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Abstract 

 

 

In the environment in which palatable and highly caloric foods are readily 

available, eating behavior is oftentimes not dictated by the necessity to replenish 

lacking energy, but rather by the pleasure of consumption. Centrally acting 

oxytocin (OT) is known to promote termination of feeding to protect internal 

milieu by preventing excessive stomach distension, hyperosmolality and 

ingestion of toxins. Initial evidence suggests that another possible role for OT in 

mechanisms governing food intake is to reduce consumption of select palatable 

tastants. This thesis explores the question whether OT is as an appetite 

suppressant that reduces feeding reward.  

The first set of experiments addresses whether OT affects intake of (a) all 

carbohydrates, (b) only sweet carbohydrates or (c) sweet non-carbohydrate 

saccharin in mice. In those studies, generalized injection of a blood brain barrier 

penetrant OT receptor antagonist, L-368,899, significantly increased the intake of 

sweet (sucrose, glucose, fructose, polycose) and non-sweet (cornstarch) 

carbohydrates and promoted a trend approaching significance in saccharin 

consumption. Consumption of carbohydrate-enriched foods led to an increase in 

OT mRNA levels in the hypothalamus. 

The second set of studies identifies the nucleus accumbens core (AcbC), a key 

component of the reward system, as a site that mediates anorexigenic effects of 

OT. Rats injected with OT directly in the AcbC showed a decreased intake of 
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sucrose and saccharin solutions as well as of standard chow. This treatment did 

not cause taste aversion, hence the outcome was not due to sickness/malaise. 

The effects of AcbC OT on feeding could be observed only in animals offered a 

meal in a non-social environment. Once a social setting (devoid of direct 

antagonistic interactions between individuals) of a meal was introduced, AcbC 

OT failed to reduce feeding. AcbC levels of OT receptor transcript were affected 

by exposure to palatable food as well as by food deprivation. 

The third and final set of studies shows that aberrant integrity of neuronal 

circuitry within the neuroendocrine and reward systems due to genetic deletion 

of connexin 36 (Cx36) gap junctions leads to dysregulation of the OT system’s 

functioning in the Cx36 KO mouse. This dysregulation is associated with 

hypersensitivity to aversive properties of foods, reduced interest in feeding for 

reward (palatable carbohydrates and saccharin) and abnormal ingestion of 

energy.  

Overall, the findings suggest that OT diminishes feeding for reward, particularly 

the intake of palatable carbohydrates and saccharin, by acting – at least in part – 

via the reward system. OT appears to be part of central mechanisms that cross-

link homeostasis-driven and palatability-related (i.e., flavor- and macronutrient-

specific) termination of consumption.  
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Chapter 1 
 

Introduction and Aims 

 

 

Obesity is a public health issue worldwide and overeating greatly contributes to 

its prevalence. It is therefore essential to understand the mechanisms that 

regulate eating behavior and to identify new therapeutic targets. While the 

disruption of the "hunger-satiety" signaling oftentimes leads to excessive body 

weight [1], it is apparent that laboratory animals and humans oftentimes eat for 

reasons other than hunger.  In the obesogenic environment, the usual reason to 

initiate and maintain food intake is a pleasant taste of food, i.e., feeding reward. 

When feeding reward comes into play, satiety is delayed. Therefore, the current 

research effort to limit excessive food intake underlying obesity is directed 

towards identifying mechanisms and molecules that promote early satiety in the 

context of eating for pleasure. Initial evidence suggests that oxytocin (OT) may 

act as a feeding inhibitor that cross-links satiety and reward. The exact nature of 

the functional relationship between OT and the regulation of palatability-driven 

appetite remains unclear.  Thus, in this thesis I explore whether OT is as an 

appetite suppressant that reduces feeding reward.  
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1.1. Oxytocin and receptors 

1.1.1 Oxytocin 

The neuropeptide hormone oxytocin is a nonapeptide (Cys–Tyr–Ile–Gln–Asn–

Cys–Pro–Leu–GlyNH2) (Figure. 1.1) with a sulfur bridge between the two 

cysteines. OT was extracted from the mammalian pituitary in 1950, and it 

became the first sequenced and structurally-defined neuropeptide [2]. This 

neuropeptide is evolutionarily conserved across phyla and has been detected in 

most vertebrate and several invertebrate species [3-6]. Some variability of the 

OT amino acid sequences has been shown in vertebrates, for example, in 

cartilaginous fishes (isotocin [S4,I8]-oxytocin)  and in birds [7], reptiles and 

amphibians (mesotocin [I8]-oxytocin) [8-10]. There is also some variability in the 

OT-like molecular structure in invertebrates. For example, inotocin has been 

identified in ants [11], whereas some insects, such as Drosophila melanogaster, 

lack the OT molecule whatsoever [5]. Acher et al. date the precursor of OT gene 

at 500 million years [12]. The fact that OT is highly conserved among the plethora 

of phyla and species strongly indicates that it plays a crucial role relevant to the 

basic functioning of the organism. The proposed function of OT in the control of 

energy intake and nutrient preference/selectivity further explored in this thesis, 

fits in the notion of the critical place of OT in regulatory mechanisms that are 

most essential in the survival of the organism: energy and nutrient homeostasis 

ensure the proper biochemical environment for cellular and system physiological 

responses to occur. Though it is not the topic of this thesis, it should be 

mentioned that OT’s role in such elementary functions is not limited to food 
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intake, but it also includes e.g. reproduction and associative learning (from 

Caenorhabditis elegans to Eisenia foetida to humans [12-15]).  

 

Figure 1.1: A phylogenetic tree including the structure of OT and OT-related peptides 
and their receptors. Figure adapted from Koehbach J  et al 2013 [16].   

 

The OT gene is localized in humans in chromosomal loci 20p13 [17]. After being 

transcribed, translated and spliced, an inactive gene product precursor protein 

that contains the signal peptide (at the N-terminus), OT, and neurophysin (at the 
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C-terminus), is formed. The full structure of the OT precursor protein is shown in 

Figure 1.2. The OT prepropeptide is package into the granules of the Golgi 

apparatus. The prepropeptide undergoes cleavage and modifications during the 

post-Golgi transport phase to axon terminals [18-20]. 

 

Figure 1.2: Domain organization of preprooxytocin. Figure adapted from from Gimpl G 
et al. 2001 [20] 

 

In the central nervous system (CNS), OT is synthesized mainly in the supraoptic 

(SON) and paraventricular (PVN) nuclei of the hypothalamus as well as in 

hypothalamic magnocellular accessory neurons located between the PVN and 

SON [21]. Both the PVN and SON contain OT magnocellular populations, whereas 

the PVN hosts also parvocellular OT neurons. Magnocellular neurons release OT 

primarily to the general circulation via the posterior pituitary. On the other hand, 

parvocellular OT neurons send their projections not only to the neurohypophysis, 

but also to a variety of central sites. Importantly, many of the brain areas 

targeted by the OT system are involved in the regulation of food intake. Those 

sites include, for example, the components of the reward system (the nucleus 

accumbens and ventral tegmental area) as well as the energy balance-related 

CNS regions (for example, the nucleus of the solitary tract and the dorsal motor 

nucleus of the vagus)  (Figure.1.3) [22, 23]. Therefore, CNS-derived OT controls 

feeding as well as other physiological and behavioral outcomes via its receptors 

scattered throughout the brain as well as in peripheral organs [19, 24-27]. 
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Figure 1.3: Parvocellular neurons of the PVN project to a variety of brain areas where 
OTr is expressed. Magnocellular neurons of the PVN (red) and SON (black) project to the 
posterior pituitary to release OT to the general circulation. It should be noted that the 
distribution of the OTr is very vast and it incorporates sites that govern a wide number 
of processes, such as reward (VTA and Acb), stress (AMY), learning and memory 
(hippocampus), maternal behavior (MPOA/BNST and OB) and periphery-CNS relay 
mechanisms (brain stem). Figure adapted from Rutherford HJ et al. 2011 [28]. (PVN: 
Paraventricular nucleus of the hypothalamus, SON: Supraoptic nucleus, VTA: Ventral 
tegmental area, Acb : Nucleus accumbens, AMY: Amygdala, MPOA: Medial Preoptic Area, 
BNST: Bed nucleus of the stria terminalis OB: Olfactory bulb).  

 

 

1.1.2 Oxytocin receptor 

The oxytocin receptor (OTr) gene, containing three introns and four exons, is 

localized in humans on chromosomal loci 3p25 and 3p26.2 [29, 30], and its 

transcription is controlled by several transcription factors, including 

inflammatory and immune mediators, cAMP, estrogen and steroids [31-33].  
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Figure 1.4: Schematic representation of the OTr structure with its seven transmembrane 
domains and the interaction site with the OT molecule. Figure adapted from Zingg HH et 
al. 2003 [34]. 

 

The OTr belongs to the superfamily of the rhodopsin-type (class I) G protein-

coupled receptors (GPCR) having seven transmembrane domains and the α helix 

and it is highly conserved in mammalian genomes Figure 1.4.  In Class I GPCR 

family, the amino acid aspartic acid in domain 2 is important in the process of 

receptor activation. [35]. The native OT molecule shows the superior affinity for 

the OTr. It should be mentioned, however, that also the endogenous vasopressin 

(VP) can bind the OTr, but the affinity for of the OTr for OT is 10 times higher 

than for VP, and the concentration of VP necessary to bind the OTr - 100 times 

higher than OT [36, 37].  

The OTr binding site for its ligand is formed by extracellular loops 2 and 4 and 

part of the transmembrane domains 2 and 4 (Figure 1.4). In fact, the binding of 

an agonist peptide to transmembrane domains of the OTr on the cell surface 

changes receptor’s conformation and activates the hydrolysis of GDP to GTP in 
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the G protein, separating it into the α and β subunits. This separation followed by 

hydrolysis by phosphorylase C-β of phosphatidyl-inositol-4-5-diphosphate (PIP2) 

into inositol triphosphate (IP3) and 1,2-diacylglycerol (DAG). DAG allows 

activation of protein kinase C and IP3, release of Ca2+ and initiation of cellular 

responses [38-41], such as cell excitability processes, transmitter release and/or 

synthesis of proteins [42] (Figure 1.5). 

 

Figure 1.5: Activation of OTr signaling pathway by OT. G protein, α and β subunits 
(Gαβ) C-β of phosphatidyl-inositol-4-5-diphosphate (PIP2), inositol triphosphate (IP3) 
and 1,2-diacylglycerol (DAG), Guanosine-5'-triphosphate (GTP), guanosine diphosphate 
(GDP), Protein kinase C (PKC).  

 

The endogenous OT molecule has a relatively short half-life and a very limited 

ability to cross the blood-brain barrier (BBB) [43]. These two issues are 

considered to be significant obstacles in using OT in various pharmacological 

application scenarios in which the native ligand is to act the CNS receptors. 

Therefore, substantial research effort has been directed towards developing 

synthetic ligands of the OTr. The past two decades of studies have produced the 

https://en.wikipedia.org/wiki/Guanosine_diphosphate
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development of OTr agonists and antagonists characterized by improved BBB 

permeability parameters and/or longer half-life (an overview of currently 

available ligands is presented in Table 1.1).   

Table 1.1: Oxytocin receptor ligands 

Agonist Antagonist 

Peptide Non-peptide Peptide Non-peptide 

Carbetocin WAY-267,464  Atosiban L-368,899 

Demoxytocin 
  

Barusiban L-371,257 

Lipo-oxytocin-1 
    

L-372,662 

Merotocin 
    

SSR-126,768 

Oxytocin 
    

Epelsiban 

      
Retosiban 

      
WAY-162,720 

 

L-368,899 is one of the most frequently used OTr antagonists in research [44,45] 

(Figure 1.6).  L-368,899 is a unique ligand that rapidly penetrates into the brain 

due to its capacity to cross the BBB [45,46] with accumulation in areas of 

the limbic system [46].  It has been employed in studies on, among others, central 

regulation of food intake or sexual activity [47,48]. 

 

 

Figure 1 6: Chemical structure of [14C]L-368,899  

 

Approximately 80% of OT receptors are present in the CNS [49,50]. The 

distribution of this receptor mirrors the involvement of OT in numerous 
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physiological and behavioral processes, from food intake to stress to maternal 

behavior (see Section 1.2 for details on key functions of OT). OTr has been found 

in specific sites involved in the regulation of food intake, such as the nucleus 

accumbens (Acb), the ventral tegmental area (VTA), the hypothalamus and the 

brainstem [51-54]. The OTr mRNA has been also detected in the anterior 

olfactory nucleus, ventral pallidum, limbic system (bed nucleus of the stria 

terminalis, central amygdaloid nucleus, ventral subiculum), and hypothalamus 

[50, 55][56], with no major differences in distribution between males and 

females [49] (Figure 1.3; Table 1.2). 

 

Table 1.2: The distribution of the OTr in the rats CNS. Adapted from Gimpl G et al. [20]. 
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1.2. Main behavioral and physiological effects of oxytocin 

The vast peripheral and central distribution of the OTr underlies multiple 

functions played by OT, including the regulation of maternal, sexual, aggressive, 

affiliative, grooming and feeding behavior and physiology [57].  

OT’s roles in parturition and in the milk ejection reflex have been most avidly 

studied. OT induces contractions of the smooth muscle of the uterus leading to 

parturition. Expression of OTr mRNA and density of this receptor on the surface 

of the myometrium increase in the presence of estradiol [58][59,60], which 

precedes the active phase of the birth process. Following parturition, OT levels 

remain high and OT starts playing a crucial function in facilitating milk ejection 

[61]. Stimulation of tactile receptors by suckling, generates impulses transmitted 

from the nipple to the spinal cord and then to OT neurons in the hypothalamus 

[57,62].   

Not only does OT ensure the proper physiological responses during and after 

parturition, but it also facilitates the development of the appropriate repertoire 

of a mother’s social responses to the young [38-40,63,64]. It is particularly 

important in initiating maternal behavior [41]. Noteworthy, human studies show 

also the link between OT and both maternal and paternal responses to a 

newborn [65]. Furthermore, epigenetics (genomic imprinting) may control this 

hormonal and behavioral responsiveness to the offspring via the paternal and 

maternal genome [66,67]. 

The social bonding effects of OT extend well beyond parent-child relations. In 

humans, OT mediates the benefits of positive social interaction and emotions 
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stemming from non-family bonds. OT is released in the brain and into the 

periphery by stimuli such as touch, warmth, etc. Consequently, OT may facilitate 

physiological and behavioral effects induced by social interaction [68].  

Administration of OT has been reported to increase feelings of affiliation to one’s 

parents, decrease stress and anxiety in both men and women and promote 

effects such as the reduction in blood pressure and cortisol levels  [69-71]. 

Intranasal administration of OT causes increased subjective feelings of 

attachment, generosity, sensitivity to emotion and maintenance of trust [69,72-

74]. Indeed, in game-scenario experiments, intranasal OT prevented the loss of 

trust in an opponent even after the trust has been breached by this opponent 

before [75]. OT also improves the ability to infer the mental state of others from 

physical cues (facial expressions) [76,77]. Recently, the beneficial clinical effects 

of OT treatment on positive social interactions in autism (disorder characterized 

by impaired social interactions and communication) have been reported [78]. In 

laboratory animals, central administration of OT agonists enhances social 

recognition, memory for peers, the development of partner preference, and 

partner bonding [79]. Importantly, centrally administered OT promotes 

termination of food intake (Sections 1.3 and 1.4 describe the findings in detail) 

[80]. Experiments in rodents have shown that OT inhibits food intake through 

receptors localized throughout the brain. Indeed, central OT administration 

reduces food intake and prolongs latency to eat [81]. In addition, anorexia-

inducing agents such as lithium chloride (LiCl) stimulate OT secretion into the 

periphery and in the CNS leading to the termination of food intake [82,83]. OT 

knockout (KO) mice show increased preference for palatable (sweet) 

carbohydrates [47]. 
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1.3 Mechanisms controlling food intake: focus on the role 

of oxytocin 

Proper energy balance is critical for survival of the organism. Maintenance of 

energy homeostasis depends on a variety of mechanisms, including those that 

regulate food consumption. Importantly, food intake should not be viewed in a 

simplistic manner as a mere means of acquiring calories, but rather a set of 

complex physiological and (consequently) behavioral processes. They allow the 

animal to obtain energy and diverse nutrients, without jeopardizing internal 

milieu (e.g., by inadvertently introducing toxins or an excessive osmotic load). 

Therefore, the complexity of appetite regulating mechanisms stems from the 

ever-present need to have consummatory behavior adapt to constant changes in 

the internal (such as neurohormonal, osmotic, chemoreceptor-, 

mechanoreceptor- and nutrient-derived signals) and external environment (light-

dark cycle; social context, etc.). While this aspect of food intake control – for the 

purpose of this thesis dubbed “homeostatic” – is a key component affecting 

consumption, one should not forget that appetite is shaped by another critical 

factor, i.e., feeding reward. [84]. In fact, mechanisms promoting ingestive 

behavior driven by pleasant taste have been suggested to play such a significant 

role in modifying one’s consumption profile that, under many circumstances, 

they may outweigh homeostatic controls of feeding [85].  

Noteworthy, OT has been speculated to affect both homeostatic and reward-

related ingestive behavior. The vast majority of evidence points to the 

brainstem-hypothalamus OT reciprocal pathways as mediators of homeostatic 
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aspects of food intake regulation, including responsiveness to changes in plasma 

osmolality, excessive distension of the stomach and avoidance of foods whose 

ingestion might cause sickness/malaise. Much less is known about the 

involvement of OT in feeding for pleasure, although evidence gathered to date 

suggests that OT diminishes appetite for sweet and/or carbohydrate tastants – at 

least partially – via the ventral tegmental area (VTA). Sections 1.3.1 and 1.3.2 

provide more theoretical background on the involvement of OT in specific 

mechanisms affecting ingestive behavior and physiological processes related to 

feeding. 

1.3.1. Oxytocin and homeostatic control of food intake 

1.3.1.1. Oxytocin and satiety-driven termination of food intake 

Early on it became apparent that the hypothalamus is a key central region 

responsible for the regulation of appetite. One of the pioneering studies showed 

that deletion of the PVN in rodents produces excessive food consumption and 

result in the obese phenotype [86]. Subsequent experiments indicated that the 

PVN is not the sole player in feeding regulatory mechanisms and a host of other 

neuroanatomical substrates of the hypothalamus were added to the list of – 

using the nomenclature of those early reports – “satiety/hunger centers”. Those 

sites include the SON, ventromedial hypothalamus (VMH), dorsomedial 

hypothalamic nucleus (DMH), lateral hypothalamus (LHA) and arcuate nucleus 

(ARC)[87,88]. Among those, the ARC has been shown to be directly affected by 

the presence of adipose-derived hormone, leptin, in the general circulation [89] 

[90]. The question arose as to how else (other than through the direct input into 

the ARC) the hypothalamic areas receive relevant signals that modify 
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neuroendocrine responses accompanying changes in ingestive behavior 

associated with hunger and satiety. It led to identification of the dorsal vagal 

complex (DVC), the nucleus of the solitary tract (NTS), dorsal motor nucleus of 

the vagus (DMNV) and area postrema (AP) as a “relay” region that integrates 

neural (mainly, vagally mediated), hormonal (e.g. cholecystokinin) and 

biochemical/chemical (plasma ion/toxin profile) input related to consummatory 

activity.  Data strongly suggest neuroanatomical and functional reciprocity in the 

appetite-related functioning of the brainstem-hypothalamic circuit (and that 

includes the OT neuronal populations which both receive brainstem-derived 

innervation and project toward the DVC [91]. Figure 1.9 shows a schematic 

representation of an example of feeding-related neuroendocrine circuit that 

incorporates peripheral signaling and the brainstem-hypothalamic pathways. 

 

Figure 1.7: Homeostatic control of food intake by the CNS. The hypothalamus and the brainstem integrate 
signals from the periphery: Cholecystokinin (CCK) released from the GI (gastrointestinal) tract affects the 
NTS (nucleus of the solitary tract) and leptin from the adipose tissue affects AGRP (Agouti-related protein) 
and POMC (proopiomelanocortin) neurons in the hypothalamic arcuate nucleus (ARC). Figure adapted from 
Morton GJ et al. 2014 [92]. 

The fact that OT receptors are present throughout the brain areas controlling 

consumption for energy serves as the neuroanatomical basis suggesting the 
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involvement of OT in satiety processes. The OTr has been found in the DVC and 

the hypothalamus (including the PVN, SON, VMH and LHA). A decrease in energy-

driven food intake has been found in laboratory animals injected with OT and 

synthetic OTr agonists into the cerebral ventricle (ICV) as well into specific sites, 

such as the VMH and NTS [93-95]. The initial article showing anorexigenic effect 

of ICV OT in food-deprived rats was published in the 1990’s by Arletti et al. [81]. 

These authors showed that ICV OT inhibited chow intake in food-deprived and 

food-unrestricted rats. Moreover, ICV OT increased the latency to begin the meal 

and reduced time spent eating. The anorexigenic effects were abolished by a 

pre-treatment with an OTr antagonist. Since that initial report, a number of 

authors have generated data that support the notion of the meal-end, satiety-

related activation of the OT system and the link between the energy status and 

the OT system’s activity. For example, the number of Fos-positive OT neurons in 

the PVN and SON is significantly higher at the end than at the beginning of a 

scheduled meal in rodents [96]. Release of OT into the peripheral circulation 

occurs upon discontinuation of consummatory activity [97]. Real-time PCR 

analyses have revealed that OT system gene expression profile differs in animals 

subjected to various calorie availability regimens [47]. Finally, peripheral, ICV and 

direct site-specific intra-PVN injections of peptides that decrease appetite, such 

as alpha-melanocyte stimulating hormone (alpha-MSH) and glucagon-like 

peptide-1 (GLP-1), stimulate OT signaling [98,99]. Though the main consensus on 

the involvement of OT in feeding control stipulates that OT reduces appetite 

primarily via the central “pool” of its receptor, also peripheral (intraperitoneal; IP) 

injections of OT decrease ingestive behavior [81]. Baskin et al [100] found that 

peripheral injections of OT decrease food intake, but the blockade of the OTr in 
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the hindbrain does not completely abolish peripheral OT-induced anorexia, but 

only somewhat alleviates the hypophagic effects of OT. To some extent, these 

appetite changes might also be secondary to energy metabolism- and adiposity-

related effects induced by the peptide. For example, Maejima and colleagues 

found that peripheral OT in mice reduces not only feeding, but also body weight 

and visceral fat mass, and it ameliorates glucose intolerance [101]. In line with 

those findings, OT has been shown to increase the expression of stearoyl-

coenzyme A desaturase 1, as well as the content of N-oleoyl-

phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived 

PPAR-alpha activator, oleoylethanolamide, in the adipose tissue [102].  

1.3.1.2 Stomach distension and osmolality 

The risks posed by stomach distension that exceeds this organ’s capacity as well 

as by ion imbalance (due to salt loading) are critical ingestive behavior-derived 

challenges to homeostasis. In order to prevent these two parameters from 

reaching values that endanger the animal’s well-being, there needs to be a 

feeding regulatory system which will promote an immediate termination of any 

consummatory activity. OT has been suggested to be a component of this 

mechanism.  

In rats, elevated sodium levels or dehydration (resulting in an increase in sodium 

concentration) increase neurohypophyseal OT secretion and promote concurrent 

inhibition of food intake [103]. Indeed, obliteration of the periventricular area of 

the rostral AV3V region in rats decreases their drinking response after an 

injection of hypertonic saline and decreases the posterior pituitary OT release 

[103]. ICV administration of OT decreases salt consumption and this effect is 
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reversible by an OTr antagonist [104]. Genetic deletion of the OTr promotes a 

decrease in salt consumption [105, 106]. Elevated OT plasma levels in rats lead to 

an increase the in urinary sodium concentration, the effect that can be abolished 

by an OTr blockade [107]. Furthermore, mice overexpressing OT mRNA consume 

two time less sodium compared to their wild-type (WT) counterparts [108]. One 

of the mechanisms underlying this effect might be the relationship between OT 

and angiotensin in facilitating renal sodium excretion and maintaining osmotic 

balance. For example, it has been shown that inhibition of OT release stimulates 

angiotensin secretion [104].  

OT neuronal activity is elevated also upon increase in stomach distension (when 

large amounts of food are introduced into the stomach) and coincides with meal 

termination [109]. Information on the GI (gastrointestinal) motility is relayed into 

the CNS by the vagal afferents, eventually reaching OT neuronal populations in 

the hypothalamus [110]. OT affects gastric motility via NTS and DMN pathways 

[111,112]. ICV OT injections or electric stimulation of the PVN have been shown 

to dose-dependently decrease gastric motility in rats, the effect reversed by an 

OTr antagonist [113]. 

1.3.1.3. Oxytocin and aversion / toxicity 

Aside from nutritive and non-nutritive (and, in both cases: palatability affecting) 

components, food may contain toxic chemicals. Ingestion of such substances 

may lead to malaise and sickness and, under some circumstances (depending on 

the amount ingested as well as physiological and pathophysiological status of the 

organism, to name a few), it may lead to serious health consequences. 

Furthermore, not only toxins per se, but also some nutritive and non-nutritive 
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food components – especially at high volumes and/or concentrations (and when 

ingested rapidly) - can produce toxic-like effects. The most desirable behavioral 

response upon inadvertent consumption of sickness producing tastants is an 

abrupt discontinuation of consummatory activity and – if a given tastant has 

easily distinguishable characteristics – learning to avoid this tastant in the future.  

In the laboratory setting, the process of malaise/sickness-driven anorexia and 

subsequent avoidance of foods associated with the development of unpleasant 

GI sensations, is typically studied by employing a conditioned taste aversion (CTA) 

paradigm. A CTA is a classical Pavlovian phenomenon in which avoidance of a 

tastant upon subsequent presentations is generated by pairing the initial 

exposure to this tastant with an injection of a GI discomfort inducing substance 

[114], such as cholecystokinin (CCK), copper sulphate [115, 116] or – most 

frequently used - lithium chloride (LiCl) [117-119].   

Administration of CTA inducing agents activates a vast array of neural and 

neuroendocrine pathways, and these circuits include OT. It has been shown that 

systemic infusion of LiCl induces c-Fos immunoreactivity in several brain regions, 

including the AP, NTS, lateral parabrachial nucleus, SON, PVN, and central 

nucleus of the amygdala (CeA). Vagal afferents reaching the NTS and DMNV 

mediate the neural input relevant to, among others, changes in gastric motility 

caused by toxins. One of neuronal populations affected by the vagal input 

contains GLP-1 synthesizing cells in the NTS that project directly to the 

hypothalamus and terminate in the vicinity of OT perikarya [120]; GLP-1 

receptors are present on OT neurons and their ligands stimulate OT cells [121]. 

GLP-1 promotes CTAs, whereas antagonism of GLP-1 receptors alleviates 

aversive consequences [122]. Notably, GLP-1 NTS neurons are activated by LiCl. 
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Concurrently, in the SON and PVN of animals subjected to an aversive treatment, 

OT cells show a dramatic increase in colocalization with c-Fos, an immediate-

early gene product [123]. This elevated OT neuronal activity is accompanied by a 

surge in circulating OT [124,125].  

Due to the unique neuroanatomical distribution of OT neurons, for many years 

OT was viewed as the “final component” of central pathways that mediate CTA 

and some authors even doubted whether OT is a player in CTA processing at all 

or just a mere indicator of activity within aversion-related neural networks [126, 

127] [128, 129]. For example, AP-facilitated chemoreception allows the toxin to 

be recognized directly by the brainstem [130]. Ablation of this particular 

hindbrain site critically impairs the animal’s ability to develop a proper CTA 

response, though hypophagia in LiCl-treated AP-lesioned rats remains (and so 

does the increased OT tone upon toxin administration) [131]. Altogether, toxin-

derived activation of the DVC engages downstream pathways that include 

hypothalamic OT cell populations [123,132]. As to whether OT is a key player in 

CTA was addressed in the study in which the effect of OTr blockade on CTA 

acquisition was established. It revealed that a BBB-penetrant OT antagonist, L-

36,899, prevents the development of CTA, thus pointed to fact that an available 

OTr underlies the ability of the organism to acquire aversion. 

1.3.2 Oxytocin and the reward system: emphasis on feeding for 

pleasure 

Energy needs are not the sole motivation underlying ingestive behavior. One of 

the main reasons supporting the drive to consume food is pleasant taste. This 

pleasure of eating comes from activating appropriate taste receptors, from 
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certain postabsorptive processes [133] and – most importantly – from increasing 

activity of a specific set of brain sites that promote eating for pleasure, 

collectively referred to as the reward system [134, 135]. Two key components of 

the reward system are the Acb and the VTA. They contain cells expressing reward 

mediators, such as opioids, dopamine, serotonin and endocannabinoids [136-

142]. Ingestion of palatable food increases the activity of the reward areas and 

affects the expression of genes associated with feeding reward in this circuit 

[143].  

There are neuroanatomical and functional foundations underlying the 

relationship between reward sites and the OT system. The Acb and VTA express a 

high density of OTr, and PVN OT neurons have been shown to innervate Acb and 

VTA [20, 144, 145]. OT terminals have been found in the vicinity of perikarya and 

axons of mesolimbic neurons [144-146]. Notably, this cross-link with the 

mesolimbic reward system and the OT system is reciprocal. For example, various 

subtypes of opioid receptors have been detected in the SON and PVN [147, 148], 

hypothalamic OT neurons express opioid receptors [149, 150] and the release of 

OT and activity of OT cells is affected by direct administration of OTr ligands [47].  

The cross-link between OT and reward appears to be broad and include non-

feeding rewards: from naturally pleasant contexts of social and reproductive 

behaviors to intake of alcohol and administration of drugs of abuse). Cocaine 

treatment has been found to change OTr binding density in the bed nucleus of 

the stria terminalis [151]. Direct AcbC infusions of OT decrease 

methamphetamine-seeking in rats [152]. It also attenuates methamphetamine-

induced conditioned place preference [153]. Qi et al. investigated the effects of 
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OT on methamphetamine-induced extracellular levels of glutamate and γ-

aminobutyric acid (GABA) in the medial prefrontal cortex. They found that OT 

decreases glutamate release and increases γ- GABA in this site, and a selective 

inhibitor of OTr, antagonizes these effects of the native OT molecule [154]. Acb 

OT administration hampers the development, maintenance, and primed 

reinstatement of alcohol-induced conditioned place preference [155]. ICV OT in 

mice promotes the development of a conditioned social preference [156].  

While the role of OT in the regulation of energy homeostasis is well established, 

the concept of a possible function in feeding reward has emerged relatively 

recently. Knockout (KO) mouse studies have shown that deletion of the OT gene 

leads to overconsumption of palatable sucrose solutions regardless of whether 

sugary tastants are offered during the light or dark phase of the LD cycle or 

during enhanced anxiogenic conditions [157, 158]. OT KOs given a choice 

between two tastants (water was used as a control ingestant in those two-bottle 

tests), display a greater preference for sucrose and for other palatable 

carbohydrate solutions even if these solutions are not sweet (e.g., cornstarch 

emulsion). The OT-null murine strain also drinks more saccharin (a non-caloric 

and non-carbohydrate sweetener) [157]. Higher preferences for palatable 

foods/solutions in OT KOs do not expand onto fat: a similar intake of a palatable 

lipid emulsion, Intralipid, was observed in KOs and the wild-type (WT) controls 

[159].  

The OT KO mouse data are largely consistent with the outcomes of studies 

utilizing non-KO animal models. For example, OT mRNA is upregulated in the 

hypothalamus of rats eating scheduled, volume-unrestricted, sugary diet 
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compared to standard food [160]. Immunohistochemical comparison of 

hypothalamic OT neuronal activity levels (through detecting c-Fos-OT co-

localization) shows a significantly higher proportion of activated hypothalamic 

OT neurons in sucrose than fat consuming animals. It should be noted that 

regardless of a composition of a meal, activation of OT neurons is much higher at 

the time of termination rather than initiation of a meal, which underscores the 

role of central OT as a general satiety mediator [47]. Moreover, injections of a 

non-peptide OTr antagonist, L-368,899, in choice and no-choice feeding 

scenarios [161], increase carbohydrate intake, without affecting fat consumption 

[47]. Finally, a recent report by Mullis et al. showed that direct VTA 

administration of OT decreases palatability-driven sucrose consumption and the 

effect is reversible by a pre-treatment with L-368,899. The same group of 

investigators found that blockade of the OTr in the VTA leads to 

overconsumption of sugar [162]. Despite the fact that another key reward site, 

the Acb, expresses the OTr in both the shell (AcbSh) and core (AcbC) subdivisions 

[163,164], there has been no attempt to define whether OT acting through this 

region affects food intake. 

Finally, one should take into consideration that any behavior driven by reward, 

including food intake, is heavily influenced by social environment in which an 

individual animal is immersed. This social context component – depending on its 

quality (e.g. the place in hierarchy or the presence/absence of antagonistic 

relations) has a capacity to shift responsiveness to rewarding stimuli. For 

example, in a conditioned place preference paradigm, preference for cocaine can 

be changed by social interaction [165]; lesions of the AcbC induce preference for 
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the social compartment, whereas lesions of the AcbSh - for the cocaine 

compartment [166]. Rats maintained in a social setting consume more alcohol 

than when they are single-housed [167]. Also, subordinate rodents or rodents 

subjected to frequent social defeat scenarios, display enhanced appetite and 

obesity [168-170]. Particular caution should be applied when analyzing feeding 

reward-related effects of OT as this neurohormone has been implicated in a vast 

array of social behaviors, such as pair bonding, mother-infant bonding, and social 

approach and recognition [63, 171-173] [174-176]. Initial evidence already points 

to scenarios in which the magnitude of anorexigenic effects of an OTr antagonist, 

L-368,899, depends on social hierarchy in mice [177]. It is unclear though 

whether the reward system itself participates in this socially mediated shift in 

effectiveness of the drug. 

1.4 Oxytocin as an appetite suppressant acting in the wide 

network of central sites: functional relationship between 

oxytocin and gap junction protein, connexin 36? 

Importantly, OT does not act as a sole player in the regulation of homeostatic or 

rewarding aspects of appetite. OT is part of a large network of pathways and 

sites, comprising multiple genes, neurotransmitters, and neuropeptides. The 

ability of OT to effectively modify consumption depends on structural and 

functional integrity of the relevant brain circuits. This structural and functional 

integrity is assured by multiple molecules that include, to name a few, 

cytoskeletal proteins, synaptic molecules, and transcription factors [178-180]. As 

shown in Chapter 4 section 4.1 of this thesis, a subset of gap junctions, i.e. those 
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whose structure relies on the presence of connexin 36 proteins, are critical 

elements whose genetic elimination leads to a broad spectrum of perturbed 

appetite: feeding for energy, feeding for reward and avoidance of tainted foods. 

As OT is involved in the regulation of the very same aspects of food intake, it has 

led me to explore a question presented in detail in Chapter 4 section 4.2 of 

whether there is a functional relationship between OT and Cx36.  

1.4.1. Cx36 gap junction  

A gap junction channel is formed by transmembrane fixation of hexameric 

structures termed connexons. Connexons consist of six membrane proteins 

belonging to the connexin family (Cx; Figure 1.12). Gap junctions allow 

intercellular communication between adjacent cells by permitting the 

bidirectional passage of ions and small molecules [181-186]. Twenty genes code 

for Cxs in mice and 21 in humans [181]. Six Cxs (Cx26, Cx29, Cx30, Cx32, Cx36 and 

Cx43) have been identified in the mammalian CNS, but in the reward system, 

connexin 36 (Cx36) is predominant [187]. Cx36 channels can be targeted 

pharmacologically with quinine as their blocker [188,189]. 

 

 

Figure 1.8: The structure of a gap junction. Figure adapted from Goodenough DA 2009 
[190]. 
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Studies have shown that, aside from reward areas, most endocrine neurons 

contain Cx36 [187], and that Cx36 gap junctions are implicated in maintaining the 

structural and functional integrity of circuits by facilitating the proper control of 

neuropeptidergic and neurohormonal tone [191, 192]. In mesolimbic areas, Cx36 

is expressed in the VTA [193,194] and the Acb [195]. Allison and al. suggested 

that an intercommunication between GABA neurons in the VTA is mediated by 

Cx36 gap junctions [193,196]. Signaling within the networks that encompass 

Cx36 affects ethanol consumption: a recent study in demonstrated that Cx36 KO 

mice consume significantly less ethanol than WTs and this phenomenon is 

associated with an upregulation of the D2 receptor. [196].  Moreover, the 

rhythm oscillation of dopamine neurons regulated by VTA GABA affects the Acb 

and other components of the limbic system [197]. In rats, a decrease of Cx36 

mRNA expression in the Acb occurs after amphetamine and cocaine treatments 

[198,199]. What is unknown at present is whether Cx36 gap junctions are an 

essential component of circuits through which OT reduces appetite. 
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Aims 

 

 

The overarching aim of this doctoral research was to determine whether OT 

suppresses appetite for palatable foods. This project, utilizing mice and rats as 

model organisms, encompassed three specific aims: 

 

Specific Aim 1: Defining a relationship between peripherally administered BBB-

penetrant OTr antagonist and palatable diet intake. Defining whether OTr 

blockade increases the intake of: (a) all or only sweet carbohydrates or (b) any 

sweet food regardless its macronutrient content (Chapter 2). 

 

Specific Aim 2: Defining whether the nucleus accumbens directly mediates the 

effects of OT on appetite and whether intra-accumbal OT modifies feeding for 

energy and/or reward in non-social and social contexts (Chapter 3). 

 

Specific Aim 3: Understanding whether OT affects feeding for reward and/or 

homeostasis when brain circuits through which it acts are devoid of Cx36, a key 

protein that forms gap junctions in neuroendocrine and reward regions (Chapter 

4). 
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Chapter 2 
 

Oxytocin receptor blockade enhances appetite 

for carbohydrates, particularly sucrose 

 

 

Abstract 

Centrally acting oxytocin (OT) inhibits feeding. Recent evidence suggests a link 

between OT and control of carbohydrate and saccharin intake, but it is unclear 

whether OT affects appetite for only carbohydrates, especially sweet ones, or 

sweet tastants regardless of their carbohydrate content. Therefore, a blood-

brain barrier penetrant OTr antagonist, L-368,899, was administered in mice and 

intake of liquid diets containing carbohydrates sucrose, glucose, fructose, 

polycose, or cornstarch or the non-carbohydrate, non-caloric sweetener 

saccharin was studied in episodic intake paradigms: one in which only one 

tastant was available; and the other, in which a choice between a carbohydrate 

(sucrose, glucose, or fructose) and saccharin was given. We also used RT-PCR to 

examine hypothalamic OT mRNA levels in mice given short-term access to 

sucrose, cornstarch, or saccharin. In the no-choice paradigm, L-368,899 

increased the intake of all carbohydrates, whereas its effect on saccharin 

consumption showed only a trend. A 10-times lower dose (0.3 mg/kg) stimulated 
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intake of sucrose than other carbohydrates. In the choice test, a very low 0.1 

mg/kg dose of L-368,899 doubled the proportion of sucrose consumption 

relative to saccharin, but did not affect fructose or glucose preference. OT gene 

expression increased after sucrose and CS but not saccharin exposure compared 

to controls, however a higher level of significance was detected in the sucrose 

group. We conclude that OT inhibits appetite for carbohydrates. Sucrose 

consumption greatly enhances OT gene expression and it is particularly sensitive 

to OTr blockade, suggesting a special functional relationship between OT and 

sugar intake. 

2.1. Introduction 

A neurohormone oxytocin (OT) produced mainly in the hypothalamic supraoptic 

(SON) and paraventricular (PVN) nuclei inhibits food consumption. Central 

infusions of OT reduce chow intake and OT neurons are activated at meal 

termination [1,2].  Large food loads [3-5] , an increase in plasma osmolality [6], 

treatments with emetic agents [7] , and injections with satiety regulating 

neuroactive endogenous substances [3,8,9] increase OT neuronal activity. 

Genetic deletion of the OTr gene underlies obesity in the murine KO strain [10] . 

While the role of OT in consumption-related homeostasis is well established, 

most recent evidence suggests OT is involved in feeding reward. OT appears to 

serve as a cross-link bridging homeostatic and reward-related satiety. OT 

neuronal activity is particularly robust in response to manipulations that reduce 

intake of rewarding foods, e.g. to naloxone injections [11], and it is greatly 

diminished by orexigenic doses of opioid receptor agonists [12]. Long-term 
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habitual consumption of sugar is associated with diminished OT neuronal activity 

in response to a food load, suggesting that OT dysregulation leads to reward-

driven overeating [13]. 

Importantly, initial studies suggest that OT seems to affect preferentially intake 

of those rewarding tastants that are sweet and/or high in carbohydrates. OT KO 

mice display enhanced preference for sugar and other carbohydrates and OT 

gene deletion is also associated with increased appetite for saccharin [13,14]. 

OTr blockade enhances appetite for sucrose [5,14,15]. Central injections of OT 

reduce the intake of the monosaccharide glucose, but only in food-deprived rats 

[4]. To add to the confusion, OTr KOs have unchanged preference for sucrose 

[16]. Furthermore, OT KOs drink elevated amounts of saccharin, but OTr 

blockade in thirsty animals does not increase preference for saccharin in the 

saccharin-vs-water two-bottle test [17]. 

Overall, it is still unclear whether OT affects appetite for only carbohydrates, 

especially sweet ones, or sweet tastants regardless of their carbohydrate content. 

Therefore, we administered a blood-brain barrier (BBB) penetrant, potent and 

selective antagonist of the mouse OTr, L-368,899 [18] to examine its effect on 

the intake of solutions containing sucrose, glucose, fructose, polycose, 

cornstarch (CS) or saccharin. Two paradigms were used: (1) only one tastant was 

available and the dose-response curves were established, and (2) a choice 

between two sweet ingestants, a carbohydrate (sucrose, glucose or fructose) vs. 

non-carbohydrate saccharin, was studied in mice injected with a very low dose of 

the antagonist. We also used real-time PCR (RT-PCR) to examine changes in 
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hypothalamic OT mRNA levels in mice given short-term access to sucrose, CS, or 

saccharin solutions. 

2.2. Methods  

2.2.1. Animals 

Male C57BL/6J mice (26±3 g; AgResearch, NZ), housed individually (LD 12:12; 

lights on at 0700) at 21–22°C, had unlimited access to chow (Teklad) and water 

unless noted otherwise. The procedures were approved by the University of 

Waikato animal ethics committee. 

2.2.2. Effect of OTr blockade on consumption in the no-choice 

single-bottle paradigm  

Animals (n=8/group) were accustomed to having access to palatable 0.1% 

saccharin, 10% sucrose, 30% sucrose, 10% fructose, 10% polycose or 10% glucose, 

given alone, for 2 h (1000–1200 h) per day for 3 days. In the CS study, to 

stimulate intake of the carbohydrate, mice were food-deprived overnight and 

then they received access for 2 h (1000–1200) to a single bottle containing a 10% 

CS suspension (as CS is insoluble in water, 0.3% xanthan gum was added to the 

liquids in this experiment as described previously in [19]). Chow and water were 

removed for the 2-h period. Animals started drinking right after the solution was 

presented and finished within 50 min. On day 4, 5 min prior to solution exposure, 

mice were injected IP with saline or 0.1, 0.3, 1 and 3 mg/kg b.wt. L-368,899 

(Tocris), at a dose range known to affect consumption [5]. Bottles were weighed; 

the amount of the solution consumed was corrected for spillage and reported in 

g/kg of b.wt. One-way ANOVA followed by Fisher’s post-hoc test was used to 
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establish the effect of L-368,899. P values ≤ 0.05 were considered significantly 

different. 

2.2.3. Effect of OTr blockade on sugars vs saccharin preference  

Mice had been pre-exposed to 0.1% saccharin, 10% sucrose, 10% fructose or 10% 

glucose for 24h several days before the beginning of the trials in order to avoid 

neophobia. Animals (n=6/group) were accustomed to having access to two 

bottles for 3 days: one containing saccharin and the other containing (a) sucrose 

or (b) fructose or (c) glucose, for 2 h (1000–1200). Food was removed from the 

hoppers for the 2-h period of tastant presentation. Five min prior to the 

presentation of the bottles, mice were injected IP with saline or 0.1 mg/kg L-

368,899, and the dose of the antagonist was selected as a low, sub-threshold 

dose insufficient to increase the intake of any carbohydrate tested in a single-

bottle paradigm in the no-choice paradigm described above and in previous 

studies (e.g. [5]). The amount of the solution consumed corrected for spillage 

was calculated in g/kg of b. wt. and the data were expressed as % of sweet 

carbohydrate solution (e.g. sucrose) intake in total fluid (e.g. sucrose + saccharin) 

intake. A t-test was used to establish whether L-368,899 affected preference for 

carbohydrate vs non-carbohydrate. P values ≤ 0.05 were considered significantly 

different. 

2.2.4. OT mRNA levels in mice consuming sucrose, CS or saccharin 

On two subsequent days, water bottles were removed 2h before the beginning 

of the dark phase. At lights off, the animals (n=7-8/group) were given access to 3 

ml of water (control) or the 10% CS, 10% sucrose or 0.1% saccharin 

solutions/suspensions (prepared as in 2.2) which represented ca 40% of their 
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night-time water intake. The fluid was consumed by all but 2 mice (1 from the 

water and 1 from the CS group – excluded from the study) between 3 and 4 h. At 

5 h, water bottles were placed back in the cages. We did not observe differences 

in night-time chow (4.3-4.8 g range) and water (4.0-4.7 ml range) intakes 

between the groups. On the second day at lights on, chow and water were 

removed. The animals were decapitated (7:00-8:00), hypothalamic dissected and 

placed in RNAlater (Ambion) overnight (4°C). A standard protocol of sample 

preparation and RT-PCR was followed (details in [5]) and for brevity reasons, only 

the main elements are described herein. Samples were homogenized in TRIzol 

(Ambion); RNA was extracted with chloroform and precipitated in isopropanol. 

After centrifuging, the pellet was washed, air dried, and dissolved in the DNase 

buffer (NEB). The samples were treated with RNase-free DNase I (37°C, 1h; 

Merck) and the absence of genomic DNA was established by PCR of 5% template 

in the PCR mix [MgCl2-free buffer, 50mM MgCl2, Tween, 20mM dNTP, forward 

and reverse primers, Taq polymerase, and MilliQ H2O; 10μl total volume]. 0.5μl 

100ng/μl genomic DNA was added as a positive control, and 0.5μl MilliQ H2O as a 

negative one. The product was analysed with electrophoresis. To synthesize 

cDNA, 5μg RNA samples (concentration determined spectrophotometrically) 

were diluted with MilliQ H2O to 12μl. RNA was reverse transcribed in the Master 

Mix (Promega; 20μl]. Samples were incubated for 1h (37°C), followed by PCR to 

confirm cDNA synthesis. RT-PCR reactions were performed in duplicates; 

negative controls were included. 25ng of sample cDNA template was used per 

primer (OT primer sequences: cggtggatctcggactgaac (fwd) and 

tagcaggcggaggtcagag (rev)). Each RT-PCR (20μl total volume) contained 2μl 

MgCl2-free buffer 10×, 0.2μl 20mM dNTP, 1.6μl 50mM MgCl2, 0.05μl forward and 
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reverse primer (100pmol/μl), 1 μl DMSO, 0.5μl Sybr Green (1:50,000), 0.08μl Taq 

polymerase, and 9.52μl MilliQ H2O. The amplification step included denaturation 

(95°C, 3min), and 40 cycles of denaturing (95°C, 20s), annealing (30s), and 

elongation (72°C, 30s). Expression of four housekeeping genes, β-actin, β-tubulin, 

glyceraldehyde-3-phosphate-dehydrogenase, and ribosomal protein, was used to 

calculate normalization factors (GeNorm). Primer efficiencies were calculated 

with LinRegPCR, and Ct values were corrected for differences in primer 

efficiencies. Differences between groups were analysed with ANOVA followed by 

Fisher’s test with significance set at P ≤ 0.05. 

2.3. Results 

In the no-choice paradigm, L-368,899 increased the intake of all carbohydrates 

(Figure 2.1), including the CS, whereas its effect on saccharin consumption only 

approached significance. A dose as low as 0.3 mg/kg elevated 10% and 30% 

sucrose consumption (10%: 0.3 mg/kg b. wt. p=0.025; 1 mg/kg b. wt. p=0.008; 

30%: 0.3 mg/kg b. wt. p=0.012; 1 mg/kg b. wt. p=0.027). Fructose, glucose, 

polycose and CS intakes were also increased, however the lowest effective dose 

of L-368,899 (3 mg/kg) was ten times higher (fructose: p=0.016 ; glucose: 

p=0.020; polycose: p=0.031; CS: p=0.039). L-368,899 did not affect appetite for 

saccharin; although there was a trend at 3mg/kg (p=0.088).  

In a two-bottle test, mice given access to a sugar (sucrose, glucose or fructose) 

and saccharin were pre-treated with a 0.1 mg/kg dose of L-368,899, sub-

threshold in the no-choice experiment. L-368,899 doubled the proportion of 
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sucrose consumption relative to saccharin (p= 0.006), but had no effect on the 

preference for fructose or glucose versus saccharin (Figure 2.2). 

Hypothalamic OT gene expression (Figure 2.3) was higher in animals exposed to 

sucrose and CS compared to controls, however a higher level of significance was 

detected in the group fed sucrose (p=0.008) than CS (p=0.036). Saccharin 

exposure did not affect OT mRNA levels. 

 

Figure 2.1: The effect of the OTr antagonist, L-368,899, at 0 (vehicle), 0.1, 0.3, 1 and 3 
mg kg/b. wt on the intake of solutions containing (a) 10% sucrose, (b) 30% sucrose, (c) 
10% fructose, (d) 10% glucose, (e) 10% polycose, (f) 0.1% saccharin and (g) 10% CS. * - 
p<0.05; ** - p<0.01 
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Figure 2.2: The effect of the OTr antagonist, L-368,899, at 0 (saline vehicle), 0.1mg kg/b. 
wt on the intake of solutions containing (a) 10% sucrose , (b) 10% fructose, (c) 10% 
glucose ( carbohydrate) vs 0.1% saccharin (non-carbohydrate) expressed as the % of 
carbohydrate solution consumed in the total volume of ingested tastants. ** -p<0.01  
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Figure 2.3: Hypothalamic OT gene expression established with RT-PCR. On two 
consecutive nights, mice were given access to 3 ml of 10% sucrose, 10% cornstarch or 
0.1% saccharin solutions; controls were given water. * - p<0.05; ** - p<0.01 

2.4. Discussion 

The current set of experiments confirms that OT affects appetite for 

carbohydrates and it points to a special functional relationship between OT and 

sucrose intake. Antagonism of the OTr in the no-choice paradigm led to an 

increase in the intake of all carbohydrates, i.e., sucrose, glucose and fructose, 

polycose and CS, but it should be emphasized that the consumption of sucrose 

was induced by the antagonist dose that was 10 times lower than that needed to 

affect intake of the remaining carbohydrates. Importantly, blockade of the OTr 

stimulated appetite for carbohydrates independent of their sweetness and 

rewarding value: bland CS and palatable sweet carbohydrates were ingested 

more avidly after the treatment. This is in concert with the KO animal data in 

which the genetic deletion of the OT gene caused overconsumption of a variety 
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of carbohydrates, including starch [14]. Therefore, a sweet flavor does not seem 

to be a prerequisite underlying the effectiveness of OT in regulating 

carbohydrate-specific satiety and neither is the complexity of their structure (i.e., 

mono-, di- and polysaccharide). Furthermore, the effect of L-368,899 on sucrose 

intake remained even after the three-fold increase in the concentration of 

sucrose in the solution; hence, the link between carbohydrate consumption and 

OT does not appear to be modified by the caloric density of the tastant.  

Aside from the episodic intake of carbohydrates being decreased by OTr 

antagonism, we found that short-term enrichment of the diet with 

carbohydrates (either sucrose or CS) caused up-regulation of the OT transcript in 

the hypothalamus compared to controls. This is in line with the OT mRNA 

findings in sucrose- versus regular diet-exposed rats [20]. Noteworthy, a greater 

increase in our RT-PCR study was found in sucrose- than in CS-fed mice despite 

the same amount of the carbohydrate containing fluid consumed by the 

respective groups.  

Unlike appetite for carbohydrates, saccharin intake was not elevated by OTr 

blockade, though the highest dose of the compound induced the consummatory 

response that showed a trend approaching significance. Also, our RT-PCR 

experiment showed that hypothalamic OT gene expression was not affected by 

short-term saccharin exposure. Though these data are in contrast to OT KO 

murine studies in which saccharin overconsumption was noted [14], they are in 

line with antagonist injection experiments that showed the lack of the effect of L-

368,899 on preference for saccharin in water-deprived mice given a choice 

between the saccharin solution and water [17]. Overall, this suggests that the 
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involvement of the OTr in saccharin intake regulation is not as critical as in 

appetite for carbohydrates, but obviously considering the trend in saccharin 

consumption reported herein and the positive KO mouse data [14], it cannot be 

negated. Importantly, it appears that this is not the sweet flavor (note saccharin 

vs. CS intakes) but rather the carbohydrate content of an ingestant that defines 

the link between OT and feeding control. 

The two-bottle preference tests confirmed the proposed special relationship 

between OT and the control of sucrose intake. The very low dose of L-368,899 

that was found to be insufficient to affect the intake of any of the carbohydrates 

in the no-choice paradigm, increased the preference for sucrose vs saccharin in 

the two-bottle test. It did not affect the relative preference for the other two 

carbohydrates, fructose and glucose, which strengthens the claim that the OTr 

plays a role in sucrose-specific satiety. The fact that there was no change of 

preference for fructose and glucose vs. saccharin implies that calories, at least in 

the relatively energy-dilute liquid diets, are not the causative factor behind the 

shift in preference in the sucrose vs. saccharin scenario.  

In summary, the present study shows that antagonism of the OT receptor 

enhances appetite for carbohydrates and this role is independent from sweet 

flavor. Sucrose consumption greatly enhances OT gene expression and appears 

to be particularly sensitive to the OTr blockade, which strengthens the notion 

that there is a special functional relationship between OT and sucrose intake, 

and suggests that OT may serve as a key neuroregulator of sucrose-specific 

satiety.  
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Chapter 3 

Oxytocin acting via the nucleus accumbens core 

decreases food intake driven by hunger and by 

reward in rats offered a meal in a non-social 

setting 

 

Abstract 

Central oxytocin (OT) promotes feeding termination in response to homeostatic 

challenges, such as excessive stomach distension, salt loading, and toxicity. OT 

has also been proposed to affect feeding reward by decreasing consumption of 

palatable carbohydrates and sweet tastants. As the OT receptor (OTr) is 

expressed in the nucleus accumbens core (AcbC) and shell (AcbSh), a site 

regulating diverse aspects of eating behavior, we investigated whether OT acting 

therein affects appetite in rats. First, we examined whether direct AcbC and 

AcbSh OT injections affect hunger- and palatability-driven consumption. We 

found that only AcbC OT infusions decrease deprivation-induced chow intake and 

reduce consumption of palatable sucrose and saccharin solutions in non-

deprived animals. These effects were abolished by a pre-treatment with an OTr 
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antagonist, L-368,899, injected in the same site. AcbC OT at an anorexigenic dose 

did not induce a conditioned taste aversion, which indicates that AcbC OT-driven 

anorexia is not caused by sickness/malaise. The appetite-specific effect of AcbC 

OT is supported by the real-time PCR analysis of OTr mRNA in the AcbC which 

revealed that food deprivation elevates OTr mRNA expression, whereas 

saccharin solution intake decreases OTr transcript levels. We also used c-Fos 

immunohistochemistry as a marker of neuronal activity.  We found that AcbC OT 

injection increases activation of the AcbC, hypothalamic paraventricular (PVN) 

and supraoptic (SON) nuclei, and – within the PVN and SON – it increases the 

percentage of activated OT cells. Finally, considering the fact that OT plays a 

significant role in social behaviour, we examined whether offering animals a 

meal in a social setting would modify their hypophagic response to AcbC OT 

injections. We found that a social context abolishes anorexigenic effects of AcbC 

OT. We conclude that OT acting via the AcbC decreases food intake driven by 

hunger and by reward in rats offered a meal in a non-social setting.   

3.1. Introduction 

Oxytocin (OT) promotes feeding termination mainly through central mechanisms 

[1, 2]. An increased level of OT neuronal activity and OT release occurs at the end 

of a meal and in response to excessive plasma osmolality and stomach distension 

[3,4]. In 1990, Arletti et al showed that intracerebroventricular (ICV) OT 

injections cause a marked reduction in food intake [5]. Since that initial study, 

many authors have confirmed the anorexigenic effect of OT and have begun 

identifying brain sites mediating OT-driven food termination [6]. The majority of 
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work has focused on the brainstem component of the circuitry: OT infusions in 

the nucleus of the solitary tract (NTS) [2] inhibit feeding, and the activity within 

the OT NTS-PVN pathway has been functionally linked with neuroendocrine 

regulators of energy homeostasis (especially those involved in gastrointestinal 

and osmotic control), including cholecystokinin (CCK), glucagon-like-peptide-1 

(GLP-1), and peptide YY (PYY) [7]. Furthermore, OT administration in the 

ventromedial hypothalamic nucleus (VMH) acutely decreases chow intake and 

increases energy expenditure in rats [7, 8].  

OT acting outside the brainstem-hypothalamic pathways also promotes 

hypophagia. Mullis et al found that OT administered in the ventral tegmental 

area (VTA) in rats causes a dose-dependent decrease in deprivation-induced 

chow intake and affects sucrose consumption [9]. Their findings were in 

agreement with other reports suggesting that OT appears to serve as a cross-link 

between mechanisms that bridge termination of consumption due to 

“homeostatic” (i.e., related mainly to stomach distension and osmolality) and 

palatability-specific (i.e., related to sweet flavor and carbohydrate) satiety. For 

example, OT knockout mice consume sweet carbohydrates and saccharin less 

avidly than wild-type controls. Pharmacological blockade of the OTr elevates 

intake of sweet tastants in sated mice [10], whereas OT administration reduces 

intake of glucose in food-deprived rats [11]. Opioid receptor antagonist 

injections that decrease palatable sucrose intake also activate OT neurons [12], 

and OT gene expression is increased after a high sugar diet intake in rats [13].  

Despite the presence of the OTr in the core (C) and shell (Sh) subdivisions [2, 14, 

15]  of the nucleus accumbens (Acb), another key extrahypothalamic appetite 
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regulating area, thus far there have been no reports delineating potential 

involvement of this region in mediating OT’s effects on food intake.  Extensive 

studies on the relationship between AcbSh and feeding control have shown that 

opioid and dopamine signaling in the AcbSh affects particularly hedonics of 

consumption [15, 16], whereas glutamate and GABA in this subdivision regulate 

also energy intake [17] [18]. Less is known about AcbC, though several authors 

have reported that GLP-1 in the AcbC affects meal size and rewarding aspects of 

food consumption [19-21].  

In the current set of studies, we investigated whether OT acting in the Acb 

affects appetite in rats. First, we examined whether AcbC and/or AcbSh 

injections of OT decrease hunger- and palatability-driven consumption. Once we 

established that only the AcbC injections produce hypophagia, we focused on 

providing a more detailed characterization of the role of the AcbC OT in feeding 

regulation.  A conditioned taste aversion (CTA) paradigm was used to examine 

whether AcbC OT-driven anorexia is related to malaise. Considering the fact that 

OT plays a significant role in social behavior [22-24], we also examined how OT 

injected in the AcbC affects feeding in a social setting. Finally, we determined 

changes in c-Fos immunoreactivity in feeding-related brain sites after AcbC 

infusion of an anorexigenic dose of OT, and we analyzed changes in OTr mRNA 

expression in rats exposed to food deprivation and to a palatable diet.  

3.2. Materials and Methods 

3.2.1. Animals. Adult male Sprague-Dawley rats weighing ca 335 g at the 

beginning of the experiment were housed individually in plastic cages with LD 
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12:12 (lights on at 07:00; temp.: 20–22 °C). Tap water and standard laboratory 

chow (Teklad) were available ad libitum unless noted otherwise. All procedures 

received prior approval from the University of Waikato ethics committee. 

3.2.2. Surgeries. Rats used for intracranial infusion studies were anesthetized 

with IP ketamine (100 mg/kg) / xylazine (20 mg/kg) and equipped unilaterally 

with a 7.5-mm stainless steel cannula (23-gauge, Plastics One, Australia) aimed at 

the AcbC or AcbSh. Stereotaxic coordinates for the AcbC were: 1.5 mm 

anteroposterior; -1.4 mm mediolateral to bregma; -5.5 mm dorsoventral to skull 

surface, and for the AcbSh: 1.5 mm, -0.8 mm; -7 mm, respectively. The injector 

protruded 0.5 mm below the tip of the cannula. Dental cement was used to 

secure the cannula to three screws inserted in the skull. Rats received Caprofen 

(5mg/ml, SC) immediately following the surgery. They were allowed to recover 

for at least 7 days. After the completion of all behavioral experiments, rats were 

sacrificed and cannula placement was assessed in immunohistochemically 

processed brains (see Section 3.2.11). 

3.2.3. Injections. OT (Phoenix) and OTr antagonist (L-368,899; Tocris) were 

injected with Hamilton syringes in a volume of 0.5μl over 1 min. Drugs were 

dissolved in isotonic saline.  

3.2.4. Effect of OT in the AcbC versus AcbSh on deprivation-induced 

chow intake. Rats were deprived of chow overnight. Five min before food 

presentation (10:00), they were injected in the AcbC or AcbSh with 0 (saline), 0.3, 

1 and 3μg OT (n=8-9/group). Chow was weighed before and 2, 4 and 24 h after 

the treatment. 
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3.2.5. Effect of OT in the AcbC versus AcbSh on the intake of sweet 

palatable solutions. We followed a similar protocol as in (PMID: 24893201). 

In brief, animals (n=8-12/group) were accustomed to having access to a bottle of 

a 10% sucrose solution for 2 h/day (10:00–12:00) for 3 days (chow and water 

were removed for the 2 h). On day 4, just before sucrose presentation, rats were 

injected in the AcbC or AcbSh with 0 (saline), 0.1, 0.3, 1 and 3μg OT (n=8/group) 

and the amount of consumed solution was established 2 h post-injection. The 

same approach was employed to study the effect of OT on 0.1% saccharin intake, 

however, 0, 0.01, 0.03, 0.1, 0.3 and 3μg doses of OT were used.  

3.2.6. Effect of AcbC OTr antagonist pre-treatment on the ability of 

AcbC OT to decrease deprivation-induced feeding. Rats were deprived 

of chow overnight. Just prior to regaining access to chow (10:00), they received 

two AcbC injections spaced 10 min apart: (a) saline followed by saline; (b) saline 

followed 1μg OT (lowest effective OT dose based on Exp 1); (c) 0.3μg L-368,899 

followed by 1μg OT; (d) 1μl L-368,899 followed by 1μg OT; and (e) 3μg L-368,899  

followed by 1μg OT (n=7/group). Food intake was measured 2 and 4 h post-

injection. L-368,899 doses were chosen based on previous reports [10]. 

3.2.7. Effect of AcbC OTr antagonist pre-treatment on the ability of 

AcbC OT to decrease consumption of sucrose and saccharin 

solutions. As described for Exp 2.5, animals were accustomed to having access 

to a bottle of a 10% sucrose (or 0.1% saccharin) solution for 2 h/day (10:00–

12:00) for 3 days. On day 4, just before sucrose presentation, rats were double-

injected (10 min apart) in the AcbC with (a) saline followed by saline, (b) saline 
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followed 0.3μg OT, (c) 1μl L-368,899 followed by 0.3μg OT. Before the 0.1% 

saccharin presentation, rats were treated in the same manner except for the 

doses of OT and L-368,899, which were 0.03μg and 3μl, respectively (n=7-

8/group). Consumption was measured 2 h post-injection. 

3.2.8. Effect of AcbC OT on deprivation-induced and palatability-

induced consumption in the social context. In order to assess the effect 

of AcbC OT on food intake in the social context, single-housed rats were 

episodically placed in a predictable social setting in which food intake occurred. 

We designed an apparatus which was a subdivided standard Macrolon cage with 

a metal grid lid (with an overhead food hopper and bottle holder on one side of 

the cage). It was subdivided into two identical chambers (L48cm x W19cm) by a 

transparent, Plexiglas partition wall, containing multiple ø1.5cm round openings, 

which allowed the rats placed simultaneously in each chamber for incomplete 

socialization (visual, auditory, olfactory and partial tactile) devoid of major direct 

interactions (especially antagonistic ones) that could impair animals’ ability to 

access food. All animals used in these studies were accustomed to being in the 

apparatus and having food presented therein in at least 8 separate 1-h training 

sessions (starting between 10:00 and 12:00). The chambers were wiped with 

ethanol after each use. During the pharmacological studies, only one of the two 

animals simultaneously present in the apparatus received an injection of saline 

or OT. 

To examine the effect of OT on deprivation-induced feeding in the social setting, 

animals had chow removed overnight. Afterwards, two rats were placed 

simultaneously in the social context apparatus (one rat per chamber) wherein 
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pre-weighed chow was put in the hopper. Just prior to the session, one of the 

two rats received an injection of 0 (saline), 1 or 3μg OT (n=8-10/group) in the 

AcbC, and food intake was measured 1 h later. 

To assess the effect of OT on intake of sweet palatable tastants in the social 

setting, rats were accustomed to getting episodic access to a single bottle of 10% 

sucrose or 0.1% saccharin solution similarly to the non-social scenario described 

in Section 2.5.  On the experimental day, two rats were placed simultaneously in 

the social context apparatus (one rat per chamber) wherein they gained access 

to individual pre-weighed bottles containing a sweet solution. Just prior to the 

session, one of the two rats received an injection of saline) or OT. 0.03, 0.1, 0.3 

and 1μg doses of OT were injected in the sucrose-exposed animals, whereas 0.03, 

0.1 and 0.3μg OT, in rats given the saccharin solution (n=6-8/group). Bottles were 

collected and weight before and after 1h post-injection. 

3.2.9. AcbC OT and CTA development. Rats were accustomed to having 

access to water for 2 h (11:00–13:00) per day for 3 days. Food was removed from 

hoppers for the 2-h period of scheduled fluid presentation. On day 4, rats were 

given a novel 0.1% saccharin solution instead of water for 60 min. Afterwards 

they received an AcbC injection of saline or 1μg OT (an effective anorexigenic 

dose based on feeding experiments) (n=5/group). On day 5, a two-bottle 

preference test (saccharin versus water) was used to assess acquisition of a CTA 

to the saccharin solution [56-58]. Bottles were weighed and percentages of the 

saccharin solution intake (out of cumulative, i.e. saccharin plus water, intake) 

were calculated. 
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3.2.10. Consummatory behavior data analysis. All food intake 

experiments utilizing single OT injections were analyzed with one-way ANOVA 

followed by Fischer’s post-hoc test. In the double injection experiments, first the 

effect of OT against saline control was confirmed with a t-test and then the 

effect of the antagonist pretreatment on OT-induced anorexia was determined 

with one-way ANOVA followed by Fischer’s post-hoc test. The CTA OT versus 

saline two group comparison was done with a t-test. Values were considered 

significant when p<0.05. 

3.2.11. c-Fos immunoreactivity in feeding-related brain sites in 

response to AcbC OT injection. Rats received a single injection of saline or 

3μg OT in the AcbC (n=5-6/group). Injections were performed between 10:00 

and 12:00. Food and water were removed immediately after the drug treatment. 

60 min later, animals were anesthetized and perfused with 50 ml of saline 

followed by 500 ml of 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 

7.4). Brains were excised and postfixed overnight in PFA (4°C). Coronal 60-μm 

Vibratome (Leica) sections were processed for c-Fos or c-Fos+OT immunostaining. 

The tissue was treated for 10 min in 3% H2O2 in 10% methanol (in TBS, pH 7.4) 

and incubated overnight at 4°C in the goat anti-c-Fos antibody (1:2000; Santa 

Cruz). Subsequently sections were incubated for 1h in the rabbit-anti-goat 

antibody (Vector) and then in the avidin-biotin complex (1h; Vector). Peroxidase 

was visualized with 0.05% diaminobenzidine, 0.01 H2O2, and 0.2% nickel sulfate 

(all Sigma). All incubations were done in a mixture of 0.25% gelatin and 0.5% 

Triton X-100 (Sigma) in TBS. Intermediate rinsing was done with TBS. Following 

the completion of c-Fos staining, sections were further processed for 
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visualization of OT. The procedure was similar to that used to identify c-Fos. 

However, rabbit anti-oxytocin was used as the primary antibody (1:15000; 

Millipore, Temecula, CA), and nickel sulfate was omitted from the DAB solution 

so as to obtain a brown color. Sections were mounted on gelatinized slides, dried, 

dehydrated in ethanol, soaked in xylene, and embedded in Entellan (Merck). The 

number of c-Fos positive nuclei was counted bilaterally in all regions of interest 

(4-5 sections containing a given site per animal) except for the AcbC where c-Fos 

IR was assessed ipsilaterally to the cannula, using Scion Image software. 

Densities of Fos positive nuclei (per mm2) were averaged per rat and then per 

group. In the double staining analysis, the following estimates were assessed per 

section and then per region: the total number of OT neurons and the number of 

OT neurons positive for c-Fos. Cells were counted bilaterally, and the percentage 

of OT neurons containing c-Fos-positive nuclei was tabulated. A t-test was used 

to determine differences between the two groups (significance set at p<0.05). 

3.2.12. Effect of regular diet versus sweet diet and regular diet 

versus food deprivation on OTr gene expression levels in the AcbC 

In order to assess the effect of sweet palatable solution exposure on AcbC OTr 

mRNA levels, rats were given access to either chow and water (control) or to 

chow and 0.1% saccharin solution (instead of water) for 48h (n = 8/group). In a 

separate experiment assessing the effect of food deprivation on OTr mRNA levels, 

rats were either maintained on ad libitum access to chow and water (control) or 

chow was removed for 24 hours prior to decapitation (n = 8/group). 
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The animals were decapitated (10:00-12:00) and the AcbC was collected excised, 

immersed in RNAlater (Ambion), kept at room temperature for 2 h and, 

thereafter, stored at −80 °C (as described in our earlier publication [13]).  

3.2.12.1. RNA isolation, cDNA synthesis and real-time PCR. Samples were 

sonicated in TRIzol (Invitrogen), chloroform was added to the homogenate, 

which was then centrifuged at 10,000 × g at 4°C for 15 min. The water phase was 

transferred to a new tube, and RNA was precipitated with isopropanol. The 

pellets were washed with 75% ethanol, air dried, and dissolved in RNAse-free 

water. DNA was removed with DNAse I treatment (Roche; 4 h, 37 °C), and the 

enzyme was inactivated by heating the samples at 75°C for 15 min. The absence 

of genomic DNA was determined by the PCR analysis with primers for the RNA 

extractions with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the 

DNAse-treated RNA. RNA concentration was measured with a NanoDrop®ND-

1000. cDNA was synthesized with MMLV reverse transcriptase (GE Healthcare), 

using random hexamers as primers according to the manufacturer's 

specifications. cDNA was analyzed with a MyIQ thermal cycler (Bio-Rad). Each 

rtPCR reaction with a total volume of 20 μl contained cDNA synthesized from 

25 ng total RNA, 0.25 M each primer, 20 mM Tris/HCl (pH 8.4), 50 nM KCl, 4 mM 

MgCl2, 0.2 mM dNTP, SYBR Green (1:50000). Reactions were performed with 

0.02 U/l Taq DNA polymerase (Invitrogen) under the following conditions: initial 

denaturation for 4 min at 95 °C, followed by 50 cycles of 15 s each at 95 °C, 30 s 

at 55–62 °C (i.e. at the optimal annealing temp. for each primer pair), and 30 s at 

72 °C. This was followed by 1 min at 55–62 °C (optimal annealing temp.) and a 

melting curve with 84 cycles of 10 s at 55°C increased by 0.5°C per cycle. All 
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experiments were done in duplicates. The measurements where the threshold 

cycle (Ct) values between the duplicates had a difference of over 0.9 were 

repeated. A negative control for a given primer pair and a positive control with 

25 ng of genomic DNA was included on each plate. The following HKGs were 

used to define normalization factors:  GAPDH, β-tubulin (TUB), ribosomal protein 

19 (RPL19), histone H3 (H3), cyclophilin (CYCLO), β-actin (ACT) and succinate 

dehydrogenase complex, subunit B (SUCB) (as in 19022308). The sequence of the 

OTr primer pairs were as follows: TTCTTCTGCTGCTCTGCTCGT (fwd) and 

TCATGCTGAAGATGGCTGAGA (rev). 

3.2.12.2. Data analysis and relative expression calculations. The MyiQ software 

v. 1.04 (Bio-Rad) was used to analyze qPCR data and derive Ct values. Melting 

curves were analyzed to confirm that one product was amplified and that it was 

significantly shifted compared to the melting curve for the negative control. The 

sample Ct values were analyzed further if the difference between those and the 

negative control exceeded 3; otherwise, the transcript was considered not to be 

expressed. Normalization factors were calculated with GeNorm. LinRegPCR was 

employed to calculate PCR efficiencies for each sample. Grubb's test (GraphPad) 

was used to identify and remove outliers and calculate average PCR efficiencies 

for each primer pair. Differences in OTr expression between groups were 

analyzed with a t-test, and p < 0.05 was used as the criterion of statistical 

significance. 
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3.3. Results 

We have found that direct AcbC (Figure 1-2), but not AcbSh (Figure 3.1 E F G), 

injections of OT affect food intake. Administration of 1 and 3 µg OT in the AcbC 

decreased deprivation-induced cumulative chow intake (Figure 3.1 A-B) by 

approximately 35-40% at 2 h (1 µg P=0.028; 3 µg P=0.019) and 4 h (1 µg P=0.006; 

3 µg P=0.004) post-injection. There was no effect on food consumption at 24h 

(data not shown) or water consumption at 2, 4 or 24 h (Table 3.1).  

In non-deprived rats stimulated to eat by palatability of a diet, AcbC infusions of 

1 µg and 3 µg OT decreased sucrose solution intake by ca 50% (P=0.017 and 

P=0.045, respectively). Saccharin solution consumption was decreased to a 

similar degree by OT, however, lower doses were needed to cause the effect: 

0.03 µg (P=0.03), 0.1 µg (P=0.026), 0.3 µg (P=0.025), and 1 µg (P=0.027; Figure 

3.1 C-D). 

Our CTA study showed that AcbC administration of an anorexigenic 1-µg dose of 

OT before presentation of the novel 0.1% saccharin solution did not produce 

learned avoidance of saccharin in the subsequent two-bottle choice test (Figure 

3.1 H).  

The anorexigenic action of AcbC OT was reversed by a pre-treatment with an OTr 

antagonist. In overnight-deprived rats, 1 and 3 µg of L-368,899 counteracted the 

effect of OT at 2 h (3 µg, P=0.042) and 4 h (1 µg, P=0.025; 3 µg, P=0.016) post-

injection (Figure 3.2 A B).  The antagonist abolished the effect of OT on the 

intakes of the sucrose (P=0.030) and saccharin (P=0.04) solutions (Figure 3.2 C D). 
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Furthermore, while OT-induced short-term anorexia was apparent in single-

housed animals stimulated to eat either by hunger or by palatability, AcbC 

infusions of OT at doses effective in the aforementioned scenarios did not affect 

hunger- or reward-driven consumption in rats subjected to the social context of 

a 1-hour meal (Figure 3.3).  

Our c-Fos study revealed that AcbC infusion of 3 µg OT increased activation of 

the AcbC itself (P=0.008) as well as two other sites belonging to a widespread 

central network regulating appetite:  the PVN (P=0.029) and the SON (0.036; 

Figure 3.4). Our double staining for c-Fos and OT revealed an AcbC OT-induced 

increase in the percentage of activated OT cells in both sites (PVN, p=5.6E-5 and 

SON, p=4.5E-6; Figure 3.5). 

Finally, using real-time PCR, we found that expression of the OTr mRNA in the 

AcbC is significantly higher in food-deprived rats compared to ad libitum-fed 

animals (P=0.033) and it decreases in rats given 48-h access to a saccharin 

solution compared to standard diet-fed rats (P=0.045; Figure 3.6) 
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Figure 3.1: The effect of OT injections (doses in µg) in the AcbC and AcbSh on 
consummatory behavior in rats. (A) The effect of AcbC OT on deprivation-induced chow 
intake 2h and (B) 4h post-injection. (C) The effect of AcbC OT on the intake of 10% 
sucrose solution and (D) 0.1% saccharin solution. (E) The effect of AcbSh OT on 
deprivation-induced chow intake 2h post-injection. (F) The effect of AcbSh OT on the 
intake of 10% sucrose solution and (G) 0.1% saccharin solution. (H) Preference for a 
saccharin solution in a two-bottle preference test (saccharin versus water) was assessed 
to determine whether AcbC OT promotes acquisition of a CTA.   * - p<0.05; ** - p<0.01; 
***p<0.005. 
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Figure 3.2:  The effect of AcbC OTr antagonist (ORA: L-368,899) pretreatment on the 
ability of AcbC OT to reduce feeding. Deprivation-induced chow intake was measured  
2h (A)  and 4h (B) after a double injection of saline + saline, saline + 1 µg OT, 0.3,1,3 µg 
ORA + 1 µg OT. (C) Intake of 10% sucrose solution was determined 2h after AcbC double-
injection of saline + saline, saline + 0.3 µg OT, and 1 µg ORA + 0.3 µg OT. (D) Intake of 0. 
1% saccharin solution was measured 2h after AcbC double-injection  of saline + saline, 
saline + 0.03 µg OT, 3 µg ORA + 0.03 µg OT. * - p<0.05; ** - p<0.01; ***p<0.005. 
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Figure 3.3: The effect of AcbC OT (doses in µg) on consummatory behavior of rats 
offered a meal in a social context. (A) Deprivation-induced chow intake 1 h post-
injection. (B) 10% sucrose solution intake and (C) 0.1% saccharin solution intake 1h post-
injection.  
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Figure 3.4: c-Fos immunoreactivity in feeding-related brain sites 1 hour after an AcbC 
injection of OT vs saline. The arrow indicates the injection site. Shell and core of nucleus 
accumbens, AcbC / AcbS; ventral tegmental area, VTA; central nucleus of the amygdala, 
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CNA; basolateral amygdala, BLA; dorsal motor nucleus of the vagus, DMNV; nucleus of 
the solitary tract, NTS; area postrema, AP; paraventricular hypothalamic nucleus, PVN; 
supraoptic nucleus, SON; dorsomedial nucleus, DMH, ventromedial nucleus, VMH; 
lateral hypothalamic area, LHA; arcuate nucleus, ARC; optic tract, otr; 3v, third ventricle. 
* - p<0.05; ** - p<0.01; scale bar – 0.1 mm. 

 

Figure 3.5: Co-localization of c-Fos and OT in the paraventricular (PVN) and supraoptic 
(SON) nuclei of rats injected in the AcbC with OT vs saline. *** - p<0.001. 

 

Figure 3.6: Expression of OTr mRNA in the AcbC. (A) The effect of chow deprivation 
versus ad libitum chow access. (B) The effect of 48-h exposure to 0.1% saccharin 
solution in addition to standard chow versus water and standard chow. Gene expression 
was assessed with real-time PCR.  *P < 0.05.  
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Table 3.1: The effect of the OT injected in the AcbC at saline ( vehicle), 0.3, 1 and 3μg on 

water intake, 2h, 4h and 24h  post injection. The injections were performed after an 

overnight deprivation of regular chow and just prior to 2-h water and chow exposure 

period. * - p<0.05; ns: no significant (ANOVA followed by Fisher’s test). 

 

3.4. Discussion 

The classical concept of OT’s involvement in the regulation of appetite revolves 

around the phenomena critical for maintaining and rescuing internal milieu. 

Indeed, OT signaling – especially within the hypothalamic-brainstem circuits -- 

aids in termination of eating behavior that poses threat to the water-electrolyte 

balance and to the functioning of the gastrointestinal tract, and that is associated 

with the ingestion of toxins [3, 4, 25]. The most recent discoveries have 

expanded upon this view as they strongly suggest that OT decreases appetite for 

carbohydrates and for palatable sweet tastants [26] by engaging a wider network 

of neural sites, including the VTA [9].  The current set of studies identifies for the 

first time the AcbC as a key site integrating OT’s involvement in energy 

homeostasis and feeding reward.  
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We found that AcbC injections of OT decreased hunger-derived intake of “bland” 

chow and the palatability-driven consumption of sweet solutions. In both cases, 

the effect was reversible by the pre-treatment with the OTr antagonist, L-

368,899, which suggests that the changes in feeding induced by AcbC OT are 

mediated by the OTr. The magnitude of the anorexigenic response in overnight-

deprived rats to AcbC OT was similar to those observed after lateral ventricular 

(e.g. [27]) and VMH [28] OT infusions and somewhat smaller than the reduction 

in feeding after OT administration into the fourth ventricle [29]. It supports the 

notion that while the hindbrain OTr has a critical role for the regulation of energy 

balance, the forebrain populations of this receptor, including in the AcbC, should 

be viewed as an important contributor to central mechanisms governing feeding 

for calories.  

One of the most crucial findings in research on OT’s influence on appetite in the 

recent years has been the set of discoveries linking OT and appetite for 

carbohydrates and for sweet taste.  OT neuronal activity is particularly high after 

consumption of a sucrose-rich meal [26]. Generalized knockout of the OT gene in 

mice results in the phenotype showing sweet and non-sweet carbohydrate and 

saccharin hyperphagia [30].  Peripheral infusions of the blood-brain barrier 

penetrant OTr antagonist, L-368,899, in wild-type mice promote intake of mono-, 

di- and polysaccharides and saccharin [10]. Those findings sparked the debate as 

to whether the aforementioned effects are particularly relevant to 

carbohydrates, to sweet taste or to hedonic processing. The latest data as well as 

the results presented herein point to a key role that OT plays in the regulation of 

the activity of the reward circuits, including of the AcbC. Carson et al reported 
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that systemic injection of OT decreases methamphetamine activation of the 

AcbC [31]. Baracz and colleagues found that pre-treatment with OT administered 

IP or directly into the AcbC attenuates the formation of a methamphetamine-

induced conditioned place preference [32]. The current experiments show 

reduced consumption of palatable sweet solutions in response to microinjections 

of OT in the AcbC at doses that were the same or lower than those reported for 

VTA administration of the peptide [9]. It should be emphasized that the observed 

change did not stem from altered thirst responsiveness as AcbC OT did not affect 

water intake in water-deprived rats. Notably, a significant decrease in saccharin 

solution intake was achieved with the OT dose that was ineffective in reducing 

the intake of chow or sucrose, which indicates that the presence of energy is not 

a sole factor in the regulatory mechanisms through which AcbC OT modifies 

consummatory behavior. This notion is strengthened by the outcome of the real-

time PCR experiments in which AcbC OTr transcript levels were affected by the 

caloric and non-caloric challenge, i.e., by both energy deprivation and exposure 

to palatable saccharin. This also seems in line with the growing body of evidence 

suggesting that the relationship between OT and suppression of appetite is 

independent from energy density of tastants, as OTr ligands modify intake of 

solid foods (such as chow or chocolate) as well as low-calorie fluids [26, 33, 34]. 

Accordingly, the AcbC OT signaling appears to represent the intertwined 

mechanisms of caloric and non-caloric feeding control. The AcbC OT-induced 

increase in overall c-Fos immunoreactivity in the PVN and SON as well as in the 

number of activated OT neurons is very much reminiscent of neuronal activity 

patterns associated with the end of a meal (regardless of whether palatable or 

“bland” food is offered) [26, 34]  and drug treatments that lead to early 
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termination of hunger- or reward-driven consumption [35, 36]. One should also 

note the fact that OT acting in the AcbC engages pathways that trigger activation 

of OT neurons in the hypothalamus. It suggests that AcbC OT might promote 

positive feedback within the accumbens-hypothalamic OT circuits, though it 

remains to be elucidated whether there is direct reciprocity between the AcbC-

PVN/SON OT pathway components or the effect is mediated via a wider network 

of sites.  

Many authors have reported changes in consumption after direct pharmacologic 

stimulation of the shell subdivision of the Acb. For example, gamma-

aminobutyric acid (GABA) A and GABA B ligands administered in the AcbSh 

modify a short-term feeding response to food deprivation [37]. Similarly, the 

blockade of AcbSh glutamate receptors and mu and kappa opioids receptor 

affects appetite [38], [39]. Importantly, our results add to the growing evidence 

suggesting that also the core subdivision of the Acb controls meal size after 

energy deprivation as well as in palatability-driven food intake. Aside from the 

OTr, the GLP-1 and opioid receptors are involved in AcbC feeding mechanisms 

[40, 41]. In fact, the change in feeding after the AcbC OT infusion with the lack of 

behavioral response to the AcbSh OT treatment resembles the effects of AcbC 

versus AcbSh GLP-1 injections [21]. Interestingly, just as OT, GLP-1 in the Acb 

affects processing of feeding-related and -unrelated rewards [40, 42, 43].  

While the results of our studies define AcbC OT signaling as crucial in energy- and 

reward-induced consumption, the CTA experiment did not show aversive 

consequences of the AcbC OT treatment. The lack of the learned avoidance 

response strongly suggests that the anorexigenic effects of OT do not stem from 
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undesirable sickness/malaise. It lends us confidence in classifying AcbC OT’s role 

as related to appetite regulation rather than to learning avoidance of potentially 

dangerous foods.  It should be noted that the reason behind assessing CTA 

effects of AcbC OT was not only to control for drug-induced illness, but also to 

examine whether the OTr in the AcbC might be physiologically involved in the 

development of taste aversions: It has been previously shown that OT is released 

in response to the presence of toxins, contributing to malaise-dependent 

anorexia [12], and that a systemic OTr antagonist treatment impairs acquisition 

of a CTA [44].  

For a number of reasons, including practicality of an experimental setup, the vast 

majority of feeding studies reported here and by other authors have been 

performed on animals housed individually. One should not forget though that 

food intake is oftentimes a social behavior, in which initiation, termination, 

dietary choices and meal duration, are influenced by the characteristics of the 

social environment. This particular issue needs to be considered especially in 

studies on neural systems that regulate both appetite and affiliative behaviors, 

including OT.  

OT facilitates pair bonding, mother-infant bonding, and social 

approach/recognition, and diminishes anxiety [45-49]. Peripheral and central OT 

release has been reported in response to positive social exposure [50]. 

Importantly, socially stimulated changes in Acb activity have been proposed to 

influence other concurrent physiological and behavioral parameters. For 

example, studies on the link between the Acb and drug abuse have shown that 

preference for cocaine can be modified by social interaction [51]. Lesions of the 
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AcbC induce preference for the social compartment in the CPP paradigm, 

whereas lesions of the AcbSh shift it towards the cocaine-associated chamber 

[52]. The results of the current study indicate that a social context has a 

profound effect on the ability of OT to affect feeding via the AcbC. Once the 

animal is placed in the environment in which social interaction occurs, intra-AcbC 

administration of OT does not diminish food intake driven by hunger or feeding 

induced by sweet flavor. While at present, it is extremely difficult to speculate on 

the exact nature of the observed phenomenon, it fits well with the previously 

reported findings showing that orexigenic effects of peripherally administered 

OTr antagonist in mice that were offered a meal in a social setting depended on 

the social status of animals [53]. Therefore, social cues appear to act as a 

modifying factor in the ability of OTr ligands to affect appetite. It is likely that in 

the case of a crosslink between social interactions and feeding, OT acts as a 

secretagogue of behavioral activity in response to complex cues. A similar 

hypothesis has been proposed in relation to OT facilitating a switch from food 

intake to affiliative or sexual behavior, thus balancing behaviors that contribute 

to internal homeostasis and evolutionary success [54, 55].  
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Chapter 4  
 

 

Is there a functional relationship between 

oxytocin and connexin 36 in the regulation of 

feeding? 

 

 

The data present in Chapter 2 and 3 of this thesis as well as the results reported 

by several laboratories indicate that central OT is involved in the regulation of 

three key aspects of food intake regulation: (a) it promotes termination of food 

intake upon consumption of high volume of food and associated increase in salt 

loading; (b) it decreases intake of palatable carbohydrates and sweet non-

carbohydrate, saccharin, thereby reducing feeding for reward; and (c) it brings 

on an immediate discontinuation of ingestive behavior when food is tainted with 

toxins (in the laboratory setting, this phenomenon is visualized through a 

conditioned taste aversion paradigm). 

These effects of OT are mediated by a widespread network of feeding-related 

brain sites that encompass areas classically viewed as involved in feeding for 

energy homeostasis (and homeostasis in general) and sites controlling 

consumption for reward. The hypothalamic – brainstem pathways largely 
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contribute to the homeostatic aspect of OT-driven regulation of appetite, 

preventing excessive distention of the stomach or abnormal plasma osmolality 

and promoting avoidance of foods whose ingestion might cause sickness/malaise 

[1]. On the other hand, the reward system – mainly the nucleus accumbens and 

ventral tegmental area – mediates OT’s inhibitory effects on the consumption of 

carbohydrates and non-carbohydrate sweet tastants, such as saccharin [1]. 

Importantly, as evidenced in the previous chapters of this thesis and Mullis et al. 

[2], the role of the aforementioned sites in particular aspects of feeding control is 

not rigid: for example, the Acb injections of OT decrease both feeding for reward 

and deprivation-induced intake of “bland” yet energy-dense chow; and 

generalized injections of OTr antagonists increase intake of palatable tastants 

(Chapter 2 and [3]). 

The quest for a better understanding of the nature of OT’s involvement in 

feeding regulation has led me to explore a question of whether OT would still 

affect the key aspects of food intake in a unique animal model characterized by a 

combined dysregulation of feeding for energy, feeding for reward, and avoidance 

of toxic foods.  

Therefore, in Part A of this chapter (Section 4.1), I present the ingestive 

behavior characterization of a novel knockout (KO) mouse strain that does not 

express a key gap junction protein, connexin 36 (Cx36) and – consequently – 

shows aberrant intake of energy-dense “bland” food, decreased intake of 

palatable tastants and hypersensitivity to aversive stimulation. It should be 

emphasized that Cx36 is ubiquitous in the reward system as well as in the 

hypothalamus and brain stem – hence, all areas through which OT exerts its 
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action on homeostatic and reward-driven feeding. Properly functioning gap 

junctions ensure integrity of the neural circuit by providing a means of 

communication between adjacent neurons. Therefore, I hypothesize that - in the 

Cx36-deficient feeding-related brain networks in the Cx36 KO mouse - OT might 

show diminished effectiveness in modifying most relevant aspects of food intake. 

This functional relationship between OT and Cx36 in the feeding context is 

explored in Part B of this chapter (Section 4.2). 
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4.1. (PART A) Connexin 36 KO mice show overconsumption 

of high-energy “bland” food, diminished sensitivity to 

feeding reward and excessive taste aversions. 

Abstract 

Connexin 36 (Cx36) is a gap junction molecule ubiquitously expressed in central 

areas that govern energy homeostasis, reward and food aversions. It has been 

shown that Cx36 deletion is associated with dysregulation of GABA and 

dopamine in reward pathways and with decreased ethanol intake in Cx36 

knockout (KO) mice. Here, we used the Cx36 KO model to investigate whether 

the lack of Cx36 affects key specific aspects of food intake control: eating for 

energy, eating for pleasure, and food avoidance resulting from an association 

between consumption of a given tastant and subsequent gastrointestinal 

sickness. To study an association between Cx36 and homeostatic control of 

feeding, we determined intake of standard chow in ad libitum-fed Cx36 KO 

versus WT mice as well as a magnitude of a conditioned taste aversion (CTA) 

response to lithium chloride (LiCl). A potential relationship with feeding reward 

was studied by assessing intake of palatable sweet and fatty tastants in WT vs 

Cx36 KO mice, by examining expression profile of opioid system genes involved 

in feeding reward, and sensitivity of Cx36 KOs to feeding reward modifying 

opioid ligands, naltrexone and butorphanol. Cx36 KOs showed increased intake 

of energy-dense “bland” chow and decreased consumption of sweet and fatty 

palatable solutions offered episodically and in an unrestricted manner. Cx36-
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deficient mice maintained on a regular diet displayed an altered baseline 

expression profile of opioid system genes in the hypothalamus and nucleus 

accumbens. Cx36 KOs exhibited a diminished sensitivity to consumption 

modifying properties of naltrexone and butorphanol (sucrose) or a lack thereof 

(saccharin). Finally, Cx36 KOs developed taste aversions even after 

administration of LiCl at a dose that was subthreshold in the WTs. Overall, the 

data indicate that Cx36 is involved in the “homeostatic” (energy intake and 

aversions) and “non-homeostatic (reward) mechanisms governing appetite. Its 

absence shifts the threat-pleasure continuum by reducing feeding reward and 

promoting hypersensitivity to negative stimuli associated with a meal. It supports 

ingestion of highly caloric, “bland” and “safe” foods.   

4.1.1. Introduction 

Gap junctions (GJs), pores formed by connexin (Cx) subunits, provide a means for 

intercellular communication in the brain [4]. The passage of molecules through 

neuronal GJs coordinates cell firing, and metabolic as well as transcriptional 

events between coupled neurons. Compared to chemical synapses, GJ electrical 

synapses synchronize outputs of coupled neurons and allow ultra-fast spread of 

information.  

Thus far, 20 connexin genes have been defined [5]. Among the two types of Cxs 

most ubiquitously expressed in mammalian neurons, only Cx36 is prevalent in 

the mature CNS [6]. Cx36 positive neurons have been demonstrated in a number 

of brain areas involved in cognition, learning, memory and emotion-related 

processing, including the hippocampus, cerebral and piriform cortex, amygdala, 
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mesencephalon, and thalamus [6]. Cx36 has been shown to facilitate plasticity 

[7], promote glutamate-mediated cell death post-injury [8], affect motor 

learning [9, 10] mediate sensitivity to anesthetic drugs [11, 12], and affect 

learning- and anxiety-related parameters [13]. 

From the standpoint of food intake regulation, it is extremely important that 

Cx36 is abundantly expressed in the vast network of central sites affecting 

appetite, especially the mesolimbic reward system, hypothalamus, and various 

brain stem nuclei [6]. Cx36 has been shown to be co-expressed in corticotropin 

releasing hormone (CRH) neurons, which are part of the brainstem-hypothalamic 

pathways regulating feeding for energy and participating in the generation of 

emetic responses [14]. A relationship between Cx36 and reward has been 

underscored by comprehensive electrophysiological studies that established the 

role of Cx36 in the generation of high-frequency oscillations and synchrony [15], 

particularly within GABA and dopamine (DA) circuits [16-19]. Behavioral 

experiments have brought a groundbreaking discovery that Cx36 knockout (KO) 

mice are less prone to drinking alcohol. The loss of Cx36-dependent electrical 

coupling within the key reward pathway component, the ventral tegmental area 

(VTA), leads to the dyssynchrony of the GABA system resulting in disinhibition of 

DA neurons (hyper-DA state), and consequently decreases the hedonic value of 

ethanol intake [19].  

Surprisingly, despite evidence suggesting a potential link between Cx36 and 

appetite, thus far, this issue has not been investigated in detail. Therefore, in the 

current set of studies, we used the Cx36 KO mouse model to investigate whether 

the lack of Cx36 affects key specific aspects of food intake control: eating for 
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energy, eating for pleasure, and food avoidance resulting from an association 

between consumption of a given tastant and subsequent gastrointestinal 

sickness. The regulation of calorie consumption as well as avoidance of 

potentially toxic foods can be viewed as “homeostatic” control of appetite, 

whereas eating for pleasant taste is driven by the rewarding component of 

gustatory mechanisms. First, in order to establish energy-driven appetite in the 

absence of Cx36, we measured consumption of standard chow in ad libitum-fed 

Cx36 KO versus WT mice. Then, in order to determine whether there is a link 

between Cx36 and feeding reward, we measured the consumption of sweet and 

lipid solutions in episodic and unrestricted access paradigms in Cx36 KO versus 

WT mice and substantiated our findings by using a pharmacological blocker of 

Cx36 gap junctions, quinine, in WT animals. As the consumption of palatable 

tastants was lower in the KO animals, we hypothesized that the genetic deletion 

of Cx36 affects baseline expression of opioid system-related genes, which are the 

key components of central mechanisms governing feeding for pleasure [20] 

thereby diminishing KO animals’ sensitivity to feeding reward. Hence opioid 

transcript levels were assessed with real-time PCR in the hypothalamus and Acb 

of Cx36 KOs and their background strain. Finally, we tested sensitivity of Cx36 

KOs versus WTs to feeding inhibitory properties of an opioid receptor antagonist, 

naltrexone, and feeding stimulatory properties of an agonist, butorphanol, on 

sugar and saccharin solution intake. Finally, in order to examine whether Cx36 

status affects aversive responsiveness, we injected Cx36 KO and WT mice with 

the same low dose of malaise inducing toxin, LiCl, and determined whether the 

magnitude of a conditioned taste aversion (CTA) differs between the genotypes. 
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4.1.2. Materials and Methods 

4.1.2.1. Animals 

The Cx36 KO model, developed and kindly provided to our laboratories by Prof. 

David Paul [21], has been used by us and others in earlier studies [22], [23]. Male 

homozygous Cx36 KO and WT littermates (C57/B6-129SvEv mixed 

background) were individually housed in conventional cages with a 12:12 LD 

photoperiod (lights on at 0700) in a temperature-controlled room (21°C). Age-

matched animals weighed ca. 26 g ± 3 at the beginning of the studies (there was 

no difference in b. wt. between the genotypes). Mice had unlimited access to tap 

water and standard rodent chow (Teklad Global Diet 2018) throughout the 

studies unless noted otherwise. The procedures described herein were approved 

by the University of Waikato animal ethics committee. 

4.1.2.1.1. Energy-driven intake of standard chow in Cx36vKO vs WT mice 

Age-matched Cx36 KO and WT male mice (n=8/genotype; there is no difference 

in body weight between the strains: 26 g ± 3) had intake of regular (“bland”) 

chow and water measured every 24 h for 3 days. The animal had not been 

exposed to other non-standard tastants. The amounts of chow and water 

consumed were calculated per kg of body weight and the means ± SEM were 

established for each genotype. A Student’s t-test was used to establish the 

difference in consumption between WT and Cx36 KO mice (significant when 

p≤0.05). 
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4.1.2.1.2. Episodic intake of palatable tastant solutions in Cx36 KO vs WT mice 

In a series of experiments, we tested the intake of 0.1% saccharin, 5% sucrose, 5% 

glucose, 5% fructose or 4.1% Intralipid (Fresenius, Sweden) solutions in a single-

bottle no-choice paradigm. Cx36 KO and WT mice (n=13-18/tastant) had been 

pre-exposed to the respective solutions 2 h/day (10:00–12:00) for 5 days. Chow 

and water were removed from the cages for the 2-h period of palatable tastant 

presentation. The animals were then given a single bottle containing a palatable 

tastant. The amount of the solution consumed was calculated and the means 

were reported in g/kg of b. wt. A Student’s t-test was used to assess differences 

in consumption for each of the palatable solutions between WT and KO animals 

(significant when p≤0.05). 

As a control study for the ability of Cx36 gap junctions to affect episodic 

consumption of palatable tastants, we subjected the WT mice to a similar 

paradigm of saccharin solution availability as described above, injected them 

with saline or 30 mg/kg b. wt quinine (Cx36 gap junction blocker) 5 minutes 

before palatable tastant presentation and determined saccharin solution intake 

in the 2-h test period. The dose of quinine was selected based on previous 

studies showing antinociceptive and antiepileptic effects of the compound [24], 

[25]. The amount of consumed saccharin solution was expressed in g/kg b. wt. 

and the data of saline vs. quinine groups compared with a t-test (significant 

when p≤0.05). 

4.1.2.1.3. Unrestricted intake of palatable solutions in Cx36vKO vs WT mice 

We assessed the intake of 0.1% saccharin, 5% sucrose, 5% glucose, 5% fructose 

or 4.1% Intralipid when each of these tastants was available ad libitum (along 
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with standard chow and water) for 3 consecutive days. KO and WT mice were 

given a single bottle containing a palatable tastant for 3 days (n=8/WT and n=8 

KO for each tastant). The amount of the tastants and chow consumed on Day 2 

and 3 (data from Day 1 were not included in the analysis to discount the 

potential effect of novelty) was calculated and the means were reported in g/kg 

of b. wt. A Student’s t-test was used to establish the difference between WT and 

Cx36 KO consumption in consumption (significant when p≤0.05). 

4.1.2.2. Baseline expression of opioid system genes in the 

hypothalamus and Acb in Cx36 KO vs. WT mice 

Wt and Cx36 KO mice (n=8/group), maintained on ad libitum access to standard 

chow and water, were decapitated (10:00-11:00) and the hypothalamus and Acb 

were collected according to the Paxinos and Watson brain atlas. The tissue was 

placed in RNAlater at room temperature for 2h and then stored at -80°C. RNA 

was extracted by the Quick-RNATMkits (Zymo Research) and the absence of DNA 

was confirmed by PCR. Total RNA concentration was measured with Nanodrop 

2000 (Thermo Scientific). For cDNA synthesis, 9 μl of RNA was reverse-

transcribed in a final volume of 20 μl containing 10 μl 2X RT Reaction Solution 

and 1 μl Enzyme Mix (HiSenScriptTM RH(-) cDNA Synthesis Kit, iNtRON 

Biotechnology). The reaction was performed for 1h at 42°C, followed by 5 min at 

85°C and 5 min at 4°C, and the presence of cDNA was confirmed by PCR. Each 

rtPCR, with a total volume of 20 μl, contained 8 μl template cDNA, 2μl Primers 

Mix (Forward and Reverse primers) and 10 μl of 2X RealMODTM GH Green Real-

time PCR Master Mix (Master Mix Kit, iNtRON). rtPCRs were done in duplicates, 

and negative controls were included on each plate. Amplification was performed 
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as follows: denaturation at 94°C for 5 min, 50 cycles of denaturation at 94°C for 

10 s, annealing for 15 s, and extension at 62°C for 30 s.  Three housekeeping 

genes were analyzed (Table 4.1). A Rotor-Gene SYBR Green PCR (QIAGEN) was 

used. Data analyses have been performed by Rotor-Gene 6000 software 

1.7 (QIAGEN). Primer efficiencies of 11 genes (Table 4.1) were calculated and 

samples were corrected for differences in efficiencies. The Pfaffl equation [26] 

[27] was used to calculate normalization factors based on housekeeping gene 

expression. Differences in gene expression between groups were analyzed using 

a t-test (different when p≤0.05).  

4.1.2.3. Effect of opioid receptor agonist and antagonist on 

consumption of sweet palatable tastants in Cx36 KO vs. WT mice 

Several days prior to the beginning of the experiments, Cx36 KO and WT mice 

had been pre-exposed to 0.1% saccharin or 10% sucrose solutions for 24 h to 

prevent neophobia. Similar to the episodic exposure experiments described 

above (section 4.1.2.1.2), animals (n=7-10/group) were accustomed to having 

access to either 0.1% saccharin or 10% sucrose for 2 h/day (1000–1200 h). 

Standard food and water were removed for the 2-h period of palatable tastant 

presentation. Five min prior to palatable solution exposure, mice were injected 

IP with (a) saline or 0.03, 0.1, 0.3, 1 and 3 mg/kg b. wt. of naltrexone or (b) saline 

or 0.1, 0.3, 1 and 3 mg/kg b. wt. of butorphanol tartrate. The amount of the 

palatable tastant consumed during the 2-h period was calculated in g/kg of b. wt. 

One-way ANOVA followed by Fisher’s post-hoc test was used to establish 

effective doses of naltrexone and butorphanol in saccharin and sucrose 

consumption for the Cx36 KO and WT strains (different when p≤0.05).  
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Table 4.1.1 Forward and reverse real-time PCR primer sequences. 

 

4.1.2.4. Effect of lack of Cx36 on acquisition of LiCl-induced CTA 

We used a standard CTA protocol in which Wt and KoCx36 mice were 

accustomed to having access to water for 1 h per day (11:00–13:00, 2d). 

Standard chow was removed from hoppers for the 1-h period of scheduled fluid 

presentation. On day 3, mice were given a novel flavored drink (pineapple juice, 

Golden Circle, Australia; composition: per 100ml, Energy 219kJ, Total carbs 12.2g, 

Sugars 10.6g) instead of water for sixty minutes and immediately after the end of 

the drinking session they received an IP injection of LiCl (Sigma; 0.6 mEq/kg b. 

wt.) or saline (n=8/group). On day 4, a standard two-bottle preference test 

(flavored solution versus water) was used to assess acquisition of a CTA in Wt vs 

KoCX36 mice. Bottles were weighed and percentages of the juice solution intake 
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(out of cumulative, i.e. sweetened solution plus water, intakes) were calculated. 

A difference in consumption between groups was calculated using a one-way 

ANOVA followed by Fisher’s post-hoc test. A Student’s t-test was used to 

establish the difference consumption between two groups (significant when 

p≤0.05). 

4.1.3. Results 

Mice lacking the functional Cx36 gene showed elevated intake of energy-dense 

regular (“bland”) chow in an ad libitum feeding paradigm. Adult (age-matched), 

same-weight Cx36 KOs ate more energy-dense chow over a 24-h period 

(p=0.0001) than their WT counterparts (Figure 4.1.1).  

On the other hand, the KO animals drank significantly less of the sweet palatable 

solutions and lipid emulsion (saccharin, p=0.008; sucrose, p=0.009; glucose, 

p=1E-5; fructose, p=0.0003, Intralipid, p=0.002) offered in a brief 2-h session 

(with no chow or water available during that time; Figure 4.1.2A). A similarly 

diminished intake of the palatable tastants was observed when saccharin (p=0.02) 

sucrose (p=2E-6), glucose (p=2E-6), fructose (p=2E-7) and Intralipid (p=0.0002) 

were given in an unrestricted manner for 48 h (chow/water available ad libitum; 

Figure 4.1.2B). Importantly, water intake did not differ between KO and WT mice 

(p=0.23).  

Cx36 blocker, quinine, administrated IP just before the 1-h period of exposure to 

the saccharin solution in WT mice, significantly decreased the intake of this 

sweet tastant (p=0.004; Figure 4.1.2C). 
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In the PCR studies, we found that baseline expression of opioid system genes 

differs in Cx36KO vs WT mice maintained on a standard diet (Figure 4.1.3). The 

KOs showed decreased mRNA levels of KOR (p=1E-06), MOR (p=5E-08), PNOC 

(p=0.0005), ORPL1 (p=6E-05), and increased DYN mRNA content (p=1E-05) in the 

hypothalamus, whereas PENK transcript expression was higher (p=0.03) in the 

nucleus accumbens.  

 

NTX or butorphanol injections in animals given access to saccharin or sucrose, 

produced different dose-response profiles in Cx36 vs WT mice (saccharin: ANOVA 

F=6  p=2E-4, sucrose ANOVA:F=4 p=0.02) (Figure 4.1.4). While the 0.1-mg and 

0.3-mg doses of NTX decreased sucrose consumption in WTs (p=0.02 and p=0.01, 

respectively), 3 mg NTX had to be used to generate a reduction in sucrose intake 

in KOs (p=0.007:). NTX at 1 mg (p=0.008) decreased saccharin intake in WT 

animals, but even the 3-mg dose was ineffective in the KO strain (p=0.6).  

Conversely, butorphanol increased sucrose consumption at 0.3 mg (p=0.02); and 

1 mg (p=0.004) in WTs, whereas 3 mg (p=0.01) was the lowest effective dose in 

Kos (ANOVA: F= 6.5 p= 2E-4)(Figure 4.1.4C). Saccharin consumption increased 

after injection of 0.3 and 1 mg butorphanol in WT mice (p=0.004 and p=0.004, 

respectively ANOVA F= 11.8 p<1E-4) but it remained unchanged even after the 3-

mg butorphanol treatment (Figure 4.1. 4).  

LiCl injected at a 0.6 mEq/kg dose was not sufficient to induce a conditioned 

taste aversion in WT mice: LiCl- and saline-treated WTs showed similar 

preference for the flavored solution. On the other hand, LiCl at the same dose 

induced a robust aversive response in Cx36 KO mice (p=8E-5, ANOVA F=13 
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p=1.7E-7) as their flavored solution intake on the subsequent presentation in a 

two-bottle test was decreased by 70% (Figure 4.1.5) 

 

Figure 4.1.1: Connexin 36 knockout (Cx36 KO) mice consume more regular chow in an 
unrestricted 24-h access paradigm, compared to wild-type (WT) controls. *** - p≤0.001. 
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Figure 4.1.2: Connexin 36 knockout (Cx36 KO) mice consume smaller amounts of 
palatable solutions offered (A) episodically for 2 h or (B) in an unrestricted 48-h access 
paradigm, compared to wild-type (WT) controls. A peripheral injection of a 
pharmacological blocker of Cx36 gap junctions, quinine, reduces saccharin solution 
intake (C). * - p≤0.05; ** - p≤0.01; *** - p≤0.001. 
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Figure 4.1.3: Connexin 36 knockout (Cx36 KO) mice having unrestricted access to 
standard food and water display a different baseline mRNA expression profile of select 
opioid system genes than wild-type (WT) controls. Gene expression levels in the 
hypothalamus and nucleus accumbens were measured with real-time PCR. KOR, kappa 
opioid receptor; MOR, mu opioid receptor; PNOC, pronociceptin; ORPL1, 
nociceptin/orphanin FQ receptor; PENK, proenkephalin; POMC, proopiomelanocortin. * 
- p≤0.05; ** - p≤0.01; *** - p≤0.001. 

 

 

Figure 4.14: Effects of naltrexone (top: A, B) and butorphanol tartrate (bottom: C, D) on 
the intake of sucrose (A,C) and saccharin (B, D) solutions offered for 2 h to connexin 36 
knockout (Cx36 KO) and wild-type (WT) mice. Doses of naltrexone and butorphanol 
represent mg/kg b. wt. injected intraperitoneally. * - p≤0.05; ** - p≤0.01; *** - p≤0.001. 
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Figure 4.1.5: A CTA response after injection of the same 0.6 mEq dose of LiCl in Cx36 KO 
vs WT mice. The graph shows relative (%) intake of a flavored solution offered in a two-
bottle choice test in water-deprived animals (water was the control fluid in the two-
bottle test).*** - p≤0.001. 

 

4.1.4. Discussion 

A dynamic balance between numerous mechanisms that govern appetite 

determines the overall energy consumption, proper macro- and micronutrient 

intake, as well as avoidance of those foods that – despite their attractive taste or 

energy content – may provoke unpleasant gastrointestinal sensations [28, 29]. A 

dysregulation of this intricate system may cause most profound metabolic and 

energy balance consequences for the organism by, for example, inducing 

excessive intake of highly palatable tastants, shifting the drive to eat away from 

foods that bring energy to those of low nutritional yet high gustatory value, and 

failing to prevent intake of toxic ingestants [30]. The current set of studies shows 

that Cx36 is critical in central processing of energy homeostasis, reward and 

aversion, thus, it appears to be part of the molecular mechanisms that serve as 

the broad foundation of appetite control. 
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The mesolimbic reward pathways as well as reward-related molecules scattered 

throughout the widespread network of sites that govern food intake and energy 

metabolism, promote overconsumption of tasty foods [31, 32]. Cx36, as a key 

molecular component of gap junctions in the adult CNS, serves a critical role in 

ensuring functional integrity of brain circuits, including those involved in reward 

[6, 19]. It has been previously shown that silencing Cx36 expression leads to a 

disruption of GABA and DA signaling [16-19]. Genetic deletion of Cx36 has also 

been found to decrease ethanol consumption in mice [19]. The current set of 

data shows that Cx36 gene knockout and the pharmacological blockade of Cx36 

GJs diminish intake of palatable solutions in mice. The dysregulation of the 

opioid system - a consequence of impaired Cx36 GJ coupling - likely underlies this 

reduced drive to eat for pleasure. 

Animals typically prefer sweet and fatty foods, and they ingest large quantities of 

solid and liquid diets that contain sugars, non-carbohydrate sweeteners, and/or 

fats, regardless of overall caloric density of such diets [33, 34]. Importantly, 

reward-driven consumption of solid and liquid diets occurs regardless of the fact 

whether the animal has or has not been food- or water-deprived [35, 36]. Non-

deprived Cx36 KO mice did consume the palatable liquid diets given episodically 

and in an unrestricted manner, which suggests that these solutions are not 

completely devoid of hedonic value to these animals. However, each of the 

palatable tastants was consumed less avidly by the KOs compared to their WT 

counterparts, indicating that the processing of rewarding aspects of consumption 

of these liquid diets was impaired in the Cx36-deficient mice. That water intake 

does not differ between KOs and WTs makes it unlikely that the effect was cause 
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by differences in thirst responsiveness. The fact that KOs ingests less of the non-

caloric saccharin solution than WT controls rules out a scenario in which 

diminished energy needs are the culprit underlying lower intake of palatable 

tastants. It should also be noted that the feeding reward experiments presented 

herein employed a wide variety of tastants that engage different subsets of taste 

receptors; therefore, along with the previously reported data on the relationship 

between Cx36 and alcohol-derived reward [19], our results imply that aberrant 

processing of reward in Cx36 KOs expands upon feeding for pleasant taste. At the 

same time, it should be noted that while genetic deletion of Cx36 led to a 

reduction of feeding for palatability, it was associated with a higher baseline 

level of “bland” chow consumption.  It should be emphasized that the more avid 

intake or regular chow in the KOs did not result in differences in body weight 

between the two genotypes, which suggests that metabolic and/or absorptive 

processes might be affected by Cx36 knockout. Importantly, regardless of the 

nature of energy conversion efficiency, KO animals’ enhanced appetite for high-

energy foods indicates a change in feeding control that promotes an increase in 

energy consumption.                                                                                                                                                                                                                                              

Interestingly, administration of quinine in non-deprived WT mice just prior to 

their gaining brief episodic access to the saccharin solution generated a decrease 

in saccharin intake. The parallel effects of gene deletion and pharmacological 

blockade of the GJ molecule lend us more confidence in defining Cx36 as being 

involved in feeding reward. Overall, changes in reward processing are evoked not 

just by a constitutive absence of the Cx36 gene, but also by using a transient 

Cx36 blocker; hence they can be dependent on acute changes in the Cx36 GJ 
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functional status as well as on long-term molecular changes associated with the 

lack of Cx36. 

It has been previously reported that Cx36 deficiency in the KO model leads to 

significant abnormalities in DA and GABA signaling within the VTA-accumbens 

pathways, thereby contributing to the impaired processing of rewarding 

stimulation [16-19]. Our real-time PCR data suggest that changes in the 

molecular content of reward-related circuits are even more profound as the 

baseline expression profile of genes that give rise to select opioid peptides and 

receptors is greatly affected. The key role of endogenous opioids in palatability-

induced consumption has been shown beyond reasonable doubt. It is well known 

that opioid receptor agonists induce intake of preferred tastants, while 

antagonists are effective in decreasing intake of tasty foods [37, 38]. 

Modifications in access to palatable diets affect opioid peptide/receptor mRNA 

and protein levels [39-41], whereas constitutive and conditional changes in 

expression of opioid system genes are associated with an altered drive to ingest 

rewarding tastants [42-44]. That Cx36 KO animals maintained on standard “bland” 

chow show different levels of opioid mRNAs indicates that - already at the 

baseline behavioral state - there is an atypical expression of genes related to 

feeding reward, most likely being one of the underlying factors in aberrant 

processing of palatability in Cx36 KOs. It should be noted that opioid system 

mRNA levels were changed not only in the nucleus accumbens, which is intuitive 

taking into account its role in reward, but predominantly in the hypothalamus, 

where the receptor transcripts were greatly affected. While numerous 

intraparenchymal injection studies have shown that opioid receptors in the 
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hypothalamus modify palatability-driven feeding [45], they are also though to 

couple reward system’s activity with the homeostatic and neuroendocrine 

responses of the hypothalamus [37, 46] . 

The real-time PCR findings showing an altered expression profile of opioid-

related genes are further substantiated by the studies utilizing injections of 

opioid receptor ligands that are known to stimulate (butorphanol) or reduce 

(naltrexone) consumption of palatable tastants [37, 38]. We found that WT mice 

offered either sucrose or saccharin exhibited a typical orexigenic response to 

butorphanol and hypophagia after naltrexone treatment. On the other hand, 

Cx36 KOs exhibited a diminished sensitivity to consumption modifying properties 

of each of the opioid ligands (sucrose) or a lack thereof (saccharin). While it is 

difficult to speculate whether the marked shifts in the dose-response curves can 

be directly attributed to changes in opioid system’s expression profile or rather 

to impaired coupling of reward signaling due to DA and GABA disruption (or 

both), it is clear that Cx36 deletion leads to gross abnormalities in the molecular 

content, sensitivity and functioning of reward circuits. 

Finally, our taste aversion experiments show that Cx36 KO mice exhibit a greater 

level of sensitivity to unpleasant consequences of LiCl injection. While 

administration of 0.6 mEq/kg LiCl in WT mice did not produce a CTA, the same 

dose of the toxin caused a profound CTA in the KOs. Hence, the Cx36 molecule 

participates also in central processing of stimuli that bring on a challenge to 

internal milieu. The loss of the Cx36 protein translates into hypersensitivity to 

aversions, which poses a potential threat for the animal in that it would become 
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too selective in search for “safe” foods or would avoid tastants even after very 

benign negative outcomes of consumption.  

Overall, the data indicate that Cx36 is involved in the “homeostatic” (energy 

intake and aversions) and “non-homeostatic (reward) mechanisms governing 

appetite. Its absence shifts the threat-pleasure continuum of food intake by 

reducing the rewarding component of eating behavior and promoting 

abnormally high sensitivity to negative stimuli associated with a meal. It also 

supports ingestion of highly caloric, “bland” and “safe” foods.   

 

 

 

  



146 
 

4.2. (PART B) Functional relationship between oxytocin and 

connexin 36: a preliminary report 

Abstract 

Connexin 36 (Cx36) is a gap junction molecule expressed in feeding-related 

neural circuits. The Cx36 knockout (KO) mouse is a unique model that 

encompasses dysregulation of three major aspects of food intake: eating for 

energy, for pleasure, and hypophagia in response to toxins. Interestingly, 

anorexigenic neuropeptide oxytocin (OT) also regulates the three aspects of 

feeding. As the OT peptide/receptor and Cx36 are coexpressed in feeding 

networks, OT and Cx36 may be part of common pathways governing appetite. 

We hypothesized that the presumed OT-Cx36 functional relationship might be 

reflected by the altered ability of OT to exert its action in brain circuits devoid of 

Cx36. Effectiveness of injections of OTr ligands, changes in OT gene expression 

and in OT neuronal activation in Cx36 KOs were determined in the three aspects 

of consumption. Cx36 KO mice ingest more energy (standard chow) than WTs, 

and we found that this enhanced appetite for calorie-dense food is associated 

with changed expression of OT and OTr genes (qPCR). Cx36 KOs exhibit increased 

sensitivity to taste aversion inducing chemical stimuli. We showed that this is 

associated with a higher number of Fos-positive OT neurons activated by toxin 

(LiCl). Finally, to study the link between Cx36 and OT in feeding reward, we 

injected KO mice with an OT antagonist, L-368,899 and determined that Cx36 

deletion impairs effectiveness of OTr blockade on consumption driven by sweet 
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taste. Overall, the data suggest that Cx36 is a key component of feeding-related 

circuits through which OT executes its functions.  

4.2.1. Introduction 

The connexin 36 knockout (Cx36 KO) mouse is a unique model that encompasses 

dysregulation of three major aspects of food intake control: eating for energy, 

eating for pleasant taste, and eating in situations when homeostasis can 

potentially be jeopardized by ingesting tainted foods. Cx36 KO mice show 

increased “bland” chow intake and decreased intake of palatable solutions (both 

sweet and fat).  Furthermore, these mice are prone to developing conditioned 

taste aversions (CTA) even when food exposure is paired with low doses of LiCl, a 

toxin that causes unpleasant gastrointestinal sensations, that are not effective in 

wild-type (WT) control animals.  

Oxytocin (OT) has been hypothesized to play a significant role in all three of the 

aforementioned aspects of feeding. OT neurons are thought to promote 

satiation-driven termination of food intake, a decrease in palatability-dependent 

consumption and – finally – an immediate discontinuation of consummatory 

behavior once the presence of toxins is recognized by the chemoreceptor 

neurons localized in the area postrema (AP). Importantly, studies in laboratory 

animals have shown the presence of gap junctions in the paraventricular (PVN) 

and supraoptic (SON) nuclei of the hypothalamus, where OT perikarya are 

amassed [14, 47, 48]. Some (but not all – [14]) authors have provided evidence 

that Cx36-containing gap junctions exist between hypothalamic OT cells [47, 

49].  Therefore, both OT and Cx36 may be molecular substrates of common 
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neural pathways that govern appetite, and this presumed functional relationship 

– if it indeed takes place - might affect the ability of OT to exert its action in 

circuits that have to rely on gap junctions devoid of Cx36. 

The aim of these experiments was to examine whether there is a functional 

relationship between OT and Cx36 in the regulation of food intake. The Cx36 KO 

mouse was used as a Cx36-null animal model that displays aberrant energy 

intake, reward-driven feeding and taste aversions. Effectiveness of injections of 

OTr ligands, changes in OT gene expression and in OT neuronal activation in the 

Cx36 KO animal were determined in key paradigms associated with each of the 

three aspects of consummatory behavior. Since Cx36 KO mice eat on average 

more standard (“bland”) chow than WT controls, we determined whether this 

enhanced appetite for food is associated with different levels of expression of 

the OT gene (established with real-time PCR) in the hypothalamus and nucleus 

accumbens. A difference in OT gene expression could predispose the KOs to 

consuming more energy (thus, having delayed satiety). In order to study the link 

between Cx36 and OT in the feeding reward context, we injected KO mice with a 

BBB penetrant OTr antagonist, L-368,899 [50] to examine whether the Cx36-null 

status impairs effectiveness of OTr blockade on consumption driven by sweet 

taste. Finally, we investigated whether the enhanced CTA responsiveness of Cx36 

KO mice is associated with a greater level of OT neuronal activity. Neuronal 

activation was established by using double immunohistochemistry for c-Fos (an 

immediate-early gene product) and OT.  
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4.2.2. Materials and Methods 

4.2.2.1. Animals  

Male Cx36 KO and WT littermates (C57/B6-129SvEv mixed background) were 

individually housed in conventional cages with a 12:12 LD photoperiod (lights on 

at 0700) in a temperature-controlled room (21°C). Age-matched animals weighed 

ca. 26 g ± 3 at the beginning of the studies (there was no difference in b. wt. 

between the genotypes). Mice have unlimited access to tap water and standard 

rodent chow (Teklad Global Diet 2018) throughout the studies unless noted 

otherwise. The procedures described herein were approved by the University of 

Waikato animal ethics committee. 

4.2.2.2. Baseline expression of OT and OTr genes in the 

hypothalamus and Acb in Cx36 KO vs. WT mice 

Wt and Cx36 KO mice (n=8/group), maintained on ad libitum access to standard 

chow and water, were decapitated (10:00-11:00) and the hypothalamus and Acb 

were collected according to the Paxinos and Watson brain atlas. The tissue was 

placed in RNAlater at room temperature for 2h and then stored at -80°C. RNA 

was extracted by the Quick-RNATMkits (Zymo Research) and the absence of DNA 

was confirmed by PCR. Total RNA concentration was measured with Nanodrop 

2000 (Thermo Scientific). For cDNA synthesis, 9 μl of RNA was reverse-

transcribed in a final volume of 20 μl containing 10 μl 2X RT Reaction Solution 

and 1 μl Enzyme Mix (HiSenScriptTM RH(-) cDNA Synthesis Kit, iNtRON 

Biotechnology). The reaction was performed for 1h at 42°C, followed by 5 min at 
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85°C and 5 min at 4°C, and the presence of cDNA was confirmed by PCR. Each 

rtPCR, with a total volume of 20 μl, contained 8 μl template cDNA, 2μl Primers 

Mix (Forward and Reverse primers) and 10 μl of 2X RealMODTM GH Green Real-

time PCR Master Mix (Master Mix Kit, iNtRON). rtPCRs were done in duplicates, 

and negative controls were included on each plate. Amplification was performed 

as follows: denaturation at 94°C for 5 min, 50 cycles of denaturation at 94°C for 

10 s, annealing for 15 s, and extension at 62°C for 30 s.  Three housekeeping 

genes were analyzed (Table 1). A Rotor-Gene SYBR Green PCR (QIAGEN) was 

used. Data analyses have been performed by Rotor-Gene 6000 software 

1.7 (QIAGEN). Primer efficiencies of 2 genes (Table 1) were calculated and 

samples were corrected for differences in efficiencies. The Pfaffl equation [26] 

was used to calculate normalization factors based on housekeeping gene 

expression. Differences in gene expression between groups were analyzed using 

a t-test (different when P≤0.05). 

 

Table 4.2.1. Real-time PCR primers (all supplied by Integrated DNA Technologies). 

 

Eating behavior genes     

 FORWARD REVERSE 

OXT CCT ACA GCG GAT CTC AGA CTG A TCA GAG CCA GTA AGC CAA GCA 

OXTR TCT TCT TCG TGC AGA TGT GG CCT TCA GGT ACC GAG CAG AG 

 

Housekeeping genes     

 FORWARD REVERSE 

B actin TGG CAC CAC ACC TTC TAC AAT GAG  GGG TCA TCT TTT CAC GGT TGG 

Atp5b GGC ACA ATG CAG GAA AGG TCA GCA GGC ACA TAG ATA GCC 

B tub CGG AAG GAG GCG GAG AGC AGG GTG CCC ATG CCA GAG C 
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4.2.2.3. Effect of OTr blockade on episodic intake of palatable 

tastant solutions in Cx36 KO mice. 

Cx36 KO mice were pre-exposed to palatable sweet tastants for 24 hours. 

Animals (n=7) were accustomed to having access to 0.1% saccharin, 10% sucrose,  

10% glucose or 10% fructose, given alone, for 1 h (1100–1200 h) per day for 1 

day. Chow and water were removed from the cages for the 1h period of 

palatable tastant presentation. Five min prior to palatable solution exposure, 

mice were injected IP with (a) saline or 0.1, 0.3, 1 and 3 mg/kg b. wt. of L-

368,899 (Tocris) at a dose range known to affect consummatory behavior (based 

on [3] and Chapter 2). The reference dose of the OTr antagonist was 1 mg/kg b. 

wt. (vs saline vehicle). The Bottles of palatable tastants were weighed before 

consumption and 1 hour after L-368,899 and saline administration. The amount 

of the palatable solution consumed was calculated and reported in g/kg of body 

weight. The amount of consumed palatable tastant was corrected for spillage. 

One-way ANOVA followed by Fisher’s post-hoc test was used to establish 

whether L-368,899 at different doses affected saccharin, sucrose, glucose and 

fructose consumption in the Cx36 Kos and compared to the WT values.  

4.2.2.4 OT neuronal activity feeding-related brain sites in response 

to a CTA in Cx36 KO mice. 

Mice were divided into four groups (n=8/group) and standard chow and water 

were removed from the cage before saline or LiCl (Sigma; 6 mEq/kg body wt; 

isotonic solution) injection in IP in Wt and Ko Cx36 mice. 60 minutes later, 

animals were anesthetized with urethane (35%) and perfused with 10 ml of 

saline followed by 50 ml of 4% paraformaldehyde (PFA) in 0.1 M phosphate 
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buffer (pH 7.4). Brains were excised and postfixed overnight in PFA at 4°C. 

Coronal 60-μm Vibratome (Leica) sections were processed for double (c-Fos and 

oxytocin) immunostaining. The tissue was treated for 10 min in 3% H2O2 in 10% 

methanol (in TBS, pH 7.4–7.6) and incubated overnight at 4°C in the goat anti-c-

Fos antibody (1:2000; Santa Cruz). Subsequently sections were incubated for 1h 

at room temperature in the rabbit-anti-goat antibody (Vector) and then in the 

avidin-biotin complex (1h; Vector). Peroxidase was visualized with 0.05% 

diaminobenzidine, 0.01 H2O2, and 0.2% nickel sulfate. All incubations were done 

in a mixture of 0.25% gelatin and 0.5% Triton X-100 (Sigma) in TBS. Intermediate 

rinsing was done with TBS. Following the completion of c-Fos staining, sections 

were further processed for visualization of OT. The procedure was similar to that 

used to staining for c-Fos. However, rabbit anti-oxytocin was used as the primary 

antibody (1:15000; Millipore, Temecula, CA), and nickel sulfate was omitted from 

the DAB solution to obtain brown staining. Sections were mounted on 

gelatinized slides, dried, dehydrated in ascending concentrations of ethanol, 

soaked in xylene, and embedded in Entellan. The number of Fos positive nuclear 

profiles in the regions of interest was counted on 4-5 sections per animal using 

Scion Image software. In the double staining analysis, the following estimates 

were assessed per section and then per region: the total number of OT neurons 

and the number of OT neurons positive for c-Fos. Cells were counted bilaterally, 

and the percentage of OT neurons containing c-Fos-positive nuclei was tabulated. 

An ANOVA and t-test was used to show the presence of significant difference 

between the number of c-Fos positive in oxytocin cells in saline and LiCl groups in 

WT and KO Cx36 mice. 
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4.2.3. Results 

The experiments show a relationship between the OT system and each aspect of 

food intake in the feeding-aberrant Cx36 KO model.  

The real-time PCR analysis in the feeding-for-energy paradigm revealed that Cx36 

KO mice maintained on an ad libitum chow availability schedule (and found to be 

consuming more chow-derived calories than WT controls) show a significantly 

lower level of OT expression in the Acb (p=0.03) and an increased OTr mRNA 

profile (p=3E-07) in the hypothalamus. There was no effect of genotype on OT 

expression in the hypothalamus (p=0.03) or on the OTr expression in the Acb 

(p=0.03) (Figure 4.2.1). 

In the feeding for reward experimental scenario, an OTr antagonist, L-368,899 (at 

the effective reference dose of 1 mg/kg b. wt. – as described in detail in Chapter 

2), administered just before the 2-h exposure to the palatable solutions, 

significantly increased intake of palatable sweet solutions (carbohydrates and 

non-carbohydrates) in WT animals. OTr antagonist-treated WTs drank 

significantly more sucrose (sal: 0.05±0.012; antagonist: 0.09±0.015; p=0.008), 

glucose (sal: 0.060.013±; antagonist: 0.08±0.017; p=0.02), fructose (sal: 

0.06±0.015; antagonist: 0.07±0.012; p=0.016). On the other hand, in the Cx36 KO 

mice, L-368,899 was ineffective in increasing appetite for palatable 

carbohydrates (sucrose: ANOVA F=1.5 p=0.15, glucose: ANOVA F=1 p= 0.74 and 

fructose: ANOVA F=1 p=0.1) and a sweet non-carbohydrate, saccharin (ANOVA 

F=0.6 p= 0.39) (Figure 4.2.2). 
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Finally, in the taste aversion paradigm, LiCl injection induced activation of OT 

neurons in the SON and PVN of both the Cx36 KO and WT strains (ANOVA F=31 

p= 0.009; PVN: (WT/saline vs Wt/LiCl p= 1E-15, Cx36 KO/saline vs Cx36KO/LiCl p= 

2E-10; SON: WT/saline vs Wt/LiCl p= 1E-10, Cx36 KO/saline vs Cx36 KO/LiCl p=2E-

15). Importantly, the Cx36-deficient animals that display hypersensitivity to 

aversive stimulation showed a heightened baseline (i.e., saline-induced) PVN OT 

neuronal activity (p=0.01) and significantly higher LiCl-induced OT neuronal 

activation in the SON (p=0.01) (Figure 4.2.3) 

 

 

. 

Figure 4.2.1: mRNA levels of OT and OTr in the hypothalamus and Acb of ad libitum 
chow-fed WT vs Cx36 KO mice. Differences in qPCR-established gene expression 
between groups were analyzed using a t-test.* - p<0.05; ***-p<0.001. 
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Figure 4.2.2: The effect of the OTr antagonist, L-368,899, at 0 (saline vehicle), 0.1, 0.3, 1 
and 3 mg kg/b. wt on the intake of solutions containing 0.1% saccharin (A), 10% sucrose 
(B),  10% glucose (C) and 10% fructose (D) in Cx36 KO mice.  The injections were 
performed just prior to 2-h tastant exposure period. Regular chow and water were 
removed from the cage and a single bottle containing one of the solutions was placed in 
the cage. 

Figure 4.2.3:  The percentage of Fos-positive OT cells in the paraventricular (PVN) and 
supraoptic (SON) nuclei in WT and Cx36 KO mice after an injection of saline or LiCl. OT 
neuronal activation was compared separately for the effect of saline injection and for 
the effect of LiCl injection (* - significant difference between WTs and KOs treated with 
the same injectant: p<0.05). 
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4.2.4. Discussion 

The Cx36 KO mouse is a unique genetic model that displays aberrant energy 

intake, reward-driven feeding and taste aversions. The complexity of food intake 

dysregulation in this knockout animal parallels the complexity of proposed 

involvement of OT in appetite control. Cx36-rich gap junctions have been found 

in feeding neural circuits [14, 16, 51], thus, in those brain pathways through 

which OT modifies appetite. Therefore, the presumed functional relationship 

between OT and Cx36 in feeding control would have to be based on an altered 

ability of OT to affect relevant aspects of food intake via the Cx36-deficient brain 

networks in the knockout mouse. In other words, an impairment in gap junction-

based integrity of feeding-related neural networks, would intuitively have to be 

reflected – endogenously - by an abnormal profile of the OT and OTr transcript 

levels and OT neuronal activity in response to feeding challenges, and – with 

exogenous neuroactive chemicals – by aberrant sensitivity (or lack thereof) to 

OTr ligands administered before feeding challenges.  

The current set of experiments provides data that support the hypothesis that 

endogenous responses of the OT/OTr system as well as behavioral 

responsiveness to OTr antagonist treatment are significantly affected in the 

animal whose brain circuits are devoid of Cx36. Importantly, this is evident in 

three key aspects of feeding control exerted by OT: energy-driven termination of 

food intake, feeding for pleasant taste and aversion-induced hypophagia [3, 36, 

52, 53]. 
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When Cx36 KO mice are maintained on freely accessible “bland” chow, thus, 

their ingestive behavior is driven mainly by calorie needs, they show abnormally 

high level of energy intake. There are obviously many possible factors that may 

underlie this overconsumption of energy in the KO model (e.g. higher energy 

expenditure or impaired absorptive processes), but even if the elevated feeding 

activity is caused by some other parameters, still satiation mechanisms have to 

be blunted in order to allow the animal to consume more food (despite, e.g., 

significant stomach distension or raised plasma osmolality). The real-time PCR 

experiment shows that ad libitum-fed Cx36 KO mice display a decreased level of 

OT mRNA in the Acb compared to their WT counterparts, which is in line with the 

general chow hyperphagia observed in the KO strain. Although it may seem 

somewhat surprising that hypothalamic OT expression is unaffected, one should 

note that our Chapter 3 studies on OT and Acb point to the fact that non-

hypothalamic OT also affects appetite for calories. Simultaneously, OTr mRNA 

levels in the hypothalamus are higher in the KOs, which indicates that OT 

signaling in the hypothalamus is imbalanced in the hyperphagic KO model.  

While the Cx36 KO mouse exhibited increased appetite for energy-dense “bland” 

chow, it also showed striking sensitivity to meal-associated toxicity. In the CTA 

paradigm (described in detail in Part 3.1 of this chapter), the KO mice acquired 

aversion even with very low doses of LiCl that did not cause a CTA in WT controls. 

OT is known to play a critical role in the process of development of aversive 

responses, both in producing an immediate termination of ingestive behavior 

once the toxin is detected by the brainstem chemoreceptors as well as in 

retrieval of aversion – once a potentially tainted ingestant is presented again [36, 
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53]. The immunohistochemical analysis of the OT system’s response provided 

herein sheds some light on the nature of the CTA phenomenon in Cx36 KOs. First, 

the percentage of PVN OT neurons is already higher in saline-treated (control) 

KO mice, which potentially underpins heightened sensitivity of these animals to 

even mild perturbations in internal milieu. Second, the SON OT neuronal 

activation is higher in the LiCl-injected Cx36 KOs than in similarly treated WTs, 

most likely contributing to a greater magnitude of an aversive response to the 

same dose of a given toxin (in this case, LiCl) of the knockout animals. 

Finally, the feeding reward paradigm, in which animals were given episodic 

access to palatable tastants provides evidence pertaining to atypical feeding 

responses to OTr antagonist administration in Cx36 KOs. It has been shown by 

our laboratory as well as by others ([3] and Chapters 2 and 3) that the OTr 

blocker, L-368,899, increases consumption of tasty carbohydrate and non-

carbohydrate (but sweet) solutions in mice and rats. The current set of studies 

employing a variety of highly preferred sweet tastants (containing saccharin or 

mono- or disaccharides) showed complete inability to enhance intake of these 

ingestants by blocking the OTr with the IP-injected BBB-penetrant OTr antagonist. 

Obviously, it should be emphasized that OT is clearly not the only peptide whose 

function within the Cx36-null feeding circuit is affected: Part 3.1 of this Chapter 

has identified opioids as another candidate group of molecules. In the network 

whose integrity is challenged by the absence of a key gap junction molecule, it is 

very much likely that some other feeding-related peptides are influenced in 

certain feeding scenarios as well. However, the fact that -in the Cx36 KO - the 

dysregulation of the OT system and of the three distinct aspects of appetite 
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controlled by OT go hand-in-hand, strongly suggests that the Cx36 molecule is a 

key component of feeding-related neural circuits through which OT executes its 

functions.  
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Chapter 5 
 

 

Discussion and Perspectives 
 

In the obesogenic environment, many individuals see their energy intake exceed 

energy expenditure and, in result, energy balance becomes dysregulated. In such 

environment, the usual reason to initiate and maintain consumption is not 

dictated by the necessity to replenish lacking calories, but rather it is driven by a 

pleasant taste of food. Therefore, identification of molecules and systems within 

the CNS that alter feeding for reward is an essential step in conceptualizing 

pharmacological treatment strategies that could assist in curbing excessive 

consumption of highly palatable foods.  

Upon undertaking the experimental work included in this thesis, it was clear that 

a neurohormone OT promotes termination of consumption in order to protect 

internal milieu (i.e., related mainly to energy needs, stomach distension and 

osmolality) [1-5]. At that time, some evidence had already been gathered 

pointing to a possible role of OT in reducing consumption of select palatable 

tastants [6-8]. For example, it had been shown that OT KO mice consume sweet 

carbohydrates and non-caloric saccharin less avidly than wild-type controls [9]. 

Pharmacological blockade of the OTr was known to elevate intake of sucrose 

over fat in sated mice [7], whereas OT administration reduced intake of glucose 

in food-deprived rats [6]. Opioid receptor antagonist injections that decrease 

palatable sucrose intake had been found to activate OT neurons [7], and OT gene 
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expression had been reported to increase after a high-sugar diet intake in rats [8]. 

Finally, long-term habitual consumption of sugar had been associated with 

diminished OT neuronal activity in response to a food load, suggesting that OT 

dysregulation leads to reward-driven overeating [10]. The studies included in this 

thesis as well as most recent reports by other authors (see the following 

publications as recent milestones in our understanding of the link between OT 

and feeding for palatability: [11, 12]) strongly suggest that OT serves as a cross-

link between mechanisms that bring on termination of consumption due to 

“homeostatic” and palatability-related (i.e., flavor- and macronutrient-specific) 

satiation. 

Prior to taking up this project and the most recent surge in interest in the 

functional relationship between OT and ingestive behavior, one of the greatest 

conundrums was associated with defining the role of OT in feeding for 

palatability. The data presented herein (as well as reports by others) 

demonstrate that OT is particularly effective in reducing intake of carbohydrates 

(regardless of whether sweet or non-sweet) as well as a non-carbohydrate 

sweetener, saccharin. Peripheral injections of the BBB-penetrant OT receptor 

antagonist, L-368,899 (Chapter 2), in mice led to an increase in the consumption 

of all the carbohydrates offered in that experiment. The wide range of 

carbohydrate-rich liquid diets included sweet sucrose (at several concentrations), 

fructose, glucose, and Polycose, as well as non-sweet cornstarch. Thus, L-368,899 

stimulated intake of all the carbohydrates independent of a subtype, sweetness 

and relative rewarding value of a molecule. It should be mentioned that the 

effective dose that was 10 times lower in sucrose tests than in trials involving the 
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remaining tastants. Saccharin solution intakes showed a strong trend towards an 

increase in L-368,899-treated mice, approaching significance (P=0.08). The latter 

was somewhat surprising considering the convincing data obtained by other 

authors in, e.g., OT knockout mice that overconsume saccharin [9, 13], strongly 

suggested the link between OT and appetite for this sweetener. It is possible that 

the episodic, mid-day schedule of saccharin presentation might have modified 

the response to saccharin in IP OT antagonist-injected mice, especially 

considering that the peripheral OT energy metabolism-related mechanisms come 

into play with an IP antagonist infusion [14, 15] and that saccharin was the only 

non-caloric palatable tastant offered, whereas sucrose, fructose, sucrose, and 

Polycose – albeit dilute – are the sources of energy. 

The notion that OT terminates consumption of carbohydrates and saccharin was 

strengthened by the outcome of Acb injection studies described in Chapter 3. 

Importantly, the data defined the AcbC, an integral part of the reward system, as 

a key site mediating the effects of OT on appetite.  In that set of experiments, 

AcbC OT decreased the intake of sucrose in energy non-deprived rats. 

Interestingly, when OT was injected directly in this reward-related site, very low 

doses of OT were effective in reducing appetite for non-caloric and highly 

palatable saccharin. Therefore, once the OT ligand-targeted receptor population 

is limited to the AcbC, the effectiveness of an OT receptor ligand to modify 

consumption of the non-caloric, palatable sweetener is greater. Notably, all 

anorexigenic effects of Acb OT were abolished by a pretreatment with an OTr 

antagonist, L-368,899, injected in the same site, which underscores the 
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involvement of the OT receptor in this process rather than of other non-selective 

peptide-receptor interactions.  

The link between OT acting in the reward system and the consumption of 

palatable tastants has also been suggested in studies utilizing intra-VTA 

administration of OT ligands. Mellis et al found that VTA-infused OT dose-

dependently promotes a decrease in sucrose consumption, whereas VTA acting 

OT receptor antagonists support enhanced appetite for sugar [12]. Furthermore, 

OT’s ability to modify intake for reward is abolished in the Cx36 KO strain (Part B 

of Chapter 4), in which reward processing is abnormal (Chapter 4, Part A). In this 

unique mouse model of aberrant Cx36 gap junction connectivity (mainly) within 

the reward and neuroendocrine systems of the CNS, OT receptor antagonist L-

368,899 fails to increase intake of sweet carbohydrate solutions (sucrose, 

fructose and glucose) and saccharin. It is therefore apparent that when the 

reward system’s functioning is impaired, OT ligands do not affect feeding for 

palatability. Thus, it is likely that the observed effects of OT on the intake of 

palatable tastants directly involve actual reward mechanisms. This is in concert 

with the fact that both OT and Cx36 have been found to affect other parallel 

aspects of reward, including alcohol abuse [16-26]. 

The changes in sensitivity to appetite modifying effects of OTr ligands are 

reflected by differences in the OT peptide and receptor mRNA content in the 

aforementioned key paradigms. In rats exposed to the saccharin solution 

(Chapter 3), OTr mRNA is downregulated in the AcbC. The hypothalamic OT 

mRNA levels in mice consuming diets enriched with carbohydrates or saccharin 

are particularly enhanced by carbohydrate intake (Chapter 2).  
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One should note, however, that the role of OT acting within the reward system is 

pleiotropic and it involves – among others - rewarding aspects of sociality (for 

example, see: [27-29]). Moreover, various aspects of social interactions (from the 

antagonistic nature of social exposure to bond formation), change OT tone in the 

CNS and the periphery (e.g., [30-34]). Thus, while studying effectiveness of OT 

receptor ligands in the control of feeding for reward, one should not neglect the 

fact that the type, frequency and quality of social behaviors may have a profound 

influence on the effectiveness of OT ligand treatment on appetite. As evidenced 

by the data presented in Chapter 3, AcbC OT did not change consummatory 

behavior in animals that were offered a rewarding meal in a social setting. This is 

in stark contrast with the results obtained in single-housed animals. However, 

this outcome is in agreement with the recently published data in the mouse 

model of sociality of feeding, in which it was shown that once a social 

environment of a palatable meal was introduced, only animals of a particular 

hierarchy status would express hyperphagia in response to the OTr antagonist IP 

treatment [35]. In that study, all animals – regardless of the hierarchy – displayed 

elevated appetite for sugar when a meal was given in a setting devoid of social 

cues.  

The results presented herein as well as by other authors [9,24,36-39] 

substantiate the claim that OT serves as a neuroregulator of carbohydrate-

specific satiety and inhibitor of consumption driven by sweet taste and that OT’s 

effects are – at least to some extent – mediated via the reward pathways; but 

these data also expand on our understanding of OT’s involvement in 

“homeostatic” meal control. The classical approach to defining the role of OT in 



172 
 

appetite has revolved almost entirely around homeostatic factors. Most notably, 

an increased level of OT neuronal activity and OT release have been measured at 

the end of a meal and in response to excessive plasma osmolality and stomach 

distension, as well as after ingestion of toxic foods whose consumption needs to 

be avoided in the future (CTA context) [3, 4]. In all these cases, the hypothalamic 

– brainstem pathways that encompass OT neurons and receptors have been 

typically identified as key neural mechanisms whose activation leads to 

termination of consummatory behavior [2,40,41]. Functional relationships 

between OT and other CNS peptides that affect consumption have also allow 

researchers to identify more precisely networks through which OT terminates 

consumption in order to maintain internal milieu. GLP-1 and alpha-MSH are two 

appetite suppressing neuropeptidergic systems whose direct input into the OT 

pathways has been described in most detail [42,43]. 

The current set of data provides additional evidence supporting the involvement 

of OT in the regulation of homeostatic aspects of feeding. OTr antagonist, L-

368,899, administered peripherally increased energy deprivation-induced intake 

of relatively “bland” carbohydrate, cornstarch in mice (Chapter 2). In the Cx36 KO 

model – which shows increased consumption of highly caloric bland chow in an 

ad libitum access setting (Chapter 4, Part A) – this propensity to overconsume 

energy was associated with a significantly higher baseline level of the 

hypothalamic OTr mRNA content and a lower OT mRNA in the Acb (Chapter 4, 

Part B). While it is clear that dysregulation of many other genes (aside from OT 

and – obviously considering the KO status – Cx36) may accompany this voracious 

eating phenotype, it is also critical that in the context of increased intake of 
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energy, OT system’s expression is changed, most likely being one of the factors 

facilitating this increased and sustained appetite for calories.  

It is extremely interesting that injections of OT in energy-deprived rats directly 

into the key site of the reward system, the AcbC, caused a marked decrease in 

the amount of standard laboratory chow eaten by the animals (Chapter 3). In 

fact, the results of AcbC OT injections mirror those obtained in VTA infusions of 

OT [12]. One explanation of this phenomenon is obviously that there is some 

element of palatability associated with the consumption of standard chow, 

hence changes in the reward system’s activity affect chow intake. However, one 

can propose also an alternative explanation, which – in any case – does not 

negate the aforementioned hypothesis, but rather enriches it. It is possible that 

OT acting in the AcbC and VTA serves as a component of molecular mechanisms 

that bridge intake for energy and intake for pleasure. While we typically envision 

pleasant taste as the main source of feeding reward, in the state of energy 

deprivation, the pleasure of consumption is derived largely from ingesting caloric 

food rather than from this food’s taste alone [44-46]. Hence, OT in the reward 

system may be reducing intake of energy (thus acting as a “homeostatic” satiety 

mediator) by diminishing reward stemming from consumption of calories (thus 

serving as an inhibitor of feeding reward). The fact that OT stimulation of the 

AcbC results in the activity of wider brain circuits that include hypothalamic OT 

neurons (multisynaptic pathways are most likely involved) suggests that OT-

derived signaling within the AcbC leads to further increases in hypothalamic OT 

neuronal activation, possibly ensuring that consummatory behavior does not 

continue. Finally, it should be mentioned that OT is not the only neuropeptide 
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that fits this description: also AcbC-infused GLP-1 affects both meal size and 

rewarding aspects of food consumption [47-49]. 

Overall, the findings presented in this thesis strongly suggest that OT acts as a 

cross-link molecule that bridges termination of consumption due to 

“homeostatic” and palatability-related (i.e., flavor- and macronutrient-specific) 

satiation. Aside from providing additional impetus on purely neurobiological and 

appetite-related basic research on OT, the complexity of OT’s role in ingestive 

behavior suggested here (and by other authors) might have a profound influence 

on whether OT-based pharmaceuticals can be successfully tried in obese patients.  

In the light of obesity “epidemic”, significant efforts have been made to 

introduce drugs that could alleviate at least some negative factors contributing 

to the development of excessive BMI; obviously, overeating is recognized as one 

of the most critical contributors. The general industry rules imposed by the US 

Federal Drug Administration on Developing Products for Weight Management 

[50] stipulate that medicinal products have to be scrutinized under very specific 

scenarios in order to reach the market. One of the key rules is that the anti-

obesity drug should be tested in patients with BMI > 30 kg/m2 or > 27 kg/m2 if co-

morbidities are present (sleep apnea; cardiovascular disease of diverse etiologies; 

type 2 diabetes; dyslipidemia; hypertension). The difference in mean weight loss 

between the drug and placebo groups should at least 5% (and statistically 

significant). The proportion of subjects who lose > 5% of body weight in the 

active- product group is at least 35%. The proportion of subjects who lose 

greater than or equal to 5% of baseline body weight in the active- product group 

is at least 35%, is approximately double the proportion in the placebo-treated 
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group.  Considering the many circumstances under which OT does not affect 

appetite, these guidelines might prove to be a very difficult obstacle for any OT-

based anti-obesity (anti-overeating) product. One of the major issues is that OT 

reduces intake of only some macronutrients and flavors: modern diet is 

extremely diverse and patients taking a drug that curbs overeating of only some 

foods might simply have their food preferences shifted by OT, and this shift will 

not be associated in any desirable weight loss. Furthermore, many people eat 

food in a social setting (e.g., with family members), hence the fact that OT’s 

effectiveness is reduced when a meal is offered in a social context, makes it a 

less likely candidate to successfully go through clinical trials. 

On the other hand, the fact that a neuropeptide affects only certain aspects of 

appetite makes it an attractive pharmaceutical whose role is aimed exclusively at 

overeating only specific tastants. Taking into account an anxiolytic effect of OT 

[51, 52], perhaps OT ligands could be used in those anxiety-prone or eating 

disorder patients whose overeating seems limited to sweet/high-carbohydrate 

diets. 

Finally, OT’s involvement in several unrelated behaviors suggests that this 

neuropeptide, may act as a behavioral “switch” between food intake and other 

competing behaviors/processes. OT might facilitate a choice between food 

intake and other behaviors/processes (e.g., social or sexual), in order to balance 

behaviors and contribute to the transient and long-term survival of the individual 

[35,53,54]. 

 



176 
 

References 

1. Moos, F. and P. Richard, Paraventricular and supraoptic bursting oxytocin 

cells in rat are locally regulated by oxytocin and functionally related. J 

Physiol, 1989. 408: p. 1-18. 

2. Olszewski, P.K., et al., Oxytocin as feeding inhibitor: maintaining 

homeostasis in consummatory behavior. Pharmacol Biochem Behav, 2010. 

97(1): p. 47-54. 

3. Huang, W., A.F. Sved, and E.M. Stricker, Vasopressin and oxytocin release 

evoked by NaCl loads are selectively blunted by area postrema lesions. 

Am J Physiol Regul Integr Comp Physiol, 2000. 278(3): p. R732-40. 

4. McCann, M.J. and R.C. Rogers, Oxytocin excites gastric-related neurones 

in rat dorsal vagal complex. J Physiol, 1990. 428: p. 95-108. 

5. Sagar, S.M., et al., Anatomic patterns of Fos immunostaining in rat brain 

following systemic endotoxin administration. Brain Res Bull, 1995. 36(4): 

p. 381-92. 

6. Lokrantz, C.M., K. Uvnas-Moberg, and J.M. Kaplan, Effects of central 

oxytocin administration on intraoral intake of glucose in deprived and 

nondeprived rats. Physiol Behav, 1997. 62(2): p. 347-52. 

7. Olszewski, P.K., et al., Opioids affect acquisition of LiCl-induced 

conditioned taste aversion: involvement of OT and VP systems. Am J 

Physiol Regul Integr Comp Physiol, 2000. 279(4): p. R1504-11. 

8. Olszewski, P.K., et al., Complexity of neural mechanisms underlying 

overconsumption of sugar in scheduled feeding: involvement of opioids, 

orexin, oxytocin and NPY. Peptides, 2009. 30(2): p. 226-33. 



177 
 

9. Sclafani, A., et al., Oxytocin knockout mice demonstrate enhanced intake 

of sweet and nonsweet carbohydrate solutions. Am J Physiol Regul Integr 

Comp Physiol, 2007. 292(5): p. R1828-33. 

10. Mitra, A., et al., Chronic sugar intake dampens feeding-related activity of 

neurons synthesizing a satiety mediator, oxytocin. Peptides, 2010. 31(7): 

p. 1346-52. 

11. Klockars, A., A.S. Levine, and P.K. Olszewski, Central oxytocin and food 

intake: focus on macronutrient-driven reward. Front Endocrinol 

(Lausanne), 2015. 6: p. 65. 

12. Mullis, K., K. Kay, and D.L. Williams, Oxytocin action in the ventral 

tegmental area affects sucrose intake. Brain Res, 2013. 1513: p. 85-91. 

13. Billings, L.B., et al., Oxytocin null mice ingest enhanced amounts of sweet 

solutions during light and dark cycles and during repeated shaker stress. 

Behav Brain Res, 2006. 171(1): p. 134-41. 

14. Maejima, Y., et al., Peripheral oxytocin treatment ameliorates obesity by 

reducing food intake and visceral fat mass. Aging (Albany NY), 2011. 3(12): 

p. 1169-77. 

15. Chaves, V.E., et al., Role of oxytocin in energy metabolism. Peptides, 2013. 

45: p. 9-14. 

16. Posluszny, A., The contribution of electrical synapses to field potential 

oscillations in the hippocampal formation. Front Neural Circuits, 2014. 8: 

p. 32. 

17. Allison, D.W., et al., Connexin-36 gap junctions mediate electrical 

coupling between ventral tegmental area GABA neurons. Synapse, 2006. 

60(1): p. 20-31. 



178 
 

18. Lassen, M.B., et al., Brain stimulation reward is integrated by a network of 

electrically coupled GABA neurons. Brain Res, 2007. 1156: p. 46-58. 

19. Moore, H. and A.A. Grace, A role for electrotonic coupling in the striatum 

in the expression of dopamine receptor-mediated stereotypies. 

Neuropsychopharmacology, 2002. 27(6): p. 980-92. 

20. Greenstone, M., et al., Upper airway manifestations of primary ciliary 

dyskinesia. J Laryngol Otol, 1985. 99(10): p. 985-91. 

21. Rash, J.E., et al., Immunogold evidence that neuronal gap junctions in 

adult rat brain and spinal cord contain connexin-36 but not connexin-32 

or connexin-43. Proc Natl Acad Sci U S A, 2000. 97(13): p. 7573-8. 

22. Olszewski, P.K., et al., Opioids as facilitators of feeding: can any food be 

rewarding? Physiol Behav, 2011. 104(1): p. 105-10. 

23. Bahi, A., The oxytocin receptor impairs ethanol reward in mice. Physiol 

Behav, 2015. 139: p. 321-7. 

24. Olszewski, P.K., et al., Molecular, immunohistochemical, and 

pharmacological evidence of oxytocin's role as inhibitor of carbohydrate 

but not fat intake. Endocrinology, 2010. 151(10): p. 4736-44. 

25. Glass, M.J., C.J. Billington, and A.S. Levine, Opioids and food intake: 

distributed functional neural pathways? Neuropeptides, 1999. 33(5): p. 

360-8. 

26. Le Merrer, J., et al., Reward processing by the opioid system in the brain. 

Physiol Rev, 2009. 89(4): p. 1379-412. 

27. Dolen, G., et al., Social reward requires coordinated activity of nucleus 

accumbens oxytocin and serotonin. Nature, 2013. 501(7466): p. 179-84. 



179 
 

28. Wei, D., et al., Endocannabinoid signaling mediates oxytocin-driven social 

reward. Proc Natl Acad Sci U S A, 2015. 112(45): p. 14084-9. 

29. Rademacher, L., et al., Reward: From Basic Reinforcers to Anticipation of 

Social Cues. Curr Top Behav Neurosci, 2016. 

30. Shahrokh, D.K., et al., Oxytocin-dopamine interactions mediate variations 

in maternal behavior in the rat. Endocrinology, 2010. 151(5): p. 2276-86. 

31. Bosch, O.J. and I.D. Neumann, Both oxytocin and vasopressin are 

mediators of maternal care and aggression in rodents: from central 

release to sites of action. Horm Behav, 2012. 61(3): p. 293-303. 

32. Bosch, O.J., et al., Brain oxytocin correlates with maternal aggression: link 

to anxiety. J Neurosci, 2005. 25(29): p. 6807-15. 

33. Curley, J.P., et al., The meaning of weaning: influence of the weaning 

period on behavioral development in mice. Dev Neurosci, 2009. 31(4): p. 

318-31. 

34. Ross, H.E., et al., Characterization of the oxytocin system regulating 

affiliative behavior in female prairie voles. Neuroscience, 2009. 162(4): p. 

892-903. 

35. Olszewski, P.K., K. Allen, and A.S. Levine, Effect of oxytocin receptor 

blockade on appetite for sugar is modified by social context. Appetite, 

2015. 86: p. 81-7. 

36. Olszewski, P.K. and A.S. Levine, Central opioids and consumption of sweet 

tastants: when reward outweighs homeostasis. Physiol Behav, 2007. 

91(5): p. 506-12. 



180 
 

37. Tauchi, M., et al., Distribution of glucagon-like peptide-1 

immunoreactivity in the hypothalamic paraventricular and supraoptic 

nuclei. J Chem Neuroanat, 2008. 36(3-4): p. 144-9. 

38. Rinaman, L. and E.E. Rothe, GLP-1 receptor signaling contributes to 

anorexigenic effect of centrally administered oxytocin in rats. Am J 

Physiol Regul Integr Comp Physiol, 2002. 283(1): p. R99-106. 

39. Wu, C.L., M.L. Doong, and P.S. Wang, Involvement of cholecystokinin 

receptor in the inhibition of gastrointestinal motility by oxytocin in 

ovariectomized rats. Eur J Pharmacol, 2008. 580(3): p. 407-15. 

40. Strader, A.D. and S.C. Woods, Gastrointestinal hormones and food intake. 

Gastroenterology, 2005. 128(1): p. 175-91. 

41. Leng, G., et al., Oxytocin and appetite. Prog Brain Res, 2008. 170: p. 137-

51. 

42. Katsurada, K., et al., Endogenous GLP-1 acts on paraventricular nucleus to 

suppress feeding: projection from nucleus tractus solitarius and activation 

of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. 

Biochem Biophys Res Commun, 2014. 451(2): p. 276-81. 

43. Olszewski, P.K., et al., Role of alpha-MSH in the regulation of 

consummatory behavior: immunohistochemical evidence. Am J Physiol 

Regul Integr Comp Physiol, 2001. 281(2): p. R673-80. 

44. Raynor, H.A. and L.H. Epstein, The relative-reinforcing value of food under 

differing levels of food deprivation and restriction. Appetite, 2003. 40(1): 

p. 15-24. 

45. Epstein, L.H., et al., Food reinforcement and eating: a multilevel analysis. 

Psychol Bull, 2007. 133(5): p. 884-906. 



181 
 

46. Berthoud, H.R., Metabolic and hedonic drives in the neural control of 

appetite: who is the boss? Curr Opin Neurobiol, 2011. 21(6): p. 888-96. 

47. Alexander, N.J. and S. Ackerman, Therapeutic insemination. Obstet 

Gynecol Clin North Am, 1987. 14(4): p. 905-29. 

48. Dossat, A.M., et al., Nucleus accumbens GLP-1 receptors influence meal 

size and palatability. Am J Physiol Endocrinol Metab, 2013. 304(12): p. 

E1314-20. 

49. Dossat, A.M., et al., Glucagon-like peptide 1 receptors in nucleus 

accumbens affect food intake. J Neurosci, 2011. 31(41): p. 14453-7. 

50. Food and D. Administration, Guidance for industry developing products 

for weight management. Draft guidance, Revision, 2007. 1. 

51. Yoshida, M., et al., Evidence that oxytocin exerts anxiolytic effects via 

oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci, 

2009. 29(7): p. 2259-71. 

52. Okimoto, N., et al., RGS2 mediates the anxiolytic effect of oxytocin. Brain 

Res, 2012. 1453: p. 26-33. 

53. Caquineau, C., G. Leng, and A.J. Douglas, Sexual behaviour and neuronal 

activation in the vomeronasal pathway and hypothalamus of food-

deprived male rats. J Neuroendocrinol, 2012. 24(4): p. 712-23. 

54. Kelley, A.E., et al., Corticostriatal-hypothalamic circuitry and food 

motivation: integration of energy, action and reward. Physiol Behav, 2005. 

86(5): p. 773-95. 

 

 



182 
 

  



183 
 

Conclusions 

  

The overarching aim of the current thesis was to examine the hypothesis that OT 

suppresses appetite for sweet tastants by reducing palatability-driven reward. 

The findings of the studies are: 

 OT is involved in energy intake and this role is facilitated not only via 

circuits classically seen as “homeostatic”, but also via the nucleus 

accumbens, a reward-related site. 

 OT reduces appetite for carbohydrates; sucrose consumption appears to 

be particularly affected by OT. 

 OT tends to decrease appetite for non-carbohydrate and non-caloric 

sweetener, saccharin. 

  OT may serve as a key neuroregulator of carbohydrate-specific satiety 

and inhibitor of consumption driven by sweet taste. 

 OT acting via the AcbC (but not shell) decreases food intake driven by 

hunger and by reward. 

 Anorexigenic effects of AcbC OT do not stem from sickness/malaise. 

 A social environment in which a meal is presented reduces effectiveness 

of OT as an inhibitor of appetite. 

 OT in the AcbC affects activation of the AcbC itself as well as of 

hypothalamic sites involved in feeding control.  

 AcbC OTr mRNA levels change in response to both energy deprivation and 

exposure to palatable tastants.   
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 Cx36 is involved in the “homeostatic” and reward mechanisms governing 

appetite: (a) Cx36 deletion promotes overconsumption of highly caloric 

food; (b) Cx36 deletion promotes hypersensitivity to taste aversion; and 

(c) Cx36 deletion reduces feeding for reward. 

 Enhanced appetite for calorie-dense food in Cx36 knockouts is associated 

with changed expression of OT and OTr genes. 

 Cx36 knockouts’ increased sensitivity to taste aversion is associated with 

a higher number of activated OT neurons in toxin-treated animals. 

 Cx36 deletion impairs effectiveness of OTr blockade on consumption 

driven by sweet taste. 
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Abstract 

OBJECTIVES: Connexin 36 (Cx36) is a gap junction molecule ubiquitously expressed in the 

brain, especially in the reward circuit. Cx36 deletion is associated with dysregulation of 

GABA and dopamine in reward pathways and with decreased ethanol intake in Cx36 KO 

mice. Here, we used the Cx36 KOs to investigate whether the link between Cx36 and 

reward expands onto palatability-induced feeding. We determined intake of palatable 

tastants, expression profile of opioid system genes involved in feeding reward, and 

sensitivity of Cx36 KOs to feeding reward modifying opioid ligands, naltrexone and 

butorphanol. METHODS: Consumption of sweet (sucrose, glucose, fructose, saccharin) 

and lipid solutions during episodic (2h) and unrestricted access was measured in Cx36 

KO versus wild-type (WT) mice. WTs were treated with a pharmacological Cx36 blocker, 

quinine, to substantiate the findings. Opioid transcript levels were assessed with qPCR. 

Finally, naltrexone or butorphanol were administered in KOs and WTs prior to sucrose or 

saccharin solution presentation and dose-response curves were established. RESULTS: 

Cx36 KOs showed decreased consumption of all palatable solutions offered in a brief 

and unrestricted manner. Quinine in WTs decreased palatability-driven feeding. Cx36-

deficient mice maintained on a regular diet displayed an altered baseline expression 

profile of opioid system genes in the hypothalamus and nucleus accumbens. Cx36 KOs 

exhibited a diminished sensitivity to consumption modifying properties of naltrexone 

and butorphanol (sucrose) or a lack thereof (saccharin). CONCLUSIONS: Cx36 is essential 

in generating feeding for reward. The lack of Cx36 is associated with impaired 

functioning of the reward system, including its opioid-dependent component.  
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Highlights 

Cx36 knockout mice show diminished consumption of palatable tastants. 

Pharmacological blockade of Cx36 gap junctions decreases saccharin intake. 

Connexin 36 knockout mice display altered expression of opioid system genes. 

Connexin 36 knockouts show diminished feeding responses to opioid receptor ligands.  
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1. Introduction 

Gap junctions (GJs), pores formed by connexin (Cx) subunits, provide a means for 

intercellular communication in the brain [1]. The passage of molecules through neuronal 

GJs coordinates cell firing, and metabolic as well as transcriptional events between 

coupled neurons. Compared to chemical synapses, GJ electrical synapses synchronize 

outputs of coupled neurons and allow ultra-fast spread of information.  

Thus far, 20 connexin genes have been defined [2]. Among the two types of Cxs most 

ubiquitously expressed in mammalian neurons, only Cx36 is prevalent in the mature 

CNS [3]. Cx36 positive neurons have been demonstrated in the hippocampus, cerebral 

and piriform cortex, striatum, amygdala, cerebellum, mesencephalon, thalamus, 

hypothalamus, and various brain stem nuclei [3]. Cx36 has been shown to facilitate 

plasticity [4], promote glutamate-mediated cell death post-injury [5], affect motor 

learning [6, 7] mediate sensitivity to anesthetic drugs [8, 9], and affect learning- and 

anxiety-related parameters [10]. 

 

Comprehensive electrophysiological studies have established the role of Cx36 in the 

generation of high-frequency oscillations and synchrony [11], particularly within GABA 

and dopamine (DA) circuits [12][13][14][15]. The relationship between Cx36 and 

GABA/dopamine prompted studies on a possible link between Cx36 and reward. These 

experiments brought a groundbreaking discovery that Cx36 knockout (KO) mice are less 

prone to drinking alcohol. The loss of Cx36-dependent electrical coupling within the key 

reward pathway component, the ventral tegmental area (VTA), leads to the 

dyssynchrony of the GABA system resulting in disinhibition of DA neurons (hyper-DA 

state), and consequently decreases the hedonic value of ethanol intake [15].  
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In the current set of studies, we used the Cx36 KO mouse model to investigate whether 

the link between Cx36 and reward expands onto the pleasure of consumption of 

palatable tastants. First, we measured consumption of sweet and lipid solutions in 

episodic and unrestricted access paradigms in Cx36 KO versus WT mice and 

substantiated our findings by using a pharmacological blocker of Cx36 gap junctions, 

quinine, in WT animals. As the consumption of palatable tastants was lower in the KO 

animals, we hypothesized that the genetic deletion of Cx36 affects baseline expression 

of opioid system-related genes, which are the key components of central mechanisms 

governing feeding for pleasure [16] thereby diminishing KO animals’ sensitivity to 

feeding reward. Hence opioid transcript levels were assessed with real-time PCR in the 

hypothalamus and nucleus accumbens of Cx36 KOs and their background strain. Finally, 

we tested sensitivity of Cx36 KOs versus WTs to feeding inhibitory properties of an 

opioid receptor antagonist, naltrexone, and feeding stimulatory properties of an agonist, 

butorphanol, on sugar and saccharin solution intake. 
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2. Materials and Methods 

2.1. Animals 

The Cx36 KO model, developed and kindly provided to our laboratories by Prof. David 

Paul [17], has been used by us and others in earlier studies [18], [19]. Male homozygous 

Cx36 KO and WT littermates (C57/B6-129SvEv mixed background) were individually 

housed in conventional cages with a 12:12 LD photoperiod (lights on at 0700) in a 

temperature-controlled room (21°C). Age-matched animals weighed ca. 26 g ± 3 at the 

beginning of the studies (there was no difference in b. wt. between the 

genotypes). Mice had unlimited access to tap water and standard rodent chow (Teklad 

Global Diet 2018) throughout the studies unless noted otherwise. The procedures 

described herein were approved by the University of Waikato animal ethics committee. 

2.2. Ingestive behavior assessment 

Prior to the beginning of exposing animals to non-standard tastants, we determined that 

despite the same body weight as WT counterparts, age-matched Cx36 KO mice eat more 

regular chow over a 24-h period with water and food available ad libitum (KOs: 

0.18±0.003 g/kg b. wt; WTs: 0.11±0.01; p=0.01 in t-test), which suggests energy 

metabolism changes in the KO strain. 

2.2.1. Episodic intake of palatable tastant solutions in Cx36 KO vs WT mice 

In a series of experiments, we tested the intake of 0.1% saccharin, 5% sucrose, 5% 

glucose, 5% fructose or 4.1% Intralipid (Fresenius, Sweden) solutions in a single-bottle 

no-choice paradigm. Cx36 KO and WT mice (n=13-18/tastant) had been pre-exposed to 

the respective solutions 2 h/day (10:00–12:00) for 5 days. Chow and water were 

removed from the cages for the 2-h period of palatable tastant presentation. The 

animals were then given a single bottle containing a palatable tastant. The amount of 
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the solution consumed was calculated and the means were reported in g/kg of b. wt. A 

Student’s t-test was used to assess differences in consumption for each of the palatable 

solutions between WT and KO animals (significant when p≤0.05). 

As a control study for the ability of Cx36 gap junctions to affect episodic consumption of 

palatable tastants, we subjected the WT mice to a similar paradigm of saccharin solution 

availability as described above, injected them with saline or 30 mg/kg b. wt quinine 

(Cx36 gap junction blocker) 5 minutes before palatable tastant presentation and 

determined saccharin solution intake in the 2-h test period. The dose of quinine was 

selected based on previous studies showing antinociceptive and antiepileptic effects of 

the compound [20], [21]. The amount of consumed saccharin solution was expressed in 

g/kg b. wt. and the data of saline vs. quinine groups compared with a t-test (significant 

when p≤0.05). 

2.2.2. Unrestricted intake of palatable solutions in Cx36vKO vs WT mice 

We assessed the intake of 0.1% saccharin, 5% sucrose, 5% glucose, 5% fructose or 4.1% 

Intralipid when each of these tastants was available ad libitum (along with standard 

chow and water) for 3 consecutive days. KO and WT mice were given a single bottle 

containing a palatable tastant for 3 days (n=8/WT and n=8 KO for each tastant). The 

amount of the tastants and chow consumed on Day 2 and 3 (data from Day 1 were not 

included in the analysis to discount the potential effect of novelty) was calculated and 

the means were reported in g/kg of b. wt. A Student’s t-test was used to establish the 

difference between WT and Cx36 KO consumption in consumption (significant when 

p≤0.05). 

2.3. Baseline expression of opioid system genes in the hypothalamus and nucleus 

accumbens in Cx36 KO vs. WT mice 
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Wt and Cx36 KO mice (n=8/group), maintained on ad libitum access to standard chow 

and water, were decapitated (10:00-11:00) and the hypothalamus and nucleus 

accumbens were collected according to the Paxinos and Watson brain atlas. The 

tissue was placed in RNAlater at room temperature for 2h and then stored at -80°C. RNA 

was extracted by the Quick-RNATMkits (Zymo Research) and the absence of DNA was 

confirmed by PCR. Total RNA concentration was measured with Nanodrop 2000 

(Thermo Scientific). For cDNA synthesis, 9 μl of RNA was reverse-transcribed in a final 

volume of 20 μl containing 10 μl 2X RT Reaction Solution and 1 μl Enzyme Mix 

(HiSenScriptTM RH(-) cDNA Synthesis Kit, iNtRON Biotechnology). The reaction was 

performed for 1h at 42°C, followed by 5 min at 85°C and 5 min at 4°C, and the presence 

of cDNA was confirmed by PCR. Each rtPCR, with a total volume of 20 μl, contained 8 μl 

template cDNA, 2μl Primers Mix (Forward and Reverse primers) and 10 μl of 2X 

RealMODTM GH Green Real-time PCR Master Mix (Master Mix Kit, iNtRON). rtPCRs were 

done in duplicates, and negative controls were included on each plate. Amplification 

was performed as follows: denaturation at 94°C for 5 min, 50 cycles of denaturation at 

94°C for 10 s, annealing for 15 s, and extension at 62°C for 30 s.  Three housekeeping 

genes were analyzed (Table 1). A Rotor-Gene SYBR Green PCR (QIAGEN) was used. Data 

analyses have been performed by Rotor-Gene 6000 software 1.7 (QIAGEN). Primer 

efficiencies of 11 genes (Table 1) were calculated and samples were corrected for 

differences in efficiencies. The Pfaffl equation [22] [23] was used to calculate 

normalization factors based on housekeeping gene expression. Differences in gene 

expression between groups were analyzed using a t-test (different when p≤0.05). 

2.5. Effect of opioid receptor agonist and antagonist on consumption of sweet 

palatable tastants in Cx36 KO vs. WT mice 

Several days prior to the beginning of the experiments, Cx36 KO and WT mice had been 

pre-exposed to 0.1% saccharin or 10% sucrose solutions for 24 h to prevent 
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neophobia. Similar to the episodic exposure experiments described above (section 2.2.1), 

animals (n=7-10/group) were accustomed to having access to either 0.1% saccharin or 

10% sucrose for 2 h/day (1000–1200 h). Standard food and water were removed for the 

2-h period of palatable tastant presentation. Five min prior to palatable solution 

exposure, mice were injected IP with (a) saline or 0.03,0.1, 0.3, 1 and 3 mg/kg b. wt. of 

naltrexone or (b) saline or 0.1, 0.3, 1 and 3 mg/kg b. wt. of butorphanol tartrate. The 

amount of the palatable tastant consumed during the 2-h period was calculated in g/kg 

of b. wt. One-way ANOVA followed by Fisher’s post-hoc test was used to establish 

effective doses of naltrexone and butorphanol in saccharin and sucrose consumption for 

the Cx36 KO and WT strains (different when p≤0.05).  
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3. Results 

Mice lacking the functional Cx36 gene display diminished intake of palatable tastants in 

both episodic and unrestricted access paradigms. The KO animals drank significantly less 

of the sweet palatable solutions and lipid emulsion (saccharin: p=0.008,; sucrose, 

p=0.009; glucose, p=1E-5; fructose, p=0.0003, Intralipid, p=0.002) offered in a brief 2-h 

session (with no chow or water available during that time; Fig.1A). A similarly diminished 

intake of the palatable tastants was observed when saccharin (p=0.02) sucrose (p=2E-6), 

glucose (p=2E-6), fructose (p=2E-7) and Intralipid (p=0.0002) were given in an 

unrestricted manner for 48 h (chow/water available ad libitum; Fig.1B). Importantly, 

water intake did not differ between KO and WT mice (p=0.23).  

Cx36 blocker, quinine, administrated IP just before the 1-h exposure to the saccharin 

solution in WT mice, significantly decreased the intake of this sweet tastant (p=0.004; 

Fig. 1C). 

In the PCR studies, we found that baseline expression of opioid system genes differs in 

Cx36KO vs WT mice maintained on a standard diet (Fig.2). The KOs showed decreased 

mRNA levels of KOR (p=1E-06), MOR (p=5E-08), PNOC (p=0.0005), ORPL1 (p=6E-05), and 

increased DYN mRNA content (p=1E-05) in the hypothalamus, whereas PENK transcript 

expression was higher (p=0.03) in the nucleus accumbens.  

NTX or butorphanol injections in animals given access to saccharin or sucrose, produced 

diiferent dose-response profiles in Cx36 vs WT  mice (Fig 3). While the 0.1-mg and 0.3-

mg doses of NTX decreased sucrose consumption in WTs (p=0.02 and p=0.01, 

respectively), 3 mg NTX had to be used to generate a reduction in sucrose intake in KOs 

(p=0.007). NTX at 1 mg (p=0.008) decreased saccharin intake in WT animals, but even 

the 3-mg dose was ineffective in the KO strain.  
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Conversely, butorphanol increased sucrose consumption at 0.3 mg (p=0.02; and 1 mg 

(p=0.004) in WTs, whereas 3 mg (p=0.01) was the lowest effective dose in KOs (Fig. 3C). 

Saccharin consumption increased after injection of 0.3 and 1 mg butorphanol in WT 

mice (p=0.004 and p=0.004, respectively) but it remained unchanged even after the 3-

mg butorphanol treatment (Fig. 3).  
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4. Discussion 

Excessive intake of highly palatable tastants brings on most profound metabolic and 

energy balance consequences for the organism [24]. The mesolimbic reward pathways 

as well as reward-related molecules scattered throughout the widespread network of 

sites that govern food intake and energy metabolism, promote overconsumption of 

tasty foods [25, 26]. Cx36, as a key molecular component of gap junctions in the adult 

CNS, serves a critical role in ensuring functional integrity of brain circuits, including those 

involved in reward [3, 15]. It has been previously shown that silencing Cx36 expression 

leads to a disruption of GABA and DA signaling [12-15]. Genetic deletion of Cx36 has also 

been found to decrease ethanol consumption in mice [15]. The current set of data 

shows for the first time that Cx36 gene knockout and the pharmacological blockade of 

Cx36 GJs diminish intake of palatable solutions in mice, and that dysregulation of the 

opioid system - a consequence of impaired Cx36 GJ coupling - likely underlies this 

reduced drive to eat for pleasure. 

Animals typically prefer sweet and fatty foods, and they ingest large quantities of solid 

and liquid diets that contain sugars, non-carbohydrate sweeteners, and/or fats, 

regardless of overall caloric density of such diets [27, 28]. Importantly, reward-driven 

consumption of solid and liquid diets occurs regardless of the fact whether the animal 

has or has not been food- or water-deprived [29, 30]. Non-deprived Cx36 KO mice did 

consume the palatable liquid diets given episodically and in an unrestricted manner, 

which suggests that these solutions are not completely devoid of hedonic value to these 

animals. However, each of the palatable tastants was consumed less avidly by the KOs 

compared to their WT counterparts, indicating that the processing of rewarding aspects 

of consumption of these liquid diets was impaired in the Cx36-deficient mice. That water 

intake does not differ between KOs and WTs makes it unlikely that the effect was cause 

by differences in thirst responsiveness. The fact that KOs ingest less of the non-caloric 
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saccharin solution than WT controls rules out a scenario in which diminished energy 

needs are the culprit underlying lower intake of palatable tastants. It should also be 

noted that the feeding reward experiments presented herein employed a wide variety 

of tastants that engage different subsets of taste receptors; therefore, along with the 

previously reported data on the relationship between Cx36 and alcohol-derived reward 

[15], our results imply that aberrant processing of reward in Cx36 deficiency expands 

upon pleasure-derived consummatory behavior.  

Interestingly, administration of quinine in non-deprived WT mice just prior to their 

gaining brief episodic access to the saccharin solution generated a decrease in saccharin 

intake. The parallel effects of gene deletion and pharmacological blockade of the GJ 

molecule lend us more confidence in defining Cx36 as being involved in feeding reward. 

Overall, changes in reward processing are evoked not just by a constitutive absence of 

the Cx36 gene, but also by using a transient Cx36 blocker; hence they can be dependent 

on acute changes in the Cx36 GJ functional status as well as on long-term molecular 

changes associated with the the lack of Cx36. 

It has been previously reported that Cx36 deficiency in the KO model leads to significant 

abnormalities in DA and GABA signaling within the VTA-accumbens pathways, thereby 

contributing to the impaired processing of rewarding stimulation [12-15]. Our real-time 

PCR data suggest that changes in the molecular content of reward-related circuits are 

even more profound as the baseline expression profile of genes that give rise to select 

opioid peptides and receptors is greatly affected. The key role of endogenous opioids in 

palatability-induced consumption has been shown beyond reasonable doubt. It is well 

known that opioid receptor agonists induce intake of preferred tastants, while 

antagonists are effective in decreasing intake of tasty foods [31][32]. Modifications in 

access to palatable diets affect opioid peptide/receptor mRNA and protein levels [33-35], 

whereas constitutive and conditional changes in expression of opioid system genes are 
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associated with an altered drive to ingest rewarding tastants [36-38]. That Cx36 KO 

animals maintained on standard “bland” chow show different levels of opioid mRNAs 

indicates that - already at the baseline behavioral state - there is an atypical expression 

of genes related to feeding reward, most likely being one of the underlying factors in 

aberrant processing of palatability in Cx36 KOs. It should be noted that opioid system 

mRNA levels were changed not only in the nucleus accumbens, which is intuitive taking 

into account its role in reward, but predominantly in the hypothalamus, where the 

receptor transcripts were greatly affected. While numerous intraparenchymal injection 

studies have shown that opioid receptors in the hypothalamus modify palatability-

driven feeding [39], they are also though to couple reward system’s activity with the 

homeostatic and neuroendocrine responses of the hypothalamus [31, 40] . 

The real-time PCR findings showing an altered expression profile of opioid-related genes 

are further substantiated by the studies utilizing injections of opioid receptor ligands 

that are known to stimulate (butorphanol) or reduce (naltrexone) consumption of 

palatable tastants [31][32]. We found that WT mice offered either sucrose or saccharin 

exhibited a typical orexigenic response to butorphanol and hypophagia after naltrexone 

treatment. On the other hand, Cx36 KOs exhibited a diminished sensitivity to 

consumption modifying properties of each of the opioid ligands (sucrose) or a lack 

thereof (saccharin). While it is difficult to speculate whether the marked shifts in the 

dose-response curves can be directly attributed to changes in opioid system’s expression 

profile or rather to impaired coupling of reward signaling due to DA and GABA 

disruption (or both), it is clear that Cx36 deletion leads to gross abnormalities in the 

molecular content, sensitivity and functioning of reward circuits.  

In sum, we conclude that Cx36 is essential in generating avid consumption of palatable 

tastants. The lack of Cx36 is associated with impaired functioning of the reward system, 

including its opioid-dependent component. 
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Table 1. Forward and reverse real-time PCR primer sequences. 

 

  

Opioid system genes     

 Forward Reverse 

KOR CAC CTT GCT GAT CCC AAA TTC CCA AGT CAC CGT CAG 

MOR CCT GCC GCT CTT CTC TGG  CGG ACT CGG TAG GCT GTA AC 

PNOC AGC ACC TGA AGA GAA TGC CG CAT CTC GCA CTT GCA CCA AG 

DYN GAC AGG AGA GGA AGC AGA AGC AGC ACA CAA GTC ACC 

ORPL1 ATG ACT AGG CGT GGA CCT GC GAT GGG CTC TGT GGA CTG ACA 

PENK CGA CAT CAA TTT CCT GGC GT AGA TCC TTG CAG GTC TCC CA 

Housekeeping genes 

B actin TGG CAC CAC ACC TTC TAC AAT GAG GGG TCA TCT TTT CAC GGT TGG 

Atp5b GGC ACA ATG CAG GAA AGG TCA GCA GGC ACA TAG ATA GCC 

B tub CGG AAG GAG GCG GAG AGC AGG GTG CCC ATG CCA GAG C 
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Figure legends 

Fig. 1. Connexin 36 knockout (Cx36 KO) mice consume smaller amounts of palatable 

solutions offered (A) episodically for 2 h or (B) in an unrestricted 48-h access paradigm, 

compared to wild-type (WT) controls. A peripheral injection of a pharmacological 

blocker of Cx36 gap junctions, quinine, reduces saccharin solution intake (C). * - p≤0.05; 

** - p≤0.01; *** - p≤0.001. 

Fig. 2. Connexin 36 knockout (Cx36 KO) mice having unrestricted access to standard 

food and water display a different baseline mRNA expression profile of select opioid 

system genes than wild-type (WT) controls. Gene expression levels in the hypothalamus 

and nucleus accumbens were measured with real-time PCR. KOR, kappa opioid receptor; 

MOR, mu opioid receptor; PNOC, pronociceptin; ORPL1, nociceptin/orphanin FQ 

receptor; PENK, proenkephalin; POMC, proopiomelanocortin. * - p≤0.05; ** - p≤0.01; 

*** - p≤0.001. 

Fig. 3. Effects of naltrexone (top: A, B) and butorphanol tartrate (bottom: C, D) on the 

intake of sucrose (A,C) and saccharin (B, D) solutions offered for 2 h to connexin 36 

knockout (Cx36 KO) and wild-type (WT) mice. Doses of naltrexone and butorphanol 

represent mg/kg b. wt. injected intraperitoneally. * - p≤0.05; ** - p≤0.01; *** - p≤0.001. 
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A general power calculation method to determine 

animal numbers in individual experiments

 


