
Studies in Program Obfuscation

by

Mayank Varia

B.S.E., Duke University, 2005

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

c© 2010 Mayank Varia. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now known

or hereafter created.

Author .
Department of Mathematics

August 6, 2010

Certified by. .
Ran Canetti

Associate Professor, School of Computer Science, Tel Aviv University
Thesis Supervisor

Accepted by .
Michel Goemans

Chairman, Applied Mathematics Committee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4429024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Studies in Program Obfuscation
by

Mayank Varia

Submitted to the Department of Mathematics
on August 6, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Program obfuscation is the software analog to the problem of tamper-proofing hardware. The goal
of program obfuscation is to construct a compiler, called an “obfuscator,” that garbles the code of
a computer program while maintaining its functionality.

Commercial products exist to perform this procedure, but they do not provide a rigorous se-
curity guarantee. Over the past decade, program obfuscation has been studied by the theoretical
cryptography community, where rigorous definitions of security have been proposed and obfuscators
have been constructed for some families of programs.

This thesis presents three contributions based on the virtual black-box security definition of
Barak et al [10].

First, we show tight connections between obfuscation and symmetric-key encryption. Specifi-
cally, obfuscation can be used to construct an encryption scheme with strong leakage resilience and
key-dependent message security. The converse is also true, and these connections scale with the
level of security desired. As a result, the known constructions and impossibility results for each
primitive carry over to the other.

Second, we present two new security definitions that augment the virtual black-box property to
incorporate non-malleability. The virtual black-box definition does not prevent an adversary from
modifying an obfuscated program intelligently. By contrast, our new definitions provide software
with the same security guarantees as tamper-proof and tamper-evident hardware, respectively. The
first definition prohibits tampering, and the second definition requires that tampering is detectable
after the fact. We construct non-malleable obfuscators of both flavors for some program families
of interest.

Third, we present an obfuscator for programs that test for membership in a hyperplane. This
generalizes prior works that obfuscate equality testing. We prove the security of the obfuscator
under a new strong variant of the Decisional Diffie-Hellman assumption that holds in the generic
group model. Additionally, we show a cryptographic application of the new obfuscator to leakage-
resilient one-time digital signatures.

The thesis also includes a survey of the prior results in the field.

Thesis Supervisor: Ran Canetti
Title: Associate Professor, School of Computer Science, Tel Aviv University

3

4

Acknowledgments

I am very grateful to many colleagues, friends, and family for their help and support throughout
my graduate studies. First and foremost, I am indebted to my advisor Ran Canetti for his guidance
for the past four years. As a mathematician working with a computer scientist, we approached
most problems from different angles, and understanding his perspective often resulted in solutions
and always contributed to my growth as a scientist. Even if we were not able to solve a problem, I
knew that Ran would at least provide a list of topical, relevant papers to examine, and the accuracy
rate of his suggestions amazes me to this day. Perhaps the highest compliment I can pay him is
that he is more helpful from halfway across the world than most people are from halfway across
the building.

I am also grateful to my co-authors Yael Kalai, Guy Rothblum, and Daniel Wichs for introducing
me to their fields of study and making sense of my rambling thoughts. They were a pleasure to
work with, both during the times of intensive study and leisurely banter. I also want to thank Nir
Bitanski and Ronny Dakdouk for finding bugs, suggesting improvements, and proving new results
in the non-malleable obfuscation and hyperplane membership testing problems. Additionally, I
thank Michael Sipser and Peter Shor for serving on my thesis committee. As my internal advisor,
Mike also provided valuable advice on my graduate research and job hunt.

Additionally, I want to acknowledge the applied math department for their flexibility in allowing
me to find the proper field of research, and the NDSEG fellowship for supporting me for three years,
making the transition much easier. I thank Ron Rivest, Eran Tromer, and all of the graduate
students in the cryptography reading group for providing an excellent learning environment and
cementing my decision to study cryptography.

During the past five years, I have been fortunate to have an outstanding group of officemates,
including Victor Chen, Andy Drucker, Matthew Gelvin, Dah-Yoh Lim, and Rotem Oshman. They
occasionally helped me with my work and often provided humorous anecdotes and informative
conversations. (I promise that the relative frequency of these two events is a reflection on me, not
them.) I also thank my friends in the poker group for providing me with a weekly connection to
the developments in the math community.

Finally, I thank my parents for their love and support. Without their active interest in my
education and well-being, I would never have been in a position to start graduate school, let alone
finish it.

5

6

Contents

1 Introduction to Obfuscation 9
1.1 Obfuscation in applied cryptography . 10
1.2 Obfuscation in theoretical cryptography . 11

1.2.1 Comparison with encryption . 11
1.2.2 Possible definitions . 13
1.2.3 Negative results . 14
1.2.4 Positive results . 15

1.3 Our results . 17
1.3.1 Obfuscation and symmetric encryption . 18
1.3.2 Non-malleable obfuscation . 21
1.3.3 Obfuscation of hyperplane membership . 26

1.4 Organization . 28

2 Definitions 29
2.1 Circuit families . 29
2.2 Obfuscation . 31

2.2.1 Functionality . 31
2.2.2 Virtual black-box property . 32

3 Survey of Prior Works 35
3.1 Definitions . 35

3.1.1 Virtual black-box . 35
3.1.2 Auxiliary input and composability . 39
3.1.3 Average-case obfuscation . 41

3.2 Positive results . 42
3.2.1 Point circuits and generalizations . 42
3.2.2 Cryptographic applications . 50

3.3 Connections . 54
3.3.1 Impossibility . 54
3.3.2 Separations . 57
3.3.3 Composability . 58

4 Obfuscation and Symmetric Encryption 61
4.1 Introduction . 61
4.2 Definitions . 62

4.2.1 Obfuscation . 62
4.2.2 Encryption with weak keys . 64

7

4.2.3 Proof of Theorem 4.2 . 67
4.2.4 Comparison of α-obfuscation definitions . 70

4.3 Encryption with weak keys and obfuscation with independent messages 72
4.3.1 Semantically secure encryption . 72
4.3.2 CPA encryption and self-composable obfuscation 73

4.4 Auxiliary input . 75
4.5 KDM encryption . 76

4.5.1 Semantically secure KDM encryption . 76
4.5.2 Multi-KDM encryption and self-composable obfuscation 78

4.6 Implications . 79
4.6.1 Encryption with fully weak keys . 79
4.6.2 Achieving obfuscation with independent messages 80
4.6.3 Difficulty of obfuscation with dependent messages 82

5 Non-malleable Obfuscation 83
5.1 Introduction . 83
5.2 Defining non-malleable obfuscation . 84

5.2.1 Tamper-proof obfuscation . 84
5.2.2 Discussion . 86
5.2.3 Tamper-evident obfuscation . 92
5.2.4 Models with setup assumptions . 97
5.2.5 Comparison . 99

5.3 Constructions of tamper-proof obfuscators . 100
5.3.1 Single-point circuits . 100
5.3.2 Multi-point circuits . 104

5.4 Constructions of tamper-evident obfuscators . 113
5.4.1 Random oracle model . 113
5.4.2 Common reference string model . 118

6 Obfuscation of Hyperplane Membership 125
6.1 Introduction . 125
6.2 Finite vector spaces . 127
6.3 Assumption . 128

6.3.1 Hierarchy of assumptions . 129
6.3.2 Generic group model . 131
6.3.3 Adaptivity . 137

6.4 Construction . 139
6.5 Multi-bit output . 143
6.6 One-time signature scheme . 145

7 Future work 149

List of Symbols 151

List of Algorithms 155

List of Figures 157

Bibliography 159

8

Chapter 1

Introduction to Obfuscation

Cryptography examines how information can be protected while still being used in a meaningful
way. The latter part of the goal is particularly important, but often forgotten. Many people view
cryptography simply as the art of keeping secrets, but this is not the case. In fact, it is very simple
to keep something secret if you never need to recall or use it: simply forget it and continue on as
if you had never learned it. The diverse set of problems that cryptographers study all balance the
need to use information (a functionality guarantee) with the desire to keep something hidden (a
security guarantee). For instance, classical cryptographic problems such as encryption or digital
signatures provide the functionality of being able to send a message to one party with security
guarantees against malice by others.

In this work, we consider the problem of program obfuscation, in which we wish to hide the
details of how a computer program works while preserving its functionality. We illustrate the
concept with an example involving two people named Alice and Bob.

Suppose Bob discovers an algorithm that factors integers quickly. He wants to show the algo-
rithm to Alice (along with the rest of the world), but in a responsible manner that does not allow
her to break most of the public-key cryptography standards. As a compromise, he decides to write
a computer program that inverts the RSA family of one-way functions [82]. It is not known how to
factor integers from a generic RSA-breaking program, so Bob’s hope is that other trapdoor families
like the Rabin function [79] could still remain secure. However, the natural way for him to write
the RSA-breaking program uses the factoring algorithm as a subroutine, so Alice could learn how
to factor integers anyway. Instead, Bob wants to write the RSA-breaking program in such a way
that Alice cannot use it to factor integers, even if she reads the code of his program or monitors
the state of her computer while the program runs. Program obfuscation achieves this goal: giving
Bob the functionality of writing an RSA-breaking program with the security guarantee that Alice
cannot reverse engineer it to learn how it works.

In general, the procedure of obfuscating a computer program should garble the program’s code
enough that it is difficult for an adversarial Alice to “learn” any useful information from it. The
extent of the garbling is limited by the fact that the garbled program must perform the same task
that the original program does (in Bob’s case, breaking RSA). Hence, at the very least Alice can run
the program and observe its input-output behavior, and indeed learning of this type is desirable.
However, obfuscation should ensure that Alice cannot learn anything else from the program.

As we will see, this is a powerful tool, but a difficult one to construct. In fact, it is even a
hard concept to define, as it is unclear what it means to “learn” useful information from the code
of a computer program. We will delve into these details later, but first we look at the historical
motivations of the problem.

9

1.1 Obfuscation in applied cryptography

Program obfuscation arose in applied cryptography with the goal of providing a software equivalent
to tamper-proof hardware. “Tamper-proofing” encases a computer chip with a protective device
that allows the chip to be used but prevents an adversarial user from opening the chip to observe
its operation. As a result, the chip designer can protect proprietary trade secrets behind the design.
Alternatively, the chip designer can hide a cryptographic key that can be used by the chip but not
viewed by an adversary.

The goal of obfuscation is to provide a similar security guarantee in software. That is, we wish
to write programs that can be executed, but whose code cannot be examined to learn any additional
information beyond simply what can be learned by executing the program. The motivations for this
problem are similar to those behind tamper-proofing: preventing hackers from reverse engineering
the program, protecting proprietary information, or hiding cryptographic keys inside the program.

At a first glance, this goal seems impossible to achieve. After all, at the end of the day, a
program is just machine code that an adversarial user Alice can read. The machine code cannot
be unintelligible because the computer must be able to process it. Furthermore, Alice can run the
program and observe its execution flow, as well as the intermediate information that is stored in
CPU registers or main memory. Thus, Alice can learn a lot of information about the program.
Obfuscation cannot prevent this, but instead ensures that this information is “meaningless” to
Alice, in the sense that it does not help her understand anything about the program’s behavior
other than what she could have learned simply by running it.

Nowadays, there exist several commercial obfuscators that convert a program that you write
into a new program with equivalent functionality but with garbled-looking, undecipherable code.
Typically, these programs operate by performing a series of small, local “tweaks” to the code.
They do not provide any rigorous security guarantee, but instead provide an informal “security by
obscurity” promise to make the code as convoluted as they can. We illustrate these ideas with an
example shown in Figure 1-1.

void primes(int cap) {
int i, j, composite;
for(i = 2; i < cap; ++i) {

composite = 0;
for(j = 2; j * j <= i; ++j)
composite += !(i % j);

if(!composite)
printf("%d\t", i);

}
}
int main(void) {
primes(100);

}

_(__,___,____,_____){___/__<=_____?
_(__,___+_____,____,_____):!(___%__)?
_(__,___+_____,___%__,_____):___%__==
___/__&&!____?(printf("%d\t",___/__),
_(__,___+_____,____,_____)):(___%__>
_____&&___%__<___/__)?_(__,___+_____,
____+!(___/__%(___%__)),_____):___<__*
__?_(__,___+_____,____,_____):0;}
main(void){_(100, 0, 0, 1);}

Figure 1-1: Security by obscurity example [34]

This example is not from a commercial obfuscator, but illustrates the concept of security by
obscurity. The program on the left is a valid C program that outputs the primes less than 100,
as can easily be verified by reading the code. The program on the right is also a valid C program
with the same functionality, but this is tougher to verify. It would probably take several minutes

10

to make sense of the code. In fact, the quickest way to check this program’s behavior is to compile
it, execute it, and observe the pattern in its output. Hence, the code is “meaningless” in the sense
that it does not help an adversarial user to learn how the program operates.

Furthermore, the left program can easily be transformed into the right program using a few
simple tricks such as variable renaming, using the alternate form of the if statement, and changing
for loops to recursion [34]. The transformations increase the running time of the program but do
not change its asymptotic complexity. Commercial obfuscators use a similar, but more complex,
series of tweaks to achieve security by obscurity, either at the machine code level or directly on the
higher-level language code. Their main objective is to fool commercial reverse-engineering software,
with the side-effect of fooling humans as well.

1.2 Obfuscation in theoretical cryptography

In the past decade, the theory community picked up the problem of program obfuscation and for-
malized rigorous security guarantees that an obfuscator must achieve. There are several definitions
in the literature that attempt to tackle this question, and they each have their merits. Their goal
is not just to prevent current reverse-engineering software from succeeding, but rather to stop any
possible adversary, even ones that have not been designed yet.

In addition to its benefits for the computer science community at large, general-purpose ob-
fuscation has the ability to solve many problems within the field of cryptography. Obfuscation
provides a framework to solve cryptographic problems using a simple process: first write the sim-
plest program that solves the desired task if security is not a concern, and then obfuscate this
simple program to provide the required security.

If we knew how to perform general purpose obfuscation, we could use this framework to:

• Transform a symmetric key encryption scheme into a public key one by garbling the code of
the encryption routine, which generally stores the secret key in plain view [53]

• Construct a fully homomorphic encryption scheme [41, 89] by garbling the code of “simple”
addition and multiplication programs that decrypt the ciphertexts (using the decryption key),
add or multiply the underlying messages, and re-encrypt the result

• Make a cryptographic hash function by obfuscating the code of a pseudorandom function [47]

In this section, we give an overview of the different definitions and present the known positive
and negative results in the field, focusing on their motivations and applications. (Technical details
are deferred to Chapter 3.) First though, we compare obfuscation to the “classical” problem of
encryption in order to illustrate the difficulty of the problem.

1.2.1 Comparison with encryption

One of the first problems studied in cryptography is encryption, which allows Alice and Bob to
send each other messages over the Internet that cannot be read by an eavesdropper. Symmetric
key encryption schemes require that Alice and Bob share a secret “key” beforehand. However, in a
large, connected system like the Internet, this assumption may be impractical. By contrast, public
key encryption allows Alice to create a secret key that she stores locally, and then she can publish
a public key on the Internet that allows anyone (including Bob) to send her hidden messages that
only she can read [44, 79, 82].

In program obfuscation, rather than hiding a message, the goal is to hide the runtime operation
of a computer program. Intuitively, the garbling procedure “encrypts” a program, so perhaps

11

techniques from encryption can be used to create a program obfuscator. However, straightforward
encryption does not suffice as the program needs to remain functional, and in fact the problems turn
out to be very different. There are three major differences between obfuscation and encryption.

Honest and adversarial users

With encryption, Bob’s goal is to send a message to Alice, and he wants to protect the message
from being viewed by a dishonest eavesdropper. However, with obfuscation, Bob sells a computer
program to Alice, but then wants to protect the program from reverse engineering by Alice herself!

In encryption, the dichotomy between honest and adversarial users creates an “information
gap”: honest users know secret key information that adversarial users do not. This information
gap is instrumental in the proof of security. In contrast, there is no distinction between honest
users and adversarial users in the setting of program obfuscation. In particular, all users have the
same information: the code of the garbled program. The lack of an information gap makes the
problem of program obfuscation significantly more difficult to solve than encryption.

Awareness and connectivity

Suppose Bob wishes to send a message to Alice (whether encrypted or not). He will typically know
that his message is intended for Alice before he writes it, since the contents of the message usually
depend on the recipient. Also, people rarely send messages in only one direction, but rather want
a two-way communication channel like the Internet so they can send messages back and forth.
Because these assumptions are required even to send insecure messages, encryption schemes can
take advantage of them.

For example, since Bob knows in advance that his message is intended for Alice, it is reasonable
for the encryption protocol to require that he access the Internet and obtain her key information
before encrypting the message. Note that Bob needs a two-way communication channel here in
order to receive Alice’s public key and send her an encrypted message. Similarly, Alice needs to
transmit her public key and receive the encrypted message.

By contrast, if Bob is a computer programmer, he typically does not know who will use the
programs he creates. He may have a target audience in mind, but he doesn’t have the ability (or
the time) to tailor the program to each individual user. Similarly, if Alice purchases Bob’s program,
she should be able to run it without knowing Bob or having an Internet connection.

We want program obfuscation to be able to succeed in this model, in spite of the fewer resources
available to Alice and Bob. Note that their only “communication” is through a one-time, one-way
channel in which Bob sells the program to Alice. Hence, we cannot utilize public key infrastructure
techniques to protect Alice and Bob because:

1. They may not be aware of each other.

2. Even if they were, they don’t have a two-way communication channel to exchange keys.

3. Even if they did, it wouldn’t be of much help because Bob doesn’t want to tailor his computer
program for Alice, but rather wants to make one program that works for everybody.

Randomness

In encryption, Alice and Bob choose a secret key at random, and the security guarantee only has
to hold with high probability over this random choice. By contrast, in program obfuscation, Bob
writes an arbitrary computer program and wishes to garble its code.

12

It is reasonable to allow the obfuscation process to be randomized (and in fact, this turns out to
be necessary [23]), but it is nonsensical to have a security guarantee that only holds for a “random”
program. Indeed, it is not clear what the concept of a random program would even mean. Instead,
the security guarantee should hold for every program that Bob could write.

This distinction may seem trivial, as encryption requires the security guarantee to hold for
almost every secret key anyway. However, this small change nullifies most of the common proof
arguments used in cryptography. Furthermore, it makes program obfuscation a much more powerful
tool.

As we will see later, obfuscation is a very general concept, and it provides a framework in which
to solve other cryptographic problems. One of the major contributions of this thesis will be to
connect encryption to program obfuscation. These connections improve our understanding of both
primitives.

1.2.2 Possible definitions

Recall that the informal goal of program obfuscation is to ensure that a user “learns nothing” by
reading obfuscated code. One big reason that this problem only recently moved into the theory
world is that it is not immediately clear how to codify what it means to “learn” something. Instead,
Barak et al. [10] approach the problem from a different angle: obfuscators produce garbled code,
and the definition states when the code is “sufficiently garbled.”

Consider an imaginary world in which people can give others access to oracles1 at will. In
this imaginary world, we can easily perform perfect obfuscation by giving users oracle access to
a computer program. The oracle allows them to learn the program’s input-output functionality,
but any other aspect of the program’s behavior is hidden from the users. Unfortunately, in the
real world we cannot hand out oracles to other people. Instead, we want obfuscators to be able to
replicate the power of oracles in the imaginary world.

The definition of obfuscation provided by Barak et al. [10], called virtual black-box obfuscation,
is aimed at achieving this goal. The security guarantee uses a simulator-based definition that
considers two different worlds. In the real world, Alice receives obfuscated program code and learns
a predicate about the underlying program. The code is sufficiently obfuscated if there exists an
efficient2 simulator in the imaginary world that is given an oracle to the program and also learns
the predicate. Hence, anything that Alice learns by deciphering the garbled code, she could have
learned simply by observing the input-output behavior of the program.

More precisely, the virtual black-box definition requires that for every adversary, there exists
a simulator such that for all programs P and predicates π, the simulator can learn π(P) in the
imaginary world as well as the adversary can in the real world. We emphasize two technical features
of this definition.

1. The universal quantifier over programs is stronger than the requirement in most cryptographic
definitions, which only require the simulator to succeed on a random instance. However, the
concept of a “random program” usually does not make any sense, so we impose the stronger
requirement.

2. The definition, as stated so far, is unachievable for some predicates. Informally, the issue is
that Alice can copy the obfuscated code that she receives, even if she doesn’t understand it,
whereas the simulator cannot copy an oracle.

1Informally, an “oracle” is a black box with input and output wires. When an input is fed to the box, it instantly
provides an output. However, it is impossible to peer inside the black box and observe its behavior.

2Throughout this work, an “efficient” algorithm is one that runs in probabilistic polynomial time.

13

To sidestep this problem, the virtual black-box property only considers binary predicates (i.e.,
predicates with one bit of output). With this restriction in place, the definition is achievable
but the security guarantee is weakened. One of the main contributions of this thesis is to
address this limitation. We will return to this issue in Section 1.3.2.

The virtual black-box property has several variants that may be more useful in certain circum-
stances. Goldwasser and Kalai [43] add auxiliary input to the definition. Bitanski and Canetti [12]
allow the simulator to be inefficient. Several works [39, 53, 55] add a notion of randomness that
makes sense in some applications, eliminating the universal quantifier mentioned above.

Finally, Goldwasser and Rothblum [46] form a definition that is not simulator-based. Rather
than trying to explain when a program is sufficiently garbled, their definition of best-possible obfus-
cation simply aims to garble the program “as much as possible.” This notion is weaker than the
standard virtual black-box property [46], even if the simulator is allowed to be inefficient [12], so it
may be easier to satisfy.

The results in this work all use the virtual black-box definition (possibly with auxiliary infor-
mation), but in this section (and in Chapter 3) we survey the prior results known under all of the
definitions.

1.2.3 Negative results

Now that we have codified what it means for a program to be sufficiently garbled, all that remains
is to find a way to perform the garbling procedure. Here we hit the second big reason that the
problem of program obfuscation has not been studied much by the theory community: it appears
to be too difficult. The early works that codified the problem also proved that it is impossible to
achieve in general [10, 43, 46].

In fact, these papers construct “unobfuscatable” programs with the property that no garbling
of these programs can hide “all information.” Intuitively, the negative results exploit the fact that
even if you do not understand garbled code, you may feed it to another program that can use it as
a subroutine in performing a meaningful task.

This is disappointing, but not necessarily dire. Our dream goal of constructing a general-purpose
obfuscator may have vanished, but on a positive note, many of the “unobfuscatable” programs in
the impossibility proofs are rather contrived, and are not likely to be programs that anyone would
want to obfuscate anyway.

That is, despite the general impossibility results, we may still hope to find specific obfuscators
for every program of interest. More precisely, perhaps we can find an obfuscator for a restricted
family C of programs. In this setting, we make two relaxations:

1. The obfuscator only needs to garble programs in C. (Its behavior on programs outside C is
irrelevant.)

2. The garbled code may reveal that the program belongs to C. We only wish to hide which
program in C it is.

Ideally, we would like the family C to be as large as possible. In an attempt to maintain some
semblance of generality, one might hope to obfuscate programs in a (low) complexity class.3

Sadly, even this task appears too difficult to achieve. The unobfuscatable programs, while per-
haps contrived, are remarkably simple programs. Using the virtual black-box definition, it turns

3When obfuscating a low complexity class, the second relaxation means that obfuscated programs are allowed to
have low complexity as well. Without this relaxation in place, the garbled code would have to hide the running time
of the original program, which is very difficult.

14

out to be impossible even to obfuscate all constant-depth threshold circuits (TC0) under common
cryptographic assumptions such as the hardness of the Decisional Diffie-Hellman problem or fac-
toring Blum integers [10]. The situation is even worse when using the best-possible obfuscator
definition, where it is impossible to obfuscate 3-CNF circuits (a subset of AC0) unless the polyno-
mial hierarchy collapses to the second level [46]. Hence, our best hope of a general construction is
to garble very simple programs like constant-depth circuits, and even a seemingly small task such
as this would be a major breakthrough in the field!

Finally, we note that the unobfuscatable programs are not all contrived and irrelevant; on the
contrary, they can implement productive tasks. For instance, there exist unobfuscatable encryption
schemes, digital signature schemes, and pseudorandom functions [10]. Hence, even obfuscating
every program of interest to cryptographers, rather than a complexity class, is still not possible.

1.2.4 Positive results

It may seem at this point as though we have no hope of finding any positive results in program
obfuscation, but thankfully this is not the case! The general impossibility results indicate that we
should consider targeted families of simple programs as candidates for obfuscation, and indeed this
path has been successful.

The trivial case: learnable programs

A family of programs C is learnable if, given an oracle to any program in C, one can uniquely
determine which program the oracle represents by making a small (i.e., polynomial) number of
queries to the oracle. A simple example is the family of “constant programs” that disregard their
input and always output a string that is stored in its memory. (Different programs in the family
output different strings.) Given an oracle to a constant program, it is easy to determine which
constant program it is (i.e., which string it stores) by making a single oracle query with the all 0s
input and noting the response.

It seems as though learnable programs should be unobfuscatable, since no matter how garbled
one makes a learnable program, it is always possible to learn its behavior. Somewhat counter-
intuitively, however, the virtual black-box definition considers learnable families to be trivially
obfuscatable for this very reason: the original program is already as garbled as possible [63].4

While these may be positive results per se, they are not appealing ones, as they do not provide
any insight on how the garbling procedure should be done. Hence, in the rest of this thesis, we
only consider unlearnable programs. In fact, we look at the “opposite” end of the spectrum and
study programs that require exponentially many queries to learn any useful information about their
behavior.

The interesting case: unlearnable programs

Obfuscators have been constructed for some specific families of “extremely unlearnable” programs.
In fact, some specific constructions were found even before the general definitions of obfuscation
were codified! The security guarantees in these results were specific instantiations of the general
virtual black-box guarantee.

4Returning to the question of obfuscating complexity classes, we can find incredibly small classes that are learn-
able, and thus trivially obfuscatable. However, the classes mentioned in the previous section, AC0 and TC0, are
unlearnable. Moreover, they contain many cryptographically interesting functionalities, so an obfuscator for these
“large” classes would have many practical uses [7].

15

However, all of the constructions come with a big caveat: they cannot be proved secure under
“standard” cryptographic assumptions. Hoeteck Wee [93] shows this limitation is not a weakness
of the particular constructions but is intrinsic to obfuscation.

In this section, we describe the results at a high level, focusing on their applications. Details
on the constructions of these obfuscators can be found in Chapter 3.

Login programs

A login program stores a password in its memory and receives an input string from the user. The
program accepts the input string only if it equals the password. The simplest functionality for a
login program is a point circuit, which stores the password w in a clearly identifiable manner, and
computes

Iw(x) =

{
1 if x = w,
0 otherwise.

Using a point circuit itself as a login program is unwise because storing the password in the clear
poses a security risk. Instead, a secure login program should only store a “garbled” version of
the password that can still be used to perform the equality test but cannot be used to learn the
password. We can use obfuscation to achieve this goal under a variety of cryptographic assumptions
[23, 28, 63, 93].

The virtual black-box definition explains the extent of the “garbling” required. The simulator
is only given black-box access to the login program, so it can only find the hidden password by
running a dictionary attack, guessing passwords until it finds the right one. Hence, the same is
true of an adversary’s ability to understand the code of an obfuscated login program. In particular,
the adversary cannot learn anything from the garbled password to help the dictionary attack or
perform a quicker attack.

In practice, most login programs garble the password using a cryptographic hash function, which
would also make the password unintelligible to the adversary if the password were chosen uniformly
at random. However, humans typically choose structured passwords like short alphanumeric strings,
in which case hash functions do not provide any guarantee. It is conceivable that an adversary can
break the cryptographic hash function on common passwords, even if it is hard to break in general.

By contrast, the security guarantee of program obfuscation applies even if the password is chosen
from a very low entropy distribution, due to the randomness property described in Section 1.2.1.
Note that if the password is chosen extremely poorly, it may be simple for a dictionary attack to
succeed, so we have no hope of protecting a login program in this case. However, as long as it is
difficult to guess the password, an obfuscated login program protects it.

Generalizations

There are many straightforward generalizations of the point circuit functionality. First, we can
create multi-user login programs. Specifically, consider multi-point circuits

I{w1,...,wm}(x) =

{
1 if x ∈ {w1, . . . , wm},
0 otherwise.

that store a list of passwords in a readily identifiable manner, and accept if their input equals any of
the stored passwords. Note that the passwords need not be unique, and in fact the set of passwords
may be empty. We can obfuscate the family Pm of circuits that accept up to m passwords [12, 25].

16

Additionally, we can obfuscate “fuzzy” point circuits with proximity detection that accept their
input if it is “close” to the stored password, which is useful for biometric inputs [39]. We can also
create a substring matching program that accepts any input that contains the stored password,
which can be used to produce an anti-virus program that checks its input for the signature of a
virus without revealing the signature it is looking for.

Finally, we can consider point circuits that do not simply give a yes or no response, but rather
reveal a hidden message upon receiving the correct password. Canetti and Dakdouk [25] obfuscate
these point circuits with multi-bit output

I(k,m)(x) =

{
m if x = k,
⊥, 1|m| otherwise.

Let I = {I(k,m) : k,m ∈ {0, 1}∗} be the set of all these circuits. Obfuscations of circuits in I are
called digital lockers because they hide the message in such a way that it can only be revealed to a
user that knows the secret key k; otherwise, the user only learns the length of m. This functionality
is very similar to symmetric key encryption, with the added benefit that the secret key does not
have to be chosen uniformly, but can be a human-chosen string with poor entropy. We will pursue
the connection between digital lockers and symmetric key encryption much further in Section 1.3.1.

Cryptographic applications

The obfuscators for all of the circuit families described above use the virtual black-box definition,
except for the obfuscator for point circuits with proximity detection, which incorporates randomness
to describe the level of “fuzziness” tolerated [39]. As described in Section 1.2.1, in general it does
not make any sense to obfuscate a “random” program, but in specific circumstances it may. In
particular, cryptographic applications lend themselves well to a randomized definition.

For example, the encryption routine in most symmetric key encryption schemes stores the secret
key in plain view. If the routine is obfuscated under such a definition, the resulting program can
still be used to encrypt messages but not to determine the secret key, thereby creating a public key
encryption scheme [53].

Additionally, the randomized definition of obfuscation can be used to construct a “proxy re-
encryption scheme,” which allows a server to forward encrypted email from one client to another
client without learning any secret keys [55].

Similarly, we can construct an “encrypted signature” program, which can take a message,
digitally sign it, and output an encryption of the signature without revealing the signing key [48].
This functionality can be used to implement a signcryption scheme.

Finally, we can “shuffle ciphertexts in public” [1], which is useful in voting algorithms. With
this device, one can “shuffle” a list of ciphertexts to produce a new list of ciphertexts that contain
the same messages but in a randomized order. Furthermore, this can be performed in the presence
of observers who can verify that the messages are properly shuffled (i.e., the output contains the
same messages as the input) without learning the secret key or the permutation connecting the
input to the output.

1.3 Our results

This thesis contains three separate results that improve our understanding of program obfuscation,
with a focus on what program obfuscation can do rather than what it cannot do. We connect

17

the problem to symmetric key encryption, strengthen the definition to provide non-malleability
guarantees, and construct an obfuscator for a new family of programs.

1.3.1 Obfuscation and symmetric encryption

Symmetric key encryption allows two people to communicate secret information over an open
channel as long as they have a shared secret key. The classic view of symmetric encryption assumes
that:

1. The secret key is chosen from precisely the distribution specified by the encryption scheme
(typically a uniformly random string).

2. The encryption and decryption algorithms are executed in a completely sealed way, so no
information about the key is leaked to the eavesdroppers.

3. The parties use the key only in the encryption and decryption routines and not for any other
purpose. In particular, their messages are never directly related to the key.

In practice, however, none of the classical assumptions may hold. Even if the honest parties try
to follow the specification, they may be foiled by an imprecise or defective source of randomness,
or by an active attacker [51]. Additionally, in some applications (such as hard drive encryption)
it may be desirable to encrypt messages that are related to the secret key. In recent years much
research has been done to find encryption schemes that can tolerate (one of) these types of attacks.

Three forms of symmetric encryption

One line of research considers the case where the key is chosen using a “defective” source of
randomness that does not generate uniform and independent random bits [3, 5, 38, 58, 71]. In
this model, the key k is taken from a distribution that is adversarially chosen, subject to the
constraint that the min-entropy of the distribution is at least some pre-specified function α(|k|). In
this case, the scheme is said to be secure with respect to α-weak keys.

A different relaxation of the classic model considers the case where the key is chosen uniformly
but some arbitrary function of the key `(k) is leaked to the adversary [3, 71]. This models both
direct attacks where the adversary gains access to the internal storage of the parties, such as the
cold-boot attack of [51], and indirect information leakage that occurs when the shared key is derived
from the communication between the parties, such as the information exchange used to agree on
the key. Of course, all security is lost if the adversary learns the key in its entirety, and therefore
some restriction needs to be imposed on the amount of information that the adversary can get.

m m f(k)

k Enc k Enc z `(k) k Enc

c c c

Figure 1-2: Pictorial representation of traditional (left), weak key or leakage-resilient (middle), and
key-dependent message secure (right) encryption schemes.

18

One possibility is to require that the key has some significant statistical entropy left, even
given the leakage. We call this the entropic setting and note that it is equivalent to the weak key
setting described above [26, footnote 2]. Another, stronger, security notion only insists that it is
computationally infeasible to compute the secret key from the leaked information, even if the key is
information-theoretically determined from the leakage. We call this type of leakage auxiliary input.

Finally, a third line of research examines the case where the messages may depend on the shared
key. Security in this more demanding setting was termed key-dependent message (KDM) security
by Black, Rogaway and Shrimpton [13]. In the last few years, KDM security has been extensively
studied [6, 8, 9, 18, 22, 50, 52, 54], and several positive results emerged, most notably the results
of [6, 18] who showed how to obtain KDM security with respect to the class of affine functions5

under the DDH and learning with errors assumptions, respectively.
While the constructions for KDM secure schemes and α-weak key schemes bear significant

similarities to each other (such as [18, 71], [6, 38], and [3, 6]), no formal connections between the
problems have been made so far.

A common ancestor

In Chapter 4, we show tight relations between symmetric key encryption and obfuscation [26].
Specifically, we show that symmetric key encryption with weak key resilience, leakage resilience,
and KDM security can all be viewed as natural special cases of digital lockers. In fact, digital
lockers provide weak key resilience and KDM security simultaneously. In addition to providing
insight and intuition to these primitives, the connections provide new constructions and hardness
results for the primitives considered.

Recall from Section 1.2.4 that a digital locker is an obfuscated point circuit with multi-bit
output that reveals a message m if and only if its input equals the hidden key k. The connection
between digital lockers and encryption was first pointed out by [25]. The standard virtual black-
box property yields a strong security guarantee for digital lockers: for any adversary with binary
output, there exists a simulator such that for any k and m, the output of the adversary given the
digital locker is indistinguishable from the output of the simulator given oracle access to the digital
locker. Due to the universal quantifier on keys, the message remains hidden even when the key
is taken from a distribution which is not uniform, as long as it has sufficient min-entropy that it
cannot be guessed in polynomial time.

Due to the strong security requirement, constructions of digital lockers are based on very strong
and specific assumptions, such as the existence of fully-composable point circuit obfuscators [12, 25,
63]. Different constructions exist for restricted settings, such as when m is shorter than k, or when
m is chosen independently from k [25, 38]. In this work, we examine these and other restricted
settings for digital lockers.

Equivalence of terminology

The goal of this work is to relate the various notions of encryption to different notions of obfuscation
of the family I. To do so, we generalize (and weaken) the virtual black-box definition by relaxing
the “for any” requirement on programs in the virtual black-box property described in Section 1.2.2.
Instead, we merely require that k and m are sampled from a distribution with certain properties.
The adversary and simulator are aware of the properties but not the particular distribution used.

5These functions specify the dependence between the secret key and the message that is encrypted. Restrictions
on the function seem necessary because [50] shows that there is no black-box reduction from the (unrestricted) KDM
security of any encryption scheme to “any standard cryptographic assumption.” See Section 4.6.3 for more detail.

19

We show that different types of encryption correspond to obfuscation for distributions with different
properties.

Obfuscation vs. weak key and leakage-resilient encryption. We say that an obfuscator for
I is α-entropic with independent messages if it satisfies the above definition for product distributions
on k, m where the distribution of k has min-entropy at least α. Note that the product distribution
ensures that m is drawn independently of k. We impose no restriction on the entropy of m.

Our first result is that α-entropic digital lockers with independent messages are equivalent to
symmetric key encryption with α-weak keys. This equivalence includes the traditional notion of
encryption, in which the secret key is chosen uniformly and is not leaked, by setting α(n) = 2n.

We describe both directions of the equivalence. Given an obfuscator O for I, we form an encryp-
tion scheme by Enck(m) = O(I(k,m)) and Deck(c) = c(k), where the ciphertext c is interpreted as
the description of a circuit. Conversely, given an encryption scheme, we form an obfuscator as fol-
lows: given a key k and message m, we form a circuit that that hard-codes the string c = Enck(m),
and on input x, runs Decx(c) and outputs the result. For the correctness of obfuscation, we require
that the encryption scheme can detect if it is decrypting a ciphertext with an incorrect secret key.
We show that this property can be added generically to any semantically secure encryption scheme.

Fully entropic obfuscation and fully weak key security. An obfuscator for I with respect
to independent messages is said to be fully entropic if it satisfies α-entropic security for all super-
logarithmic functions α. If we start with such an obfuscator, the transformation above produces
an encryption scheme with semantic security for fully weak keys; that is, any key distribution with
super-logarithmic entropy.

To connect our new α-entropic definition to previous works, we show that any obfuscator that
is fully entropic also satisfies the (standard) virtual black-box property; that is, it works for any
k and m. A proof of this result is trickier than it might seem, with the main difficulty being that
in the case of α-entropic security the simulator has the bound α, whereas in the virtual black-box
case no such bound exists.

CPA security and self-composability. If we start with a chosen plaintext attack (CPA) secure
encryption scheme, the resulting obfuscator is self-composable in the sense that security is preserved
even if many digital lockers are produced with the same key and (possibly) different messages. This
property is not, in general, implied by obfuscation alone [25]. The converse is also true.

Auxiliary input. If we start from a leakage-resilient encryption with auxiliary input, then the
resulting obfuscator satisfies the virtual black-box definition with respect to auxiliary input [43].
The converse is true as well.

KDM security. The above equivalence results were stated with respect to the restricted notion
of obfuscation to independent messages. Interestingly, the standard notion of obfuscation provides
the additional (and very powerful) security guarantee for encryption with key-dependent messages.
This increased level of security can be combined with leakage on the key.

We say that an obfuscator for I is α-entropic with dependent messages if it withstands any
joint distribution on (k,m) where the projection distribution on k has min-entropy at least α. Note
that the message m can depend on k, and in fact we typically view m as a function of k. A digital
locker of this form is equivalent to an α-KDM semantically secure encryption scheme, via the same
transformations as before.

20

Semantically secure encryption with: Is equivalent to digital lockers with:
α-weak keys α-entropic security for indep messages

fully weak keys fully entropic security, indep messages
auxiliary input auxiliary input
CPA security self-composability
KDM security dependent messages

Figure 1-3: Equivalence between symmetric encryption (left) and obfuscation (right) terminology.

Multiple extensions. The equivalences between obfuscation and encryption are summarized in
Figure 1-3. They can be combined arbitrarily, with two caveats.

First, we do not consider KDM security with auxiliary input. Second, when combining CPA
and KDM security, we require that the function connecting the message to the key be chosen non-
adaptively prior to viewing any ciphertexts. This restriction still permits common uses of KDM
security, such as circular security in which k = m [12].

Implications

The connections between obfuscation and encryption allow us to translate results from one field into
the other. Here, we describe three such implications, two positive and one negative. See Section
4.6 for more details.

Secure encryption with (fully) weak keys. The known constructions of α-weak key secure
encryption schemes require that the bound α be chosen in advance, and then the scheme is con-
structed based on α. By contrast, our transformation applied to the digital locker construction in
[25] yields an encryption scheme that simultaneously achieves α-weak key security for all super-
logarithmic functions α, under the strong DDH assumption in [23]. The main advantage of this
scheme is that the min-entropy α does not need to be chosen in advance.

We remark that the hardness assumption in [23] has a similar flavor – it explicitly makes an
assumption for every distribution with super logarithmic min-entropy. The crucial point is however
that the construction does not depend on α and so it provides a trade-off between the strength of
the assumption and the strength of the obtained guarantee.

Constructing self-composable digital lockers with independent messages. We can apply
our transformations to known constructions of encryption schemes that are secure with α-weak
keys. This results in self-composable digital lockers for independent messages, with one caveat: the
security guarantee only applies to distributions in which both k and m are efficiently sampleable.

Impossibility results for obfuscation. Using our transformations, the negative result of Hait-
ner and Holenstein [50] implies that obfuscators for I cannot be proven secure via a “black-box
reduction to standard cryptographic primitives.” The impossibility carries over to fully composable
obfuscators of point circuits [25] as well.

1.3.2 Non-malleable obfuscation

We motivated obfuscation in Section 1.1 as the software equivalent of tamper-proof hardware.
However, the virtual black-box property does not quite meet this standard. Tamper-proof hardware

21

actually provides two separate guarantees: first, that an adversary cannot learn how the chip works,
and second, that the adversary cannot tinker with the chip (say, by inserting or cutting wires).

The virtual black-box property provides an “unlearnability” guarantee, but does not limit the
ability to modify an obfuscated program. In fact, many of the known constructions are malleable
[12, 23, 25, 28]. In Chapter 5, we extend the virtual black-box definition to incorporate prevention
and detection guarantees against modifications, and give constructions for login programs that meet
the stronger definitions [32].

Malleability concerns

If an adversary has access to obfuscated code, the virtual black-box property guarantees that she
cannot “understand” the underlying program. However, suppose the adversary instead uses the
obfuscated code to create a new program in such a way that she controls the relationship between
the input-output functionality of the two programs.

Intuitively, one might expect that virtual black-box obfuscation already prevents modifications.
The simulator only has oracle access to the obfuscated code, so any program that it makes can
only depend on the input-output functionality of the obfuscated code at a polynomial number of
locations. Therefore, obfuscation should guarantee that the adversary is also restricted to these
trivial malleability attacks. However, the virtual black-box definition does not carry this guarantee.
As described in Section 1.2.2, it only considers adversaries and simulators that output a single bit,
not entire programs.

A näıve solution to this problem is to extend the virtual black-box definition to hold even
when the adversary and simulator output long strings. However, in this case obfuscation becomes
unrealizable for any family of interest. Consider the adversary that outputs its input. Then,
a corresponding simulator has oracle access to a program and needs to write the code for this
program, which is impossible for any unlearnable6 family of programs. This is why Barak et
al. restricted predicates to binary output in the first place.

In this paper, we demonstrate two different methods to incorporate non-malleability guaran-
tees into obfuscation. Both non-malleability definitions extend the virtual black-box definition by
allowing the adversary and simulator to produce multiple bit strings, but only in a restricted man-
ner. There are many subtleties involved in constructing a proper definition, such as deciding the
appropriate restrictions to impose on the adversary and simulator, and creating relations to test
the similarities between the adversary’s input and output programs. We defer treatment of these
important details to Section 5.2. Here, we motivate and describe the two definitions at a high level.

Tamper-proof obfuscation

Imagine that Alice, Bob, and Charles are three graduate students in an office that receives a new
computer, which the department’s network administrator configures to allow the graduate students
root access to the computer. The administrator receives the students’ desired passwords, and she
writes a login program that accepts these three passwords and rejects all other inputs. The students
will be able to read the program’s code, so the administrator should obfuscate the login program
in order to ensure that a dictionary attack is the best that the graduate students can do to learn
their officemates’ passwords.

However, obfuscation does not alleviate all of the administrator’s fears. If the students need to
have root access to the computer for their projects, then they can not only read the login program
but can alter it as well. The administrator would like to prevent tampering of the login program,

6Recall from Section 1.2.4 that unlearnable families are the meaningful ones to obfuscate.

22

but the virtual black-box definition does not provide this guarantee. For instance, suppose Alice
wants to remove Bob’s access to the computer. There exist obfuscated login programs such that
Alice can succeed in this attack with noticeable probability [12, 25], which we describe in the
Constructions section below.

Recall that the goal of obfuscation is to turn a program into a “black box,” so the only predicates
that Alice can learn from the program are those she could learn from a black box. We extend this
intuition to cover modifications as well. We say that an obfuscator is tamper-proof if the only
programs that Alice can create given obfuscated code are the programs she could create given
black-box access to the obfuscated code.

We define tamper-proof obfuscation using a simulator-based definition. A straightforward ex-
tension of the Barak et al. definition [10] would require that for every adversary that receives
obfuscated code and uses it to create a new program, there exists a simulator that only has oracle
access to the obfuscated code and produces a program that is functionally equivalent to the ad-
versary’s program. However, we saw that this definition is too strong, with the main issue being
that the adversary can “pass” its obfuscated program along to its output program, whereas the
simulator does not have this capability. We fix the imbalance by allowing the program that the
simulator outputs to have oracle access to the obfuscated code.

This definition limits the possible attacks Alice can apply. For instance, if Alice only has black-
box access to the login program, then she can only remove Bob’s access to the computer with
negligible probability. In this sense, tamper-proofing gives Bob more security because it protects
all aspects of his access to the computer, whereas the virtual black-box property only protects his
password.

Tamper-evident obfuscation

Tamper-proof hardware protects the internal circuitry of a chip, but it does not prevent all possible
modifications. An adversary could insert the protected chip on a circuit board and design circuitry
around it so that the overall board has a similar, but slightly different, behavior than the original
chip.

Tamper-proof obfuscation is vulnerable to the same problem in software. For example, suppose
that Alice wishes to play an April fools’ prank on her officemates by altering the login program
to accept their old passwords appended to the string “Alice is great.” Alice only knows her own
password, so she cannot run the obfuscator to produce this modified program. Nevertheless, she
can write the following program: “on input a string s, check that s begins with ‘Alice is great,’
and if so, send the rest of the string to the administrator’s login program.” Tamper-proofing does
not prevent this prank. In fact, it is impossible to prevent this prank because Alice only uses the
obfuscated login program in a black-box manner.

Still, this attack is not perfect: after Alice performs this attack, the new login program “looks”
very different from a program that the network administrator would create. As a result, we may
not be able to prevent Alice from performing her prank, but we can detect Alice’s modification
afterward and restore the original program. Alice’s job is now harder, since she has to modify
obfuscated code in such a way that the change is undetectable.

We say that an obfuscator is tamper-evident if the only programs Alice can create that pass a
verification procedure are the programs she could create given black-box access to the obfuscated
code.7 This approach gives us hope to detect attacks that we cannot prevent, although it requires

7A historical note: the two forms of non-malleability were originally called “functional” and “verifiable” non-
malleable obfuscation [31, 32]. We change to more intuitive terminology here in order to emphasize the analogy with
hardware.

23

a stronger model in which a verification procedure routinely audits the program.
In our example, one simple way to achieve non-malleability is for the network administrator to

digitally sign every program she makes, and for the verification procedure to check the validity of the
signature attached to an obfuscated program before running it. By the existential unforgeability of
the signature scheme, Alice cannot make any modifications, so the non-malleability goal is achieved.

However, this solution is unsatisfactory because it requires that the verification procedure can
find and store the network administrator’s verification key, but as described in Section 1.2.1, we
do not want to assume that users in our model have access to the Internet or are aware of each
other. As a result, in this work we consider “public” verifiers that depend only on the obfuscation
algorithm, and not on the party performing the obfuscation. Informally, a verifier algorithm V
accepts programs if and only if they could have been produced by running the obfuscation algorithm.
We stress that V does not receive any party-specific information (such as public keys), so it does
not depend on the person that runs the obfuscator.

Verifiability has interesting applications in and of itself, as we describe in the Discussion section
below, but we only use it to create a simulator-based definition of tamper-evident obfuscation. The
definition guarantees that an adversary cannot modify obfuscated code into a new program that
passes the verification test unless there exists a simulator that can perform the same attack given
only oracle access to the obfuscated code. (Note that the adversary must create a new program
and not simply output the obfuscated code it receives.) Because we hope to detect attacks that
operate in a black-box manner (which we could not hope to prevent in the tamper-proof setting),
we no longer give the simulator the extra help that we gave it in the definition of tamper-proof
obfuscation. Instead, the simulator must output a fully-functional program that does not have an
oracle.

Discussion on verifiability

Tamper-evident obfuscation incorporates a concept of verifiability that is useful even in situations
where malleability is not a concern. To illustrate, we return to the example in which Bob sells
an obfuscated RSA-breaking program to Alice. Obfuscation helps Bob by protecting his factoring
algorithm, but it hurts Alice because she has to install and run a program without knowing what it
does. For all she knows, the program could contain a virus, and because the program is obfuscated
there is no hope for a virus checker to detect the presence of a virus. Hence, Bob needs a verification
algorithm to prove that he is selling Alice a program from the proper family.

Despite the broader applicability, in this thesis we only use verifiability as a tool in tamper-
evident obfuscation.

Comparison

We show that both forms of non-malleability imply the virtual black-box property. Intuitively, this
relationship holds because an adversary that outputs programs should easily be able to encode a
single bit of information in the output. As a result, all known impossibility results regarding the
virtual black-box property continue to hold for both types of non-malleability [10, 43].

Additionally, we compare the two flavors of non-malleability. Tamper-proofing prevents as many
malleability attacks as possible, whereas tamper-evidence detects as many attacks as possible.
Intuitively, these goals are incomparable: the tamper-evident definition is stronger because we
can detect more attacks than we can prevent, but on the other hand it is weaker because the
model requires its participants to understand and apply the verification algorithm. We justify this

24

intuition by showing that in the random oracle model, the two definitions of non-malleability are
indeed incomparable.

Constructions

In the random oracle model, we show that the obfuscator for point circuits in [63] satisfies both
forms of non-malleability. Next, we study the family of multi-point circuits Pm that store a constant
number of passwords. One idea to obfuscate the program that accepts passwords w1, . . ., wm is as
follows (see Figure 1-4 for a diagram):

1. Use several instantiations of a single-point circuit obfuscator in order to create obfuscated
programs Iw1 , Iw2 , . . ., Iwm , where each Iwj accepts only the password wj .

2. Create the program P that contains Iw1 through Iwm as subroutines, and on input x, itera-
tively feeds x into the Iwj and accepts if any one of these programs accept.

This methodology is known as concatenation, and it is shown in [12, 25] that concatenation preserves
obfuscation under sufficiently strong assumptions. That is, given an obfuscator O for the family of
single-point circuits, concatenation produces an obfuscator for the family of multi-point circuits.

However, concatenation does not preserve non-malleability. The program P stores the sub-
routines Iw1 through Iwm in a readily identifiable way, so an adversary can modify one password
by changing one of the subroutines. This is true even if the obfuscator for single-point circuits is
non-malleable.

In the tamper-evident setting, we resolve the problem with concatenation by using a self-signing
technique to ensure that the subroutines are not modified. The verification algorithm associated
with this construction runs the verification algorithm for the signature scheme. This approach does
not suffice in the tamper-proof setting, where the self-signing technique is useless because there
is no guarantee that anybody checks the signature. Instead, we “glue” the passwords together in
such a way that any attempt to change the obfuscated code destroys information on all of them
simultaneously.

We also give a construction that does not use random oracles. Instead, it uses the common
reference string (CRS) model, in which a sequence of bits is chosen uniformly at random and
published in a public location that all participants can access. (Note that this is different from a
public key infrastructure because the CRS is not tied to the specific identity of the party performing

O(Iw1) O(Iw2) · · · O(Iwm−1) O(Iwm)

∨

Figure 1-4: Pictorial representation of an obfuscated m-point circuit that is constructed by con-
catenating m obfuscated single-point circuits.

25

the obfuscation.) We construct a tamper-evident obfuscator for point circuits by providing any
(potentially malleable) obfuscator along with a non-malleable NIZK proof of knowledge [83, 84]
that the obfuscator knows the password.

Informally, a non-malleable NIZK proof of knowledge considers an adversary that can request
multiple proofs for statements of its choice and then produces a new proof. The non-malleability
guarantee requires that the adversary knows a witness to its constructed proof, so it cannot simply
modify the old proofs to prove a new statement.

Intuitively, our construction is tamper-evident because an adversary can only make a program
that passes the verification test if she knows its functionality, so she cannot modify an obfuscated
login program without understanding it first, which is impossible by the virtual black-box property.
However, the actual proof turns out to be delicate. Using proof techniques from [23], we achieve a
somewhat weaker variant of tamper-evidence. Specifically, we show that for a large class of relations,
no adversary can perform a modification that satisfies the relation with noticeable probability.

1.3.3 Obfuscation of hyperplane membership

Under the standard virtual black-box definition, obfuscators have only been constructed for very
simple functionalities such as login programs and digital lockers. These programs have an “all or
nothing” knowledge property: a simulator with oracle access to such a program learns (almost)
nothing about its functionality until it guesses the correct password, and then it knows the complete
functionality of the program.8 There is no intermediate state in which the simulator learns some
meaningful information about how the program operates but doesn’t know its complete function-
ality. This fact is heavily exploited by the proofs of security for obfuscators of these functionalities.

In Chapter 6, we obfuscate a new functionality that performs arithmetic operations, and not
just equality testing. It does not have the “all or nothing” property: a simulator can learn how the
program behaves on exponentially many inputs without knowing its complete behavior [30].

The new functionality

The objective of this work is to obfuscate programs that perform “hyperplane membership testing.”
Let P be a hyperplane in a vector space, and let HP be a program that tests whether its input is
a point on the hyperplane.9 An obfuscated version of HP can perform the test without revealing
additional information such as the distance from the input point to the hyperplane or any other
points that are on the hyperplane.

More precisely, given a prime p and positive integer d, consider the family of hyperplanes
through the origin in the vector space (Z

pZ)d over the finite field Z
pZ . In this setting, a hyperplane

can be defined by a vector that is orthogonal to every point in the plane. Let a be a vector in (Z
pZ)d

and consider the program

Ha(x) =

{
1 if 〈a,x〉 = 0,
0 otherwise.

We construct an obfuscator for this family of programs.
8This is perhaps too harsh: after making an incorrect guess to an obfuscated login program, the adversary does

learn one string that isn’t the password. However, this information is not meaningful, in the sense that an efficient
simulator cannot use it to learn the program’s functionality on super-polynomially many inputs. (Note that learning
information on polynomially many inputs is trivial since the simulator is allowed polynomially many queries.)

9Hyperplane membership testing has also been considered in the context of private predicate encryption schemes
by Shen, Shi, and Waters [86], although our results are incomparable to theirs.

26

This primitive subsumes many of the previously-known results. In the d = 2 case, these
“hyperplanes” are equivalent to point circuits, and our specific construction and assumption reduce
to those in [23]. Furthermore, the technique of Canetti and Dakdouk [25] can be applied to our
primitive as well, so we can obfuscate circuits that output a hidden message when its input is on
the hyperplane (rather than simply a yes or no response).

Construction

The construction is as follows. Let G be a group of order p that satisfies a strengthened version
of the Decisional Diffie-Hellman assumption, which we describe in more detail below. When the
obfuscator is given a hyperplane Ha to obfuscate, where a = (a1, . . . , ad), it chooses a random
generator g U← G and outputs gai for all i. This allows the user to compute whether a given point
x = (x1, . . . , xd) is on the hyperplane by computing

(ga1)x1 × · · · × (gad)xd = g〈a,x〉,

and checking whether this equals G’s identity element (that is, whether 〈a,x〉 = 0). This is a
natural generalization of Canetti’s obfuscator for point circuits described in Section 3.2.1 [23].

Our assumption

We are not able to prove the security of our construction based on the standard Decisional Diffie-
Hellman assumption, which states that gab is indistinguishable from uniform, given g, ga, and gb for
uniformly-chosen exponents a and b. We describe the difficulty with basing our scheme on DDH,
as it motivates and clarifies our new assumption.

For our construction, it is crucial that the adversary not be able to compute any polynomial
relationships in the exponent, not just quadratic ones. For example, given g, ga, gb, and gc,
is it possible to compute gabc? How about ga

3
? Can elements of the form gabc or ga

3
even be

distinguished from uniform? No efficient algorithms for running these computations are known in
groups where DDH is hard, but standard assumptions such as DDH do not appear to rule out the
existence of such algorithms.

In general, we wish to characterize the polynomials ξ for which gξ(a,b,c) is distinguishable from
uniform. Clearly, this is true when ξ is linear, or closely resembles a line. Our new assumption
states that these are the only such polynomials for which gξ(a,b,c) can be distinguished from uniform.

We also consider the effect of choosing exponents from weak entropy distributions. This setting
has been previously considered by Canetti [23], who forms a modified DDH assumption in which
gab is considered to be indistinguishable from uniform given g, ga, and gb, where a is chosen from
the uniform distribution but b is chosen from any distribution of super-logarithmic min-entropy.10

Our assumption expands upon this idea and considers many exponents that are not only chosen
from weak entropy distributions, but which may also be related.

Specifically, given a tuple of group elements 〈ga1 , ga2 , . . . , gad〉 where the ai are chosen from
some joint distribution, we ask for which polynomials ξ is gξ(a1,...,ad) still indistinguishable from
uniform? If ξ is linear, or at ξ looks “close” to linear when restricted to the support of the joint
distribution, then of course gξ(a1,...,ad) can be distinguished from uniform. Our new assumption
states that indistinguishability holds in all other cases.11

10See Assumption 3.20 for a formal statement of Canetti’s strong DDH assumption.
11Codifying what it means for ξ to look “close” to linear is rather delicate. To illustrate, consider the polynomial

ξ(a1, . . . , ad) = ap1 + · · · + apd. This is a very high degree polynomial since p ≈ 2n, but by Fermat’s little theorem
it is equivalent to the linear function a1 + · · · + ad, so our codification would have to identify ξ as close to linear.

27

This new assumption is stronger than the standard DDH assumption, or even the modified
DDH assumption of [23], but we provide evidence of its feasibility by proving that it holds in
the generic group model. Moreover, we believe that resolving the status of this new assumption
would be interesting either way. If it holds, then we obtain an obfuscator for a new and interesting
family of programs. Showing that the assumption does not hold would shed new light on which
computations can be run efficiently in the exponent of DDH groups.

Application to digital signatures

As an example of the proposed primitive’s usefulness, we demonstrate an application of our ob-
fuscator to leakage-resilient one-time signatures. Digital signatures allow a user to sign messages
in such a way that others can verify signatures but are unable to forge them [45, 61, 79]. We
emphasize, though, that the main motivation for this work is the new obfuscator, rather than any
single application.

The signature scheme is constructed as follows: the secret key is a randomly chosen plane in
3-dimensional space, and the public key is the obfuscated membership program. To sign a message
m, find a point on the plane that is related to m. This signature can be verified by running the
public obfuscated program.

This signature scheme remains unforgeable after receiving one message-signature pair. However,
the scheme is trivially forgeable after receiving two pairs, because once an adversary knows two
points on a plane, then she knows that the entire line connecting them is also on the plane.

We can only prove that the scheme satisfies a weaker form of the unforgeability game where
the adversary must choose the message m to be signed before receiving the public key. Techniques
from [56] allow us to transform the weak scheme into an ordinary one-time signature scheme.
Additionally, this one-time signature scheme remains unforgeable even when a function of the
secret key is leaked whose output length is up to half as long as the secret key. For schemes that do
not use general zero-knowledge proofs, this matches the leakage bound of [58] (albeit under much
stronger assumptions).

1.4 Organization

Chapter 2 gives a rigorous definition of obfuscation, and also defines the circuit families that are
used throughout the thesis. Building upon this, Chapter 3 goes into far more detail on the history
of program obfuscation as studied in theoretical cryptography. It is intended to be a thorough,
self-contained survey on the state of the field, except for the new results presented in this work.
However, it may be safely skipped by the uninterested reader.

The three main results of this thesis are described in detail in Chapters 4 through 6. The results
are self-contained, so any chapter can be read without reading the others. Finally, Chapter 7 recaps
the state of the field and describes several open problems.

At the end of the thesis, there is an exhaustive List of Symbols that defines every variable or
symbol used in this work and provides references to more detailed explanations. There are also
Lists of Algorithms and Figures.

Our actual assumption has a distributional flavor instead, while capturing the intuitive ideas discussed here. See
Assumption 6.4 for details.

28

Chapter 2

Definitions

In this chapter, we formalize many of the concepts that were only described at a high level in
Chapter 1. Specifically, we define circuit families and describe three important families that are of
interest throughout this thesis. Then, we rigorously define program obfuscation, discussing some
of the technicalities involved in the functionality and security guarantees.

2.1 Circuit families

Recall from Section 1.2.3 that it is impossible to build an obfuscator that simultaneously garbles
every program. Instead, we can only build restricted obfuscators that are focused on a “family” of
circuits. The next definition codifies this notion.

Definition 2.1. A family of polynomial-size circuits is an infinite sequence of sets C = {Cn}n∈N,
where Cn is a set of circuits with input length n. Furthermore, there exists a polynomial s such
that for every n ∈ N and every circuit C ∈ Cn, the size of circuit C is at most s(n). Although we
do not explicitly bound the output length of circuits in Cn, the size bound means that the output
length is also polynomial in n.

There are three families of circuits that are of special interest in this thesis. The family of point
circuits contains all circuits that accept a single input string and reject all other inputs. This family
can be generalized in two different ways: first, multi-point circuits store a (polynomial-sized) list
of strings to accept, and second, point circuits with multi-bit output reveal a hidden message upon
receiving the accepted string. We describe these families in detail.

Point circuits

Given a string w ∈ {0, 1}n, let Iw be the circuit that stores w in some canonical, explicit manner,
and tests whether its input is equal to w. Hence, Iw has the functionality

Iw(x) =

{
1 if x = w,
0 otherwise.

We form the family of all such circuits. For technical reasons, we also may wish to consider the
circuit I∅ that rejects all inputs.1

1Technically speaking, there are many different circuits that reject all inputs, one for each input length. Formally,
let I∅,n be the circuit with n input bits that rejects all 2n input strings, and whose description reveals so. We abuse
notation and simply write I∅ to denote all of these circuits since the input length is usually clear from context.

29

For a given n ∈ N,
P1
n = {Iw : w ∈ {0, 1}n} ∪ {I∅}

is the set of all point circuits with input length n. We combine all of these sets into the family of
point circuits P1 = {P1

n}n∈N. Also, let P1+ be the subfamily that does not include I∅.

Multi-point circuits

The above concept can be generalized to circuits that accept (polynomially) many input strings.
Given m strings w1, w2, . . . , wm ∈ {0, 1}n, let I{w1,...,wm} be the circuit that stores the list of strings
{w1, . . . , wm} in a readily identifiable manner, and tests whether its input string x is in the list. It
has the functionality

I{w1,...,wm}(x) =

{
1 if x ∈ {w1, . . . , wm},
0 otherwise.

Note that the wi need not be distinct, so the circuit I{w1,...,wm} accepts at most m inputs. Let

Pmn = {I{w1,...,wm} : w1, . . . , wm ∈ {0, 1}n} ∪ {I∅}

be the set of all circuits that accept at most m inputs, and form the family of m-point circuits
Pm = {Pmn }n∈N. Also, let Pm+ be the subfamily that does not include I∅, so circuits in Pm+

accept between 1 and m inputs.

Point circuits with multi-bit output

In this generalization of point circuits, we boost the output power of the circuit. Rather than simply
giving a yes or no response, these circuits store a hidden string that is revealed upon receiving an
accepted input.

Specifically, let I(k,m) be the circuit that stores a key k and message m in a readily identifiable
manner and computes

I(k,m)(x) =

{
m if x = k,
⊥, 1|m| otherwise.

Note that the circuit does not hide the length of the message, since it is revealed for all inputs.
Given a polynomial ρ and an input length n, let

In,ρ = {I(k,m) : k ∈ {0, 1}n,m ∈ {0, 1}ρ(n)}

and form the family of point circuits with multi-bit output I as the collection of the sets In,ρ for all
n ∈ N and all polynomials ρ.

Uses in obfuscation

Looking ahead, there are many obfuscators for the family of point circuits [23, 39, 93] under a
variety of cryptographic assumptions (see Section 3.2.1 for details). Some of the constructions
require that a point is accepted, so they operate over P1+, whereas others allow the circuit that
rejects all inputs so they operate over P1.

Remember that an obfuscator receives a circuit in P1 as input, so its operation does not just
depend on the functionality of P1 but also on the description of its circuitry. For this reason, we
stress that circuits in P1 store the string w in a readily identifiable manner so the obfuscator can
find it. The same is true of the other families.

30

All of the obfuscators for point circuits can be extended to allow multiple accepted strings or
multi-bit output [12, 25, 63, 93]. In fact, sometimes the two generalizations of point circuits can be
combined to form “multi-point circuits with multi-bit output” that store a list of keys and reveal
the message upon receiving any key in the list. We rarely consider this functionality, although
Section 6.5 examines a related one.

Entropy

In this thesis, we often wish to sample a circuit from a given family C. Formally, this requires
a distribution ensemble X = {Xn}, where for each n, Xn is a distribution over Cn. We typically
restrict our attention to distribution ensembles for which it is hard to guess which circuit has been
sampled.

Definition 2.2. A distributional ensemble X over the family C is well-spread if for every polynomial
ρ, all sufficiently large n ∈ N, and every C ∈ C, Pr [Xn = C] < 1

ρ(n) . Equivalently, the min-entropy

H∞(Xn) = − log(max
C∈Cn

Pr [Xn = C])

is a super-logarithmic function of n.

2.2 Obfuscation

In this section, we codify the Barak et al. definition of virtual black-box obfuscation [10] including
an extension to auxiliary input by Goldwasser and Kalai [43].

Informally, an obfuscator O is a compiler that receives a program from a deterministic family of
circuits C as input and outputs another program. The obfuscator has two distinct requirements: it
must preserve the functionality of programs it receives, and it must garble the code of the program
to hide everything except its input-output behavior.

There are many technical decisions to be made when formalizing the functionality and security
guarantees. First of all, in Chapter 1 we discussed obfuscation of computer programs. A computer
program can be formally represented as either a Turing machine or a circuit. Barak et al. consider
both concepts, but in this thesis we focus on the latter. In many situations, the idea of circuit
families encompasses that of Turing machines, although this turns out not to be true for obfuscation
(see Section 3.3.1).

In the rest of this section, we examine more technical subtleties and eventually produce a
definition of obfuscation.

2.2.1 Functionality

We consider an obfuscator O that receives as input some circuit C from a given family C. The
obfuscator produces a garbled circuit O(C) that may look very different from C, but it should have
a “similar” input-output behavior. Ideally, we want the obfuscated circuit to be equivalent to the
original one in the following sense.

Definition 2.3. We say that two deterministic circuits C1 and C2 are functionally equivalent, and
write C1 ≡ C2, if for all inputs x it holds that C1(x) = C2(x).

Intuitively, obfuscation should ensure that O(C) ≡ C. However, this statement does not quite
make sense, because functional equivalence is defined for deterministic circuits but O is a proba-
bilistic algorithm so it may produce different circuits for different choices of its randomness. Thus,

31

O(C) is actually a distribution over many different circuits. There are several ways to extend the
concept of functional equivalence to this setting.

Exact functionality: O(C) is functionally equivalent to C for all settings of O’s random tape.

Almost exact functionality: O(C) is functionally equivalent to C most of the time. Specifically,
O(C; r) ≡ C with overwhelming probability over the choice of the random tape r.

These two guarantees are rather strong because they make global statements about the behavior
of the circuits on all inputs. Since nobody will query a circuit on every possible input anyway, this
requirement seems unnecessarily strong. We could simply require that O(C) and C agree on most
inputs, but not all of them, and hope that nobody finds the “bad” input values.

Sadly, this assumption is unreasonable. Consider the family of point circuits P1. Every circuit
of the form Iw is “close,” in the sense described above, to the circuit I∅ that rejects all inputs; in
fact, Iw and I∅ disagree on just one input. But this special input value w is very important! For
obfuscation to have practical applications like building a secure login program, it is essential that
an obfuscation of Iw accept the string w.

The moral of this story is that the functionality guarantee should hold for every input. However,
there is no need for the guarantee to hold for every choice of the randomness. This yields a new
functionality guarantee.

Approximate functionality: For every input x, the outputs of O(C) and C are equal with
overwhelming probability over O’s randomness.

The new guarantee differs from almost exact functionality in the way that the equivalence property
may fail. Almost exact functionality says that most of the time, O(C) produces a circuit that
behaves exactly like C, although some of the time it may fail. When O fails though, there is no
guarantee on its behavior; it may look arbitrarily different than C. Intuitively, the failure of O is
concentrated on a few bad circuits.

By contrast, approximate functionality allows for a “diffusion” of the errors. Under this guaran-
tee, it might be the case that O(C) is never functionally equivalent to C! That is, for every setting
of the random tape, there might be some input value on which O(C) and C differ. However, these
“bad inputs” change for different choices of the random tape, so there is no single input value that
is consistently bad.

All three of these definitions have their uses, so we make the weakest guarantee2 in the definition
of obfuscation but point out when stronger guarantees actually hold.

2.2.2 Virtual black-box property

Next, we codify the security guarantee provided by Barak et al. called the virtual black-box property.
Remember that the goal of obfuscation is to produce “garbled” circuits. As a baseline, no matter
how garbled the circuit is, one can always run it and observe its input-output behavior. In this
way, the garbled circuit must be at least as useful as an oracle to the circuit.

The virtual black-box property ensures the converse: that the code of an obfuscated program
is no more useful than an oracle. This property is codified using a simulator-based definition.
Consider an adversary A that is given an obfuscated circuit O(C) and attempts to learn a binary3

2Note that the extensions to the virtual black-box definition in Chapter 5 are only well-defined for the stronger
notion of almost exact functionality. See Section 5.2 for details.

3The definition becomes unachievable if we do not impose any restrictions on the predicate. See Section 1.2.2 for
an explanation, Theorem 3.4 for a formal statement, and Chapter 5 for a definition that considers more predicates.

32

predicate about the underlying circuit C. The virtual black-box property states that there must
exist a simulator S that only interacts with an oracle to C but can still can learn the same predicate
that the adversary learns.

When codifying this idea, there is one technical issue to deal with concerning how well the
simulator must emulate the adversary.

Stronger requirement: For every adversary A, require the existence of a simulator S that can
emulate A to within negligible error.

Weaker requirement: For every adversary A and polynomial ρ, require the existence of a simu-
lator S that can emulate A to within 1

ρ error.

The second definition is weaker in two ways. One is obvious: S emulates A to a lower degree of
accuracy. The second is more subtle but equally as important: the running time of S is allowed to
depend on the choice of the polynomial ρ.

On the other hand, the weaker definition is easier to satisfy. In fact, all of the known results
concerning obfuscation have been found with respect to the weaker definition, and the new results
in this work use the weaker definition as well. As a result, we only codify the weaker notion here.4

With this technical issue resolved, we can now formalize obfuscation using our functionality and
security guarantees. For efficiency reasons, there is actually a third requirement that the obfuscator
should not “blow up” the size of a circuit too much when garbling it.

Definition 2.4 (Obfuscation [10, 43]). Let C be a family of polynomial-size circuits. A probabilistic
polynomial time (PPT) algorithm O is an obfuscator for C with dependent auxiliary input if the
following three conditions are met.

1. Approximate functionality : There exists a negligible function ε such that for every n ∈ N,
every circuit C ∈ Cn, and every x ∈ {0, 1}n,

Pr [O(C; r)(x) = C(x)] > 1− ε(n),

where the probability is taken over the randomness r. Almost exact functionality is a stronger
condition that requires O(C; r) ≡ C with overwhelming probability over the random coin
tosses r. Finally, if this probability always equals 1, then O has exact functionality.

2. Polynomial slowdown: There exists a polynomial ξ such that for every n, every circuit C ∈ Cn,
and every possible sequence of coin tosses r, the circuit O(C; r) runs in time at most ξ(n).

3. Virtual black-box : For every PPT adversary A and polynomial ρ, there exists a PPT simulator
S such that for all sufficiently large n, for all C ∈ Cn, for all auxiliary inputs z ∈ {0, 1}∗, and
for all binary predicates π,∣∣Pr [A(O(C), z) = π(C, z)]− Pr [SC(1n, z) = π(C, z)]

∣∣ < 1
ρ(n)

,

where the first probability is taken over the coin tosses of A and O, and the second probability
is taken over the coin tosses of S. Furthermore, we require that the runtime of A and S is
polynomial in the length of their first input.

We define (ordinary) obfuscation, without auxiliary input, in the same manner except that z is
removed from the virtual black-box definition.

4The relationship between the two requirements is explored further in Chapter 3 and Theorem 4.2.

33

We make several remarks on this definition.

1. In the virtual black-box property, Barak et al. [10] show that it suffices to consider only the
predicate π that always equals 1. We make this simplification whenever it is useful.

2. There are two distinct efficiency guarantees. First, the garbling procedure is efficient, and
second, the garbled circuit is efficient.

3. Throughout this thesis, adversaries and simulators are assumed to be non-uniform unless
otherwise stated. In fact, Hoeteck Wee [93] proves that non-uniform simulators are essential
for some constructions. See Theorem 3.2 for details.

4. We only consider obfuscation with dependent auxiliary input in portions of Chapter 3, Section
4.4, and Chapter 5. The rest of this thesis uses the ordinary definition of obfuscation (without
auxiliary input).

5. Instead of passing the auxiliary input as a string, we could equivalently consider it to be a
function of the circuit C.

6. Goldwasser and Kalai [43] define another notion of auxiliary input called independent auxiliary
input, which we explain in Definition 3.12.

7. Some obfuscators operate in the random oracle or common reference string (CRS) models.
In these models, all algorithms (A, S, and O) are given access to the random oracle or CRS.
See Section 5.2.4 for more details.

8. This definition does not, in general, provide a composability guarantee [12, 25, 63].

We consider the last remark in more detail. Suppose we “concatenate” several obfuscated circuits
as shown in Figure 1-4. Ideally, the resulting circuit would also be an obfuscator in the following
sense.

Definition 2.5 (Composable obfuscation by concatenation [12, 25, 63]). A PPT algorithm O is a
t-composable obfuscator for the family C with dependent auxiliary input if functionality and poly-
nomial slowdown hold as before, and the virtual black-box property holds whenever the adversary
and simulator are given up to t circuits in C. Formally, for every PPT adversary A and polynomial
ρ, there exists a PPT simulator S such that for all sufficiently large n, and for all C1, . . . , Ct ∈ Cn,
and for all auxiliary inputs z ∈ {0, 1}∗,∣∣Pr

[
A(O(C1), . . . ,O(Ct), z) = 1

]
− Pr

[
SC1,...,Ct(1n, z) = 1

]∣∣ < 1
ρ(n)

,

where the probabilities are taken over the random coin tosses of A, S, and O. Furthermore, we
require that the runtime of A and S is polynomial in the length of their first input.

We define t-composable obfuscation without auxiliary input in the same manner except that z
is removed from the definition. Additionally, we define t-self-composable obfuscation in the same
manner except that C1 = · · · = Ct.

Unfortunately, the concatenation of obfuscators does not always result in a secure obfuscator.
In fact, in the random oracle model there is an obfuscator that is not even 2-composable [63], and
in the standard model there is a construction that is not ω(log(n))-composable [25]. We explore
this issue, along with many other technical features and shortcomings of this definition, in the next
chapter.

34

Chapter 3

Survey of Prior Works

In this chapter, we pick up where Section 1.2 and Chapter 2 left off and recap the state of program
obfuscation, as it has been studied in theoretical cryptography. The goal of this chapter is not to
provide an encyclopedic list of the known results and their proofs, but rather to provide a broad
overview of the various facets of the problem. The proofs are only sketched or are left out entirely.

First, we describe several definitions of obfuscation in the literature, explaining the advantages
of each. Then, we positive results found under the various definitions. Finally, we study the
definitions on a theoretical level, comparing their strength and examining what is (and is not)
possible under each definition.

Note that there is no new material presented in this chapter, although there are occasional
references to later chapters. This chapter may be safely skipped by the uninterested reader.

3.1 Definitions

In Chapter 2, we describe one definition of obfuscation [10, 43]. It contains three separate re-
quirements that provide functionality, efficiency, and security guarantees. The functionality and
efficiency properties are relatively straightforward, and widely adopted.

The same cannot be said for the security guarantee, however. In fact, there are at least ten
different security guarantees in the literature that codify the intuitive concept of “garbling” a circuit
to be unintelligible. Furthermore, most of these definitions can be tweaked to provide:

• Strong or weak simulation, as described in Section 2.2.

• Composability under concatenation, as described in Definition 2.5.

• Dependent, independent, or no auxiliary input.

The result is a rather chaotic “zoo” of definitions with differing levels of strength and applicability.
Most of the definitions are shown in Figure 3-1. One of the major goals of this chapter is to see
how the security guarantees relate. In this section, we define most of the security guarantees and
describe the “simple” connections between them. More complicated relationships are deferred to
Section 3.3.

3.1.1 Virtual black-box

The first security guarantee in the literature (and the one used in subsequent chapters of this work)
was provided by Barak et al. [10]. Their requirement, called the virtual black-box property, states

35

Tamper-proof Tamper-evident

VBB, poly comp VBB, aux input Average-case security

Distributional indist Virtual black-box Oracle indist

VGB, aux input Virtual gray-box

Indistinguishability VBB, unbounded simulator Best-possible

const

poly

Figure 3-1: Comparison of several definitions of obfuscation. Unless otherwise noted, these def-
initions do not consider auxiliary input or composability. Solid lines indicate implications, with
labels indicating the maximum level of composability under which the implication is known to hold.
Dotted lines indicate separations under reasonable cryptographic assumptions.

that it is hard to learn anything from an obfuscated circuit that isn’t immediately obvious from
its input-output behavior. This idea is codified using a simulator-based definition, which says that
for every non-black-box adversary that learns a predicate about an obfuscated circuit, there exists
a black-box simulator that can learn the same predicate.

Barak et al. [10] actually provide two such definitions, one for Turing machines and one for
circuits. In this section, we focus on the circuit-based definition. The Turing machine definition is
discussed in Section 3.3.1.

As described in Section 2.2.2, there is one degree of freedom in codifying this property. Either
there should be one simulator that emulates the adversary to within a negligible error, or there
should be a sequence of simulators that emulate the adversary with smaller error terms (but at
the expense of increasing the running time of the simulator). The weaker requirement was already
formalized in 2.4, so it remains to define the stronger requirement.

Definition 3.1 (Strong1 virtual black-box property). For every PPT adversary A, there exists a
negligible function ε and a PPT simulator S such that for all n ∈ N and C ∈ Cn,∣∣Pr [A(O(C)) = 1]− Pr [SC(1n) = 1]

∣∣ < ε(n),

where the first probability is taken over the coin tosses of A and O, and the second probability is
taken over the coin tosses of S.

1Historically, this was the original definition of Barak et al. [10]. As a result, in many works, the term “virtual
black-box property” is used to denote this property, whereas the property in Definition 2.4 is explicitly called the
“weak virtual black-box property.” Because all of the known constructions use the weaker variant, we take the
opposite view, and default to the weaker definition unless the adjective strong is explicitly mentioned.

36

A quick note on jargon: we differentiate here between security properties and definitions of
obfuscation. For instance, the “virtual black-box property” is one of three requirements in the
definition of “virtual black-box obfuscation,” along with functionality and efficiency requirements.
Many of the other definitions in the literature use the same functionality and efficiency requirements
as the one in Definition 2.4, so for the sake of brevity, we do not repeat them here. Instead, we define
new security properties with the implicit understanding that each one leads to a new definition of
obfuscation. For example, combining Definition 3.1 with the functionality and polynomial slowdown
requirements yields a “strong virtual black-box obfuscator” O for family C.

Analysis of the virtual black-box property

We make a few technical observations about the definition. Recall that we assume that adversaries
and simulators are non-uniform throughout this work. This convention seems crucial to achieving
virtual black-box obfuscation for certain families.

Specifically, virtual black-box obfuscation is not possible for the family of point circuits P1 with
a simulator that is both uniform and only uses the adversary in a “black-box manner,” meaning
that S is allowed to emulate executions of A but cannot use more sophisticated aspects of the
adversary’s behavior.

Theorem 3.2. Uniformly black-box obfuscators for the family P1 do not exist [93, Prop 5.1].

While not all of the proofs of security for known constructions use a black-box simulator [23],
some of them do [63, 93], and thus non-uniform simulators are required for these constructions.

One useful metric that we will use to compare the various security definitions is to consider the
circuits that are trivially obfuscatable under each requirement, in the sense that they technically
satisfy the definition but do not seem to provide any reasonable security goal. As described in
Section 1.2.4, the “trivially obfuscatable” circuits for the (strong or weak) virtual black-box property
are learnable ones. This concept was formalized in [63].

Definition 3.3. A family of circuits C is called exactly learnable if there exists a (possibly non-
uniform) PPT oracle circuit L such that for all C ∈ C, LC outputs a polynomial sized circuit D
that is functionally equivalent to C.

It is simple to construct an obfuscator O for a learnable family C. The obfuscator receives a
circuit C ∈ C, runs LC to produce a circuit D, and outputs D. This is an obfuscation because
any simulator SC can obtain D as well and thus emulate the adversary perfectly. However, this
construction is uninteresting because it does not attempt to provide any security.

At this stage, we can also formalize the statement in Section 1.2.2 that obfuscation becomes
unachievable if we do not restrict the output length of A and S.

Theorem 3.4. A family of circuits C is obfuscatable against general adversaries (whose output
length is unrestricted) if and only if C is exactly learnable [93, Proposition 5.2].

Proof sketch. For learnable families, the simulator described above suffices even against general
adversaries. Conversely, if C is obfuscatable against general adversaries, the simulator S for the
“dummy adversary” that outputs its input can be used to construct a learner for C.

This theorem justifies our use of binary predicates in the virtual black-box property. We follow
this convention in most of the other security properties.

37

Virtual gray-box

This definition weakens the virtual black-box property by giving the simulator more power. Specif-
ically, the simulator is allowed unlimited running time, with the constraint that it must still make
at most polynomially many queries to its oracle. We formalize this idea for the weaker simulation
requirement; the stronger variant follows analogously.

Definition 3.5 (Virtual gray-box property [12]). For every PPT adversary A and polynomial ρ,
there exists a (possibly inefficient) simulator S and a polynomial q such that for all sufficiently
large n and any C ∈ Cn, ∣∣Pr [A(O(C)) = 1]− Pr [SC(1n) = 1]

∣∣ < 1
ρ(n)

,

where S is limited to q(n) oracle queries.

Because this definition is weaker than the virtual black-box property, it allows more “trivially
obfuscatable” circuit families: any family that is exactly learnable by a simulator with unbounded
running time but only polynomially-many queries. This includes many cryptographic functional-
ities. On the other hand, there are many families that do not have this property, such as point
circuits and their extensions, for which the virtual gray-box property is meaningful.

Best-possible obfuscation

The virtual gray-box definition can be weakened further by removing the restraint on the number
of oracle queries. We call this notion the “virtual black-box property with unbounded simulators.”

Somewhat surprisingly, this definition turns out to be equivalent to two other definitions in the
literature that are not simulator based at all! They approach the question of determining when a
circuit is “sufficiently garbled” in a completely different way.

First, the indistinguishability property says that when O is given functionally equivalent circuits,
it must produce indistinguishable outputs.

Definition 3.6 (Indistinguishability [10]). For any pair of circuits C1, C2 ∈ C that are function-
ally equivalent and have the same size, the distributions O(C1) and O(C2) are computationally
indistinguishable. These distributions are taken over the randomness of O.

Computational indistinguishability is a commonly-used idea that we will encounter much more
later in this chapter, so we take the time to define it rigorously here.

Definition 3.7 (Computational indistinguishability). Let X = {Xn}n∈N and Y = {Yn}n∈N be two
ensembles of probability distributions. We say that X and Y are computationally indistinguishable,
and write X ≈c Y, if for any PPT distinguisher D, the difference

|Pr [x← Xn : D(x) = 1]− Pr [y ← Yn : D(y) = 1]|

is a negligible function of n.

A related definition, provided by Goldwasser and Rothblum [46], has an obfuscator choose the
most garbled version of its input circuit. Specifically, the obfuscation of a circuit C should be some
circuit D with the property that anything that can be learned from D can also be learned from
any circuit that is functionally equivalent to C. In other words, D is the most unintelligible circuit
that is functionally equivalent to C. A formal definition follows.

38

Definition 3.8 (Best-possible [46]). For every PPT learner L, there exists a simulator S such that
for sufficiently large n and for any pair of circuits C1, C2 ∈ C that are functionally equivalent and
have the same size, the distributions L(O(C1)) and S(C2) are computationally indistinguishable.

Note that the output length of the learner is not restricted. In fact, it suffices to consider the
“dummy learner” that simply outputs its input.

At a first glance, the (weak) virtual black-box property with unbounded simulators seems to
be a substantial weakening of the original Barak et al. definition, the indistinguishability property
does not appear to make any security requirement at all, and the best-possible guarantee seems
very powerful. As a result, the next theorem is rather counter-intuitive.

Theorem 3.9. Virtual black-box obfuscation with unbounded simulators, indistinguishable obfus-
cation, and best-possible obfuscation are equivalent.

The equivalence between the first two definitions is found in [12, Proposition 3.1], and the
equivalence between the last two definitions is found in [46, Propositions 3.4 and 3.5].

3.1.2 Auxiliary input and composability

In the prior section, the virtual black-box property was weakened by giving the simulator extra
power. In this section, we strengthen the virtual black-box property by giving benefits to the
adversary.

Auxiliary input

In the real world, an adversary does not always attack a cryptographic scheme “in a vacuum.”
Often, the adversary possesses extra information that aids in her attack. Goldwasser and Kalai
[43] extend the definition of obfuscation to reflect this by adding auxiliary input. Informally, their
extension states that while auxiliary input may allow the adversary to learn more features of an
obfuscated circuit, it still does not help her to do so in a non-black-box manner.

In fact, Goldwasser and Kalai form two definitions of obfuscation with respect to dependent
and independent auxiliary input. The main difference between the two is that dependent auxiliary
information can depend on the circuit being obfuscated, whereas independent auxiliary input is
only allowed to depend on the circuit family being obfuscated (and not the precise circuit chosen).

The virtual black-box property with respect to dependent auxiliary input was already given in
Definition 2.4, but we replicate it here for clarity.

Definition 3.10. For every PPT adversary A and polynomial ρ, there exists a PPT simulator S
such that for all sufficiently large n, for all C ∈ Cn, and for all auxiliary inputs z ∈ {0, 1}∗,∣∣Pr [A(O(C), z) = 1]− Pr [SC(1n, z) = 1]

∣∣ < 1
ρ(n)

,

where the probabilities are taken over the randomness of A, S, and O. Furthermore, we require
that the runtime of A and S is polynomial in the length of their first input.

Similarly, we can add dependent auxiliary input to the strong virtual black-box property and
the (strong or weak) virtual gray-box property. The latter is unnecessary, however.

Theorem 3.11. Every virtual gray-box obfuscator is also an obfuscator w.r.t. dependent auxiliary
input, whether both definitions use the strong or weak simulation requirement [12, Proposition A.3].

39

Proof sketch. The simulator has unbounded running time, so it can compute the best possible
auxiliary input on its own.

Independent auxiliary input is weaker in two ways: first, we eliminate the “for all” property on
circuits and consider C to be chosen randomly from Cn, and second, the auxiliary input z must be
independent of this choice.

Definition 3.12 (Virtual black-box property w.r.t. independent auxiliary input [43]). For every
PPT adversary A and polynomial ρ, there exists a PPT simulator S such that for every polynomial
ξ, for all sufficiently large n, and for all auxiliary inputs z ∈ {0, 1}ξ(n),∣∣Pr [A(O(C), z) = 1]− Pr [SC(1n, z) = 1]

∣∣ < 1
ρ(n)

,

where the probabilities are taken over the choice of C U← Cn and the randomness of A, S, and O.

Removing the “for all” property from the definition weakens it considerably, to the extent that
it is weaker than the original virtual black-box property.

Theorem 3.13. Every virtual black-box obfuscator is also an obfuscator w.r.t. independent auxiliary
input, whether both definitions use the strong or weak simulation requirement [43, Theorem 14].

As a result, we do not consider independent auxiliary input later in this thesis.

Composability

Another way to strengthen the definition is to require that it hold even when the adversary receives
many obfuscated programs and the simulator receives many oracles. This scenario is referred to as
“composability by concatenation.” There are two forms of composability, depending on whether
the adversary receives many obfuscations of the same circuit or of different circuits. An obfuscator
that can withstand the first notion is called self-composable, and one that can withstand the second
notion is called fully composable. These two notions are codified in Definition 2.5.

Composability is not, in general, implied by obfuscation alone, so it must be considered on
a case-by-case basis for each construction. Doing so is worth the effort because a composable
obfuscator typically allows the construction of an obfuscator for a stronger primitive. For instance,
we will later show constructions for:

• An obfuscator for point circuits with multi-bit output I, based on a sufficiently composable
obfuscator for point circuits P1 (see Section 3.2.1)

• A similar extension for the family of hyperplane membership testing circuits (see Section 6.5)

• A CPA secure encryption scheme that tolerates weak keys, based on a sufficiently self-
composable obfuscator for I (see Section 4.3.2)

Non-malleability

The virtual black-box definition can be strengthened in yet another way to provide non-malleability
guarantees. These definitions allow the adversary and simulator to output more than one bit,
but only in a restricted manner to avoid the impossibility result in Theorem 3.4. Crafting the
restrictions appropriately results in two definitions of non-malleable obfuscation, one that prevents
an obfuscated circuit from being tampered, and another one that detects tampering after it occurs.

40

These definitions can be found in Section 5.2, and their relationship to each other and the virtual
black-box property (as diagrammed in Figure 3-1) is shown in Theorem 5.10. We do not consider
non-malleable obfuscation further in this chapter.

3.1.3 Average-case obfuscation

In this section, we consider a new security requirement called average-case security that is incom-
parable in strength to the virtual black-box property. On the one hand, average-case security is
stronger in the sense that it allows for general adversaries and simulators with unlimited input
length. On the other hand, average-case security is weaker in the sense that (as the name suggests)
the security property is only required to hold for a random circuit in the family.

As a result, this definition is best-suited for cryptographic applications in which drawing a circuit
at random is meaningful. In fact, Hohenberger et al. [55] show that this definition is better-suited
to many cryptographic tasks than the virtual black-box one because it preserves most security
properties in the following sense:

“If a cryptographic scheme is secure when the adversary is given black-box access to a
program, then it remains secure when the adversary is given the obfuscated program.”

This guarantee comes at the price of only achieving security for a random instance of the problem.
In order to deal with cryptographic functionalities, this definition also allows the family of

circuits C under consideration to be probabilistic, whereas the other definitions only consider de-
terministic circuits. This change necessitates a review of the functionality property. Note that
(almost) exact functionality no longer makes sense in this setting because functional equivalence
is only well-defined for deterministic circuits. Even approximate functionality no longer suffices in
this setting.

Instead, we define a new functionality property that states “with overwhelming probability,
O(C) behaves almost identically to C on all inputs” [46]. Many cryptographic applications only
require this level of functionality. We codify the “almost” requirement using a statistical distance
bound, but there are reasonable alternatives, and the precise decision does not affect the results we
achieve [53].

Definition 3.14 (Average-case obfuscation [53, 55]). A PPT algorithm O is an average-case secure
obfuscator for the family C with auxiliary input if the following three conditions are met.

1. Functionality : There exists a negligible function ε such that for all n ∈ N and C ∈ Cn,

Pr [∃x ∈ {0, 1}n : ∆(O(C)(x), C(x)) ≥ ε(n)] ≤ ε(n),

where ∆ denotes the statistical difference between the two distributions. The probability
holds over the randomness of O.

2. Polynomial slowdown: Same as before.

3. Average-case security : For every PPT adversary A, there exists a negligible function ε and a
PPT simulator S such that for every PPT distinguisher D, every n ∈ N, and every auxiliary
input z ∈ {0, 1}∗,∣∣Pr [DC(A(O(C), z), z) = 1]− Pr [DC(SC(1n, z), z) = 1]

∣∣ < ε(n),

where the probabilities are taken over the random choice of C U← Cn and the randomness of
A, D, O, and S.

41

We define (ordinary) average-case secure obfuscation, without auxiliary input, in the same manner
except that z is removed from the average-case security property.

We conclude this section with a discussion on the meaningfulness of average-case security.
Recall from Theorem 3.4 that virtual black-box obfuscation of deterministic families C against
general adversaries is only possible for learnable families. The proof of the theorem carries over
to average-case security, but the statement weakens to consider approximately learnable families.
Specifically, we can only obfuscate C under the average-case definition if they have the following
property: given polynomial time and oracle access to a circuit C U← C, one can construct a circuit
D that computes C except on a small, hard to find subset of the inputs.

This is a very restrictive property on families of deterministic circuits. We can obfuscate point
circuits because they are approximately learnable by the circuit I∅ that rejects all inputs. How-
ever, most deterministic circuits (in particular, deterministic cryptographic primitives) violate this
property.

Theorem 3.15. It is impossible to obfuscate a pseudorandom function ensemble in the average-case
sense [53, Theorem 4.6].

This issue (largely) disappears when we consider probabilistic families.

3.2 Positive results

In this section, we describe the obfuscators that have been constructed in the literature under the
virtual black-box and average-case security definitions.

3.2.1 Point circuits and generalizations

Under the virtual black-box definition, the only known constructions are for point circuits P1 and
their generalizations to multiple inputs, multi-bit output, and hyperplane membership testing. We
describe the constructions for the first three families here, and defer hyperplane membership testing
to Chapter 6.

There are several constructions of obfuscators based on different cryptographic assumptions
or models. Sadly, none of the constructions use “standard” cryptographic assumptions like the
existence of one-way functions, or even number-theoretic assumptions like the hardness of factoring.
We will see later that this caveat is inherent to the problem of virtual black-box obfuscation.

Example: Newspaper puzzles

Before constructing an obfuscator for the family of point circuits, it is reasonable to determine the
value of such a construction. In Section 1.2.4, we described one application of such an obfuscator
to the construction of secure login programs. Here, we provide another motivating example due
to [23]. Suppose Bob publishes a puzzle in a newspaper, and he wants to attach a short string s
that can be used to verify a solution x to the puzzle. However, s should not provide any benefit in
solving the puzzle.

One possible solution is to use a cryptographic hash function (say, SHA-1), and have Bob publish
the hash of the solution to the puzzle. Näıvely, this appears sufficient, but a careful analysis shows
that it fails to provide the required security for two reasons:

42

1. Many cryptographic hash functions only give a security guarantee (against inversion or
collision-resistance) when its input is chosen uniformly at random. However, the solution
to the puzzle may have a lot of structure, in which case the security guarantee may not hold.

2. Even if the puzzle solution has little structure, using a deterministic hash function is in-
sufficient because it always reveals some information about the solution. That is, for any
deterministic function f , f(x) itself is some information on x.

Hence, we desire a randomized hash function h that hides all information about its input x. More
precisely, an adversary should be able to learn as much information about x with h(x; r) as without
it (where r denotes the randomness of h). This guarantee should hold whenever x is chosen from a
distribution with sufficient min-entropy (in the sense of Definition 2.2). Functions of this type are
called perfectly one-way (POW) functions, and are constructed in [23, 25, 28].2

Two new definitions

It turns out that this primitive is very similar to virtual black-box obfuscations of point circuits
P1. At a first glance, it is difficult to see the connection, because the guarantee on POWs is
distributional in nature, whereas the virtual black-box property must hold for all x. Canetti [23]
shows that these definitions are in fact equivalent when viewing distributions of super-logarithmic
min-entropy. Such distributions are called “well-spread,” and are defined in Definition 2.2.

Definition 3.16 (Distributional indistinguishability [23]). For any PPT adversary A with binary
output and for any well-spread distribution ensemble X in which Xn takes values in {0, 1}n,

〈w,A(O(Iw; r))〉 ≈c 〈w′, A(O(Iw; r))〉

where w and w′ are two independent samples from Xn and r is the randomness of O.

Hence, obfuscation of point circuits yields a perfectly one-way hash function as well, but only
in the strongest setting in which the hash function must tolerate any well-spread distribution. The
general definition of perfectly one-way hash functions, on the other hand, is more flexible and
allows functions that can tolerate different min-entropy bounds. This is useful because POWs for
weaker bounds can be constructed under standard assumptions. To avoid getting sidetracked from
obfuscation here, we refer the reader to [23, 28] for more on perfectly one-way hash functions.

Returning to obfuscation, the proof that the virtual black-box property is equivalent to distri-
butional indistinguishability goes through an intermediate definition.

Definition 3.17 (Oracle indistinguishability [23]). For any PPT adversary A and polynomial ρ,
there exists a polynomial size family of sets {Ln}n∈N such that for all sufficiently large n and for
all w,w′ /∈ Ln,

|Pr[A(O(Iw)) = 1]− Pr[A(O(Iw′)) = 1]| < 1
ρ(n)

.

The preceding two definitions are incredibly useful. On a theoretical level, they provide much
more intuition about the security guarantee provided by obfuscation of point circuits. Suppose
we use such an obfuscator to construct a secure login program, as described in Section 1.2.4.
Then, distributional indistinguishability says that any adversary without the password is unable to
break the login program as long as the password is chosen from a well-spread distribution. Oracle

2POWs are constructed in [23] from cryptographic hash functions, and in [28] from universal hashing or pseudo-
random functions. We refer the reader to these works for a full treatment of the constructions.

43

indistinguishability says that the best attack that the adversary can hope to mount is a dictionary
attack. Specifically, for any adversary A, there is some list of guesses such that A effectively queries
the login program on everything in this list, and fails to learn anything about the real password as
long as it is not on the list.

On a practical level, these definitions are often easier to work with than the virtual black-box
property in security reductions. Most of the proofs of security for constructions in this chapter, as
well as the rest of this thesis, go through these intermediate definitions (see Theorems 4.2, 4.14,
5.20, and 6.11).

Theorem 3.18. The virtual black-box property for point circuits is equivalent to the distributional
indistinguishability and oracle indistinguishability properties [23, Theorem 4].

Proof. We outline the ideas behind the three implications.

OI ⇒ VBB: This is the easiest direction. Oracle indistinguishability says that for every adversary
A, there is an associated list of passwords such that A doesn’t do anything more clever than
querying all of the passwords in this list. Then, we build a simulator that has this list of
passwords hard-coded (by non-uniformity) and simply makes all the queries.

VBB ⇒ DI: Suppose that distributional indistinguishability is false, which means that there is
an adversary A such that Pr [A(O(Iw)) = 1] varies non-negligibly for different values of w.
Suppose we “rank” all of the passwords by the likelihood that A outputs 1 when receiving an
obfuscated circuit with this password. That is, let γ(w) = Pr [A(O(Iw)) = 1] and consider
an ordered ranking of strings w by their associated γ(w). Then, A can distinguish super-
polynomially many passwords at the “top” of this list from those at the “bottom.” On the
other hand, a simulator that only receives oracle access to a login program has no hope of
doing so (it can only implement a dictionary attack).

DI ⇒ OI: Suppose oracle indistinguishability is false, so there exists an adversary A and poly-
nomial ρ such that for every polynomial-sized list Ln, there always exist two passwords
w,w′ /∈ Ln that A can distinguish. Then, we construct a well-spread distribution of pass-
words iteratively, such that A can make a non-trivial statement about obfuscated circuits
hiding these passwords. Start with Ln = ∅ and find two passwords that A can distinguish.
Add these two passwords to Ln, and find another pair of passwords that A can distinguish.
This process can be continued for a very long time to build a super-polynomial size set Ln of
passwords that A can distinguish. (The set is not limited to polynomial size because for every
potential bound ρ, oracle indistinguishability is still false so we can still add another pair of
passwords to the set). As before, order the passwords w ∈ Ln by γ(w) = Pr [A(O(Iw)) = 1].
Finally, the uniform distribution over the passwords in Ln is well-spread (because the set is
super-polynomial in size), and A can distinguish passwords at the “top” of the list from those
at the “bottom,” using the same argument as before.

Distributional indistinguishability and oracle indistinguishability can be extended to consider
point circuits with multi-bit output I. We do not do so here, but refer the interested reader
to Section 4.2.3. Extending distributional indistinguishability to encompass composability is also
straightforward.

Definition 3.19 (t-Distributional indistinguishability [12]). For any PPT adversary A with binary
output and any well-spread distribution ensemble X = {X 1, . . . ,X t} over t-tuples of points in
{0, 1}n such that the projection to each coordinate X i is well-spread,

〈O(Iw1), . . . ,O(Iwt)〉 ≈c 〈O(Iw′1), . . . ,O(Iw′t)〉

44

where the distributions depend on the choices of (w1, . . . , wt)← X , (w′1, . . . , w
′
t)

U← ({0, 1}n)t, and
the randomness of O.

Note that we have cheated here by changing the structure from Definition 3.16 in two ways:

• There is no longer an adversary in the definition. Effectively, there is a “dummy adversary”
that feeds its input straight to the distinguisher.

• The distributions on the two sides of the indistinguishability guarantee have different distri-
butions. Essentially, the definition now says that X is “indistinguishable” from the uniform
distribution, when given obfuscated programs from these distributions.

It can be shown though that these changes do not affect the strength of the definition. In particular,
for t = 1 this is equivalent to Definition 3.16 [12].

Adding a composability guarantee to oracle indistinguishability is significantly more compli-
cated. We do not do so here, but note that Lemma 6.13 does so in a special setting.

The (g, gw) construction

Armed with the two new definitions, we can now build an obfuscator for point circuits and prove
its security. This construction is due to Canetti [23], and it requires a group G for which computing
discrete logarithms is hard.

Input: string w ∈ {0, 1}n

1: choose a generator g U← G uniformly at random
2: compute h← gw, where w is viewed as an element of G in some canonical way

Output: circuit that has g, h hardwired, and on input a string x, accepts if gx = h

Note that the circuit constructed by this algorithm accepts exactly one input value, so it belongs
to the family P1+. The construction is remarkably simple (and efficient), but proving its security
is much more difficult and requires that G satisfy a strong variant of the Decisional Diffie-Hellman
assumption.

Assumption 3.20 (Strong DDH assumption). Let n be a security parameter and let p = 2q + 1
be a randomly chosen n-bit safe prime. Consider the group Q of quadratic residues in F∗p. For

any well-spread distribution ensemble {Xq} where the domain of Xq is Fq, for g U← Q, a ← Xq,

b, c
U← Fq, the ensembles 〈g, ga, gb, gab〉 and 〈g, ga, gb, gc〉 are computationally indistinguishable.

In this assumption, Fp = Z
pZ denotes the finite field of order p. Also, remember that a “well-

spread ensemble” means that the min-entropy H∞(Xq) is a super-logarithmic function of n (see
Definition 2.2 for a formal explanation).

Theorem 3.21. The construction presented above, when used with the group G = Q, is a virtual
black-box obfuscator for the family of point circuits P1+ under Assumption 3.20 [23].

Proof sketch. It suffices to prove that the construction satisfies distributional indistinguishability.
Suppose it does not. By the arguments in the proof of Theorem 3.18, there exists an adversary A
such that γ(w) = Pr [A(O(Iw)) = 1] varies non-trivially for super-polynomially many values of w.

Note that A effectively receives g and gw as input, so γ(w) = Pr [A(g, gw) = 1]. In essence, A is
able to distinguish some exponents from others. Note that our construction is “re-randomizable”
in the sense that given (g, gw), it is easy to form many more tuples of the form (ḡ, ḡa) for ḡ U← Q.

45

Hence, γ(w) can be estimated by running A(g, gw) many times with fresh randomness and using a
Chernoff bound.

We use this idea to form an adversary A′(g, ga, gb, gc) that breaks the strong DDH assumption
(i.e., it can distinguish whether c = ab or c is chosen uniformly at random) when a is one of the
exponents that A can distinguish. The adversary A′ can run A(g, ga) and A(gb, gc) many times to
estimate γ(a) and γ(cb). If c = ab, then these estimates should be close in value, but if c is chosen
uniformly at random, then γ(cb) will be noticeably distinct from γ(a) for a noticeable fraction of
the choices of c. Thus, A′ breaks the strong DDH assumption, as required.

Extensions due to composability

If the above obfuscator O is sufficiently composable, we can use it to build obfuscators for more
complicated functionalities such as multi-point circuits Pt and point circuits with multi-bit output
I.3 This begs the question: is the above construction composable? We defer treatment of this issue
to Section 3.3.3. For now, we assume that the obfuscator is sufficiently composable for our needs.

First, if O is t-composable, then it can be used to build an obfuscator O′ for the family of
t-point circuits Pt using the simple concatenation construction diagrammed in Figure 1-4. This
is straightforward, and intuitively follows because a simulator S with oracle access to t different
single-point circuits Iw1 , . . ., Iwt has essentially the same power as a simulator S′ with oracle to
one t-point circuit I{w1,...,wt}. The only technical issue concerns repetition of passwords: S can
count the number of times a password appears in the list {w1, . . . , wt}, but S′ cannot. The fix for
this issue is simple: the obfuscator O′(I{w1,...,wt}) replaces any repetitions with uniformly random
strings. The resulting construction is secure, but at the expense of achieving only approximate
functionality. See Section 5.4 for a more thorough analysis.

Second, if O is (`+ 1)-composable, we can use it to build an obfuscator for the family of point
circuits with `-bit output, as shown below.

Input: key k ∈ {0, 1}n and message m ∈ {0, 1}`
1: construct circuit D0 = O(Ik)
2: for i = 1 to ` do
3: if mi = 1 then
4: form the circuit Di = O(Ik)
5: else
6: form the circuit Di = O(Ik′), where k′ U← {0, 1}n
7: end if
8: end for

Output: circuit that behaves as follows on input x: if D0(x) rejects, then output ⊥, else compute
yi = Di(x) for i ∈ {1, . . . , `} and output the string y

It is simple to check that the circuit constructed by this construction has the functionality
of I(k,m). The circuit D0 is used to determine whether the input is the correct key. If so, then
subsequent circuits D1 through D` reveal the message bit by bit.

Checking that the security guarantee holds is more complicated.

Theorem 3.22. Suppose O is a t(`+1)-composable virtual black-box obfuscator for P1. Then, this
construction yields a t-composable virtual black-box obfuscator for point circuits with `-bit output
[25]. These connections hold for virtual gray-box obfuscation as well [12].

3Another use of composability is discussed in Section 6.5.

46

The first two statements are proved in [25, Theorem 1], and the last one is in [12, Proposition
8.2]. We note that both of the constructions in this section are generic in the sense that they can
be based on any sufficiently composable obfuscator for point functions, not just the (g, gw) one that
we built above. Hence, we can use them in the next two constructions of point circuits as well.

Random oracle model

In this section, we present an obfuscator for the family of point circuits that operates in the random
oracle model. In this model, all algorithms have access to a common oracle R : {0, 1}n → {0, 1}2n
that computes a random function. This enables a simple obfuscation due to Lynn et al. [63].

Input: string w ∈ {0, 1}n
1: find t = R(w)

Output: the circuit Υt that has t hardwired, and on input a string x, accepts if R(x) = t

This construction can easily be modified to accommodate the circuit I∅ that rejects all inputs:
just choose t ∈ {0, 1}2n uniformly at random. As a result, we claim that this construction is
an obfuscator for the family P1. The proof of security constructs a simulator that emulates an
execution of A and monitors its oracle queries.

Theorem 3.23. The above construction is a strong virtual black-box obfuscator for the family of
point circuits P1 in the random oracle model [63, Lemma 6].4

Proof sketch. Approximate functionality follows from the fact that R is length-increasing, so col-
lisions are statistically unlikely. To show the virtual black-box property, let AR be an adversary,
and we need to show the existence of a simulator SR,Iw that behaves like A does. The simulator
chooses a fake target t′ U← {0, 1}2n and builds a “fake” obfuscated circuit Υt′ . Then, it emulates
an execution of AR(Υt). When A makes an oracle query q, the simulator checks if q is the correct
password by feeding it into its oracle for Iw. There are two cases.

• If q = w, then S aborts this execution of the adversary, forms a real obfuscation of Iw (which
it can do now because it has learned w), and restarts A on the new circuit.

• Otherwise, S continues the current emulation of A. In particular, it responds to A’s oracle
query honestly.

In this way, S emulates the behavior of A perfectly, thus achieving the strong variant of security.

This argument also works against generic adversaries whose output length is unrestricted.
Hence, Theorem 3.4 does not hold generally in the random oracle model. (We will re-visit this
issue shortly.)

A similar argument shows that this construction is t-composable for any t = poly(n). Thus,
we can use the generic transformation above to form an obfuscator for the family of multi-point
circuits in the random oracle model.

We could also use the generic transformation to get an obfuscator for I, but there is an easier
way. Suppose there are two random oracles R1 : {0, 1}2n → {0, 1}2n and R2 : {0, 1}2n → {0, 1}`(n).
This can easily be constructed from a single random oracle using standard techniques. Then, we
can obfuscate the family I using the following construction.

Input: key k ∈ {0, 1}n and message m ∈ {0, 1}`(n)

1: choose a random string r U← {0, 1}n

4In Chapter 5, we show that this construction is non-malleable as well (see Theorems 5.11 and 5.16).

47

2: let a = R1(k ◦ r), b = R2(k ◦ r), and c = b⊕m
Output: circuit that stores r, a, c and on input x, computes a′ = R1(x ◦ r) and b′ = R2(x ◦ r), if

a′ = a then it outputs b′ ◦ c, otherwise it outputs ⊥
The proof of security for this construction is similar to the one above [63, Theorem 7].

A strongly one-way permutation

In this section, we present another obfuscator for the family of point circuits due to Wee [93]. It is
based on the existence of one-way permutations that are extremely hard to invert.

Assumption 3.24 (Strongly one-way permutations [93]). There exists an efficiently computable
family of permutations {πn : {0, 1}n → {0, 1}n}n∈N such that for every PPT adversary A, there
exists a polynomial ξ such that

Pr [x← {0, 1}n : A(πn(x)) = x] ≤ ξ(n)
2n

.

In words, this assumption states that any efficient adversary can only invert the one-way per-
mutation πn on a polynomial number of inputs. A permutation of this form can be used to develop
a function hn : {0, 1}n × {0, 1}3n2 → {0, 1}3n2+3n as follows:

hn(w; τ1, τ2, . . . , τ3n) = (τ1, τ2, . . . , τ3n, 〈w, τ1〉, 〈π(w), τ2〉, . . . , 〈π3n−1(w), τ3n〉).

In words, this function computes several randomly-chosen hardcore predicates on different (but
related) strings. This function is the basis for Wee’s obfuscator.

Input: string w ∈ {0, 1}n

1: choose random strings τ1, . . . , τ3n
U← {0, 1}n

2: compute u = hn(w; τ1, τ2, . . . , τ3n)
Output: circuit that stores u and on input x, accepts iff h(x; τ1, . . . , τ3n) = u

Note that the string u includes τ1, τ2, . . . , τ3n, so the check in the final step can be performed.
Wee proves that this construction is a virtual black-box obfuscator [93, Proposition 3.3] without
going through intermediate definitions like Canetti [23] does.

There are a few ways to strengthen this result. The assumption can be slightly weakened to
consider “strongly one-way permutation ensembles,” which are collections of functions for which
a randomly chosen one satisfies Assumption 3.24 with overwhelming probability. Also, the con-
struction can be modified to allow multi-bit output. To do so, we form a longer function hn,` :
{0, 1}n × {0, 1}3n2+n → {0, 1}3n2+6n+` as follows:

hn,`(k; τ1, τ2, . . . , τ3n, τ3n+1) =

(τ1, . . . , τ3n+1, 〈k, τ1〉, 〈π(k), τ2〉, . . . , 〈π3n−1(k), τ3n〉, 〈π3n(k), τ3n+1〉, . . . , 〈π3n+`−1(k), τ3n+1〉).

Hence, hn,m includes the same technique as before to hide the key k, but then it includes ` additional
hardcore bits (all using τ3n+1) that can be used to hide the message with a one-time pad.

More precisely, we obfuscate the circuit I(k,m) by computing

u = h(x; τ1, . . . , τ3n+1)⊕ (03n2+6n ◦m),

where the τi’s are chosen uniformly at random. Then, form the circuit that stores u, and on input
x, checks if the first 3n2 +6n bits of the string s = h(x; τ1, . . . , τ3n+1) agree with u. If so, it outputs

48

the remaining bits of s⊕ u, and otherwise it outputs ⊥. The proof of security for this construction
can be found in [93, Theorem 3.7].

Conceptually, Wee provides evidence that this assumption is both feasible and necessary. On
the feasibility side, a random permutation satisfies Assumption 3.24 with overwhelming probability
[93, Theorem 4.1]. Of course, a random permutation is usually not efficiently computable.

In the random oracle model, though, efficiently-computable random permutations do exist!
Hence, using an oracle to a random permutation R instead of π above yields a secure obfuscator
in the random oracle model. The proof of security for this obfuscator differs from the one of Lynn
et al. [63] described above in one crucial way: the simulator in Wee’s construction does not have
to modify any queries made in its emulation of the adversary. With this restriction, Theorem 3.4
does continue to hold in the random oracle model.

Finally, we look at the necessity of strong assumptions. The following theorem justifies the use
of Assumption 3.24, and rationalizes the use of strong assumptions throughout this work.

Theorem 3.25. Suppose that public-coin obfuscators exist for the family of point circuits. Then,
there exists a family of functions F that is mostly injective and somewhat strongly one-way.5

Proof sketch. Let O be a public-coin obfuscator for P1. For every choice r of the randomness to O,
form a function fr(x) = O(x; r). The family of all such functions is mostly injective by approximate
functionality, and somewhat strongly one-way by the virtual black-box property.

Note that a randomized algorithm is called “public-coin” if it reveals the results of its random
coin tosses. All three of the obfuscators for point circuits P1 in this section are public-coin. Fur-
thermore, the specific extensions to Pm and I by Lynn et al. and Wee are public-coin, as is the
generic extension to Pm. However, the general extension to I is not public-coin, as it must hide
the “fake” keys k′ that it obfuscates.

Applications

In this section, we have constructed many obfuscators for the families P1, Pm, and I. We pause
here to survey applications of these constructions in the literature.

Login programs. First, obfuscators of point circuits can be used to construct secure login pro-
grams. By oracle indistinguishability, an adversary attacking the login program can only employ
a dictionary attack. This guarantee is deceptively strong, and is not provided by the secure login
programs used in practice, which use a cryptographic hash function such as SHA-1.

For instance, SHA-1 should provide 280 security against collisions by the birthday bound, but
there are very clever attacks on SHA-1 that succeed in 263 time [33, 91], and for this reason SHA-1
is claimed to be “broken.” However, the analysis of collision-resistance is irrelevant to the problem
at hand because most humans do not choose their passwords uniformly at random, but rather
choose structured passwords; say, 8 alphanumeric characters. As a result, there is a more pressing
concern against finding second-preimages, since a dictionary attack will succeed in at most 248

time. It is unclear whether this is the best possible attack. In fact, it might be possible to break
SHA-1 trivially on structured inputs (say, in 210 time) even if security holds on uniform ones. By
contrast, obfuscation does guarantee that a dictionary attack is the best possible.

5See [93, Proposition 4.4] for formal definitions of these two properties.

49

Encryption schemes. Obfuscators for point circuits with multi-bit output can be used to form
symmetric key encryption schemes. This application was first noted by [25], and it is expanded upon
in Chapter 4. Essentially, obfuscation yields an encryption scheme with strong leakage resilience
and key-dependent message security. These properties are satisfied in a stronger way than currently
possible under standard assumptions. Conversely, the known encryption schemes provide partial
notions of obfuscation that can be realized under standard assumptions.

Subsequently, Bitanski and Canetti [12] show that the connection extends to public key encryp-
tion for obfuscators that are “re-randomizable” in the sense described in the proof of Theorem 3.21.
Of the three constructions presented in this section, only the one of Canetti [23] is re-randomizable.

Furthermore, the composability of obfuscation is related to the type of security provided by the
corresponding encryption scheme. In Chapter 4, we show that the standard notion of obfuscation
yields semantic security, whereas self-composable obfuscation yields CPA security. Bitanski and
Canetti [12] show that full composability of an obfuscator corresponds to a “multiple key, multiple
message” secure encryption scheme, which remains secure even if the adversary receives encryptions
of multiple messages under multiple keys, where the keys and messages are arbitrarily correlated.

Other applications. In addition to the puzzle applications already described, Canetti [23] shows
how obfuscators for point circuits can be used to remove random oracles from cryptographic con-
structions in certain cases, and to build content-concealing digital signature schemes whose signa-
tures do not reveal any information about the message that was signed. The solution to the latter
problem is elegant: instead of signing a message m, output an obfuscator of the point circuit Im
along with a signature of this circuit. Verification of a putative message m′ proceeds by checking
that Im(m′) accepts and that the signature on the circuit is valid.

Lynn et al. [63] show how obfuscation of I can be used to form complex access control mecha-
nisms that allow users with different access privileges to access different parts of a graph. Addition-
ally, they show how to obfuscate regular expressions. Specifically, they form circuits that reveal a
hidden message if its input satisfies a certain regular expression (rather than just an equality test
in the case of I). Finally, they perform “fuzzy” equality testing that can test whether its input is
“close” to a stored password in a tree metric.6

These results exploit the fact that the virtual black-box property is compatible with black-box
reductions. Therefore, any family that is black-box reducible to Pm or I is also obfuscatable.

Theorem 3.26. Let C and D be two families of circuits. Suppose there exist two (ensembles of)
circuits P , Q such that for every C ∈ C there is a D ∈ D such that C ≡ PD and D ≡ QC , and
furthermore that D can be found efficiently. If D is virtual black-box obfuscatable, then C is too.

Proof sketch. Let O be an obfuscator for D, and we form an obfuscator O′ for C as follows: given
C ∈ C, find the D ∈ D such that the above property holds and output PO(D). The proof of security
constructs a simulator for O′ by using the corresponding simulator for O in a black-box manner.
See [63, Lemma 1] for more details.

3.2.2 Cryptographic applications

In this section, we review the known constructions under average-case obfuscation. It is possible
to obfuscate point circuits under this definition: in fact, applying any one-way permutation to the
password will do [53, Theorem 4.5]! This is not quite so illuminating as the constructions in the
prior section because the average-case guarantee only has to hold for a uniformly chosen password.

6This should not be confused with the work of Dodis and Smith [39], who obfuscate programs that can tolerate
much more expressive types of error but under an average-case security definition.

50

Instead, average-case obfuscation is best suited toward cryptographic tasks, as shown in the
following heuristic by Hohenberger et al. [55]. Suppose a cryptographic scheme has the following
two properties:

1. The scheme is secure against black-box adversaries with oracle access to functionality C
selected randomly from a family C.

2. A distinguisher with oracle access to C can test whether an adversary can break the security
guarantee of the scheme.

Then, the cryptographic scheme is also secure against adversaries that are given an average-case
obfuscation of C.

This heuristic will come in handy in the applications in this section toward transforming sym-
metric primitives into public ones, constructing secure re-encryption and secure encrypted signature
schemes, and shuffling ciphertexts in public.

Symmetric to public transformations

This section describes the work of Hofheinz et al. [53], which studies the cryptographic primitives
that can (and cannot) be obfuscated using average-case obfuscation. The goal of this section is to
transform symmetric key primitives into public key ones.

Recall from Theorem 3.15 that deterministic primitives like pseudorandom functions cannot
be obfuscated under the average-case definition. Hence, we consider two probabilistic primitives:
symmetric key encryption and message authentication codes (MACs). Ideally, we hope to construct
public key versions of these primitives using obfuscation. We illustrate the concept using encryption.

Given a symmetric key encryption scheme, let Enck denote the encryption circuit used by
the scheme with secret key k. Typically, k is hardcoded into the circuit in a readily identifiable
manner. If we can obfuscate Enck, the resulting circuit would allow messages to be encrypted
without revealing any information about k. Hence, O(Enck) could be used as the encryption
routine to a public key encryption scheme, along with the same key generation and decryption
circuits as before.

Hofheinz et al. [53] show that this intuitive concept is realizable, with two caveats. First, there
are some symmetric key encryption schemes that cannot be obfuscated in this manner [53, Remark
4.1], and second, the transformation only holds for some forms of security. We explore these two
issues in detail.

Consider a symmetric key encryption scheme that includes the key pair of a digital signature
scheme in its secret key, and whose encryption routine digitally signs every ciphertext and includes a
copy of the verification key in its output. By the functionality requirement, an obfuscator must then
be able to sign ciphertexts as well because the distinguisher in the average-case security definition
can obtain the correct verification key. This is impossible by the unforgeability of the signature
scheme, so obfuscation is impossible for encryption schemes of this form.

On the other hand, there are encryption schemes that are obfuscatable. Take any public key
encryption scheme with key pair (sk, pk), and view it as a symmetric key scheme whose secret key
consists of sk and pk. These symmetric key schemes can be trivially obfuscated by restoring the
public key structure. There may be other symmetric key schemes that can be obfuscated, and the
result of such a transformation would also be a public key encryption scheme.

Theorem 3.27. Let (KeyGen,Enc,Dec) be a CPA secure symmetric key encryption scheme. If
Enck is average-case obfuscatable, the result is a CPA secure public key encryption scheme. How-
ever, the corresponding property does not hold for CCA security [53, Theorems 4.1 and 4.2].

51

Proof sketch. By the CPA security of the symmetric key encryption scheme, no adversary with
black-box access to Enck can break the scheme. Average-case security dictates that the same is true
if the adversary is given O(Enck) as well, resulting in a public key encryption scheme. On the other
hand, CCA security considers adversaries that are given a decryption oracle, which is not protected
by average-case security. In other words, it doesn’t obey the Hohenberger et al. heuristic.

In theory, this procedure could be used to find new public key encryption schemes, which would
be beneficial as we currently know many symmetric key schemes but only a few public key schemes
under specific number-theoretic assumptions. However, thus far no additional public key schemes
have been found using this method.

Similarly, we can hope to transform a message authentication code into a digital signature
scheme by obfuscating the verification routine of the MAC. The results are similar to the encryption
setting: it is possible to preserve “verifier only attacker” (VOA) security, in which the attacker
only receives oracle access to a verification oracle, but it is not possible to preserve existential
unforgeability under chosen message attacks, which provide a signing oracle to the attacker as well.
Furthermore, there are MACs that are unobfuscatable in the average-case sense.

Proxy re-encryption

One specific application of the randomized definition is to construct proxy re-encryption schemes
[55], which we illustrate with an example. Suppose Bob decides to go on vacation and asks his
webmail provider Alice to forward his email to David, so David can respond to any problems
while Bob is away. Simply passing on the messages is insufficient because Bob regularly receives
encrypted email, so David won’t be able to read it.

A simple solution to this problem is for Bob to give Alice his secret key. Then, Alice can decrypt
his email, encrypt it again under David’s public key, and forward the message to David. Let C
be the circuit that performs this procedure with Bob’s secret key skB and David’s public key pkD
hardcoded. Given a ciphertext c encrypted under pkB, the circuit produces a ciphertext of the
same message that is encrypted under pkD.

However, Bob doesn’t trust Alice, so he doesn’t want to give away his secret key. Instead, he
wants to give Alice a “token” that allows her to perform the re-encryption procedure without being
able to read his emails. This can be accomplished by obfuscating the simple “decrypt, and then
re-encrypt” functionality, so Alice can execute it without knowing Bob’s secret key.

This functionality does obey the heuristic above, and we claim that average-case security pro-
vides a strong guarantee here. If Alice were simply given a black box implementing C, she cannot
use it in a meaningful way because she doesn’t understand the inputs or outputs to the box (since
they are encrypted and she doesn’t know skB or skD). Thus, average-case security dictates that
the same is true if Alice possesses an obfuscated circuit O(C).

Hohenberger et al. [55] construct an obfuscator for the proxy re-encryption functionality for the
public key encryption scheme of Boneh, Boyen, and Shacham [16]. This encryption scheme requires
a group G of order p with a bilinear map e : G×G→ GT , and operates as follows.

KeyGen: Select a random g
U← G, and x, y

U← Fp = Z
pZ . Set sk = (g, x, y) and pk = (g, gx, gy).

Encrypt: Given a message m ∈ G, select r, s U← Fp and output [grx, gsy, gr+s ·m].

Decrypt: Given a ciphertext [U, V,W], compute W/(U1/a · V 1/b).

It is straightforward to check that decryption operates correctly. Our goal is to construct a secure
proxy re-encryptor. Suppose Bob and David have secret keys skB = (gB, xB, yB) and skD =

52

(gD, xD, yD), and consider a ciphertext [U, V,W] that encodes the message m under Bob’s public
key. Then,

[UxD/xB , V yD/yB ,W]

is a valid encryption of m under David’s public key.
Therefore, Bob and David can combine their secret keys to form the quotients xD

xB
and yD

yB
,

which Alice can then use to compute the proxy re-encryption functionality. However, this reveals
too much information to Alice. For instance, she could compute xB

xD
and yB

yD
, and execute the

re-encryption functionality backwards to send David’s emails to Bob.7

The solution to this problem provided by Hohenberger et al. [55] is to hide these quotients “in
the exponent” and give Alice (gD)xD/xB and (gD)yD/yB . Alice can still “meld” the quotients xD

xB
and

yD
yB

into a ciphertext using the bilinear group. Specifically, given a ciphertext [U, V,W] intended for
Bob, she can form the ciphertext

[e(U, (gD)xD/xB), e(V, (gD)yD/yB), e(W, gD)].

We claim that this ciphertext is a valid encryption of m intended for David, except that it involves
group elements in the target group GT . Luckily, David can still decrypt the message if it comes
from a small (polynomial sized) message space. Furthermore, Hohenberger et al. show that this
construction satisfies average-case security. That is, Alice cannot use the proxy re-encryption
functionality in a non-black-box way even with (gD)xD/xB and (gD)yD/yB . A formal treatment of
this statement can be found in [55, Theorem 4].

Delegatable signatures

Another application of average-case security, due to Hada [48], is to the problem of delegatable
signatures. We illustrate the problem by picking up where the last example left off. Suppose
that while on vacation, Bob uses a public computer to write a message to David. He wants to
digitally sign his email so David can trust its authenticity. However, Bob doesn’t have his signing
key because he is on vacation (and even if he did, he wouldn’t want to store the key on the public
computer).

Anticipating this issue before the trip, Bob wants to give his webmail provider Alice a token
that will allow her to sign messages to David on his behalf. However, this token should not reveal
Bob’s signing key, nor should it give Alice the ability to sign messages and send them to other
people.8 To enforce the last constraint, the token should not only sign Bob’s message but also
encrypt it using David’s public key, so only he can read it.

More formally, suppose Bob uses an existentially unforgeable signature scheme, and David uses
a CPA secure public key encryption scheme. Consider the “encrypted signature” circuit CskB ,pkD
that stores Bob’s signing key and David’s public key, and on input a message m, digitally signs
m using skB and then encrypts the result using pkD. If Alice only has black box access to this
circuit, then she would be unable to learn skB or send signed messages to other users by existential
unforgeability. Thus, our hope is that the security of the encrypted signature scheme remains intact
if Alice is given an average-case obfuscation of C.

Sadly, our hope is misplaced here. Average-case obfuscation alone does not suffice for this
scheme because (as we saw before for MACs) existential unforgeability does not obey the Hohen-

7Another undesirable property of this method is that David’s secret key is required to generate Alice’s token,
which was not necessary in the näıve “decrypt and re-encrypt” functionality.

8Note that a malicious Alice could sign bogus messages (that did not originate from Bob) and send them to David.
There is nothing we can do to prevent this attack. Instead, the goal is to prevent all other attacks.

53

berger et al. heuristic. Hada [48] resolves this issue by strengthening the average-case obfuscation
guarantee to hold in the presence of related oracles. Informally, average-case obfuscation with de-
pendent oracles in a set T requires that the security guarantee in Definition 3.14 hold even if the
distinguisher, who is already given an oracle C, is also given oracle access to T (C). In essence, T
is a form of auxiliary input, but it is an oracle instead of a string.

Under this stronger definition, existential unforgeability is preserved by average-case obfusca-
tion, where the dependent oracle T is a signing oracle. Hada shows how to construct an obfuscator
for CskB ,pkD using the bilinear encryption scheme used above [16] and the digital signature scheme
of Waters [92]. Then, Hada shows how to use the encrypted signature functionality to build a
signcryption scheme. We refer the reader to [48] for details.

Shuffling ciphertexts

Our final application of obfuscation with a randomized definition, due to Adida and Wikström [1],
is to shuffling ciphertexts in public. This can be used in the mix-nets of voting algorithms.

Given a list of ciphertexts, suppose we wish to “shuffle” the messages around and create a new
list of ciphertexts that contains the same messages but in a randomized order. We could decrypt
all of the messages, apply a random permutation, and then encrypt all of the messages again, but
decryption requires knowledge of the secret key. An obfuscation of the “decrypt, permute, and
encrypt” procedure allows the shuffling procedure to be done in a public manner, so observers
can verify that the shuffling is done properly without knowing the permutation that connects the
messages.

Adida and Wikström construct an obfuscator for this functionality based on the Boneh, Goh,
Nissim [17] or Paillier [76] cryptosystems, and show that the application to mix-nets is feasible.

“The Paillier construction is practical for normal sized voting precincts in the USA: N ≈
2000 full length messages can be accommodated, and, given one week of pre-computing,
the obfuscated shuffle can be evaluated overnight. Furthermore, all constructions are
easily parallelized [1].”

However, their construction does not achieve average-case security, but rather a weaker guarantee
called public key obfuscation that was defined by Ostrovsky and Skeith [75]. In this definition,
the security of the obfuscator and the underlying functionality depend on the same public key.
Additionally, this definition does not explicitly consider the difference between black-box and non-
black-box access to a program [55]. We refer the reader to [1] for details on the security definition
and construction.

3.3 Connections

In this section, we delve deeper into the conceptual details behind the various definitions. First,
we examine the limits of the definitions by demonstrating circuits that cannot be obfuscated under
them. Then, we distinguish between the strength of the various definitions. Finally, we examine
issues related to the composability of obfuscation.

3.3.1 Impossibility

Immediately after the seminal work of Barak et al. [10] codified the virtual black-box definition, they
proved that it is impossible to achieve in general. In principle, there are two ways that obfuscation
might be impossible to achieve.

54

1. There may exist some “unobfuscatable” programs for which every garbled variant reveals
non-black-box information.

2. It might be possible to obfuscate all programs, but not “simultaneously” due to the efficiency
constraint. In other words, perhaps the only obfuscators that exist are inefficient.

It turns out that the first, stronger, impossibility result holds. To describe the problem, it helps to
switch from circuits to Turing machines.9 Obfuscation of a family of Turing machines T uses the
same functionality and virtual black-box properties as Definition 2.4, but the polynomial slowdown
property must hold on a per-input basis.

Definition 3.28 (Polynomial slowdown for Turing machines [10]). There exists a polynomial ξ
such that for every TM M ∈ T , |O(M)| ≤ ξ(|M |), and for all inputs x ∈ {0, 1}∗, if M(x) halts in
t steps then O(M)(x) halts in at most ξ(t) steps.

It is harder to obfuscate Turing machines than to obfuscate circuits [10, Proposition 2.3] because
a Turing machine can be run on itself: that is, a description of M can be fed back into M as input.
This issue does not arise with circuit obfuscation because a circuit has a fixed input length that is
usually shorter than its description length.

The general impossibility result exploits this property of Turing machines, and uses two obfus-
cated Turing machines to understand each other.

Theorem 3.29 (General impossibility). There exists a family of Turing machines that cannot be
obfuscated [10, Proposition 3.4 and Theorem 3.5].

Proof sketch. First, we prove the general impossibility of 2-composable obfuscation. LetM be the
family of all Turing machines of the forms

M(k,m)(x) =

{
m if x = k,
⊥, 1|m| otherwise.

N(k,m)(〈T 〉) =

{
m if T (k) = m,
⊥ otherwise.

In words, M(k,m) is a point TM with multi-bit output (i.e., the Turing machine analog of a circuit
in I), but N is a more complicated circuit that receives the description of a Turing machine as
input! Essentially, N is a “helper” TM that knows the correct input k to query.10

For any potential obfuscator O, an adversary with two obfuscated Turing machines P =
O(M(k,m)) and Q = O(N(k,m)) can execute Q(〈P 〉), which outputs m. However, a simulator
with oracle access to M(k,m) and N(k,m) has no hope of learning m.

Finally, we combine the two TMsM(k,m) andN(k,m) into a single Turing machineM(k,m) #N(k,m)

that chooses whether to run M or N by conditioning on its first input bit. The family of combined
TMs is unobfuscatable (in the standard sense, with just one copy) by a similar argument.

Proving the general impossibility of circuit obfuscators is harder. The first part of the argument
works as before to show that the circuits I(k,m) ∈ I and those of the form

J(k,m)(〈C〉) =

{
m if C(k) = m,
⊥ otherwise,

9Note that this is the only section in the thesis that considers Turing machine obfuscation.
10Technically, N(k,m) as presented here is uncomputable. To make it computable (and efficient), we impose a time

bound. Thus, N emulates T for a certain number of time steps, and if T hasn’t halted by then, N outputs ⊥.

55

cannot be simultaneously obfuscated, as long as J(k,m) has sufficiently long input length that it can
accept a description of O(I(k,m)) as input. However, the above method to combine two TMs into
one does not suffice for circuits because it would force I(k,m) and J(k,m) to have the same input
length. Details on how to overcome this problem are explained in [10, Theorem 3.8].

Theorem 3.30. If one-way functions exist, then there exists an unobfuscatable family of circuits.

Barak et al. provide several amplifications to this result.

1. The impossibility proof for TMs reletivizes, and thus holds in the random oracle model as
well, but the proof for circuits does not [10, Propositions 4.14 and 4.15].

2. Suppose symmetric key encryption schemes, MACs, digital signature schemes, or pseudoran-
dom function ensembles exist. Then, there exists an unobfuscatable version of the primitive
[10, Theorem 4.12]. These results are similar to those in Section 3.2.2 for average-case security.

3. If factoring Blum integers is hard, then there exists an unobfuscatable circuit family that can
be computed by constant-depth threshold circuits (i.e., in TC0) [10, Theorem 4.13].

The last result rules out the (otherwise appealing) notion of obfuscating a low-depth complexity
class. One might hope to avoid these impossibility results by using a weaker definition.

Bitanski and Canetti [12] show that the impossibility result for TMs immediately extends to
the virtual gray-box setting, but the proof for circuits does not. In fact, they could not rule out
the possibility of universal virtual gray-box obfuscation.

However, Goldwasser and Rothblum [46] provide evidence that this is not the case. They formu-
late a different impossibility proof for circuits under a stronger variant of best-possible obfuscation
in which Definition 3.8 holds with statistical (rather than computational) indistinguishability.

Theorem 3.31. If the family of 3-CNF circuits (a subfamily of AC0) can be statistically best-
possible obfuscated, then the polynomial hierarchy collapses to the second level [46, Theorem 4.1].

On the other end of the spectrum, the Barak et al. impossibility results trivially extend to the
stronger definition with dependent auxiliary input. Goldwasser and Kalai [43] show even stronger
impossibility results in this setting. Specifically, at least one of the following is unobfuscatable:

1. The class of “point filter-circuits” for every NP-complete language. These are indicator cir-
cuits of the form δx,b that reveal a bit b when given an NP witness to x as input.

2. Every class with super-polynomial pseudo entropy. This includes every class of pseudorandom
functions,11 and certain types of encryption and digital signature schemes.

Thus, obfuscation with auxiliary input is impossible for very low complexity circuits or for many
cryptographically interesting ones.

While the above impossibility results are generic in nature, we conclude this section with an
impossibility result for point circuits. Recall from Chapter 2 that an obfuscator O does not just
depend on the functionality of its input circuit, but rather on its representation as well. For
this reason, we stressed that the circuits Iw ∈ P1 store w in a readily identifiable manner. An
interesting question, first posed by Tal Malkin, is whether every representation of point circuits
can be obfuscated.

11Note the difference from the Barak et al. result above that there exists an unobfuscatable family of PRFs. This
criterion rules out all PRFs, just as Theorem 3.15 does in the average-case setting.

56

Consider a family of obfuscated point circuits

P̂1 = {O(Iw; r) : w ∈ {0, 1}n, r ∈ {0, 1}ξ(n)}.

Intuitively, P̂1 should be trivially obfuscatable (i.e., there is no need to obfuscate circuits again).
Unfortunately, this intuition does not quite hold because an adversary may be able to distinguish
between obfuscations of the same circuit under different randomness values O(Iw; r) and O(Iw; r′).
Goldwasser and Rothblum [46] show this for the construction of Lynn et al.

Theorem 3.32. In the random oracle model, there exists a family of circuits C that is functionally
equivalent12 to P1 but cannot be best-possible obfuscated [46, Theorem 5.1].

This impossibility result trivially extends to stronger security guarantees such as the virtual
black-box property.

3.3.2 Separations

In Section 3.1, we defined several security properties and showed simple implications between them
(the down arrows in Figure 3-1). In this section, we show that the corresponding “up” relationships
are unlikely to hold.

Best-possible obfuscation

First, Goldwasser and Rothblum [46] provide evidence that best-possible obfuscation is unlikely
to imply virtual black-box obfuscation. Their separation considers “probabilistic ordered binary
decision diagrams (POBDDs),” which are logarithmic-space Turing machines whose input tape can
only move from left to right.

They can also be easily represented as circuits, although we do not describe the transformation
here. Let B denote the circuit family of all POBDDs under this representation (in particular, B
includes the family of point circuits P1). This family has a special property: given any POBDD
C ∈ B, it is possible to compute the (unique) smallest circuit D ∈ C such that C ≡ D [21].

Theorem 3.33. The family B is best-possible obfuscatable, but there does not exist a virtual black-
box obfuscator for B whose resulting circuits are also in B [46, Propositions 3.2 and 3.3].

Proof. Let O be the obfuscator such that O(C) , D, the canonical representative for C. Then, O
clearly satisfies indistinguishability, which is equivalent to best-possible obfuscation.

On the other hand, suppose O′ is any algorithm whose outputs are also circuits in B. An
adversary A(O(C)) can compute the canonical circuit D ≡ C, but the simulator SC cannot. Thus,
O′ cannot be a virtual black-box obfuscator for B.

Note that this separation does not show that virtual black-box obfuscation of B is impossible
in general: there could be an obfuscator O′ for B whose outputs are not constrained to POBDDs.

Virtual gray-box

A recent result of Bitanski and Canetti [12] separates the strength of virtual gray-box and virtual
black-box obfuscation. Note that, among other uses, this immediately yields a new separation
between best-possible and virtual black-box obfuscation.

12We extend the notion of functional equivalence to families by saying that for every C ∈ C, there exists P ∈ P1

such that C ≡ P , and vice-versa.

57

Theorem 3.34. If one-way permutations exist, then there exists a family T of Turing machines
that are virtual gray-box obfuscatable but not virtual black-box obfuscatable. This separation also
holds for circuits if there exists a pseudorandom function ensemble that is exactly learnable by an
unbounded adversary with polynomially many queries [12, Proposition 4.1].

Proof sketch. We only consider the TM separation here, which is based on the technique used in
Theorem 3.29. Let

f = {fn : {0, 1}n → {0, 1}n}

be a family of one-way permutations. For any k and m, let F(k,m) be the Turing machine that
outputs fn(k) and fn(m) on every input value, and let M and N be the TMs defined in Theorem
3.29. We claim that the family of Turing machines

T = {F(k,m) #M(k,m′) #N(k,m) : n ∈ N, k,m,m′ ∈ {0, 1}n}

is trivially obfuscatable under the virtual gray-box definition because it is learnable by an un-
bounded simulator. Indeed, the simulator can query F(k,m) to learn fn(k) and fn(m), invert the
one-way permutation to find k and m, and query M(k,m′)(k) to find m′.

On the other hand, F(k,m) is useless to an efficient simulator, so T cannot be obfuscated under
the virtual black-box definition. Specifically, an efficient adversary can determine whether m = m′

but an efficient simulator has no hope of doing so.

Auxiliary input

The final result in this section shows that the virtual black-box property with dependent auxiliary
input seems to be a non-trivial extension of the original virtual black-box property. Hence, auxiliary
input does not come “for free.” By contrast, the corresponding relationship does hold for the virtual
gray-box property (see Theorem 3.11).

Specifically, Goldwasser and Kalai [43] show that the obfuscator for point circuits constructed
by Wee [93] is unlikely to permit dependent auxiliary input. Recall from Section 3.2.1 that Wee’s
construction relies on a strongly one-way permutation π and a function of the form

hn(w; τ1, τ2, . . . , τ3n) = (τ1, τ2, . . . , τ3n, 〈w, τ1〉, 〈π(w), τ2〉, . . . , 〈π3n−1(w), τ3n〉).

Consider auxiliary input on w that is chosen in the following manner: choose a random string
r

U← {0, 1}n and reveal

z(w, r) , (w ⊕ r, π(w)⊕ r, . . . , π3n−1(w)⊕ r).

For any choice of r, there exists an adversary that can compute x from hn(w; τ1, τ2, . . . , τ3n) and
z(w, r). However, Goldwasser and Kalai conjecture that this auxiliary input function is one-way,
so a simulator cannot use it to learn w.

3.3.3 Composability

Recall that a composable obfuscator remains secure against adversaries who possess multiple ob-
fuscated circuits (see Definition 2.5 for details). There are two types of composability: self com-
posability refers to the possibility of receiving many obfuscations of the same circuit, whereas full
composability allows for obfuscations of different circuits as well.

We saw the usefulness of composable obfuscation in Section 3.2.1, which shows how to construct
an obfuscator for I given a composable obfuscator for P1. Even self-composability yields valuable

58

security guarantees: we will see in Section 4.3 that a self-composability of an obfuscator for I is
related to the ability to prove CPA security for its corresponding encryption scheme.

In this section, we show that composability is a non-trivial extension of the virtual black-box
property, and then we examine how the relationships between the security definitions in Figure 3-1
are affected by composition.

Separations

It is rather simple to see that composability appears to be more powerful than the virtual black-box
property alone. We begin with a simple separation in the random oracle model.

Theorem 3.35. In the random oracle model, there exists a virtual black-box obfuscator that is not
even 2-composable [63, Claim 3].

Proof. The construction of Lynn et al. [63] described in Section 3.2.1 is deterministic. Hence, given
two obfuscated circuits, an adversary can easily determine whether they accept the same string,
which a simulator cannot do.

Note that obfuscators in the standard model must be randomized for exactly this reason [23].
Hence, a similar proof will not work, and in fact an analog of Theorem 3.35 is not known in the
standard model. We can prove a slightly weaker bound, however.

Theorem 3.36. Let O be a virtual black-box obfuscator for P1. Then, there exists an obfuscator
O′ for P1 that is not Ω(n) self-composable [25, Lemma 1]. Furthermore, if O is virtual black-box
with dependent auxiliary input, then O′ is too [12, Proposition A.1].

Proof sketch. Define O′ as follows:

O′(w; r, s) = (O(w; r), s, 〈w, s〉),

where 〈w, s〉 =
∑

iwisi (mod 2). Thus, O′ outputs the circuit made by O along with a Goldreich-
Levin bit. Using the Goldreich-Levin theorem [42], it can be shown that O′ is an obfuscator, and
that O′ allows dependent auxiliary input if O does. However, an adversary with n copies of s, 〈w, s〉
for different randomness s can compute w by solving the system of n linear equations.

Implications

In spite of the above difficulty results, composable obfuscators for point circuits are still desired due
to their applicability. In this section, we show two methods to prove composability. The following
theorem of Bitanski and Canetti helps in this search.

Theorem 3.37. For any t = poly(n), an obfuscator for point circuits is t-distributionally indis-
tinguishable (Definition 3.19) if and only if it is t-virtual gray-box. For constant t, the equivalence
extends to the t-virtual black-box property as well (Definition 2.5) [12, Theorem 5.1].

The proof of this theorem uses some of the ideas in the proof of Theorem 3.18 along with novel
proof techniques. We refer the reader to [12, Section 5.3] for a complete proof.

Conceptually, this theorem shows that many of the connections in Figure 3-1 compose for
obfuscators of P1. In particular, it shows that the standard (non-composable) virtual black-box
and virtual gray-box properties are equivalent for point circuits. This statement extends to point
circuits with multi-bit output as well.

59

Theorem 3.38. Let O be a virtual gray-box obfuscator for the family of point circuits with `-bit
output. Then, O is also a virtual black-box obfuscator for this family.

On a practical level, this theorem yields a way to prove the composition of the Canetti (g, gw)
construction described in Section 3.2.1.

Assumption 3.39 (t-Strong DDH assumption). There exists a sequence of groups

G = {Gn : n ∈ N, pn = poly(n) is prime}

with efficient representation and computation of the group operations, such that the following holds
for any distribution ensemble X = {Xn} over vectors in Ftpn whose projection to each coordinate is
well-spread:

{(g1, ga1
a), . . . , (gt, gatt) : g U← Gtn,a← Xn} ≈c {(g1, ga1

a), . . . , (gt, gatt) : g U← Gtn,a
U← Ftpn}

Suppose that the t-strong DDH assumption holds. By generalizing the argument in the proof
of Theorem 3.21, it can be shown that this assumption implies that the (g, gw) construction is
t-distributionally indistinguishable. As a result, Theorems 3.22 and 3.37 yield the following:

• If t is a constant, then there exists a virtual black-box obfuscator for point circuits with
(t− 1)-bit output.

• If t is polynomial in n, then the above statement holds for virtual gray-box security.

Note that the length bound in the obfuscator for I depends on the parameter t. Thus, obfuscating
longer length messages requires making a stronger assumption. On a positive note, Bitanski and
Canetti provide evidence for the feasibility of this assumption for any t = poly(n) by showing that
it holds in the generic group model [12, Proposition 7.2].13

Finally, Bitanski and Canetti also consider the composability of obfuscators with auxiliary
input. Recall from Theorem 3.36 that such obfuscators are not, in general, Ω(n) self-composable.
The following theorem provides a partial converse.

Theorem 3.40. Any virtual black-box obfuscator with auxiliary input is also t-self-composable for
any constant t [12, Proposition A.2].

We emphasize that this result holds for an obfuscator for any family, not just point circuits or
their generalizations. We will see a meaningful use of self-composability in the next chapter.

13Details on the generic group model can be found in Section 6.3.2.

60

Chapter 4

Obfuscation and Symmetric
Encryption

This chapter is based on joint work with Ran Canetti, Yael Kalai, and Daniel Wichs [26, 27].

4.1 Introduction

In addition to its broader appeal, obfuscation has the ability to solve many cryptographic problems
using a two-step framework: find the simplest program that solves the problem if security were
not a concern, and obfuscate this simple program to obtain the required security. However, as
described in Section 3.2, only a few such applications are currently known, and most of them use
a definition of obfuscation that only provides average-case security.

The goal of this chapter is to relate virtual black-box obfuscation to the problem of symmetric
key encryption. If security were not a concern, then “ciphertexts” in a symmetric key encryption
scheme could simply be point circuits with multi-bit output I(k,m). These ciphertexts are secure
against attackers that only use I(k,m) in a black-box way. However, in the real world, no security
is provided because malicious users could simply read the message m from a description of I(k,m).
Instead, Canetti and Dakdouk [25] observe that obfuscations of I(k,m) under the virtual black-box
definition, which they call digital lockers, do provide the necessary security in the real world.1

We expand upon their work and show tight connections between obfuscation and encryption. It
turns out that digital lockers enable a very strong form of symmetric encryption that simultaneously
achieves leakage resilience and key-dependent message (KDM) security. The strength of digital
lockers is primarily due to the fact that the virtual black-box property must hold for all I(k,m).

On a conceptual level, our result provides a formal connection between leakage resilience and
KDM security. Many of the previously known constructions and proof techniques to solve these
two problems are similar (see [18, 71], [6, 38], and [3, 6] for examples). Hence, the two problems
always appeared to be correlated, although no formal link between the problems had existed.

On a practical level, the standard virtual black-box definition appears too strong to achieve
under standard cryptographic assumptions (see Theorem 3.25). We demonstrate several meaningful
weakenings of the definition that correspond to the properties desired by encryption schemes. These
connections allow us to take advantage of the large amount of research in leakage resilience and
KDM security [3, 5, 6, 8, 9, 18, 22, 38, 50, 52, 54, 58, 71] to construct digital lockers under standard
assumptions that satisfy partial notions of obfuscation. The specific connections are shown below.

1There are a few known obfuscators for digital lockers based on different cryptographic assumptions [25, 63, 93].
See Section 3.2.1 for details. The results of this chapter are generic in the sense that they apply to any construction.

61

Semantically secure encryption with: Is equivalent to digital lockers with:
α-weak keys α-entropic security for indep messages

fully weak keys fully entropic security, indep messages
auxiliary input auxiliary input
CPA security self-composability
KDM security dependent messages

On the other hand, constructions for digital lockers satisfying the full virtual black-box require-
ment are only known under very strong assumptions, such as the existence of fully composable
point circuit obfuscators [25]. We provide new evidence of the difficulty of obfuscation under stan-
dard assumptions by applying Haitner and Holenstein’s [50] black-box impossibility result for KDM
security to the digital locker setting.

Organization

In Section 4.2, we define the various encryption and digital locker obfuscation terms that are used
throughout the chapter. Then, we provide the basic connection between symmetric encryption and
obfuscation with weak keys in Section 4.3, and extend the connections to the auxiliary input and
KDM settings in Sections 4.4 and 4.5. Finally, we discuss the implications of the connections in
Section 4.6.

4.2 Definitions

In this section, we study many possible security guarantees that can be imposed on obfuscation of
point circuits with multi-bit output and symmetric key encryption.

4.2.1 Obfuscation

Recall that a “point circuit with multi-bit output” I(k,m) stores a key k and message m in a readily
identifiable manner and computes

I(k,m)(x) =

{
m if x = k,
⊥, 1|m| otherwise.

In particular, the circuit does not hide the length of the message. The family of all such circuits is
I = {I(k,m) : k,m ∈ {0, 1}∗}. We generalize the virtual black-box definition from Definition 2.4 by
loosening the “for all” requirement, and impose a distributional guarantee instead.

Definition 4.1 (Generalized obfuscation2 of I). An obfuscator of point circuits with multi-bit
output is a PPT algorithm O which takes as input3 a circuit I(k,m) ∈ I and outputs a circuit that
satisfies the following properties.

1. Correctness4: For all k, x ∈ {0, 1}n and m ∈ {0, 1}poly(n),

Pr
[
C ← O(I(k,m)) : C(x) 6= I(k,m)(x)

]
≤ negl(n),

where the probability is taken over the randomness of the obfuscator algorithm.
2Recall that A and S are allowed to be non-uniform throughout this thesis.
3Because k and m are extractable from the description of I(k,m), the obfuscator effectively receives them as input.
4This property is called “approximate functionality” in Definition 2.4, but in this chapter we purposely change

terminology to parallel the terms used in symmetric key encryption.

62

2. Polynomial slowdown: For any k, m, and random tape of O, the size of the circuit O(I(k,m))
is polynomial in |k|+ |m|.

3. Entropic security : We say that the scheme has α(n)-entropic security if for any PPT adversary
A with binary output and any polynomial `, there exists a negligible function ε and a PPT
simulator S such that for all jointly-distributed {Xn, Yn}n∈N where Xn takes values in {0, 1}n,
Yn takes values in {0, 1}`(n), and the min-entropy5 H∞(Xn) ≥ α(n), we have∣∣∣Pr

[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m)(1n, 1`) = 1

]∣∣∣ ≤ ε(n),

where the probability is taken over the randomness of (k,m)← (Xn, Yn), and the randomness
of A, S, and O. We say that a scheme has fully-entropic security if it has α(n)-entropic
security for all super-logarithmic functions α(n).6

Intuitively, the notion of α-entropic security generalizes (and weakens) the virtual black-box
property by providing a minimum guarantee on the entropy of the key, whereas the virtual black-
box property has no such guarantee. We connect the two notions through fully-entropic security,
which is the strongest type of entropic security that we can hope for, since a key distribution of
logarithmic entropy is trivially broken by a dictionary attack.

Informally, it appears that fully-entropic security and the virtual black-box property impose
similar security guarantees under similar conditions, so they should be equivalent. However, the
definitions have a few differences: the former allows a different simulator for each entropy threshold
α, but requires a negligible error in simulation, while the latter allows a different simulator for each
simulation error ρ but requires the simulator to work for all distributions regardless of entropy.

Despite these differences, we show that fully-entropic security implies the virtual black-box
property, which connects our notion of α-entropic security to the existing notions of obfuscation.

Theorem 4.2. If O is an obfuscator for I that satisfies fully-entropic security (as in Definition
4.1), then O also satisfies the virtual black-box property (as in Definition 2.4).

The proof of this theorem is rather technical, and is deferred to Section 4.2.3. The idea is to
extend the technique used in [23] to show that a distribution-based definition implies the virtual
black-box property in the case of point circuits. At a high level, the distributional definition
says that if a user chooses a key from a well-spread distribution, then an adversary cannot learn
anything from an obfuscated point circuit beyond the fact that the key is from this distribution,
so in particular the key is hard to determine. We show how to extend Canetti’s distributional
definition to the multi-bit setting and prove that fully-entropic security implies this distributional
requirement, and therefore the virtual black-box property as well. The proof makes extensive use of
non-uniformity, and as a result the simulator in the virtual black-box property must be non-uniform
even if the adversary is uniform.

Fully-entropic security, as well as virtual black-box security, are quite strong, and difficult to
satisfy. The notion of α-entropic security, for some particular α ∈ ω(log(n)), corresponds to a
meaningful weakening of that notion where security is only provided when the input comes from a
reasonably random source. A similar weakening of obfuscation, in the special case of point circuits,
was also considered by Canetti, Micciancio and Reingold [28] in the context of perfectly one-way
hash functions.

5See Definition 2.2 for a formal definition of min-entropy.
6In the virtual black-box property (Definition 2.4), the simulator receives 1n and an oracle to I(k,m), but it does

not receive 1` as input. However, the simulator can easily learn 1` by querying its oracle on any input (say, 0n) and
noting the length of its response. Therefore, in this chapter we simply give the simulator 1` when convenient.

63

We pause here to address an important question: is α-entropic security the best way to generalize
the virtual black-box definition? Instead of restricting attention to distribution with sufficient min-
entropy, one might instead give the simulator the ability to ask its oracle more queries, by a factor
of 2α(n) (i.e., the simulator is no longer polynomial time bounded). In Section 4.2.4, we show that
this alternative relaxed notion is actually implied by α-entropic security, which is why we choose
to study the entropic definition.

We consider several additional variants of obfuscation throughout the paper. First, we propose
an additional weakening of the definition called security for independent messages, where we require
that the distribution on the message m is independent from that of the key k.

Definition 4.3 (Independent messages). We say that an obfuscator O is α(n)-entropically secure
for independent messages if we restrict the definition of α(n)-entropic security only to distributions
{Xn, Yn} where Xn and Yn are independently distributed. We define the notion of fully-entropic
security for independent messages analogously.

We also define a stronger variant of plain obfuscation that provides some composability guar-
antees. We specialize Definition 2.5 to the family I. There are two variants: for full composition
we require that the security of obfuscation is preserved even if the adversary gets many freshly
and independently obfuscated circuits, which may be related in arbitrary ways (i.e., both the keys
and the messages may differ).7 For self-composition we require that all the obfuscated circuits
have the same key k, although the messages may differ and may be correlated. (For point circuits,
self-composition boils down to the case of many obfuscated versions of the same circuit.)

Definition 4.4. An obfuscator O for I with α(n)-entropic security is said to be fully composable
if for any PPT adversary A with binary output and any polynomials t and `, there exists a PPT
simulator S such that for all distributions {(Xn, Yn)}n∈N, where Xn = X

(1)
n , . . . , X

(t)
n with X

(i)
n

taking values in {0, 1}n, Yn = Y
(1)
n , . . . , Y

(t)
n with Y

(i)
n taking values in {0, 1}`(n), and H∞(Xn) ≥

α(n), we have:

|Pr[A(O(Ik1,m1), . . . ,O(Ikt,mt)) = 1]− Pr[SI(k1,m1),...,I(kt,mt)(1n, 1`) = 1]| ≤ negl(n),

where the probabilities are over (k1, . . . , kt,m1, . . . ,mt)← (Xn, Yn) and over the randomness of A,
S, and O.

If the above holds only for the distributions Xn where Pr[k1 = k2 . . . = kt] = 1, then we say
that O is self-composable.

The notions of composability extend naturally to obfuscators with fully-entropic security, where
we require that the above definition holds for all α(n) ∈ ω(log(n)). It also extends to obfuscators for
independent messages, where we restrict the definition to the case whereXn and Yn are independent.
(However, there is no independence assumption among the coordinates within Xn or Yn.)

4.2.2 Encryption with weak keys

A symmetric encryption scheme is defined by efficient algorithms (Enc,Dec). Technically, a sym-
metric key encryption scheme requires a key generation algorithm as well, but in this chapter
we consider schemes that withstand deviations from the key generation protocol, so the specific
algorithm is not important to us.8

7Recall that composability is not, in general, implied by obfuscation alone [12, 25].
8For the sake of completeness, throughout this work we may assume that the key generation algorithm chooses

an n-bit string uniformly at random.

64

We say that the encryption scheme is semantically secure for α(n)-weak keys if the usual notion
of semantic security holds even when the key comes from any weak source of entropy α(n). We
propose the following definition of symmetric key encryption with weak keys.

Definition 4.5 (Symmetric encryption with weak keys). We say that an encryption scheme
(Enc,Dec) has CPA security for α(n)-weak keys if there exists an efficient algorithm D(n, `) run-
ning in time poly(n, `) such that, for all PPT adversaries A and all distribution ensembles {Xn}n∈N
with H∞(Xn) ≥ α(n), we have:∣∣∣Pr[CPAX,D

0 (A,n) = 1]− Pr[CPAX,D
1 (A,n) = 1]

∣∣∣ ≤ negl(n)

where the games CPAX,D
b (A,n) for b = 0, 1 are defined via the following experiment:

1: k ← Xn

2: repeat
3: A submits a query m and receives a ciphertext c where:

in game CPAX,D
0 the challenger sets c← Enck(m)

in game CPAX,D
1 the challenger sets c← D(n, |m|)

4: until A halts
5: output the result of A

The algorithm D(n, `) can keep persistent state during the repeat loop. We define semantic security
with α-weak keys via the games SEMX,D

0 and SEMX,D
1 that are identical to the CPA games except

that the repeat loop is performed only once.
We say that an encryption scheme is CPA (resp., semantically) secure for fully weak keys if it

is CPA (resp., semantically) secure for α(n)-weak keys for all α(n) ∈ ω(log(n)).

Note that when α(n) = n (i.e., the key is chosen uniformly at random), the above definition
is equivalent to the standard notion of CPA/semantic security, since we can simply define D(n, `)
to output fresh encryptions of the form Enck(0`), where k is initially chosen uniformly at random
and re-used for all queries. On the other hand, when considering α(n)-weak keys, the above
definition is somewhat stronger than just requiring that the adversary cannot distinguish between
an encryption of m and that of some set message, such as 0`. In particular, it requires that there
is a single universal distribution D on ciphertexts that is indistinguishable from encryption with
any key distribution Xn of sufficient min-entropy. For example, consider an encryption scheme
which, along with the ciphertext, always outputs the first bit of the secret key. Although such
scheme might satisfy a natural definition whereby encryptions of m0 and m1 are indistinguishable,
it could never satisfy the above definition, even for α(n) = n− 1. The reason is that the ciphertext
distribution is now different depending on whether the keys come from a distribution that fixes the
first bit at 0 versus one which fixes the first bit at 1. Although our definition is stronger than one
may need, we will show that it is necessary and sufficient for our equivalence with obfuscation to
hold. Moreover, all natural constructions of encryption schemes with weak keys that we know of
achieve the above definition.

We also define a “wrong-key detection” property, which will be needed to achieve correctness
in obfuscation.

Definition 4.6. An encryption scheme satisfies the wrong-key detection property if for all k 6= k′ ∈
{0, 1}n and m ∈ {0, 1}poly(n), Pr[Deck′(Enck(m)) 6= ⊥] ≤ negl(n).

We note that a similar, but weaker, property called confusion freeness was defined in [68]. For

65

confusion freeness, the keys k, k′ are random and independent, while we consider a worst-case choice
of k, k′ so the probability above is only over the randomness of the encryption scheme.

Lemma 4.7 shows that, in the case of semantic security, wrong-key detection can always be
achieved via a simple transformation. We note, however, that this transformation no longer works
in the case of CPA security.

Lemma 4.7. Let (Enc,Dec) be a semantically-secure encryption scheme for α(n)-weak keys and
let H be a pairwise-independent permutation family. Define an encryption scheme (Enc′,Dec′) by:

Enc′k(m) ,

{
Choose: h← H, r ← Un

Output: 〈r, h, c = Ench(k)(r ◦m)〉

Dec′k(〈r, h, c〉) ,

{
Compute: (r′ ◦m′) = Dech(k)(c)

Output: m′ if r′ = r and ⊥ otherwise,

where ◦ denotes string concatenation. Then, (Enc′,Dec′) is a semantically secure encryption scheme
for α(n)-weak keys with wrong-key detection. The above also holds if we replace “α(n)” with “fully.”

Proof. Let us first show that the modification preserves semantic security for α(n)-weak keys. Let
D(n, `) be the distribution for which the semantic security of (Enc,Dec) is satisfied, and define
D′(n, `) = D(n, `+ n). Then, for any adversary A attacking the modified scheme (Enc′,Dec′), and
any distribution ensemble {Xn}n∈N we have

|Pr[SEM0(A,n) = 1]− Pr[SEM1(A,n) = 1]|
=
∣∣Pr
[
m← A(1n), r ← Unh← H, k ← Xn, c← Ench(k)(r ◦m0) : A(1n, c) = 1

]
− Pr

[
m← A(1n), c← D′(n,m) = D(n, |m|+ n) : A(1n, c) = 1

]∣∣
≤ max

r∈{0,1}n,h∈H
|Pr [m← A(1n), k ← h(Xn), c← Enck(r ◦m) : A(1n, c) = 1]

− Pr [m← A(1n), c← D(n, |m|+ n) : A(1n, c) = 1]|

which is negligible due to the semantic security of the original (Enc,Dec) scheme and the fact that,
for any fixed permutation h, the distribution h(Xn) has the same entropy as Xn.

Now we show that the modified scheme has wrong-key detection. Assume otherwise, that
there is some polynomial ρ and infinitely many values n for which there exists k 6= k′ ∈ {0, 1}n,
m ∈ {0, 1}poly(n) such that

Pr[Dec′k′(Enck(m)) 6= ⊥] = Pr
h←H,r←Un

[Dech(k′)(Ench(k)(r ◦m)) has a prefix r]

= Pr
k←Un,k′←Un,r←Un

[Deck′(Enck(r ◦m)) has a prefix r] ≥ ρ(n).

Now we show that the final inequality contradicts the semantic security of (Enc,Dec) (even for
uniform keys). In particular, consider an adversary A which queries the challenger on the messages
m∗ = r◦m, for a random r and for the m which contradicts correctness and satisfies the inequality.
On input c, the adversary A picks a random k′ ← Un and outputs 1 iff Deck′(c) begins with
r. By the inequality, we see that in the semantic-security game SEM0 (where the encryption is
of the message m) A outputs 1 with probability ρ(n). On the other hand, in SEM1, no matter
what distribution D the challenger samples from, the result is independent of r and therefore, the
probability that A outputs 1 is the probability that Deck′(Enck(m0)) begins with r, which is at
most 1/2n. Therefore the adversary A has a non-negligible advantage in the semantic-security game
for any D, which gives a contradiction.

66

4.2.3 Proof of Theorem 4.2

Now we return to the two technical statements about α-entropic security that were described
in Section 4.2.1: proving Theorem 4.2 and comparing different α(n) security properties. Before
proceeding, we caution that these details are rather technical in nature. A reader who is uninterested
in these technical details (and willing to take our assertions about α-entropic security in Section
4.2.1 on faith) in may safely skip to Section 4.3.

With that disclaimer out of the way, in this section we prove Theorem 4.2, which states that an
obfuscator O with fully-entropic security satisfies the virtual black-box property in Definition 2.4.
Note that rather than stating the virtual black-box property must hold for all circuits (that is, all k
and m), we could instead require that it hold for all distributions Xn and Yn without changing the
strength of the guarantee. With this change in place, the virtual black-box definition appears to be
stronger than fully-entropic security because it does not impose any constraint on the min-entropy
of the distribution Xn. However, we show in this section that this is not the case.

We do not work with the virtual black-box definition directly, but rather use two intermediate
definitions. These definitions were presented in the survey for the case of point circuits (Definitions
3.16 and 3.17), and we extend them here to the multi-bit setting.

Definition 4.8 (Distributional indistinguishability [23]). For any PPT adversary A with binary
output and for any distribution {Xn, Yn}n∈N with H∞(Xn) ∈ ω(log(n)), the distributions

〈k,m,A(O(I(k,m)))〉 and 〈k,m,A(O(I(k′,m′)))〉

are computationally indistinguishable, where (k,m), (k′,m′)← {Xn, Yn} independently.

Definition 4.9 (Oracle indistinguishability [23]). For any PPT adversary A with binary output
and any polynomial ρ, there exists a polynomial-sized family of sets of keys {Ln}n∈N such that for
all sufficiently large n, all k, k′ /∈ Ln and all m,m′,∣∣Pr[A(O(I(k,m))) = 1]− Pr[A(O(I(k′,m′))) = 1]

∣∣ < 1
ρ(n)

.

We prove Theorem 4.2 by showing that fully-entropic security implies the distributional indis-
tinguishability property, which in turn implies oracle indistinguishability, which finally implies the
virtual black-box property. The main ideas in these proofs are adapted from [23] to the multi-bit
setting.

Lemma 4.10. If an obfuscator O satisfies fully-entropic security, then it satisfies distributional
indistinguishability.

Proof. Suppose for the sake of contradiction that O does not satisfy distributional indistinguishabil-
ity, so there exists an adversary A, distribution {Xn, Yn} with H∞(Xn) ∈ ω(log(n)), distinguisher
D, and polynomial ρ such that for infinitely many values of n,∣∣Pr[D(k,m,A(O(I(k,m))) = 1]− Pr[D(k,m,A(O(I(k′,m′))) = 1]

∣∣ ≥ 1
ρ(n)

,

where (k,m) and (k′,m′) are independently sampled from {Xn, Yn}. Let β(n) = H∞(Xn). We
show that the same adversary A breaks the fully-entropic security of O because it breaks α-entropic
security for α(n) = β(n)− log(10ρ(n)). Note that α ∈ ω(log(n)) as desired.

Define γk,m = Pr[A(O(I(k,m))) = 1], where the probability is taken over the randomness of A
and O. It follows from the above inequality that there exist two sets Z1, Z0 ⊂ {0, 1}n such that:

67

• For any (k,m) ∈ Z1, (k′,m′) ∈ Z0 we have γk,m − γk′,m′ > 1
10ρ(n) .

• The sets are fairly large: for (k,m)← {Xn, Yn}, Pr[(k,m) ∈ Z1] = Pr[(k,m) ∈ Z0] = 1
10ρ(n) .

Let {X1
n, Y

1
n } and {X0

n, Y
0
n } be the distributions formed by taking {Xn, Yn} and conditioning on

the event that a key-message pair is chosen from Z1 or Z0, respectively. We claim that the two
distributions {Xb

n, Y
b
n} for b ∈ {0, 1}n each have min-entropy α. This holds because for any k, m,

Pr[{Xb
n, Y

b
n} = (k,m)] ≤ Pr[{Xn, Yn} = (k,m)] · 10ρ(n)

since equality holds if (k,m) ∈ Zb and the left side probability equals 0 if (k,m) /∈ Zb. Therefore,
by the union bound,

Pr[Xb
n = k] ≤ Pr[Xn = k] · 10ρ(n) ≤ 2−β · 10ρ(n) = 2−α.

As a result, given any PPT simulator SI(k,m) where (k,m) is chosen from either {X1
n, Y

1
n } or

{X0
n, Y

0
n }, the simulator only queries the correct key k with negligible probability. Hence,

Pr[(k,m)← {X1
n, Y

1
n } : SI(k,m)(1n) = 1]− Pr[(k,m)← {X0

n, Y
0
n } : SI(k,m)(1n) = 1]

is negligible. On the other hand, we know that

Pr[(k,m)← {X1
n, Y

1
n } : A(O(I(k,m))) = 1]− Pr[(k,m)← {X0

n, Y
0
n } : A(O(I(k,m))) = 1] >

1
10ρ(n)

.

As a result, it follows by the triangle inequality that for any simulator S, either

Pr[(k,m)← {X1
n, Y

1
n } : A(O(I(k,m))) = 1]− Pr[(k,m)← {X1

n, Y
1
n } : SI(k,m)(1n) = 1] >

1
20ρ(n)

,

or the corresponding inequality holds for {X0
n, Y

0
n }. Hence, one of these distributions breaks the

α-entropic security of O and thus the fully-entropic security of O, as desired.

Lemma 4.11. If an obfuscator O satisfies distributional indistinguishability, then it satisfies oracle
indistinguishability.

Proof. Assume for the sake of contradiction that there exist a PPT adversary A and polynomial ρ
that break oracle indistinguishability. We define the following constants:

γk,m = Pr[A(O(I(k,m))) = 1], m1
k = arg max

m
{γk,m}, m0

k = arg min
m
{γk,m}, γ1

k = γk,m1
k
, γ0

k = γk,m0
k
.

Because A and ρ break oracle indistinguishability, for any polynomial-sized family of sets
{Ln}n∈N and for infinitely many n, there exist k, k′ /∈ Ln and m,m′ such that γk,m − γk′,m′ ≥ 1

ρ(n) .
Without loss of generality, we can assume m = m1

k and m′ = m0
k′ , since γk,m1

k
≥ γk,m and

γk′,m0
k′
< γk′,m′ .

Hence, for any polynomial-sized family of sets {Ln}n∈N and for infinitely many values of n,
there exist k, k′ /∈ Ln such that

γ1
k − γ0

k′ ≥
1

ρ(n)
. (4.1)

For a given constant c ∈ N, construct the family of sets {Lcn}n∈N in the following manner. The
set Lcn = Scn ∪ T cn, where Scn is the set of the nc keys k with the maximal values of γ1

k , and T cn is

68

the set of nc keys k′ with the minimal γ0
k′ . Clearly, |Lcn| ≤ |Scn|+ |T cn| = 2nc so the family {Lcn} is

polynomially-bounded in size. Hence, for any c ∈ N, and for all n such that equation (4.1) holds
for the family {Lcn}, we have that any keys k ∈ Scn and k′ ∈ T cn satisfy γ1

k − γ0
k′ ≥

1
ρ(n) .

Next, we form the families {Ŝn}n∈N and {T̂n}n∈N as follows. Given n, let cn be the largest value
such that equation (4.1) is satisfied with respect to n and Lcnn . Then, Ŝn is defined recursively, as
follows.

1. The base case is Ŝ0 = Sc00 .

2. For n > 0, let n′ be such that Ŝn−1 = S
cn′
n−1. Then, Ŝn equals the largest set out of Scnn and

S
cn′
n .

We define T̂n analogously. Finally, we form the distribution {Xn, Yn} that is uniform over the
key-message pairs (k,m1

k) for all k ∈ Ŝn and the key-message pairs (k′,m0
k′) for all k′ ∈ T̂n. This

distribution is well-spread, because given any polynomial nd, there exists a value n0 such that
|Ŝn| = |T̂n| > nd for all n > n0.

We show that there exists a distinguisher D such that for infinitely many values of n,

Pr[D(k,m,A(O(I(k,m)))) = 1]− Pr[D(k,m,A(O(I(k′,m′)))) = 1] ≥ 1
3ρ(n)

, (4.2)

where (k,m) and (k′,m′) are independently drawn from {Xn, Yn}.
We construct the distinguisher D as follows. Let γ̂n be a constant such that γ1

k − γ̂n ≥
1

2ρ(n)

for all k ∈ Ŝn and γ̂n − γ0
k ≥

1
2ρ(n) for all k ∈ T̂n. This is known to D by non-uniformity.9

The distinguisher receives as input a key k, message m, and bit b. It estimates γk,m by sampling
A(O(I(k,m))) for many independent choices of the randomness for A and O. If its estimate of γk,m
is at least γ̂n, then D outputs b. Otherwise, it outputs 1− b.

We demonstrate that the distinguisher D satisfies equation (4.2) for all n such that Ŝn = Scn for
some c. There are infinitely many such n’s. Our distribution has the property that for (k,m) ←
{Xn, Yn}, the value γk,m is bigger than γ̂n with probability 1

2 and is smaller with probability 1
2 .

Also, the distinguisher will make the correct determination on whether γk,m is bigger or smaller
than γ̂n with overwhelming probability.

The distinguisher receives as input k, m, and a bit b = A(O(I(k′,m′))), where (k′,m′) either
equals (k,m) or is an independent sample from {Xn, Yn}. Some basic probability calculations show
that

Pr[D = 1]

{
≥ 1

2 + 1
2ρ(n) − negl(n) when γk,m and γk′,m′ are both larger or both smaller than γ̂n,

≤ 1
2 −

1
2ρ(n) + negl(n) when γk,m and γk′,m′ are separated by γ̂n,

where this probability is taken over (k,m)← {Xn, Yn} and the randomness of D, A, and O. When
(k′,m′) = (k,m), the first case always holds, and when (k′,m′) is an independent sample, the two
cases each hold with probability 1

2 . Therefore,

Pr[D = 1 : (k′,m′) = (k,m)]− Pr[D = 1 : (k′,m′)← {Xn, Yn}] ≥
1

2ρ(n)
− negl(n),

as desired.
9Recall that throughout this thesis, adversaries and simulators are allowed to be non-uniform. Here, the distin-

guisher is an adversary that “attacks” the notion of distributional indistinguishability, so we allow it to be non-uniform
as well. In fact, non-uniformity is critical to this proof.

69

Lemma 4.12. If an obfuscator O satisfies oracle indistinguishability, then it satisfies the virtual
black-box property.

Proof. Assume that oracle indistinguishability holds. Let A be a PPT adversary with binary output
and let {Ln} be the polynomial-sized family of sets associated to A. We form a simulator SI(k,m)

that queries its oracle on all of the keys in Ln. If k ∈ Ln, then the simulator learns k and m, and
it emulates an execution of A(O(I(k,m))). In this case, its simulation is perfect.

Otherwise, the simulator can run A(O(I(k′,m′))) for any k′ /∈ Ln and any m′. By α-oracle
indistinguishability,

Pr[SI(k,m)(1n) = 1] = Pr[A(O(I(k′,m′))) = 1] ≈ Pr[A(O(I(k,m))) = 1]

where the ≈ denotes a negligible difference in probability. Finally, the simulator’s runtime is
bounded by the size of Ln and the runtime of A, so S runs in polynomial time as desired.

The three lemmas together prove Theorem 4.2.

4.2.4 Comparison of α-obfuscation definitions

In this section, we discuss the definition of α-entropic security. The goal of entropic security is to
weaken the virtual black-box property in Definition 2.4, which is very strong and thus far can only
be satisfied under non-standard assumptions such as a strong variant of the DDH assumption [23],
an exponentially hard to invert one-way function [93], or the random oracle model [63].10

We believe there are two natural ways to weaken the virtual black-box property. First, we
can increase the min-entropy requirement, as α-entropic security does. Second, we can give the
simulator a super-polynomial runtime so it can make more queries to its oracle.

In this work, we choose to do the former. This section justifies that decision by showing that
α-entropic security implies a virtual black-box style definition in which the simulator receives a
boost to its running time.

Definition 4.13 (α-runtime security). For any PPT adversary A with binary output, there exists a
negligible function ε(n) and a simulator S running in time ε(n) ·2α(n) such that for all distributions
{Xn, Yn}n∈N with Xn taking values in {0, 1}n and Yn taking values in {0, 1}poly(n), we have:∣∣Pr

[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m)(1n)

]∣∣ ≤ negl(n),

where the probability is taken over the randomness of (k,m)← (Xn, Yn), A, S, and O.

In this definition, we choose to give the simulator negl(n) · 2α(n) running time so that it does
not quite have enough time to query everything in the support of a distribution with min-entropy
α(n), but other than this restriction S has the “largest” runtime possible.

Theorem 4.14. If an obfuscator satisfies α-entropic security, then it satisfies α-runtime security.

The rest of this section is devoted to a proof of this theorem. We do not prove the theorem
directly, but rather go through an intermediate definition from [23].

Definition 4.15 (α-oracle indistinguishability [23]). For any PPT adversary A with binary output,
there exists a negligible function ε(n) and a family of sets {Ln}n∈N such that |Ln| ≤ ε(n) · 2α(n)

and for all k, k′ /∈ Ln and all m, m′,∣∣Pr[A(O(I(k,m))) = 1]− Pr[A(O(I(k′,m′))) = 1]
∣∣ < negl(n).

10These constructions are all described in Section 3.2.1.

70

Lemma 4.16. If an obfuscator satisfies α-oracle indistinguishability, then it satisfies α-runtime
security.

The proof of this lemma is identical to that of Lemma 4.12.

Proof. Let A be a PPT adversary with binary output. We form a simulator SI(k,m) that queries its
oracle on all of the keys in Ln. If k ∈ Ln, then the simulator learns k and m, and it emulates an
execution of A(O(I(k,m))). In this case, its simulation is perfect.

Otherwise, the simulator can run A(O(I(k′,m′))) for any k′ /∈ Ln and any m′. By α-oracle
indistinguishability,

Pr[SI(k,m)(1n) = 1] = Pr[A(O(I(k′,m′))) = 1] ≈ Pr[A(O(I(k,m))) = 1],

where the ≈ denotes a negligible difference in probability, as desired.

Lemma 4.17. If an obfuscator satisfies α-entropic security, then it satisfies α-oracle indistin-
guishability.

Proof. Let O be an obfuscator satisfying α-entropic security, and let A be an adversary. We wish
to show the existence of a negligible function ε and family of sets {Ln}n∈N that satisfy α-oracle
indistinguishability.

Given any k and m, we define γk,m = Pr[A(O(I(k,m))) = 1]. Also, we define the following
constants:

µk = average
m
{γk,m}, m1

k = arg max
m

{γk,m}, m0
k = arg min

m
{γk,m}, σk = γk,m1

k
− γk,m0

k

(Note that if the arg max or arg min are simultaneously fulfilled by many messages, then it suffices
to pick any one of them arbitrarily.) Also, let S be the PPT simulator associated with A by α-
entropic security. Clearly, SI(k,m) does not learn any information about m unless it queries the
correct key k, which it can only do for polynomially many keys.

By α-entropic security, it follows that there exists a negligible function ε′ such that at most
ε′ · 2α keys have a non-negligible σk. If this were not the case, then there exists some polynomials
ρ, ξ such that there are at least 2α(n)

ρ(n) keys k with σk >
1

ξ(n) . Let Xn be the distribution that is

uniform over these 2α(n)

ρ(n) keys and 2α(n) − 2α(n)

ρ(n) other keys chosen arbitrarily, and let Y 1
n and Y 0

n be
two distributions on messages such that for a given key k, the distribution Y b

n always chooses the
message mb

k. Both distributions {Xn, Y
b
n} have min-entropy α, and we know that

Pr[(k,m)← {Xn, Y
1
n } : A(O(I(k,m))) = 1]−Pr[(k,m)← {Xn, Y

0
n } : A(O(I(k,m))) = 1] >

1
ρ(n)ξ(n)

.

On the other hand, the simulator cannot distinguish between these two distributions, so by the
triangle inequality property, either

Pr[(k,m)← {Xn, Y
1
n } : A(O(I(k,m))) = 1]− Pr[(k,m)← {Xn, Y

1
n } : SI(k,m)(1n) = 1] >

1
2ρ(n)ξ(n)

,

or the corresponding inequality holds for {Xn, Y
0
n }, which breaks the α-entropic security.

Hence, there are at most ε′ · 2α keys k such that σk is non-negligible. Let L′n be the set of these
keys. Next, we look at µk, and claim that there exists a negligible function ε′′ and a set L′′n of size
at most ε′′ · 2α such that for all k, k′ /∈ L′′n, |µk − µk′ | is negligible.

71

If this were not the case, then at least 2α

poly(n) keys have µk that are noticeably separated from
µ = averagek{µk}. Using a similar proof to the one for σk above, we can then form two well-spread
distributions over these keys such that the adversary can distinguish them but the simulator cannot.

Finally, let ε = ε′ + ε′′ and let {Ln}n∈N be a family of sets with Ln = L′n ∪ L′′n. For all keys
k, k′ /∈ Ln, we know that σk, |µk −µ′k|, and σk′ are negligible, which means that for all messages m
and m′,

Pr[A(O(I(k,m))) = 1] ≈ µk ≈ µ′k ≈ Pr[A(O(I(k′,m′))) = 1],

where ≈ denotes a negligible difference in probability, as desired.

The two lemmas combine to prove Theorem 4.14.

4.3 Encryption with weak keys and obfuscation with independent
messages

4.3.1 Semantically secure encryption

In this section, we show equivalence between semantically secure encryption with weak keys and
obfuscation of the family of point circuits with multi-bit output I for independent messages.

Theorem 4.18. Let α(n) ∈ ω(log(n)). There exist obfuscators for I with α(n)-entropic security
for independent messages if and only if there exist semantically secure encryption schemes with
wrong-key detection for α(n)-weak keys. Furthermore, the above also holds if we replace “α(n)”
with “fully.”

We prove the “if” and “only if” directions in Lemmas 4.19 and 4.20, respectively.

Lemma 4.19. Let α(n) ∈ ω(log(n)) and let O be an obfuscator for I with α(n)-entropic security
for independent messages. Let Enck(m) , O(I(k,m)), Deck(C) , C(k) where the ciphertext C
is interpreted as a circuit. Then the encryption scheme (Enc,Dec) is semantically secure with
α(n)-weak keys and has the wrong-key detection property.

Proof. The correctness of decryption follows from the correctness of obfuscation, so it suffices to
prove the security of the encryption scheme with α(n)-weak keys. Fix any adversary A and any
distribution {Xn}n∈N with H∞(Xn) ≥ α(n). The distribution {Yn} is defined by running A(1n)
and outputting the message m that A gives to its challenger. Define the distribution D(n, `) =
O(I(k,m)) where (k,m)← (Un, U`). Then, by the α(n)-entropic security of obfuscation, there exists
a simulator S such that∣∣∣Pr[SEMX,D

0 (A,n) = 1]− Pr[SEMX,D
1 (A,n) = 1]

∣∣∣
=
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Un,U`)

[A(O(I(k,m))) = 1]
∣∣∣∣

≤
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[SI(k,m)(1n, 1`) = 1]
∣∣∣∣ (4.3)

+
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[SI(k,m)(1n, 1`) = 1]− Pr
(k,m)←(Un,U`)

[SI(k,m)(1n, 1`) = 1]
∣∣∣∣ (4.4)

+
∣∣∣∣ Pr
(k,m)←(Un,U`)

[SI(k,m)(1n, 1`) = 1]− Pr
(k,m)←(Un,U`)

[A(O(I(k,m))) = 1]
∣∣∣∣ (4.5)

72

by the triangle inequality. Finally, (4.3) and (4.5) are negligible by the entropic security of obfus-
cation, and (4.4) is negligible because the only way that a PPT simulator can get anything from
its oracle is by querying it on the input k, which happens with negligible probability when k comes
from a source of super-logarithmic entropy α(n).

Lemma 4.20. Let (Enc,Dec) be an encryption scheme with semantic security for α(n)-weak keys
and with the wrong-key detection property. We define the obfuscator O for I which, on input I(k,m),
computes a ciphertext c = Enck(m) and outputs the circuit Cc that has c hard-coded and is defined
by Cc(x) , Decx(c). Then, O has α(n)-entropic security for independent messages.

Proof. First, we show the correctness property of the obfuscator. Fix k, x ∈ {0, 1}n and m ∈
{0, 1}poly(n). If k = x, then

Pr
[
C ← O(I(k,m)) : C(x) 6= I(k,m)(x)

]
= Pr [Deck(Enck(m)) 6= m] ≤ negl(n)

by the correctness of encryption. On the other hand, if k 6= x then

Pr
[
C ← O(I(k,m)) : C(x) 6= I(k,m)(x)

]
= Pr [Decx(Enck(m)) 6= ⊥] ≤ negl(n)

by the wrong-key detection of encryption.
The polynomial slowdown property of the obfuscator follows from the fact that the size of the

circuit is only proportional to the ciphertext size and the size of the decryption circuit, which are
polynomial in |k| and |m|.

Lastly, we show α(n)-entropic security for independent messages. Let D(n, `) be the distribution
defined by the semantic security of the encryption scheme. For any PPT adversary A, we define
the simulator S which chooses a random ciphertext c from the distribution D(n, `(n)) and runs A
on a circuit Cc constructed using the ciphertext c. Then,∣∣∣Pr [(k,m)← (Xn, Yn) : A(O(I(k,m))) = 1]− Pr [(k,m)← (Xn, Yn) : SI(k,m)(1n, 1`) = 1]

∣∣∣
=
∣∣∣Pr [(k,m)← (Xn, Yn), c← Enck(m) : A(Cc) = 1]− Pr [c← D(n, `) : A(Cc) = 1]

∣∣∣ ,
which is negligible by semantic security.

4.3.2 CPA encryption and self-composable obfuscation

In this section, we show equivalence between CPA secure encryption with weak keys and self-
composable obfuscators for independent messages.

Theorem 4.21. Let α(n) ∈ ω(log(n)). There exist self-composable obfuscators for I with α(n)-
entropic security for independent messages if and only if there exist CPA secure encryption schemes
for α(n)-weak keys and the wrong-key detection property. The above also holds if we replace “α(n)”
with “fully.”

Again, we prove the two sides of the “if and only if” separately. Going from obfuscation
to encryption, it would be natural to define Enck(m) = O(I(k,m)). However, we instead define
Enck(m) = (O(I(k,r)),m⊕ r) for a uniformly chosen r. The reason for this is that the messages m
chosen by the adversary in the CPA game can depend adaptively on prior ciphertexts. However, for
composable obfuscation, the distributions Yi of the messages mi are independent of prior obfuscated
circuits. We get around this by making sure that the obfuscation is applied to a random value.

73

Lemma 4.22. Let α(n) ∈ ω(log(n)) be an arbitrary function. Let O be a self-composable obfuscator
for I with α(n)-entropic security for independent messages. We define an encryption scheme by

Enck(m) , (O(I(k,r)),m⊕ r), Deck(C, y) , C(k)⊕ y,

where r is uniformly random and C is interpreted as a circuit. This encryption scheme is CPA
secure with α(n)-weak keys.

Proof. The correctness of decryption and the wrong-key detection property follow from the cor-
rectness of obfuscation. For the CPA security of the encryption scheme with α(n)-weak keys, we
define the distribution D(n, `) that chooses a uniformly random k ← Un in the beginning, and
then on each invocation, outputs (r,O(I(k,r′))) for uniformly random and independent r, r′ ← U`.
We need to show that for all PPT adversaries A and all distribution ensembles {Xn}n∈N with
H∞(Xn) ≥ α(n), we have∣∣∣Pr[CPAX,D

0 (A,n) = 1]− Pr[CPAX,D
1 (A,n) = 1]

∣∣∣ ≤ negl(n) (4.6)

for the CPA attack game defined in Definition 4.5.
Fix a PPT adversary A and let t be an upper bound on the number of queries that A sends to

its encryption oracle (including the challenge query). There exist some values of the random coins
(r1, . . . , rt) used by the encryption algorithm during the computation of ciphertexts (ri⊕m, I(k,m))

that maximizes the difference in (4.6). Set the distributions Y (0)
1 , . . . , Y

(0)
t+1 to the singletons r1, . . . , rt

and set Y (1)
1 , . . . , Y

(1)
t to be uniform on {0, 1}`.

We define an adversary A′(r1,...,rt)(C1, . . . , Ct) that attacks the obfuscation scheme as follows:
A′ simulates the CPA game with A so that, whenever A queries its oracle on messages mi or
asks for a challenge ciphertext (for i = 1, . . . , t), the adversary A′ responds with (Ci, ri ⊕ mi).
Notice that when C1, . . . , Ct are obfuscations of points r1, . . . , rt ← Y

(0)
1 , . . . , Y

(0)
t+1 under a random

k ← Xn, then the above simulation is equivalent to CPAX,D
0 . On the other hand, when C1, . . . , Ct

are obfuscations of uniformly random r1, . . . , rt ← Y
(1)
1 , . . . , Y

(1)
t+1 under a uniformly random key

k ← U`, then the above is equivalent to CPAX,D
1 . Therefore,∣∣∣Pr [CPAX,D

0 (A,n) = 1]− Pr [CPAX,D
1 (A,n) = 1]

∣∣∣
≤
∣∣∣Pr [Ci ← O(I(k,ri)), (k, r1, . . . , rt)← Xn, Y

(0)
1 , . . . , Y

(0)
t+1 : A′(C1, . . . , Ct) = 1]

−Pr [Ci ← O(I(k,ri)), (k, r1, . . . , rt)← Un, Y
(1)
1 , . . . , Y

(1)
t+1 : A′(C1, . . . , Ct) = 1]

∣∣∣ ,
which is negligible because, by the definition of self-composable obfuscation, there is a simulator
that simulates both sides of the difference equivalently.

The other direction is shown via the same construction as in the case of semantic security.

Lemma 4.23. Let (Enc,Dec) be an encryption scheme with CPA security for α(n)-weak keys and
having the wrong-key detection property. We define the obfuscator O for I which, on input I(k,m),
computes a ciphertext c = Enck(m) and outputs the circuit Cc defined by Cc(x) = Decx(c). Then,
O is a self-composable obfuscator with α(n)-entropic security for independent messages.

Proof. The correctness and polynomial slowdown properties follow from the same argument as
that in the proof of Lemma 4.20. It remains to show that O is self-composable with α(n)-entropic
security for independent messages.

74

For any PPT adversary A and polynomial t, we define the simulator S which, on input 1n and 1`,
chooses t random ciphertexts c1, . . . , ct from the distribution D(n, `) as defined by CPA encryption,
and runs A on a circuits (Cc1 , . . . , Cct) constructed using the ciphertexts c1, . . . , ct. Then, for any
distribution ensemble {Xn}n∈N where Xn is distributed over {0, 1}n with H∞(Xn) ≥ α(n), and t
messages m1, . . . ,mt ∈ {0, 1}`(n), we have∣∣∣∣ Pr

k←Xn

[
A(O(Ik,m1), . . . ,O(Ik,mt)) = 1

]
− Pr
k←Xn

[
SIk,m1

,...,Ik,mt (1n, 1`) = 1
]∣∣∣∣

≤

∣∣∣∣∣ Pr
k←Xn,{ci←Enck(mi)}ti=1

[
A({Cci}ti=1) = 1

]
− Pr
{ci←D(n,`)}ti=1

[
A({Cci}ti=1) = 1

]∣∣∣∣∣
which is negligible by CPA security.

4.4 Auxiliary input

In this section we define semantic and CPA secure encryption with auxiliary input that comes from
a family of functions Z. The adversary chooses a function z ∈ Z of her choice and learns z(k).11

Similarly, we define (self-composable) obfuscation with independent messages and auxiliary input
family Z, where the adversary and simulator both get z(k) for some z ∈ Z. Then, we show that
all of the results of Section 4.3 extend naturally to the auxiliary input setting.

Definition 4.24. An encryption scheme (Enc,Dec) has CPA security for α(n)-weak keys and
auxiliary inputs in Z if there exists an efficient algorithm D(n, `) running in time poly(n, `), such
that, for all PPT adversaries A and all distribution ensembles {Xn}n∈N with H∞(Xn) ≥ α(n),∣∣∣Pr[CPAX,D

0 (A,n) = 1]− Pr[CPAX,D
1 (A,n) = 1]

∣∣∣ ≤ negl(n),

where the games CPAX,D
b (A,n) for b = 0, 1 are defined via the following experiment:

1: k ← Xn

2: A submits a function z ∈ Z and receives z(k)
3: repeat
4: A submits a query m
5: set c0 ← Enck(m), c1 ← D(n, |m|) and give cb to A
6: until A halts
7: output the result of A

We define semantic security with α(n)-weak keys and auxiliary inputs in Z via the games SEMX,D
b

that are identical to the CPA games except that the repeat loop is performed only once.

Definition 4.25. A self-composable obfuscator O for I with α(n)-entropic security allows auxiliary
inputs from Z if for any PPT adversary A with binary output and polynomial t, there exists a
PPT simulator S such that for all polynomials `, auxiliary input z ∈ Z and all jointly-distributed
{(Xn, Yn)}n∈N where Xn takes values in {0, 1}n, Yn = Y

(1)
n , . . . , Y

(t)
n with each Y

(i)
n taking values

11Note that this is only interesting for families Z where each z ∈ Z is hard to invert, as otherwise z(k) completely
reveals k and no security is possible. Often, it makes sense to restrict Z much further, such as requiring that z(k) is
exponentially hard to invert.

75

in {0, 1}`(n), and H∞(Xn) ≥ α(n), we have:∣∣∣Pr[A(z(k),O(I(k,m1)), . . . ,O(I(k,mt))) = 1]− Pr[SI(k,m1),...,I(k,mt)(z(k), 1n, 1`) = 1]
∣∣∣ ≤ negl(n),

where the probabilities are over (k1, . . . , kt,m1, . . . ,mt) ← (Xn, Yn) and the randomness of A, S,
and O.

An ordinary, non-composable, obfuscator for I with α(n)-entropic security and auxiliary inputs
from Z satisfies the above definition for t = 1.

The definitions extend naturally to obfuscators with fully-entropic security, where we require
that the above definition holds for all α(n) ∈ ω(log(n)). It also extends to obfuscators for indepen-
dent messages, where we restrict the definition to the case where Xn and Yn are independent (but
without an independence assumption among the coordinates within Xn or Yn).

Equivalences

The equivalences between encryption and obfuscation extend naturally to the auxiliary input set-
ting, based on the same constructions that were used in Section 4.3.

Theorem 4.26. Let α(n) ∈ ω(log(n)) and let Z be a family of functions. There exist obfuscators
for point circuits with multi-bit output that are α(n)-entropic secure with independent messages and
auxiliary inputs from Z if and only if there exist semantically secure encryption schemes for α(n)-
weak keys and auxiliary inputs from Z that have the wrong key detection property. The equivalence
also holds if we replace “α(n)” with “fully.”

Furthermore, equivalence also holds between self-composable obfuscators and CPA secure en-
cryption schemes with the above properties.

To prove this theorem, simply give A and S auxiliary input throughout the proofs of Lemmas
4.19, 4.20, 4.22, and 4.23. We omit further details here, and refer the interested reader to [27,
Lemmas 4.1 to 4.4] for a complete proof.

4.5 KDM encryption

4.5.1 Semantically secure KDM encryption

In this section, we show equivalence between encryption with key-dependent messages (KDM) and
obfuscation with dependent messages. First, we define the notion of semantically-secure KDM
encryption with α(n)-weak keys.

Definition 4.27. A symmetric key encryption scheme (Enc,Dec) is semantically secure for key-
dependent messages and α(n)-weak keys if there exists a distribution D(n, `) that is efficiently
sampleable in time poly(n, `) such that, for all (possibly randomized) functions f , all PPT adver-
saries A, and all distribution ensembles {Xn}n∈N with H∞(Xn) ≥ α(n), we have:∣∣∣Pr[KDMX,D

0 (A,n) = 1]− Pr[KDMX,D
1 (A,n) = 1]

∣∣∣ ≤ negl(n),

where KDMX,D
b (A,n) is defined via the following experiment:

1: choose k ← Xn, c0 ← Enck(f(k)), and c1 ← D(n, `), where ` is the output length of f
2: output A(cb)

76

Unlike standard definitions of KDM security, we do not require that f is an efficient function. We
now show that semantically secure encryption with KDM and weak key security is equivalent to
the standard notion of obfuscation, which allows for dependent input.

Theorem 4.28. Let α(n) ∈ ω(log(n)). There exist obfuscators for I with α(n)-entropic security
for dependent messages if and only if there exist semantically secure KDM encryption schemes
with α(n)-weak keys and wrong-key detection. The equivalence also holds if we replace “α(n)” with
“fully.”

The proof of the above theorem is very similar to that of Theorem 4.21. We simply observe that
allowing the adversary to get encryptions of values f(k) corresponds to having a distribution Yn that
depends on Xn by the relationship Yn = f(Xn). Conversely, for any joint distribution {Xn, Yn},
we can define some (probabilistic, and possibly inefficient) function f so that Yn = f(Xn). We give
the details below. Again, we prove the two sides of the “if and only if” separately.

Lemma 4.29. Let α(n) ∈ ω(log(n)) be an arbitrary function, and O be an obfuscator for I with
α(n)-entropic security. Define Enck(m) , O(I(k,m)) and Deck(C) , C(k), where the ciphertext C
is interpreted as a circuit. The resulting encryption scheme (Enc,Dec) is semantically secure for
key-dependent messages with α(n)-weak keys and wrong-key detection.

Proof. The correctness of decryption follows from the correctness of obfuscation. For the security
of the resulting KDM encryption scheme with α(n)-weak keys, let us fix any adversary A, function
f , and distribution {Xn}n∈N with H∞(Xn) ≥ α(n). Define Yn = f(Xn). By the entropic security
of obfuscation with dependent messages, there exists a simulator S such that:

|Pr[KDM0(A,n) = 1]− Pr[KDM1(A,n) = 1]|

=
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
k←Xn

[A(O(I(k,0`))) = 1]
∣∣∣∣

≤
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1]− Pr
(k,m)←(Xn,Yn)

[SI(k,m)(1n, 1`) = 1]
∣∣∣∣ (4.7)

+
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[SI(k,m)(1n, 1`) = 1]− Pr
k←Xn

[SI(k,0`)(1n, 1`) = 1]
∣∣∣∣ (4.8)

+
∣∣∣∣ Pr
k←Xn

[SI(k,0`)(1|k|, 1`) = 1]− Pr
k←Xn

[A(O(Ik,0`)) = 1]
∣∣∣∣ (4.9)

by the triangle inequality. Finally, (4.7) and (4.9) are negligible by the definition of entropic security
of obfuscation with dependent messages, and (4.8) is negligible because the only way that a PPT
simulator can get anything from its oracle is by querying it on the input k, which happens with
negligible probability when k comes from a source of super-logarithmic entropy α(n).

Lemma 4.30. Let (Enc,Dec) be an encryption scheme with semantic KDM security for α(n)-
weak keys with wrong-key detection. We define an obfuscator O for I which, on input I(k,m),
computes a ciphertext c = Enck(m) and outputs the circuit Cc that has c hard-coded and is defined
by Cc(x) , Decx(c). Then, O has α(n)-entropic security for dependent messages.

Proof. The correctness and polynomial slowdown properties follow the argument in Lemma 4.20.
For entropic security, let D(n, `) be the distribution defined by the semantic security of the en-
cryption scheme. For any PPT adversary A, we define the simulator S which chooses a random
ciphertext c from the distribution D(n, `(n)) and runs A on a circuit Cc constructed using the
ciphertext c.

77

Then, for any distribution ensemble {Xn, Yn}n∈N where Xn is distributed over {0, 1}n with
H∞(Xn) ≥ α(n), define the function f(k) which, on input k, outputs a random sample from the
distribution of Yn conditioned on Xn = k. Note that this function may not be efficient, but our
definition of KDM encryption allows this. Then,∣∣∣∣ Pr

(k,m)←(Xn,Yn)

[
A(O(I(k,m))) = 1

]
− Pr

(k,m)←(Xn,Yn)

[
SI(k,m)(1n, 1`) = 1

]∣∣∣∣
=
∣∣∣∣ Pr
k←Xn,c←Enck(f(k))

[
A(Cc) = 1

]
− Pr
c←D(n,`)

[
A(Cc) = 1

]∣∣∣∣ ,
which is negligible by semantic security.

4.5.2 Multi-KDM encryption and self-composable obfuscation

In this section, we explore a notion of CPA security with KDM and weak keys. We essentially
show results analogous to those in Section 4.3.2 connecting CPA encryption (without KDM) to
obfuscation with independent messages, but only if we restrict ourselves to a non-adaptive attacker
who chooses the function f of the secret key prior to seeing any ciphertexts.

Definition 4.31 (Multi-KDM encryption). A symmetric encryption scheme (Enc,Dec) is multi-
KDM secure for α(n)-weak keys if there exists a distribution D(n, `) such that for any t = poly(n),
any functions f1, . . . , ft, any PPT adversary A, and any distribution ensemble {Xn}n∈N with
H∞(Xn) ≥ α(n), we have

Pr [A(Enck(f1(k)), . . . ,Enck(ft(k)) = 1]− Pr [ci ← D(n, `i) : A(c0, . . . , ct) = 1] ≤ negl(n),

where `i is the output size of fi.

Theorem 4.32. Let α(n) ∈ ω(log(n)) be an arbitrary function. Let O be a self-composable obfus-
cator for I with α(n)-entropic security (for dependent messages). We define an encryption scheme
by

Enck(m) , O(Ik,m), Deck(C) , C(k),

where C is interpreted as a circuit. This scheme is multi-KDM secure with α(n)-weak keys.

Proof. The correctness of decryption follows from the correctness of obfuscation. For the multi-
KDM security of the encryption scheme, fix any PPT adversaryA, polynomial t, functions f1, . . . , ft,
and distribution ensemble {Xn}n∈N with H∞(Xn) ≥ α(n). Then,∣∣∣∣ Pr

k←Xn

[
A(Enck(f1(k)), . . . ,Enck(ft(k))) = 1

]
− Pr
k←Xn

[
A(Enck(0`1), . . . ,Enck(0`t)) = 1

]∣∣∣∣
=
∣∣∣∣ Pr
k←Xn

[
A(O(I(k,f1(k))), . . . ,O(I(k,ft(k)))) = 1

]
− Pr
k←Xn

[
A(O(I(k,0`1)), . . . ,O(I(k,0`t))) = 1

]∣∣∣∣ .
We claim that the above quantity is negligible. Because O is a self-composable obfuscator, there
exists a simulator S that can distinguish I(k,f1(k)), . . . , I(k,ft(k)) from I(k,0`1), . . . , I(k,0`t) as well as A
can. However, S can only distinguish the functionalities by querying the correct key k, which hap-
pens with negligible probability since k is chosen from a distribution of super-logarithmic entropy.
Therefore, the above quantity is negligible as desired.

78

Theorem 4.33. Let (Enc,Dec) be an encryption scheme with multi-KDM security for α(n)-weak
keys with wrong-key detection. We define an obfuscator O for I which, on input I(k,m), com-
putes a ciphertext c = Enck(m) and outputs the circuit Cc that has c hard-coded and is defined by
Cc(x) , Decx(c). Then, O is a self-composable obfuscator with α(n)-entropic security for dependent
messages.

Proof. The correctness and polynomial slowdown properties follow the argument in Lemma 4.20,
so it remains to show that O is self-composable with α(n)-entropic security for dependent messages.

Let D(n, `) be the distribution defined by the semantic security of the encryption scheme.
For any PPT adversary A and polynomial t, we define the simulator S which chooses t random
ciphertexts c1, . . . , ct from the distribution D(n, `(n)) in the multi-KDM security definition, and
runs A on the circuits (Cc1 , . . . , Cct) constructed using the ciphertexts c1, . . . , ct. Then, for any
distribution ensemble {Xn}n∈N where Xn is distributed over {0, 1}n with H∞(Xn) ≥ α(n), and
any t functions f1, . . . , ft, we have∣∣∣Pr[k ← Xn : A(O(Ik,f1(k)), . . . ,O(Ik,ft(k))) = 1]− Pr[SIk,f1(k),...,Ik,ft(k)(1n, 1`) = 1]

∣∣∣
≤ |Pr [k ← Xn, ci ← Enck(fi(k)) : A(Cc1 , . . . , Cct) = 1]− Pr [ci ← D(n, `) : A(Cc1 , . . . , Cct) = 1]| ,

which is negligible because the encryption scheme is multi-KDM secure.

4.6 Implications

We now show how to use the above equivalence results between encryption with weak keys and
obfuscation of point circuits with multi-bit output to derive new results in both directions.

4.6.1 Encryption with fully weak keys

Prior work on leakage-resilient encryption and encryption with weak-keys has given results of the
following form:

1. Fix any constant ε > 0 and let α(n) = nε.

2. Based on ε, construct an encryption scheme that achieves security for α(n)-weak keys.

There are several concerns with the above two-step approach. Firstly, we may not have a lower
bound on the key entropy at design time. Thus, in practice it may be difficult to decide which ε to
use when constructing the encryption scheme. A scheme that is designed for some specific ε may
not provide any security guarantees for key distributions whose entropy is less than nε. As a result,
we may be tempted to be conservative with the choice of ε at design time. On the other hand,
when taking an excessively small value of ε in the above constructions, we are forced to reduce the
exact-security of the system (say, by working in a group of description length nε) or reduce the
efficiency of the system proportionally with n1/ε, leading to poorer security or performance even if
the system is later only used with uniformly random keys! Secondly, none of the prior results allow
for slightly super-logarithmic entropy thresholds such as α(n) = log1+ε(n), even if ε is specified a
priori.

In contrast, an encryption scheme with security for fully weak keys provides the corresponding
advantages. More specifically, the order of quantifiers now requires that there is a single encryption
scheme, parametrized only by the security parameter n (but not by ε), which simultaneously
achieves security for all α(n) ∈ ω(log(n)). The exact-security of the scheme may depend on α(n)

79

(since there is always a way to break the scheme in 2α(n) time), but this relationship is now more
fluid, with the exact-security gracefully degrading for smaller α(n). In particular, the security
guarantees are meaningful even for α(n) = log1+ε(n), and there is no single threshold above which
the scheme is secure and below which it is insecure. This is a significant advantage, as it does not
require one to decide at design time on the tradeoff between allowed entropy levels and achieved
security/efficiency. However, there are no encryption schemes in the literature that can withstand
fully weak keys.

Fortunately, we do have an obfuscator for point circuits with multi-bit output [25] that is
easily seen to be self-composable. (See Section 3.2.1 for details.) Using our connection between
obfuscation and encryption (Lemma 4.22), we get the first symmetric-key encryption scheme with
CPA security for fully weak keys (albeit under a strong assumption).

Theorem 4.34. Under the strong DDH assumption (Assumption 3.20), there exists a CPA-secure
symmetric encryption scheme with security against fully weak keys. In particular, this means that
there is a single scheme, parametrized only by the security parameter n, such that security of the
scheme is maintained when the key is chosen from any distribution of entropy α(n) ∈ ω(log(n)).

Such a construction may be important in practice if we want to use secrets such as passwords
or biometrics for encryption. In this case, it is impractical to design a scheme targeted at the
minimal amount of entropy that one wishes to support, secure if the actual entropy of the secret
used exceeds this threshold. Instead, by using a scheme with CPA security for fully weak keys,
we can employ a single encryption scheme whose security varies depending on the entropy of the
secret key.

The only downside is that Assumption 3.20 is very strong. A potentially weaker formulation
would be to limit the min-entropy of Xn to be at least some specific super-logarithmic function
α(n). This way, we would obtain a parametrized version of Theorem 4.34 that relates the strength
of the security guarantee to the strength of the assumption. It is important to note that the
construction itself is independent of the parameter α. Thus, we obtain a single encryption scheme
that provides a range of security guarantees, depending on the strength of the assumption.

4.6.2 Achieving obfuscation with independent messages

It is fairly simple to construct α(n)-entropically secure obfuscation for independent messages, when
α(n) = nε for some constant ε ≥ 0. First we construct a semantically secure encryption scheme with
α(n)-weak keys. This can be done by simply extracting a sufficient amount of uniform randomness
from the key k, using a strong randomness extractor Ext, and then using the result as a one time
pad to encrypt the message. For variable-length messages, we also need to expand the extracted
randomness to an appropriate size using a pseudo-random generator prg. In particular, we define

Enck(m) = 〈r, prg(Ext(k; r))⊕m〉,

where r is a uniformly random seed for the extractor. The output length of Ext and the input
length of prg are set to some value v which is sufficiently small that the output of the extractor is
(statistically) close to uniform, and sufficiently large that the output of the prg is pseudo-random.12

One can use this encryption scheme to construct one which also has the wrong-key detection
property using Lemma 4.7. Such a scheme yields an obfuscator for I with α(n)-entropic security
for independent messages by Lemma 4.20.

12For example, if we choose v = nε/2, then an extractor based on universal-hash functions will produce an output
which is 2−v/2 = negl(n)-close to uniform, and the output of the pseudorandom generator is negl(nε/2) = negl(n)-
pseudorandom. However, this does not generalize to smaller values of α, such as α(n) = log2(n).

80

Self-composition

The above construction of semantically-secure encryption using extractors does not generalize to
CPA security. In fact, achieving CPA secure encryption with weak keys seems to be a much harder
problem, which has received much attention in recent works [3, 38, 71]. We now show how to use
these results to achieve self-composable entropically secure obfuscation for independent messages.
On a high level, we would simply like to just apply our result connecting such encryption and
obfuscation (Lemma 4.23) “out of the box.” However, there are several issues that we must deal
with first.

Efficiently-sampleable distributions. The works of [3, 38, 71] are concerned with “key leak-
age,” where the adversary gets to learn some (short) function of the secret key whose output length
is at most λ bits. Conditioned on such leakage, the key can be thought of as being derived from
a special type of weak source with entropy α(n) ≈ n − λ. It turns out that the constructions are
also secure when the key is chosen from an arbitrary, but efficiently-sampleable weak source of
entropy α(n) [71]. Therefore, our results for obfuscation will only translate to the case where the
distribution obfuscated program is efficiently sampleable.

Public keys and parameters. Only the scheme of [38] is explicitly designed for the symmetric
key setting. The schemes of [3, 71] are public key encryption schemes. As noted, such schemes
are secure when the key generation procedure uses randomness that comes from a weak source.
Therefore such schemes naturally translate to the symmetric key setting, where the randomness of
the key generation algorithm is the shared secret key. Unfortunately, these schemes also rely on
public parameters which are chosen uniformly at random and are available to the key generation
algorithm. Therefore, we will only get an obfuscator in the presence of public parameters. In
general, having public knowledge is undesirable (indeed, it violates one of our design principles
from Section 1.2.1), but in the specific case of digital lockers it may be reasonable to allow.

Note that in the context of standard obfuscation, public parameters are never needed since the
obfuscator O could always sample fresh parameters each time it runs. However, when considering
composable obfuscation, this equivalence does not hold since future uses of the obfuscator might
compromise the security of prior uses.

Uniform ciphertexts. Recall that our definition of CPA security is slightly different than the
standard one (we require that the ciphertexts of any message are indistinguishable from some
universally specified distribution) and has not been explicitly analyzed by the encryption schemes
in [3, 38, 71]. However, all of the schemes have the property that ciphertexts are indistinguishable
from uniform, which is enough to satisfy our definition.

Wrong-key detection. The wrong-key detection property is explicitly analyzed in [38] but not
in [3, 71]. The latter two schemes have the property that, given the public parameters, it is compu-
tationally difficult to find k, k′ such that Deck′(Enck(m)) 6= ⊥. This translates to a computational
correctness property for the obfuscator where, given the public parameters, it is computationally
difficult to find k, m, and x such that O(I(k,m))(x) 6= I(k,m)(x).

The following theorem summarizes the connections.

Theorem 4.35. For any constant ε > 0, there exists a self-composable obfuscator for I with
independent messages under any of the following assumptions:

1. Decisional Diffie-Hellman (DDH) with nε-entropic security, based on [71].

81

2. Learning With Errors (LWE) with nε-entropic security, based on [3].

3. Learning Subspaces with Noise with εn-entropic security, based on [38].

The constructions only work for efficiently-sampleable key distributions. Furthermore, the first two
constructions require public parameters and only achieve computational correctness.

4.6.3 Difficulty of obfuscation with dependent messages

The connection between encryption and obfuscation also yields new negative results for the more
standard notion of obfuscation that allows for dependent messages, and in particular for the stan-
dard virtual black-box property. We rely on a recent result of Haitner and Holenstein [50], which
shows that there can be no black-box reduction from a semantically secure encryption scheme
with security against key-dependent messages to any “standard” cryptographic assumption, such
as the existence of trapdoor one-way or claw-free permutations, or specific algebraic assumptions
like the hardness of factoring, DDH, or Learning with Errors.13 By Theorem 4.28, we have a re-
duction from semantically secure encryption schemes with security against key-dependent messages
to digital locker obfuscation with n-entropic security (i.e., uniformly random keys). Therefore, the
Haitner and Holenstein’s black-box separation [50] applies to obfuscation as well.

Theorem 4.36. No construction of an obfuscator for point circuits with multi-bit output with
α(n)-entropic security for dependent messages can be proven secure via a black-box reduction to
any “standard” cryptographic assumption. This holds for any α, even α(n) = n (i.e., uniformly
random keys).

Canetti and Dakdouk [25] showed that composable obfuscation of point circuits can be used to
construct digital lockers. Thus we get the following as a corollary.

Corollary 4.37. No construction of a composable obfuscator for point circuits with α(n)-entropic
security can be proven secure via a black-box reduction to any “standard” cryptographic assumption.
This holds for any α, even α(n) = n (i.e., uniformly random keys).

We note that the impossibility result of [50] only considers semantically secure encryption with
variable-length messages and does not rule out KDM security when the message size is shorter than
the key. In fact, [25] constructs digital lockers14 with α(n)-entropic security for dependent messages,
with the constraint that the message size is (significantly) smaller than the key size (i.e., circuits
I(k,m) where |m| < |k|). These constructions only relied on standard cryptographic assumptions
such as collision-resistant hash functions. The above theorem shows that such constructions do not
generalize to variable-length messages, where the message size can exceed the key size.

In contrast, we showed how to construct self-composable digital locker obfuscators with α(n)-
entropic security under standard assumptions, in the case of variable-length independent messages.
It seems that there is little hope in generalizing this approach to the standard notion of obfuscation,
which allows key-dependent messages.

13More precisely, the notion of “cryptographic assumption” is formalized in [50] as any game between an attacker
and a challenger in which we assume that all PPT attackers have a negligible success probability. Hence, the
impossibility result does not exclude proofs of security in the random oracle model, reductions to non-standard
assumptions that cannot be formulated as a game between an adversary and a challenger (such as the knowledge of
exponent assumption [11, 49]), or non-black-box reductions.

14See Section 3.2.1 for an overview of the construction.

82

Chapter 5

Non-malleable Obfuscation

This chapter is based on joint work with Ran Canetti [31, 32].

5.1 Introduction

We motivated program obfuscation in Section 1.1 as the software analog to tamper-proof hardware.
However, the virtual black-box property (Definition 2.4) and its extensions1 do not quite satisfy
this analogy.

The problem is that tamper-proofing a hardware chip provides two distinct security guarantees:
first, that an adversary does not learn what the chip is doing “under the hood,” and second, that
the adversary cannot tinker with the chip to alter its behavior (say, by inserting or cutting wires).
By contrast, the virtual black-box property only gives an unlearnability guarantee. It does not
explicitly rule out malleability attacks, where an adversary that sees an obfuscated program is able
to generate another (potentially obfuscated) program that is related to the original one.

This is not simply a theoretical concern, but can be desirable in practice. We motivate the
problem with an example: suppose that Alice, Bob, and Charles are three graduate students that
share a computer. Obfuscating the computer’s login program protects the students’ passwords
from outsiders, but we may also want to prevent tampering of the login program by the students
themselves. For instance, a malicious Alice might attempt to remove Bob’s access to the computer.
We could thwart this attack by protecting the login program in tamper-proof hardware, but we
want an anti-tamper guarantee in software.2

The virtual black-box property does not explicitly forbid such attacks, but it does intuitively
appear to prevent tampering.

Näıve claim. A virtual black-box obfuscator O (as in Definition 2.4) is non-malleable in the sense
that an adversary with an obfuscated circuit O(C) cannot form a new circuit that is related to O(C)
except in trivial ways such as querying O(C) at a polynomial number of locations and forming a
new circuit that depends on its responses.

Proof sketch. By the virtual black-box property, there exists a simulator that is associated with
this adversary. The simulator only has oracle access to C, so any action that it undertakes can
only depend on querying C at a polynomial number of locations (perhaps adaptively). Therefore,
the same should hold for the adversary.

1In this chapter, we use the Goldwasser and Kalai definition of obfuscation with dependent auxiliary input [43].
2We discuss this example in far more detail in Section 1.3.2, and strongly encourage the reader to review it before

proceeding.

83

However, this “proof” is incorrect because the virtual black-box property only considers adver-
saries and simulators that output one bit, not entire circuits. Furthermore, the problem here is not
just a faulty proof, but rather that the underlying claim is incorrect.

The virtual black-box property does not contain an anti-tampering guarantee, and in fact the
known obfuscators for the family of multi-point circuits are malleable [12, 23, 28] in the sense
that an adversary can modify an obfuscated circuit O(Iw) into a new one O(Iw′) such that she
understands the relationship between w and w′. For instance, in the above example, Alice can
remove Bob’s access to the computer. The known obfuscators for the family of point circuits with
multi-bit output in the standard model are even more vulnerable, as the adversary can easily modify
the hidden message in a meaningful way [12, 25, 93].3

The goal of this chapter is to incorporate a non-malleability guarantee into the virtual black-box
property, thus completing the analogy between obfuscation and tamper-proof hardware. We do so
by strengthening the virtual black-box definition so it applies to adversaries and simulators that
can output more than one bit. By doing so, the fake “proof” from above will hold, so the definition
will prevent tampering as desired. On the other hand, we do not want to strengthen the definition
so much that it becomes impossible to achieve. Striking the right balance here proves to be rather
delicate.

We also give a definition that provides a tamper-evident guarantee, detecting attacks rather
than preventing them. This model requires that somebody is capable of performing the tamper-
evidence check, which may be a worthwhile tradeoff in certain situations to achieve extra security.
For instance, in our example above, suppose that Alice no longer wants to remove Bob’s access
to the computer, but instead wishes to play a prank on Bob and Charles by modifying the login
program so it accepts their passwords concatenated to the string “Alice is great.” Tamper-proofing
cannot prevent this attack,4 but tamper-evidence can detect it.

Organization

In Section 5.2, we provide rigorous definitions for the two notions of non-malleability and explain the
subtleties involved in their creation. In Sections 5.3 and 5.4, we construct non-malleable obfuscators
of both flavors for the family of multi-point circuits.

5.2 Defining non-malleable obfuscation

In this section, we rigorously define the two variants of non-malleable obfuscation, which we call
tamper-proof and tamper-evident obfuscation.5 They are roughly equivalent to the guarantees
provided by tamper-proof and tamper-evident hardware: the goal of tamper-proofing is to prevent
attacks, whereas the goal of tamper-evidence is to detect them.

5.2.1 Tamper-proof obfuscation

We obtain tamper-proof obfuscation by generalizing the virtual black-box definition to allow the
adversary and simulator to output programs instead of bits. Intuitively, a tamper-proof obfuscation
has the property that an adversary, given the obfuscated code to a program, can only make a related
program if it could have already done so given only black-box access to the program.

3See Section 3.2.1 for details on these constructions.
4We describe why this is so in Section 1.3.2.
5In the original work upon which this chapter is based [31, 32], the two variants were called “functional” and

“verifiable” non-malleable obfuscation, but we change to a more intuitive terminology in this thesis.

84

This is problematic in general, because the simulator cannot emulate all programs that the
adversary can produce [10, 93]. For example, consider the adversary that outputs its input. Then,
the simulator has oracle access to a circuit and has to produce a program that is functionally
equivalent to its oracle. This is impossible unless the circuit is learnable with oracle queries, in
which case the entire concept of obfuscation is uninteresting (as described in Section 1.2.4).

However, it is unfair to demand that the simulator do this much work. After all, the adversary’s
input is a program but the simulator’s input is just an oracle. At the very least, the adversary can
output a program that uses its input program in a black-box manner, and the simulator should
have the same ability. Therefore, we allow the program that the simulator produces to make oracle
queries to the original circuit as well.

To capture the effectiveness of an adversary’s modification, we introduce a polynomial-time
computable relation E that receives the adversary’s input program and output program. The ad-
versary succeeds in the modification if E accepts it. The definition of non-malleability ensures that
for every relation E, the simulator can perform a successful modification with the approximately
the same probability as the adversary.

One technical concern about the relation E is the manner in which it receives the adversary’s
input and output programs. The goal of tamper-proofing is to compare the functionality of these
programs, and not their underlying code, so E should operate in the same manner when given
functionally equivalent inputs. Our definition resolves this issue by giving the relation a “canonical”
member of the family that is equivalent to the adversary’s output program. (See the Discussion
section below for more detail on this issue.)

Additionally, in many situations, the adversary knows some a-priori useful information on
the obfuscated program, so we allow dependent auxiliary information in the definition of non-
malleability. For instance, in the motivating example from the Introduction in which Alice wishes
to modify a login program, she possesses the knowledge of her own password.

Definition 5.1. Let C and D be families of polynomial-size circuits, and let O be a PPT algorithm.
We say that O is an obfuscator for C that is tamper-proof over D if the following three conditions
hold:

1. Almost exact functionality : There exists a negligible function ε such that for every n and
every circuit C ∈ Cn,

Pr [O(C; r) ≡ C] > 1− ε(n),

where the probability is taken over the randomness r.

2. Polynomial slowdown: There exists a polynomial ξ such that for every n, every circuit C ∈ Cn,
and every possible sequence of coin tosses r, the description length |O(C; r)| ≤ ξ(n).

3. Tamper-proofing : for every PPT adversary A and polynomial ρ, there exists a PPT simulator
S such that for all sufficiently large n, for all circuits C ∈ Cn, for all auxiliary information
z ∈ {0, 1}∗, and for all polynomial time computable relations E : Cn×Dn → {0, 1} (that may
depend on the circuit C),∣∣Pr [P ← A(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1]

−Pr
[
Q← SC(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C,D) = 1

]∣∣ < 1
ρ(n)

,

where the probabilities are over the coin tosses of A, O, and S. We require that the runtime

85

of A and S is polynomial in the length of their first input.6

If D = C, we simply say that O is a tamper-proof obfuscator for C.

Note that we use the Goldwasser and Kalai method of incorporating dependent auxiliary input
into the definition [43]. Also, recall that adversaries and simulators are allowed to be non-uniform
throughout the thesis.

5.2.2 Discussion

We make several remarks about this definition.

Almost exact functionality

The minimal functionality requirement here is stronger than the one in Definition 2.4. Approximate
functionality only guarantees that an obfuscated program O(C; r) is “close” in functionality to C.
However, O(C; r) might never have the same functionality as C does, for any choice of r. By
contrast, almost exact functionality requires that the two circuits have identical functionality for
most choices of r.

Our definition checks the functionality of O(C; r) on all inputs, so the stronger notion is impor-
tant here. With approximate functionality alone, it may be difficult to find a circuit D ∈ Dn that
is equivalent in functionality to the program that the adversary constructs unless one uses a very
large family Dn (which is a bad idea for a different reason that is described below).

We note that most of the constructions in this work satisfy exact functionality.

Determinism of C and D

In our definition, the adversary and simulator are supposed to output a circuit that is equivalent
in functionality to a circuit in D. Our concept of functional equivalence (from Definition 2.3) only
makes sense for deterministic circuits. Therefore, throughout this work we assume that circuits in
C and D are deterministic. In particular, the circuits that the simulator outputs in our proofs must
also be deterministic.

Bivariate relation

In this definition, the bivariate relation E is allowed to depend on the choice of circuit C ∈ Cn.
Thus, restricting attention to univariate relations E(D) results in an equivalent definition. We use
a bivariate relation only to emphasize the fact that E depends on both C and D.

Possible definitions for E

As mentioned above, an important feature of the definition is that E only depends on the function-
ality of the adversary’s output P and simulator’s output QC , and not on the code of these circuits.
We found three possible ways to enforce this condition on E.

First, we can constrain E to receive only oracle access to the program P or QC . As a result,
it follows immediately that E only depends on the functionality of these programs, and not on
their underlying code. Unfortunately, this definition is too weak, because there are many natural
predicates that cannot be tested by relations of this type.

6Recall that the notation ≡ denotes functionally equivalent circuits, as described in Definition 2.3.

86

For instance, suppose the adversary is given an obfuscation of the point circuit Iw and wishes
to create a new point circuit Iw′ such that the first bit of w and w′ are equal. No polynomial-time
relation E (even ones that know w, since E can depend on w) can test the adversary’s probability
of success given only oracle access to Iw′ . We believe that relations of this type are meaningful,
and therefore we want a definition that can test for them.

Second, we can give the relation E full access to the code of P or QC , but restrict our attention to
relations that have identical output when given two functionally equivalent programs. Specifically,
we only consider relations E such that given any programs C ∈ Cn, D ∈ Dn, and P , P ′ such that
D ≡ P ≡ P ′, it follows that E(C,P) = E(C,P ′). Unfortunately, this restriction is so strong that
E cannot take advantage of having access to the code of its input programs. It is still impossible
to compute many relations, such as the one described in the previous paragraph.

Specifically, the virtual black-box definition guarantees that any relation E(Iw,O(Iw′)) cannot
compute whether w and w′ have the same first bit with probability greater than 1

2 . Thus, the
condition that we impose on E is that it has the same probability of success even when it is given
Iw and Iw′ as inputs, in which case E has enough information to perform the computation with
probability 1 but cannot take advantage of this information because it must still fail half of the
time anyway in order to be consistent with the condition.

Third, we can allow all polynomial-time relations E, but instead of providing the code of P
or QC as input to E, we provide the code of a functionally equivalent member in Dn. This is
the option we use in Definition 5.1 above, because it clearly satisfies the requirement that E only
depend on the functionality of the adversary and simulator’s output, and it is a stronger definition
that can test for many relations that the previous two definitions cannot. For these reasons, we
choose to use relations of this type in the definition of tamper-proof obfuscation.

One technical point to keep in mind is that the relation E takes the description of circuits in Cn
and Dn as input. As a result, this definition is dependent upon the representation of the circuits
in these families, and not just the functionality of these circuits. Therefore, we should choose a
representation of the circuit families that enables relations to extract important information easily
from the description of a circuit, as we have done with the families Pm and I in Section 2.1. With
an appropriate representation, our definition allows the relation E to “peel off” any obfuscation
from the circuits that it receives.

Output family D

According to our definition, an adversary succeeds only if it outputs a circuit that is equivalent
to a circuit in the family D. The most natural family to choose is D = C, but we allow D to be
different from C in order to consider a wider range of adversaries. For instance, perhaps C is the
family of point circuits, but we are concerned with adversaries that produce two-point circuits. The
f definition provides the flexibility to accommodate this.

Of course, there is no reason to stop there: we may also be concerned with an adversary that
produces a three-point circuit, or a four-point circuit, or any circuit for that matter. It would
be nice if our definition simultaneously covered all possible outputs of the adversary, and not just
those in a specific family. In other words, we would like a tamper-proof obfuscator when D is the
family of all circuits.

Unfortunately, this is not possible for many circuit families of interest such as multi-point
circuits Pm+ or point circuits with multi-bit output I. Intuitively, the family of all circuits is so
big that it allows A to output the obfuscated code that it receives as input, which the simulator
cannot do.

87

Theorem 5.2. Let Dn be the set of all circuits with input length n and binary output, and let
D = {Dn}. Let C be a circuit family with the following two properties:

1. C is not learnable, so for every simulator S, there exists a circuit C ∈ Cn such that the circuit
S, with only oracle access to C, cannot output the description of a circuit that is equivalent
in functionality to C except with negligible probability.7

2. Given a circuit C ∈ Cn and a circuit P that is equivalent to a member of Cn, one can test in
polynomial time whether C ≡ P .

Then, there are no obfuscators O for C that are tamper-proof over D.

Proof. Suppose that there exists an obfuscator O for C that is tamper-proof over D. Informally, we
will derive a contradiction by creating an adversary that takes its input program O(C), views it as a
string s, and encodes the string in a circuit D ∈ Dn in a readily identifiable way. By unlearnability,
the simulator cannot construct the code of any program that is functionally equivalent to C, which
establishes the separation.

One simple choice is to make the circuit D = Is, that is, D is the point circuit that accepts only
the string s. Unfortunately, this naive idea does not work due to a technical constraint, namely
that D is supposed to be a circuit in Dn, and hence D should have n bits of input. However, the
circuit Is requires |s| bits of input, which is usually greater than n. Instead, we form a circuit
D ∈ Dn whose truth table is determined by s in such a way that s can be recovered by performing
a small number of executions of D.

Given a circuit C ∈ Cn and the empty auxiliary input z = ∅, let A be the adversary that takes
its input program P = O(C) and views it as a binary string s. Then, A appends a termination
character ⊥ to s, so s is now a string with a ternary alphabet. Next, A applies a canonical ternary-
to-binary encoding of the string s into a new string s′. Now, A forms the circuit D ∈ Dn whose
truth table equals the string s′ concatenated with the all 0s string. Note that the truth table for D
is 2n bits long, whereas the length of the string s′ is only polynomially large in n, so for sufficiently
large n the entire string s′ can be encoded into the truth table for D. Finally, A outputs D.

Let E(C,D) be the relation that does the following:

1. It queries D on enough input values to recover the string s′, stopping once it views the encoded
version of the ⊥ symbol.

2. It decodes s′ into the string s and views it as the binary representation of a program. In this
way, E has recovered the program P .

3. Return 1 if and only if P is equivalent to its first input C, which by assumption it can test
in polynomial time.

Note that the adversary always encodes a circuit that is equivalent in functionality to C, so it
passes the relation test with probability 1. On the other hand, the circuit family C is not learnable,
so for every simulator S, there exists a circuit C ∈ Cn such that S passes the relation test with only
negligible probability. Therefore, A does not have a satisfactory simulator, so the tamper-proofing
property is not true. Therefore, O is not an obfuscator for C that is tamper-proof over D, as
desired.

7In Section 1.2.4, we described why learnable circuit families are trivially obfuscatable but uninteresting. This
statement codifies the meaning of “learnable.”

88

The key step in this proof is showing a bijection between integers s and members of the family
of all circuits. Because the integer s is upper-bounded by 2ξ(n), where ξ is the polynomial from the
polynomial slowdown property, the impossibility result extends to any family D such that every
Dn has an efficient ordering of at least 2ξ(n) circuits. These families can be much smaller than the
family of all circuits.

Comparison to virtual black-box obfuscation

Now that we have introduced a new definition of obfuscation, it is natural to compare it to the old
one. We show that the tamper-proofing property implies the virtual black-box property (at least
for reasonable choices of the circuit family D), which justifies our terminology of using the word
“obfuscation” in Definition 5.1.

Theorem 5.3. Let C and D be circuit families, and let O be an obfuscator for C that is tamper-
proof over D (as defined in Definition 5.1). Additionally, suppose that for sufficiently large n, at
least one of the following is true:

• Dn is non-trivial, in the sense that there exist two circuits D0, D1 ∈ Dn such that D0 6≡ D1.

• Cn is trivial, in the sense that all of the circuits in Cn have the same functionality.

Then, O satisfies the virtual black-box requirement for C. As a result, O is an obfuscator for C with
respect to dependent auxiliary information (as defined in Definition 2.4). This theorem also holds
if neither the virtual black-box property nor tamper-proofing allows auxiliary information.

Intuitively, the theorem holds because an adversary that outputs programs can use this channel
to transmit a single bit b by outputting the program Db, but the theorem is not clear a priori since
the notion of success for the adversary is more restricted in the tamper-proof obfuscation definition.
One consequence of this theorem is that all impossibility results pertaining to the virtual black-box
property immediately carry over to the non-malleability setting [10, 43].

The rest of this section is devoted to a proof of the theorem. While the proof is fairly technical,
the idea is rather simple. Given an adversary A with binary output, we construct a new adversary
A′ (that is not constrained to binary output) in the following manner. Let D0 and D1 be two
distinct circuits in Dn, and without loss of generality suppose that there is some input value x such
that D0(x) = 0 and D1(x) = 1. Then, A′ emulates an execution of A until it returns a bit b, upon
which A′ outputs the circuit Db. In essence, the adversary A′ uses its ability to output programs
in order to communicate a single bit of information.

By tamper-proofing, there exists a simulator S′ corresponding to A′. Now we reverse the above
procedure and form a simulator S with binary output as follows: S emulates an execution of S′

until it outputs a circuit Q, and then S outputs the single bit Q(x). We claim that S is a simulator
for A that satisfies the virtual black-box requirement. This seems plausible because S extracts the
single bit of information that A′ and S′ were trying to communicate. Indeed, if S′ was an “ideal”
simulator that always outputs D0 or D1 with the same probabilities that A′ does, then it is trivially
easy to show that S satisfies the virtual black-box property.

However, even though A′ always outputs one of D0 or D1, it is not true that the same must be
true of S′, so the above proof technique fails. In fact, it is not immediately clear that the output
of S′ must be equivalent to any member of Dn. Luckily, this statement turns out to be true, and
it suffices to prove the theorem.

89

Proof. Let A be an adversary with binary output and let ρ be a polynomial. We need to construct
a simulator S for A that satisfies the virtual black-box property. We prove this statement in two
cases.

First, consider all n such that Dn is non-trivial. In this case, there exist two circuits D0, D1 ∈ Dn
that do not have the same functionality. That is, there exists at least one input value x such that
D0(x) 6= D1(x). Because the outputs are not equal, they differ in at least one bit position i, and
without loss of generality we assume that D0(x) equals 0 in this bit position whereas (D1(x))i = 1.

We use A to form an adversary A′ that is not constrained to binary output in the following
manner: A′ stores A, D0, and D1 in some readily identifiable way (by non-uniformity), and on input
O(C) and auxiliary information z, the circuitA′ operates as follows.

1: emulate an execution of A(O(C), z) until it returns a bit b
2: output the program Db

Given an adversary A′ and polynomial 2ρ, tamper-proofing guarantees the existence of a simulator
S′ such that for all sufficiently large n, for all C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and
for all PPT relations E,∣∣Pr

[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1

]
− Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C,D) = 1

]∣∣ < 1
2ρ(n)

. (5.1)

Finally, we construct a simulator S with binary output that nonuniformly hardcodes x and i and
operates as follows, when given auxiliary information z and access to an oracle C:

1: S emulates an execution of (S′)C(1n, z) until it returns a string s
2: if s is not the valid encoding of a circuit then
3: output 0
4: end if
5: let Q be the circuit that is represented by s
6: output the bit (QC(x))i

We now show that this simulator S satisfies the virtual black-box property.
In order to analyze this claim, we must understand the behavior of S′. Even though A′ always

outputs eitherD0 orD1, the simulator S′ does not have to do the same. In fact, it is not immediately
clear how often S′ outputs any member of Dn. Luckily, S′ almost always outputs a member of Dn,
which we prove by using the inequality (5.1) on two relations.

First, let Ẽ(C,D) be the relation that accepts if and only if D(x)i = 1. Note that Ẽ has x and
i nonuniformly hardcoded, and the output of Ẽ is independent of the choice of C. Then, for all
n ∈ N, C ∈ Cn, and z ∈ {0, 1}∗,

Pr
[
A(O(C), z) = 1

]
= Pr

[
A′(O(C), z) outputs D1

]
= Pr [P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ẽ(C,D) = 1].

The first equality is an immediate consequence of the construction of A′, and the second equality
follows from the fact that A′ always outputs either D0 or D1, and of the two only D1 satisfies the
relation. Using this equality, along with the precise behavior of the relation Ẽ, tamper-proofing

90

states that for all sufficiently large n, for all C ∈ Cn, and for all auxiliary information z,∣∣Pr [A(O(C), z) = 1]

−Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]∣∣ < 1
2ρ(n)

. (5.2)

Second, let Ê be the relation such that Ê(C,D) = 1 if and only if D(x)i = 0. Using the same
analysis as above, it follows that∣∣Pr

[
A(O(C), z) = 0

]
− Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 0

]∣∣ < 1
2ρ(n)

.

Because A is an adversary with binary output, Pr [A(O(C), z) = 1] + Pr [A(O(C), z) = 0] = 1.
Applying the triangle inequality to the previous two inequalities, it follows that∣∣Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]
+ Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 0

]
− 1
∣∣ < 1

2ρ(n)
.

Of course, for any circuit D and input x, it is always the case that either (D(x))i = 1 or (D(x))i = 0.
As a result, the above inequality simplifies to

Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC

]
> 1− 1

2ρ(n)
.

Therefore, with very large probability, S′ outputs a valid encoding of a circuit that is equivalent to
a member of Dn.

Finally, by the construction of S from S′, it is easy to see that

Pr
[
SC(1n, z) = 1

]
= Pr

[
Q← (S′)C(1n, z) : (QC(x))i = 1

]
.

Furthermore, we showed that Q fails to be equivalent to a member of Dn with small probability, so∣∣Pr
[
SC(1n, z) = 1

]
− Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]∣∣ < 1
2ρ(n)

.

Applying the triangle inequality to this inequality and (5.2) yields∣∣Pr [A(O(C), z) = 1]− Pr
[
SC(1n, z) = 1

]∣∣ < 1
ρ(n)

,

so S satisfies the virtual black-box property as desired.
Now we prove the theorem for values of n such that Cn and Dn are both trivial. In this case,

we claim that for every adversary A with binary output, for every z ∈ {0, 1}∗, for sufficiently large
n, and for every C,C ′ ∈ Cn,∣∣Pr

[
A(O(C), z) = 1

]
− Pr

[
A(O(C ′), z) = 1

]∣∣
is negligible. If this is true, then it is easy to construct a simulator S for A: the simulator simply
chooses a circuit C ∈ Cn arbitrarily, obfuscates it, and emulates an execution of A on the obfuscated
circuit. It is straightforward to check that this simulator satisfies the virtual black-box property.

91

Suppose for the sake of contradiction that the claim is not true. Therefore, there exists an
adversary A, a polynomial ρ, and auxiliary information z ∈ {0, 1}∗ such that for infinitely many n,
there exist two circuits C,C ′ ∈ Cn such that∣∣Pr

[
A(O(C), z) = 1

]
− Pr

[
A(O(C ′), z) = 1

]∣∣ > 1
ρ(n)

.

Now form an adversary A′ (that is not constrained to binary output) as follows. Arbitrarily choose
a circuit D1 ∈ Dn, and let D0 be a circuit that is not equivalent to D1, and hence not equivalent
to any member of Dn. The adversary A′ nonuniformly hardcodes A, D0, and D1, and operates as
follows upon receiving O(C) and z as input:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: output Db

Let Ē be the relation that always accepts. As a result,

Pr
[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
= Pr

[
A(O(C), z) = 1

]
because D1 is equivalent to a member of Dn but D0 is not. Hence, by our assumption above, it
follows that for infinitely many n, there exist two circuits C,C ′ ∈ Cn and a polynomial ρ such that∣∣Pr

[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
−Pr

[
P ← A′(O(C ′), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C ′, D) = 1

]∣∣ > 1
ρ(n)

.

However, for any simulator S′,

Pr
[
Q← (S′)C(1n) : ∃D ∈ Dn s.t. D ≡ QC and Ē(C,D) = 1

]
= Pr

[
Q← (S′)C

′
(1n) : ∃D ∈ Dn s.t. D ≡ QC′ and Ē(C ′, D) = 1

]
information-theoretically because C and C ′ are functionally equivalent. Applying the triangle
inequality to the previous two equations, it must be the case that either∣∣Pr

[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
−Pr

[
Q← (S′)C(1n) : ∃D ∈ Dn s.t. D ≡ QC and Ē(C,D) = 1

]∣∣ > 1
2ρ(n)

,

or the same is true of C ′. As a result, S′ fails to satisfy the tamper-proofing property. This is true
for all possible S′, so O is not tamper-proof over D, which is a contradiction.

It is simple to check that the proof goes through even if the auxiliary input z is constrained to be
the empty string. As a result, tamper-proofing without auxiliary information implies obfuscation
without auxiliary information. Similarly, the proof goes through if both properties are modified to
require a negligible difference in the probabilities of success for the adversary and simulator.

5.2.3 Tamper-evident obfuscation

In this section, we develop the notion of verifiable obfuscation and use it to define another definition
of non-malleability.

92

Definition 5.4. Given a pair of PPT algorithms O and V and a circuit family C, we say that V
is a verifier for O applied to C if there exists a negligible function ε such that for all n ∈ N and
C ∈ Cn, Pr [V (O(C)) = 1] > 1− ε(n), where the probability is taken over the randomness of V , O.

If O is an obfuscator for the family of circuits C, then we say that the pair (O, V) constitutes
a verifiable obfuscator for C.

We do not place any restrictions on V when its input is not the result of the obfuscator applied
to a circuit in the family. In particular, given any obfuscator O, the pair (O, Vall) is a verifiable
obfuscator, where Vall is the algorithm that accepts all inputs. In many cases, however, we can
create much better verification algorithms. For example, the (g, gx) construction8 of [23] can simply
be verified by checking whether g and gx are elements in the desired group G of prime order, because
there is a unique discrete log of gx so the program does implement a point circuit as desired. This
results in a perfect verifier that accepts its input program if and only if it has the form of a program
produced by the obfuscator.

Now we create a definition of non-malleability for verifiable obfuscators. As before, we consider
an adversary that takes an obfuscated circuit as input and outputs a program. In this model,
the adversary succeeds only if her output program passes the verification test and is related to
the input program. Our definition of non-malleability requires that a simulator succeeds with
approximately the same probability, so it must also output a program that passes the verification
test. In particular, we no longer give an oracle to the program constructed by the simulator. A
formal definition follows.

Definition 5.5. Let C and D be families of polynomial-size circuits such that C ⊆ D, and let O
and V be PPT algorithms. We say that (O, V) is an obfuscator for C that is tamper-evident over
D if the following four conditions hold:

1. Verification: V is a verifier for O applied to C. Additionally, for every n and every circuit P
with n bits of input such that V (P) = 1, there exists D ∈ Dn such that P ≡ D.

2. Almost exact functionality : There exists a negligible function ε such that for every n and
every circuit C ∈ Cn,

Pr [O(C; r) ≡ C] > 1− ε(n),

where the probability is taken over the randomness r.

3. Polynomial slowdown: There exists a polynomial ξ such that for every n, every circuit C ∈ Cn,
and every possible sequence of coin tosses r, the description length |O(C; r)| ≤ ξ(n).

4. Tamper-evidence: for every PPT adversary A and polynomial ρ, there exists a PPT simulator
S such that for all sufficiently large n, for all circuits C ∈ Cn, for all auxiliary information
z ∈ {0, 1}∗, and for all polynomial time computable relations E : Cn ×Dn → {0, 1},∣∣Pr [P ← A(O(C), z) : P 6= O(C), V (P) = 1, ∃D ∈ Dn s.t. D ≡ P , E(C,D) = 1]

−Pr
[
Q← SC(1n, z) : V (Q) = 1, ∃D ∈ Dn s.t. D ≡ Q, E(C,D) = 1

]∣∣ < 1
ρ(n)

,

where the runtime of A and S is polynomial in the length of their first input.

If D = C, we say that (O, V) is a tamper-evident obfuscator for C.
8See Section 3.2.1 for a full explanation of this construction.

93

It is reasonable to relax the definition by not subjecting the simulator to the verification text.
We choose not to do so because the current definition puts the adversary and simulator on more
equal footing and because all of our constructions satisfy the stronger notion.

We also note that the definition requires that V only accept circuits that are equivalent to
members of D. The benefit of this restriction is that the adversary can efficiently test whether she
outputs a circuit in Dn, which is a requirement for her to succeed under this definition.

Additionally, the remarks pertaining to tamper-proof obfuscation also apply here:

1. The circuits in C and D are deterministic.

2. Restricting to univariate relations E(D) results in an equivalent definition.

3. It is usually impossible to achieve tamper-evident obfuscation if D is the family of all circuits.
The proof of this statement is identical to the proof of Theorem 5.2 in the tamper-proof
obfuscation setting, so we do not repeat it here.

4. Tamper-evidence also implies the virtual black-box property.

Theorem 5.6. Let C and D be circuit families, and let (O, V) be an obfuscator for C that is
tamper-evident over D. Then, O is an obfuscator for C with dependent auxiliary information.

This theorem also holds if neither definition allows auxiliary input, or if both properties require
only negligible difference in the success probabilities of the adversary and simulator.9

This proof is very similar to the one in the tamper-proof setting, with two differences. First, the
condition that C ⊆ D makes the technical conditions from Theorem 5.3 unnecessary here: it is
always true that either Dn is non-trivial or Cn is trivial. Second, in the previous proof, we created
an adversary A′ that outputs one of two circuits D0, D1 ∈ Dn. In the tamper-evident setting, this
no longer suffices because A′ must output a circuit that passes the verification test in order to
succeed. The only circuits that are guaranteed to pass the verification test with high probability
are valid obfuscations of circuits in Cn, so we set A′ to output circuits of this form.

Proof. Let A be an adversary with binary output and let ρ be a polynomial. We need to construct
a simulator S for A that satisfies the virtual black-box property. We prove this statement in two
cases.

First, consider all n such that Dn is non-trivial, in the sense that there exist two circuits in Dn
that do not have the same functionality. Choose a circuit C1 ∈ Cn arbitrarily, and let D1 = O(C1)
be an obfuscation of C1 such that D1 ≡ C1 (this happens with overwhelming probability by almost
exact functionality). By non-triviality, there exists a circuit D0 ∈ Dn such that D0 6≡ D1. Hence,
there exists at least one input value x and one bit position i such that (D0(x))i 6= (D1(x))i. Let
c = (D1(x))i.

We use A to form an adversary A′ that is not constrained to binary output in the following
manner. The adversary A′ nonuniformly hardcodes A, D0, and D1, and operates as follows upon
receiving O(C) and z as input:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: output Db

In particular, if A outputs 1, then A′ outputs a well-formed obfuscation of a circuit in Cn, whereas
if A outputs 0, then A′ outputs a circuit in Dn with different functionality.

9We thank Ronny Dakdouk for suggesting this theorem.

94

Given an adversary A′ and polynomial 2ρ, tamper-evidence guarantees the existence of a simu-
lator S′ such that for all sufficiently large n, for all C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗,
and for all PPT relations E,∣∣Pr

[
P ← A′(O(C), z) : P 6= O(C), V (P) = 1, and ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1

]
−Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and E(C,D) = 1

]∣∣ < 1
2ρ(n)

. (5.3)

Finally, we construct a simulator S with binary output that hardcodes V , x, i, and c and oper-
ates as follows, when given auxiliary information z and access to an oracle C:

1: emulate an execution of (S′)C(1n, z) until it returns a string s
2: if s is not the valid encoding of a circuit then
3: output 0
4: end if
5: let Q be the circuit that is represented by s
6: if V (Q) = 0 or (Q(x))i 6= c then
7: output 0
8: else
9: output 1

10: end if

We now show that this simulator S satisfies the virtual black-box property.

Let Ẽ(C,D) be a relation that accepts if and only if D(x)i = c. Note that Ẽ has x and i
nonuniformly hardcoded, and its output is independent of C. Then, for all n ∈ N, C ∈ Cn, and
z ∈ {0, 1}∗,

Pr
[
A(O(C), z) = 1

]
= Pr

[
A′(O(C), z) outputs an obfuscation of C1

]
as an immediate consequence of the construction of A′. As a result, we claim that

|Pr [A(O(C), z) = 1]

− Pr [P ← A′(O(C), z) : P 6= O(C), V (P) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ẽ(C,D) = 1]|

is negligible. To see this, first note that A′ always outputs a program that is equivalent to a
member of Dn. Furthermore, by definition the verifier V accepts D1. There is only one small
technical problem: in the case that C ≡ C1, the output of A′ might equal its input, which is not
allowed in tamper-evident obfuscation. However, A′ receives a random obfuscation of C1, so it only
receives D1 with negligible probability.

Next, using (5.3) and the behavior of the relation Ẽ, it follows that for all sufficiently large n,
for all C ∈ Cn, and for all auxiliary information z,∣∣Pr [A(O(C), z) = 1]

−Pr
[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = c

]∣∣ < 1
2ρ(n)

. (5.4)

Second, let Ê be the relation such that Ê(C,D) = 1 if and only if D(x)i = 1 − c. Using the

95

same analysis as above, it follows that∣∣Pr [A(O(C), z) = 0]− Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = 1− c

]∣∣ < 1
2ρ(n)

,

where the only difference from before is that the behavior of V (D0) is unclear, whereas the behavior
of V (O(C1)) is known. Applying the triangle inequality to the previous two inequalities, and using
the fact that A always outputs either 0 or 1, it follows that

Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ Q

]
> 1− 1

2ρ(n)
.

Finally, by the construction of S from S′, it is easy to see that

Pr
[
SC(1n, z) = 1

]
= Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and (Q(x))i = c

]
.

Furthermore, we showed that Q fails to be equivalent to a member of Dn with small probability, so∣∣Pr
[
SC(1n, z) = 1

]
−Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = c

]∣∣ < 1
2ρ(n)

.

Applying the triangle inequality to this inequality and (5.4) yields∣∣Pr
[
A(O(C), z) = 1

]
− Pr

[
SC(1n, z) = 1

]∣∣ < 1
ρ(n)

,

so S satisfies the virtual black-box property as desired.
Now we prove the theorem for all n such that Dn is trivial, meaning that all of the circuits

in Dn have the same functionality. In this case, we claim that for every adversary A with binary
output, for every z ∈ {0, 1}∗, for sufficiently large n, and for every C,C ′ ∈ Cn,∣∣Pr

[
A(O(C), z) = 1

]
− Pr

[
A(O(C ′), z) = 1

]∣∣
is negligible. If this is true, then it is easy to construct a simulator S for A: the simulator simply
chooses a circuit C ∈ Cn arbitrarily, obfuscates it, and emulates an execution of A on the obfuscated
circuit. It is straightforward to check that this simulator satisfies the virtual black-box property.

Suppose for the sake of contradiction that the claim is not true. Therefore, there exist an
adversary A, a polynomial ρ, and auxiliary information z ∈ {0, 1}∗ such that for infinitely many n,
there exist two circuits C,C ′ ∈ Cn such that∣∣Pr

[
A(O(C), z) = 1

]
− Pr

[
A(O(C ′), z) = 1

]∣∣ > 1
ρ(n)

.

Now form an adversary A′ (that is not constrained to binary output) as follows. Arbitrarily choose
a circuit C1 ∈ Cn, and let D0 be a circuit that is not equivalent to C1, and hence not equivalent
to any member of Dn. The adversary A′ hardcodes A, D0, and D1, and operates as follows upon
receiving O(C) and z as input:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: if b = 1 then
3: output an obfuscation of C1

96

4: else
5: output D0

6: end if

Let Ē be the relation that always accepts. As a result,∣∣Pr [A(O(C), z) = 1]
−Pr

[
P ← A′(O(C), z) : P 6= O(C), V (P) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]∣∣
is negligible, because C1 is equivalent to a member of Dn and passes the verification test, whereas
D0 is not equivalent to a member of Dn. The only problem is that the output of A′ might equal
its input, but this occurs with negligible probability.

Hence, by our assumption above, it follows that for infinitely many n, there exist two circuits
C,C ′ ∈ Cn and a polynomial ρ such that∣∣Pr

[
P ← A′(O(C), z) : P 6= O(C), V (P) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
− Pr

[
P ← A′(O(C ′), z) : P 6= O(C), V (P) = 1, ∃D ∈ Dn s.t. D ≡ P , Ē(C ′, D) = 1

]∣∣ > 1
2ρ(n)

.

However, for any simulator S′,

Pr
[
Q← (S′)C(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C,D) = 1

]
= Pr

[
Q← (S′)C

′
(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C ′, D) = 1

]
information-theoretically because C and C ′ are functionally equivalent. Applying the triangle
inequality to the previous two equations, it must be the case that either∣∣Pr

[
P ← A′(O(C), z) : P 6= O(C), V (P) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
− Pr

[
Q← (S′)C(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C,D) = 1

]∣∣ > 1
4ρ(n)

,

or the same is true of C ′. As a result, S′ fails to satisfy the tamper-evidence property. This is true
for all possible S′, so O is not tamper-evident over D, which is a contradiction.

This proof also goes through if neither tamper-evidence nor the virtual black-box property
allows auxiliary input, or if both properties require only negligible difference between the success
probabilities of the adversary and simulator.

5.2.4 Models with setup assumptions

In this section, we modify the non-malleability definitions to fit within the random oracle and
common reference string models.

Random Oracle Model

In the random oracle model, every algorithm has access to a length-preserving permutation R :
{0, 1}n → {0, 1}n chosen uniformly at random from the set of such permutations. We only consider a
non-programmable model because the definitions lose much of their value if the simulator is allowed
to program the random oracle; for example, in our motivating example from the Introduction, there

97

are “tamper-proof” obfuscators of three-point circuits that allow Alice to remove Bob’s access to
the computer.

Definition 5.7. A PPT algorithm O satisfies the tamper-proofing property in the random oracle
model if for every PPT adversary A and polynomial ρ, there exists a PPT simulator S such that
for all sufficiently large n, for all circuits C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and for
all polynomial time computable relations E : Cn ×Dn → {0, 1},∣∣Pr

[
P ← AR(O(C)R, z) : ∃D ∈ Dn s.t. D ≡ PR and ER(C,D) = 1

]
−Pr

[
Q← SC,R(1n, z) : ∃D ∈ Dn s.t. D ≡ QC,R and ER(C,D) = 1

]∣∣ < 1
ρ(n)

,

where the probabilities are over the coin tosses of A, O, and S, as well as the choice of R : {0, 1}n →
{0, 1}n from the uniform distribution over all permutations. As before, we require that the runtime
of A and S is polynomial in the length of their first input.

Definition 5.8. The pair (O, V) satisfies the tamper-evidence property in the random oracle
model if for every PPT adversary A and polynomial ρ, there exists a PPT simulator S such that
for all sufficiently large n, for all circuits C ∈ Cn, for all polynomial time computable relations
E : Cn × Cn → {0, 1}, and for all auxiliary information z ∈ {0, 1}∗,∣∣Pr

[
P ← AR(O(C)R, z) : P 6= O(C), V R(PR) = 1, and ∃D ∈ Dn s.t. D ≡ PR, ER(C,D) = 1

]
−Pr

[
Q← SC,R(1n, z) : V (QR) = 1 and ∃D ∈ Dn s.t. D ≡ QR and ER(C,D) = 1

]∣∣ < 1
ρ(n)

,

where the runtime of A and S is polynomial in the length of their first input.

Note that the relation E and verifier V in these definitions receives the same random oracle
that the adversary and simulator receive. As a result, the definitions impose a nonprogrammability
restraint on the simulator because E and V collectively serve as an “environment” (in the universal
composability sense [24]) that can try to detect any differences in the behavior of the adversary
and simulator.

Common Reference String Model

In the common reference string model, a long string Σ is generated by a trusted party with each bit
being chosen independently and uniformly at random. In this work, we only explore tamper-evident
obfuscation in the CRS model, and we augment the definition to allow all algorithms in the real
world access to the string Σ. In the simulated world, S is allowed to choose Σ.

Definition 5.9. The pair (O, V) satisfies the tamper-evidence property in the common reference
string model if there exists a polynomial l such that for every polynomial ρ and PPT adversary
A, there exists a PPT simulator S such that for all sufficiently large n, for all circuits C ∈ Cn, for
all polynomial time computable relations E : Cn × Cn → {0, 1}, and for all auxiliary information
z ∈ {0, 1}∗,∣∣Pr [P ← A(O(C), z,Σ) : P 6= O(C), V (P,Σ) = 1, and ∃D ∈ Dn s.t. D ≡ P , E(C,D) = 1]

−Pr
[
(Q,Σ)← SC(1n, z) : V (Q,Σ) = 1, and ∃D ∈ Dn s.t. D ≡ Q, E(C,D) = 1

]∣∣ < 1
ρ(n)

,

98

where the runtime of A, S, and V is polynomial in the length of their first input. The first
probability is taken over the random coin tosses of A and O along with the random choice of
Σ U← {0, 1}l(n), and the second probability is taken over the random coin tosses of S.

Note that in the real execution of the adversary, the verifier receives the same common reference
string as the adversary, but in the simulated world, S chooses the CRS for the verifier.

5.2.5 Comparison

We conclude this section by showing that the two non-malleability definitions are incomparable
extensions of the virtual black-box property, at least in the random oracle model. Note that the
virtual black-box property can be incorporated into the random oracle model in the same way as
the non-malleability properties were, and both flavors of non-malleability still imply the virtual
black-box property in the random oracle model.

Theorem 5.10. Tamper-proof and tamper-evident obfuscation are incomparable in strength. This
holds whether auxiliary input is permitted or not. Specifically,

1. In the random oracle model, there exists a circuit family C and a tamper-evident obfuscator
(O, V) for C such that O is not a tamper-proof obfuscator for C.

2. Suppose there exists a tamper-proof obfuscator O for an unlearnable family C (as defined in
Theorem 5.2). Then, there exists another tamper-proof obfuscator O′ for C such that no
verifier V makes the pair (O′, V) a tamper-evident obfuscator for C.
Note that this direction does not rely on the random oracle model, and holds in the standard
model as well. However, the only known constructions of tamper-proof obfuscators are in the
random oracle model.

Later in this chapter, we construct counterexamples for the family of multi-point circuits that
do not require auxiliary input, so this theorem follows immediately from Theorems 5.12, 5.15, and
5.17. Here, we focus on the high-level ideas behind the theorem.

Intuitively, tamper-proofing prevents attacks, whereas tamper-evidence has no prevention guar-
antee. This is reflected in the definition by the fact that an adversary attacking tamper-proof
obfuscation does not have to pass a verification test, so the simulator must emulate more potential
attacks. A concrete example of this separation is the tamper-evident obfuscator described in Al-
gorithm 5.5 below, which does not prevent the attack described in the Introduction in which Alice
removes Bob’s password.

On the other hand, tamper-evidence must detect attacks that cannot hope to be prevented,
which may not always be possible. This is reflected in the definitions by the fact that the program
Q constructed by the simulator is not given oracle access to C in the verifiable definition. We
provide a general separation in this direction below (which does not rely on the random oracle
model) based on a modified form of Alice’s April fools’ prank described in the Introduction.

Proof. We defer the proof of part 1 to Theorem 5.17. Here, we prove part 2, which shows that
tamper-proofing does not imply tamper-evidence. Let C be an unlearnable family of circuits, and
let O be a tamper-proof obfuscator for C. We form a slightly modified obfuscator O′ that operates
identically to O, except that it adds a randomly-chosen bit of storage b to the circuit that it outputs.
Hence, O′ outputs circuits of the form 〈O(C), b〉, where the bit b is not used in the operation of the
circuit. Note that O′ is a tamper-proof obfuscator because the extra bit of storage does not impact
the functionality or runtime of the program that the obfuscator outputs, nor does it convey any

99

information about the underlying circuit, so it does not impact any of the three properties that
define tamper-proof obfuscators.

On the other hand, O′ is trivially vulnerable to a tamper-evidence attack. Let A be an adversary
(without auxiliary input) that receives an obfuscated circuit 〈O(C), b〉 and simply flips the storage
bit. Because 〈O(C), 1 − b〉 is a valid output of the obfuscator O′, any verifier for O′ must accept
it. By almost exact functionality, 〈O(C), 1− b〉 ≡ C with overwhelming probability.

Consider the relation E that accepts if and only if its two circuits are identical. The adversary
always satisfies this relation. As a result, a tamper-evident simulator SC must output the descrip-
tion of the circuit C. However, we know that for every PPT simulator S (even with auxiliary input),
there exists a sequence of circuits in C that S cannot learn, so S fails to satisfy the tamper-evidence
property, as desired.

5.3 Constructions of tamper-proof obfuscators

In this section, we present tamper-proof obfuscators for the family of multi-point circuits in the
random oracle model. We begin with the single-point case.

In order to achieve exact functionality whenever possible in our constructions, we assume that
R : {0, 1}n → {0, 1}n is a length-preserving permutation in most of this chapter. Using a random
oracle function instead would suffice for security, but then our constructions would only achieve
almost exact functionality.

5.3.1 Single-point circuits

Algorithm 5.1 describes an obfuscator OP1 for the family of point circuits P1 [63].

Algorithm 5.1 Obfuscator OP1 for the family of point circuits
Input: a circuit of the form Iw or I∅

1: if the input circuit is I∅ then

2: choose randomness r U← {0, 1}3|w| and t
U← {0, 1}4|w|

3: else
4: extract the point w and choose randomness r U← {0, 1}3|w|
5: compute t = R(w ◦ r), where ◦ denotes the string concatenation operation
6: end if

Output: the circuit Φr,t that stores r and t in some clearly identifiable manner, and on input a
string x, outputs 1 if R(x ◦ r) = t and 0 otherwise

Theorem 5.11. In the random oracle model, the algorithm OP1 is a tamper-proof obfuscator for
the family of point circuits P1.

Proof. The almost exact functionality of OP1 follows from the fact that R is a permutation (in fact,
functionality is exact for all input circuits except I∅). Polynomial slowdown clearly holds because
the runtime of Φr,t is linear in its input length. It remains to prove the tamper-proofing property.

To prove that OP1 is tamper-proof, we need to construct a simulator S for any adversary A.
We informally explain S here and give a complete description of S in Algorithm 5.2.

The simulator has auxiliary information z and oracle access to the point circuit Iw (where for
notational simplicity we allow for the possibility that w = ∅, rather than referring to I∅ explicitly
each time). It makes a fake obfuscated circuit Φr,t by choosing r and t uniformly at random, and

100

Algorithm 5.2 Algorithm for the simulator SR,Iw(1n, z) in the proof of Theorem 5.11
Input: inputs N and z, along with access to oracles R and C

1: set n← |N |
2: choose random r

U← {0, 1}3n and t
U← {0, 1}4n

3: repeat
4: emulate one step of the execution of A(Φr,t, z)
5: if A queries its random oracle on input value q then
6: if R(q) = t then
7: output ⊥
8: else if |q| 6= 4n or the last 3n bits of q are not equal to r then
9: respond to the query with R(q)

10: else
11: set y to the first n bits of q
12: if C(y) = 1 then
13: abort this emulation
14: emulate A(Φr,R(y◦r)), responding to all oracle queries accurately, then goto step 21
15: else
16: respond to the query with R(q)
17: end if
18: end if
19: end if
20: until A halts
21: set P to the output of the emulation A(Φr,t, z) from step 20, or the output of A(Φr,R(y◦r)) from

step 14
22: choose a string t′ U← {0, 1}4n
23: use P , r, t, and t′ to develop the program Q, which for legibility is written below
Output: a description of Q

Algorithm 5.3 Algorithm for program QR,Iw in the proof of Theorem 5.11
Input: a string x, along with access to oracles R and C

1: repeat
2: emulate one step of the execution of PR(x)
3: if A queries its random oracle on input value q then
4: if |q| 6= 4n or the last 3n bits of q are not equal to r then
5: respond to the query with R(q), unless this equals t, then respond with t′

6: else
7: set y to the first n bits of q
8: if C(y) = 1 then
9: respond to the query with t

10: else
11: respond to the query with R(q), unless this equals t, then respond with t′

12: end if
13: end if
14: end if
15: until P halts
Output: the value that the emulation of P outputs

101

then emulates an execution of AR(Φr,t, z). In addition, S examines all of A’s random oracle queries.
There are three cases to consider:

1. If A queries R on the input w ◦ r, then the adversary A found the hidden point w, but now
the simulator has too. As a result, the simulator aborts this emulation of A, forms a valid
obfuscation of Iw, runs A on it, and outputs the resulting program.

2. If A queries the value s = R−1(t), then A has discovered that our obfuscation is fake. In this
case, the simulator fails. However, t is chosen uniformly at random and independently of A
and z, so this case only occurs with negligible probability.

3. On any other query q, S responds honestly with R(q).

Note that S either responds to oracle queries honestly or aborts the emulation of A.
Once the emulation of A terminates, it outputs a program P . Then, the simulator S has to

output a program QR,Iw . We explain here how QR,Iw operates and provide a complete description
in Algorithm 5.3.

The program QR,Iw runs PR but continues to examine oracle calls. Once again, there are three
cases to consider:

1. If P queries R on the input w ◦ r, then Q answers the query with t.

2. If P queries the value s = R−1(t), then Q answers the query with a hardcoded response t′

that is uniformly chosen from {0, 1}4n.

3. Otherwise, Q gives the correct response to P .

We emphasize here that Q is deterministic, as required. Now we analyze the above simulator
and show that it satisfies the tamper-proofing property. We break the analysis of the simulator
into cases based on the random oracle queries made by the emulated adversary. If the emulated
adversary queries the correct password, or if the input circuit was I∅, then the emulation of the
adversary is perfect. Additionally, the emulated adversary runs in polynomial time, so it can only
query the random oracle on s = R−1(t) with negligible probability. Therefore, it suffices to restrict
our attention to the case in which neither of these situations occurs.

Let E be any relation that only makes polynomially-many oracle queries, and define

γA = Pr
[
C ← AR(O(Iw), z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ CR and ER(Iw, Iw′) = 1

]
γS = Pr

[
D ← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ DR,Iw and ER(Iw, Iw′) = 1

]
as the probabilities of success for the real adversary and simulator, respectively. We will show that
|γA − γS | is negligible in n. To do so, we perform the following “mental experiment”: let R′ be a
different random oracle permutation in which

R′(w ◦ r) = t, R′(s) = R(w ◦ r),

and R′ agrees with R on all other values (see Figure 5-1 for a diagram). If R′ really were the
random oracle, then the “fake” obfuscation Φr,t would actually be a valid obfuscation of Iw. Thus,

γA = Pr
[
P ← AR

′
(Φr,t, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR

′
and ER

′
(Iw, Iw′) = 1

]
.

102

w ◦ r • //

$$$$J
J

J
J

J
J

J
J

J
J •R(w ◦ r)

s • //

::

//________ • t

Figure 5-1: Pictorial representation of the actions of the actual random oracle R (solid line) and
the two imaginary oracles R′ (dotted line) and R′′ (dashed line). The domain and range are both
{0, 1}4|w|. The three random oracles operate identically on all other values.

Furthermore, by assumption A never queries the oracle at the two locations in which R and R′

differ. Hence, A must act the same in both cases, so the circuit P returned by the emulation of AR

on the “fake” obfuscation is identical to the one returned by AR
′

when given a real obfuscation.
Consider a new simulator S′ that operates just like S, except that after it finishes its emulation

of the adversary, it simply returns the circuit P that the emulated adversary outputs. Then,

γA ≈ Pr
[
P ← (S′)R,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR

′
and ER

′
(Iw, Iw′) = 1

]
,

where the symbol ≈ is used to denote the fact that the two probabilities may differ by the negligible
probability that the emulated adversary queries its random oracle on s = R−1(t), forcing the
simulator to abort.

Of course, the simulator S constructed above does not return P , but rather a related circuit
Q that makes a few modifications to random oracle queries. These modifications are precisely the
ones that make PR

′ ≡ QR, except in the case that P queries the value s = R−1(t). Because this
happens with negligible probability,

γA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER

′
(Iw, Iw′) = 1

]
.

Next, let R′′ be an oracle in which R′′(w ◦r) = t, and R′′ agrees with R on all other values. (See
Figure 5-1 for a diagram.) In other words, R′′ and R′ differ only on the input s. We consider the
difference in functionality between ER

′
and ER

′′
. Because the adversary, simulator, and relation E

all run in polynomial time, they only query the value s with negligible probability. Therefore,

γA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER

′′
(Iw, Iw′) = 1

]
.

Finally, we claim that there is only a negligible difference in functionality between ER and ER
′′
.

This claim is information-theoretic: R and R′′ only differ on input w ◦ r, which has at least 3n
bits of entropy, but the relation E only receives 2n bits of information as input (namely, the values
w and w′). As a result, using any list encoding scheme, the adversary and simulator only have
negligible probability of transmitting the value r to the relation E. If the relation does not query
the value w ◦ r, then the behavior of ER and ER

′′
is identical. As a result,

γA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER(Iw, Iw′) = 1

]
= γS ,

as desired.
Hence, OP1 is a tamper-proof obfuscator for P1, and in fact the definition is achieved in a strong

sense in which the simulator S is independent of the choice of the polynomial ρ.

103

Tamper-proofing over a larger family

In the preceding proof, we showed that OP1 is an obfuscator for P1 that is tamper-proof over P1.
That is, the output family for the adversary is the same as the family being obfuscated. However, as
suggested in Section 5.2.2, we may wish to prevent the adversary from creating bigger circuits like
two-point circuits, and thus prevent attacks such as adding a password to the currently accepted
one.

Our construction for OP1 can easily be modified to allow this. Note that the only place where
we used the fact that the adversary outputs a point circuit is in the information-theoretic argument
at the end of the proof, where we note that E receives 2n bits of input and thus cannot learn r which
is 3n bits long. Hence, we can easily accommodate a larger output family like P2 by increasing the
length of r (and thus t as well), and the argument will still go through.

More precisely, we can accommodate any output family D by setting the length of r to be
2n + log(|D|) and the length of t to be 3n + log(|D|) in Algorithm 5.1. In particular, we can
accommodate any family of multi-point circuits Pm by setting |r| = (m+ 2)n and |t| = (m+ 3)n.
Note though that we must pick the output family that we wish to consider before obfuscating the
circuit.

Removing tamper-evidence

As we will see later in Theorem 5.16, this obfuscator is also tamper-evident. However, we can apply
the trick from Theorem 5.10 to form a new obfuscator that is not tamper-evident. Let O′P1 be an
obfuscator that operates identically to Algorithm 5.1 except that it also hardcodes one randomly
chosen bit b into the circuit that it outputs.

Theorem 5.12. The obfuscator O′P1 is tamper-proof, but no verifier V makes (O′P1 , V) tamper-
evident.

Proof. This theorem is a specific instantiation of the general concepts from Theorem 5.10. The
proof that O′P1 is tamper-proof is identical to the proof for OP1 above. Additionally, O′P1 is
trivially vulnerable to a tamper-evidence attack by an adversary that simply flips the bit b stored
in the obfuscated circuit that she receives. Specifically, the adversary receives an obfuscated circuit
Φr,t,b = O(Iw) and outputs Φr,t,1−b. This circuit is equivalent in functionality to Iw, and it has
the format of a well-formed circuit made by the obfuscator, so any verifier V must accept it.
Consider the relation E(Iw, Iw′) that accepts if and only if w = w′. The adversary always satisfies
this relation, so for tamper-evidence to hold, a PPT simulator must be able to satisfy it as well.
However, a simulator SIw(1n) cannot output a circuit that is equivalent to Iw for any w ∈ {0, 1}n,
so tamper-evidence fails.

5.3.2 Multi-point circuits

Constructing a tamper-proof obfuscator for the family of multi-point circuits Pm is significantly
more difficult. Roughly speaking, the principal issue is that the obfuscated program must “bundle
together” the m points in a way that would prevent the adversary from changing any point in the
bundle without applying the exact same change to all points in the bundle. For instance, simply
concatenating m obfuscations of a single-point circuit (even obfuscations that are individually non-
malleable) does not suffice because an adversary can change some of the points at will.

Instead, the code of the program must be a “house of cards” in the sense that an adversary
cannot change the code without destroying information about all of the accepted points simultane-

104

ously. This is a difficult task to achieve, so we first present some warm-up examples in which the
obfuscator receives special abilities.

First warm-up

In this example, we assume the existence of an m-to-1 random oracle, although this may easily be
constructed from a permutation. Additionally, we augment the model by making two unrealistic
assumptions.

1. Rather than receiving a list of accepted points {w1, . . . , wm}, the obfuscator chooses these
points on her own from the uniform distribution. An obfuscator of this type may still be
useful in many situations, such as the motivating scenario from the Introduction in which
several graduate students wish to share a computer. The students may allow the network
administrator to choose passwords for them, as long as the passwords are chosen uniformly.

2. The obfuscator receives a special auxiliary input consisting of a random point t and all m
preimages of t under the random oracle. Nobody else in the world receives this auxiliary
input, which can be thought of as “trapdoor” information on the random oracle.

In this setting, the obfuscator can do the following.

1: choose a target point t← {0, 1}n uniformly at random
2: compute the m inverses of t, and denote them as w1, . . . , wm
3: output the following circuit: “accept an input x if and only if R(x) = t”
4: distribute passwords to the appropriate entities

Note that the output of this algorithm is clearly an m-point circuit, since the random oracle is
m-to-1. Furthermore, the only information stored by the circuit is t. This value “glues” together
all m passwords, in the sense that an adversary cannot modify t without destroying all of the
information about every password simultaneously.

Second warm-up

While the above protocol is clean and simple, it operates using unrealistic assumptions that we
would like to remove. In the next warm-up, we return to the setting in which the obfuscator receives
a set of accepted points {w1, . . . , wm}, rather than being able to choose them on her own. However,
the obfuscator is still able to invert the random oracle at a single point t.

Suppose the obfuscator starts as before by computing the m preimages of t under the random
oracle, which we denote by w′1, w

′
2, . . . , w

′
m. It would be nice if the real accepted points wi were

equal to the w′j , for then the obfuscator could use the first warm-up to complete her task, but sadly
this is not the case.

Hence, the obfuscator needs a way to “link” the real accepted points to the fake ones. One way
to do this is to use m obfuscated point circuits with multi-bit output [25] constructed such that
someone who knows wi is able to learn the string w′i. Unfortunately, this method is insufficient
in the tamper-proof obfuscation setting because an adversary can destroy some of the obfuscated
links.

Instead, we use a polynomial. Specifically, view the strings wi and w′i as elements of a finite field
of large (≈ 2n) prime order, and let ξ be the unique degree m − 1 polynomial over this field such
that ξ(wi) = w′i for all i. Then, the obfuscator creates a circuit that accepts its input x if and only
if R(ξ(x)) = t. Because the w′i are uniformly chosen, it follows that ξ is taken from the uniform
distribution over all degree m− 1 polynomials. We show the algorithm pictorially in Figure 5-2.

105

•w1 ξ // •w′1
R

TTTTT

**TTTTTT
...

... • t

•wm ξ // •w′m
Rjjjjj

44jjjjjj

Figure 5-2: Pictorial representation of the tamper-proof m-point circuit in the second warm-up.

In this algorithm, the polynomial q “glues” together m passwords, in the sense that it is not
possible for an adversary to change the polynomial without destroying information on all the points
simultaneously, except for those points that the adversary already knows. There are two technical
issues that prevent this algorithm from being an obfuscator.

1. There is no randomness in the obfuscation. That is, if the obfuscator receives the same set
of passwords twice, then she will output the same circuit both times. As shown in [23], a
deterministic algorithm inherently cannot be an obfuscator.

2. The obfuscated circuit does not preserve functionality. By construction, it accepts all of the
wi, but it accepts additional values too. In particular, it accepts all points x such that ξ(x)
equals any of the w′i, and there are up to m(m− 1) such points.

Luckily, both of these issues can be resolved simultaneously with a simple change to the algorithm.
The obfuscator needs to choose a long random string r, and apply the previous algorithm to the
strings {w1 ◦ r, . . . , wm ◦ r} instead of just the passwords {w1, . . . , wm}. As a result, the obfuscator
outputs a circuit of the form “on input x, accept if and only if R(ξ(x◦r)) = t.” With overwhelming
probability, the other inverses of the polynomial ξ will not be strings that end in r, so the obfuscation
has exact functionality.

Recall that the obfuscator still requires special “trapdoor” information about the inverses of t
under the random oracle. Hence, the construction operates in a “trapdoor random oracle model”
with two oracles: one that computes a random m-to-1 function, and another one that takes no
input and, when invoked, returns a uniformly random string t and all of the inverses of t under the
random oracle. It can be proved that our construction yields a tamper-proof obfuscator for Pm
in this model, although we do not do so here because the model is quite strong, and as such, still
undesirable.

Full protocol for m = 2

Now we remove the second unrealistic assumption and return to the usual random oracle model, in
which the obfuscator does not receive any special information about inverses to the random oracle.

In the second warm-up, R played two roles. In addition to its use as a random oracle, it also
serves as a sort of trapdoor one-way function because the obfuscator receives a special inversion
power. In this protocol, we separate the two duties into a random oracle function10 and a special
family of lossy one-way functions with second preimage resistance and a trapdoor-like property.
Informally, we desire functions f : {0, 1}6n → {0, 1}3n with the following properties:

• The functions are 23n-to-1, but no adversary given y U← {0, 1}6n can find y′ such that f(y′) =
f(y), even though there exist many such inputs.

10Note that in the rest of this chapter, the oracle is a random permutation, not just a random function. This is
done to allow exact functionality whenever possible. However, as we will see, the construction in this section only
permits almost exact functionality, so we simplify the analysis by merely assuming that R is a function.

106

• It must be possible to generate f together with a string y and a “collisions” circuit C that
can enumerate all of the 23n strings that collide with y. Formally, ∀i ∈ [3n], f(C(i)) = f(y),
and moreover ∀i 6= j, C(i) 6= C(j).

• The collisions circuit C should have the property that if one chooses i ∈ [3n] arbitrarily, the
distribution on C(i) is uniformly random over the set of strings that collide with y, even given
f and y (but not C, so this property constrains the sampling algorithm that forms C).

In this construction, the trapdoor-like property of f takes over the corresponding responsibility
of the trapdoor random oracle in the second warm-up. Additionally, having exponentially-many
collisions and the circuit C will allow the simulator to produce consistent responses to random oracle
queries. We will return to this issue and explain it in more detail after presenting our obfuscator.

First, we give a family of one-way functions that satisfy the desired properties based on the
hardness of computing discrete logarithms. The following assumption uses the finite field Fp = Z

pZ .

Assumption 5.13. Let G be an algorithm that takes a security parameter n as input and outputs
a tuple (p,G, g), where p is an n-bit prime, G is (the description of) a multiplicative group of order
p, and g is a uniformly chosen generator of G. Next, choose a U← Fp and set h = ga. The discrete
logarithm assumption for G says that for any adversary A, Pr [A(p,G, g, h) = a] is negligible in n.

We use the algorithm G to form a family of one-way functions as follows: sample (p,G, g) ←
G(13n), choose a1, a2

U← Fp, and compute the group elements g1 = ga1 and g2 = ga2 . Then, we let

fp,G,g1,g2(y1, y2) = gy11 · g
y2
2 .

This is a function from two elements in Fp to one element in G, so it is clearly lossy. The function
makes public p, G, g1, and g2, but not a1 or a2.

Furthermore, we can form a “trapdoor” of sorts using the two exponents a1 and a2. To explain
this, it helps to switch to vector notation and let y = (y1, y2) and a = (a1, a2) be vectors in F2

p. If
we choose a vector y uniformly at random, then f(y) = g〈y,a〉 is a uniformly random group element
which we call t. Furthermore, consider the vector ā = (a2,−a1). Because 〈a, ā〉 = 0, it follows by
linearity that for all i ∈ Fp, f(y + iā) = t. Hence, we can construct f together with y, t, and a
“collisions” circuit C such that C(i) outputs y + iā.

We note that this function is essentially the chameleon hash function of Krawczyk and Rabin
[60], although our “input” equals both their message and randomness; that is, y1 corresponds to the
message to be hashed in their setting, and y2 corresponds to the randomness used in the hash. The
trapdoor used in their setting is similar as well. (See Section 6.6 for more on chameleon hashes.)

Theorem 5.14. The family of functions {fp,G,g1,g2}(p,G,g)←G(13n) is one-way and second preimage
resistant under Assumption 5.13.

Proof. This theorem is a straightforward consequence of the fact that a chameleon hash function
is collision-resistant [60], since collision-resistance in their framework corresponds to second preim-
age resistance in ours. Alternatively, the theorem follows from the fact that two copies of this
construction (with the same p and G but different g’s) can be used as the lossy branch of a lossy
trapdoor function family [70, 77]. Hence, the function fp,G,g1,g2 ◦fp,G,g′1,g′2 is one-way, and it cannot
be distinguished from an injective one, from which second preimage-resistance immediately follows.

These are simple statements to prove on their own though, so we do so for the sake of complete-
ness.11 First, we prove that fp,G,g1,g2 is one-way. Suppose for the sake of contradiction that it is not

11Additionally, the proof in [77] that the related family is lossy trapdoor uses the DDH assumption, whereas the
self-contained proof (and the one in [60]) only needs the discrete logarithm assumption.

107

one-way, so there exists an adversary A that can invert it. We use this to form an adversary A′ that
breaks the discrete logarithm assumption. The algorithm A′ receives (p,G, g) ← G and another
group element h = ga, and must compute the exponent a. Now, A′ sets g1 = g and g2 = ga2 for
a uniformly chosen a2 ← Fp. Then, A′ runs A to find an inverse of h under fp,G,g1,g2 (note that
both h and fp,G,g1,g2 are distributed in precisely the manner that A expects). If A succeeds, then
it outputs y1, y2 such that h = gy11 · g

y2
2 = gy1+y2a2 . Finally, A′ outputs y1 + y2a2 as the discrete log

of h. It is clear that the success probability of A′ is at least as high as that of A.
Second, we prove that fp,G,g1,g2 is second preimage resistant: given (p,G, g)← G, g1, g2, t

U← G,

y1
U← Fp, and y2 such that gy11 g

y2
2 = t, no adversary can find y′1, y

′
2 such that gy

′
1

1 g
y′2
2 = t as well except

with negligible probability. Suppose for the sake of contradiction that this is not true, and there
exists an adversary A that breaks it. Then, we form an adversary A′ that breaks Assumption 5.13.
As before, A′ receives (p,G, g) ← G and another group element h = ga, and sets g1 = g, g2 = h,
and t = gy11 g

y2
2 for y1, y2

U← Fp. Note that g1, g2, and t are uniformly distributed as required. Then,
A′ runs A(fp,G,g1,g2 , t, y1, y2), which returns y′1, y

′
2 ∈ Fp. If A succeeds, then y1 + y2a = y′1 + y′2a

with y′1 6= y1 and y′2 6= y2. Thus, A′ outputs y1−y′1
y′2−y2

and succeeds at least as often as A does.

We provide a pictorial representation of the obfuscator ŌP2 in Figure 5-3. Note that we alter
our notation slightly. In previous constructions we called the accepted points w1, . . . , wm, but
here we refer to the two accepted points as w and w′, and instead use subscripts to denote vector
components.

•w R(−◦r) // •x =
(
x1

x2

) ξ1 //

ξ2
// •y =

(
y1

y2

)
**UUUUUUUUUUUU

• t

•w′
R(−◦r)

// •x′ =
(
x′1
x′2

) ξ1 //

ξ2
// •y
′ =

(
y′1
y′2

) f 44iiiiiiiiiii

Figure 5-3: Pictorial representation of the action of an obfuscated two-point circuit created by ŌP2 .
As before, t is the “glue” that binds the two accepted points together.

In this construction, we choose a random function fp,G,g1,g2 as specified above along with “trap-
door” information consisting of two vectors y, y′ that map to the same target element t. Then, an
n-bit input string is concatenated with a randomly-chosen string r ∈ {0, 1}5n and sent through the
random oracle. The resulting output is a 6n-bit long string, which we interpret as two elements in
Fp in the natural way (remember from our construction of f that |p| = 3n). In particular, applying
this procedure to the two accepted points yields two vectors x = R(w ◦ r) and x′ = R(w′ ◦ r).

Just like in the second warm-up, it would be nice if x and x′ were equal to y and y′, but sadly
this is not the case. As a result, we link them together with two polynomials (which in the m = 2
case are just lines). Specifically, we form the line ξ1 over Fp that is uniquely determined by the two
constraints ξ1(x1) = y1 and ξ1(x′1) = y′1. We form the line ξ2 analogously. Note that each line can
be identified by two group elements with overwhelming probability, since a (non-vertical) line has
the form y = mx+ b for m, b ∈ Fp.

Overall, on input u, the circuit checks whether f(ξ(R(u ◦ r))) equals t, where all computations
are done in the appropriate groups and ξ refers to the component-wise application of ξ1 and ξ2.
The full construction is presented in Algorithm 5.4.

108

Algorithm 5.4 Obfuscator ŌP2 for the family of two-point circuits
Input: a circuit of the form I{w,w′} or I∅

1: sample (p,G, g)← G(13n), choose a1, a2
U← Fp, and set g1 = ga1 and g2 = ga2

2: choose a random string r ← {0, 1}5n
3: if the input circuit is I∅ then

4: choose a group element t U← G and two lines ξ1, ξ2 uniformly over Fp
5: else
6: extract the points w,w′ and randomize their order
7: find x = R(w ◦ r) and x′ = R(w′ ◦ r), also choose v U← F2

p and set t = gv11 · g
v2
2

8: set y = v+w · ā, where ā = (a2,−a1) and we view w as an element of Fp in the natural way
9: if w = w′ then

10: in the finite field Fp, choose lines ξ1, ξ2 uniformly subject to ξi(xi) = yi for i = 1, 2
11: else
12: set y′ = v + w′ · ā
13: in the finite field Fp, find the line ξ1 such that ξ1(x1) = y1 and ξ1(x′1) = y′1
14: similarly, find the line ξ2 such that ξ2(x2) = y2 and ξ1(x′2) = y′2
15: end if
16: end if
Output: the circuit Ψr,t,ξ,p,G,g1,g2 that stores all values in an easily identifiable manner and operates

as follows: “on input u, compute R(u ◦ r), interpret this as a vector u ∈ F2
p, compute gξ1(u1)

1 ·
g
ξ2(u2)
2 in G and accept iff this equals t”

Now we return to the issue of simulator consistency and the need for exponentially-many col-
lisions. Recall that an important distinction between this construction and the one in the second
warm-up is that the random oracle is now just a random function, rather than an m-to-1 function.
As a result, the outputs to the two accepted points w and w′ are different now, which causes some
issues with our proof.

Just as in the one-point case (Theorem 5.11), we want the simulator to make a “fake” obfuscation
that it modifies whenever it learns an accepted point, and output a circuit Q that continues to do
the same. In the one-point case, this was simple: Q stores the desired target t of the random oracle,
and when it receives the accepted point w as input, it changes the response of the random oracle
query R(w ◦ r) to the target t. The same idea works in the warm-ups.

However, here the modification is not so simple, because Q must send R(w ◦ r) and R(w′ ◦ r) to
different outputs x and x′. Moreover, choosing one of x, x′ at random is insufficient because if Q
queries R(w◦r) many times, it should receive a consistent response. Thus, the mapping from w and
w′ to x and x′ must be deterministic. However, the mapping cannot be made in advance because
Q does not know w or w′ ahead of time. Instead, Q simply learns one of the accepted points “on
the fly” and must be able to send the two random oracle queries to different outputs anyway. In
essence, we are asking Q to make a function F : {0, 1}n → {0, 1} such that F (w) 6= F (w′) without
knowing w or w′, which cannot be done.

On a positive note, this problem can be solved if the range of F is large enough. This is where
the lossiness of the one-way function comes in handy: instead of having just two different outputs,
we actually have 23n possible values of x! Hence, we can map every string to a different output
of the random oracle, and then only use this mapping for the two accepted points (whatever they
happen to be). We use this idea in the proof.

109

Theorem 5.15. In the random oracle model, ŌP2 is a tamper-proof obfuscator for P2. However,
ŌP2 is not tamper-evident.

Many of the ideas in the proof follow that in the single-point case, and the common arguments
are only sketched here in order to focus on the new ideas, so the reader is encouraged to examine
the proof of Theorem 5.11 before continuing.

Proof. First, we show the almost exact functionality of ŌP2 . It is clear that the construction
accepts the points w, w′ that should be accepted, but it may cause “false positives”: inputs that
are accepted but shouldn’t be. Given the target element t, there are 23n vectors y such that
fp,G,g1,g2(y) = t. For each such vector, there exists a unique x such that ξ(x) = y. Furthermore,
the string R−1(x) ends in r with probability 2−5n over the choice of the random oracle R. By a
union bound, a false positive occurs with probability at most 2−2n, which is negligible.

As always, the polynomial slowdown property is clear. It remains to prove tamper-proofing.
Let A be an adversary, and we construct a simulator S for A. Given an input length n, auxiliary
input z, and access to an oracle for a two-point circuit I{w1,w2}, the simulator S constructs a “fake”

obfuscated circuit by choosing r
U← {0, 1}5n, (p,G, g) ← G(13n), a,v U← F2

p, and two lines ξ1, ξ2
uniformly over F2

p. Then, it computes g1 = ga1 , g2 = ga2 , and t = gv11 g
v2
2 . Finally, it outputs the

circuit Ψr,t,ξ,p,G,g1,g2 . Note that with overwhelming probability, this circuit rejects all inputs.
Then, SR,I{w,w′} emulates an execution of AR(Ψr,t,ξ,p,G,g1,g2 , z). When A makes an oracle query

of the form R(q), the simulator queries its oracle I{w,w′} on the first n bits of q.

1. If the oracle accepts, then S has found an accepted point (which we call w without loss of
generality), so it aborts this emulation of the adversary, replaces the fake obfuscated circuit
with a real obfuscation of the circuit I{w,w}, and restarts the emulation. If the restarted
emulation finds the second accepted point, then once again S aborts its emulation of the
adversary, forms an obfuscation of the circuit I{w,w′}, and emulates the adversary perfectly.

2. If I{w,w′} does not accept but R(q) is a vector such that fp,G,g1,g2(ξ(R(q))) = t, then the
adversary has detected that the obfuscation is fake. In this case, the simulator aborts.

3. Otherwise, S responds to the random oracle query honestly.

Note that S restarts the adversary at most twice. Furthermore, we claim that A only detects that
the obfuscation is fake with negligible probability. This is an immediate consequence of one-wayness
(if A has not yet found any accepted points) or second preimage resistance (if A has found one
accepted point).12

Eventually, the emulation of A halts and outputs a circuit P . Then, S outputs the circuit Q
that runs P and traps on its random oracle queries R(q) in a slightly different way. Again, we start
by passing the first n bits of q (which we denote by u) to the oracle I{w,w′}

1. If I{w,w′} accepts, then Q has found an accepted point u. Then, Q returns ξ−1(v + uā) as
the response of the random oracle. Note that ξ consists of lines that are not horizontal with
overwhelming probability, so it can easily be inverted.

2. Otherwise, Q responds to the random oracle query honestly.

12Note that if the adversary queries both accepted points, then it can learn ā and thus form exponentially-many
inverses to t. That is, the function f is not third preimage resistant. However, in this case, the adversary has learned
everything about the obfuscated circuit that we wished to hide anyway, so learning more about f is irrelevant.

110

In particular, note that the behavior of Q is deterministic, given that the behavior of P is so.
This concludes the explanation of the simulator S and its output circuitQ. Now we analyze these

circuits and prove that they satisfy the tamper-proofing property for the adversary A. From now
on, we assume that the final obfuscated circuit given to the adversary has no “false positive” points
that are accepted but shouldn’t be. As argued above, this holds with overwhelming probability.
Under this assumption, we note that the simulation is trivially perfect in two cases: if the input
circuit is I∅, or if the simulator S finds all of the accepted points in its emulation of the adversary.

Next, suppose that w 6= w′, and the simulator S found one accepted point w but not the other
one w′. We claim that y′ = ξ(R(w′◦r)) still has the uniform distribution over all preimages of t, even
to an adversary that knows fp,G,g1,g2 , t, w, w′, and y. To show this, we exploit the “redundancy” of
a; specifically, we use the fact that any multiple ca of a is consistent with the view of the adversary.
Specifically, let a′ = ca for c ∈ Fp and g′ = g(c−1). Then, g′1 = (g′)a

′
1 = (gc

−1
)ca1 = g1, and similarly

g′2 = g2. Hence, if we choose c ← Fp, sample (p,G, g) ← G(13n), and set g′ = g(c−1) and a′ = ca,
the adversary’s view is unchanged because fp,G,g′1,g′2 ≡ fp,G,g1,g2 , and g is chosen uniformly from G
so the sampling algorithm could’ve picked g′ just as easily as g. Thus, from the adversary’s point
of view, y′ is chosen from the distribution

{y + (w′ − w)cā : c← Fp},

which is easily seen to be uniform over all preimages of t (even for a fixed value of w′ − w), as
desired. Hence, knowledge of x and y provides no help in learning anything about w′, x′, or y′,
and as a result the proof techniques from Theorem 5.11 in the one-point case also work here.

The novel case to prove is the one in which there are two distinct accepted points w 6= w′

but the emulated adversary does not query either of them. In this case, we perform the following
“mental experiment”: suppose we replace the random oracle R with a fake oracle R′ that differs
only on the two values

R′(w ◦ r) = ξ−1(v + w · ā), R′(w′ ◦ r) = ξ−1(v + w′ · ā).

Then, R′ is distributed as a uniformly random function, subject to the constraints that w, w′ are
accepted by the simulator’s “fake” circuit when using oracle R′. This follows from the argument
above that these two outputs are (jointly) uniformly random preimages of t over the choice of v
and a, and the fact that R′ agrees with the random function R on all other inputs.

By assumption, the emulated adversary does not distinguish R from R′, so its output circuit P
is the same in either case. Furthermore, the random oracle query changes made by Q are precisely
those that make QR ≡ PR

′
. Finally, the relation E cannot distinguish between the real and fake

random oracles by the same information-theoretic argument as before: its input has 4n bits of
entropy, but it needs to learn r (a string with 5n bits of entropy) in order to distinguish R from R′.
Putting everything together, we have shown that if the adversary does not query either w or w′,

Pr
[
P ← AR

′
(Ψr,t,ξ,p,G,g1,g2 , z) : ∃I{w′′,w′′′} ≡ PR

′
and ER

′
(I{w,w′}, I{w′′,w′′′}) = 1

]
≈ Pr

[
Q← SR(Ψr,t,ξ,p,G,g1,g2 , z) : ∃I{w′′,w′′′} ≡ QR s.t. ER(I{w,w′}, I{w′′,w′′′}) = 1

]
so ŌP2 is a tamper-proof obfuscator, as desired (in this formula, we allow w′′ or w′′′ to equal the
empty string ∅ if fewer than two points are accepted).

Next, we prove that ŌP2 is malleable in the tamper-evident sense, meaning that for every
verifier V̄P2 , the pair (ŌP2 , V̄P2) is not tamper-evident. We show this in the case that the auxiliary

111

information z = ∅ is the empty string. Just as in Theorem 5.12, we form an adversary A that
modifies an obfuscated circuit into a different one that performs the same functionality, so it breaks
tamper-evidence for the relation E(I{w,w′}, I{w′′,w′′′}) that accepts if and only if {w,w′} = {w′′, w′′′}.

Given an obfuscated circuit of the form Ψr,t,ξ,p,G,g1,g2 , suppose ξ1 and ξ2 are formed by the
equations y = mx+ b and y = m′x+ b′, respectively. Then, A forms new lines ξ′1 and ξ′2 according
to the equations y = m

2 x+ b
2 and y = m′

2 x+ b′

2 ; that is, the output of the lines in ξ′ are half those
of ξ.13 Next, A computes g′1 = g2

1 and g′2 = g2
2 and outputs the circuit Ψr,t,ξ′,p,G,g′1,g

′
2
. Note that

fp,G,g′1,g′2(ξ′(x)) = (g′1)ξ
′
1(x1) · (g′2)ξ

′
2(x2) = g

2ξ′1(x1)
1 · g2ξ′2(x2)

2 = g
ξ1(x1)
1 g

ξ2(x2)
2 = fp,G,g1,g2(ξ(x)),

so the circuits Ψr,t,ξ,p,G,g1,g2 and Ψr,t,ξ′,p,G,g′1,g
′
2

have the same functionality. Furthermore, the circuit
Ψr,t,ξ′,p,G,g′1,g

′
2

could have been generated by the obfuscator, so any verifier V̄P2 for ŌP2 must accept
it. Thus, for tamper-evidence to hold, there must exist a PPT simulator SI{w,w′} that can output
a circuit that is equivalent in functionality to I{w,w′} for any w,w′ ∈ {0, 1}n, but this is clearly
impossible so ŌP2 is not tamper-evident as desired.

General m

The construction in ŌP2 can be generalized to the m-point case for any constant m. Rather than
describing a new obfuscator in detail, here we focus on the necessary changes from ŌP2 .

The main issue is with the one-way function. We used the function fp,G,g1,g2 above because it
had second preimage resistance, and in fact satisfied it in a strong way such that we can find a
collision pair y and y′ such that y′ has the uniform distribution over all collisions even given y.

In the general case, we need a family T of m-to-1 one-way functions with a special property
that we call “mth preimage uninvertibility,” whereby it is possible to choose a function f ← T and
inputs y1, . . . ,ym such that f(y1) = · · · = f(ym), and moreover ym is uniformly distributed over
the set of preimages f−1(y1) even given a description of f and the preimages f(y1), . . . , f(ym−1).

One such function is the generalized chameleon hash14

fp,G,g1,...,gm(y1, . . . , ym) = gy11 × · · · × g
ym
m ,

where each group element gi is chosen by taking a common generator g to the ai power. Hence,
the function computes f(y) = g〈a,y〉, just as before. Note that the domain of f is now Fmp , and the
range is still Fp, which means that for a given target value t = f(y), there is a dimension m − 1
subspace of inputs y′ such that f(y′) = t. Furthermore, we can form a circuit C that enumerates
over all of these preimages by choosing a basis b1, . . . , bm−1 of vectors orthogonal to a and setting

C(i1, . . . , im−1) = y + i1b1 + · · · im−1bm−1.

Note that the input to C is (m−1)n bits long. This presents a technical problem, as we cannot
simply index C using the accepted points like we did before with w and w′. Instead, we must
associate accepted points w ∈ {0, 1}n with “random” indices i1, . . . , im−1 ∈ {0, 1}(m−1)n in such a
way that all of the indices depend on the choice of w. Luckily we have a random oracle around to
solve this problem.

Essentially, the function fp,G,g1,...,gm satisfies mth preimage uninvertibility because if y1, . . . ,ym
are chosen uniformly at random from the preimages of t, then they are linearly independent with

13Remember that Fp is a field, so we can divide by 2 (or in other words, multiply by 2−1 mod p).
14We thank Nir Bitansky for pointing this out.

112

overwhelming probability. This can be seen iteratively, as each yi has probability 1
p of being in the

span of the previous vectors, and m is a constant. Now, consider an adversary with knowledge of
the vectors y1, . . . ,ym−1. By essentially the same argument as used in Theorem 5.14, the adversary
cannot find a linearly independent preimage15 without breaking the discrete logarithm assumption.
Hence, the adversary cannot find ym, so mth preimage uninvertibility holds.

There are a few additional modifications to the construction in the m = 2 case. Note that the
domains of the xi and yi are Fmp now, and there are m such vectors, so the lines ξ1, ξ2 in the
above construction must be replaced by m polynomials of degree m− 1 over Fp. In our proof, the
simulator needs to invert the ξi, so S has to find the roots of polynomials over a finite field, which
can be done in polynomial time [90].

Finally, we need to increase the length of the string r. In order to maintain the information-
theoretic argument about the relation E, we need |r| ≥ (2m+ 1)n, and in order to maintain almost
exact functionality, we need |r| ≥ (3n−2)n. For simplicity, we choose |r| = (3n−1)n, so the prime
p can remain 3n bits long and it is easy to embed strings of length |w ◦ r| = 3mn into Fmp .

Using the same arguments as in the proof of Theorem 5.15, it can be proved that these modifi-
cations yield a tamper-proof obfuscator for m-point circuits. We omit further details.

5.4 Constructions of tamper-evident obfuscators

In this section, we present tamper-evident obfuscators for the family of multi-point circuits in the
random oracle and common reference string models.

5.4.1 Random oracle model

In the single-point case, the obfuscator OP1 from Algorithm 5.1 is also tamper-evident. Let VP1

be the verification algorithm that accepts if and only if its input is a circuit of the form Φr,t for
some r and t such that |t| = 4

3 |r|. It is clear from Algorithm 5.1 that VP1 always accepts proper
obfuscations of point circuits.

Theorem 5.16. In the random oracle model, (OP1 , VP1) is a tamper-evident obfuscator for P1.

Proof. The functionality and polynomial slowdown properties were proved in Theorem 5.11. Also,
it is clear that VP1 only accepts circuits that are equivalent to some member of P1, so the verification
property holds. It remains to prove tamper-evidence. Let A be an adversary, and we construct
the simulator S for A as follows. When given auxiliary information z and oracle access to the
point circuit Iw, the simulator SR,Iw(1n, z) forms a fake obfuscation by choosing r U← {0, 1}3n and
t
U← {0, 1}4n. Then, S emulates an execution of A(Φr,t, z) while monitoring its random oracle calls.

There are three cases to consider:

1. If A queries R on the input w ◦ r, then the adversary A found the hidden point w, but now
the simulator has too. As a result, the simulator can simply form an obfuscation of Iw and
run A on it. In this case, the simulation is perfect.

2. If A queries the value s = R−1(t), then A has discovered that our obfuscation is fake. In this
case, the simulator returns an abort symbol ⊥.

15Note that the adversary can find many preimages of f by choosing any vector in the span of y1, . . . ,ym−1. Thus,
the function violates mth preimage resistance, and in fact it is not even third preimage-resistant, just as the function
used before was not. However, it is uninvertible because the adversary cannot find a specific preimage.

113

3. On any other query q, S allows A to access the random oracle and continue its execution.

At the end of its execution, the emulated adversary outputs a circuit P . Then, the simulator
outputs the same circuit Q = P .

Because the second case only occurs with negligible probability, and the simulation becomes
perfect if the input circuit is I∅ or if the first case ever occurs, it remains to prove the theorem
in the scenario that the input circuit is not I∅ and only the third case occurs. In this scenario,
the adversary A never queries the oracle on the hidden point w, nor does it discover that the
obfuscation is a forgery.

Let E be any relation that only makes polynomially-many oracle queries, and define

γA = Pr
[
P ← AR(O(Iw), z) : P 6= O(C), V (P) = 1, ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR, ER(Iw, Iw′) = 1

]
γS = Pr

[
Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR,Iw and ER(Iw, Iw′) = 1

]
as the probabilities of success for the real adversary and simulator, respectively. We will show that
|γA − γS | is negligible in n. To do so, we perform the following “mental experiment”: let R′ be a
different random oracle permutation in which

R′(w ◦ r) = t, R′(s) = R(w ◦ r),

and R′ agrees with R on all other values (see Figure 5-1 for a diagram). If R′ really were the
random oracle, then the “fake” obfuscation Φr,t would actually be a valid obfuscation of Iw, so

γA = Pr [P ← AR
′
(Φr,t, z) : P 6= Φr,t, V (P) = 1, and ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR

′
, ER

′
(Iw, Iw′) = 1].

Furthermore, by assumption A never queries the oracle at the two locations in which R and R′

differ. Hence, A must act the same in both cases, so the circuit Q returned by the simulator after
its emulation of AR on the “fake” obfuscation is identical to the circuit P returned by AR

′
when

given a real obfuscation. Therefore,

γA ≈ Pr [Q← SR,Iw(1n, z) : Q 6= Φr,t, V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR
′
, ER

′
(Iw, Iw′) = 1],

where now the simulator itself chooses r and t (rather than before, where they were provided to
the adversary).

Next, we claim that if Q 6= Φr,t V (Q) = 1, and QR
′

is a point circuit, then QR and QR
′

have
the same functionality. The verification test ensures that Q has the form of a obfuscated circuit
Φr′,t′ for some r′ and t′. Thus, Q accepts the single point x such that x ◦ r′, when applied to its
oracle, yields t′ (if such a point x exists), and the functionality of Q depends solely on the value of
the random oracle at x ◦ r′.

Recall that R and R′ differ in only two input values, namely s and w ◦ r. As a result, QR and
QR

′
have different functionalities if and only if x ◦ r′ = s or x ◦ r′ = w ◦ r.

1. The first case is easy to dismiss: it is infeasible for the simulator to find s, so it cannot output
the final 3n bits of s as the value of r′.

2. In the second case, x = w and r′ = r. Because Φr′,t′ 6= Φr,t but r′ = r, it must be the case
that t′ 6= t. As a result, the circuit QR

′
does not accept any points because R′(w ◦ r) 6= t′. On

the other hand, it can only be possible that R(w ◦ r) = t′ with negligible probability, because
the simulator never queries w ◦ r so it has only negligible probability of guessing its target t′.
Hence, QR rejects all inputs with overwhelming probability as well.

114

As a result, QR and QR
′

have different functionality with only negligible probability, so it follows
that

γA ≈ Pr [Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER
′
(Iw, Iw′) = 1].

Finally, it remains to show that the relation E behaves similarly when given random oracle R
or R′. This is an information-theoretic argument that proceeds in exactly the same manner as in
the proof of Theorem 5.11.

Let R′′ be another random oracle in which R′′(w ◦ r) = t, and R′′ agrees with R on all other
values. (See Figure 5-1 for a diagram.) In other words, R′′ and R′ differ only on the input s.
Because the adversary, simulator, and relation E all run in polynomial time, they only query the
value s with negligible probability, and therefore the difference in functionality between ER

′
and

ER
′′

is negligible. Furthermore, R and R′′ only differ on input w ◦ r, which has at least 3n bits of
entropy, but the relation E only receives 2n bits of information as input (namely, the values w and
w′). As a result, using any list encoding scheme, the adversary and simulator only have negligible
probability of transmitting the value r to the relation E. If the relation does not query the value
w ◦ r, then the behavior of ER and ER

′′
is identical. As a result,

γA ≈ Pr
[
Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER(Iw, Iw′) = 1

]
= γS ,

as desired.
Hence, (OP1 , VP1) is a tamper-evident obfuscator for P1, and in fact the definition is achieved

in a strong sense in which the simulator S is independent of the choice of the polynomial ρ.

Multi-point circuits

In the multi-point setting, we can concatenate m copies of OP1 and “glue” them together using a
self-signing technique16 in order to construct the obfuscator OPm described in Algorithm 5.5.

Algorithm 5.5 Obfuscator OPm for the family of m-point circuits
Input: a circuit of the form I{w1,...,wm} or I∅

1: let k be the number of distinct accepted points for the input circuit (possibly 0)
2: extract the k distinct points w1, . . . , wk

3: choose randomness r1, . . . , rm
U← {0, 1}3mn

4: choose a key pair (s, v) for a one-time signature scheme with security parameter n
5: for i = 1 to k do
6: set ti = R(wi ◦ ri ◦ v)
7: end for
8: for i = k + 1 to m do
9: choose ti

U← {0, 1}n+3mn+|v|

10: end for
11: choose a random permutation π on m elements, and permute the ri and ti by π
12: compute the signature σ = signs(t1, . . . , tm)
Output: the circuit Γr1,...,rm,t1,...,tm,v,σ that stores the ri, ti, v, and σ in a clearly identifiable

manner, and on input x does the following: “for i from 1 to m, accept if R(x ◦ ri ◦ v) = ti”

16A signature scheme can be constructed from any one-way function [61] so in particular it can be constructed
from the random oracle.

115

The associated verification algorithm VPm checks that its input circuit has the proper structure
and validates the signature. The self-signing technique ensures that an adversary will be detected
if she tries to re-use any of the OP1 obfuscations given to her, because she will not be able to forge
the required signature.

To illustrate, let us return to the example from Section 1.2.4 in which Alice attacks an obfuscated
three-point circuit that is constructed by concatenation. Alice can keep the pieces of the obfuscated
circuit that accept Charles and herself but remove the part that accepts Bob. Thus, the construction
is not tamper-proof. However, due to the unforgeability of the signature scheme, Alice cannot
perform this attack in such a way that the verifier accepts her modified program, so the construction
is tamper-evident.

Theorem 5.17. In the random oracle model, (OPm , VPm) is a tamper-evident obfuscator for Pm.
However, OPm is not tamper-proof.

Proof. It is easy to see that OPm satisfies almost exact functionality and polynomial slowdown, and
that VPm has the desired verification properties. We note that, as before with OP1 , the obfuscator
actually has exact functionality on all m-point circuits, and only errs with negligible probability
when given a circuit with fewer than m accepted points.

To prove tamper-evidence, let A be an adversary and we construct a simulator S that is given
auxiliary information z and oracle access to a circuit of the form I{w1,...,wm}. Let T be the set of
accepted points found by the simulator, so at the start of the algorithm T = ∅. The simulator
SR,I{w1,...,wm}(1n, z) creates a random obfuscation of the circuit IT . This produces a circuit of the
form Γr1,...,rm,t1,...,tm,v,σ along with the intermediate values k and π used in the obfuscation. Then,
the simulator emulates an execution of AR(Γr1,...,rm,t1,...,tm,v,σ, z). Whenever A makes a query q to
the random oracle R, S acts as follows:

1. If the query q is n+ 3mn+ |v| bits long, then let x denote the first n bits of q. The simulator
queries its oracle to find the value I{w1,...,wm}(x). If the oracle returns 1, then the simulator
has found an accepted point. The simulator aborts the current emulation of A, adds x to
the set T , forms an obfuscation of the new IT , and starts an emulation of A on the new
obfuscated circuit.

2. If R(q) equals any of the ti but the substring consisting of the first n bits of q is not in T , then
the simulator fails. However, these ti are chosen uniformly at random and independently of A
or z, so the adversary can only find the inverse of ti under the random oracle with negligible
probability.

3. Otherwise, S allows A to access the random oracle and continue its execution.

Note that the simulator S either responds to A’s oracle queries honestly or aborts the emulation of
A. Additionally, case 2 can happen at most m times, so the simulator will complete the emulation
of A in polynomial time. Let P denote the circuit that the emulation of A outputs. Then, S
outputs the same circuit P .

It remains to analyze the probability of success for this simulator. Although our emulation of
A was on a “fake” obfuscation that only includes some of the accepted points, note that there is a
random oracle on which the obfuscation is correct. In particular, let R′ be a random oracle defined
as follows: let T ′ = {w1, . . . , wm} \ T be the set of all accepted points that the simulator did not
find, and let J = {1, . . . ,m} \ {π(1), . . . , π(k)} be the set of all indices i that do not correspond
to ri and ti that are “meaningful” in the final obfuscation used by the simulator. For all w ∈ T ′,

116

choose a distinct index j ∈ J and set

R′(w ◦ rj ◦ v) = tj , R′(R−1(tj)) = R(w ◦ rj ◦ v).

Finally, set R′ equal to R on all other inputs. Note that if the “fake” obfuscation produced by
the simulator were run with oracle R′ instead of R, then it would accept all of the points in T ′

so it would in fact be a valid obfuscation of I{w1,...,wm}. Hence, the simulation would be perfect.
Additionally, S never queries the locations on which R and R′ differ, so the simulator is indifferent
to the random oracle used. In particular, SR and SR

′
output the same circuit P .

Next, we show that the functionality of P is also indifferent to the random oracle used. For P
to pass the verification test, it must have the form Γr′1,...,r′m,t′1,...,t′m,v′,σ′ and the signature test must
pass. Because the adversary can only forge signatures with negligible probability, it follows that
v 6= v′ with overwhelming probability. In this case, the differences between the random oracles R
and R′ are meaningless for the execution of P , so PR ≡ PR′ .

Finally, we show that the relation E is indifferent to the random oracle used. The relation
E receives 2mn bits of information, but the randomness values r1, . . . , rm each have 3mn bits
of entropy. As a result, using any list encoding scheme, the adversary and simulator have only
negligible probability of transmitting any of the ri to the relation E. Without any of the ri, the
relation cannot distinguish between R and R′. Hence, the probability of success for the simulator
changes only by a negligible amount when we substitute ER for ER

′
.

In conclusion, the simulation of the adversary would be perfect if the random oracle R′ were
used, and the behavior of S, P , and E do not depend on whether the real oracle R or the imaginary
oracle R′ is used. As a result, the simulation succeeds even with the random oracle R, so OPm is
a tamper-evident obfuscator for Pm, as desired.

Next, we show that OPm is not tamper-proof. We do so in the case that the auxiliary input z = ∅
is the empty string. Let A be the adversary that when given Γr1,...,rm,t1,...,tm,v,σ as input, chooses a

random value w∗ U← {0, 1}n, sets t∗1 = R(w∗ ◦ r1 ◦ v), and outputs the circuit Γr1,...,rm,t∗1,t2,...,tm,v,σ.
Note the following facts about A.

1. The signature σ is now incorrect, but in the tamper-proof setting this is okay because nobody
checks the signature.

2. If the input Γr1,...,rm,t1,...,tm,v,σ was the obfuscation of the m-point circuit I{w1,...,wm}, then the
output of A accepts m−1 of the points in {w1, . . . , wm}. However, one of the accepted values
is removed and replaced by a random point w∗.

Let E be the polynomial time computable relation such that

E(I{w1,...,wm}, I{w′1,...,w′m}) = 1 ⇐⇒ {w1, . . . , wm} ∩ {w′1, . . . , w′m} = m− 1.

When the adversary is given a circuit that accepts exactly m points, it outputs a circuit that passes
this relation with overwhelming probability: the only way that A fails is by choosing t∗1 = t1 so
its output circuit is equal to its input circuit, but t∗1 is chosen randomly so this only occurs with
negligible probability. However, any simulator SR1,...,Rm,I{w1,...,wm}(1n) only has oracle access to
I{w1,...,wm}, so the only hope that the simulator has to create a circuit with the functionality of
I{w∗,w2,...,wm} is to guess points in the hope that it finds an accepted point wi, which it can then
replace. Therefore, for every simulator, there exist many circuits I{w1,...,wm} such that the simulator
only succeeds with negligible probability, so the adversary A breaks the tamper-proofing property
as desired.

117

The self-signing concept used in the above construction can also be applied to the tamper-proof
obfuscator for the family of multi-point circuits described in Section 5.3.2, yielding an obfuscator
that simultaneously satisfies both forms of non-malleability.

5.4.2 Common reference string model

In the common reference string (CRS) model, we provide tamper-evident obfuscators for the family
Pm+ of multi-point circuits that does not include I∅. This family is slightly different than the one
used in the random oracle constructions, because the constructions in this section have the property
that it is easy to tell that obfuscated circuits accept at least one input, which was not the case in
the random oracle constructions.

Also, in this section we can only prove a slightly weaker form of tamper-evidence. We first
present an obfuscator in the single-point setting, where we believe the weaker non-malleability
property is meaningful. We can generalize the obfuscator to operate over multi-point circuits, but
the weaker form of non-malleability is insufficient in this setting.

Single-point circuits

Our construction uses two building blocks. First, let ÔP1+ be any obfuscator for P1+ without
auxiliary input that has a perfect verifier V̂P1+ , such as the (g, gx) construction of [23] described in
Section 3.2.1.

Second, let Π be a non-malleable non-interactive zero-knowledge (NIZK) proof of knowledge
system [83, 84]. This is a rather long and technical term, so we break it up into pieces.

• A zero-knowledge proof system allows a user Alice to prove to Bob that she knows that a
statement is true without revealing any additional information.

• Such systems have a proof of knowledge property if Alice must possess a witness that the
statement is true. Formally, there exists an extractor that determines the witness.

• Non-malleability means that the proof of knowledge property must hold even if Alice views
proofs of other statements.

• Non-interactivity means that Alice only sends one message to Bob.

Thus, the proof system Π has the property that if an adversary views a proof π and then produces
a different proof π′, then there exists an extractor that extracts the witness to the proof of π′.

Using these building blocks, we form the obfuscator ÕP1+(Iw) that outputs ÔP1+(Iw) along
with a proof that it knows the point w. The verification algorithm ṼP1+ associated to ÕP1+ runs
V̂P1+ and the verification algorithm of the proof system Π to check the validity of the proof.17

More formally, we define an NP relation RÔP1+
based on ÔP1+ as follows:

RÔP1+
(P,w) = 1 if and only if ∃r s.t. P = ÔP1+(Iw, r).

That is, the first input to the relation must be a valid output of the obfuscator ÔP1+ (which can
be efficiently verified by V̂P1+), and the second input must be the unique point that is accepted
by this circuit. The obfuscator ÕP1+ , described in Algorithm 5.6, uses the NIZK Π on this NP
relation [84].

17The verifier also needs to check that the common reference string has the desired form, in order to prevent the
simulator from abusing its privilege to choose the CRS. Typically, we view Σ as being a uniformly chosen l(n)-bit
string, so the verifier can check that it has the correct length.

118

Algorithm 5.6 Obfuscator ÕP1+ for the family of point circuits in the CRS model
Input: a circuit of the form Iw and a common reference string Σ

1: produce the obfuscated circuit Îw = ÔP1+(Iw)
2: use Π to prove that the obfuscator knows the string w such that RÔP1+

(Îw, w) = 1, and call
the resulting proof πw

Output: the circuit Ĩw that is equal to Îw except that it also stores πw in some clearly visible way

Intuitively, the non-malleability of the obfuscation follows from the non-malleability of the
NIZK. Unfortunately, the proof turns out to be quite delicate, and we can only prove a weaker
version of tamper-evidence.

Definition 5.18 (Weak tamper-evidence in the CRS model). Let C be a family of circuits and
(O, V) be a pair of PPT algorithms. We say that (O, V) is weakly tamper-evident for relation E
if for every PPT adversary A and polynomial ρ, there exists a PPT simulator S such that for all
sufficiently large n and for all circuits C ∈ Cn,∣∣Pr [P ← A(O(C),Σ) : P 6= O(C), V (P,Σ) = 1, and ∃D ∈ Cn s.t. D ≡ P , E(C,D) = 1]

−Pr
[
(Q,Σ)← SC(1n) : V (Q,Σ) = 1, ∃D ∈ Cn s.t. D ≡ Q and E(C,D) = 1

]∣∣ < 1
ρ(n)

,

where the first probability is taken over the coin tosses of A and O, along with the uniformly
random choice of the common reference string Σ, and the second probability is taken over the coin
tosses of S.

Note that this definition is weaker than 5.9 in two ways: the simulator S is allowed to depend on
the relation E, and there is no auxiliary input in this definition. We can prove that our construction
satisfies this weaker variant of non-malleability for many interesting relations E.

Definition 5.19. A bivariate relation E is invertible if there exists a polynomial time algorithm
Ē such that for every y, Ē(y) returns a list of all x such that E(x, y) = 1.

In particular, because E is a polynomial time algorithm, it can only output a list that is
polynomially long in length. Therefore, for every y, there can only be polynomially many x such
that E(x, y) = 1.

Theorem 5.20. Let E be an invertible relation. In the CRS model, (ÕP1+ , ṼP1+) is a weakly
tamper-evident obfuscator for E.

To prove this theorem, we first show that ÕP1+ is an obfuscator. As usual, functionality and
polynomial slowdown are clear, so it remains to prove the virtual black-box property. Note that
we are only going to prove a weak form of tamper-evidence, and Theorem 5.6 does not apply for
the weaker notion so we must prove the virtual black-box property directly.

Given an adversary Ã in the common reference string model that receives a circuit from ÕP1+ ,
we construct an adversary Â that receives a circuit from ÔP1+ as follows. The adversary Â generates
a CRS Σ along with a trapdoor that allows Â to make false proofs, and then feeds Ã its input
circuit along with a fake proof that it knows the hidden acceptable point. When the emulation
of Ã halts and returns a bit, Â outputs this bit too. It is easy to see that Â successfully breaks
the virtual black-box property if and only if Ã does. By the virtual black-box property of ÔP1+ ,
there exists a simulator Ŝ corresponding to Â. It follows that Ŝ also satisfies the virtual black-box
property for Ã.

119

It is also clear by construction that ṼP1+ is a perfect verifier for ÕP1+ . Now we show that ÕP1+

satisfies the weaker tamper-evidence property for invertible relations E. The proof is inspired by
[23] and proceeds in two stages. First, we describe an intermediate property and show that it
implies weak tamper-evidence. Second, we prove the intermediate property using specific facts
about P1+, ÔP1+ , Π, and the invertibility property of E.

Definition 5.21. Let C be a circuit family and (O, V) be a verifiable obfuscator for C. The
obfuscator is almost everywhere non-malleable for relation E if for every PPT adversary A and
polynomial ρ, there exists a polynomial size family of sets {Ln}n∈N (where Ln ⊆ Cn) such that for
sufficiently large n and for all C ∈ Cn \ Ln,

Pr [P ← A(O(C)) : V (P) = 1 and ∃D ∈ Cn s.t. P ≡ D and E(C,D) = 1] <
1

ρ(n)
.

That is, any adversary that tries to modify an obfuscated program in accordance with the relation
E can only succeed on a polynomial size set of circuits.

Now we prove that this property implies weak tamper-evidence for many interesting circuit
families, such as the family of multi-point circuits Pm+ or point circuits with multi-bit output I.

Lemma 5.22. Let C be a circuit family and (O, V) be a verifiable obfuscator for C. Suppose C
has the property that given a circuit C ∈ C and oracle access to a circuit D ∈ C, one can test in
polynomial time whether C ≡ D. Then, almost everywhere non-malleability for relation E implies
weak tamper-evidence for relation E.

The testability condition in the lemma is satisfied by P1+, but it is not satisfied by P1 because
it does not hold for C = I∅.

Proof. Let E be a relation and assume that (O, V) is almost everywhere non-malleable for relation
E. Given a polynomial ρ and an adversary A, we construct the simulator S necessary to prove
weak tamper-evidence for relation E.

By almost everywhere non-malleability, there is a polynomial size family of sets {Ln} associated
to A. By non-uniformity, we construct a simulator S that knows this family. The simulator SD(1n)
tests whether there exists C ∈ Ln such that C ≡ D. This is feasible because Ln is a polynomial
size set and each test can be done in polynomial time by the assumption of the lemma. If one of
the tests succeeds, say when testing C ∈ Ln, then S emulates an execution of A(O(C)). Otherwise,
the simulator halts and outputs a failure symbol ⊥.

It remains to analyze the performance of the simulator S. We consider two cases.

1. If SD finds some C ∈ Ln such that C ≡ D, then it emulates a real execution of A, so the
simulation is perfect in this case.

2. Otherwise, then the simulator succeeds with probability zero. However, in this case the real
adversary runs A(O(D)) for some D such that D /∈ Ln. Therefore, the almost everywhere
non-malleability property says that the adversary succeeds with at most 1

ρ(n) probability.

Hence, in both cases the difference in success probabilities between the adversary and simulator is
less than 1

ρ(n) , as desired.

Now we demonstrate that the obfuscator ÕP1+ satisfies the almost everywhere non-malleability
property. Whereas the above proof was generic in nature, now we focus on our specific construction.
It is given that ÔP1+ is an obfuscator for the family of point circuits. As a result, [23] shows that
ÔP1+ has the following property.

120

Definition 5.23 (Oracle indistinguishability18). For any polynomial ρ and any PPT distinguisher
D that outputs a single bit, there exists a polynomial size family of sets {Ln}n∈N such that for
sufficiently large n and for all Iw, Iw′ ∈ P1+

n \ Ln,∣∣∣Pr
[
D(ÔP1+(Iw)) = 1

]
− Pr

[
D(ÔP1+(Iw′)) = 1

]∣∣∣ < 1
ρ(n)

.

We use this property to demonstrate that almost everywhere non-malleability holds.

Lemma 5.24. Let E be an invertible relation. Then, (ÕP1+ , ṼP1+) is almost everywhere non-
malleable for relation E.

Proof. Let E be an invertible relation and Ē be the extraction algorithm associated to E. Assume
for the sake of contradiction that (ÕP1+ , ṼP1+) is not almost everywhere non-malleable for relation
E, and we will show a distinguisher that breaks the oracle indistinguishability property of ÔP1+ .
Since ÔP1+ is assumed to be an obfuscator for the family of point circuits, and [23] shows that all
such obfuscators obey oracle indistinguishability, we establish a contradiction.

Suppose the adversary A breaks almost everywhere non-malleability for relation E. We use A
to construct a distinguisher D. Note that A outputs long strings, but D is only allowed to output
a single bit. Distinguisher D operates as follows.

1: on input a circuit P , form a CRS-trapdoor pair (Σ, τ)
2: use the trapdoor τ to create a false proof π claiming you know a witness w s.t. RÔP1+

(P,w) = 1
3: set P ′ to be the circuit that is equal to P except that it also stores π in some clearly visible

way (the same way that the obfuscator ÕP1+ does in Algorithm 5.6)
4: emulate A(P ′) with common reference string Σ, and set Q to be the output of the emulation
5: if ṼP1+(Q) = 1 then
6: let π′ be the proof embedded in Q (there is such a proof because the verifier checks for its

existence)
7: use the proof system’s knowledge extractor to extract the witness w′ in the proof π′

8: set S ← Ē(w′) to be the set of all x such that E(x,w) = 1
9: for all x ∈ S do

10: if P (x) = 1 then
11: output the first bit of x
12: end if
13: end for
14: end if
15: output a uniformly random bit

This distinguisher runs in polynomial time because A, ṼP1+ , Ē, and the proof system’s knowledge
extractor are all PPT algorithms. Now we analyze the distinguisher’s output when it is given
P = ÔP1+(Iw) as input. We consider two cases:

1. If the adversary A succeeds in creating a circuit P ′ such that there exists w′ where P ′ looks
like a valid obfuscation of Iw′ and E(Iw, Iw′) = 1, then the distinguisher correctly finds w and
outputs the first bit of w.

2. Otherwise, the distinguisher outputs a random bit.

18We have seen this property before (in Definition 4.9) as it applies to point circuits with multi-bit output. Here,
we present the definition in the case of point circuits.

121

By assumption, A breaks almost everywhere non-malleability for relation E, so there exists a
polynomial ρ such that for every family of polynomial size sets {Ln}, there exist infinitely many n
and a circuit Iw ∈ P1+

n \ Ln such that

Pr
[
P ′ ← A(ÕP1(Iw)) : V (P ′) = 1 and ∃Iw′ s.t. P ′ ≡ Iw′ and E(Iw, Iw′) = 1

]
>

1
ρ(n)

.

By our analysis, if the distinguisher is given an obfuscation of this special circuit Iw, case 1 occurs
with probability at least 1

ρ(n) , so the distinguisher correctly outputs the first bit of w with probability

at least 1
2 + ρ(n)

2 .
Alternatively, suppose the distinguisher is given the obfuscation of any circuit Iv ∈ P1+

n \ Ln
such that the first bit of v is different from the first bit of w. We no longer know how often case 1
occurs and how often case 2 occurs, but in either case the distinguisher will output the first bit of
v with probability at least 1

2 . This is enough to complete the proof.
Set the polynomial ρ′ = ρ

2 , and we have shown the following: for every family of polynomial
size sets {Ln}, there exist infinitely many n and some Iw, Iv ∈ P1+

n \ Ln such that

Pr
[
D(ÔP1+(Iw)) = first bit of w

]
≥ 1

2
+ ρ′(n)

and
Pr
[
D(ÔP1+(Iv)) = first bit of v

]
≥ 1

2
.

But the first bits of w and v are different, so it follows that∣∣∣Pr
[
D(ÔP1+(Iw)) = 1

]
− Pr

[
D(ÔP1+(Iv)) = 1

]∣∣∣ ≥ 1
ρ′(n)

,

so the distinguisher D and polynomial ρ′ break oracle indistinguishability.

Finally, the composition of Lemmas 5.22 and 5.24 yield Theorem 5.20, as desired.

Multi-point circuits

The obfuscator ÕP1+ can be generalized to the multi-point setting, as follows. Let ÕPm+ be
the obfuscator that, when given I{w1,...,wm} as input, outputs the concatenation of m single-point
obfuscations ÔP1+(Iw1), . . ., ÔP1+(Iwm) followed by a non-malleable NIZK proof of knowledge that
it knows all of the accepted points w1, . . . , wm. As before, let ṼPm+ be the verification algorithm
that checks the structure of the program and the validity of the proof.

To show that ÕPm+ is an obfuscator, one can either assume that ÔP1+ is an m-composable
obfuscator [25] or, for certain constructions of ÔP1+ , prove the composability of the obfuscator
from a number-theoretic assumption like a strengthening of Assumption 3.20 [12].19 We show that
this obfuscator is weakly tamper-evident for invertible relations using a proof similar to that in
Theorem 5.20.

Theorem 5.25. Let E be an invertible relation. In the CRS model, (ÕPm+ , ṼPm+) is a weakly
tamper-evident obfuscator for E.

19See Sections 3.2.1 and 3.3.3 for details.

122

Proof. The conditions of Lemma 5.22 hold in the multi-point setting, so it suffices to prove that
(ÕPm+ , ṼPm+) is almost everywhere non-malleable for E. Suppose for the sake of contradiction
that the adversary A breaks almost everywhere non-malleability for E. Then, we construct a
distinguisher that breaks the oracle indistinguishability property for ÔP1+ . The distinguisher D
uses the proof system’s knowledge extractor K and the extraction algorithm Ē associated with E.
The distinguisher operates as follows, when it receives the obfuscation of a single-point circuit as
input.

1: on input a circuit P , set n to be the input length of P
2: form a CRS-trapdoor pair (Σ, τ), and choose w1, . . . , wm−1

U← {0, 1}n
3: for i = 1 to m− 1 do
4: form the obfuscation ÔP1+(Iwi) using fresh randomness
5: end for
6: let P ′ be the concatenation of P with the m− 1 obfuscations ÔP1+(Iwi) in a random order
7: create a false proof π claiming you know the m points that P ′ accepts, and append this proof

to P ′

8: emulate A(P ′) with common reference string Σ, and set Q to be the output of the emulation
of A

9: if ṼPm+(Q) = 1 then
10: set π′ to be the proof embedded in Q
11: run K(π′) to obtain the witness w′1, . . . , w

′
m consisting of the m accepted points in Q

12: initialize S to be the empty set, and compute Ē(w′1, . . . , w
′
m)

13: for all Iw1,...,wm such that E(Iw1,...,wm , Iw′1,...,w′m) = 1, as found by Ē do
14: insert w1, . . . , wm ∈ S
15: end for
16: for all x ∈ S do
17: if P (x) = 1 then
18: output the first bit of x
19: end if
20: end for
21: end if
22: output a uniformly random bit

The adversary succeeds with non-negligible probability, so using the same analysis as in the proof of
Lemma 5.24, it follows that the distinguisher D(ÔP1+(Ix)) has a noticeable advantage in finding the
first bit of x for super-polynomially many x, so D breaks oracle indistinguishability as desired.

Unfortunately, in the multi-point setting, the set of invertible relations is too small. For example,
the simple relation E(I{w1,...,wm}, I{w′1,...,w′m}) that accepts if any of the wi equal any of the w′j is not
invertible. As a result, Theorem 5.25 is a promising result but still unsatisfactory. Future research
is needed to find an obfuscator that is tamper-evident for a wider class of relations.

123

124

Chapter 6

Obfuscation of Hyperplane
Membership

This chapter is based on joint work with Ran Canetti and Guy Rothblum [30].

6.1 Introduction

In the previous two chapters, we have connected program obfuscation to the problems of symmetric
key encryption and tamper-proof hardware. These connections are elegant on a theoretical level,
but the simple fact remains that we do not have many positive results in the field of program
obfuscation. In order to expand our knowledge of program obfuscation, we have to find new
constructions and proof techniques.

Under the Barak et al. definition, we can only construct obfuscators for very simple functional-
ities like login programs and its generalizations like multiple-user login programs or digital lockers
(as described in Chapter 3). These programs have a simple structure: their behavior is identical on
every possible input except for a polynomial-sized “exception list.” The circuit is hardcoded with
both the exception list and the behavior of the circuit when given an input from this list. This fact
is exploited heavily in the proofs of their obfuscators.

The goal of this chapter is to construct an obfuscator for a new family of circuits that does not
have this structure. Given a positive integer d and prime p ≈ 2n, let Fp = Z

pZ be the finite field of
order p. Consider a hyperplane through the origin in the d-dimensional vector space Fdp, which can
be identified by a vector a that is orthogonal to every point in the plane. Let Ha be a circuit that
nonuniformly stores a in a readily identifiable manner and computes

Ha(x) =

{
1 if 〈a,x〉 = 0,
0 otherwise.

We wish to obfuscate this family1 of circuits for all hyperplanes a. Note that Ha accepts and rejects
exponentially many inputs (because p is exponential in the security parameter) so it cannot have
the “exception list” structure. Instead, the accepted points can only be detected by an arithmetic
computation, which an obfuscator for this family must hide. Due to these differences, obfuscating
these programs is a challenging and novel goal.

1It turns out that this family is also a generalization of login programs, but in a different way than prior general-
izations. In the d = 2 case, the “hyperplane testing programs” turn out to be equivalent to login programs, but for
higher dimensions d, the new programs are more complicated.

125

Unfortunately, it is so challenging that we are not able to do it under any standard crypto-
graphic assumptions, or even Canetti’s strong DDH assumption (Assumption 3.20).2 We need a
generalization of Assumption 3.20 that considers more group elements and more operations that
can be performed in the exponent (not just multiplication). Specifically, given a tuple of group
elements 〈ga1 , ga2 , . . . , gad〉 from a group G, where the ai are chosen from some joint distribution,
our assumption limits the polynomials ξ for which gξ(a1,...,ad) can be distinguished from uniform.
Of course, if ξ is linear, or even “close” to linear, then gξ(a1,...,ad) can easily be distinguished (and
in fact computed). We want indistinguishability to hold in all other cases.

However, it is not clear how to define what it means for a polynomial to be “close” to linear.
This issue is even more complex over the finite field Fp because very high degree polynomials can be
close to linear ones. For instance, xp = x by Fermat’s little theorem. Additionally, every function
over Fp can be written as a polynomial, even slight modifications of linear functions. Identifying
all of the ways that a polynomial can be “close” to linear is rather tedious. Instead, we we form a
distributional assumption on G that is conceptually simple and provides the same guarantee. We
describe our assumption in more detail in Section 6.3.

Although our assumption is stronger than Canetti’s DDH assumption, we provide evidence of
its feasibility by proving that it holds in the generic group model. Intuitively, this is not surprising
because our assumption basically states that the only computations that can be performed in the
exponent are linear ones. In other words, the assumption states that the group G is pseudo-free
[67, 81] except that the order of the group is known.

Our construction itself is rather simple. Given a circuit Ha, where a = (a1, . . . , ad), the ob-
fuscator chooses a random generator g U← G and outputs gai for all i. Then, a user can evaluate
Ha(x) by testing whether

(ga1)x1 × · · · × (gad)xd = g〈a,x〉

equals the identity element of G.3

Finally, we describe an application of our obfuscator to leakage-resilient one-time signature
schemes. We use our obfuscator for hyperplane membership testing programs with dimension 3
to construct a signature scheme that satisfies a weak form of existential unforgeability, and use
techniques from [56] to transform the weak scheme into an ordinary one-time signature scheme.
The virtual black-box property immediately gives a leakage resilience guarantee, just as it did with
encryption schemes in Chapter 4. Our scheme remains unforgeable even when a function of the
secret key is leaked whose output length is up to half as long as the secret key, which matches the
leakage bound of [58], albeit under much stronger assumptions.

Organization

In Section 6.2, we review the linear algebra that is required in this chapter. Section 6.3 describes
our assumption in detail, comparing it to previous assumptions and showing that it holds in the
generic group model. We present our obfuscator and prove its security in Section 6.4, and extend
our construction to the multi-bit setting in Section 6.5. Finally, our one-time signature scheme is
discussed in Section 6.6.

2We consider the strong DDH assumption often in this chapter, especially to compare it to our new assumption.
We strongly encourage the reader to examine Section 3.2.1 for a formal treatment of this assumption.

3We note that in the work of Shen, Shi and Waters on private inner-product predicate encryption schemes [86],
their construction also tests whether an inner product is 0 by running it in the exponent of a group where CDH is
hard. Otherwise the settings, constructions, and assumptions are quite different. In particular, a user who wants to
check whether a vector x has inner product 0 with a hidden vector v needs to first encrypt v using a secret key, so
their predicate encryption scheme does not directly yield an obfuscation.

126

6.2 Finite vector spaces

In this section, we define the vector spaces over which our constructions operate. Let d ∈ N and p be
a prime number. Then, Fp = Z

pZ is a finite field and Fdp is a vector space over Fp. We denote a vector
in the vector space by x = (x1, . . . , xd), where each xi ∈ Fp, and we have an inner product-style
operation given by 〈x,y〉 =

∑d
i=1 xiyi.

Definition 6.1. Let V ⊆ Fdp be a set.

1. Two vectors x,y ∈ Fdp are orthogonal if their inner product is zero, so 〈x,y〉 = 0. Note that
the set of all vectors orthogonal to x forms a (d− 1) dimensional hyperplane.

2. The closure of V , written V , is the subspace of all linear combinations of vectors in V .

3. The orthogonal complement of V , written V ⊥, is the subspace of all vectors that are orthogonal
to every vector in V . That is,

V ⊥ = {x ∈ Fdp : 〈x,v〉 = 0 ∀v ∈ V }.

We caution that Fdp does not satisfy all of the axioms of an inner product space, and many of
our intuitions about vector spaces from Rd break down over finite fields. For instance, a non-zero
vector can be orthogonal to itself! Hence, the concept of orthogonality loses its geometric meaning
over finite fields. Nevertheless, the following theorem about inner product spaces, which we need
in the proof of our main theorem, does hold over Fdp.

Theorem 6.2. Let V ⊆ Fdp be a set. Then, (V ⊥)⊥ = V .

Proof sketch. The theorem follows from three simple facts. First, V ⊥ and V ⊥⊥ are subspaces of
Fdp because the conditions imposed on them are linear. Second, V̄ ⊆ V ⊥⊥ because the vectors in V
are orthogonal to those in V ⊥, so they are in V ⊥⊥. Third, dim(V) = dim(V ⊥⊥) because both of
them are equal to d− dim(V ⊥).

Therefore, V and V ⊥⊥ are subspaces of Fdp of the same dimension such that one is included in
the other, so they are equal.

Note that the vector space Fdp is a bit redundant for our needs. We wish to identify a hyperplane
with a vector a that is orthogonal to every vector in the hyperplane. However, the vector a is not
unique: indeed, for any c ∈ Fp\0, the vector ca is also orthogonal to every vector in the hyperplane.
Thus, the normal vector to the hyperplane is only unique up to scalar multiplication.

As a result, there are only d−1 degrees of freedom when choosing a normal vector, which is why
the d = 2 case corresponds to point circuits. One canonical representation of the normal vector,
which we will use when convenient throughout the paper, is to consider all of the vectors in Fdp
whose first non-zero coordinate equals 1.

In fact, from a mathematical point of view, the appropriate ambient space from which to
consider the normal vectors is the projective (d − 1)-dimensional space over Fp, rather than Fdp
which has the unfortunate redundancy described above. However, from a computer science point
of view, we need a concrete instantiation of the projective space that allows us describe vectors,
which is why we use its embedding in Fdp.

Finally, we let [k] denote the set of the first k natural numbers. That is, [k] = {1, 2, . . . , k}.

127

6.3 Assumption

In this section, we define the main assumption, relate it to the strong DDH assumption (Assumption
3.20), and consider our assumption in the generic group model. The assumption uses groups of
increasing prime order. We use the following definition to encapsulate the order requirement.

Definition 6.3. A function ν(n) is called a prime sequence if for every n ∈ N, ν(n) is a prime
number in the range (2n−1, 2n].

Our assumption is parametrized by d ∈ N. We abuse notation a bit and denote Fdν = {Fdν(n)}n∈N.

Assumption 6.4. Given d ∈ N, there exists a family of groups G = {Gn}n∈N (written multiplica-
tively) such that the following three conditions hold:

1. The orders of the groups form a prime sequence ν(n) = |Gn|.

2. There are efficient algorithms to perform the group and inverse operations, to test for equality
with the identity element, and to sample uniformly from G.

3. For every PPT adversary A and for all families of distributions L = {Ln}n∈N and R =
{Rn}n∈N over Fdν , there exists a polynomial ξ such that for all n,∣∣∣Pr [l← Ln, g

U← Gn : A(gl1 , . . . , gld) = 1]− Pr [r ← Rn, g
U← Gn : A(gr1 , . . . , grd) = 1]

∣∣∣
≤ ξ(n) · max

x∈Fd
ν(n)

∣∣∣Pr [l← Ln : 〈l,x〉 = 0]− Pr [r ← Rn : 〈r,x〉 = 0]
∣∣∣ . (6.1)

In words, this assumption states that an adversary can distinguish two distributions of vectors
if and only if orthogonality tests (i.e., choosing a vector and checking if it is orthogonal to the given
one) can do so as well.

Discussion

We make several remarks.

1. The right-hand side of (6.1) depends on ν but not on any other property of G.

2. The adversary is allowed to distinguish L and R better than any single orthogonality test
does. For example, the adversary may try many orthogonality tests. The assumption merely
states that the left-hand side of (6.1) is negligible whenever the right-hand side is.

3. Assumption 6.4 for dimension 1 trivially holds, even by groups that do not satisfy DDH.

4. Given an adversary A, let Al = Pr [g U← Gn : A(gl1 , . . . , gld) = 1] and AL = E[l ← Ln : Al].
We say that L and R are indistinguishable by orthogonality tests if

ε(n) = max
x∈Fd

ν(n)

|Pr [l← Ln : 〈l,x〉 = 0]− Pr [r ← Rn : 〈r,x〉 = 0]|

is a negligible function of n. Thus, the assumption states that for all L and R that are
indistinguishable by orthogonality tests, |AL −AR| is negligible as well for all PPT A.

128

5. This assumption is computationally falsifiable, though perhaps inefficiently. There are two
possible obstructions to efficiency. First, the descriptions of L and R may be inefficient,
although this is not a problem for the distributions constructed in our proof. Second, it
may not be efficient to determine which orthogonality test performs the best. An interesting
question is whether this computation can be performed efficiently, which would yield an
efficient falsification procedure.

Hardness of the assumption

The following theorem exemplifies the strength of our assumption by relating it to Assumption
3.20, which is already considered by the cryptographic community to be quite strong.

Theorem 6.5. Assumption 3.20 implies Assumption 6.4 for dimension 2. For higher dimensions,
our assumption may be stronger because Assumption 6.4 for dimension d + 1 implies Assumption
6.4 for dimension d.

On the other hand, we provide evidence that our assumption is feasible by showing that it holds
in the generic group model.

Theorem 6.6. For all d ∈ N, Assumption 6.4 for dimension d holds in the generic group model.

Finally, note that we only consider constant dimensions d in this chapter. We justify this choice
by showing that if d is allowed to depend on n, then the assumption quickly becomes unachievable.
Loosely speaking, the problem is that the adversary can make queries adaptively.

Theorem 6.7. If d is any super-logarithmic function of n, then Assumption 6.4 is false (even in
the generic group model).

This theorem is due to Nir Bitansky. Note that there is a gap in between the last two theorems:
for super-constant but O(log(n)) dimension, the status of our assumption and construction are
unknown. However, the proof that the assumption holds in the generic group model and the
proof of security for our construction require d to be a constant. Therefore, if the assumption and
construction were secure for larger dimensions, new proof techniques would be necessary.

Proofs of these theorems are found in the next three subsections (Sections 6.3.1 through 6.3.3).

6.3.1 Hierarchy of assumptions

Here we prove Theorem 6.5, which we split into the following two lemmas.

Lemma 6.8. Assumption 6.4 for dimension d+ 1 implies Assumption 6.4 for dimension d.

Lemma 6.9. Assumption 3.20 implies Assumption 6.4 for dimension 2.

Proof of Lemma 6.8. Assume that Assumption 6.4 for dimension d is false, so for every prime
sequence ν and every set of groups G = {Gn}n∈N, there exists a PPT adversary A and two dis-
tributions L, R over vectors in Fdν that are indistinguishable by orthogonality tests but such that
|AL −AR| is noticeable.

Now construct distributions L′ and R′ over vectors in Fd+1
ν that sample L and R, respectively,

to obtain the first d components of the vector, and then sample the final component uniformly over
Fν . We claim that orthogonality tests do not distinguish L′ from R′.

Any orthogonality test x′n ∈ Fd+1
ν(n) that has a non-zero final component will not distinguish L′n

from R′n because the final component of these two distributions is uniform, so the inner product

129

will have the uniform distribution in both cases as well. Furthermore, if there exists a sequence of
orthogonality tests {x′n} ∈ Fd+1

ν that have zero for the final component and distinguish L′ from
R′, then the sequence {xn} ∈ Fdν formed by deleting the final component from x′n distinguishes L
and R, contradicting our assumption that L and R are indistinguishable by orthogonality tests.

Finally, let A′ be the adversary that drops its final component and feeds the rest to A. It is
clear that A′L′ = AL and A′R′ = AR, so |A′L′ − A′R′ | is noticeable. Therefore, Assumption 6.4 for
dimension d+ 1 is false as well.

Proof of Lemma 6.9. Suppose that Assumption 3.20 holds. For every n, the assumption holds for
a randomly chosen safe prime p, and thus for every n there exists some safe prime pn = 2qn + 1 for
which it holds. Let Gn be the subgroup of quadratic residues in F∗pn , and let G = {Gn}n∈N. We
claim that Assumption 6.4 for dimension 2 holds for the family G and prime sequence ν(n) = qn.

It is clear that the first two properties of Assumption 6.4 for dimension 2 hold. Also, using our
convention that the first non-zero coordinate of a vector is fixed to be 1, we may assume without
loss of generality that every vector in F2

ν has the form (1, x) for x ∈ Fqn except for the vector
(0, 1), which is easy to test for. Thus, a “vector” is really just a group element. Furthermore, an
“orthogonality test” is just an equality check because the vector (y,−1) has an inner product of
zero with the vector (1, x) if and only if y = x.

Hence, it remains to prove the following: for every PPT adversary A and for all families of
distributions L and R over {Fqn}n∈N such that

max
x∈Fqn

∣∣∣Pr [l← L : l = x]− Pr [r ← R : r = x]
∣∣∣

is negligible, the quantity∣∣∣Pr [l← Ln, g
U← Gn : A(g, gl) = 1]− Pr [r ← Rn, g

U← Gn : A(g, gr) = 1]
∣∣∣

is negligible as well.
First, we prove that the statement holds when L is well-spread andR is the uniform distribution.

Hence, we wish to show that for all PPT A,∣∣∣Pr [l← Ln, g
U← Gn : A(g, gx) = 1]− Pr [r U← Fqn , g

U← Gn : A(g, gr) = 1]
∣∣∣

is negligible. The proof of this statement closely follows the proofs in [23], so we only sketch the
details here. If this statement is not true, then the probability Px = A(1,x) = Pr [A(g, gx) = 1] is
noticeably different from the mean value P̄ = AR for super-polynomially many values of x. Without
loss of generality, there exist super-polynomially many values a for which Pa is noticeably larger
than P̄ . Let Xqn be the uniform distribution over all such a. Then, the ensembles 〈g, ga, gb, gc〉
and 〈g, ga, gb, gab〉 are distinguishable when a← Xqn by running A on the final two components of
the ensemble. In the first case, A outputs 1 with probability P̄ , and in the second case, A outputs
1 with noticeably higher probability. This contradicts Assumption 3.20.

Next, we note that the statement immediately extends to the setting where both L and R are
well-spread by a simple hybrid argument.

Finally, we consider arbitrarily distributions L and R such that

max
x∈Fqn

∣∣∣Pr [l← L : l = x]− Pr [r ← R : r = x]
∣∣∣

is negligible. In words, this equation means that for every x that occurs with noticeable probability

130

in L, it occurs with the same probability in R as well up to a negligible difference. Thus, the
distributions L and R can only differ on outcomes that occur with negligible probability. Therefore,
it suffices to consider L and R that are well-spread, and in this case we showed that for every PPT
A, ∣∣∣Pr [l← Ln, g

U← Gn : A(g, gl) = 1]− Pr [r ← Rn, g
U← Gn : A(g, gr) = 1]

∣∣∣
is negligible, so Assumption 6.4 for dimension 2 holds as desired.

We note that a literal converse to this lemma does not quite make sense because Assumption 3.20
is specific to the group of quadratic residues modulo F∗p for a safe prime p, whereas Assumption
6.4 makes the more general claim that there exists some family of groups that satisfy a certain
condition (potentially quite different from the groups used in Assumption 3.20).

6.3.2 Generic group model

In this section, we prove Theorem 6.6, which states that Assumption 6.4 holds in the generic
group model. We caution that this section is rather technical, and it may be safely skipped by the
uninterested reader who is willing to take the hardness of Assumption 6.4 on faith.

To begin, we explain the ideas behind the generic group model and its formalizations.

Binary encodings of group elements. Recall that in our assumption, the adversary receives
several group elements as input. More precisely, A receives binary encodings that represent the
group elements in some way. For instance, if Gn is the group of quadratic residues Q ≤ F∗p (as in
Assumption 3.20), then we can represent group elements as strings using the natural embeddings4

Q ↪→ Fp ↪→ Z ↪→ {0, 1}∗,

where in the final step we form a string using the binary representation of integers. By making
strings in this way, it is simple for an adversary to compute the group operation, inverse operation,
and test elements for equality in Q.

Similarly, one could consider elliptic curve groups over finite fields, which also have a natural
binary encoding that allows the adversary to observe the group structure. It is believed that the
Decisional Diffie-Hellman problem is hard for certain elliptic curve groups.

It is possible that an adversary A might be able to break the discrete logarithm or DDH
assumptions using only the group structure of Q. Such an adversary would be “generic” in the
sense that it would break the corresponding assumption for elliptic curve groups as well. However,
the adversary may instead be able to exploit extra properties of Q beyond its group structure. For
example, index calculus algorithms can use the prime factorization of the integer corresponding to
a group element in order to compute discrete logarithms [74]. An algorithm of this type does not
immediately translate into a corresponding algorithm on elliptic curve groups. In fact, for certain
elliptic curve groups, generic algorithms provide essentially the best known attacks on the discrete
logarithm and DDH problems [14, 57].

The model. The generic group model is an abstract model in which the structure of the group
is “hidden” from the adversary. Specifically, the embedding between group elements and their
binary representations is chosen uniformly at random. Additionally, we give the adversary oracles
that compute the embedding and perform the group’s multiplication and inverse operations on the

4We stress that these are embeddings of sets, not groups.

131

binary representations of elements. Thus, an adversary can access the group structure but cannot
exploit any properties of the representation of the group elements, aside from the fact that each
element has a distinct, unique representation.

The generic group model is commonly used in three ways:

1. Demonstrate the hardness of solving number-theoretic problems like factoring or computing
discrete logarithms [2, 35, 62, 65, 73, 87]

2. Relate the hardness of different problems [4, 19, 64, 66]

3. Provide evidence for the feasibility of new assumptions or the security of new cryptographic
protocols [15, 20, 37, 85, 88]

In this section, we do the latter. There is a word of caution here: proving that an assumption
holds in the generic group model does not guarantee that the assumption is true for any concrete
group [36, 40, 59]. Nevertheless, it does show that any algorithm attacking the assumption must
be non-generic in nature and make use of the underlying features of group elements. Finding such
algorithms for certain groups (such as elliptic curve groups over finite fields) would shed new light
on their structure. Therefore, resolving the status of our assumption is interesting either way.

Formalizations. Now we construct a “generic group” with the structure of a given family of
groups G = {Gn}n∈N. There are two ways to formalize the generic group model. The first formal-
ization is due to Shoup [87] and the second one is due to Maurer [65].

First, we can choose a random encoding σ : G ↪→ {0, 1}∗ in advance. Then, rather than giving
group elements as input to an adversary A, we provide the encodings of group elements under σ.
In our problem, the adversary receives

A(σ(g1), σ(g2), . . . , σ(gd))

as input. For notational simplicity, we write this instead as A(σ; g1, . . . , gd).
To allow A to make intelligent use of these encodings, we provide two oracles: one that computes

σ, and another oracle Addσ that performs the group operation on encoded strings. Specifically,
Addσ(s, s′, b) takes as input two strings s, s′ and a bit b, finds group elements g, g′ such that s = σ(g)
and s′ = σ(g′), and outputs σ(g + (−1)bg′).

The second formalization does not choose σ in advance but rather builds it “on the fly.” That
is, whenever σ or Addσ must output the embedding of a new group element, the oracle chooses a
new string uniformly at random. Hence, σ and Addσ jointly maintain a table T of all the group
elements they have seen so far together with their encodings. This table is required to respond
consistently to the encodings of group elements that have been seen before.

Jager and Schwenk showed that the two formalizations are equivalent [57]. For simplicity, we
use the second formalization in our proof.

With the required background complete, we can now present a formal statement of the theorem.

Theorem 6.10 (Precise statement of Theorem 6.6). Let d ∈ N and ν be a prime sequence. Then,
Assumption 6.4 holds in the generic group model over the family of groups Fν . Specifically, there
exists an oracle σ that creates an embedding Fν(n) ↪→ {0, 1}n on the fly, as well as an addition
oracle Addσ that operates as described above, such that

1. There are efficient algorithms to perform the group and inverse operations, to test for equality
with the identity element, and to sample uniformly on encodings of group elements.

132

2. Let L and R be two distributions over Fdν that are indistinguishable by orthogonality tests.
Then, for any PPT adversary A,∣∣∣Pr

[
l← Ln, Aσ,Addσ(σ; l0, . . . , ld) = 1

]
− Pr

[
r ← Rn : Aσ,Addσ(σ; r0, . . . , rd) = 1

]∣∣∣
is negligible, where the probabilities are taken over the random coin tosses of A and the uniform
choice of σ.

The rest of this section is devoted to a proof of the theorem. The first part of the theorem
is easy to see: the oracle Addσ can be used to perform the group and inverse operations, testing
for equality with the identity element can be done with a string comparison to σ(1), and one can
sample uniformly on encodings by choosing a U← Fν(n) and returning σ(a).

Proving the second part of the theorem is significantly more complicated. Suppose for the sake
of contradiction that there exist A, L, R, and a polynomial ρ such that∣∣∣Pr [l← Ln, Aσ,Addσ(σ; l0, . . . , ld) = 1]− Pr [r ← Rn : Aσ,Addσ(σ; r0, . . . , rd) = 1]

∣∣∣ > 1
ρ(n)

. (6.2)

Then, we show that there exists a polynomial ρ′ and a sequence of orthogonality tests {xn}n∈N
such that xn distinguishes5 Ln from Rn with probability at least ρ′.

Simplifications. We start by making four simplifications. First, we can assume without loss of
generality that A is deterministic. This is done by a straightforward argument: there must exist
some setting of A’s random tape such that (6.2) holds, or else it cannot be true on average, and by
non-uniformity we hardcode this setting of the random tape into A.

Second, we can remove the oracle σ, leaving A with only one oracle to Addσ. This is possible
by our convention that the first non-zero coordinate of a vector equals 1. Therefore, A can compute
σ(0) by subtracting any encoding from itself, and the first input to A that isn’t equal to σ(0) must
be σ(1). Then, any oracle query σ(a) can be simulated with oracle queries to Addσ by making the
simple observation that

a = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
a times

.

Hence, A can compute σ(a) efficiently by adding σ(1) to itself many times using the technique of
repeated doubling.

Recall that the oracle Addσ stores a table T of group elements and their corresponding encodings
for every distinct group element that A queries. In our third observation, we note that this table
is polynomially-bounded in length. To see why this is true, note that there are three ways that an
entry can be added to T in Maurer’s model.

1. An encoding must be assigned for each of A’s input elements.

2. If A makes an oracle query Addσ(s, s′, b) such that one or both of the strings s, s′ are not in
T , then they must be added to T as the encoding of a new group element.

3. If an oracle query Addσ(s, s′, b) is made such that σ−1(s) + (−1)b · σ−1(s′) is not already in
the table, it is added to the table and assigned a new encoding.

For now, assume that case 2 never occurs; we will justify this assumption at the end of the proof.
Because A runs in polynomial time, there exists a polynomial q such that A receives at most q

5It is not necessary to find the distinguishing test efficiently; we merely have to show that such a test exists.

133

encoded strings from its inputs and oracle query responses. A simple bound is q = d + size(A).
By making additional queries if necessary, we may assume without loss of generality that A makes
exactly q − d entries.

Fourth, we make a slight modification to Maurer’s model [65]. Rather than choosing an encoded
string “on the fly” for every new group element encountered, we will “pre-process” this step. That
is, we’ll choose q strings σ1, . . . , σq

U← {0, 1}n in advance. Then, σ1 through σd are the input strings
to A (unless some of the input elements coincide), and whenever Addσ has to respond with a new
string, it simply chooses the first unused string in this list. Just as we can assume without loss of
generality that A is deterministic, we can fix the strings σ1, . . . , σq because there must exist some
setting of the strings under which (6.2) holds.6

Analyzing oracle query responses. With these simplifications in place, the behavior of A is
“consistent” in the sense that if we run A on the same input many times, the output is always the
same. More precisely, for any v ∈ Fν(n), the behavior of AAddσ(σ;v) is deterministic because A
and σ are both deterministic, so the input strings of A are uniquely determined. From this, it is
easy to see inductively that A’s oracle query inputs and outputs are the same in every execution,
so the output of A is also uniquely determined. Incidentally, note that the table T is constructed
in the same way every time.

This observation leads to a stronger statement. Suppose v and v′ are two vectors such that the
executions of AAddσ(σ;v) and AAddσ(σ;v′) never result in any oracle query “collisions”: that is,
the d components of each vector are distinct, and each output of the oracle Addσ represents a new
group element (not one that was encountered before). Then, the view of A is identical in the two
executions, because A receives σ1, . . . , σd as inputs and σd+1, . . . , σq as the responses to its oracle
queries in both cases. In other words, the table of encodings T is the same in both executions.
Since A is deterministic, it follows that its output must be identical in both cases.

This property extends to any two vectors v and v′ that have the same “response pattern” to
their oracle queries, even if they are not always distinct. To codify this statement, we must consider
all of the possible responses to the oracle queries made by AAddσ(σ;v). The first input coordinate
v1 is always encoded as σ1. The second input coordinate v2 is then encoded as σ2, unless v2 = v1
in which case the encoding of v2 is also σ1. By continuing this process, we can make a tree Q of all
the possible responses of the oracle queries. Figure 6-1 shows the first three levels of this tree.

σ1

σ1 σ2

σ1 σ2 σ1 σ2 σ3

v1

v2 = v1 v2 6= v1

v3v3

Figure 6-1: Query response tree. Edges denote group elements and nodes denote responses.

6By using the same strings σ1, . . . , σq for different inputs, the embedding σ that we are constructing “on the fly”
is different for every input to A. If our proof used Shoup’s model [87] instead, we could make a similar argument but
would have to describe a permutation between different embeddings under which the view of A remains constant.

134

The depth of this tree is q, and each node in the tree is defined by the query response pattern up
to that point. Note that the ith oracle query has only i possible responses: the strings σ1, σ2, . . . , σi.
Hence, each node is uniquely identified by a tuple of at most q integers such that the first coordinate
equals 1 and every coordinate is at most 1 more than the maximum of all the previous coordinates.
For instance, Figure 6-1 shows that there are five nodes at the third level of the tree: Q(1, 1, 1),
Q(1, 1, 2), Q(1, 2, 1), Q(1, 2, 2), and Q(1, 2, 3).

We are interested in the vectors that reach any given node. Given a vector v ∈ Fdν(n), we know
that AAddσ(σ;v) has one of five possible query response patterns after three queries are made, so
it “belongs” to one of the five nodes shown at the bottom of Figure 6-1. Continue this procedure
down to the leaves of the tree. This creates a partition of the vectors in Fdν(n) into several sets, one
for each leaf, where the set V (Q(c1, . . . , cq)) contains every vector v such that:

• In an execution of A, component v1 is mapped to the string σc1 , v2 is mapped to σc2 , and so
on. Hence, A receives (σc1 , . . . , σcd) as input.

• For i ∈ [q − d], the response to the ith oracle query of AAddσ(σ;v) is the string σcd+i .

Now we can formalize the statement made above. For any two vectors v and v′ that have the same
“response pattern,” in the sense that there exist c1, . . . , cq such that v and v′ belong to the same
set V (Q(c1, . . . , cq)), the view of A is identical in the executions of AAddσ(σ;v) and AAddσ(σ;v′),
so the output of A must be the same in both instances. Hence, A cannot distinguish v from v′.

Learning from collisions. We showed above that if the components of v and the oracle query
responses to Addσ are distinct in an execution of AAddσ(σ;v), then A does not “learn anything”
about v, in the sense that its view is indistinguishable from that of every other input vector with
these properties. Conversely, when an oracle query response is a string that has been seen before,
then we can learn information about v.

To do so, we can add a third column to the table T that keeps track of the relationship of each
group element to the input elements. We associate each input element vi with an indicator vector
yvi = (0, . . . , 0, 1, 0, . . . , 0) that has a 1 in the ith position. Then, for each oracle query Addσ(s, s′, b),
we find the group elements g, g′ ∈ Fν(n) and vectors yg,yg′ ∈ Fdν(n) in T that correspond to the
strings, and add a new entry to T with the group element g + (−1)bg′, vector yg + (−1)byg′ , and
the appropriate encoded string (based on our pre-processing technique).

This procedure has an important property for every entry in T : the group element g and its
corresponding vector yg are related by g = 〈v,yg〉.

Now suppose an oracle query results in a group element g′′ = g+ (−1)bg′ has already been seen
before, and thus is already in the table T along with a vector yg′′ . Then, it follows that

〈v,yg + (−1)byg′ − yg′′〉 = 0.

Hence, finding a collision in an oracle query yields one linear constraint on the input vector v.

Limits to learning. While the tree Q is super-polynomial in size, we claim that there are only
polynomially many leaves c̄ = (c1, . . . , cq) such that V (Q(c̄)) is non-empty. To prove this claim,
we combine the analysis of oracle query responses with the learning from collisions property to
“prune” nodes in Q that are never reached. It helps to define sets V (Q(c1, . . . , ck)) on non-leaf
nodes as the union of all the sets V (Q(c1, . . . , ck, c′k+1, . . . , c

′
q)) for the leaves in the subtree rooted

at (c1, . . . , ck).

135

Each time an oracle query collides with a prior one, a linear constraint on v is revealed, and we
“move to a left child” in Q (that is, rather than moving to the rightmost leaf, we follow a different
path). Once we “move left” enough times to learn d−1 linearly independent constraints7 on v, the
vector can be identified uniquely. Hence, only one vector is in the set corresponding to this node,
so there is only one non-empty leaf in the subtree rooted at this node, and we can prune all the
other leaves.

Of course, it is not clear how many times one must “move left” in order to learn linearly
independent constraints. There may be linearly dependent constraints along the way, but the tree
can be pruned in this case too. Given an input vector v, suppose A’s first k oracle responses yield
the pattern (c1, . . . , ck) with j “left” moves. As a result, we learn that v satisfies j linear constraints
〈v,x1〉 = · · · = 〈v,xj〉 = 0.

Suppose A’s next oracle query reveals a new constraint 〈v,xj+1〉 = 0 for a vector xj+1 that
is linearly dependent on {x1, . . . ,xj}, and suppose this causes A to follow path ck+1. We claim
that all the children of Q(c1, . . . , ck) except ck+1 can be pruned. Every vector v′ that reaches
node Q(c1, . . . , ck) also satisfies the constraints 〈v′,x1〉 = · · · = 〈v′,xj〉 = 0, and thus also sat-
isfies 〈v′,xj+1〉 = 0 by linear dependence. Hence, every vector in V (Q(c1, . . . , ck)) is also in
V (Q(c1, . . . , ck, ck+1)) and we can prune all of the other children.

After pruning the empty leaves, the remaining tree has the following two properties.

1. It has depth q and each non-leaf node has at most q children.

2. In every path down the tree, a child aside from the rightmost one is taken at most d−1 times.
(If a node has only one child, it is denoted the rightmost one.)

We can bound the number of leaves in such a tree by a simple combinatorial argument. First, we
choose a number 0 ≤ i ≤ d − 1 of levels in the tree to “go left.” There are

(
q
i

)
ways to make this

decision. For each such level, there are q − 1 children to pick. Therefore, Q has at most

d−1∑
i=1

(
q

i

)
· (q − 1)i = O(q2d+1)

leaves whose vector sets are non-empty.

Finding an orthogonal test. At each edge on the pruned tree, A makes one oracle query
to Addσ so it learns at most one linear constraint on v. We pool all of these linear constraints
together into a polynomial-sized set of vectors Xn ⊆ Fdν(n) such that A effectively computes all
the orthogonality tests in Xn; the adversary A does not learn any more information than this
because A’s view is identical for all the vectors in the same leaf node. Additionally, the size of Xn

is bounded by O(q2d+2), which is polynomial in n because d is a constant8 and q is polynomial in
n. Concretely, let s(n) be a polynomial such that |Xn| ≤ s(n).

Recall that the adversary A distinguishes Ln from Rn with probability at least 1
ρ(n) . By a

standard union bound argument, there exists an orthogonality test xn ∈ Xn that distinguishes Ln
from Rn with probability at least 1

ρ(n)s(n) . This can be done for every n, yielding a sequence of
orthogonality tests {xn} that distinguishes L fromR with noticeable probability 1

ρ′ , where ρ′ = ρ·s.
This completes the proof of Theorem 6.6.

7Following our convention that the first non-zero coordinate of v equals 1 gives one linear constraint on v. Hence,
only d− 1 more are required to identify v uniquely.

8This step depends crucially on the fact that d is constant. It should not be surprising that this proof is dependent
on the size of d, since the theorem is false if d is a super-logarithmic function of n (see Theorem 6.7).

136

Oracle queries in the dark. The only remaining step in the proof is to justify the assumption
above that A never makes a “case 2” oracle query of the form Addσ(s, s′, b) such that the string
s is not in T . (The same may be true of s′ as well, but is not required.) Intuitively, these oracle
queries can be answered in a manner that is unrelated to the rest of A’s computation, so they do
not help A to learn any useful information.

Because the string s is not yet in T , we must add it along with a group element g and vector
yg. The idea is to treat g has a “free variable” that does not depend on any of the prior known
information, and then “quarantine” this variable so A doesn’t learn anything about it.

Specifically, we increase the dimension of the vectors in T (which is initially d) by one and
set the new coordinate of this vector to 0 for every vector in T . Then, we set yg = (0, . . . , 0, 1).
Recall that A only learns useful information about a group element through Addσ oracle collisions,
and in each such collision A learns one linear constraint. With the new free variable in place, this
corresponds to a vector x ∈ Fd+1

ν(n) such that 〈(v1, . . . , vd, g),x〉 = 0. If the final coordinate of x is
0, then this constraint does not depend on the free variable.

Finally, we choose g ∈ Fν(n) in such a way that future linear constraints are independent of it.
This can be done (inefficiently) by enumeration: once g is set, the adversary A can be emulated to
completion. Suppose a linear constraint

〈(v1, . . . , vd, g),x〉 = 0 (6.3)

is found with xd+1 6= 0. This constraint is dependent on g, but changing its value to any other
element of Fν(n) eliminates (6.3). The adversary makes polynomially many queries, and thus there
are only polynomially many constraints to avoid, whereas there are exponentially many choices of
g, so it is possible to find one that works. Furthermore, this technique easily generalizes to the case
of multiple “case 2” queries.

6.3.3 Adaptivity

In this section, we prove Theorem 6.7, which says that Assumption 6.4 is false when d is a super-
logarithmic function of n. This proof does not exploit the ability of an adversary to do anything
more sophisticated than performing orthogonality tests. Instead, the proof uses the fact that an
adversary can choose orthogonality tests adaptively based on the results of prior tests. Also, the
proof does not exploit any property of the family of groups G other than its group structure, so the
impossibility result holds in the generic group model as well.

In the proof, we construct a PPT adversary A and families of distributions L, R with disjoint
supports that satisfy the following three properties.

1. Given any vector a ∈ Supp(L)∪Supp(R), there exists a “special” orthogonality test that can
determine whether a is in L or R.

2. The adversary can find the special test adaptively based on the outcomes of other tests.

3. The special test is different for every a, so any particular test fails most of the time.

These three properties break Assumption 6.4 because there exists a super-polynomial relationship
between the success probability of the adversary (which is 1) and that of the best orthogonality
test (which is negligible). A formal proof follows.

Proof of Theorem 6.7. Let f ∈ ω(log(n)) and G = {Gn}n∈N be a family of groups, and we show
that Assumption 6.4 is false for d = f(n) and G. Without loss of generality, we may assume that

137

orders of the groups form a prime sequence ν, and there are efficient algorithms to perform the
group and inverse operations, to test for equality with the identity element, and to sample uniformly
from G (otherwise the assumption is discernibly false).

Given n ∈ N, we construct a distribution Ln as follows.

1: choose an integer B U← {0, 1, . . . , 2d−2 − 1}
2: for i = 1 to d− 2 do
3: if bi = 0, where bi denotes the ith bit in the binary representation of B then
4: set ai ← 0
5: else
6: choose ai

U← Fν(n) \ 0
7: end if
8: end for
9: output the vector9 a = (a1, . . . , ad−2, 1, B) in Fdν(n)

We construct distribution Rn by an identical procedure except that we output the vector a =
(a1, . . . , ad−2, 1, B + 1); that is, the final coordinate of a is different. We do this for all n to build
families of distributions L and R.

Next, we construct a (uniform) adversary A distinguishes L from R with probability 1. The
adversary A receives as input ga1 , ga2 , . . . , gad−2 , g, gad , where ad equals B or B + 1. We know that
there exists an algorithm that A can use to determine whether each gai equals the identity element
of Gn. If it does, A knows that bi = 0, and if not, then A knows that bi = 1. In this way, A recovers
B perfectly. Finally, A tests whether gad equals gB: if so, then the vector comes from L, and if
not, then the vector comes from R. It is straightforward to show that A always succeeds.

To show that the assumption is false, it suffices to prove that every orthogonality test x ∈ Fdν(n)
only succeeds with negligible probability. Note that if xd = 0, then the test x cannot distinguish
between L and R at all because their constructions only differ in the final component. Hence, from
now on it suffices to consider the case in which xd 6= 0. Next, we condition on the choice of B.
There are two cases to consider.

Case 1: Suppose x and B have the property that for every i ∈ [d − 2] such that xi 6= 0, bi = 0.
As a result, ai = 0 as well for these indices, so it follows that

〈a,x〉 = xd−1 + adxd,

which only equals zero when ad = −xd−1

xd
(recall that xd 6= 0 so this is well-defined). Because

ad always equals B or B + 1, it follows that x only distinguishes L from R for two choices of
B. Hence, x succeeds with probability 2

2d−2 over the random choice of B.

Case 2: Suppose there exists an index i such that both xi and bi are non-zero, and thus ai is
non-zero as well. Then, we can consider what happens when we vary ai over all non-zero
values in Fdν(n) but keep B and all of the other components of a fixed. Notice that

〈a,x〉 = c+ aixi,

where c is a constant that only depends on whether a comes from L or R. In each case, there
is a unique value ai = −c

xi
such that the inner product equals zero. Hence, x only distinguishes

L from R for two choices of ai ∈ Fν(n).

9Recall that the vectors in L and R are only defined up to constant multiplication. We usually enforce this rule
by setting the first non-zero coordinate of the vector to 1. Here, we set ad−1 = 1 instead for notational simplicity.

138

In summary, the orthogonality test x succeeds with probability

Pr [x distinguishes L from R]

= Pr [x distinguishes L, R and in Case 1] + Pr [x distinguishes L, R and in Case 2]

=
2

2d−2
+ Pr [x distinguishes L, R | x, B in Case 2] · Pr [x, B in Case 2]

≤ 2
2d−2

+
2

ν(n)
· 1 <

1
2f(n)−3

+
1

2n−2
,

which is negligible in n because f ∈ ω(log(n)) and ν(n) > 2n−1. Therefore, no polynomial ξ
can relate the success probability of adversary A to the success probability of any linear test, so
Assumption 6.4 is false as desired.

6.4 Construction

In this section, we define the family of programs that we obfuscate, present the obfuscator, and
prove its security under Assumption 6.4.

Let d be an integer and ν be a prime sequence. Given a vector a ∈ Fdν(n), let Ha be the circuit
that has a hardwired, and on input x ∈ Fdν(n), computes 〈a,x〉 in the obvious way and accepts if
and only if the inner product equals 0. Let Fdν = {Ha : n ∈ N,a ∈ Fdν(n)} be the family of all such
circuits.

We show how to obfuscate the family Fdν for any d ∈ N, prime sequence ν, and set of groups
G (written multiplicatively) that satisfy Assumption 6.4 for dimension d. The obfuscator OG,d
operates as follows.

Algorithm 6.1 Obfuscator OG,d for the family of hyperplane membership testing programs Fdν
Input: vector a = (a1, . . . , ad) in Fdν(n)

1: choose a generator g U← Gn \ {1Gn} uniformly at random
2: compute gi ← gai for i = 1, . . . , d

Output: circuit that has g1, . . . , gd hardwired, and on input a vector x, accepts if
∏d
i=1 g

xi
i = 1Gn

We stress that the generator g is not made public in addition to the gi. However, recall that
the vector a is only defined uniquely up to scalar multiplication, and that one way to enforce this
requirement is to assume that the first non-zero coordinate of a equals 1. With this convention,
the generator g is revealed.

Also, this convention makes it clear that in the d = 2 case, this construction is the same as that
of Canetti [23], and it can be based on the same DDH assumption by Theorem 6.5. Hence, our
construction subsumes the one in [23], which was described in Section 3.2.1.

We now show that OG,d is an obfuscator, based on Assumption 6.4.

Theorem 6.11. Let d ∈ N and G be a set of groups satisfying Assumption 6.4. Then, the algorithm
OG,d is an obfuscator for the family Fdν with exact functionality.

It is clear thatOG,d satisfies the exact functionality and polynomial slowdown properties required
of an obfuscator, so it remains to prove the virtual black-box property. Before doing so, we present
a definition that will be useful throughout the proof and an intermediate lemma.

139

Definition 6.12. Let d ∈ N and p be a prime number. We say that the set V ⊆ Fdp distinguishes
two vectors l, r ∈ Fdp if there exists x ∈ V such that exactly one of the inner products 〈l,x〉 and
〈r,x〉 equals 0. Otherwise, we say that l and r are indistinguishable by V , which means that for
all x ∈ V , 〈l,x〉 = 0 if and only if 〈r,x〉 = 0.

At a high level, this lemma states that for every adversary A, there exists a set V that can
distinguish vectors in Fdν(n) as well as A can.

Lemma 6.13. Suppose (G, d) satisfy Assumption 6.4. For every PPT adversary A and polynomial
ρ, there exists a polynomial s (that can depend on A) such that for every n ∈ N, there exists
a set V ⊆ Fdν(n) of size at most s(n), such that for every pair of vectors l, r ∈ Fdν(n) that are
indistinguishable by V ,10

|Al −Ar| =
∣∣∣Pr [g U← Gn : A(gl0 , . . . , gld) = 1]− Pr [g U← Gn : A(gr0 , . . . , grd) = 1]

∣∣∣ < 1
ρ(n)

.

Using standard techniques found in [23] and other papers (which we have used before in the
proofs of Lemmas 4.12, 4.16, and 5.22), we show that the lemma implies that OG,d is an obfuscator.

Proof that Lemma 6.13 implies Theorem 6.11. Let A be an adversary and ρ be a polynomial, and
we must construct a simulator S such that for every n ∈ N and every vector r ∈ Fdν(n),∣∣Pr

[
A(OG,d(Hr)) = 1

]
− Pr

[
SHr(1n) = 1

]∣∣ < 1
ρ(n)

.

By Lemma 6.13, there exists a polynomial s such that for every n ∈ N, there exists a set V ⊆ Fdν(n)

of size at most s(n) such that the property in the lemma holds. Let SHr(1n) be the non-uniform
circuit that receives V as advice and does the following:

1: for all x ∈ V do
2: query the oracle on input x and record the response
3: end for
4: choose a vector l ∈ Fdν(n) such that ∀x ∈ V, 〈l,x〉 = 0 iff H(x) accepts
5: output A(OG,d(Hl))

Since Pr [A(OG,d(Hr)) = 1] = Ar by definition and Pr [SHr(1n) = 1] = Al by construction, Lemma
6.13 ensures that S satisfies the virtual black-box condition.

It remains to show that S runs in polynomial time. The only step that could cause a problem
is Step 4, so we describe a method to find l in polynomial time. First, we solve the system of linear
equations 〈x,v〉 = 0 for all x ∈ V such that H(x) accepts. Let b1, . . . , bk be a basis for the set of
such solutions (we know k ≥ 1 because r is a non-zero solution). Choose l by sampling uniformly
at random from the space of all such solutions until a candidate is found such that 〈l,x〉 6= 0 for
all x ∈ V such that H(x) rejects. Since a random l satisfies these constraints with overwhelming
probability, this algorithm terminates in expected polynomial time, as desired.

Next, we provide some high-level intuition about why the lemma is true. Suppose there is an
adversary A that breaks the obfuscation (and thus the lemma as well). We build a new adversary

10If d is a super-logarithmic function of n, we proved in Theorem 6.7 that Assumption 6.4 is false. A similar
argument can be used to prove that Lemma 6.13 is false in this setting as well. Hence, while having d depend on
n does not immediately seem to rule out our construction, we would need a different assumption and a new proof
technique that does not go through the lemma.

140

A∗ that runs A many times. Also, we construct two distributions L and R. These distributions
will be uniform over their support, so we can really just think of them as sets.

The construction of L and R proceeds iteratively, subject to two invariant conditions: first,
A∗ must be able to distinguish these distributions, and second, no orthogonality test should do so.
These constraints together violate Assumption 6.4.

We achieve the first invariant using the negation of Lemma 6.13, which continually gives us a
pair of vectors (li, ri) that A (and thus A∗) can distinguish. We add li to the support of L and ri
to the support of R.

The second invariant is achieved by continually monitoring L and R as they grow. Our goal is
to “trap” any orthogonality test x once it can distinguish d of the pairs (li, ri), but unfortunately
there are too many such tests to list. Instead, we do the next best thing: find a basis for the space
in which all of these tests live. Then, we ensure that subsequent pairs of vectors that we add to
L and R are indistinguishable by these basis vectors (and as a result, any vector in the space that
the basis vectors span). Therefore, any orthogonality test can only distinguish a constant number
of the pairs, so by making the distributions L and R well-spread, we ensure that all orthogonality
tests succeed with negligible probability. The only downside to the proof is that the “trapping”
procedure requires a simulator whose runtime is exponential in d, so the proof only holds for
constant dimension.

The rest of this section is devoted to a formal proof of the lemma, which uses some techniques
from the proofs in [23], some novel proof concepts, and some linear algebra.

Proof that Assumption 6.4 implies Lemma 6.13. Given G and d, assume for the sake of contradic-
tion that the obfuscator OG,d does not satisfy Lemma 6.13. Hence, there exists an adversary A and
polynomial ρ such that for all polynomials s, there exist infinitely many n ∈ N such that for every
set V ⊆ Fdν(n) of size at most s(n), there exist vectors l, r ∈ Fdν(n) with the property that 〈l,x〉 = 0
if and only if 〈r,x〉 = 0 for all x ∈ V , such that |Ar −Al| ≥ 1

ρ(n) .
Because these probabilities are separated by a noticeable amount, an efficient algorithm is able

to determine which of Al and Ar is larger by taking n samples of each one (using independent
randomness for A and the choice of g U← Gn each time) and observing which sample probability is
greater. By a Chernoff bound, this algorithm succeeds with overwhelming probability. Thus, from
now on we assume without loss of generality that Ar > Al and drop the absolute value.

Given a constant c, apply this statement to the polynomial sc(n) = nc and the resulting n ∈ N
in order to build two large sets L̂cn and R̂cn iteratively as follows.

1: initialize V ← ∅ and i← 1
2: while |V | ≤ nc do
3: given the set V , let li and ri be vectors that violate Lemma 6.13
4: insert li ∈ L̂cn and ri ∈ R̂cn
5: for all subsets T ⊆ L̂cn ∪ R̂cn of size at most d− 2 do
6: add to V random bases of (T ∪ {li})⊥ and (T ∪ {ri})⊥
7: end for
8: increment i← i+ 1
9: end while

This algorithm iteratively finds pairs of vectors that the adversary A can distinguish but the set
V cannot. Then, it adds many points to V . We now describe in detail how these additional points
affect future iterations of the loop.

When T = ∅ in the for loop, the algorithm adds to V a basis of vectors orthogonal to li. Since
li is the only vector (up to scalar multiplication) that is orthogonal to every vector in this basis, it

141

follows that in all future iterations i′ > i of the loop, li′ and ri′ are linearly independent from li,
because li′ and ri′ must be indistinguishable by V . The same is true for ri, so the sets L̂cn and R̂cn
are continually increasing in size.

When T is not equal to the empty set, the additional points added to V ensure that orthogonality
tests cannot distinguish L̂cn from R̂cn. Specifically, we claim that for every vector x ∈ Fdν(n), there
are at most d indices such that 〈x, li〉 = 0 but 〈x, ri〉 6= 0, or vice-versa.

To see this, suppose without loss of generality that there exists a vector x ∈ Fdν(n) and J indices
i1 < i2 < · · · < iJ such that 〈x, lij 〉 = 0 but 〈x, rij 〉 6= 0 ∀j ∈ [J]. We show by induction that
the vectors li1 , . . . , liJ are linearly independent. As the base case, we showed above that any two
vectors from L̂cn ∪ R̂cn are linearly independent. Now, for j ≥ 2 suppose that Sj = {li1 , . . . , lij}
contains linearly independent vectors. At iteration ij of the loop, a basis {b1, . . . , bk} of the space
S⊥j is added to V . By definition, the basis vectors are linearly independent. If lij+1

were linearly
dependent on Sj , say lij+1

= α1li1 + · · ·+ αjlij , then

〈lij+1
, bi′〉 = 〈α1li1 + · · ·+ αjlij , bi′〉 = α1〈li1 , bi′〉+ · · ·+ αj〈lij , bi′〉 = 0

for all i′ ∈ [k]. Because lij+1
and rij+1

are indistinguishable by V , it follows that 〈rij+1
, bi′〉 = 0

for all i′ ∈ [k] as well, so
rij+1

∈ {b1, . . . , bk}
⊥

= (S⊥j)⊥ = Sj

by Theorem 6.2, which means that rij+1
is linearly dependent on the vectors in Sj so 〈x, rij+1

〉 = 0.
This contradicts the assumption that x distinguishes lij+1

from rij+1
, so the vectors li1 , . . . , liJ

must be linearly independent, which completes the induction. The vectors come from a space with
dimension d, so there can only be d linearly independent vectors, so J ≤ d as desired.

Next, we find a lower bound on the size of the sets L̂cn and R̂cn. The loop condition is to stop
when |V | > nc. On each iteration of the loop, |L̂cn| and |R̂cn| each increase by 1 and |V | increases
by at most

2d×

[
d−2∑
k=0

(
|L̂cn ∪ R̂cn|

k

)]
≤ 2d2

(
|L̂cn ∪ R̂cn|
d− 2

)
≤ O(|L̂cn ∪ R̂cn|d−2),

which means that the size of V is

|V | = O(2d−2) + O(4d−2) + · · ·+ O(|L̂cn ∪ R̂cn|d−2) = O(|L̂cn ∪ R̂cn|d−1).

We also know that |V | ≤ nc, so it follows that |L̂cn| and |R̂cn| are Ω(nc/d).
Consider the 2ρ(n) intervals[

0,
1

2ρ(n)

]
,
[

1
2ρ(n)

,
1

ρ(n)

]
, . . . ,

[
1− 1

2ρ(n)
, 1
]

that partition the unit interval. We say that an interval [β, δ] separates an li, ri pair if Ali < β
and Ari > δ. Since Ari − Ali > 1

ρ(n) , each pair is separated by at least one of the 2ρ(n) intervals.
Hence, by the pigeonhole principle, there exists one interval that separates a 1

2ρ(n) fraction of the

pairs. Call this interval [β∗c , δ
∗
c]. Let Lcn and Rcn be subsets of L̂cn and R̂cn, respectively, consisting

only of the li, ri pairs that are separated by [β∗c , δ
∗
c]. Note that |Lcn| and |Rcn| are Ω(n

c/d

ρ(n)).
Furthermore, there is an algorithm A∗c that distinguishes Lcn from Rcn. It is nonuniformly hard-

coded with the value µ∗c = 1
2(β∗c + δ∗c), and operates as follows.

Input: a vector v ∈ Fdν(n)

142

1: run A(OG,d(Hv)) a total of 32n · ρ(n)2 times using fresh randomness for A and O each time
2: let τ denote the fraction of iterations that A accepts

Output: “Lcn” if τ ≤ µ∗c and “Rcn” otherwise

If the input to this algorithm is a vector l ∈ Lcn, then we know that Al ≤ β∗c . By a Chernoff bound,
the probability that the empirical acceptance rate τ is greater than µ∗c = β∗c + 1

4ρ(n) is at most e−n.
The same is true for vectors in Rcn, so this algorithm succeeds with probability 1 − e−n. On the
other hand, we argued above that orthogonality tests distinguish Lcn from Rcn with probability at
most d

|Lcn|
= O(ρ(n)

nc/d
).

Finally, we construct the distributions L and R that break Assumption 6.4. Recall that the
negation of Lemma 6.13 yields a function n(c) as follows: for every polynomial sc, the lemma
provides some value n of the security parameter where there is a counterexample to the lemma.
Furthermore, we note that as c→∞, the sequence {n(c)}c∈N →∞ as well. This is due to the fact
that if c > nd, then the lemma considers sets V of size up to nnd > ν(n)d, so the entire collection
of vectors in Fdν(n) can fit in V and the lemma is obviously true in this case.

We form a sort of inverse to this function as follows: given n, let cn be the biggest value of c
such that the counterexample with c applies to n. Note that cn is not well-defined for all values
of n, but it is defined for infinitely large set of values which we will denote by N ⊆ N. It follows
from the above argument that as n→∞, the sequence {cn}n∈N →∞ as well. Hence, there exists
an infinitely large subset N ′ ⊆ N such that {cn}n∈N ′ is monotonically increasing. We form the
families of distributions L and R such that Ln and Rn are uniform over the sets Lcnn and Rcnn ,
respectively, for all n ∈ N ′. We set Ln = Rn arbitrarily for all n /∈ N ′.

Consider the following unified adversary A∗ that is nonuniformly hardcoded with the values
µ∗cn = 1

2(β∗cn+δ∗cn) for all n ∈ N ′ (and arbitrarily values of µ∗cn for n /∈ N ′).

Input: a vector v
1: run A(OG,d(Hv)) a total of 32n · ρ(n)2 times using fresh randomness for A and O each time
2: let τ∗ denote the fraction of iterations that A accepts

Output: “Ln” if τ∗ ≤ µ∗cn and “Rn” otherwise

This adversary will succeed at distinguishing L from R with overwhelming probability 1− e−n for
all n ∈ N ′ (and of course the adversary will fail on all n /∈ N ′). On the other hand, any sequence
of orthogonality tests only succeeds with probability O(ρ(n)

ncn/d
) which is negligible since cn →∞ as

n → ∞. Hence, there is no polynomial ξ(n) that bounds the ratio of success probabilities for the
infinitely many n ∈ N ′, so Assumption 6.4 is false as desired.

6.5 Multi-bit output

Given an obfuscator for the family of point circuits, Canetti and Dakdouk show how to construct
an obfuscator for the family of point circuits with multi-bit output [25].11 This family also accepts
a single point, but instead of just having a yes or no output, it returns a hidden message on the
correct input value. Such an obfuscator can be used to create a strong symmetric-key encryption
scheme that satisfies leakage resilience and circular security, as we saw in Chapter 4.

Their construction applies in our case too, so we can obfuscate the family of “hyperplane testing
programs with multi-bit output,” with the nice property that the message is not revealed when the
input is the zero vector (the one vector that is known to be in every hyperplane).

11See Section 3.2.1 for an explanation of the construction.

143

Formally, let Ha,m be the circuit that has the vector a ∈ Fdν(n) hardwired, and on input a vector
x ∈ Fdν(n), outputs m if 〈a,x〉 = 0 but x 6= 0, and outputs ⊥ otherwise. Let

Md
ν,` = {Ha,m : a ∈ Fdν(n),m ∈ {0, 1}

`(n)}

be the family of all such circuits. In particular, we can think of Fdν as a special case of this family
where ` = 0 (i.e., there is only one possible message).

We define an obfuscator ÕG,`,d for the family Md
ν,` in Algorithm 6.2, given any d ∈ N and

obfuscatorOG,d for hyperplane testing programs that is (`+1)-composable (in the sense of Definition
2.5). We emphasize that this construction is generic in the sense that it does not require the
obfuscator described above in Section 6.4 but rather can use any obfuscator for Fdν (although the
only candidate that we are aware of is the construction in this work). Unfortunately, we do not
know how to prove from Assumption 6.4 that our construction is even 2-composable. All we can
show is that the composability of OG,d is related to the length of messages that we can obfuscate.

Algorithm 6.2 Obfuscator ÕG,`,d for the family Md
ν,`

Input: vector a ∈ Fdν(n)

1: let C0 = OG,d(a)
2: for i = 1 to ` do
3: if mi = 1 then
4: set Ci = OG,d(a)
5: else
6: choose a′ U← Fdν(n) and set Ci = OG,d(a′)
7: end if
8: end for

Output: circuit that hardwires C0, . . . , C` and operates as follows on input x ∈ Fdν(n): output ⊥
if C0(x) rejects or if x = 0, otherwise output the string s formed by si = Ci(x) for i = 1, . . . , `

Theorem 6.14. Suppose that the obfuscator OG,d is (`+ 1)-composable for some ` = poly(n), and
let ν(n) = |Gn|. Then, ÕG,`,d is an obfuscator for Md

ν,` with approximate functionality.

Proof. The proof of this theorem is similar to the one in [25]. First, we prove the approximate
functionality of ÕG,`,d. Note that the construction has two parts: first, circuit C0 is used to
determine which inputs should be accepted, and then circuits C1, . . ., C` are used to determine the
message. By the exact functionality of OG,d, circuit C0 always accepts or rejects inputs accurately,
and the same is true for all of the circuits that encode a message bit of 1.

However, the computed message may be inaccurate because the encoding of 0 is a randomly
chosen hyperplane testing program, which is supposed to reject the input but may end up accepting
it. A randomly chosen circuit accepts a 1

ν(n) fraction of its inputs, so all of the circuits representing

a 0 value reject the input with probability at least (1− 1
ν(n))

`(n), which is overwhelming because ν
is exponential in n and ` is only polynomial in n.

The polynomial slowdown of ÕG,`,d is clear from the construction and the corresponding prop-
erties of OG,d. It remains to prove the virtual black-box property. For i = 1 to `, let ai be the
vector such that ai = a if mi = 1 or ai is uniformly chosen otherwise. By the (`+ 1)-composable
virtual black-box property, we know that there exists a simulator S such that the output of

A(ÕG,`,d(a)) = A(OG,d(a1), . . . ,OG,d(ad))

144

can be simulated by SHa1 ,...,Had . Furthermore, the oracles Ha1 , . . . ,Had can be simulated by the
oracle Ha,m up to a negligible simulation error in the following manner: if Ha,m(x) = ⊥, then we
say that Hai(x) = 0 for all i. Otherwise Ha,m(x) = m, in which case we say that Hai(x) = mi.
Hence, the simulator THa,m that runs SHa1 ,...,Had and emulates the oracle queries in this manner
satisfies the virtual black-box property for ÕG,`,d.

6.6 One-time signature scheme

We can use an obfuscator for the family of planes in three-dimensional space to form a one-time
signature scheme. Informally, the secret and public keys are a hidden plane and an obfuscation
of the plane membership testing program, respectively. A signature of a message is a point on
the plane that is related to the message, and the verification procedure runs the obfuscated plane
testing circuit to verify signatures.

More formally, let ν be a prime sequence, and O be an obfuscator for the family of planes over
F3
ν (such as the one in Section 6.4). Consider the following three algorithms.

KeyGen(1n): Choose field elements sk1, sk2, c
U← Fν(n) \0. Form the vector sk = (sk1, sk2, 1) and

the obfuscated plane P = O(Hsk). The secret key is (sk1, sk2), and the public key is (P, c).

Sign(m ∈ Fν(n)): Let σ2 be the unique field element such that the inner product 〈sk, (cm, σ2, 1)〉
equals zero. The signature is (cm, σ2).

Verify(m, (σ1, σ2)): Accept if and only if σ1 = cm and P (σ1, σ2, 1) accepts.

This signature scheme is unforgeable in a weak sense, described in [56] and other works, in which
the forger must choose the message on which she requests a signature before being shown the public
key. (However, she does not need to commit to the message whose signature she intends to forge.)
A more formal statement of this model follows.

Definition 6.15. A one-time signature scheme (KeyGen, Sign,Verify) satisfies weak l(n)-resistant
unforgeability if for all forgers F = (F1, F2), the probability that F2 forges a signature is negligible,
where the forger plays the following game:

1. F1(1n) outputs a message m and leakage circuit L with output length at most l(n).

2. We obtain a key pair (sk, pk) ← KeyGen(1n). Then, F2 receives as input the message m, a
signature σ = Sign(m), the public key, and the leakage L(sk), and F2 must output a valid
message-signature pair that is not (m,σ).12

The techniques in [56] allow us to transform this scheme into one that is existentially un-
forgeable under chosen message attacks (the standard security notion for signature schemes). The
transformation preserves leakage resilience, and it requires a chameleon hash function whose seed
can be chosen with public coins [60]. Such a function can be constructed assuming the hardness
of computing discrete logarithms (Assumption 5.13), and the construction is very similar to the
one-way function described in Section 5.3.2.

Theorem 6.16. Let ν be a prime sequence, and O be an obfuscator for the family of hyperplane
testing programs over the vector space F3

ν . Then, the above algorithm leads to an existentially

12In general, F2 is allowed to find a new signature for the same message m. However, in our construction, the
signature is uniquely determined by m and the public key, so the forger must sign a different message.

145

unforgeable one-time signature scheme under chosen message attacks. Furthermore, the signature
scheme is resilient to any leakage function whose output length is bounded by

l(n) = n− ω(log(n)).

In particular, leakage of l(n) = γn for any γ < 1 is permitted.

We make several remarks about this theorem and then prove it.

1. The secret key consists of two elements of Fν(n), so it is 2n bits long. Thus, our signature
scheme permits leakage of up to half of the length of the secret key. This matches the leakage
bound attained by Katz and Vaikuntanathan [58] for schemes that do not use general non-
interactive zero-knowledge proofs (albeit under a much stronger assumption).

2. The leakage bound in the theorem is tight. Consider the following leakage function that has
a message m hardcoded: use the secret key to form a signature associated to m, and output
σ2. This leakage function has n bits of output, and permits a forgery of the message m by
the signature (cm, σ2).

3. There are two slightly different concepts of “leakage” that one can consider: either the leakage
function can depend on the secret key, or on the randomness used in the key generation
algorithm. Both concepts of leakage are discussed in [58]. The latter concept is stronger
because the secret key can be derived from the randomness. The converse is not always true,
but it is true for our signature scheme. Therefore, our scheme trivially satisfies the stronger
notion of leakage.

4. This scheme is rather efficient. Signing requires just two modular multiplications over Fν(n),
which translates to approximately 6 multiplications over 2n-bit integers using the Montgomery
method [69]. Verification is slower, and its speed depends upon the implementation of O.
Using our construction in Section 6.4, two exponentiations and three multiplications over Gn
are required.

Proof. It is proved in [56, Appendix A] that the existential unforgeability of the final scheme
reduces to the weak unforgeability of the original scheme. While their proof applies to multiple-use
signature schemes, is straightforward to check that the reduction preserves the number of signatures
required, so it applies to one-time signatures as well. Additionally, their proof preserves leakage
resilience because the transformation only adds a chameleon hash function that is public coins, and
the trapdoor information to the hash is not stored in the secret key during honest usage of the
signature scheme.

Therefore, it suffices to prove the weak unforgeability of the construction above. Suppose for
the sake of contradiction that there exists a function l(n) ∈ n−ω(log(n)) and a forger F = (F1, F2)
that breaks weak l(n)-resilient unforgeability. We will use the forger to construct an adversary A
that breaks the virtual black-box property of O.

When given a random tape r, F1(1n; r) outputs a message m and leakage function L. We know
that the forger succeeds with noticeable probability, which means that there exists a fixed value
r∗ of the random tape of F1 for which F succeeds with noticeable probability. We only consider
r = r∗ from now on, and the message m and leakage function L that result from r∗.

We construct several adversaries Aσ,s,π that are parametrized by a vector σ ∈ F3
ν , a string

s ∈ {0, 1}l(n), and a binary predicate π. In addition, all of the adversaries are hardcoded with m.
It suffices to prove that there exists one such adversary that breaks the virtual black-box property.

146

The adversary Aσ,s,π receives an obfuscated program P = O(Ha) as input for an unknown
plane a = (a1, a2, 1). The adversary interacts with the forger in a way such that a is consistent
with the secret key in the signature scheme. We describe this interaction in detail.

1. Aσ,s,π computes c = σ1
m . It then considers (P, c) to be the public key of the signature scheme

and s to be the leakage on the secret key, so it runs F2(m,σ, (P, c), s).

2. Eventually F2 outputs a forgery (m′,σ′). Then, Aσ,s,π can find the hidden plane a by solving
the linear system 〈a,σ〉 = 0 and 〈a,σ′〉 = 0. Finally, the adversary outputs π(a).

We now analyze the success probability of Aσ,s,π. It is useful in the analysis to consider the
distribution Dσ,s that is uniform over all vectors v ∈ F3

ν such that 〈v,σ〉 = 0 and L(v) = s.
Recall that the forger F initially believes that the secret key a is initially chosen from the uniform
distribution, and it is later told that 〈a,σ〉 = 0 and L(a) = s, so from F ’s point of view the secret
key is chosen from the distribution Dσ,s.

We compute the entropy of distribution Dσ,s for a random choice of σ and s. Note that the
secret key a initially has 2n bits of entropy, and the leakage function L fixes n− ω(log(n)) bits of
entropy. Furthermore, σ leaks at most n bits of information about a, because σ1 can be chosen
uniformly and independently of a, and then σ2 is chosen to be the unique element of Fν(n) such
that 〈a,σ〉 = 0 so only σ2 depends on a. As a result, there exists some σ∗ and s∗ such that the
distribution Dσ∗,s∗ has at least ω(log(n)) bits of min-entropy.

Next, we form a polynomial time computable predicate π∗ that equals 1 with probability 1
2

when given a plane from distribution Dσ∗,s∗ . To do so, we list all of the planes in the support of
Dσ∗,s∗ lexicographically. Then, π∗ that hardcodes the plane in the middle of this list, and tests
whether its input comes lexicographically after the hardcoded plane.

We showed that for all planes a in the support of Dσ∗,s∗ , the adversary Aσ∗,s∗,π∗ is able to
compute a and thus π∗(a). On the other hand, we claim that any PPT simulator SHa is unable to
find the hidden plane a when it is chosen from distribution Dσ∗,s∗ . The simulator knows that σ∗

is on the plane, but it cannot find another point on the plane because it takes n bits of information
to describe a point and the leakage is limited in length to n − ω(log(n)) bits of output. Thus,
information-theoretically there are at least 2ω(log(n)) points consistent with the leakage, and the
simulator does not have time to query all of them. Furthermore, unless it happens to query the
correct point, it cannot learn any more information about a, since querying one more accepted
point reveals all of a. Thus, S is unable to compute π∗(a) with probability noticeably different
from 1

2 .
Therefore, we have shown that Aσ∗,s∗,π∗(Ha) outputs π∗(a) when a is chosen from the well-

spread distribution Dσ∗,s∗ , whereas no simulator SHa can do so. This breaks the virtual black-box
property, as desired.

147

148

Chapter 7

Future work

Obfuscation is an intriguing problem with the ability to solve many outstanding cryptographic
problems, as well as providing benefits to the computer science community at large. The field is
still in its infancy, however. While there are many positive results with useful applications, much
more research is required before obfuscation can be used generally to provide rigorous security
guarantees against reverse engineering and tampering for arbitrary programs (such as the example
mentioned at the beginning of the thesis concerning an RSA-breaking program that uses a hidden
factoring algorithm as a subroutine).

As a result, the goal of this thesis is two-fold: find new results that advance our knowledge on
obfuscation, and describe the state of the field in order to encourage future work on the problem.
Chapter 3 surveyed the known results so far, and in this chapter, we examine some of the possible
future directions of the field. First, we discuss three “holy grail” problems that, if solved, could
have enormous benefits for cryptography as a whole. Then, we discuss some (hopefully more
manageable) extensions of the three specific results in this thesis.

Complexity classes. Positive results in obfuscation have only been found for circuit families that
perform a specific task, such as point circuits and their extensions. If an obfuscator were constructed
for a complexity class instead, then it may have more applications. The general impossibility results
from Section 3.3.1 are greatly troubling here, as they show the impossibility of obfuscating low-
complexity classes like TC0 (for virtual black-box security) or AC0 (for best-possible security). At
the other extreme, incredibly low complexity classes are learnable, and thus trivially obfuscatable
but uninteresting (Theorem 3.4). Even so, finding a generic obfuscator for a complexity class in
between these bounds would be very useful as it would include many interesting cryptographic
functionalities [7].

Connection to homomorphic encryption. A recent breakthrough in cryptography is in the
study of (fully) homomorphic encryption, which allows messages to be manipulated in a meaningful
way while in a hidden state. The illuminating work of Gentry [41] shows that this problem is
feasible, and subsequent work has reduced the assumptions required [89]. The relationship between
this problem and obfuscation seems promising but is not fully understood. If an obfuscator existed
for the “decrypt, add or multiply, then re-encrypt” functionality, then it could be used to construct
a new homomorphic encryption scheme. In the other direction, homomorphic encryption intuitively
seems very helpful in obfuscation: one can obfuscate a circuit by “encrypting” it under the fully
homomorphic encryption scheme and running the circuit on ciphertexts. However, this näıve plan
fails because the result is an encryption of the output, not the output itself. More research is

149

required to see if homomorphic encryption can help program obfuscation (perhaps simply in the
restricted setting of low-complexity circuits, as described above).

Cryptographic hash functions. One question of interest to many cryptographers is the design
of secure hash functions. This is a topical issue, as NIST is currently running a competition to
choose a new hash function standard [78, 80]. One challenging issue regarding the construction of
a secure hash function is to determine the properties that it must satisfy. Clearly one-wayness,
collision-resistance, and second-preimage resistance are a good start, but there are applications
of hash functions in practice that require stronger properties. For instance, the login program
application described in Section 1.2.4 requires that one-wayness hold when the input is chosen
from a structured distribution, rather than the uniform one.

The NIST competition’s request for comments initially stated that candidates would be judged
on “the extent to which the algorithm output is indistinguishable from a random oracle [72].” On
the face of it, this criterion does not quite make sense, as any concrete, instantiated algorithm
is trivially distinguishable from a random oracle [29]. On the other hand, obfuscation provides
a framework in which this statement does make sense. A pseudorandom function ensemble has
the property that it cannot be distinguished from a random oracle in a black-box way. Therefore,
the same must be true for an adversary that receives the code of an obfuscated pseudorandom
function. As a result, obfuscation of pseudorandom functions would be of enormous value. This
goal is sadly unachievable under the average-case security definition (Theorem 3.15), but it remains
feasible under the virtual black-box property.

Obfuscation and encryption. In Chapter 4, we connected obfuscation to the problem of sym-
metric key encryption with leakage resilience and key-dependent message security. Subsequent to
our work, Bitanksi and Canetti [12] the connection to public key encryption schemes, and to the
multiple KDM setting in which an adversary receives the encryption of multiple messages under
multiple keys that may be arbitrarily correlated. Future research along these lines may find new
relationships between the two problems, or find more implications of the connection (such as in
Section 4.6).

Non-malleable obfuscation. In Chapter 4, we added two anti-tampering guarantees to ob-
fuscated programs. However, we are only able to construct obfuscators that satisfy the stronger
requirements in models with trusted setup. Finding such a construction in the standard model
would have practical uses in settings such as the login program example described in Section 1.3.2.
Additionally, our proof of security in the common reference string model only applies to relations
of a certain type. While relations of this form suffices for many applications, proving the security
of this proof against all relations (or finding another construction that achieves this goal) would be
helpful as well.

Hyperplane membership testing. In Chapter 4, we constructed an obfuscator for a new family
of programs. There are several directions of improvement here. First, we can only prove the security
of our construction for constant dimension d. While this suffices for applications such as the digital
signature scheme, it is still an open problem to determine the security of our construction when
d depends on the security parameter. (By Theorem 6.7, our assumption and proof technique are
invalid if d = ω(log(n)), so novel techniques are required.) A second line of research is to explore
the properties of our construction such as its composability or non-malleability. Third, we wish to
find more applications for this obfuscator.

150

List of Symbols

← The assignment operator. Given a variable x and distribution D, x ← D means that
one should take a sample from D and assign it to x. Sometimes we abuse notation
and write x← S where S is a set, in which case we use the uniform distribution on S.
(We often write x U← S to emphasize the choice of the uniform distribution.) Abusing
notation even further, if x and y are both variables, the notation x ← y is used to
denote x← {y}; that is, we set x to the value of y.

≡ Boolean operation that tests whether two circuits are functionally equivalent. See Def-
inition 2.3 on page 31.

≈ Denotes two probabilities that only differ by a negligible probability.

An operation to combine two Turing machines into one. See Theorem 3.29 on page 55.

[k] The set of integers from 1 to k. That is, [k] = {1, 2, . . . , k}.

0n, 1n A string consisting of n zeroes (or ones). We emphasize that this is not the exponenti-
ation operation. Conversely, when 2n is used throughout the thesis, it does mean 2 to
the nth power. Hopefully, the overloaded operator is not confusing as it never makes
sense to exponentiate 0 or 1.

∅ Either denotes the empty set or the empty string, depending on context.

◦ The string concatenation operator.

α A function bounding the min-entropy that a key distribution must satisfy in order for
a symmetric encryption scheme or digital locker to remain secure. See Section 1.3.1 for
an informal overview and Definition 4.1 on page 62 for technical details.

Γ, Φ, Ψ Obfuscated circuits constructed in Chapter 5. See Algorithms 5.1, 5.4, and 5.5.

γ Denotes a real number in the interval [0, 1], typically used as a probability.

ε Either denotes a negligible function or a small constant. The latter use only occurs in
Section 4.6.

π Depending on the context, either denotes a binary predicate that an adversary or simu-
lator is attempting to learn, or a permutation. The first use occurs in security definitions
like Definition 2.4 on page 33. The second use is in the constructions of Sections 3.2.1
and 5.4.

ν A prime sequence. See Definition 6.3 on page 128.

151

ξ, ρ A polynomial, possibly multi-variate.

A, A′ An efficient (PPT) adversary.

a, l, r, v A vector in a d-dimensional vector space. Can be used to represent a hyperplane through
the origin in the vector space. See Section 1.3.3 and Chapter 6.

C, D A circuit, often with n bits of input and binary output, but not always.

C, D A family of programs, formally represented as circuits. Often, C denotes a family of
circuits to be obfuscated, and D denotes the resulting family of obfuscated circuits. See
Definition 2.1 and Sections 1.2.3 and 5.2.

c In Section 1.3.1 and Chapter 4, denotes a ciphertext. In the rest of the thesis, typically
denotes a constant. Often used as the degree of a polynomial (i.e., nc).

d Dimension of the vector space under consideration in Chapter 6.

Deck(c) Decryption routine of a symmetric encryption scheme. Receives key k and ciphertext
c, and outputs a decrypted message. See Sections 1.3.1 and 4.2.2.

E A polynomial-time computable relation with two input strings (which are typically
representations of circuits) and binary output. See Definitions 5.1 and 5.5.

Enck(m) Encryption routine of a symmetric key encryption scheme. Receives key k and message
m, and outputs a ciphertext. See Sections 1.3.1 and 4.2.2.

Fp A finite field of order p. In this thesis, we only consider fields of prime order, in which
case Fp ∼= Z

pZ . See Sections 5.3.2 and 6.2.

Fdν The family of d-dimensional hyperplanes over finite fields whose orders are specified by
ν. See Section 6.4.

f Denotes a function.

G, Gn A group whose order is typically a prime in the range (2n−1, 2n]. See Assumption 6.4
on page 128.

G A PPT algorithm that samples a prime p, group G for which it is hard to compute
discrete logs, and generator g ∈ G. See Assumption 5.13 on page 107.

G A family of groups of increasing order. See Assumption 6.4 on page 128.

g A group element. Often, we want g to be a generator of the group. We typically work
over groups of prime order, so this condition simply means g 6= 1.

Ha(x) Circuit that performs hyperplane membership testing. It accepts if 〈a,x〉 = 0. See
Section 1.3.3 and Chapter 6.

H∞ The min-entropy function. Receives a distribution as input, and outputs a real number.
See Definition 2.2.

H A family of pairwise-independent hash permutations. See Lemma 4.7 on page 66.

152

I{w1,...,wm} An “indicator” circuit that stores the strings w1, . . . , wm in a readily identifiable manner.
It accepts the wi and rejects all other inputs. Note that the set can be empty: I∅ is a
circuit that rejects all inputs. Also, when only one input is accepted, the set notation
is dropped and the circuit is denoted Iw. The family of all such circuits is denoted by
Pm. See Section 2.1.

I(k,m) A point circuit with multi-bit output. If its input equals k, then it outputs m; otherwise,
it outputs a failure message ⊥. Note that this functionality is not the same as I{k,m}!
See Sections 2.1 and 4.2.1.

I The family of point circuits with multi-bit output (that is, of all possible I(k,m)). See
Sections 2.1 and 4.2.1.

k Key in an encryption scheme or digital locker. See Sections 1.3.1 and 4.2.

L, R Denotes a family of distributions of hyperplanes. More formally, L = {Ln}n∈N, where
each Ln is a distribution of vectors (which are used to identify hyperplanes through the
origin) in the finite vector space Fdν(n). (Note that L thus implicitly depends on the
prime sequence ν.) See Assumption 6.4 on page 128.

Md
ν,` Family of hyperplane testing circuits with multi-bit output with dimension d, length `,

and prime sequence ν. See Section 6.5.

` The length of a message m in a point circuit with multi-bit output in Chapter 4 and
Section 6.5. See Definition 4.1 on page 62.

m Either denotes the message in an encryption scheme or digital locker, or the number of
points accepted by a multi-point circuit. The first use occurs in Chapters 4 and 6, and
the second use occurs in Chapter 5.

N The set of natural numbers (i.e., positive integers).

n Either denotes the security parameter in the cryptographic protocol under consider-
ation, or the input length of a given circuit. Note that these two values are often
the same: the input length of a circuit also equals the security parameter used when
obfuscating the circuit. See Chapter 2.

negl(n) Shorthand for “there exists a function that is negligible in n such that” the mathematical
expression holds.

O Generic circuit that performs obfuscation. Receives a random string and (the descrip-
tion of) a circuit as input, and outputs a circuit. Specific constructions typically have
a subscript to denote the family that they obfuscate; for example, OP1 is an obfuscator
for point circuits. See Definition 2.4 on page 33.

P , Q Typically denotes a program, formally represented as a circuit. Occasionally used in
Section 1.3.3 to denote a hyperplane.

Pm, Pm+ Families of circuits that accept at most m points. The family Pm includes the circuit
I∅ that rejects all inputs, whereas Pm+ does not. See Sections 2.1, 5.3, and 5.4.

p A prime number that is n (the security parameter) bits long. See Assumption 3.20 on
page 45

153

q In Chapter 5 and Section 6.3.2, denotes a random oracle query. In the rest of the thesis,
used as a second prime number in addition to p when needed, such as in Assumption 3.20
on page 45.

poly(n) Shorthand for “there exists a polynomial in n such that” the mathematical expression
holds.

R A random oracle. In this thesis, we mostly consider random permutations, although
Chapter 3 and Section 5.3.2 use random functions. See Definitions 5.7 and 5.8 on
page 98.

r A string that is chosen uniformly at random. Constructions of obfuscators in the random
oracle model use this string as a “salt” when hashing an input using the random oracle.
See Sections 5.3 and 5.4.

S Typically denotes an efficient (PPT) simulator. Occasionally used to denote a set.

s In Chapters 4 and 6, a polynomial that upper bounds the size of a circuit or set. See
Definition 2.1 and Lemma 6.13. In Chapter 5, used in the proofs of security for the
various constructions to denote a special “source” input to the random oracle that would
yield the target t (as opposed to the variable q, which is used to denote any input to
the oracle).

Σ A common reference string. See Definition 5.9 on page 98.

σ A digital signature. See Sections 5.4 and 6.6.

t In Chapter 4, denotes the composability of an obfuscator; that is, the maximum number
of obfuscated circuits that an adversary can receive and still have security hold. See
Definition 2.5 on page 34. In Chapter 5, denotes an output of a random oracle that is
a special “target.” See Algorithms 5.1, 5.4, and 5.5.

U The uniform distribution on a given set (depending on the context). For example, Un
denotes the uniform distribution on all strings of length n; that is, on the set {0, 1}n.

V A set of vectors. See Sections 6.2 through 6.4.

w A password, represented as a string. See Sections 1.3.2 and 2.1.

x, x Typically denotes the input to a circuit. The latter notation is used when the input is
a vector. See Sections 2.1 and 6.1.

Z The ring of integers.

z Auxiliary input to an adversary attempting to break obfuscation or encryption. Typi-
cally regarded as a function in Chapter 4 and a string in Chapter 5. See Definition 4.24
for an example of the function usage, and Definitions 2.4, 5.1, and 5.5 for the string
usage.

154

List of Algorithms

5.1 Obfuscator OP1 for the family of point circuits . 100
5.2 Algorithm for the simulator SR,Iw(1n, z) in the proof of Theorem 5.11 101
5.3 Algorithm for program QR,Iw in the proof of Theorem 5.11 101
5.4 Obfuscator ŌP2 for the family of two-point circuits 109
5.5 Obfuscator OPm for the family of m-point circuits 115
5.6 Obfuscator ÕP1+ for the family of point circuits in the CRS model 119
6.1 Obfuscator OG,d for the family of hyperplane membership testing programs Fdν . . . 139
6.2 Obfuscator ÕG,`,d for the family Md

ν,` . 144

155

156

List of Figures

1-1 Security by obscurity example . 10
1-2 Pictorial representation of leakage-resilient and KDM secure encryption 18
1-3 Equivalence between symmetric encryption and obfuscation terminology 21
1-4 Pictorial representation of concatenation . 25

3-1 Comparison of definitions of obfuscation . 36

5-1 Random oracles in the proof of Theorems 5.11 and 5.16 103
5-2 Tamper-proof m-point circuit in the second warm-up 106
5-3 Obfuscated two-point circuit created by ŌP2 . 108

6-1 Tree of possible query responses in the generic group model 134

157

158

Bibliography

[1] Ben Adida and Douglas Wikström. How to shuffle in public. In TCC, volume 4392 of Lecture
Notes in Computer Science, pages 555–574. Springer, 2007.

[2] Divesh Aggarwal and Ueli M. Maurer. Breaking RSA generically is equivalent to factoring.
In EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 36–53. Springer,
2009.

[3] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, volume 5444 of Lecture Notes in Computer
Science, pages 474–495. Springer, 2009.

[4] Kristina Altmann, Tibor Jager, and Andy Rupp. On black-box ring extraction and integer
factorization. In ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 437–
448. Springer, 2008.

[5] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In CRYPTO, volume 5677 of Lecture Notes in Computer Science,
pages 36–54. Springer, 2009.

[6] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 595–618. Springer, 2009.

[7] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM J. Com-
put., 36(4):845–888, 2006.

[8] Michael Backes, Markus Dürmuth, and Dominique Unruh. OAEP is secure under key-
dependent messages. In ASIACRYPT, volume 5350 of Lecture Notes in Computer Science,
pages 506–523. Springer, 2008.

[9] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message security under
active attacks - brsim/uc-soundness of symbolic encryption with key cycles. In CSF, pages
112–124. IEEE Computer Society, 2007.

[10] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[11] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages
273–289. Springer, 2004.

159

[12] Nir Bitansky and Ran Canetti. On obfuscation with strong simulators. Cryptology ePrint
Archive, 2010. http://eprint.iacr.org/.

[13] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In Selected Areas in Cryptography, volume 2595 of Lecture
Notes in Computer Science, pages 62–75. Springer, 2002.

[14] Dan Boneh. The Decision Diffie-Hellman problem. In ANTS, volume 1423 of Lecture Notes
in Computer Science, pages 48–63. Springer, 1998.

[15] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assump-
tion in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[16] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[17] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[18] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from Decision Diffie-Hellman. In CRYPTO, volume 5157 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2008.

[19] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to
cryptography (extended abstract). In CRYPTO, volume 1109 of Lecture Notes in Computer
Science, pages 283–297. Springer, 1996.

[20] Daniel R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and
Cryptography, 35:119–152, 2002.

[21] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

[22] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In
EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 351–368. Springer,
2009.

[23] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 455–469.
Springer, 1997.

[24] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Foundations of Computer Science, pages 136–145, 2001.

[25] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output. In
EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 489–508. Springer,
2008.

[26] Ran Canetti, Yael Kalai, Mayank Varia, and Daniel Wichs. On symmetric encryption and
point obfuscation. In TCC, volume 5978 of Lecture Notes in Computer Science, pages 52–71.
Springer, 2010.

160

[27] Ran Canetti, Yael Kalai, Mayank Varia, and Daniel Wichs. On symmetric encryption and point
obfuscation. Cryptology ePrint Archive, Report 2010/049, 2010. http://eprint.iacr.org.

[28] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic hash
functions. In Proceedings of the 30th ACM Symposium on Theory of Computing, pages 131–
140, 1998.

[29] Ran Canetti, Ron Rivest, and Eran Tromer. Comments on NIST draft require-
ments and criteria for hash algorithm. http://people.csail.mit.edu/tromer/papers/
hash-draft-comments.pdf.

[30] Ran Canetti, Guy Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In
TCC, volume 5978 of Lecture Notes in Computer Science, pages 72–89. Springer, 2010.

[31] Ran Canetti and Mayank Varia. Non-malleable obfuscation. Cryptology ePrint Archive,
Report 2008/495, 2008. http://eprint.iacr.org.

[32] Ran Canetti and Mayank Varia. Non-malleable obfuscation. In TCC, volume 5444 of Lecture
Notes in Computer Science, pages 73–90. Springer, 2009.

[33] Martin Cochran. Notes on the Wang et al. 263 SHA-1 differential path. Cryptology ePrint
Archive, Report 2007/474, 2007. http://eprint.iacr.org/.

[34] Obfuscated code. Wikipedia. http://en.wikipedia.org/wiki/Obfuscated_code#Step_by_
step, accessed 17 June 2010.

[35] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In EUROCRYPT, volume 2332 of Lecture Notes in Computer
Science, pages 256–271. Springer, 2002.

[36] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 100–109.
Springer, 2002.

[37] Alexander W. Dent. The hardness of the DHK problem in the generic group model. Cryptology
ePrint Archive, Report 2006/156, 2006. http://eprint.iacr.org/.

[38] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In STOC, pages 621–630. ACM, 2009.

[39] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In
STOC, pages 654–663. ACM, 2005.

[40] Marc Fischlin. A note on security proofs in the generic model. In ASIACRYPT, volume 1976
of Lecture Notes in Computer Science, pages 458–469. Springer, 2000.

[41] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178.
ACM, 2009.

[42] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25–32. ACM, 1989.

[43] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562. IEEE Computer Society, 2005.

161

[44] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[45] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[46] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, volume 4392
of Lecture Notes in Computer Science, pages 194–213. Springer, 2007.

[47] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, volume 1976 of Lecture
Notes in Computer Science, pages 443–457. Springer, 2000.

[48] Satoshi Hada. Secure obfuscation for encrypted signatures. In EUROCRYPT, volume 6110 of
Lecture Notes in Computer Science, pages 92–112. Springer, 2010.

[49] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 408–423. Springer, 1998.

[50] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption.
In TCC, volume 5444 of Lecture Notes in Computer Science, pages 202–219. Springer, 2009.

[51] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–98, 2009.

[52] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In ACM Conference
on Computer and Communications Security, pages 466–475. ACM, 2007.

[53] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for cryptographic pur-
poses. In TCC, volume 4392 of Lecture Notes in Computer Science, pages 214–232. Springer,
2007.

[54] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the stan-
dard model. In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages
108–126. Springer, 2008.

[55] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. Securely
obfuscating re-encryption. In TCC, volume 4392 of Lecture Notes in Computer Science, pages
233–252. Springer, 2007.

[56] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA as-
sumption. In CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 654–670.
Springer, 2009.

[57] Tibor Jager and Jörg Schwenk. On the equivalence of generic group models. In ProvSec,
volume 5324 of Lecture Notes in Computer Science, pages 200–209. Springer, 2008.

[58] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience.
In ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 703–720. Springer,
2009.

[59] Neal Koblitz and Alfred J. Menezes. Another look at generic groups. In Advances in Mathe-
matics of Communications, pages 13–28, 2006.

162

[60] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS. The Internet Society, 2000.

[61] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[62] Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding generic
ring algorithms. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages
241–251. Springer, 2006.

[63] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for obfus-
cation. In EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages 20–39.
Springer, 2004.

[64] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and com-
puting discrete algorithms. In CRYPTO, volume 839 of Lecture Notes in Computer Science,
pages 271–281. Springer, 1994.

[65] Ueli M. Maurer. Abstract models of computation in cryptography. In IMA Int. Conf., volume
3796 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[66] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In EURO-
CRYPT, pages 72–84, 1998.

[67] Daniele Micciancio. The RSA group is pseudo-free. In EUROCRYPT, volume 3494 of Lecture
Notes in Computer Science, pages 387–403. Springer, 2005.

[68] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway
language of encrypted expressions. Journal of Computer Security, 12(1):99–130, 2004.

[69] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Compu-
tation, 44(170):519–521, 1985.

[70] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction
of pseudo-random functions. J. Comput. Syst. Sci., 58(2):336–375, 1999.

[71] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
volume 5677 of Lecture Notes in Computer Science, pages 18–35. Springer, 2009.

[72] National Institute of Standards and Technology. Request for candidate algorithm nominations
for a new cryptographic hash algorithm (SHA-3) family. Federal Register Notice, Vol. 72,
No. 212. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

[73] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[74] Andrew M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance.
In EUROCRYPT, pages 224–314, 1984.

[75] Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. In CRYPTO,
volume 3621 of Lecture Notes in Computer Science, pages 223–240. Springer, 2005.

[76] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

163

[77] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC,
pages 187–196. ACM, 2008.

[78] Bart Preneel. The first 30 years of cryptographic hash functions and the NIST SHA-3 compe-
tition. In CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages 1–14. Springer,
2010.

[79] Michael Rabin. Digitalized signatures and public-key functions as intractable as factorization.
MIT Laboratory for Computer Science, 1979.

[80] Christian Rechberger, Vincent Rijmen, and Nicolas Sklavos. The NIST cryptographic work-
shop on hash functions. IEEE Security & Privacy, 4(1):54–56, 2006.

[81] Ronald L. Rivest. On the notion of pseudo-free groups. In TCC, volume 2951 of Lecture Notes
in Computer Science, pages 505–521. Springer, 2004.

[82] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[83] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In FOCS, pages 543–553, 1999.

[84] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume 2139 of Lecture Notes in
Computer Science, pages 566–598. Springer, 2001.

[85] Claus-Peter Schnorr and Markus Jakobsson. Security of signed elgamal encryption. In ASI-
ACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 73–89. Springer, 2000.

[86] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In TCC,
volume 5444 of Lecture Notes in Computer Science, pages 457–473. Springer, 2009.

[87] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT,
pages 256–266, 1997.

[88] Nigel P. Smart. The exact security of ECIES in the generic group model. In IMA Int. Conf.,
volume 2260 of Lecture Notes in Computer Science, pages 73–84. Springer, 2001.

[89] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 24–43. Springer, 2010.

[90] Daqing Wan. Factoring multivariate polynomials over large finite fields. Mathematics of
Computation, 54:755–770, 1990.

[91] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

[92] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

[93] Hoeteck Wee. On obfuscating point functions. In Proceedings of the 37th ACM Symposium on
Theory of Computing, pages 523–532, 2005.

164

