
Working Paper Series
ISSN 11 70-487X

Proving the existence of
solutions in logical arithmetic

by John G. Cleary

Working Paper 93/5

October, 1993

© 1993 by John G. Cleary
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Proving the Existence of Solutions in Logical Arithmetic
John G. Cleary,

University of Waikato,
Hamilton, New Zealand.

email: jcleary@waikato.ac.nz

Abstract
Logical arithmetic is a logically co1Tect technique for real arithmetic in Prolog which uses
constraints over interval representations for its implementation. Four problems with the
technique are considered: answers are conditional and uninformative; iterative computations
may lead to unbow1dedly large constraint networks; it is difficult and ineffective to deal with
negation; and computing extrema is often not effective. A solution to these problems is
proposed in the fmm of "existential intervals" which record the existence of a solution to a set
of constraints within an interval. It is shown how to operate on existential intervals and how
they solve the four problems.

Introduction

Logical arithmetic is a technique for embedding arithmetic within logic programming
languages such as Prolog. It was first described in [Cleary, 1987]. Implementations have
been completed for a number of Prolog systems [Sidebottom and Havens,1992], [Older and
Vellino, 1990], [Older and Vellino, 1993], [Hyvonen, 1992] gives a good survey of
constraint systems over intervals. The other major proposal for arithmetic in Prolog is
CLP(R) [Lee and van Emden,1992], [Jaffar and Lassez, 1987a], [Jaffar and Lassez, 1987b].
This system uses symbolic manipulation of equations as well as a built-in linear equation
solver. When sets of equations are in linear form (or if they become linear during
computation) then the equations are automatically solved. The biggest difference between
logical arithmetic and CLP(R) is that it cannot deal with non-linear sets of equations. It also
has a serious flaw, in that it may report there are no solutions, when there are, as a result of
rounding effors in the underlying floating point ruithmetic.

Interval a1ithmetic, as presented in [Aberth, 1988], [Alefeld and Herzberger, 1983],
[Moore, J 966]. [Ratscheck and Rokne, 1984], [Ratscheck and Rokne, 1988] performs
operations on intervals of real numbers. Thus the+,-, *, and (more problematically) I all
have their corresponding interval counterparts. Such aiithmetic has traditionally been dealt
with functionally. That is, an operation such as + is applied to two intervals and the result is
an interval.

Logical Arithmetic

In logical arithmetic statements are represented as constraints on logical variables.
For example, the statement:

Xis 2*Y + Z
is represented by the set of relational constraints:

multiply(2,Y,Tl), add(Tl,Z,X).
(where Tl is a new temporary variable). The intended meaning is that Tl, x, Y and z ru·e real
values which satisfy the constraints.

In order to be able to effectively compute with such multi-variable constraints interval
constraints are placed on single variables. For example, Y and z might be constrained as:

Y~l.O, Z~3.5
Using these and the multiply and add constraints it is possible to deduce that x~s. s. At
any one point in the calculation there will be at most two such inequalities which bound a
variable above or below by some floating point constant. For example, if x~s . s and ~6. o

this can be simplified to just ~5. 5. Individual constraints such as add are able to locally
relax the intervals associated with its parameters. Fig. 1 shows an example of relaxing add
with an initial set of interval constraints and the resulting constraints after relaxation.
References such as [Cleary, 1987] give details of how to compute such local relaxations. By
ensw-ing that the resulting intervals are rounded out it is possible to avoid losing any potential
solutions and never to make incotTect deductions.

Initial Constralllts:
add.(X,Y,Z), O<X, X<4, l<Y, Y<4, 7<Z, Z<9

Relaxation:
(7-4) =3<X
X<(9-1)=8

Derived Corn 1> tralllts :

(7-4) =3<Y
Y<(9-0)=9

(O+l)=l<X
X<(4+4)=8

add.(X,Y,Z), 3<X, X<4, 3<Y, Y<4, 7<Z, Z<8

Figure 1. Local Relaxation of add Constraint.

As can be seen from the examples above and from Fig. l this system of arithmetic
follows the tradition of Prolog in allowing any parameter to function as an input or ouput.
Indeed in Fig 1. all three intervals end up smaller after the relaxation. However, some
systems of constraints might seem to be problematic. For example, the constraint
multiply (X, x, 2) has as its only solutions the two square roots of 2. There is a general
search technique called splitting for solving such non-linear equations. The interval for a
variable such as x is split into two parts, and the parts visited by backtracking. Fig. 2 shows
the splitting process for this example. It starts with the only constraint on x being
multiply (X, x, 2) which is unable to introduce any new constraints by local relaxation. At
the first split the two constraints x~o or X<O are introduced by backtracking. On the x~o
branch local relaxation is still unable to progress and a further split to l>X, ~o and x~l is
introduced. The l>X, x~o branch immediately fails as no solutions are possible. The x~l
branch is able to relax the multiply constraint to give 2~x, ~l. This is then further split into
the two intervals 2~x, ~l. 5, and 1. 5>X, x~l. o and so on. The splitting continues until
the limit of machine precision is reached (in this case fixed point arithmetic with two decimal
digits of precision is assumed for the sake of intelligible examples).

With a fixed word size it is trivial that this is a complete procedure for solving
equations to within the limits of the available machine precision. In the case of polynomials
(such as the square root example above) where there are no multiple roots the above
procedure converges quadratically (which is remarkable given that it does not explicitly
compute the derivative). However, as we will see there are still difficulties with this
procedure.

FAIL FAIL

~ - 1.5

- 1. 5 FAIL

-1.41

'~ X>l. 39 ,: X<~3

I _,.>-'~
X>l.39,: X<l.41 ~41, X<l.43

• >--

FAIL

FAIL FAIL X>l. 41, X<l. 42

Figure 2. Splitting to Solve multiply (X, x, 2) p
roblems

Problem 1 - No Actual Solutions

Unlike the usual case in logic programming results in logical arithmetic are often not
discrete values. As a result, answers to queries are often conditional. Consider the case
when it is known that l <X<2 and 3 < Y< 4. Let z be the sum of these two numbers then it is
possible to deduce that 4 < Z< 6. Expressed in logical arithmetic and written as a set of
constraints this gives the following query:

:- l<X, X<2, 3<Y, Y<4, add(X,Y,Z).
The result of this query is the following conditional answer:

:- l <X, X<2, 3<Y, Y<4, add(X,Y,Z), 4<Z, Z< 6 ..

This does not claim that there is a solution, it just deduces some facts that might be true if
there is an overall solution. This is a relatively simple example of this problem. Some non­
tlivial examples ar·e given in the rest of this subsection and in Problem 4.

To see the next problem it is necessary to examine in more detail the answer returned
by a query such as the one in Fig. 2. The result is two sets of constraints:

:-multiply(X,X,2), l.4l<X, X< 1.42
: -multiply(X ,X,2),-l.42<X, X<-1.41

Note that neither of these says what is a solution merely that if x lies between 1.41 and 1.42
(or -1.42 and -1.41) and multiply (X, x, 2) is a solution then xis a solution. This is not
very infonnative. Indeed more is known about what is not a solution than what is. Thus it is
known that there is no possible solution above 1.42. It happens that there is a unique square
root of 2 lying between 1.41 and 1.42 but this is not readily apparent from this answer. It
would be much more satisfactory if the answer returned were something of the fonn:

there exisl'> a real c, 1. 4l<c, c<l. 42 which is a solution to multiply (c, c, 2).

This problem is not tlivial. Consider for example:
:- 0 is 9*X2 - 12*X + 4.01.L

This has no solution although this is not readily apparent. Relaxation and splitting returns the
answer:

0.66<X, X<0.67, 0 is 9*X2 - 12*X + 4.01.

Within the limits of machine arithmetic assumed (two decimal places) the expression 9 *X2 -
12*X + 4 . 01 evaluates to the interval -0 .16 too .14. That is, the system is unable to

exclude Oas a possible solution when x lies in the interval o. 66 too. 67 (In fact, symbolic
reasoning shows that there are no real solutions to this equation).

Problem 2 - Negation

Consider the problem of deciding the goal not (sqrt (- 2)) using negation by failure.
sqrt is defined by the clause:

sqrt(Y) : - y is X*X.
That is sqrt (Y) succeeds iff Y has a square root. The call sqrt (-2) quickly fails after the
first level of splitting and hence not (sqrt (-2)) succeeds. However, the goal
not (sqrt (2)) is not so easily dealt with. As above two possible solutions are yielded but
there is no guarantee that they are in fact solutions. As a result the goal not (sqrt (2))
cannot be failed.

Problem 3 - Computation of Extreme Points

A common problem in numerical computation is to find the extreme points of a
function [Ratscheck and Rokne, 1988]. Consider for example the problem of finding the
maximum of x 2 over the range O<X<l. o. Reformulated this is a search for the maximum
value of Y given the constraints multiply (X, x, Y), O<X, X<L A search for the maximum
can be undertaken using splitting. Such a search yields the following results:

multiply(X,X,Y), 0.999(, X<l.00, 0 . 98<Y, Y<l.00
multiply(X,X,Y), 0.98:0(, X<0.99, 0.96<Y, Y<0 . 99
multiply(X,X,Y), 0.97$X, X<0.98, 0.94<Y, Y<0.97
multiply(X,X,Y), 0.969(, X<0.97, 0.92<Y, Y<0.95

multiply(X,X,Y), O.OO<X, X<0 . 01, O.OO<Y, Y<0.01

Unfortunately, nothing about the maximum can be deduced from such a set of results. None
of the individual results actually guarantees that there are any solutions to the constraints.

Lin its expanded relational fo1m this example gives:
: - add(4.0l,Tl,0), add(T3,T2,Tl), multiply(l2,X,T2),

multiply(9,T4, T3), multiply(X,X,T4).
In complex examples such as this I will take the short form to be an abbreviation for this
longer relational fo1m.

What is desirable from such a set of results would be a guarantee that there exists a
solution for x and Y in the first result:

multiply(X,X,Y), 0 . 99'.0{, X<l.00, 0 . 98<Y, Y<l.00
Given the existence of this solution it is possible to eliminate all the other solutions except the
second which overlaps with the first:

multiply(X,X,Y), 0.98'.0{, X<0 . 99, 0.96<Y, Y<0.99
Given just these two solutions and an existence proof it would be possible to deduce that the
maximum for Y lies between o. 98 and 1 . 00 and that the maximum occurs somewhere in the
interval O. 98'.0{<1 . 00.

Problem 4 - Execution Efficiency

Given a long iterative calculation, fo r example, the following Prolog predicate and
query:

: - p(O .42).
p(X) :- 0'.0{, ~l, print(X), Y is 4*X*(l-X), p(Y) .

Given tail-recursive optimization it might be expected that this program would execute in a
fixed amount of space and print out an infinite number of consecutive values for x .
However, the successive values of x are linked into a single constraint network which grows
linearly with the num ber of iterations. Not only does the network grow so does the amount
of computation as the range constraint on x (0:5:x, ~l) will cause relaxation operations to
propagate backwards down the chain of constraints making each computation step
proportional to the number of iterations so far.

Existence of Solutions

The first step in the resolution of these problems stems from results available about
the primitive constraints such as multiply and add. Consider for example the constraint
multiply (x , x , Y). There are two existence results known about such a constraint. First
given any value of x there is a value of Y satisfying the constraint. This follows simply from
the fact that multiplication is defined for all values of its input. It is also true that for any
given positive value of Y there is a value of x which satisfies the constraint. This is not as
trivial and follows from the fact that x2 is a continuous function with a minimum of O and a

max imum of oo.

A stronger statement about x 2 is possible. Because the function is monotone for x
positive or negative then it is possible to bracket the square root of Y. Given a value for y say

y, if there is a pair x1 and xh such that xr:5:y:5:xfi and o::;;xy then there exists an x such that
y=x2 and x1:5:x:5:xh. Stated fotmal ly the result for the positive branch is:

\I O~x1~xh, x2~Y~x2h~ :l x multiply (X, x, Y). x1~ 1. (1)

Substituting 2 for Y gives:

\I O~x1~xh, x21~2~,th:., :l x multiply (X, x, 2). x1~ ~x1

This says that if a bracketing pair x1 , xh can be found then a region can be identified in which
a square root fo r 2 is guaranteed to exist . Substitu te J .41 for x, and 1.42 for xh.
Computing with finite precision interval aiithmetic l.98~1.412~1.99, that is itis guaranteed
that l.4J 2 ~2 and sim ilarly it is guaranteed that 2~1.422. Thus the left hand side of the
implication above is satisfied and the following can be deduced:

:l X multiply (X, X, 2). l.4l~X~ l.4~
Recasting this using a Skolem constant c gives three facts:

multiply(c,c,2).
l .41$c.
c$1.42.

Armed with these results Problem l can now be reconsidered. The goal to be solved is:
: - multiply(X,X,2) .

After applying splitting, two conditional results are obtained:
: - multiply(X,X, 2), l.4l<X, X< 1 .42.
:- multiply(X,X,2), -l .42<X, X< -1 .41

These two results can be made unconditional by the answers:
X = C1

and
X = C2

together with the following auxiliary facts:
multiply(c 1,c1,2).
1. 41$c1 .

c 1$1.42.
multiply(c 2, c 2,2).
-l.42Sc2.
c 2S-1.41.

These facts show that c 1 and c2 are both solutions to all the goals in the conditional results.
That is the goals can be deleted and replaced by the bindings of x to c1 and c2. There are no
residual unsatisfied goals and the answer is thus unconditional.

The same reasoning enables Problems 2 and 3 to be solved as well. In Problem 2 the
goal sqrt (2) is solved unconditionally and so not (sqrt (2)) can be finitely failed. In
Problem 3 it can be shown that

multiply(X,X,Y), 0 . 99SX , X<l. 00, 0 . 98<Y, Y<l.00
has a solution and so the the lis t of interesting solutions can be pruned.

Expression (1) can also be used when Y is known to lie within an interval rather than
having a single value. For example given the constraints:

: - 4$Y, YS9, multiply(X,X,Y)
it is possible to subs titute 2 for xr and 3 for xb. This gives the following specialization of (1):

\I 4~Y~9 ~::1 x multiply (X, x, Y), 2~x<: (2)
The left hand s ide of the implication is satisfied and x can be replaced by the Skolem constant
c 3 (Y) to give the following unconditional result:

:- 4Y, Y9, X=c3 (Y)
together with the following auxiliary facts:

2Sc3 (Y).
C3(Y)$3.
multiply(c3(Y),c3 (Y),Y) : - 4SY, Y$9 .

Such generalization can be taken to its most extreme point by substituting O for x1 and leaving
Xb unbounded. This gives the impUcation:

\I O~Y ~3 X multiply(X,X, Y). 0~ (3)
That is, every Y greater than O has a positive square root. I will refer to such existence
conditions which omit detail s of the bounds on the variables as contracted existence
conditions and the fo rm with the bounds as full existence conditions. The appendix gives a
list of non-t,ivial existence conditions that are useful for the p1imitive constraints multiply
and add. In the interests of space only the contracted forms are given, although the full
forms are easily deduced from them.

This reasoning can be generalized to more complex equations with more than one
primitive constraint. If there is a constraint of the form Y is f (X) (for some function f) .
Then on an interval where f is continuous and monotonic (has a positive or negative
derivative) there is guaranteed to be a solution. The following expression casts this in the
same form that was used in expression (1):

\;:j V~xa~Z~Xb=> d~~):?:o), Xa~XJ~Xh~Xb, f(x1)~Y~f(xb) =iJ X Y is f (X), X1~X~1

(4a)
Simplifying as in equation (3) yields:

\;:/ V~xa~Z~b=> da~):?:o), f(xa)~Y~f(xb) ~3 x Y is t (X) (4b)

To use this general result as part of a numerical computation it is necessary to compute the
derivative of f to ensure that it is in a monotonic region as well as computing f at the end­
points x1 and x11• Such computations must be done carefully using intervals and appropriate
rounding to ensure that the conditions are provably true.

At this point the first exam ple of Problem 1 has not been dealt with. That is the
query:

:- l<X, X<2, 3<Y, Y<4, add(X,Y,Z) .
still retums the conditional answer:

: - l<X, X<2, 3<Y, Y<4, add(X,Y,Z), 4<Z, Z<6 ..

To make this answer unconditional requires that the goal add (X, Y, z) somehow be satisfied.
Following the same type of reasoning used earlier the following existence result is available:

\;:/ xY3Z add(X, Y,Z) . (5)
That is, for every value of x and Y there is a sum which is the result of adding them. As in
equation (2) z can be replaced by a constant c 4 (x, Y) which gives the following
unconditional result and auxil iary fact:

: - l<X, X<2, 3<Y, Y<4, Z=c4(X,Y).
add(X,Y,c4(X,Y)) .

The full ve rsion of (5) gives additional auxiliary facts:
add(X,Y,c4(X,Y)) : - l<X, X<2, 3<Y, Y<4 .
4<C4 (X, Y) .
C4(X,Y) <6 .

This type of reasoning can be extended to arbitrarily complex expressions. Consider, fo r
example, the constraints:

:- l<X, X<3, 2<Y, Y<4, Z is X*Y + X, .
or in relational fo1m:

: - l <X, X<3, 2<Y, Y<4, add(X,T,Z), multiply(X,Y,T).
After local relaxation this gives:

:- l<X, X<3, 2<Y, Y<4, add(X,T,Z), multiply(X,Y,T),
2<T, T<l2, 3<Z , Z<lS.

Using the full form of equation (A3) in the appendix there must be a solution to
multiply (X, Y, Tl binding T to a constant c s (X, Y) . This allows multiply to be deleted
from the constraints giving:

: - l<X, X<3, 2<Y, Y<4, add(X,T,Z), T=cs(X,Y), 3<Z, Z<lS.
and multiply(X,Y,c5(X,Y)) : - l<X, X<3 , 2<Y, Y<4.

2<Cs (X, Y).
cs (X, Y) <12 .

But rule (A2a) can now be applied to bind z to a constant c 6 ex, c 5 ex, Y)) and delete add,
finally giving the unconditional answer:

:- l<X, X<3, 2<Y, Y<4, T=c5(X,Y), Z=c6(X,c5(X,Y)).
and add(X,C5(X,Y),c6(X,c5(X,Y))):- l<X, X<3.

3<C6 (X, C5 (X, Y)) .
c6(X,c5(X,Y))<lS.

In this way unconditional answers can be derived for arbitrarily complex sets of
constraints. Thus problem 4, where an iterative calculation builds up an unboundedly large
constraint network, can be solved by repeatedly proving the existence of the solution. This
keeps the size of the active constraint network constant.

This form of reasoning is effectively functional. That is, it successively eliminates
the constraints derived from the leaves of an expression until a solution to the complete
expression is proven. This is very close to the computations done in functional interval
arithmetic. There is a small measure of added flexibility as the various mles in the appendix
allow deferring the decision of which direction to propagate the existential results until after
relaxation has occu1Ted.

Future Work

To actually provide a complete system within Prolog using these results requires
solving a number of control issues not explored here. For example, it is not clear when an
existence result should be sought as opposed to further relaxation. It is not clear to what
extent this can be automatic and to what extent it is necessary to give the programmer control
of these issues. Work is currently underway to include existential intervals in a logical
arithmetic system.

Acknowledgements

Part of this work was completed under a grant from the Natural Sciences and
Engineering Research Council of Canada.

Appendix

This appendix gives a Jist of non-uivial existence conditions that are useful, including
those for the primitive constraints multiply and add. In the interests of space only the
contracted f01ms are given, although the full fo,ms are easily deduced from them. Each rule
can be used as a rewrite rule to delete a set of constraints and replace them by a binding of a
variable to a real constant (together with auxiliary facts about the constant).

AdditiQn

\ixv3z add(X,Y,Z) (Al)

Su btractiQn

\ixv3 z add(X,Z,Y) (A2a)

\ixv3 z add(Z,X,Y) (A2b)

Multi12licatiQn

\J'xy=Jz multiply(X,Y,Z) (A3)

Divi~iQn

\j X Y>O 3 Z multiply(Z,Y,X) (A4a)

Square Root

General Case

\:f X Y<O 3 Z multiply(Z,Y,X}

\:f X Y>O 3 Z multiply(Y,Z,X}

\:f X Y<O 3 Z multiply(Y,Z,X}

\:/ O~Y ~3 X multiply (X, X, Y}, ~ .X

\:/ O~Y ~3 x multiply (X, X, Y), ~~

(A4b)

(A4c)

(A4d)

(A5a)

(A5b)

\:f v'~xa~Z~Xb~ O~~)~Q). f(x 3)~Y~f(xb) ~3 X Y is f (X) (A6a)

\:f \f~ Xa~Z~XL>~ da~)~Q), f(x3)~Y~f(xu) ~3 X Y is f (X} (A6b)

References

Aberth, 0. (1988) Precise Numerical Analysis, Wm. C. Brown, Dubuque.

Alefeld, G., and Herzberger, J. (1983) Introduction to Interval Computations, Addison­
Wesley, Reading, MA.

Cleary, J.G.(1987) "logical Arithmetic," Future Computing Systems, 2(2), pp. 125-149.

Cole, A., and Morrison, R.(1982) "Triplex: A System for Interval Arithmetic," Software
Practice and Experience, 12, pp. 341-350.

Hyvonen, E.(1992) "Constraint Reasoning Based on Interval Arithmetic: the Tolerance
Propagation Approach," ArtificiaJ Intelligence, 58, pp. 71-1123.

Jaffar, J., and Lassez, J.-L.(l987a) "Constraint logic Programm.ing," Proceedings
Fourteenth Conference on Principles of Programming Languages, Munich, pp. 111-119.

Jaffar, J., and Lasscz, J.-L.(1987b) "Methodology and Implementation of a CLP System,"
Fourth Int. Conf. on Logic Programming, Melbourne, Australia, July.

Lee, J.M.H., and van Emden, M.H.(1992) "Adapting CLP(R) to Floating Point Arithmetic,"
Proc. Fifth Generation Comp. Systems Conf., Tokyo.

Moore, R. (1966) Interval Arithmetic, Prentice-Hall, Englewood Cliffs, NJ.

Older, W. , and Yellino, A.(1990) "Extending Prolog with Constraint Arithmetic," Proc.
Canadian Conf. on Electrical and Computer Eng., Banff, Alberta.

Older, W., and Yellino, A.(1993) "Constraint Arithmetic on Real Intervals ," in Constraint
Logic Programming, Collected Research, (Benhamou, F., and Colmerauer, A. eds.), MIT
Press Cam bridge, MA.

Ratscheck, H., and Rokne, J. (1984) New Computer Methods for Global Optimization, Ellis
Horwood, Chichester, England.

Ratscheck, H., and Rokne, J. (1988) Computer Methods for the Range of Functions, Ellis
Horwood, Chichester, England.

Sidebottom G., and Havens W.(1992) "Hierarchical Arc Consistency Applied to Numeric
Processing in Constraint Logic Programming," Computational Intelligence, 8(4), pp. 601-
623.

