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Abstract

We approach dynamic collision avoidance problem from the perspective of designing
collision avoidance systems for unmanned aerial vehicles. Before unmanned aircraft
can fly safely in civil airspace, robust airborne collision avoidance systems must be
developed. Instead of hand-crafting a collision avoidance algorithm for every combi-
nation of sensor and aircraft configurations, we investigate automatic generation of
collision avoidance algorithms given models of aircraft dynamics, sensor performance,
and intruder behavior. We first formulate the problem within the Partially Observ-
able Markov Decision Process (POMDP) framework, and use generic MDP/POMDP
solvers offline to compute vertical-only avoidance strategies that optimize a cost func-
tion to balance flight-plan deviation with risk of collision. We then describe a second
framework that performs online planning and allows for 3-D escape maneuvers by
starting with possibly dangerous initial flight plans and improving them iteratively.
Experimental results with four different sensor modalities and a parametric aircraft
performance model demonstrate the suitability of both approaches.
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Chapter 1

Introduction

Systems that warn operators of cars, buses, trucks, trains and ships against possible

collisions are being researched, developed, and are becoming available for more and

more types and brands of vehicles each and every day [13, 47, 100, 97, 134, 116, 89, 29].

These systems provide safer transportation for the operator, the passengers, and the

vehicle itself, usually by estimating traffic risks, detecting whether the eyes of the

operator are closed or not, and whether the vehicle is properly following a straight

path or swaying from side to side, and warning the operator against drowsiness and

incoming traffic [2, 114, 136].

The damage caused by a crash between two or more vehicles increases with the

weights and the speeds of the involved vehicles, hence it is more important to have a

warning system to assist the operators of heavy and fast vehicles. Of land, sea and

air vehicles, aircraft deserve special consideration when it comes to collision avoid-

ance as aircraft are usually very heavy and very fast, and the chance of surviving a

mid-air collision is low. Therefore most commercial and passenger-carrying aircraft

are equipped with radars continuously scanning and displaying incoming traffic to

visually help the pilots who are also usually assisted by ground-based air traffic con-

trollers during the flights, and in addition to these, most commercial aircraft also

carry warning systems that operate independent of the ground systems and help the

pilots avert dangerous mid-air encounters.

In this document, we present collision avoidance algorithms for autonomously
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controlling an unmanned aerial vehicle (UAV) to minimize collision risk during mid-

air encounters with other aircraft.

1.1 Collision Avoidance for Unmanned Aircraft

Because of the potential for commercial, military, law-enforcement, scientific, and

other purposes, unmanned aircraft have received considerable attention in recent

years. However, unmanned aircraft are not currently permitted access to civil airspace

in the United States without special permission from the Federal Aviation Admin-

istration (FAA). One of the primary concerns with integrating unmanned aircraft is

their inability to robustly sense and avoid other aircraft. Although sensor information

can be transmitted to a ground pilot who can then maneuver the aircraft to avoid

collision, there are concerns about communication latency and reliability. In order to

provide the high level of safety required by the FAA, an automated airborne collision

avoidance system is likely to be necessary.

The deployment of any collision avoidance system requires a lengthy development

process followed by a rigorous certification process. Development of the Traffic Alert

and Collision Avoidance System (TCAS) [119], currently mandated onboard all large

transport aircraft worldwide, started in the 1950s but was not certified for operational

use until relatively recently [1]. The system issues vertical rate resolution advisories

to pilots who are then responsible for maneuvering the aircraft. TCAS is not certified

for autonomous use, and it is likely that the certification of an autonomous system

will require even more extensive testing and analysis.

Further complicating the certification process of collision avoidance systems for

unmanned aircraft is the diversity of their aircraft performance characteristics and

sensor capabilities. Unmanned aircraft can range from under a pound to many tons

with wildly varying flight dynamics. Several sensor modalities have been considered

for supporting collision avoidance, including electro-optical/infrared (EO/IR), radar,

TCAS, and Automatic Dependent Surveillance-Broadcast (ADS-B) [62, 42, 17, 119,

120, 82, 9]. As Table 1.1 illustrates, these sensor modalities vary in their capabili-
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Table 1.1: Qualitative performance characteristics of various sensor modalities. FoV
stands for field-of-view.

Measurement Accuracy Coverage

Modality Range Azimuth Elevation FoV Range Traffic

TCAS good moderate good good good moderate
Radar good good good moderate good good
EO/IR poor good good moderate moderate good
ADS-B good good good good good moderate/poor

ties. It would be very difficult to develop and certify a different collision avoidance

system for every combination of sensor configuration and aircraft platform. Current

efforts in the unmanned aircraft industry have focused on proprietary solutions for

specific platforms and sensors, but a common system that would accommodate dif-

ferent sensor configurations and flight characteristics would significantly reduce the

cost of development and certification.

1.2 Challenges and Approach

In this document, we refer to the UAV that we control as own aircraft or ownship

and to the other aircraft involved in the encounter as intruder aircraft. Major chal-

lenges of designing an autonomous collision avoidance system for own aircraft can be

summarized as follows:

• We have a dynamical system and we need to take time into account in order to

plan effective collison avoidance maneuvers.

• Most sensors have inherent measurement noise of different magnitudes depend-

ing on the sensor type and specifications. Therefore the detected positions and

the estimated velocities of intruder aircraft have observational uncertainties in

them. Moreover, usually there is also uncertainty about the intention of the

intruder aircraft. For example, a hostile intruder might attempt to collide with

ownship, a risk-aversive intruder such as one following TCAS resolution advi-
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sories might attempt to increase vertical separation between itself and ownship,

or an intruder that is oblivious to ownship might follow its regular flight plan.

Our algorithms need to account for various possible intentions. For this purpose,

we will work with worst case assumptions and adopt parametric random walk

models to cover a large spectrum from oblivious intruders1 to hostile intruders.

• All aircraft, including ownship, have nonholonomic motion constraints. A non-

holonomic system in physics and mathematics, is a system whose state depends

on the path taken to achieve it [22], therefore planning maneuvers requires not

just deciding where to be at a given time, but also how to get there. The

implications of nonholonomicity are twofold: On one hand, we can use this in-

formation to our advantage by limiting the locations that the intruder aircraft

might occupy when we are estimating future states. On the other hand, we

need to consider the limited mobility of ownship, too, and make sure that the

planned escape maneuvers are feasible within the performance limits.

• Another very important challenge is the large size of the underlying state space

of the collision avoidance problem. During the course of designing our algo-

rithms and testing them using simulation software, we worked with up to 13

dimensional vectors to describe the state of a single aircraft. The components

of our aircraft state vectors are listed in Table 1.2. The simplest collision avoid-

ance problem involves two aircraft and hence the smallest true state space for

an encounter has 26 dimensions. We also worked with realistic control com-

mands shown in Table 1.3 and this necessitated the use of complex and realistic

transition models in planning as well.

• As mentioned previously, there are many different types of sensor systems and

UAVs which make designing collision avoidance systems difficult no matter

whether we are hand-crafting individual algorithms for various different combi-

nations of sensors and aircraft types or designing generic and parametric algo-

1 This is actually a reasonable assumption for the current state of the global airspace, because,
due to high cost and weight, many small UAVs do not carry the necessary transponder hardware
that would enable them to inform the intruder aircraft about their presence and/or flight plans.
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Table 1.2: Aircraft state vector.

Component Explanation

v True airspeed in ft/s
N Position, north in ft
E Position, east in ft
h Position, altitude in ft
ψ Orientation, yaw in rad
θ Orientation, pitch in rad
φ Orientation, roll in rad
v̇ Airspeed acceleration in ft/s2

p Roll rate in rad/s
q Pitch rate in rad/s
r Yaw rate in rad/s

ḣ Vertical rate in ft/s

ḧ Vertical acceleration in ft/s2

Table 1.3: Aircraft control command vector. The first component of the control
command can be either a vertical rate or a vertical acceleration. The simulation
software that we used to test our algorithms is capable of working with both types of
control commands.

Component Explanation

ḣ or ḧ Vertical rate in ft/s or vertical acceleration in ft/s2

ψ̇ Turn rate in rad/s
a Airspeed acceleration in ft/s2

rithms that can accomodate different sensor modalities and flight characteris-

tics.

Having presented the major challenges, our approach to the problem will consist

of the following key components:

Our first objective will be to answer the challenges stated above. Our algorithms

will plan dynamical collision avoidance maneuvers. We will try to account for uncer-

tainties in observations of intruder positions, velocities and intentions. The escape

maneuvers will be feasible, i.e., ownship will be able to execute the planned maneuvers

within its performance limits. In order to handle large problem space dimensionality,

we will pick only the most relevant dimensions and come up with new representations
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that capture and summarize important aspects of the problem that are sufficient for

collision avoidance planning. We will design our algorithms to be parametric such that

they will accomodate different sensor modalities and aircraft flight characteristics.

We will be working with realistic aircraft state vectors and control commands.

We will also aim for designing algorithms that will work in real time such that they

are suitable for deployment on real platforms.

There are avionic transponder systems that allow an aircraft to transmit and

receive flight plans, intentions and planned escape maneuvers. If all aircraft in an

encounter were equipped with such transponders, it would be possible and probably

more effective to plan collision avoidance maneuvers for all aircraft at once. Such

maneuvers are called coordinated escape maneuvers and the execution of a coordi-

nated maneuver requires strict cooperation from all involved. In this work, we will

assume that there is no cooperation between aircraft and we are planning only for

ownship. However, some of our algorithms are also adequate for planning coordinated

maneuvers and we will briefly make a note of them in respective sections.

Instead of the traditional way that collision avoidance algorithms have been de-

signed, we will use a model-based approach to facilitate the design of algorithms that

accomodate different sensors and flight dynamics. The traditional approach and the

model-based approach are depicted and described in Figures 1-1 and 1-2, respec-

tively. Briefly, a model-based design system takes as input models of flight dynamics,

intruder behavior, and sensor characteristics, and attempts to optimize the avoid-

ance strategy so that a predefined cost function is minimized. The cost function can

take into account competing objectives, such as flight plan adherence and avoiding

collision.

One way to formulate a problem involving the optimal control of a stochastic

system is as a Markov Decision Process (MDP) [56, 110], or more generally as a Par-

tially Observable Markov Decision Process (POMDP) to also account for observation

uncertainty [3, 124, 128, 25, 50, 23, 64, 122]. POMDPs have been studied in the

operations research and artificial intelligence communities, but only in the past few

years have generic POMDP solution methods been developed that can approximately
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Figure 1-1: Traditional approach to designing collision avoidance algorithms. The
input to the design process is the initial collision avoidance logic which is usually
in the form of pseudocode. Human effort is spent on designing encounter models,
developing performance metrics and revising collision avoidance logic. Simulations
and evaluations are usually performed by computers. The design process consists of
iterative improvements to the logic until desired performance is achieved. The output
of the process is the improved collision avoidance logic.

Figure 1-2: Model-based approach to designing collision avoidance algorithms. The
input to the design process are encounter models and performance metrics, and human
effort is spent on designing the input only. Computers perform the optimizations and
it is desirable to do as much offline computation as possible. The design process
ends as soon as the optimizations are completed. The output of the process is the
optimized logic which might not be in a form that is easily interpreted by humans.
For some of our algorithms that will be presented later, the output logic is a cryptic
lookup table of high-dimensional vectors that is meant to be executed by special
software.

21



solve2 problems with moderate to large state spaces in reasonable time (for example

the solvers we used [125, 80]). In this work, as our first approach, we will investigate

the feasibility of applying state-of-the-art MDP and POMDP solution methods to

the collision avoidance problem. Due to the fact that large-sized model spaces usu-

ally have a negative impact on the time required for solution and the effectiveness of

the policy computed by MDP/POMDP solvers, we will limit our collision avoidance

strategies to vertical evasion maneuvers only and compare our results against some

baseline collision avoidance systems including TCAS, which also assists the pilots to

do vertical-only evasive maneuvers. The experiments we will present in this docu-

ment show that we can actually model collision avoidance systems using MDPs, and

such systems perform very well in terms of both reducing the risk of collision and

having very little deviations from the flight plan at the same time, especially with

sensors that precisely locate intruder aircraft. We will also present experiments with

POMDP models built for sensors with limited observation capabilities that demon-

strate how we can still achieve low risk of collision by maneuvering a little more in

order to counterbalance the limitations in observability of intruder aircraft.

The MDP and POMDP models we implemented in this study require working with

finite number of states, control commands and sensor observations. Therefore, every

input, output, and most intermediate results need to be chosen from discretized sets of

values. Since the state space for collision avoidance problem is very high-dimensional

and even the most powerful MDP/POMDP solvers cannot currently deal with very

large sets yet, it is not possible to have nice and fine-grained discretizations of input

and output spaces. There are also other negative effects of discretization that reduce

the effectiveness of our collision avoidance algorithms as we will point out in the

following sections. As a result of these observations about the MDP and POMDP

models, our last objective will be set for investigating if we could design a hybrid

collision avoidance system that would not require discretization of every data space

and that could work on a mixture of continuous and discretized spaces as necessary.

2 Approximate POMDP solution methods typically return solutions with bounded regret. Regret
is the difference in expected cost between the returned solution and the optimal solution.
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For this purpose, we implemented a technique that we call the path-modification or

spaghetti method, which basically takes as input the estimated flight plans of all

aircraft in an encounter, and outputs an optimized flight plan for ownship that tries

to avoid risk of collision, not deviate much from the original flight plan, and minimize

maneuvering at the same time. The experiments with algorithms based on the path-

modification technique that we will present in this document show the feasibility of

using this hybrid method to perform full 3-D evasion maneuvers (planning with full

aircraft control commands as shown in Table 1.3, rather than planning for vertical-

only maneuvers as we do with MDP/POMDP models).

1.3 Organization of the Thesis

The remainder of this document is organized as follows: In Chapter 2, we present

a review of the MDP/POMDP framework that will be the basis for the first set of

our algorithms, and a summary of previous work on collision avoidance techniques.

Then we describe the parametric aircraft model, the sensor models, and the sim-

ulation and evaluation framework that we will work with. In Chapter 3, we build

MDP/POMDP based collision avoidance systems with increasing complexities for the

cases of perfect, noisy and limited field-of-view sensing, respectively. Chapter 4 de-

scribes the path-modification technique and two algorithms based on that technique

for planning 3-D escape maneuvers. Finally, Chapter 5 delivers concluding remarks

and recommendations for future research.
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Chapter 2

Background

In this chapter, we will first present a brief review of MDP/POMDP framework.

Then we will look at major approaches that have been applied to aircraft collision

avoidance. The review of major approaches will be followed by an overview of the

aircraft and sensor models that we implemented for use in our collision avoidance

algorithms. Finally, we will introduce the simulation and evaluation framework.

2.1 Review of MDPs and POMDPs

An MDP is a stochastic process where the state of the system changes probabilistically

according to the current state and action. MDPs assume that the state is fully

observable. POMDPs remove that assumption and replace it with a stochastic model

for observations, and hence they have more expressive power. We will briefly review

POMDPs in this section.

The solution to a POMDP is a policy, or way of behaving, that selects actions in a

way that takes into account both the current uncertainty about the underlying state

of the system (e.g., exact relative position of the intruder aircraft), as well as future

uncertainty about how the system state will evolve (e.g., what kinds of maneuvers

the intruder aircraft will make), by aiming to maximize the expected accumulation of

some predefined reward or minimize the expected accumulation of some predefined

cost [64]. Due to their rich descriptive power, POMDPs have found many uses in
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computer science and robotics applications such as robust mobile robot navigation

[123], machine vision [6, 31], robust dialogue management [118, 55], autonomous

helicopter control [4, 103], and high-level robot control [107], as well as in many

other areas like machine maintenance [110], network troubleshooting [133], medical

diagnosis [49], and preference elicitation [18]. Cassandra provides a comprehensive

survey of applications utilizing POMDPs [24].

Several formulations of POMDPs have been studied in the literature, but this

work focuses on the discrete-time formulation with discrete state and action spaces.

We briefly present below a POMDP formulation and discuss solution techniques.

2.1.1 Formulation

In this document, we use S to represent the state space, A to represent the action

space, and Ω to represent the observation space, all assumed discrete. The state-

transition function T ∶ S × A → Π(S) determines the probability distribution over

the next states given the current state and action taken. The probability of tran-

sitioning to state s′ after taking action a from state s is written T (s, a, s′). The

observation function O ∶ S ×A → Π(Ω) determines the probability distribution over

the observations received after taking some action resulting in state s′. The probabil-

ity of receiving observation o after taking action a and landing in state s′ is written

O(s′, a, o).

In general, the initial state is unknown. The uncertainty in the initial state is

represented by a probability distribution b0 ∶ S → R, where the probability of starting

in state s is written b0(s). Since the true state is not directly observable in POMDPs,

the states are called belief-states, and similar to the initial state, they consist of

probability distributions over the state space; S → R. The space of all possible belief-

states is denoted B. The belief-state b is initialized to b0 and updated with each

observation according to Bayes’ rule. If the current belief-state is b and action a is
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taken resulting in an observation o, the new belief-state b′ is given by

b′(s) = Pr(s′ ∣ o, a, b)

∝ Pr(o ∣ s′, a, b)Pr(s′ ∣ a, b)

= Pr(o ∣ s′, a)∑
s∈S
T (s, a, s′)b(s)

= O(s′, a, o)∑
s∈S
T (s, a, s′)b(s) .

The belief-update process is often referred to as state estimation.

Given the current belief-state, the objective is to chose an action that maximizes

the expected discounted return. The discounted return for a sequence of states st and

actions at is given by
∞
∑
t=0

γtR(st, at) ,

where γ ∈ [0,1) is a discount factor and R ∶ S ×A → R is the reward function. The

reward for taking action a from state s is written R(s, a).

The solution to a POMDP is a policy π ∶ B → A that specifies which action

maximizes the expected discounted reward given a belief-state. It is known that

optimal policies can be represented as a collection of α-vectors, denoted Γ. Each

α-vector is a vector consisting of ∣S ∣ components and is associated with a particular

action. The expected discounted return when starting with belief b is

V (b) = max
α∈Γ

(α ⋅ b) ,

where α ⋅ b is the inner product of an α-vector with a vector representation of the

belief-state. The function V is known as the value function. The policy evaluated

at belief-state b is the action associated with the α-vector that maximizes the inner

product.
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2.1.2 Solution Methods

Finding the collection of α-vectors that represents the optimal policy can be chal-

lenging, even for relatively small problems. A variety of exact solution methods can

be found in the literature [127, 124, 128, 48, 98, 113], but generally these methods do

not scale well to large problems. Approximate solution methods generally scale much

better and many of them provide bounds on the regret for the policies they find. The

regret of a policy π is the difference between the expected discounted return start-

ing at b0 when following π and the expected discounted return starting at b0 when

following an optimal policy π∗.

Point-based methods for finding approximate solutions to POMDPs (for example,

Point-Based Value Iteration, PBVI [106]) have received attention in recent years be-

cause of their ability to solve problems that are orders of magnitude larger than was

previously possible. Point-based methods involve sampling from the belief space B.

The more successful point-based methods focus the sampling on belief-states. In this

work we initially used solvers based on Heuristic Search Value Iteration (HSVI2) al-

gorithm [125, 126]. We later switched to a solver that uses Successive Approximations

of the Reachable Space under Optimal Policies (SARSOP) algorithm [80, 58, 57] as it

performed better on our problems. An implementation of SARSOP is publicly avail-

able1 and we were able to use the software without any modification. SARSOP takes

as input a textual representation2 of a POMDP, including γ, b0, R, T , and O. When

the regret bounds fall below some preset value or the user interrupts the solution

process, SARSOP outputs a policy file represented as a collection of α-vectors.

Crucially, although it may require considerable computation to find a near-optimal

policy, this work is done offline. Once a policy has been computed, it can be executed

very efficiently online. In the course of this work we have developed a new algorith-

mic technique to make the execution process even more efficient, making it entirely

suitable for execution online, in real time, on an aircraft.

1 M2AP Research Group at NUS, POMDP Planning,
http://motion.comp.nus.edu.sg/projects/pomdp/pomdp.html (August 2010).

2 The format of the input is the same as the one described by Anthony R. Cassandra, Input
POMDP File Format, http://www.pomdp.org/pomdp/code/pomdp-file-spec.shtml (August 2010).
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Although our MDP/POMDP based collision avoidance algorithms have focused

on finding α-vectors offline, there are other approaches to finding and representing

policies. Online approaches decide what action to execute by searching only from the

current belief-state, instead of trying to find a comprehensive policy that is optimal

for all belief-states [117]. From the current belief-state, these methods explore differ-

ent action sequences up to some horizon and then select the sequence that results in

the largest expected discounted return. Computing the expected discounted return

for an action sequence involves updating the belief-state based on hypothetical mea-

surements obtained with each state transition. One concern with an online method

that involves sampling might be the nondeterminism of the resulting behavior.

2.2 Previous Work

Collision avoidance is a fundamental part of motion planning, and hence there are

many different approaches from ad hoc solutions to well-established methods. In

this section, we will present a summary of major techniques that have been used for

collision avoidance and discuss their advantages and disadvantages.

2.2.1 POMDPs and Dynamic Programming

Due to the large size and the continuous nature of the state, observation and action

spaces in most collision avoidance tasks, classical POMDPs operating on discretized

sets have been difficult to apply to realistic collision avoidance scenarios. To the best

of our knowledge, our MDP/POMDP based algorithms are some of the first examples

of application of the original POMDP formulation to a realistic UAV collision avoid-

ance problem, where the models monitor a very large airspace and choose realistic

control commands for maintaining a flight plan, collision avoidance, and information

gathering. We were able to use the classical framework by choosing compact rep-

resentations and carefully designing small state, action and observation spaces that

contain sufficient information. This is a major difference of our models from the ones

described below: Almost all of the following techniques differ in certain ways from
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the discrete-time POMDP formulation in order to increase the size of the models that

could be handled and/or work with continuous spaces.

One heuristic that is likely to be necessary in order to feasibly employ the discrete-

time formulation for even larger problems is to hierarchically decompose the planning

task [52, 83, 8]. With this approach, domain-specific knowledge could be leveraged

to perform planning in macro and micro scales that are managed by different layers

of the hierarchical planner.

If we assume that the world state that is ‘most likely’ in the current belief-state

is in fact true, then we can take the optimal action for the state in the MDP that

underlies the POMDP. Similar simplifications include Q-MDP [88] and value-function

approximations [51]. One important problem with ignoring uncertainty about cur-

rent state and assuming full observability is the loss of system’s desire to explicitly

take actions to reduce uncertainty. Platt et al. [109] employ the key idea of plan-

ning directly in belief-space, determinizing the dynamics by using the most-likely

observation, and demonstrate a replanning approach to overcome that problem us-

ing optimization schemes like linear quadratic regulation [130], direct transcription

[38] (solving control problems by treating them as optimization, based on nonlinear

optimization methods [12]), and other standard planning/control techniques.

POMDPs with continuous state spaces, leveraging hybrid-linear system dynamics,

have been developed and applied to UAV collision avoidance simulations by Brunskill

et al. [20, 21]. In their study, a formal analysis with bounds on the quality of resulting

solutions has also been presented. Erez and Smart take this approach further, and

work with all continuous state, observation and action spaces [39]. They parametrize

the belief-state as a mixture of Gaussians and use Differential Dynamic Programming

[61] for local optimization. Such local optimization provides no guarantees of global

optimality, but it accommodates domains that are much larger than those that could

be solved feasibly by state-of-the-art solvers that require the discretization of state,

observation and action spaces.

Wolf and Kochenderfer propose an online POMDP approach to collision avoidance

[142, 143]. Online planning has the advantage of starting from current state and
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searching only the reachable states instead of having to come up with a universal

policy for all possible initial states. They utilize continuous state and observation

spaces and a finite action space in their formulation, and they introduce sample-based

representation of state uncertainty [135] to an existing algorithm called Real-Time

Belief Space Search [105].

Kochenderfer et al. use a dynamic programming approach to generate optimized

TCAS logic [71, 74]. They also provide guidance in justification of collision avoidance

logic that is automatically generated by dynamic programming based solvers, which

will be a very important issue as more complex solvers are being developed and used

in optimizations. They extend their framework later to include more sophisticated

actions, motion estimations in 3 dimensions, probabilistic pilot response, noisy sensor

measurements, coordinated resolution maneuvers and multiple intruder scenarios [73].

2.2.2 Potential Field Methods

The artificial potential field approaches have been widely used in robot navigation

planning since their introduction [70, 67, 68, 69, 84]. They have also been applied

to aircraft collision avoidance [36, 37]. Typically, the problem is set up such that

the target location exerts attractive virtual forces and the obstacles exert repulsive

virtual forces. The controller then computes and commands to step in the direction

of the net resultant force acting on own agent.

Potential field methods are very fast and they allow implementations of real-

time planners very easily, but they have fundamental problems [76]. Most important

limitations from the point of view of application to aircraft collision avoidance include

the following:

• Potential field methods are prone to local minima problems. The attractive

and repulsive forces might cancel each other and lead to a zero resultant force.

There is a need to have higher-level planners to escape from such traps.

• Nonholonomic motion constraints might prevent the agent from being able to

move immediately in the direction of the resultant force. This is an important
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limitation, but a technique used by pilots for aircraft formation [40] might be

utilized as a heuristic to alleviate the problem: Positioning is decomposed into

fore-aft corrections (done by adjusting speed only) and side-side corrections

(done by adjusting heading only) which can be applied independently. Balch

and Arkin demonstrate the use of this type of corrections to navigate unmanned

ground vehicles with nonholonomic constraints [5].

• Potential field methods can work well for slow-moving robots, but it is difficult to

fully consider wide range of aircraft dynamics (including probabilistic dynamics

of intruder aircraft) when they are applied to aircraft collision avoidance. Large

virtual forces are necessary for repelling fast incoming traffic, but with slower

intruders, this will cause unnecessary deviation from planned flight trajectories.

• Most importantly, uncertainty in control or observation might be challenging

to model with sufficient fidelity for aircraft collision avoidance. It might be

possible to account for uncertainties by increasing protected volumes around all

aircraft (in the sense of configuration-space based spatial planning [92, 90, 91]),

but in the last-minute collision avoidance context, it is not enough due to the

short encounter time frame and the catastrophic nature of collision.

Charifa and Bikdash provide a comparison of several variants of artificial potential

field approaches with emphasis on the quality of the path geometry, and velocity and

acceleration profiles [28].

2.2.3 Sampling-Based Motion Planning

Sampling-based planning algorithms and especially Rapidly-Exploring Random Trees

(RRTs) have been widely used because they tend to cover the search space more

quickly than a random walk or other types of structured searches [7, 26, 66, 94, 59,

63, 85]. They are usually adequate for building real-time planners (for example, they

have been applied to autonomous urban driving [81]).

RRTs generate random samples to explore the configuration space of the agent

and they try to find a solution by extending and finally connecting one or more trees

32



rooted at the origin and at the destination configurations. Similar to our algorithms

that we will present later, RRTs work very well with nonholonomic agents as they

plan in configuration space.

Some fundamental issues with sampling have received increased attention recently

[87], and further improvements have been suggested [86]. As a general condition,

sampling-based methods make no guarantee of optimality of the found solution, and

consideration of uncertainty in this framework is not yet mature enough to be fully

feasible in the airborne collision avoidance problem domain.

2.2.4 Geometric Optimization

Bilimoria introduced a 2-D conflict resolution algorithm in horizontal plane using ge-

ometric computations [14]. Conflict predictions are based on straight-line projections

using positions and assuming constant velocities. Computed resolutions consist of

minimal changes in velocity to avoid a predefined circular protected airspace around

intruder aircraft. Dowek et al. generalized this analytical approach to 3-D with cylin-

ders replacing the circular protected zones, and full aircraft control commands rather

than lateral-only maneuvers [45].

Geometric solutions to collision avoidance have the unique advantage of being

extremely fast and very easily verifiable and validatable, but precautions such as

adjusting the protected airspace sizes and breaking the constant velocity assumptions

should be taken in order to account for uncertainties in sensing and intruder intent,

and unexpected intruder dynamics. Another disadvantage of geometric planning is

that, it might not be easy to scale up the approach to avert multiple threat. When

there are multiple intruders, there seems to be three ways of approaching the problem,

with each one having its associated difficulties:

• Protected airspaces around all intruder aircraft might be merged into a big

protected zone (as in building a convex hull) that is to be avoided by geometric

computations. There are basically three problems with this approach: First;

the resulting protected zone could be very big and cannot be avoided within
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the performance limits of ownship. Second; individual protected airspaces are

projections of estimations through time, and hence they might shift around

and/or shrink/grow in size as estimated positions and velocities of intruders are

updated with each new observation. Third; the optimal (safest) trajectory that

could be followed by ownship might fall within the convex hull, which will never

be considered by the solver.

• Pairwise solutions against each individual intruder could be computed and

heuristics could be developed to merge them into a global solution, but fun-

damental problems with this approach is described by Kuchar and Yang [79].

• A full 3-D global planning that aims to avoid each and every protected airspace

is actually the optimal approach, but this turns the planning into a 3-D version

of TCAS (which computes just vertical-only maneuvers and is already very

complex).

2.2.5 Policy Search Methods

Given a parametric representation of a collision avoidance policy, a local search

method known as policy gradient [102] can be used to search the parameter space

for an optimal setting that minimizes the expected cost of following that policy. In

this method, the state space does not need to be discrete and the policy could be

represented very flexibly (for example, it can be a set of parametrized controls to be

applied sequentially, or a functional pseudocode such as TCAS, or it can even be in

the form of a neural network [53, 54]). Sample applications of policy search include

autonomous helicopter flight [104] and aircraft collision avoidance planning [65, 140].

Aside from its benefits, policy search methods suffer from local minima problems as

do all local optimization techniques. Also, the design of the parametric representation

of a policy requires deep domain-specific knowledge, insight into problem structure

and engineering judgment.
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2.2.6 Mixed Integer Linear Programming

Spacecraft and aircraft trajectory optimization including collision avoidance can be

expressed as a list of linear constraints involving integer and continuous variables,

known as a mixed-integer linear program (MILP) [10, 139], which can then be solved

using efficient commercial software [108]. Richards and How demonstrate a single

aircraft collision avoidance application, and then generalize their approach to allow

for visiting a set of waypoints in a given order, and also handling multiple aircraft

planning [115]. Luders applies MILP formulation with non-uniform timesteps between

target waypoints, and plans a detailed short-term trajectory and a coarse long-term

trajectory for own aircraft [93].

As in the geometric optimization approaches, there is usually a protected airspace

set up around each aircraft in the MILP formulations. The stochasticity that stems

from uncertainties in observations, intruder intent, and unexpected aircraft dynamics

could be handled by increasing the sizes of protected airspaces.

MILP formulations using a set of target waypoints that need to be visited in a

certain order have a strong structural resemblance to our path-modification based

collision avoidance models. An advantage of the MILP formulation over our mod-

els is its ability to plan with non-uniform timesteps between waypoints, since our

waypoints are currently fixed in time. However, an important difference between the

two approaches lies in the problem statement and the solver structure. The MILP

approach requires all aspects of the problem (dynamics, ordering of all waypoints in

time, and collision avoidance geometry) to be specified as a carefully designed and

a usually long list of many linear constraints, and then the solver’s task is basically

to find a solution that satisfies all of those constraints simultaneously. The path-

modification technique requires less information (just the aircraft dynamics and cost

formulation) in the formulation stage, and the solver performs iterative optimization

of an initial solution (planned flight).
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Figure 2-1: Global Hawk.

2.2.7 Other Approaches

Other approaches to aircraft collision avoidance domain such as evolutionary algo-

rithms [11] and nonlinear programming [112] can be found in the literature. Carlos et

al. present a survey of a family of high performance controllers that is referred to as

Model Predictive Control (MPC) [43], and examine their performances, advantages,

and their application to nonlinear systems. Fujimura provides detailed general back-

ground information on motion planning in dynamic environments against stationary

and dynamic obstacles [41]. Kuchar and Yang present an assessment of 68 air traffic

conflict detection and resolution methods in their survey [79]. Kuchar also describes

a unified methodology for the evaluation of hazard alerting systems in his thesis [77]

that could be used in performance evaluation of miscellaneous and/or new future

techniques that do not fit in any of the categories we have reviewed.

2.3 Aircraft and Sensor Models

The aircraft model we developed for our collision avoidance systems is parametric

and can be modified to mimic different types of aircraft. In our implementation,

parameter values are based on Global Hawk, an unmanned aerial vehicle used by the

United States Air Force as a surveillance aircraft, shown in Figure 2-1.

Table 2.1 shows performance limits for Global Hawk. Our collision avoidance
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Table 2.1: Global Hawk performance limits.

Maximum velocity 180 kts
Minimum velocity 100 kts
Maximum climb rate 3500 fpm
Maximum descent rate 4000 fpm
Maximum bank angle 35 deg
Maximum bank rate 8 deg/s
Maximum pitch rate 2 deg/s
Maximum turn rate 2.5 deg/s

models use a subset of these values; namely, maximum and minimum velocities,

maximum climb/descent rates and turn rate. Our evaluation environment makes full

use of them during encounter simulation.

Before describing our sensor models, let us introduce four coordinate systems

shown in Figure 2-2 that we will refer to from time to time in the rest of this document:

• Global Coordinate System (GCS): This coordinate system is also known

as the Earth Coordinate System. The origin is an arbitrary point chosen by

the model simulation and evaluation framework. Positive x is east, positive y

is north, and positive z is altitude.

• Local Coordinate System (LCS): The origin of LCS is ownship center of

mass (i.e., LCS is an egocentric coordinate system). Positive x is in the direction

of the right wing, positive y is the direction of the nose, and positive z is

upwards.

• Auxiliary Coordinate System (ACS): This is also an egocentric coordinate

system whose x-y-z axes are aligned with the east-north-altitude axes of GCS,

respectively.

• Relative Coordinate System (RCS): This is another egocentric coordi-

nate system which is obtained by rotating ACS around its z axis until the

y-z plane contains (intersects with) intruder aircraft center of mass. RCS is

a 2-dimensional coordinate system. The x and y axes of RCS are the y and
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Global Coordinate System Local Coordinate System

Auxiliary Coordinate System Relative Coordinate System

Figure 2-2: Coordinate systems.
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RCS (viewed from above) Projection Plane

Figure 2-3: Relative position of the intruder aircraft can naturally be represented by
a point on Projection Plane.

z axes of the rotated ACS, respectively. The RCS is also referred to as the

projection plane due to the fact that the vertical and horizontal distances to

intruder aircraft can both be naturally projected on RCS to obtain a compact

representation of aircraft separation as shown in Figure 2-3.

Input to our collision avoidance systems may come from various sensors with

different characteristics and sensing ranges (usually expressed by radii in nautical

miles, NM ) onboard the UAV. We developed four detailed sensor models that are

capable of simulating following types of erroneous measurements and noise:

• False positive measurements: We may detect an intruder when, in fact,

there is no intruder aircraft in the sensor range (for example, a bird in sensing

range might cause false positive measurements).

• False negative measurements: We may fail to detect an intruder when one

is present in the sensor range.

• Measurement errors: We may detect the intruder aircraft in a position or at

an angle that is not correct.

The probabilities of false positive and false negative measurements (pfp and pfn) are

usually specific to different sensor hardware, and the measurement errors are com-

puted according to realistic error models. In addition to false positive and false
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negative measurements, one can think of a third type of false measurement: We may

detect a different intruder (for example, a bird or some other random measurement)

when there is a real intruder aircraft in sensor range. We excluded this case in our

sensor models with the following assumptions:

• Sensors are tested for and free of this type of fault.

• If there are both a plane and a bird in the sensor range (and assuming that this

is not a case of a false negative measurement), sensor will detect the plane since

it is much bigger than a bird.

The four sensor models studied in this research are as follows:

1. Perfect sensor: This is a hypothetical omnidirectional sensor with no noise

and no false positive/negative detections (pfp = pfn = 0). The sensor reading

consists of east, north and altitude coordinates of intruder aircraft in GCS (it

can be thought of as providing an abstract resemblance to the functionality of

an ADS-B sensor). With this sensor, it is possible to localize intruder aircraft

to an exact point in both GCS and LCS.

2. TCAS sensor: This is a model of the actual TCAS sensor [119]. It is based on

listening to transponder replies from nearby aircraft and is omnidirectional. It

provides bearing in LCS, altitude in GCS, and range (the line-of-sight distance

between ownship and intruder aircraft, also referred to as slant range). The

error in range measurement is Gaussian with zero mean and 50 ft standard

deviation. The error in bearing estimate is Gaussian with zero mean and 10 deg

standard deviation. The altitude of intruder aircraft is measured with 25 ft

quantization. There is also an altimetry error bias that remains constant during

an encounter with an intruder aircraft, and is Laplacian with zero mean and

40 ft scale. Probability density function for the Laplace distribution is shown

in Figure 2-4. In the TCAS sensor model, pfp = 0 (since detection is based

on broadcast signals) and pfn = 0.01. With a noiseless TCAS sensor, intruder

aircraft could be localized to a point in LCS, but considering the given error
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Figure 2-4: Probability density function for the Laplace distribution (location = 0,
scale = 40).

model, the region that the intruder could be residing in has approximately the

shape of a distorted truncated spherical cone.

3. Radar sensor: Our radar sensor model has a limited field-of-view (FoV),

±15 deg elevation and ±110 azimuth. It provides bearing and elevation read-

ings in LCS, and range and range rate information. As with TCAS, the error

in the range measurement is Gaussian with zero mean and 50 ft standard de-

viation. Range rate error is Gaussian with zero mean and 10 ft/s standard

deviation. The error in the bearing estimate is Gaussian with zero mean and

10 deg standard deviation. Elevation error estimate is Gaussian with zero mean

and 1 deg standard deviation. For the radar sensor, pfp = pfn = 0.01. Intruder

aircraft can be localized approximately into a distorted truncated spherical cone

in LCS.

4. Electro-optical/infrared (EO/IR) sensor: Our EO/IR sensor model is very

similar to the radar sensor with less angular measurement noise and without a

range reading. It has a limited FoV, ±15 deg elevation and ±110 azimuth. Sensor

reading consists of bearing and elevation angles in LCS, and line-of-sight rate

information. Error in both angular measurements is Gaussian with zero mean

and 0.5 deg standard deviation. Line-of-sight rate error is Gaussian with zero

mean and 0.5 deg/s standard deviation. For the EO/IR sensor, pfp = pfn = 0.01.
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Figure 2-5: Comparison of sensing regions. The figure on the left shows omnidi-
rectional sensing region, the figure at the center shows limited field-of-view sensing
region, and the figure on the right shows both sensing regions overlapped for better
comparison.

Intruder aircraft can be localized approximately into a distorted spherical cone

in LCS.

Figure 2-5 shows a comparison of the omnidirectional and limited field-of-view

sensing regions. Complete list of sensor parameter values are given in Table 2.2.

2.4 Simulation and Evaluation Framework

The performance of our collision avoidance systems were evaluated using a simulation

framework called Collision Avoidance System Safety Assessment Tool (CASSATT).

The framework was developed for assisting prior TCAS studies [121] and evaluating

sense-and-avoid systems for unmanned aircraft [15] at Lincoln Laboratory at Mas-

sachusetts Institute of Technology.

We used an encounter model derived from 9 months of national radar data [75]

to generate 15,000 scripted encounters between pairs of aircraft and allowed our col-

lision avoidance systems to control one of the aircraft. For comparison, we evaluated

the performance of other collision avoidance systems to baseline performance. This

section describes our simulation and evaluation process.
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Table 2.2: Complete list of sensor parameter values.

Perfect
Range 5 NM
False positive measurement probability 0.00
False negative measurement probability 0.00

TCAS
Range 5 NM
Altitude quantization 25 ft
Range error standard deviation 50 ft
Bearing error standard deviation 10 deg
Altimetry error scale 40
False positive measurement probability 0.00
False negative measurement probability 0.01

Radar
Range 5 NM
Minimum azimuth −110 deg
Maximum azimuth 110 deg
Minimum elevation −15 deg
Maximum elevation 15 deg
Range error standard deviation 50 ft
Bearing error standard deviation 1 deg
Elevation error standard deviation 1 deg
Range rate error standard deviation 10 ft/s
False positive measurement probability 0.01
False negative measurement probability 0.01

EO/IR
Range 5 NM
Minimum azimuth −110 deg
Maximum azimuth 110 deg
Minimum elevation −15 deg
Maximum elevation 15 deg
Bearing error standard deviation 0.5 deg
Elevation error standard deviation 0.5 deg
Line-of-sight rate error standard deviation 0.5 deg/s
False positive measurement probability 0.01
False negative measurement probability 0.01
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2.4.1 Simulation Framework

CASSATT framework was built in Matlab and Simulink and has been compiled into

native code using Real-Time Workshop. The framework was designed to be modular

to allow different collision avoidance systems and sensor models to be easily incorpo-

rated. As part of this work, we extended CASSATT to allow communication with the

collision avoidance system over a TCP/IP socket connection. This extension allows

changes to be made to the collision avoidance system without having to recompile

the remainder of the CASSATT system. The collision avoidance system runs as a

server to which CASSATT connects as a client. Socket communication also allows

CASSATT to run on a different machine from the collision avoidance system; for our

experimentation however, we always ran the collision avoidance system on the same

machine as CASSATT.

Figure 2-6 provides an overview of the simulation framework. An encounter model

is used to generate initial conditions and scripted maneuvers for both aircraft involved

in the encounter. These initial conditions and scripts are fed into a 6 degree-of-

freedom, point-mass dynamic model. The sensor model takes as input the current

state from the dynamic model and produces an observation, or sensor measurement.

The state estimation process updates the internal state estimate of the collision avoid-

ance system based on the observation. Then the collision avoidance system selects

the control command that minimizes some cost depending on the algorithm used.

Finally, the dynamic model updates the simulation state, and the process continues

until the end of the encounter.

Encounter Model

Initial conditions and scripted maneuvers for both aircraft are generated by an en-

counter model. The initial condition for each aircraft is basically an aircraft state

vector that was introduced before in Table 1.2. A scripted maneuver consists of a set

of aircraft control commands described in Table 1.3 and the associated times that each

command is to be applied during the encounter. In the simulations, scripted maneu-

44



Figure 2-6: Simulation framework.

vers represent the Air Traffic Control (ATC) commands to each aircraft. The intruder

aircraft always follows its script for the whole duration of the encounter. Ownship,

however, is allowed to choose to follow the ATC commands or apply different control

commands selected by the collision avoidance system.

We used a recently developed encounter model derived from 9 months of radar

data from over 120 sensors [75]. A dynamic Bayesian network [101] representing the

behavior of the aircraft was learned [44] from actual encounters extracted from the

dataset. Generating new encounters for use in Monte Carlo analysis involves sampling

from this dynamic Bayesian network.

Dynamic Model

Aircraft dynamics are represented using a tunable 6 degree-of-freedom, point-mass

dynamic model, which includes aircraft transient response characteristics and perfor-

mance limits such as maximum pitch rate or bank angle. The aircraft flight trajecto-

ries are defined by an encounter model and based on vertical rate, aircraft turn rate,

and airspeed acceleration. These control values may change every tenth of a second.

Sensor Model

The sensor simulation module takes as input the raw (non-noisy) coordinates of both

aircraft in GCS. First, the position of the intruder aircraft is computed (relative to

ownship) in LCS. These intermediate coordinates are then converted into a simulated
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sensor reading by adding noise according to the respective sensor’s error model as

described in Section 2.3. The pseudocode for the simulation of sensor readings is

provided as Algorithm 1 in Appendix A. If we are evaluating a POMDP collision

avoidance system (rather than a baseline or a path-modification based system) a

final step takes the sensor reading, and generates an observation o ∈ Ω to be used in

state estimation.

State Estimation

The state estimation module estimates the current state based on the measurement

from the sensor. For path-modification based collision avoidance models, internal

state is updated according to the sensor reading. For an MDP model, the current

state is observed directly, and for a POMDP model, the belief-state is updated.

Updating the belief-state usually requires iterating over large tables, and computing

and normalizing probability values. Therefore, an important practical aspect of the

belief-state update process is the overall computation time. This becomes even more

crucial in real-time applications such as our collision avoidance systems. In this

work, we developed a method that significantly reduces the computation time of the

belief-state update process by merging the transition and observation models into a

single look-up table that is generated offline and stored using sparse data structures

[131, 132] (described in Appendix C). With this method, we have experienced belief-

state updates that are 100 to 1000 times faster than a näıve implementation.

Command Selection

The path-modification based algorithms pick a command from the set of available

commands by computing various cost terms and trying to minimize the expected

cost. For MDP/POMDP based collision avoidance algorithms, command selection

is done by evaluating the policy to compute the action, i.e. to choose the control

command, to be executed. For MDP models, policy evaluation is carried out by

simply referencing the MDP policy, which is basically a table that has an action a ∈ A
assigned to each state s ∈ S. For POMDP models, the process consists of finding the
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α-vector that maximizes the expected long-term reward given the current belief-state,

as described in Section 2.1.1. The output is the action associated with that α-vector.

As we mentioned in Section 2.1.2, there are powerful solvers available for POMDP

formulations such as SARSOP and HSVI2 solvers, and the solutions generated by

these solvers are called policies. Computing a policy with very tight regret bounds

usually takes a very long time, sometimes on the order of hours or days, especially for

large POMDPs such as the ones we use in our algorithms. Therefore, most POMDP

solvers usually generate a simple solution first (probably with loose regret bounds),

and iteratively improve that solution allowing the user to stop the process when tight-

enough bounds are reached. Iterative improvement allows some solvers to work up to

a given time limit or until a specified bound is reached. Policies are usually computed

offline.

Policy evaluation is a process that takes two inputs and generates a single output.

The inputs are a belief-state and a policy. The output is the action that we should

take in order to maximize the expected long-term reward. We sometimes refer to the

output as the best action.

The space of all belief-states for a given POMDP formulation is called the belief

simplex. An optimal policy maps belief-states (which correspond to points in the belief

simplex) to actions that maximize expected long-term reward. Due to the continuous

nature of the belief simplex, policies are usually represented as a collection of regions

of belief simplex, and the associated actions that should be taken when the given

belief-state falls inside those regions. More specifically, a practical implementation of

a policy consists of a set of α-vectors with an action associated with each α-vector.

An α-vector serves two purposes:

1. The maximum cardinality for an α-vector is the number of states in the POMDP

formulation. Usually, most of the α-vectors of a policy contain less than the

maximum number of entries. The entries that are present in an α-vector deter-

mine the region of the belief simplex this α-vector is applicable to. Usually a

policy contains a single α-vector or a small number of α-vectors with maximum

cardinality. These vectors are applicable to all of the belief simplex (all possible
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belief-states). The rest of the α-vectors in the policy are specialized to different

sub-regions. Note that different sub-regions might overlap, and they are not

required to cover the belief simplex. Also, a policy may contain more than one

α-vectors that are all applicable to the same region.

2. The inner product of an α-vector and the belief-state yields the expected long-

term reward in case of taking the action associated with that α-vector.

As a result, the algorithm for policy evaluation takes the following form:

• Determine the applicable α-vectors for the given belief-state.

• Compute expected long-term rewards by taking inner products of all applicable

α-vectors with the given belief-state.

• The best action is the one that is associated with the α-vector that yields the

highest expected long-term reward.

Since policy evaluation is also executed frequently similar to the state estimation

process, we implemented a time-efficient data structure for working with policies, as

well. Our design leverages the special data structure for belief-states, and allows us

to quickly compute the best action.

2.4.2 Importance Sampling

Monte Carlo safety studies of collision avoidance systems generally involve exposing a

collision avoidance system to a collection of encounters selected from some distribution

p(x). If f(x) is the probability encounter x leads to a near mid-air collision (NMAC)

and x1, . . . , xN are encounters chosen independently from p(x), then the probability

of an NMAC may be estimated as follows:

P (NMAC) = 1

N
∑ f(xi) .

To test our algorithms, we used the encounter model developed by MIT Lincoln

Laboratory for cooperative aircraft [75]. Most of the encounters generated by this
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encounter model do not result in an NMAC. We would need to sample from the

p(x) encoded by the model many times before generating a test case that results in

an NMAC. To reduce the number of samples required before we generate an “inter-

esting” encounter, we sample from an alternative distribution q(x) that focuses on

encounters with low vertical and horizontal miss distances at the time of closest ap-

proach. Because we are no longer sampling from p(x) we need to weight the samples

in order to produce an accurate estimate of P (NMAC):

P (NMAC) = 1

N
∑ f(xi)p(xi)/q(xi) .

This approach is known as importance sampling, and it results in a better estimate

of P (NMAC) using fewer samples [16, 32].

We generated 15,000 encounters from the encounter model using importance sam-

pling. In the future, we would like to test our system using at least hundreds of

thousands of samples to provide better performance estimates. Because the encoun-

ters may be simulated in parallel, we used the parallel computing environment at MIT

Lincoln Laboratory, known as LLGrid. Using 64 compute nodes, it takes approxi-

mately 10 minutes to evaluate one of our MDP/POMDP models on 15,000 encounters.

2.4.3 Baseline Collision Avoidance Systems

We compared the performance of our collision avoidance algorithms against the fol-

lowing baseline systems:

• TCAS Version 7: The TCAS Version 7 system uses only the TCAS sensor

readings as input. The behavior of this system is as specified in the TCAS II

standard [119].

• Basic Collision Avoidance System (Basic CAS): It is possible to use all

four sensor models with Basic CAS, but the performance decreases severely with

the limited field-of-view sensors. The collision avoidance logic is very simple:

If an intruder aircraft is detected inside the sensing region, and the projection
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of the intruder position on RCS has a positive y value (i.e., the intruder is

“above”), then ownship accelerates down with 0.25 g until next observation is

received. Similarly, if the intruder is “below” (projection of its position on RCS

has a negative y value), then ownship accelerates up with 0.25 g until the next

observation.

• Analytic Collision Avoidance System (Analytic CAS): Analytic CAS is

based on collecting position data for ownship and intruder aircraft, and estimat-

ing their motion (velocities and accelerations) in full 3-dimensional coordinates

by simple differentiation. Therefore, it is best suited for use with perfect and

TCAS sensors, which are omnidirectional, have none or very little vertical noise

(compared to other sensor models) and hence allow the intruder to be localized

vertically with high accuracy at each simulation step. The collision avoidance

logic works as follows: Based on regularly collected and updated position, veloc-

ity, and acceleration estimates, a clear-of-danger test is performed using simple

quadratic equations of motion at each simulation step. If there is no danger

of a collision or a close encounter in the future, ownship continues to follow

the scripted maneuver, but if the test fails (i.e., the minimum distance between

the extrapolated trajectories of both aircraft is below some threshold), an eva-

sive maneuver is performed, which is simply to increase ownship’s altitude by

200 ft as quickly as possible within the performance limits. After the maneu-

ver is completed, the collision avoidance logic resumes monitoring and triggers

further evasive maneuvers as necessary. We implemented two versions of the

clear-of-danger test: The first version, called Analytic CAS 1-D, checks if only

the vertical distance between two aircraft will drop below a threshold, and the

second version, called Analytic CAS 3-D, checks if the intruder will invade a

predefined 3-D volume surrounding ownship (which is usually in the shape of a

hockey puck that is 200 ft thick and 1000 ft in diameter).

Like the MDP/POMDP algorithms, the above baseline systems perform evasive

maneuvers only in the vertical plane, i.e. they only modify the vertical rate component
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of the scripted maneuvers (ATC commands) to steer away from danger. We also

implemented another very simple basic collision avoidance system that performs full

3-D evasive maneuvers by using the following guidelines:

• accelerate down/up if intruder aircraft is above/below,

• decrease/increase airspeed if ownship is moving towards/away from the intruder

aircraft, and

• turn nose away from intruder aircraft.

We used this Basic 3-D Collision Avoidance System in comparisons with our

path-modification based algorithms.
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Chapter 3

MDP/POMDP Based Collision

Avoidance Models

In this chapter, we will construct MDP/POMDP based collision avoidance models of

increasing complexity for different sensor types. First, we will look at the case where

ownship is able to detect the intruder with no noise using a perfect sensor. Then, we

will build models that handle noisy observations from a TCAS sensor. And finally,

we will design models that work with limited field-of-view sensors.

3.1 Perfect Sensing

The first case we will consider is sensing with no noise, and for that purpose we will

assume that ownship is equipped with a perfect sensor. When there is no observation

uncertainty, we can model the collision avoidance system as an MDP. Note that we

allow uncertainty about the behavior of the intruder aircraft, and MDP formulation

lets us capture this uncertainty in the state-transition model. In this section, we

will look at the general structure of the state and action spaces and the details of

the reward and state-transition models that will form our MDP collision avoidance

system.
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3.1.1 MDP Collision Avoidance System

As we mentioned before, the true state space model in the collision avoidance problem

is continuous and consists of the following aircraft state vector components for both

aircraft present in the encounter:

• Position specified in GCS

• Orientation specified as yaw, pitch, and roll angles

• Air speed, air speed acceleration

• Vertical rate, vertical acceleration

• Yaw rate, pitch rate, and roll rate

This is a very high-dimensional continuous space (26 dimensions for both aircraft

together). The action space for a UAV is also continuous as it is possible to choose

and apply any vertical and/or horizontal accelerations and turn rates within ownship’s

performance limits.

For our MDP/POMDP collision avoidance systems, we consider a simplified ver-

sion of the problem in which ownship can only maneuver vertically, but not in az-

imuth, to evade intruders, similar to TCAS II. We also work with discretized spaces

with less number of dimensions that are carefully selected to incorporate important

information from the true spaces.

State Space

The size of a discretized state space is exponential in the dimension and in the case of

26 dimensions, we could not have even two discrete values per dimension. So, before

we discretize the state space, we must first represent it in a much lower-dimensional

subspace that captures the essence of the encounter.

To encode relative positions and velocities of the aircraft, we chose RCS as our

main representation. In this coordinate system, the state consists of the following

components:
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• X : Horizontal distance from ownship to intruder aircraft;

• Y : Vertical distance from ownship to intruder aircraft;

• V Relative
X : Relative velocity in X, representing the horizontal closure rate;

• V Intruder
Y : Vertical velocity of intruder aircraft; and

• V Ownship
Y : Vertical velocity of ownship.

This 5-dimensional state space is discretized by dividing each dimension into a

finite number of bins. The sizes of the bins may be non-uniform. The overall state-

space is then a set of 5-orthotopes (5-dimensional boxes or hyperrectangles) that

exhaust a continuous piece of the overall 5-dimensional state space. We augment the

state space with two sets of special states: start states and done states. These states

are used to model situations when the state space is initialized (and the encounter

has not started), and when the encounter is over, respectively. Because the vertical

velocity of ownship is always known, we always include it in the state space. So,

the start and done state sets both contain a member for each bin of V Ownship
Y ,

modeling flight at some vertical velocity before the start of or after the termination

of an encounter. Having discretized the state space in this way, a state may be

represented simply as an index into the set of boxes spanning the space, or an index

to one of the start or done states. The structure of the state space is shown in

Figure 3-1.

When we use perfect sensor, the state is observed directly as described by Algo-

rithm 2 in Appendix A.

Action Space

We adopted a simple discrete action-space model that consists of commands to own-

ship to apply positive or negative fixed vertical accelerations for a fixed duration

(usually 1 s). For the MDP CAS, our action space consists of 17 uniform samples

from the ±8 ft/s2 (±0.25 g) acceleration range imposed by the aircraft performance
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Figure 3-1: Structure of the state space. We begin constructing the state space with
discretizing RCS in bins and adding the symbolic states, start and done , as shown
on the left. We then create a duplicate of each state for each V Ownship

Y bin as shown

on the right. We can think of this step as creating layers. Since V Ownship
Y is always

known (except for the initialization step where we have not received an observation
yet), only one of the layers is active at any given time. Lastly, we once more duplicate
all X-Y bins for all combinations of V Relative

X and V Intruder
Y . Note that in the figure

on the right, only one X-Y bin is duplicated as an illustration.

limits; A = {−8,−7,⋯,−1,0,1,⋯,7,8}. It is possible to sample the range of verti-

cal accelerations more densely, but the solvers would require more time to compute

policies.

Reward Model

The reward function in our MDP formulation is in the form of costs (or negative re-

wards) rather than positive rewards. It is designed with the following three objectives

in mind:

• As the primary goal of the collision avoidance algorithm, the intruder aircraft

should never occupy the same bin as ownship in the RCS, which implies a

collision or a very dangerous encounter. Note that ownship resides at the origin

of the RCS, and it is possible that the origin might be on the edge or vertex of

one or more bins rather than being inside a single bin due to the chosen vertical

and horizontal division strategy. In that case, the collision avoidance algorithm

should prevent the intruder from moving into any one of the bins that have any

boundaries touching the origin.
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• In addition to preventing collision, it is desirable to maintain some protected

airspace around ownship where the intruder aircraft should not penetrate. This

protected airspace is specified by two parameters: a vertical separation range

and a horizontal separation range. In our tests for MDP CAS, we used 100 ft

vertical and 500 ft horizontal separation ranges, same as that of the NMAC

definition used in prior TCAS safety studies [99, 35, 96, 30]. The second goal

of the collision avoidance algorithm should be to prevent other aircraft moving

into any bin that has some parts overlapping with the protected airspace.

• As the last goal, if there is no danger of collision or penetration of protected

airspace, ownship should level off and try to maintain a zero vertical velocity. It

may be argued that ownship should try to return to its commanded flight path.

We have taken the position that, during the handling of a close encounter, it

is enough to prefer level flight, and that after the encounter is over, standard

navigational procedures can be resumed.

In order to satisfy these goals, the reward may be specified as a function of the

state of the system. It is specified using three user-defined parameters:

• Collision cost: The cost of any state in which the intruder is in the same X

and Y bins as ownship, set to −1000;

• Protected airspace violation cost: The cost of any state in which the in-

truder aircraft is within the protected airspace region in X and Y , set to −500;

and

• Vertical velocity penalty: The cost for being in a state where the V Ownship
Y

bin does not contain 0 ft/s; for the MDP CAS, vertical velocity penalties are

linearly proportional to the velocity values that correspond to the centers of

the V Ownship
Y bins. It is possible to vary the maximum penalty value in order to

reach different equilibria in balancing evasive maneuvers and level flight.

The reward model is illustrated in Figure 3-2.
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Figure 3-2: Reward model. On the left are the collision region (the bin that contains
ownship, shown in red) and the protected airspace (shown as a yellow rectangle with
dashed edges). On the right is the vertical velocity penalty function.

All other states are assumed to have a reward of 0. Note that the solution to the

MDP will remain the same for any linear scaling of reward values, so only the relative

magnitudes have an effect.

In order to emphasize the importance of avoiding crashes at any time (rather than

simply trying to postpone them), we used a discount factor of 0.99.

State-Transition Model

The initial state distribution specifies that the system starts in a uniformly chosen

start state. At each step, an action is taken and the probability distribution over

the state space is updated according to the state-transition model.

Our assumption is that there is no actual stochasticity in the dynamics of the

system. However, we model the uncertainty in intruder behavior as a random process;

and the fact that the state space is discretized will introduce uncertainty in the

transitions, even though they are governed by a deterministic physical process.

Our state-transition model is characterized by the following parameters:

• Controller frequency, ∆T: Duration between successive consultations of the

MDP policy for choosing an action. This value is used by the MDP formu-

lation to predict what the state will be in the next iteration.
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Table 3.1: Horizontal and vertical acceleration models for intruder aircraft.

Horizontal Model
v̇ (ft/s2) Probability

−300.0 0.05
−200.0 0.05
−100.0 0.05
−30.0 0.10
−20.0 0.10
−10.0 0.10

0.0 0.10
10.0 0.10
20.0 0.10
30.0 0.10

100.0 0.05
200.0 0.05
300.0 0.05

Vertical Model
v̇ (ft/s2) Probability

−10.0 0.1
−5.0 0.2

0.0 0.4
5.0 0.2

10.0 0.1

• Magnitude of our vertical acceleration, AOwnship
Y .

• Our vertical velocity limits, V Ownship
Y, Min and V Ownship

Y, Max .

• Probability of staying in start state when already in start state.

• Probability of making a transition into any other state when in start state.

• Intruder aircraft’s horizontal and vertical acceleration models.

For the horizontal and vertical acceleration models, we used the distributions given

in Table 3.1. These distributions roughly model a random walk process where the

intruder aircraft is oblivious to ownship or we have no idea about the intention of the

intruder aircraft.

Given these parameters, we compute Pr(s′ ∣ s, a) as follows:

• First, we consider each possible pair of vertical and horizontal accelerations ao

that might be chosen by the intruder aircraft, and compute their probabilities

po as the product of the probabilities in the intruder acceleration models.
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• For each vertex of the bin s, we determine how that particular point in state

space would be transformed given the execution of ownship acceleration a, and

the intruder accelerations ao.

• The result is a new box, B, in 5-dimensional space. For each new state s′,

we compute the percentage of B that overlaps s′; that overlap percentage is

Pr(s′ ∣ s, a, ao). Any probability mass outside the boundaries of the modeled

state space is assigned Pr(done , V Ownship
Y ∣ s, a, ao).

• Finally,

Pr(s′ ∣ s, a) =∑
a0

Pr(s′ ∣ s, a, ao)po .

This method of analytically computing the physical evolution of the system elim-

inates introducing additional discretization in the computation. Therefore, the ef-

fectiveness of the state-transition model depends only on the discretization of the

state and action spaces and the fidelity of the vertical and horizontal acceleration

models for the intruder aircraft. Having the acceleration models match closer to the

actual intruder behavior results in better state estimations, since the intruder aircraft

would be localized more accurately. The state-transition model is summarized as

Algorithm 6 in Appendix A.

3.1.2 Results

Table 3.2 summarizes the results of nominal flight (ownship following the scripted

flight path without using any collision avoidance systems) and baseline collision avoid-

ance systems on 15,000 encounters. The table shows the risk ratios, mean vertical

velocity magnitudes in ft/s, and mean vertical acceleration magnitudes in ft/s2 for dif-

ferent algorithms. The risk ratio associated with a particular system is the probability

that an encounter leads to an NMAC using the system divided by the probability that

an encounter leads to an NMAC without the system. Of course, better performance

is indicated by a small risk ratio. It is desirable to have velocity and, if possible, also

acceleration values as small as possible without sacrificing the risk ratio (we would
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Table 3.2: Risk ratios for nominal flight and baseline collision avoidance systems.

Algorithm Ratio Velocity Acceleration

Nominal 1.000000 4.255460 0.172020
TCAS II (2500 ft/min) 0.061220 5.094360 0.345920
TCAS II (1500 ft/min) 0.062730 4.586190 0.366110
Basic CAS (perfect sensor) 0.000010 33.030760 0.790190
Analytic CAS, 3-D (perfect sensor) 0.054560 4.564330 0.224730
Analytic CAS, 1-D (perfect sensor) 0.016970 5.597470 0.768990

like to remind that the reward model we designed was not structured to penalize

high accelerations). Large values of mean velocity magnitude indicate that ownship

is maneuvering unnecessarily.

We experimented with gradually increasing the size of the state space (by increas-

ing the number of bins along different dimensions in our discretization) until the time

it takes for the solver to compute a policy increases beyond practical limits, and we

ended up with an MDP model with 6768 states: 5, 10, 3, 5, and 9 bins for X, Y ,

V Relative
X , V Intruder

Y , and V Ownship
Y components of S, respectively, and 9 start and 9

done states. Solving an MDP using value iteration [122] is very efficient especially if

the solver is implemented using sparse data structures. Therefore, instead of testing

a single instance of an MDP, we were able to vary the vertical velocity penalty (re-

ward) and generate multiple instances of our MDP CAS model to trace out system

performance (SP) curves. SP curves are similar in nature to system operating char-

acteristic (SOC) curves, [77, 78, 141] which generally involve plotting unnecessary

alert against successful alert. Results for our MDP CAS is given in Table 3.3 and

Figures 3-3, 3-4 and 3-5 show SP curves pertaining to our MDP model. In the SP

curves, points close to the origin are more desirable as they represent low risk ratios

and low velocity/acceleration values (less maneuvering), and our MDP model scores

better than the other systems on the Velocity - Risk Ratio curve.

Graphs displaying velocity, acceleration, and probability of NMAC (PNMAC)

values from 15,000 encounters using nominal flight strategy plotted against values

from same encounters using our MDP collision avoidance logic are shown in Figures 3-
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Table 3.3: Risk ratios for MDP collision avoidance system (perfect sensor).

Reward Ratio Velocity Acceleration

−0.10 0.000692 14.174462 2.121009
−0.50 0.000980 7.721526 1.684897
−0.75 0.001428 5.505732 1.745723
−1.00 0.003075 4.970565 1.591075
−1.25 0.022785 4.133050 1.566663
−1.50 0.024709 3.820564 1.286228
−2.00 0.036734 3.125315 0.931763
−5.00 0.063469 2.159921 0.691902
−10.00 0.170806 1.460390 0.539181
−20.00 0.257840 1.059476 0.241147
−30.00 0.431986 0.973162 0.212496

Figure 3-3: Reward vs. Risk ratio.
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Figure 3-4: Velocity vs. Risk ratio.

Figure 3-5: Acceleration vs. Risk ratio.
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6, 3-7, and 3-8, respectively. In these graphs, scoring below the (red) diagonal are

desirable as it indicates that an aircraft equipped with our collision avoidance system

performs better (in terms of lower risk ratio or less maneuvering) than an aircraft that

just follows the scripted maneuver for that particular encounter scenario. Note that

our reward model is constructed to optimize velocities, therefore acceleration plots

are not significant for our experiments in general, but presented as a reference. Also,

in the PNMAC comparison, there are a few encounters where the MDP PNMAC is

higher than Nominal PNMAC (points above the diagonal), which means that the

collision avoidance system actually increases the risk of collision. At first, this might

seem strange, but it can happen with certain encounter geometries as follows:

• Usually in such encounter scenarios, the intruder aircraft performs a dangerous

altitude crossing maneuver with high speeds that, by chance, ends up with a

large total miss distance (indicating a small risk of collision) at the closest point

of approach when ownship follows the scripted maneuver.

• The collision avoidance system works as usual by minimizing expected costs,

and it computes the maneuvers that best avoid an intruder whose intentions

are modeled by a random walk process. However, application of the computed

maneuvers is not enough to have a total miss distance that is larger than the one

obtained by just following the scripted maneuver (therefore, the risk of collision

is higher).

• The simulation framework uses total miss distance at the time of closest ap-

proach when evaluating PNMAC values, hence, due to the specific encounter

geometry a nominal flight might actually score better than a perfectly rational

plan.

Since our reward model penalizes high vertical velocities, it is not surprising that

we do not get low acceleration values as opposed to the optimization we get with

velocities. In fact, the MDP CAS prefers using high acceleration values. The his-

togram in Figure 3-9 shows the total number of states an action is chosen as the best
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Figure 3-6: Nominal vs. MDP CAS Velocity.

Figure 3-7: Nominal vs. MDP CAS Acceleration.
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Figure 3-8: Nominal vs. MDP CAS PNMAC.

action by the MDP policy (this specific policy was generated with vertical velocity

penalty = −2.00).

In conclusion, we can say that MDP CAS works well in the case of perfect sensing,

and we can easily outperform baseline collision avoidance systems in terms of much

lower risk ratios and velocities (without unnecessary maneuvering).

3.2 Noisy Sensing

Our second case is omnidirectional sensing with noise, and we will use the TCAS

sensor model as our input source. If we were to make use of the bearing estimate

produced by the TCAS sensor in locating the intruder aircraft in any 3-dimensional

coordinate system, the error would be considerably big (especially with distant in-

truders). However, we chose to work with projections of intruder aircraft on RCS

and hence we do not need the bearing estimate at all. It is possible to accurately

locate the intruder on RCS using other TCAS readings. This gives us the following
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Figure 3-9: Frequencies of best actions in MDP policy (vertical velocity penalty =
−2.00).
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two options in designing a collision avoidance system that uses the TCAS sensor:

• We treat this as a perfect sensing problem and use the same MDP model de-

veloped in Section 3.1. To figure out the state, we either directly use the sensor

reading neglecting the fact that it is noisy, or we use an estimator such as an

alpha-beta tracker [137] or a Kalman Filtering based technique [46]. Since small

observation noise does not affect action selection much in this specific problem,

it is also feasible to formulate the problem as a Q-MDP [88] (the QMDP approx-

imation is calculated by solving the POMDP as though it were fully observable,

and then linearizing across Q-values to obtain the value at a belief), but we will

demonstrate a solution with an external state estimator in this document.

• We define a discretized observation space Ω, and design an observation model

for the TCAS sensor to augment the MDP model of Section 3.1, and turn the

problem into POMDP planning.

In this section, we first present results for an MDP collision avoidance model using

an alpha-beta tracker to estimate the state, and then we look at a POMDP model.

3.2.1 MDP Collision Avoidance System with

State Estimator

The results for baseline collision avoidance systems with the TCAS sensor are shown

in Table 3.4. Using a simple alpha-beta tracker for state estimation with α = β = 0.5,

we obtained the results in Table 3.5 with our MDP collision avoidance system for

various vertical velocity penalty values. The SP curves are shown in Figures 3-10,

3-11, and 3-12.

Even though alpha-beta tracking is a very simple state estimation method, the

results are satisfactory. Using Kalman filters, interacting multiple model methods

[95], or nonlinear filters [129] may further improve the quality of state estimation, if

desired.
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Table 3.4: Risk ratios for baseline collision avoidance systems (TCAS sensor).

Algorithm Ratio Velocity Acceleration

Basic CAS (TCAS sensor) 0.000010 32.909700 1.034700
Analytic CAS, 3-D (TCAS sensor) 0.080100 7.402750 1.096570
Analytic CAS, 1-D (TCAS sensor) 0.020500 19.557490 4.511640

Table 3.5: Risk ratios for MDP collision avoidance system (TCAS sensor).

Reward Ratio Velocity Acceleration

−0.10 0.000916 13.225057 3.088738
−0.50 0.001717 7.431411 2.404085
−0.75 0.002428 5.101627 2.398184
−1.00 0.003337 4.494725 2.151822
−1.25 0.015149 3.857991 1.967395
−1.50 0.023313 3.657201 1.618871
−2.00 0.037456 2.906691 1.221383
−5.00 0.077662 2.033404 0.902261
−10.00 0.212924 1.448597 0.576285
−20.00 0.285638 1.055002 0.284902
−30.00 0.415815 0.993773 0.243202
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Figure 3-10: Reward vs. Risk ratio.

Figure 3-11: Velocity vs. Risk ratio.
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Figure 3-12: Acceleration vs. Risk ratio.

3.2.2 POMDP Collision Avoidance System with

TCAS Sensor

The state space S, and the state-transition model we built in Section 3.1 effectively

capture important aspects of the encounter geometry and motion dynamics for both

aircraft, respectively. Therefore, a POMDP collision avoidance model can be built on

top of the MDP model of Section 3.1 by just adding an observation model. In this

section, we will define the observation space and the observation model for the TCAS

sensor, and we will also look at how we can slightly modify action space and reward

model together to reduce the POMDP size and still obtain low risk ratios.

Observation Space

The discrete model of the observation space is constructed in a way similar to the

discrete state space. There are two types of observational information: vertical ve-

locity of ownship (V Ownship
Y , which we assume is always completely and correctly
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observed), and possible single detection of an intruder aircraft using a sensor system.

Observations for the TCAS sensor are discretized into the same bins as the X and

Y components of the state space. The model could easily be changed to provide

observations at a higher or lower granularity. In addition, there is a special noObs

observation for the case when no intruder is detected (due to either an empty sensing

region or a false negative measurement).

Observation Model

The observation model of a POMDP specifies Pr(o ∣ s, a), that is, the conditional

probability of making each possible observation o, given that the actual state is s and

the last action was a. All necessary information is encapsulated in s, so we will ignore

dependence on a, and specify Pr(o ∣ s) for all discrete o and s.

We assume that, at every step, the observation has two components: oovy , our

measured vertical velocity, and od, the observed detection of the intruder, and that

these are independent, so

Pr(oovy , od ∣ s) = Pr(oovy ∣ s)Pr(od ∣ s) .

The measurement of our vertical velocity is always correct, so Pr(oovy ∣ s) = 1 if

oovy is equal to the V Ownship
Y component of s, and 0 otherwise.

The observed detection is more complex due to false positive/negative measure-

ments and measurement errors described in Section 2.3. We assume fixed probabilities

for false positives pfp and false negatives pfn , and assume that if there is a false pos-

itive detection, it is generated with uniform probability over the space of values of

od.

When s is a start or done state (the encounter has not yet begun or has ter-

minated) or when Y > maxRange, that is, when the distance to the other aircraft is

greater than the range of the sensor, then Pr(od = noObs ∣ s) = 1 − pfp . That is, with

high probability, the observation is noObs. We used a value of 5 nautical miles for

maxRange for all sensors. For any other observation Pr(od = d ∣ s, fp) = ∣Od∣−1; that
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is, it is uniform over the space of possible actual detection observations.

Finally, if the intruder is within the modeled volume of the state space, there is

some chance of not seeing the intruder: Pr(od = noObs ∣ s) = pfn . Otherwise, with

probability 1 − pfn , we make a detection d.

A precautionary margin is added to all four sides of the X-Y rectangle corre-

sponding to the detection d. Then we consider all of the X-Y bins bi that overlap

the expanded detection bin, and the proportion of the expanded detection bin that

overlaps bi, called pi. So,

Pr(od = d ∣ s) = (1 − pfp)pi + pfp∣Od∣−1 ,

for any state in which the intruder is in X-Y bin bi, for all bins bi, and

Pr(od = d ∣ s) = pfp∣Od∣−1

otherwise. For the TCAS sensor, we can define the margin in terms of standard TCAS

sensor error parameters given in Table 2.2:

margin = Altitude quantization +

3 ×Range error standard deviation +

3 ×Altimetry error scale

Including full altitude quantization and 3 standard deviations worth of error in the

margin gives us an unnecessarily conservative confidence region around the detection

d which can, in fact, hinder intruder localization and render the observation model

useless. The margin should be large enough so that it covers the region from which

a noisy sensor reading may have originated, but it should be small enough to allow

the POMDP to properly localize the intruder. Therefore, we used smaller margins

in our experiments (half of altitude quantization and 0.5 standard deviations gave us

reasonable risk ratios).

The observation model for the TCAS sensor is described by Algorithm 3 in Ap-
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pendix A.

Modifications

POMDP solvers work with belief-states instead of exact states and branch on actions

and observations, therefore their memory and time demands are typically much higher

than MDP solvers, especially if we would like to compute policies with tight regret

bounds. A POMDP model with the same state and action spaces as the MDP model

of Section 3.1 takes days to just initialize and generate the first heuristic policy in the

iterative improvement process. We describe below how the parametric design of our

POMDP model gave us leverage to reduce the size without decreasing performance.

As depicted in Figure 3-9, the MDP collision avoidance logic mostly uses very

high, very low or zero acceleration options available when picking an action. This

is in accordance with our reward model. Based on this observation, we used a new

and smaller action space with only three actions, A = {−8,0,8}, which correspond to

accelerating up/down with maximum magnitude or maintaining vertical velocity.

We also used a slightly different discretization for the state space: 7, 10, 4, 4, and

3 bins for X, Y , V Relative
X , V Intruder

Y , and V Ownship
Y components of S, respectively, and

3 start and 3 done states, which bring the number of states down to 3366.

Finally, based on some experimental results, we increased the size of the protected

airspace around ownship to 200 ft vertical and 1000 ft horizontal separation.

These modifications let the SARSOP solver initialize in about an hour and gen-

erate acceptable policies (in terms of low risk ratios) in 3 to 5 hours.

3.2.3 Results

Tracing out SP curves for POMDP models is very time consuming, and essentially

the longer the solver runs, the better the generated policies perform. Therefore, we

present the single best result we obtained for our POMDP model (in terms of low risk

ratio) using a vertical velocity penalty of −0.1 in Table 3.6. The POMDP collision

avoidance logic for the TCAS sensor is about 20 times safer than TCAS Version 7
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Table 3.6: Risk ratios for POMDP collision avoidance system (TCAS sensor).

Algorithm Ratio Velocity Acceleration

POMDP CAS (TCAS sensor) 0.002770 14.133030 1.759190

currently used on manned aircraft. However, TCAS has a much lower mean vertical

velocity magnitude, indicating that it maneuvers less frequently.

Although we use the same sensor model of the TCAS algorithm for our POMDP

model and constrain the vertical rate magnitude to be within 2500 ft/min, the com-

parison is not entirely fair. TCAS was designed for pilot-in-the-loop control and

assumes a delay between when the resolution advisory is issued and when the pilot

responds. Although the POMDP algorithm has the advantage over the TCAS algo-

rithm because it can maneuver instantaneously, the TCAS algorithm is permitted to

make up to 0.35 g maneuvers whereas the POMDP was constrained to 0.25 g maneu-

vers. We use the standard model of pilot response to TCAS resolution advisories,

which is a 0.25 g acceleration after a 5 s delay for the initial advisory and a 0.35 g

acceleration after a 2.5 s delay for subsequent advisories [60]. Although a direct com-

parison between the POMDP model and TCAS algorithm cannot be made, we can

be confident, at least, that the POMDP is performing well.

Considering the MDP model results and comparing both risk ratio and flight plan

adherence, we conclude that, for the TCAS sensor, an MDP model is the right choice.

3.3 Limited Field-of-View Sensing

As our final case, we look at POMDP collision avoidance using radar and EO/IR

sensors. Both of these sensors have noise, and are effective only within a limited

sensing region. Most important complications caused by these two sensors are the

following:

• Unlike the TCAS sensor which provides an accurate altitude reading in GCS,

these sensors provide elevation estimates that we need to use when projecting
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the intruder aircraft location on RCS. Using an angular measurement makes it

difficult to localize distant intruders in RCS, so until the intruder is sufficiently

close, the altitude estimate will not help the POMDP model much in choosing

an evasive action.

• The sensing region is horizontally wide, but vertically, it is a very narrow band

in front of ownship. Therefore, nearby aircraft can fly undetected most of the

time (even when they are dangerously close). This also causes late detection

of some ascending or descending intruders that suddenly enter the detection

region, leaving very little space and time for an escape maneuver.

• During an escape maneuver, the sensor orientation (and hence the orientation

of the detection region) changes as ownship accelerates (pitches) up or down.

Most of the vertical maneuvers cause the intruder to disappear from (move

outside of) the sensing region.

In terms of model implementation, there is very little work to do: We base our

design on the POMDP model of Section 3.2.2 (using the same state and action spaces

described in Section 3.2.2) with some minor adjustments that we describe below,

we use the previously introduced special observation, noObs, whenever there is no

detection (for example, when a state falls outside sensing region), and we just employ

the POMDP solver to design effective strategies for dealing with the limitations of

sensing. This also means that we are able to achieve one of our goals for this work;

POMDP models allow us to easily and quickly design collision avoidance strategies

for different sensor configurations.

3.3.1 POMDP Collision Avoidance System with

Radar Sensor

For the radar sensor, we use the same observation model as the TCAS sensor with

the following two modifications:
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• An overly conservative margin can be defined in terms of standard error param-

eters from Table 2.2:

margin = 3 ×Range error standard deviation +

Longest distance to bin edges ×

tan(3 ×Elevation error standard deviation)

• The pitch angle of ownship (and hence the orientation of the sensing region)

can be computed using ownship’s vertical and horizontal velocity values, but

ownship horizontal velocity is currently not part of the state space. In our

observation model implementation, we compute some very loose upper and

lower bounds for pitch angle using the maximum and minimum velocities of our

aircraft model from Table 2.1, and use them to figure out which X-Y boxes fall

outside sensing region. We believe that performance could further be improved

with a better POMDP model that could accurately predict the field-of-view of

the sensor. However, addressing this issue requires an extension to the state

space and increases the POMDP size considerably.

The observation model for the radar sensor is described by Algorithm 4 in Ap-

pendix A.

3.3.2 POMDP Collision Avoidance System with

EO/IR Sensor

The EO/IR sensor reports the elevation angle of the intruder aircraft, therefore the

projection of the intruder on RCS can be constrained to lie on a ray (with noise)

rather than a point.

Detections from the EO/IR sensor are nominal angles that can be thought of as

the centers of angular bins, which are not necessarily uniform. For each state s in

which the intruder is located in the modeled X-Y space, we can compute a nominal

elevation angle d∗(s) to the intruder. We assume that the probability of observing a
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Table 3.7: Risk ratios for baseline and POMDP collision avoidance systems (radar
and EO/IR sensors).

Algorithm Ratio Velocity Acceleration

Basic CAS (radar sensor) 0.050830 19.232450 2.409710
Basic CAS (EO/IR sensor) 0.047240 19.450350 2.308330
POMDP CAS (radar sensor) 0.063370 23.628310 1.261540
POMDP CAS (EO/IR sensor) 0.035100 28.610760 1.476910

detection angle d when the actual angle is d∗ is proportional to a Gaussian density

with mean at d∗; so,

Pr(od = d ∣ s) = (1 − pfp)
1

z
e(d−d

∗(s))2 + pfp∣Od∣−1 ,

where

z =∑
s

e(d−d
∗(s))2

is the normalization constant.

We also use the same pitch angle approximation of the radar sensor described in

Section 3.3.1 to assign noObs to X-Y boxes that fall outside the sensing region.

The observation model for the EO/IR sensor is described by Algorithm 5 in Ap-

pendix A.

3.3.3 Results

Table 3.7 summarizes results for baseline and POMDP collision avoidance systems

using radar and EO/IR sensors. The vertical velocity penalty was set to −0.1 for the

POMDP models.

As expected, radar and EO/IR sensors have higher risk of collision than TCAS

and perfect sensors since their performance is inherently limited by their field-of-view

constraints.

There are also two important observations here that we would like to emphasize:

• On one side we have the radar sensor that provides an additional range reading
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that allows (horizontal) localization of intruder aircraft in RCS, and on the

other side we have the EO/IR sensor with a smaller error in elevation estimate

which allows better vertical localization. Even though a simple comparison is

not possible, by looking at the risk ratios we can conclude that accurate vertical

localization is more important than accurate horizontal localization for collision

avoidance systems that perform evasive maneuvers in the vertical dimension.

• A POMDP solver can in fact generate non-trivial (if not superior) collision

avoidance strategies that can compete with hand-crafted ones. The EO/IR

sensor, with its limited field-of-view and lack of horizontal localization ability,

provides us a good example where the POMDP strategy scores a lower risk ratio

than the Basic collision avoidance system using the same sensor. As an example

of a non-trivial behavior, we observed that the POMDP strategy for the EO/IR

sensor commands ownship to pitch up and down successively especially at the

beginning of encounters, which would help to actively search for intruders that

might be outside the sensing region and/or to better localize ones that are

inside the sensing region. This is a sacrifice in terms of more maneuvering,

but it results in low risk ratios that is in accordance with the reward model

used. Even though a policy generated by a solver might not be easy to verify

and validate, it can at least inspire hand-crafted techniques and/or serve as a

baseline.

3.4 Discussion

In this section, we briefly discuss the limitations of our MDP/POMDP collision avoid-

ance models and present a short assessment.

3.4.1 Model Limitations

Below are certain ways in which our models were limited and some suggestions about

how the performance of the models could be improved.
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Discretization

Our state space representation captures most of the features that are necessary in

selecting an action to avoid collisions, but there is a loss of information when we go

from two 13-dimensional aircraft state vectors to a 5-dimensional state space. One

way to improve performance is to augment the state space with more features from the

underlying true state space, and another way is to use a finer grained discretization,

which involves adding more bins along each dimension, but we should also note that

both of those approaches cause huge growth in the size of the state space and the

time it takes to compute policies.

Parameter Values

Our models contain many parameters (most of them are externally configurable and

some of them are internal to implementation) that have not been tuned to the en-

counter model. Many of the parameter values were chosen by experimentation. We

believe that performance can be significantly improved by better matching the inter-

nal model used for decision making to the encounter model used for evaluation.

Missing State Information

There are certain features that may improve performance that are currently not part

of our state space. One such feature is ownship roll angle. With limited field-of-view

sensors, sometimes whether the intruder falls into the active angular range of the

sensor or not depends on how much ownship is banking. In the current formulation,

there is no way to estimate the current roll angle from a given state, therefore we

cannot project the active angular range of sensors onto the projection plane to deter-

mine intruder detectability. We currently assume a fixed (0 degree) roll angle, and

add some precautionary margins, but this affects the performance in one of two ways:

• If our roll angle is actually 0, we would be assigning positive probabilities to

some undetectable bins that are inside the margins.
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Figure 3-13: Gaussian distribution approximated by four flat distributions stacked
on top of each other.

• If our roll angle is larger than the margins and the intruder is detectable as a

result of this geometric configuration, we would be assigning zero probability

for a case that is actually possible. Having one of those cases during policy

execution might lead to a belief-state crash (a belief-state update resulting in

an invalid belief-state with 0 probability assigned to all states).

Observation Models

Error models for most of the sensor measurements are Gaussian. In our implemen-

tations, we used a method to coarsely discretize a Gaussian distribution as shown

in Figure 3-13 and applied it to 2-dimensional observation bins. We believe that a

better Gaussian discretization scheme or an analytical solution would further improve

results, as better observation models help localize the intruder aircraft in RCS with

more precision, and that results in better action selection.

Estimation of Vertical Velocity of Intruder Aircraft

Evasive maneuvers are performed only in the vertical dimension, therefore it is im-

portant to estimate the vertical velocity of intruder aircraft as accurately as possible.

Unfortunately, this requires a much finer discretization of the heights of the 2-D bins

in the projection plane, which in turn increases the size of the state space.
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Figure 3-14: Model-based approach, MDP/POMDP based collision avoidance logic.

Estimation of Closure Rate

In order to keep the state space small and still be able to cover a very large projection

plane, we used variable sized boxes (both in vertical and horizontal directions). We

observed that putting narrow boxes close to the RCS origin and making the boxes

wider as we move away from the origin works well for most of our purposes. However,

a wide box also means that we will be getting the same observation repeatedly until

the projection of the intruder falls into another box. These kinds of observation

patterns affect both vertical velocity and relative horizontal velocity (closure rate)

estimations, as successively getting the same observation creates the illusion of a

stationary intruder, and suddenly getting a different observation results in velocity

estimations that are higher than they really are. As in the vertical velocity case, a

finer discretization is required to alleviate this problem.

3.4.2 Assessment

According to the results of our experiments we conclude that:

• The MDP/POMDP formulation is flexible enough to accommodate a variety of

sensor modalities, intruder behavior, aircraft dynamics, and cost functions as

shown in Figure 3-14.

• Complex policies produced by MDP/POMDP solvers can be implemented in

real time. Both state estimation and policy execution are quite efficient for the

state spaces considered.
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• Current state-of-the-art solvers can generate useful collision avoidance behavior

using a simplified representation of the aircraft dynamics.

• Improvements in the problem formulation may further improve performance. In

particular, we have limited our formulation to representing motion in two (rel-

ative) dimensions. Moving to full three-dimensional motion would yield more

effective evasive maneuvers, but in a discretized formulation this will take the

size of the state space beyond the range of existing solvers. Therefore, better

results are likely to be achieved with the investigation of alternative represen-

tations [72] and with the improvement of current solvers or the development of

new types of solvers that suffer less from exponential explosion.

• During the course of this study we developed three software tools [131]: The

first one was built to automate generation of parametric POMDP descriptions.

The automated POMDP generation process is described in Appendix B. The

second tool converts a POMDP specification into what we call a Processed

POMDP (PPOMDP) that allows for very fast belief-state updates. This con-

version is described in Appendix C. The third tool was built in order to better

understand, analyze and debug POMDP policies generated by the solvers. It is

capable of displaying and graphically visualizing encounter data, and it is de-

scribed in Appendix D. Development of more sophisticated tools is likely to be

necessary, especially for the verification of MDP/POMDP policies before they

can be deployed on real aircraft.
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Chapter 4

Path-Modification Based Collision

Avoidance Models

In the previous sections we have shown how to build successful collision avoidance

policies offline using the MDP/POMDP framework. We have also demonstrated

the effectiveness of the model-based approach where we provided carefully designed

encounter models and performance metrics, and we employed the solvers to perform

the optimization.

There are basically two important directions in which we would like to extend the

MDP/POMDP based collision avoidance models in order to have practically deploy-

able and better performing collision avoidance systems:

• Planning Escape Maneuvers in 3-D: We would like to be able to plan 3-dimen-

sional escape maneuvers by using both of the vertical and horizontal planes and

also possibly varying turn rate within ownship’s performance limits for more

effective avoidance maneuvers. In principle, the POMDP framework does not

limit us in adding more dimensions to the state, action and observation spaces.

Therefore, it is possible and straightforward to extend the POMDP models to

handle 3-D maneuvers, but practically this is not possible due to the limitations

of the effectiveness of current solvers on POMDPs with huge spaces.

• Multi-Aircraft Planning: We also would like to handle multiple intruder aircraft
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simultaneously in a global sense rather than employing pairwise resolutions. In

the pairwise approach, multiple potential conflicts are examined sequentially in

pairs and if one solution induces a new conflict, the original solution may be

modified further until a conflict-free solution is reached. On the other hand,

a global solution considers more than one aircraft at a time and while more

complex, it may be more robust (Kuchar and Yang describe global and pairwise

solutions in detail in their review [79]). With a reasoning similar to above, we

can say that it is also difficult to automatically generate policies for multi-

aircraft encounters on the POMDP framework using various solvers, because it

is not easy to both represent the problem in sufficient detail and also have a

small size state space that could be managed by the solvers.

With the current solution algorithms and implementations, it seems unlikely that

we can solve MDPs and POMDPs with state spaces that are big enough to contain all

the necessary information to achieve above goals, in reasonable time. Fortunately, the

collision avoidance problem has some nice features that give us leverage to solve some

parts of the problem analytically and/or geometrically rather than having to discretize

along all dimensions, and still preserve the main principles of Markovian solution

techniques. Particularly, aircraft transition models are quadratic in acceleration, and

we can solve directly for certain important functionalities such as computing future

aircraft states given a set of control commands. We also would like to note that

analytical and geometrical solutions are usually verified more easily than the logic

automatically derived by some model-based approaches using complicated solvers

(such as the POMDP policies in the form of a set of α-vectors and associated action

indices), and they are also likely to be used extensively in future collision avoidance

systems [27].

In this chapter, we will analyze a dynamic replanning approach that takes ad-

vantage of the analytically solvable components of the collision avoidance problem to

make it possible to accomodate above goals. Implementationwise, we will continue

with the model-based approach, but instead of off-the-shelf solvers, we will be build-

ing and exposing the inner workings of our new solvers this time. The algorithms we
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Figure 4-1: Path-modification approach. We will start with initial flight trajectories
(pale green) and improve them (green) to reduce expected cost.

will build will still be generic and fully-parametrized to work with different types of

aircraft dynamics and sensor modalities. Instead of the MDP/POMDP way of enu-

merating all states, actions and observations and trying to solve offline for a policy

covering all possible situations, we will take an online approach and build planners

that start with simple flight trajectories and then improve them in continuous space

to avoid collisions as depicted in Figure 4-1.

Below is a quick recap of the key components of the collision avoidance problem

domain that our approach will adhere to:

• The underlying state, action and observation spaces are all continuous and are

very high dimensional. Therefore, fine discretizations of those spaces would

result in sizes that are beyond the limits of practical solutions with existing

MDP/POMDP solvers, and coarser discretizations introduce additional uncer-

tainty and other limitations in the solutions. Furthermore, the physics and

the geometry governing the evolution of the system can usually be described

analytically.

• There is uncertainty in detecting the position and motion of oncoming aircraft

due to sensor imperfections. The intentions of intruder aircraft are also uncer-

tain. Therefore, the problem is a case of optimization using probabilistic models

of motion and intention under uncertainty.

• We can control ownship perfectly, but we need to observe the fact that ownship
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motion (or aircraft motion in general) is nonholonomic. Furthermore, since the

type of aircraft that we consider in this research usually have strict performance

limits including a minimum airspeed that should always be observed, it is not

possible to use tricks such as “frequently stopping and turning to orient ownship

in the target direction” to imitate holonomic motion. The type of motion plan-

ning that we need to have will take into account both dynamic and kinematic

constraints, which is known as kinodynamic planning [33].

As will be discussed in the following sections, the nonholonomicity of aircraft

motion dictates that the collision avoidance maneuvers that we plan for ownship

should only include regions that are attainable by ownship in both space and time.

On the other hand, the nonholonomic nature of intruder aircraft can be put to our

advantage knowing that the regions that are attainable by intruder in space and in

time are also bounded by its performance limits. Before we continue with the next

section, we provide below the definition for Space-Time Attainable Regions, a term

that we will use in the rest of this document.

Space-Time Attainable Regions

All types of feasible motion planning tasks for nonholonomic agents (for example,

feedback control synthesis [130] and planning with bounded agent dynamics [34])

require that we only consider reachable configurations of the state space. We will call

the set of points in space and time that an aircraft can occupy within its performance

limits as Space-Time Attainable Regions, or STAR. Figure 4-2 shows the STAR

representation of a 90 seconds long encounter in 2 space dimensions (2-STAR). In

the figure, we only consider aircraft motion in east and altitude axes of GCS. The

two aircraft involved in the encounter are a Global Hawk and an American General

AG-5B Tiger, and the attainable regions shown as green and red patches at every

1.5 second intervals are obtained by starting from sample initial aircraft states and

then varying the horizontal and vertical accelerations of both aircraft within their

performance limits.
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2-STAR of ownship and intruder A slice of 2-STAR, t ≈ 35 s

Figure 4-2: 2-STAR representation of a sample encounter.

The STAR representation gives us all possible locations that could be occupied

by an aircraft, but usually aircraft motion is smooth, and we might expect to see

the intruder aircraft in a more restricted region inside STAR with higher probability.

Figure 4-3 shows an example where the intruder’s path is approximated as a widening

Gaussian over time.

Figure 4-3: Probabilistic 2-STAR representation. A few slices of intruder’s 2-STAR
is shown with color-coded probabilities of actual location.

Relating to the MDP/POMDP framework, we can think of STAR as a com-

pact representation of part of the state space that is explored step-by-step by the

state-transition model of an MDP/POMDP solver during policy computation. In the

following sections, we will take advantage of the compactness of this representation

in order to come up with non-discretized collision avoidance solutions.
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The aircraft collision avoidance problem also allows turning maneuvers in addition

to the vertical and horizontal motion, so we will need to work with 3 space dimensions

(3-STAR) in general, in order to compute the most effective escape maneuvers.

The STAR representation helps us generate compact geometric depictions of all

possible maneuvers at once. Hence, coarsly, the goal of our collision avodance algo-

rithms that will be designed in the following sections can be summarized as computing

trajectories for ownship that reside within 3-STAR of ownship and that completely

avoid 3-STARs of intruders, if possible, or that stay outside high probability regions,

if avoiding completely is not possible. We will also balance avoidance maneuvers with

the second goal of achieving low vertical velocities, i.e. level flight. Therefore, it is

not enough to just quickly search the edges of ownship 3-STAR to come up with an

optimal trajectory.

4.1 Path Modification

We begin describing our new approach by giving a simple and informal example.

Please note that in the rest of this document we use the terms “trajectory” and

“path” interchangeably.

Let us assume that we would like to have a protected airspace in the shape of a

sphere with radius rpa around all aircraft involved in an encounter. In that case, we

can say that our collision avoidance system is successful if the distance between any

two points on the trajectories of any two aircraft is at least rpa for the whole duration

of the encounter. Therefore, instead of trying to optimize velocity and/or acceleration

commands like the MDP/POMDP planners, let us work with aircraft positions and

represent the intended or estimated paths of all aircraft as a sequence of waypoints

first. Then we put enough separation between these paths using a method inspired

by observing what happens when we cook spaghetti:

• In the spaghetti analogy, our paths are imaginary lines passing through the

centers of spaghetti. The protected airspace around paths are represented by the
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thickness of spaghetti. At the beginning, each spaghetti is very thin, therefore

there is not enough separation between paths.

• As cooking progresses, spaghetti get thicker and push away their neighbors until

they all reach their maximum radius, rs. When cooking terminates, each path

will have enough separation around it provided that rs ≥ rpa/2.

In a implementation of the described idea, we iterate over all pairs of paths and

all waypoints along each path, and incrementally add more separation between them

until all paths are separated from each other by at least rpa. In Figure 4-4 we present

an example encounter scenario with 7 paths. Around each path is a protected airspace

of radius rpa/2. After the iterations are over, paths become modified such that there

are no intersections between protected airspaces.

Before modification After modification

Figure 4-4: Demonstration of path modification. The trajectory of each aircraft is
represented as a sequence of waypoints (not visible). The tubes extruded along the
waypoints show the desired protected airspace around trajectories. In the figure on
the left, most tubes intersect with other tubes, indicating protected airspace violations
(in fact, two tubes at the center are almost coaxial). The figure on the right shows
the modified trajectories; no two tubes have any intersecting regions anymore.

This simple method of looping over pairs of trajectories and iteratively separating

them from each other is very flexible and it can in fact be very easily extended to

allow for the following capabilities:

• In the given example, we assume that there is no positional uncertainty about

the flight plan of any of the aircraft and we know exactly where to place way-
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points. Even though this scenario is possible with the use of next generation

sensors that broadcast intent information as a set of waypoints, it is not realistic

for the purpose of the research described in this document. We need to be able

to handle uncertainty in both the sensory observations as well as the intent of

the intruders. With the path-modification method, it is possible to start by

putting a large-enough protected airspace around the first waypoint of a tra-

jectory to account for the observation uncertainty, and then placing enlarging

protected airspaces around subsequent waypoints along the estimated trajec-

tory, or in other words building a form of 3-STAR for the intruder, to account

for intent/transition uncertainty (which makes the trajectory look more like a

cone rather than a tube). An example is shown in Figure 4-5.

Figure 4-5: Path modification with uncertainty. On the left, we have 7 intersecting
tubes (2 of them are almost coaxial) representing non-optimized flight trajectories.
On the right, one trajectory is assigned increasing uncertainty along its waypoints
and path-modification method is applied, resulting in increased separation between
trajectories. All trajectories, including the one with uncertainty, are drawn as tubes
graphically, but the conic form of the uncertainty is visible as additional space around
the trajectory with the uncertainty in the middle.

• It is also possible to assign numerical priorities to each trajectory and update

the path separation algorithm such that high priority trajectories are modi-

fied less (waypoints that belong to high priority trajectories get pushed away

less than waypoints from lower priority trajectories at each iteration) during the

process. This helps aircraft with important missions and/or with restricted per-

formance limits deviate less from their planned trajectory when they encounter
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other aircraft serving missions of lesser importance and/or having higher ma-

neuvering capabilities.

• We can also take the priority approach further and completely freeze one or

more trajectories making them non-modifiable during the separation process.

A frozen path might represent aircraft on extremely important missions or air-

craft that are oblivious to other aircraft. A very important point to note here

is that a non-frozen trajectory might geometrically be trapped between frozen

trajectories initially, therefore allowing some paths to be frozen might give rise

to local minima problems during the application of the path-modification tech-

nique (the original problem in which all paths are modifiable does not suffer

from local minima; it might take a long time to separate all paths, but similar

to the spaghetti analogy, there will eventually be enough separation between all

paths).

• Similar to assigning priorities to each trajectory, we can impose different smooth-

ness constraints for each trajectory, too. A slight modification to the basic

separation iteration enables us to end up with less/more curvy trajectories:

Whenever a waypoint is moved in space, the same displacement vector with

gradually decreasing magnitude is also applied to a few waypoints that precede

and succeed it. The number of additional waypoints and their displacement

amounts depend on how smooth we want the resulting trajectory to be. As

an example use for this capability, we might want to plan smoother and hence

more comfortable trajectories for passenger-carrying aircraft, whereas it might

be okay to have jaggier trajectories for UAVs.

• Just like the way the container limits the displacement of spaghetti during

cooking, it is possible to constrain the planning within a bounded region. For

example, we can modify the separation iteration such that no waypoints move

below/above given boundaries, ensuring flight within certain altitudes. In fact,

any kind and number of virtual “walls” can be set up individually for each

trajectory.
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• Also, additional steps can be taken to post-process the planned trajectories to

smooth them more or to wrap them tighter around each other [111].

4.1.1 Formulation

In this section, we present formal definitions of the necessary data structures and

functionalities that we will use in constructing our path-modification based collision

avoidance algorithms.

Data Structures

Our algorithms will use the following data structures:

• Observation: An observation φ is basically a raw sensor reading. The set of

all possible observations for a given sensor is represented by Φ.

• State Estimate: A state estimate e contains the estimated values (with un-

certainty) for a subset of the aircraft state vector for an intruder aircraft. The

number of components in a state estimate depends on the collision avoidance

algorithm, but the most important components are position and velocity esti-

mates. The set of all possible state estimates is represented by E .

• Waypoint: A waypoint w is used as the building block of both ownship and

intruder trajectories, and very coarsly, it represents the location, speed and

other important information about an aircraft at a specific point in time. Similar

to a state estimate, waypoints for intruder aircraft will usually contain estimated

values for a subset of the aircraft state vector. Waypoints for ownship however

will include other components as well, such as the aircraft control command

vector to be applied at that point in time. From an implementation point

of view, waypoints might contain other information such as the position of a

waypoint in an ordered set and/or links to the previous and the next waypoints.

The set of all waypoints is represented by W.
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• Trajectory: A trajectory t is an ordered sequence of waypoints. The set of all

trajectories is represented by T , and T = ℘(W), where ℘ denotes the power set

operator. The number of waypoints in a trajectory t is written ∣t∣. The scripted

(nominal) flight path for an aircraft can also be represented as a trajectory and

is written ts. We will use t∗ to denote the optimal trajectory.

Cost Measurement

In order to optimize ownship trajectories against estimated trajectories of intruder

aircraft, we need to be able to quantitatively measure the cost associated with a tra-

jectory. For that purpose we will make use of the following guidelines when assigning

costs to various aspects of the collision avoidance task in a quantitative manner:

• Maneuvering Cost: Within the MDP/POMDP framework, we penalized high

vertical velocities when computing the maneuvering cost. In the rest of this re-

search, we will stick with the same approach, and aim for level flight in the

absence of nearby intruders. However, it might also be desired to penalize ver-

tical acceleration rather than vertical velocity, for example in the case of UAVs,

where high velocities create no discomfort as there are no humans onboard, but

high accelerations might be less desirable as they require higher performances

from the engines. The general form of measuring maneuvering cost can be de-

scribed by a function M ∶W ×W → R that takes two successive waypoints from

the same trajectory and outputs a quantitative measure of the required maneu-

vering to get from the first waypoint to the second one. Using this function, we

define the function CostM ∶ T → R that measures the average maneuvering for

a given trajectory, as follows:

CostM(t) = 1

∣t∣ − 1
∑
k<∣t∣

M(wk,wk+1) , w ∈ t .

• Deviation Cost: Similar to the MDP/POMDP models, we will in general

assume that the deviation that needs to be penalized is the positional displace-

ment from the nominal flight plan, which we will assume a level flight, but we
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provide the general form as a function D ∶W ×W → R that takes two waypoints

(one from the nominal trajectory and the other from the actual trajectory,

both representing state at the same point in time) and measures the deviation

between the two in some quantitative terms. Using this function, we define

CostD ∶ T × T → R, which measures the deviation of a trajectory t from the

scripted flight path ts, as follows (assuming that waypoints are densely placed

so that we can ignore the paths between waypoints):

CostD(t, ts) = 1

∣t∣ ∑k≤∣t∣
D(wk,wsk) , w ∈ t and ws ∈ ts .

• Collision Cost: Let U = ℘(T ). The function PNMAC ∶ W × U → R takes

a waypoint w that belongs to ownship trajectory (that is being tested as a

possible escape maneuver) and a set of intruder aircraft trajectories, u ∈ U ,

and computes the probability of collision for w. Using this function, we define

CostC ∶ T × U → R, which assigns a cost to a trajectory t (in terms of either

or both of average and maximum collision probabilities of waypoints along that

trajectory) given a set of intruder aircraft trajectories u as follows (a1 and a2

are nonnegative constants):

CostC(t, u) =
a1

∣t∣ ∑k≤∣t∣
PNMAC(wk, u) + a2 max

k≤∣t∣
PNMAC(wk, u) , w ∈ t .

Note that, similar to the deviation cost, we assume that the waypoints are

densely placed and there are no crossings of paths between waypoints of ownship

and intruder aircraft.

Main Functions

Implementation of path-modification based collision avoidance systems will use the

main functionalities that are described below:

• State Estimation for Intruder Aircraft: A function F ∶ ℘(Φ)→ E estimates

the state of the intruder aircraft based on a set of sensor readings. The function
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F can be designed to be as simple as accepting the current sensor reading as

the most likely state and computing a region of positional uncertainty around

it based on sensor specifications, or it might be more complicated to employ

an alpha-beta tracker or a Kalman-Filter based approach to make use of past

observations in estimating the intruder state, as well.

• Trajectory Estimation for Intruder Aircraft: Once we have a state esti-

mate e for an intruder aircraft, a function G ∶ E → T generates an estimated

trajectory t for that intruder. The function G might take other implementation-

dependent parameters such as the desired number of waypoints and the desired

length of the generated trajectory in time.

• Trajectory Computation for Ownship: This step is the core functionality

in planning the escape maneuvers using path-modification method. After we

generate a set of estimated trajectories u ∈ U for the intruder aircraft using

function G, a function H ∶ T × U → T takes u and the ownship scripted flight

path ts, and computes a trajectory t for ownship by minimizing a cost function

Cost ∶ T × T × U → R which is defined as:

Cost(t, ts, u) = c1 CostM(t) + c2 CostD(t, ts) + c3 CostC(t, u) ,

where c1, c2 and c3 are nonnegative constants. The optimal trajectory t∗ is

defined as the trajectory with the minimum cost.

In our implementations, the function H will first create one or more initial

trajectories including ts as possible candidates, and then modify them to reduce

costs (which is done by “bending, twisting, stretching, and/or shrinking” them

to ensure safety from possible hazardous encounters with intruder aircraft and

balancing with small vertical velocity values and as little deviation from a level

flight as possible, while observing ownship performance limits) until a “good

enough” trajectory is obtained. We can define “good enough” quantitatively
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using some nonnegative constant cge as follows:

Cost(t, ts, u) −Cost(t∗, ts, u) ≤ cge .

Note that in some special cases it might be possible to search some intuitive

trajectories such as the extreme ones that can be achieved at the limits of own-

ship performance, or to use other heuristics in order to determine the optimal

path t∗, but in most other encounter scenarios it might not be possible to come

up with an optimal path, at all (especially when there are multiple intruder air-

craft). In such cases, we can just compare the cost against a constant threshold

for the “good enough” test.

Modification Techniques

A trajectory t consists of n = ∣t∣ waypoints, w1 to wn. Note that we have neither spec-

ified nor restricted the full contents of a waypoint as it may differ from application to

application. We just note that a waypoint contains enough components to describe

the state of an aircraft at a specific point in time. In the simple path-modification

example with 7 aircraft presented before, each waypoint was implemented to contain

just the east, north, and altitude coordinates of an aircraft. We even omitted time

component for the sake of simplicity. Therefore, each trajectory in the given example

can be thought of as a 3n-vector in position space. In that example, we implemented

an ad hoc iterative process that optimizes each trajectory against all others. The pro-

cess was for demonstration purposes only and thus it did not have enough complexity

to verify that the resulting trajectories lie within 3-STARs of each aircraft.

Before describing how to modify trajectories, we first present below a brief dis-

cussion of what we will be modifying:

• We will work with time-stamped waypoints, i.e., all of our waypoints will contain

a time component. The modifications will target separating only waypoints with

the same time stamps. This allows for an intruder and an ownship waypoints to

exist at the same position at different times. Working without time and creating
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air tubes that are safe to fly anytime might be possible as demonstrated by the

simple example, but its computational demands are high. Also note that when

we consider noisy sensors and quickly growing uncertainties in the estimated

trajectories of intruder aircraft, it might not be possible to come up with safe

trajectories without taking time into account in our computations.

• We are interested in trajectories that are safely separated in position-time, but

our algorithms do not actually have to work in position space. What this state-

ment implies is, during the separation process, instead of modifying position

components of the waypoints, we can modify, and hence effectively compute,

control commands to be applied at each waypoint such that the application of

those control commands will result in safely separated trajectories. Working

in control space instead of position space has a tremendous advantage: During

the optimization process, if we limit our selection of control commands to reside

within the boundaries enforced by aircraft performance limits, we also automat-

ically ensure that the resulting trajectories will be bounded by 3-STAR of the

aircraft. Working in position space however does not have this additional and

very important benefit. Whenever we modify a waypoint in position space, we

need some extra steps to propagate the nonholonomic constraints backwards

and forwards to make sure that this recently modified waypoint can still be

reached from the preceding one, and the aircraft can also reach the succeed-

ing waypoint from current waypoint. Therefore, we will work in control space

when designing our algorithms. The aircraft control command vector contains

3 members, so each waypoint will be treated as a 3-vector, and each trajectory

will be treated as a 3n-vector in control space.

• The simple example demonstrated a coordinated collision avoidance scenario

where trajectories of all aircraft involved in the encounter are optimized and

each aircraft is expected to cooperate in executing the planned maneuvers.

Although coordinated collision avoidance is also an active research area, the

case that we are actually interested in in this research is where the intruder
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aircraft are oblivious to ownship and we optimize just the ownship trajectory

against frozen intruder trajectories with uncertainties, through time.

Given a set of frozen intruder trajectories, we can compute a collision cost for each

point in position-time space. The other two components of the overall cost structure,

namely the maneuvering and the deviation costs, are also easily defined in position-

time space. As a result, our ownship waypoints will contain time, aircraft control

command vector, and position data, and we will be optimizing a 3n-vector defined in

control space against costs computed in position-time space.

Modifying the control component in a waypoint affects the position components

in all subsequent waypoints (illustrated in Figure 4-6), which makes it difficult to

come up with a compact and easily differentiable formula for computing cost. For

this reason, we will turn to numerical solutions rather than analytical ones.

Figure 4-6: When we modify a control component at a waypoint, the position com-
ponents of the subsequent waypoints need to be updated.

Algorithmically, Gradient Descent (GD) is a first-order optimization algorithm

that can be used for the modification process, and it can be applied numerically, too.

To find a local minimum of a function using GD, we basically take steps proportional

to the negative of the gradient of the function at the current point. However, com-

puting the gradient for a 3n-vector can be very time consuming for large n. In our

experiments, we set n = 30, yielding a 90-vector to be optimized at each iteration.

Therefore, we decided to borrow ideas from another optimization technique that is

frequently used in computing inverse kinematics for articulated motion; Cyclic Coor-

dinate Descent (CCD). CCD is a member of a class of iterative relaxation algorithms

(known as Jacobi or Gauss-Seidel methods) [19] and it was originally developed as
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an improved method for solving inverse kinematics problems in robotics [138]. In

CCD we also optimize by descending proportional to the negative of the gradient,

but instead of considering the whole vector, we work in a single dimension at once

and simply optimize 1 coordinate at a time. CCD is usually not as effective as GD

in quickly moving towards local minima since we are not taking the steepest possible

descent at each iteration. On the other hand, CCD is computationally cheap, easier

to implement and it is often very effective. Another important reason for us to prefer

a CCD-like iteration is the following: As we mentioned above, in our experiments

we worked with trajectories that have n = 30 waypoints, i.e. each trajectory is a

90-vector. It is usually the case that when we modify the controls in the first few

waypoints, we observe drastic drops in cost. For example, a turn command applied

at the first few waypoints to steer away from the intruder trajectory/trajectories can

very effectively move the rest of the waypoints in the trajectory at very safe points in

position-time space. In such cases, we might want to stop optimization if the cost for

this trajectory is below some threshold value. CCD allows us to stop optimization

loop without ever modifying some/most of the waypoints.

In light of the above discussion, here is the step-by-step description of how we

set up function H to optimize a given ownship trajectory t against the cost function

derived before (ts is the nominal trajectory for ownship, u is a set of estimated intruder

trajectories to avoid, all trajectories have n waypoints with matching time stamps,

and 1 ≤ k < n) :

• Iterate over t, waypoint by waypoint, and perform the following steps for each

wk ∈ t.

• Numerically compute the gradient of cost along vertical acceleration (ḧ) com-

ponent of control data in the current waypoint wk ∈ t. (To do that, first increase

ḧ by a small test amount, ∆Test
ḧ

, and recompute position data for all subsequent

waypoints wi , k < i ≤ n , to obtain the trajectory t′. Then compute the differ-

ence; Cost(t′, ts, u) − Cost(t, ts, u). Also do the same by decreasing ḧ by ∆Test
ḧ

and see how the cost is affected). Based on the gradient, increase/decrease
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ḧ by a small increment amount, ∆Increment
ḧ

, or leave it unaltered if the slight

perturbating of vertical acceleration did not have any effect on the cost.

• Similarly, compute the gradient of cost along turn rate (ψ̇) component and

modify it using the test/increment amounts ∆Test
ψ̈

and ∆Increment
ψ̈

.

• And lastly, compute the gradient of cost along airspeed acceleration (a) com-

ponent and modify it using the test/increment amounts ∆Test
a and ∆Increment

a .

• Modification of waypoint wk is complete for this iteration. Compute the cost a

final time (using recently computed control values for wk and regenerating the

trajectory) : If it is below a specified threshold; stop optimization. Otherwise

set wk+1 as the current waypoint and continue with the iteration.

In our implementations, the described single-pass trajectory optimization runs

inside an outer loop since it is almost never enough to run it just once. The outer

loop terminates as soon as the cost drops below the given threshold, or if that does not

happen, it stops after a certain number of iterations (set to ≈ 200 in our experiments).

4.1.2 Considerations

There are a few important points that we would like to emphasize about computing

collision avoidance maneuvers using path-modification based algorithms:

• We represent trajectories using waypoints, and essentially we separate way-

points from each other when planning. However, the aircraft actually have

to traverse the link between all pairs of successive waypoints when following

the planned trajectory. Therefore the distance between successive waypoints

in a single trajectory and the required separation between waypoints that be-

long to different trajectories should be carefully selected to also geometrically

cover/protect the links between waypoints as illustrated in Figure 4-7. In our

experiments, we set always-overlapping and large-enough uncertainty regions

around successive waypoints of intruder trajectories that safely cover the links
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Figure 4-7: In the figure on the left, the selection of the waypoint locations and/or
the sizes of the protected zones allow undesirable path crossings. Careful selection of
values that consider encounter geometry is necessary to avoid this potential problem,
as in the figure on the right.

between waypoints. With that setting, an optimized ownship trajectory that

avoids uncertainty regions around all intruder waypoints means that the links

are also avoided.

• It is possible that, in the presence of multiple intruders, the initial ownship

trajectory that will be fed to the optimization function might geometrically be

trapped between estimated intruder trajectories as shown in Figure 4-8. In

such cases, the optimization algorithm might not be able to come up with a

trajectory that has a low cost. To improve the effectiveness of optimization

against such local minima, we might extend the algorithm to construct a few

sufficiently different initial ownship trajectories as candidates, have them opti-

mized separately (which can be done in parallel), and then choose the one with

the minimum cost. In 3-D, we need at least 3 intruders with carefully planned

flight trajectories to realize a local minima scenario. In our tests using our sim-

ulation and evaluation platform, CASSATT, we ran single-intruder scenarios.

Therefore, it was enough to use a single initial trajectory for the optimization

in our experiments.

• Depending on the number of intruders and the number of waypoints used to

represent each trajectory, path-modification based algorithms might require a

long time to execute even though there are areas for improvement using a
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Figure 4-8: When there are enough intruder aircraft that could potentially create local
minima problems, we might try optimizing a set of sufficiently different initial candi-
date trajectories instead of a single candidate. In the figure, the ownship trajectory
in the middle (filled green waypoints) is trapped between intruder trajectories. The
other two candidate trajectories (outlined green waypoints) will yield lower expected
costs after optimization.

parallel processing setup. However, our proposed formulation, including the

cost computation, is linear in the number of intruders. For example, with the

path-modification technique, adding a second intruder in the collision avoidance

planning means that we will just need an additional set of state and trajectory

estimations, and we will need to just double the amount of work that is re-

quired to compute collision cost. On the other hand, accomodating a second

intruder with the MDP/POMDP framework using the same discretizations we

had before does not seem practical to be realized with current solvers.

• Ensuring path feasibility, i.e. making sure that the aircraft can actually fly

the planned trajectory within its performance limits, might be challenging if

the path modification is done in position space. Additional steps are needed

to propagate nonholonomic motion constraints across the trajectory at every

iteration of the modification process. In our implementations, we chose to work

in control space rather than position space. This requires an additional step to

translate the effects of modifications in control space to the position space due

to the fact that we compute cost in position space, but it helps us bypass the

complexity of constraint propagation and satisfaction steps.
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4.2 Single-Trajectory Collision Avoidance System

Our first path-modification based collision avoidance algorithm is a straightforward

application of the main functionalities described above. In this section, we first go

over the structure and implementational details of our Single-Trajectory collision

avoidance system, and then we provide a comparison of its results with baseline

systems.

4.2.1 Structure and Implementation

The simplest planner that avoids a single intruder aircraft by optimizing the given

ownship trajectory ts works as follows:

• Let o = {. . . , φ−2, φ−1, φ0} be the set of current and past observations available

to us. We first generate the estimated trajectory ti = G(F (o)) for the intruder

aircraft. At this step, if we are working with very accurate observations from a

low-noise sensor, we would be able to estimate the future positions of intruder

aircraft with high accuracies, too. This means that the estimated trajectory

that we generate for the intruder, ti, can be constructed with small positional

uncertainties around each waypoint (note that the uncertainties and/or the pro-

tected airspaces should still be large enough to cover links between successive

waypoints). Ideally, we would be avoiding a tube that surrounds the air path-

way to be actually flown by the intruder aircraft. Normally, we should increase

uncertainty as time progresses, and therefore the trajectories to be avoided look

more like cones. In short, a closely estimated trajectory is easier to avoid as

we do not need to consider the full 3-STAR region during collision avoidance

maneuvers, but if the sensor and the observations are noisy, then estimations

should include large-enough uncertainty regions even though the estimated tra-

jectories will approach the full 3-STAR depending on how noisy the observations

are. Figure 4-9 illustrates the sources of uncertainty that should be considered

when setting up protected airspaces around waypoints of intruder aircraft tra-

jectories.
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Figure 4-9: The protected airspace around the first intruder waypoint should take
into account the observation error and the desired minimum separation between air-
craft. The protected airspaces around subsequent waypoints should observe the same
conditions as the first waypoint, and also account for uncertainties in the estimated
intruder velocity and intruder intent.

• We then let ui = {ti}, and compute the trajectory to be followed by ownship

to = H(ts, ui) that minimizes Cost(to, ts, ui). This concludes the planning for

the current time step.

In the case of an open-loop encounter scenario where there will be no further

observations, we might just execute the computed plan and fly to until the end. In

our experiments on CASSATT, we receive a sensor reading every second, so we do

dynamic replanning: we execute the plan until the next observation is ready, and

then we replan using the above steps. A direct implication of performing dynamic

replanning is that our algorithm has to run reasonably fast to keep up with the rate

at which observations are received (1 Hz in our experimental setting).

Important parameters pertaining to our implementation and their values are pre-

sented in Table 4.1. Note that the maximum turn rate for Global Hawk was reported

as 2.5 deg/s in Table 2.1 before, but we used 3 deg/s in our experiments to match it

to the internal CASSATT parameters.

Other implementation details are as follows:

• Computing the maneuvering cost, i.e. function M , is implemented as multiply-

ing the absolute vertical velocity at the current waypoint by a constant (set to

1.0).
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Table 4.1: List of parameters and values used in the implementation of the Single-
Trajectory collision avoidance system.

Ownship Performance Limits

Maximum vertical acceleration, ḧ 8 ft/s2

Maximum turn rate, ψ̇ 3 deg/s
Maximum airspeed acceleration, a 20 ft/s2

Trajectories
Number of waypoints, n 30
Amount of time between successive waypoints, ∆T 1 s

Collision Geometry
Minimum desired separation, vertical, Sepv 100 ft
Minimum desired separation, horizontal, Seph 500 ft
Initial uncertainty in intruder position, vertical, Unc0

v 85 ft
Initial uncertainty in intruder position, horizontal, Unc0

h 200 ft

Rate of growth of uncertainty, vertical, Unc∆
v 50 ft/s

Rate of growth of uncertainty, horizontal, Unc∆
h 500 ft/s

Cost

Vertical velocity cost 1.0 × ∣V Ownship
Y ∣

Deviation cost 0.01 × deviation
Protected airspace violation, base cost 2000
Protected airspace violation, maximum cost 9000

Modification Parameters
∆Test
ḧ

/ ∆Increment
ḧ

0.01/0.1 ft/s2

∆Test
ψ̈

/ ∆Increment
ψ̈

0.01/0.1 deg/s

∆Test
a / ∆Increment

a 0.1/1.0 ft/s2
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• Deviation cost computed by function D is also similarly implemented as multi-

plying the distance between nominal and actual locations by a constant (set to

0.01).

• In order to compute the cost of collision, we first set up a desired protected

airspace around each waypoint that belongs to the intruder aircraft trajectory

(if ownship never invades a large-enough protected airspace that also accounts

for position/intention uncertainties, there will be no collisions). The protected

airspace is in the shape of a hockey puck with the following geometry:

Height = 2 × (Sepv +Unc0
v +Unc∆

v ×waypoint time stamp)

Radius = Seph +Unc0
h +Unc∆

h ×waypoint time stamp

If ownship waypoint violates this protected airspace, we incur a base cost plus

an additional cost that is proportional to the intrusion amount. The CostC

function is implemented as a sum of incurred costs along ownship trajectory.

The cost formulation is illustrated in Figure 4-10.

Figure 4-10: Cost formulation for a single waypoint.

4.2.2 Results

The Single-Trajectory collision avoidance system that we have described in this sec-

tion and the Single Branch-Point collision avoidance system that we will present in
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the next section are computationally very expensive. This is because of the fact that

we are computing everything online rather than offline computation of logic in the

form of quickly executable look-up tables, and also since optimization in continuous

space has a lot of parameters that can be tweaked (such as the number of waypoints,

the number of iterations and the increment amounts to be applied at each iteration) :

it is generally the case that the more the algoriths run with fine-grained parameters,

the better the results will be. Therefore, from the timing point of view, we will be only

interested in whether useful collision avoidance maneuvers can be generated in the

time between two successive observations, which is 1 Hz in our evaluation platform,

CASSATT.

In our experiments, we observed that with the parameter settings given in Ta-

ble 4.1, it is possible to optimize a single ownship trajectory against a single intruder

trajectory in less than 0.5 seconds, allowing for real-time performance. However, the

Single Branch-Point collision avoidance system of next section optimizes multiple can-

didate ownship trajectories against multiple probabilistic intruder trajectories, and

with the parameter settings we used there (9 ownship trajectories against 6 intruder

trajectories) it takes more than 50 times longer to execute. (We would like to note

that we used a single computer when testing our path-modification based algorithms,

but it is possible to extend our implementation to distribute pairwise optimizations on

parallel hardware and still have the Single Branch-Point CAS work under 1 second).

Due to the time complexity of Single Branch-Point CAS, we ran all of our path-

modification based algorithms on a small encounter set consisting of 100 encounters.

The selection of the 100 encounters was done in a way to make sure that representa-

tives of “difficult” cases were richly included such as:

• Encounters where the intruder approaches ownship from behind, making it dif-

ficult for algorithms using limited FoV sensors.

• Encounters where both the vertical and horizontal speeds of intruder are very

high. In addition to making the intruder more difficult to avoid, high speeds

also imply that the intruder might jump in and out of the sensing range of
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Table 4.2: Results for nominal flight and baseline collision avoidance systems.

Algorithm Sensor Ratio Velocity Acceleration

Nominal - 1.000000 0.017375 0.001353

Basic CAS (1-D) Perfect 0.000074 0.295180 0.007720
Basic CAS (1-D) TCAS 0.000074 0.294333 0.009425
Basic CAS (1-D) Radar 0.060892 0.144299 0.027926

Basic CAS (3-D) Perfect 0 0.296551 0.007933
Basic CAS (3-D) TCAS 3.0096e-08 0.294082 0.011408
Basic CAS (3-D) Radar 0.033258 0.135120 0.037552

MDP Perfect 0.008477 0.111626 0.022956

limited FoV sensors unexpectedly.

• Encounters that involve turning with high speeds. The future trajectory of the

intruder cannot be estimated very closely by simple differentiation when there

is extensive turning.

• Encounters that combine the above, such as ones with scripted flight plans for

both intruder and ownship that include short-radius turns with high speeds at

closing altitudes before ending up face to face.

Table 4.2 summarizes the results of nominal flight, baseline collision avoidance

systems, and a representative system from the MDP/POMDP framework (to help

us compare path-modification based methods to MDP/POMDP algorithms) on the

100-encounter test set. In the table we provide the risk ratio, mean vertical velocity

in ft/s, and mean vertical acceleration in ft/s2 for various algorithm/sensor pairs.

Note that path-modification techniques require observations that can be used

to localize the intruder to a point in GCS, therefore, we cannot use EO/IR sensor

directly, and we will not include comparisons with EO/IR sensor in our discussion

below. Also, when relating our results to the MDP/POMDP framework, we will

compare against the MDP model that uses a perfect sensor as this was the pairing

that lead to the best results.
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Table 4.3: Results with perfect sensor.

Algorithm Sensor Ratio Velocity Acceleration

Single-Trajectory CAS Perfect 0 0.013605 0.024657

Our first set of tests were conducted using the perfect sensor. Below are two

aspects of the computation that we would like to mention:

• When estimating the intruder trajectory, we compute the speed of intruder by

simple differentiation using its current and previous locations received from the

sensor in the form of observations. We then use this speed value to decide where

the future waypoints will be located at in position space.

• Since this is a hypothetical sensor, we took advantage of its noiseless nature, and

employed constant protected airspaces around each waypoint. Each protected

space was in the form of a sphere with 2000 ft radius. Briefly, we worked with

tube-like estimated trajectories rather than cone-like ones.

The results are shown in Table 4.3 and Figure 4-11. As seen in the table, we

easily achieved 0 risk ratio with a mean vertical velocity that is in fact lower than

the nominal flight itself. This is due to the fact that the actual nominal flight plans

were not all level in some of the encounter scenarios, but our algorithms were aiming

for level flight when there is no danger of collision. We would like to note that it is

very easy to work with arbitrary ts when employing path-modification by decreasing

maneuvering cost and increasing deviation cost. We worked with the assumption that

the part of nominal flight that is in the future is not accessible to our algorithms, and

we structured our algorithms to aim for level flight as we did in the MDP/POMDP

framework.

The second set of results we would like to present are with the TCAS and radar

sensors. Again, we would like to mention two important aspects of the computation

that differ from the perfect sensor case below:
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Figure 4-11: Velocity vs. Risk ratio.

• TCAS sensor is good in localizing the intruder vertically, but the noise in bear-

ing estimate is very large. Similarly, the bearing and elevation estimates of

radar sensor have large noise that makes it very difficult to localize distant in-

truders, both vertically and horizontally. Especially with distant intruders, the

angular measurement errors severely diminish the effectiveness of using position

estimates in computing an estimated velocity for the intruder. Therefore, when

estimating the intruder trajectory, we place the first waypoint in the observed

location, and do not make any assumptions about the direction of intruder

motion. We place all subsequent waypoints at the same location and increase

uncertainty in “all” directions. Therefore, the estimated intruder trajectory

looks like an enlarging hockey puck rather than a cone as shown in Figure 4-12.

• The hypothetical perfect sensor is a very specialized case that allowed us to

use constant protected airspaces, but with TCAS and radar sensors, we com-

puted successively enlarging protected airspaces as described before using the
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Figure 4-12: The figure on the left depicts the observation noise due to range, bear-
ing and elevation errors. Three standard deviations worth of errors are drawn as
transparent regions that the observations might come from, where darker regions in-
dicate higher probabilities. The figure on the right is a comparison of the protected
airspaces that need to be set up when assuming motion in all directions, and motion
in a certain direction.

Table 4.4: Results with TCAS and radar sensors.

Algorithm Sensor Ratio Velocity Acceleration

Single-Trajectory CAS TCAS 0.005515 0.105404 0.044911
Single-Trajectory CAS Radar 0.000439 0.106621 0.050756

parameter values listed in Table 4.1.

The results with TCAS and radar sensors are shown in Table 4.4 and Figures 4-13

and 4-14. We would like to compare these results with the MDP algorithm: The

Single-Trajectory CAS with TCAS and radar sensors was able to perform better by

scoring both a smaller risk ratio and a smaller mean vertical velocity than an MDP

with perfect sensor. This is in fact an anticipated outcome since we are allowing

ownship to move in 3-D rather than restricting the escape maneuvers to vertical

plane.

And finally, we present a third set of results using TCAS and radar sensors in

Table 4.5 and Figures 4-15 and 4-16. In order to catch up to the lower risk ratios

provided by Basic collision avoidance systems, we ran the same algorithm by increas-

ing the rate of growth of uncertainty: We set Unc∆
v = 100 ft and Unc∆

h = 900 ft.

A comparison of results in this table with the Basic systems show that we can also
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Figure 4-13: Velocity vs. Risk ratio (TCAS sensor).

Figure 4-14: Velocity vs. Risk ratio (radar sensor).
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Table 4.5: Results with TCAS and radar sensors using a larger uncertainty growth
rate.

Algorithm Sensor Ratio Velocity Acceleration

Single-Trajectory CAS TCAS 0.000021 0.166395 0.052772
Single-Trajectory CAS Radar 0 0.132648 0.058688

Figure 4-15: Velocity vs. Risk ratio (TCAS sensor).

achieve very small to zero risk ratios and still be able to have mean vertical velocity

values that are lower than Basic systems.

4.3 Single Branch-Point Collision Avoidance

System

In this section, we will build a planner with the goal of bringing down mean vertical

velocity values further, without sacrificing risk ratios. The basic idea that we will

employ is depicted in Figure 4-17 and is described below:
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Figure 4-16: Velocity vs. Risk ratio (radar sensor).

Figure 4-17: In the Single Branch-Point algorithm, we make use of the idea that the
next observation that will be received after a certain time Tb will localize the intruder
and its estimated future trajectory into a region (one of blue, brown or green cones)
that is actually smaller than the region we are currently planning to avoid (red cone).
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In the Single-Trajectory CAS, we start by estimating the current state of the

intruder based on current and possibly past observations. Then we estimate the

trajectory, which corresponds roughly to “all” of the possible locations that it can

occupy in the future, and we construct a plan to avoid the whole estimated trajectory.

This is the best we can do if no further observations will be received. However, in

our simulation environment, we receive an observation every second. The planner

that we will build below will take advantage of the fact that the next observation will

help us localize the intruder to a smaller region than we are trying to avoid with the

Single-Trajectory CAS. For that purpose, the planner will decide among candidate

escape plans based on estimates of what the next observation will be. This idea

brings us closer to the way the MDP/POMDP solvers work internally, giving rise to

both advantages and disadvantages: On one hand, we will be benefiting from making

better decisions by looking ahead further and trying to estimate future observations,

but on the other hand, we will need to choose our escape maneuvers from a discretized

set.

In the following sections, we will first describe the structure and the details of

implementation for our Single Branch-Point collision avoidance system, and then we

will present results using TCAS and radar sensors. We will not consider perfect sensor

in this section since, first, we are already able to achieve zero risk ratios with mean

vertical velocity values less than even the nominal flight, and second, with the use

of the perfect sensor, the next observation is usually expected to come from a very

small (condensed) region that does not provide much benefit from being partitioned

and having its sub-regions examined as possible candidates.

4.3.1 Structure and Implementation

We will start by adding a branching point in time, Tbranch or Tb, to the Single-

Trajectory collision avoidance system. Let us assume that we have just received

an observation at time T0, we will receive another observation at branching time

Tbranch > T0, and our planning horizon runs until time Tend > Tbranch. With that in

mind, a Single Branch-Point planner can be structured as follows:
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• Construct k sufficiently different partial plans ( to0−branch ) for the time frame

T0-Tbranch. We can use different strategies for coming up with those k different

plans: For example, one of them will usually be the scripted flight plan for

ownship (the portion until branching time). To generate other partial escape

plans, we can sample actions uniformly from the control space and generate

partial plans each of which is generated by applying one of the selected actions

repeatedly until Tbranch. Other methods can be invented to heuristically come

up with useful partial plans.

• Compute the state estimate eibranch for the intruder aircraft at time Tbranch. The

amount of positional uncertainty in the estimated state depends on how noisy

the sensor is and how the intruder aircraft might behave between T0-Tbranch.

• Generate a set of sample observations obranch = {φ1, φ2, . . . , φn} that “cover”

eibranch (in the sense that the union of observation uncertainties cover the posi-

tional uncertainty in the state estimate). The probability of observation φj is

written Pr(φj) , j ≤ n .

• For each partial plan do the following

– For each φj ∈ obranch, construct a trajectory

tij,branch−end = G(F (o ∪ {φj}) , j ≤ n .

– Compute a partial plan toj,branch−end = H(tsbranch−end,{tij,branch−end}) for the

rest of the planning period against each tij,branch−end , j ≤ n .

– The expected cost of each of these partial plans is equal to

Pr(φj)Cost(toj,branch−end, t
s
branch−end,{tij,branch−end}) , j ≤ n .

• Finally, pick the partial plan for T0-Tbranch that has the lowest expected cost.

The decision process is outlined in Figure 4-18 and a 2-D version of the planner

is depicted in Figure 4-19.
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Figure 4-18: Single Branch-Point planner. First, partial evasion plans until branch
time Tb are generated. Then, they are evaluated against estimated intruder trajecto-
ries based on available observation history at time T0. The partial plan that scores
the minimum expected cost is selected for execution.
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Figure 4-19: Single Branch-Point planner, 2-D Example. In the figure, ownship is
located at the origin at time T0, and we assume that all motion is constrained to north-
altitude plane. The 2-STAR representations for both aircraft at branch time Tb show
set of all possible locations that could be occupied. We first sample from ownship
2-STAR and build a list of candidate partial plans (blue dots). We then compute
a list of possible observations of intruder aircraft at Tb (colored dots). Evaluation
of candidate plans against possible observations yields which plan has the minimum
expected cost.
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Figure 4-20: In the figures, the reachable regions for ownship at branch time are shown
as transparent boxes. The candidate partial plans (indicated by little blue cubes)
correspond to the 8 corners of those boxes, and a ninth location that is reached
by following the nominal flight plan, which falls somewhere inside the boxes. The
figure on the left shows the generated partial plans when we use minimum/maximum
vertical acceleration values, and the figure in the middle shows the generated partial
plans when half of vertical acceleration values are used. Two sets of partial plans are
shown overlapped in the figure on the right for comparison.

This planner allows us to, for example, follow the scripted flight plan for a while

and then branch based on the possibilities of observations at time Tbranch. Given a

rich set of partial plans to choose from, it is possible to lower mean vertical velocity

values with this planner without affecting risk ratios.

4.3.2 Results

In order to test Single Branch-Point CAS, we set Tbranch = 1 s, and used same pa-

rameter values from Table 4.1 with the exception of working with increased rate of

growth of uncertainties (Unc∆
v = 100 ft and Unc∆

h = 900 ft) that were used to compute

results presented in Table 4.5. The other main functionalities are also the same as in

the Single-Trajectory CAS, where applicable.

For the first set of experiments that we would like to present in this section, we

generated 8 partial plans that correspond to 8 extreme corners of ownship 3-STAR at

time Tbranch that are computed by applying all combinations of minimum/maximum

vertical acceleration, turn rate, and airspeed acceleration values between T0-Tbranch.

We then added ts0−branch as a ninth alternative. Generation of candidate partial plans

is shown in Figure 4-20.

We generated 6 estimated observations to optimize against: 4 of them were as-
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Table 4.6: Results with TCAS and radar sensors.

Algorithm Sensor Ratio Velocity Acceleration

Single Branch-Point CAS TCAS 0.000375 0.181029 0.049002
Single Branch-Point CAS Radar 0 0.136107 0.054050

signed 0.2 probability each and their origins were computed by adding Unc∆
h ×Tbranch

to the current location estimate of the intruder in +/−east and +/−north directions.

The remaining 2 of them were assigned 0.1 probability each and the origins were

computed by adding Unc∆
v ×Tbranch to the current location estimate of the intruder in

+/−altitude directions. Generation of estimated observations is shown in Figure 4-21.

Figure 4-21: We used 6 estimated observations (indicated by red cubes); 4 of them
are located horizontally around the current observation with 0.2 probability each,
and 2 of them are located vertically below and above current observation with 0.1
probability each.

The results with the above settings are shown in Table 4.6 and Figures 4-22 and

4-23. When we compare this table to Table 4.5, we see that we have compara-

ble risk ratios, but we were not able to lower mean vertical velocity values. This

is an expected outcome, since 8 of the partial plans were constructed by applying

minimum/maximum vertical acceleration values. The results from this experiment

emphasize the importance of having enough variety in the candidate partial plans.

For our second and final set of experiments, we used half of minimum/maximum

vertical acceleration values in generating 8 partial plans. The rest of the settings

remained the same as in the first case. The results given in Table 4.7 and Figures

4-24 and 4-25 show that a careful selection of candidate partial plans can in fact
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Figure 4-22: Velocity vs. Risk ratio (TCAS sensor).

Figure 4-23: Velocity vs. Risk ratio (radar sensor).
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Table 4.7: Results with TCAS and radar sensors using half of minimum/maximum
vertical acceleration values.

Algorithm Sensor Ratio Velocity Acceleration

Single Branch-Point CAS TCAS 2.6179e-07 0.160484 0.029998
Single Branch-Point CAS Radar 0 0.107135 0.033706

Figure 4-24: Velocity vs. Risk ratio (TCAS sensor).

enable us to reach our goal of reducing the mean vertical velocity values further by

maintaining comparable risk ratios (compared to Single-Trajectory CAS).

4.4 Discussion

In this section, we first describe major inherent limitations of path-modification based

collision avoidance models and suggest ideas on how to further improve their perfor-

mance. Then we present a short assesment in general and also in relation to the

MDP/POMPD framework.
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Figure 4-25: Velocity vs. Risk ratio (radar sensor).

4.4.1 Model Limitations

An important motivation for us to shift from the MDP/POMDP framework—an

offline optimization defined over enumerated lists—to path modification—an online

iterative improvement process over continuous spaces—was to work around the prob-

lems caused by the need to use discretized sets of values. Even though we tried to

limit the discretizations to a minimum, there are still 2 areas where working with sets

of enumerated items finds its place in the path-modification process:

• An ideal representation for a continuous trajectory would be a closed-form ex-

pression that is differentiable in the variables that we would like to optimize,

but due to the difficulty of deriving such expressions in the collision avoidance

problem domain, we chose to simply define our trajectories using ordered sets

of waypoints in position-time space. This representation requires additional

care in protecting the links (segments) between successive waypoints against

collisions as we mentioned in Section 4.1.2. An alternative approach would
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be to represent trajectories in terms of ordered sets of segments (with linear

or possibly more complex shapes). Even though such a representation has its

immediate benefits, most of the functionalities described above have to be al-

tered in non-trivial ways to allow for collision testing between segments, cost

accumulation along segments, modification of segments instead of points, etc.

• The Single Branch-Point planner chooses the evasion maneuver among a set

of candidate partial plans that are optimized against a set of estimated future

observations of the intruder aircraft. Both sets should contain enough and suffi-

ciently different elements for satisfactory performance, and also as few elements

as possible for fast computation at the same time. Good heuristics need to be

developed and/or algorithms need to be revised for parallel execution in order

to both improve the results and keep the overall computation time below the

frequency at which observations are received.

In Section 4.1.2 we have also mentioned that path-modification can be very time-

demanding depending on values of certain parameters, and we have presented two

more limitations that we will just remind here without details: The local minima

problem that arises when we let some trajectories to be frozen, and the need to

ensure path feasibility when we work in position space.

Another aspect that we would like to mention in this section is; path-modification

process has many internal and external parameters like the MDP/POMDP models,

and the performance can significantly be improved by systematic study and tuning

of parameters with more experiments than we were able to conduct.

And lastly, we would like to emphasize the direct relation between the sensor accu-

racy and the effectiveness of evasive maneuvers. This is in fact a common statement

that applies to all collision avoidance algorithms, but since we are not discretizing our

observations in path-modification based methods, we benefit much more from using

better sensors with path-modification based systems than with MDP/POMDP based

systems.
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Figure 4-26: Model-based approach, path-modification based collision avoidance logic.

4.4.2 Assessment

Based on experimental results we conclude that:

• Like our MDP/POMDP models, a parametric implementation of the path-

modification method is flexible enough to accomodate a variety of sensor modal-

ities, intruder behavior, aircraft dynamics, and cost functions as shown in Fig-

ure 4-26.

• Using a short time horizon that can be represented by trajectories with a small

number of waypoints, collision avoidance maneuvers for encounters involving

2-3 aircraft can be computed in real time on a single processor with path-

modification based techniques. In our experiments, we used a 30 second look-

ahead time that was represented by trajectories with 30 waypoints each for

encounters between ownship and a single intruder, and we were able to run

our Single-Trajectory planner within the time period between the reception

of two successive observations. Using a more sophisticated planner such as

the Single Branch-Point planner, increasing planning horizon, representing tra-

jectories with more waypoints, and/or including more than 2-3 intruders can

very quickly take planning outside real-time computation boundaries. However,

path-modification lends itself naturally to parallelization, and usually, as long

as a single ownship trajectory can be optimized against a single intruder tra-

jectory in real time, any number of candidate plans can be optimized against

any number of estimated trajectories of any number of intruders in real time,
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as well, using parallel computation.

• Computation of evasive maneuvers using path modification scales linearly in

the number of intruder aircraft. This is a very big advantage that places path-

modification method among the techniques that can actually find practical use

in the aviation domain.

• Thinking of our path-modification based systems as black boxes, we can say

that: we worked with realistic input and output (our observations came from

realistic simulations of various sensors and we computed full 3-D aircraft con-

trol command vectors), we tested our systems on a very high fidelity sim-

ulation/evaluation software (CASSATT), and real-time performance can be

achieved with the help of parallel processing. As a result, the systems we built

are practically close to turn-key modules that can be deployed on actual aircraft

with little effort.

• Similar to our MDP/POMDP development, sophisticated tools to graphically

visualize, analyze and optimize many internal and external parameters and in-

termediate computation results are likely to be necessary, especially for rigorous

verification of algorithms.
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Chapter 5

Conclusions and Recommendations

for Future Research

In this chapter, we will summarize the research presented in this thesis, point out

important contributions, and suggest directions for future research for further im-

provement of the performance of the developed collision avoidance systems.

5.1 Summary

Throughout the course of this study, we worked with realistic aircraft state vectors,

realistic aircraft control command vectors, and four different sensor modalities (im-

plementation of TCAS was provided by MIT Lincoln Laboratory, we implemented

the perfect, radar and EO/IR sensors based on realistic specifications). We tested

our algorithms on a very high fidelity simulation and evaluation platform that was

also used in prior TCAS and UAV sense-and-avoid studies. Our simulated encounter

scenarios were based on actual radar data collected and analyzed at MIT Lincoln

Laboratory, and our algorithms demonstrated real-time performance with realistic

aircraft dynamics and 1-to-1 scaled world dimensions in our simulations (with the

exception of Single Branch-Point planner, which requires parallelization to actually

run in real time).

We demonstrated the feasibility of two approaches to aircraft collision avoidance
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problem:

• In the first part of this thesis, we applied the MDP/POMDP framework to col-

lision avoidance domain. Our models were fully in charge of commanding own-

ship to maintain planned flight, avoid incoming traffic, and gather information

to further reduce risk of collision, without the need for additional lower-level or

higher-level planners. This approach to collision avoidance planning was based

on offline optimization using discretized sets of states, observations and actions.

The evasive maneuvers were planned in the vertical plane, similar to TCAS.

• In the second part, we introduced the path-modification technique and two

collision avoidance models based on that technique. The nature of our second

approach was to iteratively improve a given initial flight plan online, and to

work in continuous state, action and observation spaces. Path-modification

technique also allowed us to plan full 3-D evasive maneuvers.

The results of simulated experiments with our algorithms showed that our colli-

sion avoidance systems are comparable to/better than TCAS and some hand-crafted

baseline systems.

We designed parametric models and employed a model-based optimization ap-

proach to make it easy to accomodate various aircraft and sensor pairs in our collision

aviodance systems.

We built a versatile software application, called the Encounter Analyzer (described

in Appendix D), which is an initial step in the design of sophisticated visual ana-

lyzer/debugger systems for large POMDPs. We also implemented two other software

packages: the POMDP Generator (described in Appendix B) automatically gener-

ates parametrized POMDPs, and the POMDP Processor (described in Appendix C)

converts a POMDP specification into a PPOMDP for very fast belief-state updating.

5.2 Contributions

Major contributions of presented research are as follows:
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• Our MDP/POMDP based algorithms are some of the first examples of applica-

tion of the original POMDP formulation to a realistic UAV collision avoidance

problem. We experimented with compact representations and careful designs

of state, action and observation spaces in order to be able to model collision

avoidance systems with sufficient details while still staying within the reach of

feasible computation capabilities of state-of-the-art solvers.

• We devised a novel method that processes POMDP formulations offline, and

converts them to PPOMDPs for very fast belief-state updates. The speed-up

gained from this approach allowed us to run our POMDP collision avoidance

models in real time.

• We generated very large POMDP models with varying characteristics (the use

of different sensor modalities ranging from hypothetical perfect sensing to very

noisy and limited field-of-view sensing lead to interesting observation models

that produce very-focused to highly-smudged-out belief-states). Some of our

POMDP models were used in the testing and improvement of the SARSOP

solver.

• We took the first steps in designing sophisticated visual analyzer/debugger soft-

ware for POMDPs by developing Encounter Analyzer as an example, which

provided enormous benefits to us in especially visualizing the belief-states at

every step of an encounter. Being able to grasp the evolution of belief-states

was very helpful to us in quickly improving our models and tuning parameter

values.

• We introduced the path-modification technique, a novel approach to dynamic

collision avoidance, and we built two collision avoidance systems that are based

on the path-modification idea. We demonstrated the feasibility of both systems

by experimental results. Path-modification method allows planning full 3-D

evasive maneuvers, and the cost formulation is linear in the number of intruders,

which make it a very promising and practical idea for actual deployment on real
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platforms.

• We employed a model-based approach to developing optimized collision avoid-

ance logic in both of our MDP/POMDP and path-modification frameworks, and

our results can be referred to in demonstrating the feasibility of and promoting

the model-based optimization approach.

5.3 Recommendations for Future Research

Below is a list of some directions that could be followed to further improve the per-

formance of our collision avoidance systems:

• Both sets of our MDP/POMDP and path-modification based collision avoid-

ance models have many internal and external parameters. We believe that much

better performance could be achieved by systematic experimentation and op-

timization of parameter values. System performance curves generated for each

parameter individually would be very helpful in optimizing their values. During

the optimization phase, it is likely to be necessary to test the models using a lot

more encounters than we were able to do, but running experiments separately

for each parameter could be carried out in parallel.

• We have successfully identified some major shortcomings in our state space

design for some of our POMDP models (such as the lack of pitch/roll angles,

and the benefit that could be achieved by finer discretizations of important

dimensions), but we have not been able to take steps in improving them within

the timeframe of this research. It would be well worth trying to apply our

findings as we have reason to believe that following this suggestion would lead

to better performance delivered by our models. Also, POMDP solvers have

been improving to accomodate larger models (for example, by building on the

fact that in various problem domains some components of states are actually

fully-observable rather than partially-observable, and leveraging this idea by

separating those two groups of components in distinct sets that are to be handled
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differently). These improvements might provide room for being able to work

with larger state spaces that include the missing components we have identified.

• The performance of the Single Branch-Point planner could be improved by

better selection of the candidate partial plans and estimated future observations.

The branching time is also a very important key parameter, the optimization

of which could have great impact on the performance.

• In our description of the Single Branch-Point planner we stated that the pair-

wise optimizations of candidate partial plans versus estimated future observa-

tions could be carried out in parallel, but we have not provided implementations

and test results of an actually parallelized system due to the way our test hard-

ware/software were set up. Even though we are confident that a parallelized

implementation of the Single Branch-Point planner could run in real time as long

as a single pairing of partial plan/estimated observation could be optimized in

real time, this claim should be backed up by an actual working implementa-

tion. This is due to the fact that even though important computations could

be done in parallel, some internal data should first be distributed among the

computation nodes, and some intermediate results should be brought together

after the computation nodes finish their tasks. It needs to be demonstrated that

this overhead that is common in parallel computing will not break the real-time

performance claim.

• We have formulated our path-modification based collision avoidance systems to

handle multiple threats, but the encounter scenarios that we used to test our

systems on CASSATT were generated for a single intruder aircraft. It needs to

be demonstrated by simulations against multiple intruders that our models can

actually scale up easily to more complex scenarios.

• Finally, we utilized importance sampling to be able to evaluate our collision

avoidance systems on up to 15,000 encounter scenarios at a time, but ideally

they need to be evaluated and optimized on hundreds of thousands of scenarios
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before they can mature enough for actual deployment on real platforms.
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Appendix A

Pseudocode

Algorithm 1 Simulation of Sensor Readings

Input: Aircraft state vectors for ownship and intruder from CASSATT
Output: Sensor reading

Find coordinates of intruder aircraft in local coordinate system of own aircraft
Compute true reading (value without noise)
if returning a false positive reading then

return a randomly generated reading that complies with sensor specifications
else if returning a false negative reading then

return no intruders inside sensing range

else
if other aircraft is outside sensing range then

return no intruders inside sensing range

else
return sensor reading (i.e., true reading modified according to error model)

end if
end if

Algorithm 2 Perfect Sensor - Observation Model

Input: End state, Action, Set of all observations
Output: List of probabilities

if end state is a start state, or a done state, or is outside sensing range then
Add to the list the single observation that reports only V Ownship

Y

else
Locate the bin in the Relative Coordinate System that corresponds to the end

state and add to the list the single observation that corresponds to this same bin
end if
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Algorithm 3 TCAS Sensor - Observation Model

Input: End state, Action, Set of all observations
Output: List of probabilities

if end state is a start state, or a done state, or is outside sensing range then
Add to the list the single observation that reports only V Ownship

Y

else
Locate the bin in the Relative Coordinate System that corresponds to the end

state and enlarge the boundaries of that bin by a margin determined by the sensor
error model

for each observation in the observation set do
if the bin that corresponds to the observation overlaps with the enlarged

bin then
Add the observation to the list with probability proportional to the over-

lap area
end if

end for
if the false negative measurement probability of the sensor is greater than zero

then
Add the observation that reports only V Ownship

Y (with false negative mea-
surement probability of the sensor)

end if
end if
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Algorithm 4 Radar Sensor - Observation Model

Input: End state, Action, Set of all observations
Output: List of probabilities

if end state is a start state, or a done state, or is outside sensing range then
if the false positive measurement probability of the sensor is zero then

Add to the list the single observation that reports only V Ownship
Y

else
Add to the list all observations with equal probability
Add to the list the single observation reporting only V Ownship

Y (with proba-
bility 1.0 − false positive measurement probability)

end if
else

Locate the bin in the Relative Coordinate System that corresponds to the end
state and enlarge the boundaries of that bin by a margin determined by the sensor
error model

for each observation in the observation set do
if the bin that corresponds to the observation overlaps with the enlarged

bin then
Add the observation to the list with probability proportional to the over-

lap area and weighted by the sensor error model (discretized Gaussian)
end if

end for
if the false negative measurement probability of the sensor is greater than zero

then
Add the observation that reports only V Ownship

Y (with false negative mea-
surement probability of the sensor)

end if
end if
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Algorithm 5 EO/IR Sensor - Observation Model

Input: End state, Action, Set of all observations
Output: List of probabilities

if end state is a start state, or a done state, or is outside sensing range then
if the false positive measurement probability of the sensor is zero then

Add to the list the single observation that reports only V Ownship
Y

else
Add to the list all observations with equal probability
Add to the list the single observation reporting only V Ownship

Y (with proba-
bility 1.0 − false positive measurement probability)

end if
else

Locate the bin in the Relative Coordinate System that corresponds to the end
state and determine the minimum and maximum angles that ‘see’ this bin

for each observation in the observation set do
d← 0
if the angle that corresponds to the observation is outside the minimum and

maximum angles that ‘see’ the end state then
d← angular distance to the end state

end if
Add to the list all observations with probabilities that are proportional to

the density at d of a Gaussian PDF with a zero mean and standard deviation σ
given by the elevation error.

end for
if the false negative measurement probability of the sensor is greater than zero

then
Add the observation that reports only V Ownship

Y (with false negative mea-
surement probability of the sensor)

end if
end if
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Algorithm 6 State Transition Model

Input: Start state, Action, Set of all states
Output: List of probabilities

Locate V Ownship
Y bin corresponding to the given start state

Predict new V Ownship
Y bin boundaries according to the given action (if ‘accelerating

up’, bin boundaries increase by the applied acceleration times ∆T, if ‘maintaining’,
no change occurs, and if ‘accelerating down’, bin boundaries decrease); add a fixed,
small margin when enlarging boundaries
if given start state is a start state then

Add to list the start states that overlap with the predicted V Ownship
Y bin (with

probability proportional to the overlap amount and also scaled according to the
probability of staying in start state)

Add to list all other states that overlap with the predicted V Ownship
Y bin (with

probability proportional to the overlap amount and also scaled according to the
probability of appearing in any other state)
else if given start state is a done state then

Add to list the done states that overlap with the predicted V Ownship
Y bin (with

probability proportional to the overlap amount)
else

Locate all the bins (X, Y , V Relative
X , V Intruder

Y , V Ownship
Y ) corresponding to the

given start state
for all possible values of intruder horizontal and vertical acceleration model

values do
Predict new state (new bin boundaries) using dynamics equations, ∆T, and

performance limits of our aircraft
Add to list all the states that overlap with the predicted state (with proba-

bility proportional to the overlap amount)
end for

end if

139



140



Appendix B

POMDP Generation

In the course of this research, we implemented a software application, called POMDP

Generator, that generates textual POMDP formulations for all four types of sensors.

We have already provided pseudocodes for major algorithms used by the POMDP

Generator in previous sections (reward, observation and state-transition functions)

and we have also described important parameters of those algorithms. In this section

we will briefly go over the POMDP generation process.

POMDP Generator reads in a couple of text files (specification files) that contain

values of various parameters. These specification files are easily editable, and different

POMDPs can be generated using different configurations of the parameter values.

Collectively, the following data are required and gathered from the specification files:

• Specifications for the respective sensor (given in Table 2.2)

• Controller frequency (∆T)

• Aircraft dynamic model (vertical velocity limits, and vertical acceleration mag-

nitude)

• Geometry of the desired protected space around own aircraft

• State space

• Action space

141



• Observation space (for most sensor types, this is automatically derived from the

state space)

• Reward model (crash cost, protected airspace violation cost and vertical velocity

cost)

• Transition probabilities from start state of the POMDP formulation

• Vertical and horizontal acceleration models for the intruder

After gathering necessary information, the following tasks are performed in the

given order:

1. Number of states, actions and observations are determined using the specifica-

tions of the state, action and observation spaces. Symbolic names for all states,

actions and observations are computed and recorded as part of the POMDP

formulation. (Most of the algorithms use integer indices when dealing with

states, actions and observations, but there are some algorithms that make use

of symbolic names to quickly extract information about a given state, action or

observation. Also the symbolic names are good for debugging purposes).

2. Initial belief-state is computed and recorded. For all sensor types, initial belief-

state contains a uniform probability distribution over the duplicated start

states, but the number of duplicated start states depends on the state space

(more specifically, the number of bins in the discretization of V Ownship
Y values).

3. POMDP Generator iterates over all state-action pairs and invokes the transition

function (Algorithm 6 in Appendix A) for each pair to compute and record the

transition model.

4. POMDP Generator iterates over all states and invokes the relevant observation

function (one of Algorithms 3, 4, 5, or 2 in Appendix A) for each state to

compute and record the observation model.

5. For each state, reward function is invoked and reward model is recorded.
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The output of the POMDP Generator is a POMDP file. The POMDP files we

generated and used in our tests have sizes ranging approximately between 45–55 MB.
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Appendix C

Processed POMDP

One major contribution of this study is the development of a novel method that

drastically reduces the computation time of the belief-state update process. The

method involves the following components:

• An extended transition model: We combine the transition and observation

models of a POMDP formulation into a single model that we call an extended

transition model, represented as a large lookup table. Given a start state, an

action, and an observation, the table provides a list of end states we can land in

and their probabilities. We developed a software package (called POMDP Pro-

cessor) that reads in a POMDP formulation, computes the extended transition

table, and outputs it in the form of a new POMDP formulation that has a state

set, an action set, an observation set and an extended transition model. We call

this new POMDP formulation a Processed POMDP, or PPOMDP for short. A

PPOMDP file is usually larger in size than a POMDP file. PPOMDPs can be

computed offline, and their main purpose is time efficiency during belief-state

updates rather than memory or storage efficiency.

• A special data structure for representing belief-states: Similar to the

PPOMDPs, this data structure is designed with time-efficient computation in

mind. It occupies more than four times the size of a näıve belief-state repre-

sentation in the memory. All of the required space is allocated at once during
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initialization, and no further dynamic allocation or deallocation is performed. It

uses a sparse representation to easily store, fetch and iterate over only the states

with non-zero probabilities. It uses the pointer data type (in the C Program-

ming Language) to switch between arrays containing various data and thereby

it never requires resetting an array, or copying array values from one place to

another in memory. It also keeps running sums of probabilities; therefore it also

never requires summing over array elements.

In our tests, we witnessed speed-ups in belief-state updates up to factors of 100

to 1000. The strength of the PPOMDP formulation comes from the fact that many

of the combinations (start state, action, and observation triplets) do not lead to any

end states. We call such combinations vanishing combinations. For the rest of the

combinations, called persisting combinations, it is usually the case that the number

of end states is only a very small fraction of the whole state set. Here, we provide

two examples.

The first example, summarized in Table C.1, demonstrates a general reduction

pattern observed in our tests. This example is from a POMDP formulation for the

TCAS sensor using ±1500 ft/s vertical velocity limits. The processing was done on

an Intel Core 2 Duo CPU running at 2.5 GHz, with 4 GB available system memory.

Table C.2 contains a histogram showing the frequency of number of end states for the

TCAS sensor. When we use the novel belief-state representation and the PPOMDP

model, we only iterate over the states with non-zero probabilities in the belief-state,

and for each such state, we only consider 5 or 6 end states on average.

Our second example, summarized in Table C.3, demonstrates the efficiency of the

PPOMDP formulation. This example is from a POMDP formulation for the perfect

sensor using ±1500 ft/s vertical velocity limits. In the POMDP formulation for the

hypothetical perfect sensor, the observations are very accurate and they help filter out

irrelevant end states very effectively. In a sense, the perfect sensor POMDP model

is close to an MDP model. Table C.4 contains a histogram showing the frequency of

number of end states for the perfect sensor.
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Table C.1: POMDP processing for the TCAS sensor.

Number of states in the POMDP formulation 2886
Number of actions in the POMDP formulation 3
Number of observations in the POMDP formulation 183
Total number of (state-action-observation) combinations 1584414
Number of combinations with no end states (vanish) 1205140
Number of combinations with at least one end state (persist) 379274
Total number of end states reachable from all combinations 8140937
Maximum number of end states reached from a single combination 962
Average number of end states reached from a single combination 5.13814
Time spent computing the PPOMDP formulation (mm:ss) 07:29
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Table C.2: Histogram showing the frequency of number of end states for the TCAS
sensor.

End states Frequency

0 1205140
1 17
2 1630
3 1210
4 18090
5 1048
6 22500
7 82
8 28480
9 6982

10 16250
11 896
12 54480
13 746
14 320
15 9550
16 22934
17 1074
18 31160
19 404
20 14490
21 466
22 120
23 80
24 36784
25 4644
26 88
27 5000

End states Frequency

28 100
29 1316
30 17850
31 582
32 11152
33 64
36 25014
37 754
40 5376
41 160
43 4
44 1016
45 6564
46 256
47 996
48 12000
49 516
54 6560
55 480
64 2442
70 16
71 896
72 4768

144 170
192 170
240 340
288 170
962 17
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Table C.3: POMDP processing for the perfect sensor.

Number of states in the POMDP formulation 2886
Number of actions in the POMDP formulation 3
Number of observations in the POMDP formulation 183
Total number of (state-action-observation) combinations 1584414
Number of combinations with no end states (vanish) 1480336
Number of combinations with at least one end state (persist) 104078
Total number of end states reachable from all combinations 581187
Maximum number of end states reached from a single combination 16
Average number of end states reached from a single combination 0.366815
Time spent computing the PPOMDP formulation (mm:ss) 07:11

Table C.4: Histogram showing the frequency of number of end states for the perfect
sensor.

End states Frequency

0 1480336
1 7057
2 2701
3 2500
4 27076
5 256
6 45296
9 18172

16 1020
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Appendix D

Encounter Analyzer

The data flow between different modules of our development system can be summa-

rized as follows:

• CASSATT simulations run at 10 Hz. At each simulation step CASSATT com-

putes aircraft state vectors for both ownship and intruder aircraft. Encounter

scenarios usually last 50 seconds, therefore, at 10 Hz this corresponds to a total

of 1000 aircraft state vectors for a single encounter.

• The software module that implements our collision avoidance algorithms is

called the “controller.” CASSATT invokes the controller at 1 Hz (at every 10th

simulation step). The inputs to the controller are state vectors for both aircraft

and an aircraft control command vector for ownship . The control command

consists of a vertical rate (or a vertical acceleration), a turn rate, and airspeed

acceleration. The aircraft control command vector provided by CASSATT is

the scripted maneuver for ownship. It represents the Air Traffic Control (ATC)

command that should be followed if there is no danger of collision.

• The output from the controller is another aircraft control command vector. This

command might be a replica of the ATC command, or it might be a different one

as a result of the planned collision avoidance maneuver by the controller. This

output is captured by CASSATT and used to calculate aircraft state vectors for

the following 10 simulation steps (before the controller is invoked again).
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• At the end of each encounter, CASSATT outputs the horizontal and vertical

miss distances (HMD and VMD) at the time of closest approach. A near mid-

air collision (NMAC) occurs if both HMD and VMD are below some thresholds

(usually if HMD is less than 500 ft and VMD is less than 100 ft).

In addition to the data flow among modules, at each invocation, the controller

processes its inputs and generates the internal data that is necessary to compute its

output. The internally generated data is as follows:

• A sensor reading is simulated (computed) using the aircraft state vectors for

both aircraft.

• For POMDP based systems, the simulated sensor reading is further processed

and converted to an “observation” suitable for the POMDP used by the con-

troller.

• The controller keeps a record of the previous collision avoidance action it took.

It also maintains an internal belief-state for POMDP systems. At each invoca-

tion, this belief-state is updated (using the previous action and the computed

observation). Then, using this updated belief-state, the controller decides what

collision avoidance action to take next (which determines the output aircraft

control command). For path-modification based systems the action is com-

puted at the end of the iterative improvement process.

• Statistical data is collected inside the controller (such as the total and average

times it takes to process all data).

It is very difficult to debug such a system using conventional software debugging

techniques. An important part of debugging a POMDP during a simulation run is

understanding the current state, which can be challenging using conventional tools

because the POMDPs used in our tests have 2000–3000 (sometimes even more) states.

To aid in debugging, we created a visualization tool to inspect the encounters. Our

visualization tool is called “Encounter Analyzer” (or “Analyzer”). Figure D-1 shows

a screenshot of the Encounter Analyzer.
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Figure D-1: A screenshot of the Encounter Analyzer showing flight trajectory, belief-
state, and debugging information.
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The data to be visualized is acquired from two sources:

• At the end of each encounter, CASSATT outputs a special data structure that

contains all CASSATT generated data. We prepared a Matlab script that reads

in this special data structure, and outputs a text file that Analyzer can parse.

The size of this text file is usually around 140–150 KB.

• The controller can be passed an option to turn data logging on or off. If data

logging is turned on, the controller dumps all its input, output and internal

data to a text file. The only exception is that it does not dump its internal

belief-state (since it is large and can be readily recomputed). The size of this

text file is usually around 30–40 KB.

Each entry in both of the text files is labeled with the simulation time it belongs

to, so Analyzer can synchronize the two sources of data. Analyzer creates its own

internal belief-state, and uses the recorded actions and observations to update it,

so this belief-state is also synchronized with the actual belief-state used (but not

recorded) by the controller.

Analyzer is built on top of the OpenGL library and it has both 3-dimensional

graphing and head-up display (HUD) capabilities. The aim of Analyzer is to use

graphical visualization (drawn to scale) as much as possible, and use HUD to display

the rest of the data that cannot be presented graphically.

The graphical visualizations can be grouped into 3 categories:

1. Visualizations of some of the gathered data

• Own aircraft (a Predator B model is used)

• Intruder aircraft (an Embraer Bombardier CRJ-200 model is used)

• Trajectory of own aircraft for the entire encounter

• Trajectory of intruder aircraft for the entire encounter

• The active region for the sensor

• Sensor reading
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2. Other visual enhancements

• A 3-D coordinate system

• A tile of terrain

• A sky-box

• A bounding box that contains both trajectories

• Projections of trajectories on the sides of the bounding box

• A separate window that shows the same (synchronized) visual description

as perceived by ownship (there is a small offset that allows our aircraft to

be in the view, too)

• Another separate window that shows the same (synchronized) visual de-

scription as perceived by the intruder (there is a small offset that allows

the intruder to be in the view, too)

3. Visualizations of data structures and computed variables

• State space (relative coordinate system)

• Action space

• Observation space

• Belief-state (states are colored, different colors indicate different proba-

bilities, a “color legend” is also displayed on the right side of the main

window)

• Computed observation

• Computed action

The textual (HUD) visualizations include the following:

• Current simulation time

• Aircraft state vectors for both aircraft (recorded from CASSATT special data

structure)
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• Aircraft state vectors for both aircraft (recorded by controller)

• ATC command

• Computed observation

• Computed action

• Computed aircraft control command vector

• Quantitative measure produced by CASSATT

Analyzer has a fourth window that displays a list of names of all of the graphical

and textual visualizations described above. The user can click any item to toggle its

visibility.

Analyzer allows the user to play (forward or backward) a recorded encounter

step by step. At any step, one may examine the values of different variables, check

the input and output of the controller, and move the camera around in the scene.

Additionally, one may visualize the positions and orientations of the aircraft, the

sensor readings, and the belief-state.
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[133] Sylvie Thiébaux, Marie-Odile Cordier, Olivier Jehl, and Jean-Paul Krivine.
Supply restoration in power distribution systems - a case study in integrating
model-based diagnosis and repair planning. In Proceedings of the 12th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 525–532,
1996. (Cited on page 26)

[134] Chuck Thorpe, David Duggins, Sue McNeil, and Christoph Mertz. Side colli-
sion warning system (SCWS) performance specifications for a transit bus. In
Final report, prepared for the Federal Transit Administration under PennDOT
agreement number 62N111, Project TA-34. May 2002. (Cited on page 15)

168



[135] Sebastian Thrun. Monte Carlo POMDPs. In S.A. Solla, T.K. Leen, and K.R.
Müller, editors, Advances in Neural Information Processing Systems 12, pages
1064–1070. MIT Press, 2000. (Cited on page 31)

[136] Louis Tijerina, Angela Ho, Mary L. Cummings, Dev S. Kochhar, and Enlie
Wang. Integrating intelligent driver warning systems: Effects of multiple alarms
and distraction on driver performance. In Transportation Research Board 85th

Annual Meeting, January 2006. (Cited on page 15)

[137] Shiu Ming Tsang. Method and apparatus for performing three-dimensional
alpha/beta tracking. U.S. Patent No. 6,236,899 B1. Filed August 18, 1998, and
issued May 22, 2001. (Cited on page 68)

[138] Li-Chun Tommy Wang and Chih Cheng Chen. A combined optimization
method for solving the inverse kinematics problems of mechanical manipula-
tors. IEEE Transactions on Robotics and Automation, 7(4):489–499, August
1991. (Cited on page 101)

[139] H. Paul Williams and Sally C. Brailsford. Computational logic and integer
programming, pages 249–281. Oxford University Press, Inc., New York, NY,
USA, 1996. (Cited on page 35)

[140] R.E. Williams. Importance sampling applied to policy gradient for avoidance
of rare events. Master’s thesis, Boston University, 2009. (Cited on page 34)

[141] Lee F. Winder and James K. Kuchar. Evaluation of collision avoidance ma-
neuvers for parallel approach. Journal of Guidance, Control, and Dynamics,
22(6):801–807, 1999. (Cited on page 61)

[142] Travis B. Wolf and Mykel J. Kochenderfer. Aircraft collision avoidance using
Monte Carlo real-time belief space search (in press). Journal of Intelligent and
Robotic Systems, 2011. (Cited on page 30)

[143] Travis Benjamin Wolf. Aircraft collision avoidance using Monte Carlo real-time
belief space search. Master’s thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA, May 2009. (Cited on page 30)

169


	Introduction
	Collision Avoidance for Unmanned Aircraft
	Challenges and Approach
	Organization of the Thesis

	Background
	Review of MDPs and POMDPs
	Formulation
	Solution Methods

	Previous Work
	POMDPs and Dynamic Programming
	Potential Field Methods
	Sampling-Based Motion Planning
	Geometric Optimization
	Policy Search Methods
	Mixed Integer Linear Programming
	Other Approaches

	Aircraft and Sensor Models
	Simulation and Evaluation Framework
	Simulation Framework
	Importance Sampling
	Baseline Collision Avoidance Systems


	MDP/POMDP Based Collision Avoidance Models
	Perfect Sensing
	MDP Collision Avoidance System
	Results

	Noisy Sensing
	MDP Collision Avoidance System with State Estimator
	POMDP Collision Avoidance System with TCAS Sensor
	Results

	Limited Field-of-View Sensing
	POMDP Collision Avoidance System with Radar Sensor
	POMDP Collision Avoidance System with EO/IR Sensor
	Results

	Discussion
	Model Limitations
	Assessment


	Path-Modification Based Collision Avoidance Models
	Path Modification
	Formulation
	Considerations

	Single-Trajectory Collision Avoidance System
	Structure and Implementation
	Results

	Single Branch-Point Collision Avoidance System
	Structure and Implementation
	Results

	Discussion
	Model Limitations
	Assessment


	Conclusions and Recommendations for Future Research
	Summary
	Contributions
	Recommendations for Future Research

	Pseudocode
	POMDP Generation
	Processed POMDP
	Encounter Analyzer

