
Cardigan: SDN Distributed Routing Fabric
Going Live at an Internet Exchange

Jonathan Stringer
Dean Pemberton

Qiang Fu
Victoria University of

Wellington - New Zealand
qiang.fu@ecs.vuw.ac.nz

Christopher Lorier
Richard Nelson

University of Waikato
Hamilton, New Zealand
cml16@waikato.ac.nz

Josh Bailey
Google

New Zealand
joshb@google.com

Carlos N. A. Corrêa1

Christian Esteve Rothenberg2
1Fluminense Federal University - UFF
2University of Campinas - UNICAMP

Brazil
chesteve@dca.fee.unicamp.br

Abstract—Software Defined Networking (SDN) is an active
area for network research, with many organizations exploring the
opportunities provided by the decoupling of network control from
packet forwarding. However, questions remain over the operation
of such systems in production. In order to build operational confi-
dence, we built Cardigan –a distributed router using OpenFlow–
and deployed it at a public Internet exchange. Cardigan applies
a routing as a service abstraction to a RouteFlow controlled
IP network in an effort to reduce operational complexity. The
implementation and deployment efforts provide insights into the
challenges involved with using these technologies, and suggests
the viability of mixed device environments despite the limitations
of early OpenFlow implementations.

I. INTRODUCTION

Enrico Fermi reputedly asked, if intelligent life existed
elsewhere in the universe, why has it not arrived here yet?
Many in the networking industry would ask a similar question
about Software-Defined Networking (SDN); if really so useful
and such an advance, why have we not seen it deployed more
widely in production networks? Some of many reasons why
may be (i) the need to directly address operational comfort with
SDN, (ii) the need to provide concrete benefits, and (iii) the
need to demonstrate a practical migration path (not to mention
the ability to interoperate with non-SDN networks). Some have
been in the hunt for the elusive SDN “use case” or “killer app”,
but perhaps the answer is right under our noses –simpler, more
reliable, and easier to operate networks. Our ongoing efforts
within Cardigan go some way to address these questions.

SDN in general, and OpenFlow [1] in particular, have
unlocked many new tools for re-imagining our approach to
layer 3 networking [2, 3, 4, 5]. However, these technologies are
in their infancy, and their unproven nature and misconceptions
caused by a lack of familiarity with SDN for real have meant
these technologies are seeing little or slow use in production.
Cardigan is a project to generate confidence in SDN by
deploying an OpenFlow-based networking environment in a
production setting.

Our deployment efforts are helping to identify practical
issues with the roll out of SDN environments, detecting any
incompatibilities with legacy networking devices and proto-
cols, and finding clues to possible implementation barriers
for future wider deployments. Furthermore, and maybe more
importantly, there needs to be motivating reasons to adopt any

new technology. While hardware commoditization is expected
to drive costs down, this alone may not provide enough benefit
to warrant the replacement of existing hardware. Going live is
a crucial first step to validate the viability of technology and
assess the advantages that SDN can offer the WAN.

In an effort to reduce operational complexity, Cardigan
applies a routing as a service abstraction [6] to a RouteFlow [5]
controlled IP network. Configuration needs only to be applied
once for multiple devices, and the simplified structure of
the network reduces configuration for all devices. This saves
operator time and reduces the likelihood of misconfigura-
tion. The simplified structure of the network also makes it
easier to understand, aiding modification and diagnosis of
problems, thereby providing a direct ongoing benefit to the
maintenance of the network. Google’s B4 [7] inter-datacenter
network based on SDN/OpenFlow is a remarkable example
of the opportunities of SDN in the WAN. When exercised in
the context of an Internet eXchange Point (IXP), we expect
unleashed innovation in the inter-domain routing landscape,
tackling current hard issues such as security and economics of
IXPs (cf. Software-Defined Internet Exchange [8]).

The contributions of this paper are threefold. First, we
present the design and implementation of a SDN-based dis-
tributed routing fabric that advances the state of the art
in Internet router designs. Second, through evaluation of a
pilot deployment interconnecting an IXP with an NREN, we
demonstrate the viability of SDN migration through “drop-
in” replacement of network hardware. Third, we identify
incompatibilities and issues in production environments and
present our lessons learned, including implementation barriers
to wider deployment – experiences similar to those that the
active SDN community is likely to face when going live.

The paper is organized as follows. Section 2 presents
basic background information on the RouteFlow architecture.
Section 3 describes the design considerations adopted within
Cardigan to overcome identified issues and meet the oper-
ational requirements. Section 4 presents the deployment of
Cardigan in a pilot environment and reviews some of the
challenges encountered. Section 5 discusses the identified and
pending issues pertaining to the deployment. Section 6 presents
related work and, finally, section 7 concludes the paper with
final remarks and a brief outlook on our next steps towards
materializing software-defined IP routing architectures.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/44290223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. ROUTEFLOW PRIMER

In a nutshell, RouteFlow was born as a thought-experiment
to glue Linux-based routing engines with OpenFlow-based
datapaths. Although altogether it performs the same function of
a router, it is implemented with virtualization and SDN control
abstractions in mind. The RouteFlow architecture consists of
three independent components that manage particular aspects
of controlling datapaths using virtualised routing engines.
Figure 1 shows the relationship between these components.

- RFClient is a simple daemon that runs in any Linux-based
system and listens to route and ARP table updates via Netlink.
When RFClient joins the RouteFlow topology, it is associated
with a particular datapath. The events that are collected are
sent to RFServer for processing and propagation towards the
associated datapath(s). RFClient is typically run inside a Linux
Container attached to a hypervisor switch which allows control
plane traffic to be sent to it.

- RFServer is a standalone application responsible for the
core system logic. Customisation of the RFServer allows
implementation of different services and modes of operation.
The core state of RouteFlow corresponds to the available
components (datapaths, routing engines, controllers, virtual
switches, etc.), their current mapping and configuration. This
state is held externally in a NoSQL database.

- RFProxy is an OpenFlow controller application to manage
the interactions with OpenFlow switches and abstract SDN
protocol specifics away from the rest of the architecture. It
listens to flow updates from RFServer and propagates them to
the desired datapath switches.

These components are tied together with a single event
notification and flow propagation protocol called RFProtocol.
This allows messages from different routing engines to be
shared between RouteFlow components and mapped to dif-
ferent SDN APIs. RFClient handles conversion from Netlink
to RFProtocol, and RFProxy translates these messages into
different OpenFlow versions, depending on the controller used.

The resulting architecture allows the distribution of the
environment in an arbitrary fashion with regard to the num-
ber of RFProxy instances, hypervisor switches and RFClient
instances. The routing engine and SDN API specifics are
abstracted away from the core logic through RFProtocol. To
act as a router, OpenFlow rules match on destination IP and
MAC addresses, and perform MAC re-writing based on the
next hop. In the OpenFlow 1.3 prototypes multiple flow tables
and group tables are employed.

III. CARDIGAN: SDN ROUTING FABRIC

Both the SDN approach, in general, and the OpenFlow
architecture, in particular, face strong skepticism when op-
posed to traditional networks that have been running for
decades. SDN advocates claim that a programmatic interface
could increase the efficiency and utility of the commoditized
“packet-shipping” service. That bears some resemblance to the
DevOps/NetOps movements, with one fundamental difference:
being end systems, server operations can be changed as long as
their services keep running; an Internet-connected production
network, however, is tightly coupled to the way other networks
operate in terms of their active routing protocols.

Fig. 1. RouteFlow block diagram.

Some of the challenges faced by real-world SDN solutions
are, at least, threefold: (i) they must be able to seamlessly
replace already deployed technology; (ii) they must not impose
any performance penalties to the operation; (iii) they must offer
a truly game-changing innovation over traditional operations.
Cardigan is the code name of our efforts that leverage Route-
Flow to bust the challenges around SDN in production.

This section starts by reviewing the initial Cardigan design
–first presented in [9]– that served as a pilot deployment to
prove the concept of aggregating multiple OpenFlow switches
to perform as a single logical layer 3 device, but faced a series
of limitations. We then move to the introduced enhancements,
with special focus on the newly introduced features to provide
a better abstraction for the routing of an administrative domain.
The enhancements include a straightforward way of defining
“packet circuits” for data transport inside the AS, by means of
a MPLS LSP; and breaking the RouteFlow dependency on the
Linux kernel FIB, through a mechanism that allows hooking
into the Quagga RIB to access the full set of routes obtained
by its routing protocols.

A. Cardigan 101

To generate operational confidence in SDN, it is not
adequate to demonstrate the ability to replace already existing
technology with SDN sevices; SDN must offer a practical
advantage over traditional networking. To demonstrate the
flexibility of SDN and benefits of centralized control, Cardigan
introduced extensions to RouteFlow aiming for the experimen-
tal operation of an IXP-connected network through SDN. We
consider this a pertinent enterprise because it encompasses all
the challenges previously discussed: (i) the ability to exchange
routes with external ASes is a must; (ii) the computational
effort and performance pitfalls on computation and distribution
of routing information were extensively studied; and (iii) the
idiosyncrasies and administrative burden of BGP configuration
and tuning are well-known.

Early efforts on RouteFlow as a routing control platform [5]
shed light on potential SDN-backed innovation to routing
services operation through an aggregated mode of operation
where management of routing in an emulated AS was defined
through a single BGP process. The model being pursued was
a “BGP-free edge” design but lacked the implementation of
complete intra-domain SDN forwarding solution.

The first switch aggregation strategy within Cardigan was
managed with the static configuration in RFServer specify-



Fig. 2. The Cardigan initial 2-switch design was deployed live, providing a logical router between REANNZ and WIX.

ing inter-switch links. RFServer required the switches to be
arranged in a full mesh – like router line cards and fabric
cross-connects – and connected to controllers communicating
to the same RFServer instance. RFServer communicated with
a single RFClient and as RFServer received route modification
messages it distribute the flows among the switches, ensuring
correct forwarding behaviour.

Figure 2 shows the first Cardigan deployment, connect-
ing the Research and Education Advanced Network of New
Zealand (REANNZ) to the Wellington Internet Exchange
(WIX). The RouteFlow distributed router was built upon
two OpenFlow switches, connected by a dark fibre link, one
situated at the border of each network.

OpenFlow entries installed by Cardigan are based on a
hierarchy of rules following a proactive flow installation ap-
proach, not reactively involving the controller. In addition, all
forwarding is default deny, limiting the controller’s exposure
to DoS attacks. The highest priority rules provide high-level
blocking of entire classes of traffic. For instance, packets
which do not contain the appropriate layer 2 address will be
immediately blocked. The next priority of rules is for control
traffic, which must be destined for the controller IP and be
explicitly allowed to be passed to the control plane (e.g., ARP,
BGP, OSPF, IS-IS). Following these, there is a set of priorities
for Hosts and Routes. These are sorted in order of prefix to
implement longest prefix matching; longer prefixes adopt a
higher priority in the rule table than shorter prefixes.

Cardigan uses a fork of RouteFlow called Vandervecken1

which aims at continuing the consolidation of production-
based research. Support of OpenFlow 1.3 has been recently
added as a critical milestone to work with MPLS and IPv6
in addition to the implementation of efficient IP next hop
forwarding with group tables.

B. Limitations and easy fixes

The early design and deployment of Cardigan revealed
some limitations in the software stack implementation that
lead to a number of code refactoring. More importantly, we
identified scalability issues related to the datapath aggregation
design that could severely impair real-word deployments. We
first discuss two of the practical limitations observed and
describe the adopted fixes. Then, we move the focus to the
problem of realizing a scalable router abstraction.

1Available online at: https://github.com/routeflow/RouteFlow/tree/vandervecken

1) Extensible message formats: A new message format in
RFProtocol called extensible route modification was introduced
to support a more flexible combination of protocols between
layer 2 and 3. This was developed to extend the granularity
of flow specification and minimise development effort for
further protocol support. This allows new message formats to
be incrementally added, without breaking existing messages.
Similar to the FlowMod message in OpenFlow, the new format
includes a set of matches and actions. Furthermore, it provides
a generic set of options to allow RouteFlow components to
share additional information such as flow priority. This format
includes support for IPv4, IPv6, MPLS on Ethernet, and
ingress port matching. In Cardigan the latter of these was used
to support unique MAC addresses for each port.

2) Inefficient gateway resolution: We found out that the
each route collection in RouteFlow was done in two subsequent
stages: the reception of its Netlink announcement, and the
discovery of the MAC address of the associated gateway (if it
wasn’t present at the VM’s FIB). In the event when an address
resolution was taking too long, other route operations received
in the same time frame would be needlessly delayed. The fix
to this issue was to cache IPv4 and IP6 routes before they are
sent to datapaths. This allows RouteFlow to handle routes with
valid gateways as they are received, and queue other routes
until their respective gateways’ MAC addresses are received. A
gateway lookup thread iterates through the queue, sending non-
blocking ARP requests and submitting routes with resolved
information to RFServer. This refactor also added some level
of thread-safety to RF’s internal data structures, but that wasn’t
the main scope of this effort.

3) Scalable router abstraction: While proof of concept
implementations [5, 9] showed the viability of simplifying the
management of routing by aggregating BGP route computation
into less processes and aggregating distributed switches to act
as logical entities, some limitations of the work made it an
improbable choice for a production network: (i) the router
abstraction was completely dependent on the physical topol-
ogy; (ii) it required a full-meshed physical topology, relying
on static one-hop paths for data transmission, which means it
is not possible to define an arbitrary (software-defined) paths
inside the ISP network; (iii) it classifies traffic by using VLAN
tags as per the static inter-switch links (ISLs) configuration. As
we will discuss next, by introducing MPLS paths, we avoid
the risk of loops appearing due to asynchronous updates of
OpenFlow switch entries and empower the network operator
with a scalable solution allowing fine granular traffic control.



Fig. 3. Cardigan as a virtual router built upon arbitrary OpenFlow switches.

C. Cardigan 2.0: Towards Game-changing Innovation

It became obvious that an extension to RouteFlow was
necessary when the Cardigan project considered ways to move
beyond a two-switch model towards not only an n-switch
model, but a model where the physical network topology could
be arbitrarily defined, automatically discovered, and adapt
to changing network conditions. This vision is illustrated in
Figure 3. Packets accepted on an ingress datapath element
would need a method of being transmitted across this fabric
to the egress port defined within the RouteFlow control plane.
The ISL mechanism to perform inter-switch packet forwarding
lacked both an ability to scale beyond two devices, as well
as an ability to introduce more advanced Traffic Engineering
functionality down the track. Another mechanism was required
to allow the control plane to define a path through the Cardi-
gan network and have this signaled on the datapath through
OpenFlow messages.

To accomplish this MPLS was used in the Cardigan net-
work. It should be noted that this is only as a method of
associating a given prefix to a given path, or set of paths
through the network. Other mechanisms (VLAN tags, IP in
IP [7]) or a combination of mechanisms could be just as easily
employed to serve the same purpose. In essence, an MPLS
Label Switched Path (LSP) was defined from a given ingress
node, through a set of transit nodes, to an egress node. Each
of these devices receives the flow entries installed to allow the
packets to flow along this LSP.

Changes were made the the RouteFlow framework in a
number of places. In place of an input describing the physical
topology (ISL ports etc), RouteFlow was also changed to
consume a dataset specifying the hop-by-hop behaviour for
MPLS packets through the core of the Cardigan network,
as shown in Figure 4. In this way, OpenFlow rules which
perform the roles of Ingress, Transit and Egress LSRs can
be pushed to the data path. LSP labels are programmaticaly
attached to packets on their ingress datapath, where the full
set of OpenFlow matches can by applied to their header. The
Src and Dst MAC addresses are also changed to their ’post
routed’ values at ingress to allow packets to simply have their
MPLS header removed on egress. This mechanism allows an
operator to freely define packet circuits over the network, based
on packet’s headers, in an arbitrary level of detail.

A Cardigan-based IXP should not be restricted to the BGP
route selection process. It was already shown to be a serious
problem to reconcile the business objectives and the operation
of a network based on it [10]. Early efforts on RouteFlow [5]
were useful to open our eyes on how SDN programmability
could flexibilize IP route selection, but the Netlink interface
used by stock RouteFlow advertises only BGP-selected routes.
To overcome this limitation we added a Forwarding Path

Fig. 4. Cardigan with MPLS design.

Manager (FPM) component to the RouteFlow architecture.

Quagga, the main routing engine supported by RouteFlow,
uses FPM to announce all routes obtained by its routing
processes. Through the collection of FPM messages, Cardigan
can feed to the RouteFlow database even routes that were
initially discarded by the BGP daemon (and would otherwise
never be known). These routes can then be arbitrarily marked
for dissemination through RFProxy.

Given the abilities to define the forwarding path inside a
network and to freely choose between available routes, we
believe the current design is a step forward towards fully
materializing the concept of a software-defined IP routing.

IV. DEPLOYMENT

Cardigan deployment consists of a RouteFlow distributed
router, connecting the REANNZ to the WIX. RouteFlow
controls two OpenFlow switches, connected by a dark fibre
link, one situated at the border of each network (see Figure 2).
The switches used were a Pronto 3290 at WIX and a Pronto
3780 with 1G SFPs at REANNZ, each using PicOS 1.6. The
controller was deployed at REANNZ in a VM, connected
to both switches via an out-of-band layer 2 VLAN. BGP
peer sessions were established with a router running within
REANNZ and all WIX participants via two route servers.
Routes to the REANNZ network were advertised onto the
WIX and traffic was forwarded directly through the OpenFlow
switches.

Cardigan has been deployed in production for over nine
months, forwarding customer traffic and sharing routes with
ninety other participants of WIX without major incidents.2 As
of the time of writing there are 1134 flows on each switch,
broken down as follows:

• 8 flows tunneling control plane traffic (e.g., ARP,
ICMP, BGP, etc.) to the controller, and one rule to
drop traffic by default

• 98 flows describing directly connected hosts, at the
WIX and at REANNZ

• 1028 representing layer 3 routes.

2Some numbers on WIX: 90 organizations peer through it; most organiza-
tions handle up to 500 IPv6 and 1000 IPv4 network announcements from its
peers; most organizations are IPv6-ready. More details on WIX can be found
at: http://wix.nzix.net/peers.html



The boot time for Cardigan is around one minute, in-
cluding flow installation. The major bottlenecks for this are
surrounding bootup of the NoSQL database/IPC backend and
initial resolution of next-hop MAC addresses for routes. Initial
throughput measurements were performed using Iperf between
hosts connected to REANNZ and CityLink as indicated in
Fig. 2. These showed modest TCP performance across the path
in the order of ≈800Mbps, peaking at 855Mbps. Given the live
nature of the deployment, deeper performance analysis was not
conducted. Ongoing updates from the IXP provide 3-4 updates
every ten seconds, due to ARP timeouts and link changes.

While the original deployment was very simple and
modest-sized, it is argued that the way to make progress
towards realizing SDN is practical, production deployment.
Even basic systems need to get as early as possible into
production to perform actual work outside the lab and learn
from the experiences as the develop-deploy cycle continues.

The upcoming Cardigan network will span three continents,
with nodes in the US (at ESnet), Australia (CSIRO) and in New
Zealand (REANNZ and VUW), and Brazil (RNP) coming up
next. The network aims at providing a platform for practical
SDN research in a realistic hybrid/live deployment, peering
with non-SDN devices, and connected to the Internet directly.

V. DISCUSSION

Cardigan deployment at WIX has revealed several SDN
implementation issues, but also demonstrated that for a de-
ployment of this size it is an adequate replacement for legacy
devices. For larger deployments, we have identified a number
of obstacles that need to be addressed such us (ephemeral) lim-
itations in current implementation of SDN stacks, scalability
concerns. and the lack of controller redundancy. Furthermore,
we have observed incorrect behaviour in the WIX, caused by
a lack of policy enforcement, an avenue worth to explore in
sought of innovative traffic control at IXPs.

A. Implementation and protocol considerations

1) Protocol Compliance: RouteFlow implementation with
OpenFlow 1.0 has minor violations of the protocol specifi-
cations of Ethernet and IPv4. While these issues were not
critical to the functioning of Cardigan, they remain important
considerations for future deployments in OpenFlow 1.0 envi-
ronments. The inability to decrement TTL when forwarding
IP datagrams could cause a failure of IP loop prevention
– for instance if the loop existed between two instances of
Routeflow. This is caused by the lack of support for TTL
decrement in OpenFlow 1.0. This issue is resolved from
OpenFlow 1.1 onwards.

2) MAC Addressing: Another concerning behaviour was
the use of a single MAC address to identify the entire dis-
tributed router. The EUI-48 standards specify that identifiers
are “intended to identify items of real physical equipment
or parts of such equipment such as separable subsystems or
individually addressable ports.” [11] This was corrected for
Cardigan deployment, but, for more complicated scenarios,
numbers of addresses would be limited by the scalability of
OpenFlow 1.0 flow tables. For each route learned, n− 1 rules
must be installed, where n is the number of different MAC
addresses on the router. For these (and other) reasons we

TABLE I. COMPARISON OF FIB CONVERGENCE TIMES.

Gateway Resolver Time Per Route
Max Min Mean

Original 180s 20ms 3s
Revised 1s ¡1ms 0.01s

recommend the use of OpenFlow 1.1 or higher, and advise
vigilance when implementing protocol behaviour for those
developing hybrid SDN applications.

3) OpenFlow Agent Implementation: The vendor switches
were also a source of minor issues, in particular relating to
their Open vSwitch customization to act as OpenFlow agents.
Various bugs such as memory leaks and flow counters that do
not update were discovered and reported to the vendor. We
expect that as implementations mature, this will become less
of a problem.

4) Encapsulation Hazards: Encapsulation of packets for-
warded to the controller caused minor setbacks. Care must be
taken to ensure that encapsulation size limits include not only
path MTU, but allow for Ethernet, VLAN, MPLS, etc. headers
as well. We were receiving truncated BGP route updates when
synchronizing our Routing Information Base (RIB) with WIX
because initial OpenFlow packet-in encapsulation size was
1500.

5) Gateway Address Resolution: As discussed in Sec-
tion III-B2, the time to resolve the gateway address caused a
serious issue in datapath Forwarding Information Base (FIB)
convergence – a result of poor separation of concerns and
invalid assumptions in RFClient. With the revised version of
the gateway resolver, we were able to increase performance
by two orders of magnitude. The original version would block
on address resolution, which would slow all route processing
down. Even when the resolution function was replaced with
a non-blocking alternative, routes would be lost due to buffer
size limits on the Netlink socket.3 The appropriate solution
was to separate gateway resolution from route processing;
gateways whose layer 2 addresses have been resolved can be
immediately handled, while the others can be queued until they
can be resolved and propagated. Table I compares the conver-
gence times between implementations. For the WIX RIB, the
initial implementation would converge in approximately one
hour. After modifications were made to the gateway resolution
process, this was reduced to less than ten seconds.

B. Scalability

For RouteFlow to become truly viable, it must be proven
that it can be deployed in larger environments with greater
volume of routes. Common experience is that current hardware
supports in the order of low thousands of flows. FIB com-
pression may mitigate this limitation, but flow table sizes are
still likely to exceed the capabilities of current hardware. FIB
caching [12] and the distribution of the FIB across multiple
devices will be investigated for their suitability in the context
of OpenFlow. The ideal solution to this issue, however, is for
hardware to support significantly larger FIBs.

Experiments with different OpenFlow data plane imple-
mentations (e.g., ASIC, NPU, software, and combination ap-
proaches) are going on to investigate scalability in terms of

3With the default size of 1MB, storing around 1K routes



increasing number of datapath flows, network state changes,
forwarding devices, and distance between distributed devices.

C. Resilience

A larger deployment with a more complicated topology
also will put greater strain on the resilience of the system.
RouteFlow has no provision (yet) for redundant controllers,
support for OpenFlow Master/Slave/Equal roles is currently
being added. The switch will continue forwarding if the
connection to the controller is lost, but all rules will be
cleared when the controller reconnects. RouteFlow also does
not determine the activity of individual ports, which may result
in forwarding black-holes. All these issues are on our roadmap
towards a high-available non-stop forwarding solution.

Overall, the system needs to be resistant to DoS attacks; it
must be not only easy but easier than managing a network of
separate routers; and it must be more reliable and easier to fix
(e.g. by active verification of the distributed data plane, perhaps
in a similar way to how connectivity can be automatically
verified by COTS testing in the PSTN). In addition to taking
advantage of common software engineering practices like
unit testing to ensure correct implementation, the path ahead
includes leveraging formal methods to build provably correct
networks as well as new SDN approaches for systematically
troubleshooting [13].

D. Policy

During our deployment at the WIX we have received
approximately 50MB of data per day that does not match our
route advertisements. This traffic varied widely, from non-IP
traffic to unsolicited routing protocols. These findings highlight
an ongoing issue with policy enforcement at IXPs. Through the
use of BGP extensions or a new policy framework operating
in a distributed routing fabric, the migration of traffic between
networks could be more tightly controlled. Proper enforcement
would restrict traffic placed onto the fabric to the endpoints that
are advertising routes to the destination subnet. Peers could
choose more granularly who to share traffic with, and any
traffic that did not meet the policy specifications could be
dropped at the edge. All these features can be implemented
by adding more granular, higher-priority OpenFlow rules that
override the basic behaviour.

As shown in Fig. 5, the IXPs represent an interesting
scenario for SDN to coalesce policies and requirements from
different players and enable innovative services. Initial works
on software-defined IXPs [8] suggest a number of applications
that are simply not possible in today’s routing infrastructure
(e.g., domain-based or application-specific peering, remote
control peering, enforceable inter-domain policies, origin-
specific routing). In addition, the combination of SDN with
IXPs may ease a number of tedious tasks (e.g., time-of-
day routing, dynamic traffic engineering for peering policy
compliance, route preference based on external inputs) by
programmatic coordination using high-level software control
–as opposed to low-level scripts and indirect mechanisms.

VI. RELATED WORK

Several proposals have been made to implement a dis-
tributed router following a control/data plane split approach.

Fig. 5. Adding Policy control to an SDN-based IXP.

However, many of them have been focused on software-based
forwarding, proof of concept prototypes, or proprietary/closed-
source implementations.

One early effort was the SoftRouter [14] architecture that
separates the implementation of control plane functions from
packet forwarding functions similar to the IETF ForCES
framework [15]. This ongoing standardization work at IETF
provides valuable insight into distributed router designs but
no hardware implementations are known to be in production.
Protocols such as Forz [16] allow for the propagation of
flow information between distributed router components in
a platform-agnostic manner. Distributed SW Router Project
(DROP) [17] takes a step away from performance analysis
of software routers towards scalability, including the identifi-
cation of potential architectural bottlenecks applicable in more
general contexts. Proprietary multi-chassis architectures have
been developed which bear many similarities to a distributed
router (e.g. [18, 19]). However, the lack of openness of the
solutions hampers the potential of innovation in this area.

The widespread adoption of the OpenFlow protocol has
opened up the possibilities for leveraging commodity hardware
for SDN-based IP routing architectures similar in spirit to
RouteFlow. For instance, Fibium [2] proposes an OpenFlow-
based approach to routing where the routing engine is hosted
on a physically separate PC. The switch controller listens
for kernel route updates and converts these to OpenFlow
rules. Through the use of smart route caching, the hybrid
software/hardware approach of Fibium shows promise for
the feasibility of separating control and forwarding even on
datapaths with a small hardware-based flow table.

Recent efforts on seamless inter-working of SDN and IP [3]
are undergoing to ease the transitioning of the widely deployed
IP infrastructure to SDN. Control split architectures allow the
investigation of new economic frameworks and outsourcing
models applied to inter-domain IP routing [4]. In Cardigan, we
share the same vision on SDN principles capable of introduc-
ing incremental enhancements while maintaining backwards
compatibility. In the past, the power and benefits of centralized
route control have been shown by research and deployment
work of BGP-based Routing Control Platforms [20].



VII. CONCLUSION

We implemented Cardigan, a SDN-based distributed router,
which was deployed in a live Internet exchange. This deploy-
ment acts as a poster-child for the concept of hybrid SDN-IP
networks; Not only can SDN and legacy devices be deployed
side-by-side, but value can be obtained through either replacing
existing devices, or simply deploying new hardware when
extending a network. The distributed router approach reduces
the operational complexity of maintaining a network of routers
through virtualization of the network.

We identified some limitations of our early designs and
introduced a new approach to the router abstraction model, in
addition to additional code extensibility and performance con-
siderations. Despite various issues and limitations, Cardigan
is successfully passing production traffic in a live internet ex-
change. We recognize that WIX is a modest Internet exchange,
however, and anticipate further issues when attempting to scale
to larger networks. We will consider appropriate monitoring of
network resource usage and providing load-balancing; closest
exit usage; and in particular, and more complex setups of
distributed routers in non-mesh environments. All these topics
are part of our ongoing work, including the investigation and
implementation of new types of routing policies and addressing
the issues discussed earlier such as performance, scalability or
resilience.

VIII. ACKNOWLEDGEMENTS

The authors are thankful to REANNZ and CityLink NZ for
their assistance in the deployment, in addition to Dylan Hall for
his continued contributions in the project. Finally, we thank all
fellows within the RouteFlow open source community project.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“OpenFlow: enabling innovation in campus networks,”
SIGCOMM CCR, vol. 38, pp. 69–74, Mar. 2008.

[2] N. Sarrar, A. Feldmann, S. Uhlig, R. Sherwood, and
X. Huang, “FIBIUM: Towards Hardware Accelerated
Software Routers,” Tech. Rep. 9, Deutsche Telekom
Laboratories, Nov. 2010.

[3] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami,
M. Kobayashi, A. Al-Shabibi, K.-C. Wang, and J. Bi,
“Seamless interworking of sdn and ip,” in Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM,
SIGCOMM ’13, (New York, NY, USA), pp. 475–476,
ACM, 2013.

[4] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourc-
ing the routing control logic: better internet routing based
on sdn principles,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, HotNets-XI, (New
York, NY, USA), pp. 55–60, ACM, 2012.

[5] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador,
C. N. A. Corrêa, S. Cunha de Lucena, and R. Raszuk,
“Revisiting routing control platforms with the eyes and
muscles of software-defined networking,” in Proceedings
of the first workshop on Hot topics in software defined
networks, HotSDN ’12, (New York, NY, USA), pp. 13–
18, ACM, 2012.

[6] E. Keller and J. Rexford, “The “Platform as a Service”
Model for Networking,” in INM/WREN ’10, Apr. 2010.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Expe-
rience with a globally-deployed software defined wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference,
(New York, NY, USA), pp. 3–14, ACM, 2013.

[8] N. Feamster, J. Rexford, S. Shenker, R. Clark,
R. Hutchins, D. Levin, and J. Bailey, “SDX: A Software-
Defined Internet Exchange.” ONS ’13 Research Track,
April 2013.

[9] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. E.
Rothenberg, “Cardigan: Deploying a distributed routing
fabric,” in Proc. of the HotSDN ’13 (poster session),
(New York, NY, USA), pp. 169–170, ACM, 2013.

[10] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dy-
namics of hot-potato routing in ip networks,” SIGMET-
RICS Perform. Eval. Rev., vol. 32, pp. 307–319, June
2004.

[11] IEEE Standards Association, “Guidelines for use of the
24-bit Organisationally Unique Identifiers (OUI).” http:
//standards.ieee.org/develop/regauth/tut/eui.pdf.

[12] L. W. Yaoqing Liu, Syed Obaid Amin, “Efficient fib
caching using minimal non-overlapping prefixes,” ACM
SIGCOMM Computer Communication Review, vol. 43,
pp. 14–21, Jan. 2013.

[13] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wund-
sam, H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol,
J. McCauley, K. Zarifis, and P. Kazemian, “Leveraging
sdn layering to systematically troubleshoot networks,” in
Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN
’13, (New York, NY, USA), pp. 37–42, ACM, 2013.

[14] T. V. Lakshman and et al., “The SoftRouter architecture,”
in HotNets-III, 2004.

[15] J. Halpern, E. Deleganes, and J. H. Salim, “Forces
forwarding element model,” draft-ietf-forces-model-16
(work in progress), 2008.

[16] O. Hagsand, M. Hidell, and P. Sjödin, “Design and
Implementation of a Distributed Router,” in ISSPIT ’05,
Dec. 2005.

[17] R. Bolla and R. Bruschi, “An open-source platform for
distributed Linux Software Routers,” Computer Commu-
nications, vol. 36, pp. 396–410, Feb. 2013.

[18] I. Cisco Systems, “Cisco catalyst 6500 series virtual
switching system,” Dec. 2012.

[19] I. Juniper Networks, “Virtual chassis technology on
ex8200 ethernet switch modular platforms,” 2012.

[20] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh,
and J. van der Merwe, “The case for separating routing
from routers,” in Proceedings of the ACM SIGCOMM
workshop on Future directions in network architecture,
FDNA ’04, (New York, NY, USA), pp. 5–12, ACM, 2004.


