . . ,En} be a normalised EFSM system with Ei = 〈Σi,Qi,→i,Q
◦
i ,Q

ω
i 〉. Let ρ be a

renaming such that the following conditions hold for all σ1,σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

(i) vars′(∆E (σ1)) = vars′(∆E (σ2)),

(ii) for all i= 1, . . . ,n it holds that σ1 ∈Σi if and only if σ2 ∈Σi, and for all x,y∈Qi it holds that x
σ1 :∆E (σ1)
−−−−−−→i

y if and only if x
σ2:∆E (σ2)
−−−−−−→i y

Further let F = {F1, . . . ,Fn} such that Fi = 〈ρ(Σi),Qi,→
F
i ,Q

◦
i ,Q

ω
i 〉 where→F

i = {(x,ρ(σ),∆F (ρ(σ)),y) |

x
σ :∆E (σ)
−−−−−→ y} and ∆F (µ)≡

∨
σ∈ρ−1(µ) ∆E (σ) for all µ ∈ ΣF . Then (x1, . . . ,xn, v̂)

µ
→ (y1, . . . ,yn, ŵ) in U(F )

implies (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(E ) for some σ ∈ ΣE such that ρ(σ) = µ .

Proof Note that E and F are normalised, so U(E ) =U(‖̇E ) and U(F ) =U(‖̇F ) by Prop. 1.

Assume (x1, . . . ,xn, v̂)
µ
→ (y1, . . . ,yn, ŵ) in U(F ) = U(‖̇F ). Then it holds that by Def. 10 that (x1, . . . ,

xn)
µ :p
−−→ (y1, . . . ,yn) in ‖̇F where p≡∆F (µ)≡

∨
σ∈ρ−1(µ) ∆E (σ), and ΞV (p)(v̂, ŵ) =T where V = vars(F ).

As p ≡
∨

σ∈ρ−1(µ) ∆E (σ) and ΞV (p)(v̂, ŵ) = T, there exists σ ∈ ρ−1(µ) such that ΞV (∆E (σ))(v̂, ŵ) = T.

Note, as σ ∈ ρ−1(µ) it holds that ρ(σ) = µ . Consider two cases for each Ei: either σ ∈ Σi or σ /∈ Σi.

– If σ ∈ Σi then µ = ρ(σ) ∈ ρ(Σi), which by Def. 14 implies xi
µ :p
−−→ yi in Fi. By construction of→F

i , this

means xi
σ :∆E (σ)
−−−−−→ yi in Ei.
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– If σ /∈ Σi, then µ /∈ ρ(Σi) and xi = yi by Def. 14.

Combining the above observations for all i, it follows by Def. 14 that (x1, . . . ,xn)
σ :∆E (σ)
−−−−−→ (y1, . . . ,yn) in ‖̇E .

As ΞV (∆E (σ))(v̂, ŵ) = T, it follows that (x1, . . . ,xn, v̂)
σ
→ (y1, . . . ,yn, ŵ) in U(‖̇E ) =U(E ). ⊓⊔

Proposition 12 (Update Merging) Let E = {E1, . . . ,En} be a normalised EFSM system with Ei = 〈Σi,Qi,
→ i,Q

◦
i ,Q

ω
i 〉. Let ρ be a renaming such that the following conditions hold for all σ1,σ2 ∈ ΣE with ρ(σ1) =

ρ(σ2):

(i) vars′(∆E (σ1)) = vars′(∆E (σ2)),

(ii) for all i= 1, . . . ,n it holds that σ1 ∈Σi if and only if σ2 ∈Σi, and for all x,y∈Qi it holds that x
σ1 :∆E (σ1)
−−−−−−→i

y if and only if x
σ2 :∆E (σ2)
−−−−−−→i y

Further let F = {F1, . . . ,Fn} such that Fi = 〈ρ(Σi),Qi,→
F
i ,Q

◦
i ,Q

ω
i 〉 where→F

i = {(x,ρ(σ),∆F (ρ(σ)),y) |

x
σ :∆E (σ)
−−−−−→ y} and ∆F (µ) ≡

∨
σ∈ρ−1(µ) ∆E (σ) for all µ ∈ ΣF . Then E is nonblocking if and only if F is

nonblocking.

Proof First assume E is nonblocking, which means that U(E ) is nonblocking. It will be shown that F is

nonblocking. Let U(F )
µ1→ (x1

1, . . . ,x
1
n, v̂

1)
µ2→·· ·

µl→ (xl
1, . . . ,x

l
n, v̂

l). By Lemma 22, there exist events σ1, . . . ,σl

such that U(E )
σ1→ (x1

1, . . . ,x
1
n, v̂

1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l). Since U(E ) is nonblocking, there exists a path

(xl
1, . . . ,x

l
n, v̂

l)
σl+1
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , v̂

m) in U(E ) such that (xm
1 , . . . ,x

m
n )∈Qω

1 ×·· ·×Qω
n . From Lemma 21,

it follows that (xl
1, . . . ,x

l
n, v̂

l)
ρ(σl+1)
−−−−→ ·· ·

ρ(σm)
−−−→ (xm

1 , . . . ,x
m
n , v̂

m) in U(F ) and (xm
1 , . . . ,x

m
n ) ∈ Qω

1 ×·· ·×Qω
n .

Since (xl
1, . . . ,x

l
n, v̂

l) was chosen arbitrarily, it follows that U(F ) is nonblocking, i.e., F is nonblocking.

Conversely assume F is nonblocking, which means that U(F ) is nonblocking. Let U(E )
σ1→ (x1

1, . . . ,x
1
n,

v̂1)
σ2→ ·· ·

σl→ (xl
1, . . . ,x

l
n, v̂

l). By Lemma 21, it holds that U(F )
ρ(σ1)
−−−→ (x1

1, . . . ,x
1
n, v̂

1)
ρ(σ2)
−−−→ ·· ·

ρ(σl )−−−→ (xl
1, . . . ,

xl
n, v̂

l). As U(F ) is nonblocking, there exists a path (xl
1, . . . ,x

l
n, v̂

l)
µl+1
−−→ ·· ·

µm
→ (xm

1 , . . . ,x
m
n , v̂

m) in U(F )

such that (xm
1 , . . . ,x

m
n ) ∈ Qω

1 ×·· ·×Qω
n . By Lemma 22, there exist events σ1+1, . . . ,σm such that (xl

1, . . . ,x
l
n,

v̂l)
σl+1
−−→ ·· ·

σm→ (xm
1 , . . . ,x

m
n , v̂

m) in U(E ) and (xm
1 , . . . ,x

m
n ) ∈ Qω

1 × ·· · ×Qω
n . As (xl

1, . . . ,x
l
n, v̂

l) was chosen
arbitrarily, it follows that U(E ) is nonblocking, i.e., E is nonblocking. ⊓⊔
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