

Working Paper Series
ISSN 1177-777X

DESIGN AND FORMAL MODEL OF
AN EVENT-DRIVEN AND

SERVICE-ORIENTED
ARCHITECTURE FOR THE

MOBILE TOURIST INFORMATION
SYSTEM TIP

Lisa Eschner and Annika Hinze

Working Paper: 14/2008
December 2008

© 2008 Lisa Eschner and Annika Hinze
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/44290165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design and Formal Model of an Event-driven and Service-oriented
Architecture for the Mobile Tourist Information System TIP

Lisa Eschner, Annika Hinze
Freie Universitaet Berlin, University of Waikato

eschner@mi.fu-berlin.de, hinze@cs.waikato.ac.nz

Abstract
This thesis introduces a new collaboration framework for
context-aware services in a mobile environment enabling ser-
vices to co-operate with several anonymous co-operation part-
ners. We extend the current TIP design and architecture so
that new services may easily be added to and co-operate with
existing ones. Obsolete services may be replaced by new ones
providing the same functionality. Services are de-coupled.
Service co-operation is completely changed. This means
that services react to the events they receive, irrespective of
the events publishers. We also show how service-oriented
and event-driven architectures may be combined maintaining
their respective advantages. We introduce features of service-
oriented architectures to services co-operating via an event-
based middleware. We describe the formal model of a new
system for mobile tourist information and the newly intro-
duced features of the collaboration framework. Those fea-
tures fundamentally change the way services communicate
and cooperate.

1 Introduction
The subject of this paper is the design of an architecture for a
service oriented and event-driven tourist information system.
The paper reports on a part of a greater ongoing project, the
complete re-design and re-implementation of a mobile tourist
information system. In the first step, a small prototype was
implemented [26]. In the second step (reported here), we cre-
ated a formal model of the design and examine the model. The
design needs to support extremely loose coupling of services
and service co-operation in a highly dynamic environment.
The final step will be the implementation of the design.

The service architecture was designed for the Tourist In-
formation Provider (TIP). TIP is a mobile tourist information
system. Tourist information systems offer many services to
tourist, e.g., hotel booking services and information on sights.
Mobile tourist information systems offer similar features, but
with the advantage that they run on portable computers, such
as PDAs or smartphones. The portable computers must be
able to ascertain the current location, e.g., through a GPS
device. Thus, a mobile tourist information systems enables
tourists to use the services en route.

Mobile tourist information systems enhance tourists’ ex-
periences. Tourists are ready to use mobile guides [27], even

if they have little or no previous experience with computers
or personal digital assistants. Tourists discover more sights
and spend more time at sights when they use a digital guide
that provides the tourists with a map displaying sights and in-
formation on the sights. Tourists without such a guide stayed
at less attractions and walked more. The guided tourists saw
more attractions in less time, and walked less than those with-
out a digital guide. Mobile tourist information systems may
provide information about sights the tourists would not have
known about or merely walked by otherwise. Personalised
mobile tourist information systems enhance tourists’ indepen-
dence [22], compared to tourists discovering a town with a
guided group, a guide book or an audio guide.

In this section, we first present the existing TIP. We then
explain the aim of the paper in more detail, and lastly present
the outline of the paper.

1.1 TIP – the Tourist Information Provider:
Main Characteristics

TIP is a tourist information system targeted at tourists using
mobile computers [18]. TIP supplies tourists with information
upon sights and other points of interest, based on the user’s
location and user profile. We introduce TIP’s functionalities
and main characteristics with a short usage scenario.

TIP 1 Usage Scenario Katherine, a TIP user creates a
personal profile, where she defines that she is interested in
churches, cultural heritage sites, museums and parks, and that
she likes history, architecture and literature. She thus creates
her sight profile and her topic profile. Katherine’s sight pro-
file specifies the kind of sights she is interested in, e.g., his-
tory, architecture and literature, while the topic profile defines
her main thematic interests. The TIP system uses the topic
profile to select the points of interest (POI) for a user, and
selects the information that are displayed on the POIs with
the aid of the interest profile. The user context comprises the
sight and topics profile, the user’s current location and time.
Katherine visits Hamilton, New Zealand. She brings her own,
TIP-enabled PDA with her.

As she walks through Hamilton, Katherine comes by the
Waikato Museum. Her TIP display shows general informa-
tion on the museum like the main exhibits and opening hours.
The map shows several cones. One of them, the one on the
museum’s location, indicates this sight. The cones have two

1

different colours, one for sights provided by the information
service, the other for sights suggested by the recommendation
service. Katherine can browse for information on distant loca-
tions. TIP shows this information in a brighter colour scheme.
When Katherine revisits the museum, TIP displays the latest
information shown to her on her last visit.

Location-based Services Location-based services (LBS)
offer services that depend on the user’s current location. [32]
define LBS as “services (that are) accessible with mobile de-
vices through the mobile network and utilising the ability to
make use of the location of the terminals.” However, this def-
inition only applies to computerised LBS. A poster that an-
nounces a concert near the concert venue is an LBS, as well –
LBS are not a new occurrence.

The main characteristics of computerised LBS are that
the user can access them through an available communication
infrastructure, such as a mobile network, a MANET or the
internet. Moreover, LBS posses some means to determine the
user’s current location. The location is necessary so that the
service can be performed. In the short usage scenario aove,
the map is an example for a location-based service. The map
has to know about Katherine’s current location, otherwise it
cannot display the appropriate map tile.

Context-awareness TIP is a context-aware mobile tourist
information system. The context consists of the user’s interest
as defined in the sight and topic profile, the current location,
the current time and the user’s travel history. The context-
awareness enables the TIP services to select information or
other data based on the user’s interest and topic profile. The
current location is considered in the sense that information on
sights in the user’s current vicinity are delivered to the user.
The current time may be considered as to how information
is displayed, e.g., at night a cone on the map that indicates a
closed museum would not be shown as brightly as a cone that
indicates a club, or a restaurant.

Event-based Systems In TIP, services react to incoming lo-
cation events, e.g., the information service receives a new lo-
cation event and filters the TIP database for nearby sights.

The term event can be ambiguous. It can denote the fact
that something has happened in the real world that is both
observable and distinguishable [28]. On the other hand, the
term event can also refer to the computer representation that
describes the event. Here we use it in both senses, as the in-
tended meaning will be clear from the context. The term event
and event-driven architectures are discussed in more detail in
Section 5.

Service-orientation Service-oriented computing aims to
divide business processes into separate independent pro-
cesses, and to package them as services. Services co-operate
with other services. The main principles with service-oriented
computing and service-oriented architectures (SOA) are that
services should be re-usable, use service contracts, they

should be independent from other services and loosely cou-
pled [7]. SOA are discussed further in Section 5.

History of TIP Implementations The TIP 1 architecture
was conceptualised by Hinze and Voisard [19]. TIP 1 com-
bines location-based services in tourism with the concept of
event-notification. Löf�er [25] implemented a subset of the
proposed functionality. The prototype uses a client-server ar-
chitecture. The TIP data is stored in a PostgreSQL1 database.
Ottlinger [30] aimed at adding peer-to-peer-communication
to TIP. Due to technical problems, this could not be achieved,
however, he re-implemented TIP and introduced J2EE-based
web applications, the result being TIP 2. TIP 2 soon experi-
enced challenges as the software was extended and new ser-
vices were introduced. The services were rather tightly cou-
pled so that it was difficult to introduce new services without
changing the existing co-operating ones. For example, if a
service provider wanted to introduce a new service that would
co-operate with the map service, she would have to expand
the map service with a new communication interface. In ad-
dition, although the main concept for TIP 2 clearly was event-
driven, the implemented software architecture did not support
the concept directly. TIP 2 is discussed in detail in Section 2.
Michel [26] created a simple implementation for TIP 3*. It
served as a proof of concept for an event-based middleware.
Services in TIP 3* are loosely coupled. However, as we will
discuss in detail in Section 3, they have to be extremely loose
coupled. TIP 3* also lacks some main characteristics of a
service-oriented architecture, such as the service contract. We
will show later how we introduce more service-oriented at-
tributes to TIP. The main characteristics and features of TIP 3*
are discussed in 4.1.5.

1.2 Aim and Structure of the paper
The previously discussed usage scenario shows how several
services co-operate and interact with each other. At the mo-
ment, the services communicate through the exchange of
events. However, once a service has subscribed to an event
type, it will not change its subscription, even if the publisher
unregisters with the broker – the subscriber does not change
its co-operation partner. Similarly, the subscriber is not no-
tified if another, possibly better publisher registers with the
broker. TIP aims to be an easily extendable information sys-
tem. We recognise the need for an event-based infrastruc-
ture that supports a dynamically changing set of services, that
do not depend on each other, i.e., services have to be ex-
tremely loosely coupled. Nevertheless, some characteristics
of a service-oriented architecture should be retained, that are
lacking in the current prototype. In a dynamically changing
environment, where the user, i.e., the mobile client, moves in
and out of a location-based services’ area, the set of available
event types is changing dynamically, as well. This presents
a challenge for service developers, as it is difficult to assess
how a service reacts to the changing range of event types [1].
We recognise the necessity of a framework that helps service

1http://www.postgresql.org/

2

designers to thoroughly analyse and evaluate their design. We
have developed a service-oriented and event-driven architec-
ture for TIP. We have implemented a prototype as a formal
model with the help of UPPAAL2 as a proof of concept.

In Section 2 we present the current TIP system, TIP 2.
In Section 3, we formulate our requirements on TIP 3 in de-
tail, and show why the existing architecture does not meet
the requirements. We then analyse related work in Section 4.
Section 5 discusses service-oriented and event-driven archi-
tectures. It compares them to the needs of a TIP 3 design.
The new design and architecture of TIP 3 are presented in Sec-
tion 6. Section 7 gives an introduction to formal modelling.
We argue, why we decided to model the architecture instead
of implementing it. We present the modelling tool UPPAAL,
its modelling language and query language. In Section 8, we
present the model of the new architecture as a proof of con-
cept. Section 9 summarises the paper and discusses future
work.

2 Background on TIP
In this section we present the Tourist Information Provider
TIP. First we present the current version TIP 2’s functional-
ity. We introduce the main services, the location, informa-
tion, recommendation and map service. These four services
provide the basic functionalities of a tourist information sys-
tem: a map that shows the user’s current location and nearby
sights, and that offers information on the sights. The services
show how services interact in TIP 2. They exemplify the main
characteristics of TIP 2. We then discuss the concepts and
implementations of TIP 2, followed by a demonstration how
services in TIP 2 communicate.

2.1 Important Services in TIP 2
TIP 2 comprehends several services [14], so that the user can
choose from a variety of services. The most important ones
from a functional point of view are the

The location service The location service [15] provides the
TIP system with the user’s current location. It runs lo-
cally on the PDA. The location service uses a GPS re-
ceiver. Whenever the location changes because the user
moves, or because a certain time interval has passed, the
location service communicates the new location to the
TIP 2 server. The TIP 2 server forwards the new com-
munication to interested services that run on the same
client.

The information service The information service [15] pro-
vides information on sights and topics. It runs on the
TIP 2 server. The information service receives the new
location from the TIP 2 server. It then filters sights and
topics from the TIP 2 database, based on the user’s loca-
tion and the corresponding user profile. The information
service sends this information to the server. The server

2www.uppaal.com

(a) TIP showing nearby sights. (b) TIP showing remote sights.

Figure 1: TIP screenshots. The TIP screenshots show that the
information service displays information on nearby sights in
a darker shade (left). Remote sights (right) are shown in a
brighter shade.

forwards it to all interested services, regardless if they
run on the mobile client or on the server. Information
on nearby sights (cf. figure 1(a)) is shown in a slightly
darker shade than information on remote sights (cf. fig-
ure 1(b)).

The recommendation service The recommendation service
[16] suggests new sights to the user, depending on the
user’s location and preferences as well as the user’s travel
history and feedback. Like the information service, the
recommendation service runs on the TIP 2 server. It
takes into account the feedback that other users with sim-
ilar preferences have given.

The functionalities of the recommendation service and
the information service are similar, but not the same. The
information service selects information (i.e., topics and
sights) based on the user’s profile and history, while the
recommendation service tries to predict sights and topics
based on the user profile.

The map service The map service [15] displays a map show-
ing the user’s current surroundings. It runs on the mobile
client. On the map, cones indicate sights, recommenda-
tions and other points of interest, for example, restau-
rants. The map service connects to the TIP server when
it needs more map tiles, or when it does not know the
current location. The TIP server supplies it with the
sights, information and recommendation data needed for
the map, and with the necessary map tiles.

The map service uses differently-coloured cones for in-
formation and recommendation data. The user can
thus differentiate between recommendations and infor-
mations.

The information service and the recommendation service
are located on the server: the computation, database access
and filtering operation happens on the server. Such a ser-
vice, where no computation is done on the client and only the

3

Location Engine

Spatial Data

Interface

Data Collection Data Dissemination

Filter Engine

Data
Information

Profile Data

5

information

request

information

reply

32

4

Server

Clients

new location

1

data

Figure 2: Simple client server interaction and the TIP 2 core
system

results of the server-side computations are displayed on the
client, is also called thin client. In TIP 2, thin clients typically
share a common user interface and a common communication
interface, e.g., the web browser for displaying and for inter-
acting with the user.

The map service and the location service are services
where every computation is done on the client. The map ser-
vice only communicates with the TIP 2 server to request new
map tiles, or to get the current location. The location service
communicates the current location to the TIP 2 server. Both
services are examples for thick clients. Thick clients may have
their own user and communication interface.

2.2 TIP 2 – Concept and Implementation

Figure 2 illustrates the TIP 2 core system and its interaction
with mobile devices, following [15] and [26].

The TIP 2 core system has several tasks. We describe
them with the help of Figure 2: In Step 1, the TIP 2 core
communicates with several TIP 2 clients at once. The TIP 2
core system and TIP 2 clients communicate via http or SOAP,
using the TCP/IP-stack provided by the operating system on
the mobile device. Services communicate with the TIP 2 core
system via TIP 2’s communication interface. In Step 2, the
TIP core system filters sight information, taking the user con-
text into consideration. In Step 3, the TIP core system pro-
vides spatial data, i.e., it selects the sights in a user’s vicin-
ity. This is done by the location engine that is a part of the
TIP 2 core system. In Step 4, it offers information to other
services and then stores and provides the user profiles and the
system and services profiles in Step 5. The TIP 2 core system
stores the users’ sight and topic profiles, their travel history
and user reactions to recommendations. The service profiles
define which events are generated or needed by a service.

The TIP 2 core system provides an information database,
a geo-spatial database, a sights database and a profile
database. It further comprises a filter engine and a location
engine, see Figure 2. The TIP 2 core system runs on a web
server. The current TIP 2 implementation stores user and sys-
tem profiles, information on sights and spatial data, used for

request6
information

topic data

sight and
topic data

sight and

sight and topic

data

additional sight

and topic data

additional sight

and topic data

additional sight

and topic data

Map ServiceLocation Service

(GPS) Service

Information

1 new location

Communication Layer

2

4

4
information

5
request for more

3

7

8 8

Filter and Location Engine

TIP databases

Data Layer

Service Layer

new location

Figure 3: Service interaction in TIP 2

mapping sights to the coordinate system used by TIP2, in a
common database.

Although TIP 2 was conceptualised as an event-driven
system, the implemented architecture is not event-driven. It
lacks important features of event-driven systems, such as an
event-notification middleware.

2.3 Service Interaction in TIP 2

In TIP 2, services cooperate to provide a functionality. Fig-
ure 3 illustrates how the information service, location service
and map service interact.

In Step 1, the location service on the mobile client trans-
mits a new location to the TIP 2 server. The server forwards
the new location to the TIP 2 filter and location engine run-
ning on the TIP 2 server (Step 2). The filtering engines select
the appropriate data with one SQL-query. It is possible to ac-
cess all stored data at once as it is stored in a single database.

In Step 3, the selected data is returned to the client. The
information data is received by the information service’s thin
client, e.g., a browser, and by the map service on the mobile
client in Step 4. When the user asks for more information
(Step 5), the request is forwarded to and processed by the fil-
ter engine (Step 6). The resulting data is transferred to the
information service and possibly the map service (Step 7 and
8). The communication layer is conceptualised in the TIP 2
architecture, though it is not implemented in detail.

3 Requirements on TIP 3

In the previous section we discussed the TIP 2 architecture
and implementation. In this section we develop an extended
usage scenario in Section 3.1. We develop our requirements
on the TIP architecture from that scenario in Section 3.2 and
discuss the requirements in detail.

4

3.1 An Extended Usage Scenario
Let us again join Katherine, the tourist arriving by car in
Hamilton, New Zealand. She visits some friends. Katherine
brings her own TIP enabled PDA with her.

The route planner service On arriving in Hamilton,
Katherine starts TIP’s Route Planner as she does not know
the way to her friend Anne. The Route Planner shows her
a list of possible starting points: her current location, and
the main attractions in Hamilton. After she selected a start-
ing point, the Route Planner lists some possible destinations,
based on Katherine’s user profile. Katherine may of course
enter Anne’s address manually, if none of the possible desti-
nations suits her.

The Route Planner guides Katherine to Anne’s home. En
route, Katherine hears TIP’s alert for cultural heritage sites.
She stops at the roadside and looks what kind of site this is.
First, she clicks on the alert symbol displayed on the map, so
that TIP displays general information about the site. As it is
interesting, she scrolls down for more information, and clicks
on the ”more”-button. The new information is displayed on
the screen.

The sightseeing tour author Later, Anne and Katherine
decide to take a stroll through the city. Anne creates a sight-
seeing tour for Katherine, using TIP. She lists the sights she
wants to show Katherine. TIP creates a route, based on the
sights list and Katherine’s and Anne’s profiles. TIP provides
several different travel modes, walking, going by bike, by car
or using public transport. The created routes differ, depending
on the selected travel mode.

Several user pro�les Anne’s profiles are activated, as well
as Katherine’s, so TIP alerts them whenever they pass a sight
that matches one of their profiles.

TIP's user interface TIP’s user interface consists of a web
browser that displays the delivered information. A change of
service may be displayed as the opening of a new browser
window, or a reload in the current window, where the new
content is displayed. The change of service is transparent to
the user. The user only notices it in terms of changed or ex-
tended functionality.

The close-by friends service and the chat service As they
walk, TIP suddenly alerts them that Katherine’s friend Steve
is nearby. Katherine clicks on the “more information”-button.
The map shows a new icon, representing Steve. Some contact
details hover above the icon. As long as Steve and Katherine
do not move out of their mutual maps, their icons are shown
on the other’s map. Katherine chats with Steve, using TIP’s
chat service, and they decide to meet in a café nearby, shown
on Steve’s map. Katherine decides she wants to see the same
information as Steve, thus seeing the same map tiles as Steve
does. Now she sees where the café is, and she can navigate
through the map to her own location.

Several information providers On their way to the café,
Katherine and Anne pass by Hamilton Gardens. Anne wants
to show them to Katherine. On entering the gardens, the map
service shows a new map, provided by the Hamilton Garden’s
TIP server. This new map shows the gardens in more detail.
If Katherine does not want to see the Hamilton Garden’s map,
she can easily switch back to the previous map. In the same
way, she can select a new information source, provided by the
garden’s local TIP server.

The event service While they are viewing Hamilton Gar-
dens, they are informed by the event service about a concert
taking place there the same evening.

3.2 Requirements on the new Architecture

The extended usage scenario presented above shows several
new features and requirements a mobile tourist information
system could offer.

We introduced new features: a route planner, a sightsee-
ing tour author, the possibility to use several profiles simulta-
neously, a close-by friends service, the possibility to choose
an alternative service or information provider and an event
service. Several other services are feasible, of course.

These services co-operate with each other without any
difficulty. The map service displays the route to Katherine’s
destination. The sightseeing tour author requests the route
planner to calculate a route for Anne and Katherine. The route
is shown on the map, and information upon the sights is dis-
played by the display service. The close-by friends service
makes the map display Steve’s location. It uses both TIP’s in-
formation and map service to show Katherine the information
and the detail of the map that Steve is seeing.

Our usage scenario displays a mixture of both location-
based and only location-aware services. The Hamilton Gar-
den’s map service is location-based, while the information
service, close-by friends service and map service are location-
aware. Services need to react to this dynamic environment of
changing services: when Katherine entered the Hamilton Gar-
dens, her TIP client connected to the Hamilton Garden’s TIP
server. The services on the mobile client and the services on
the Hamilton Garden’s server co-operated. When Katherine
left the garden and the server services became unavailable, the
services on her PDA continued to function without any prob-
lems. Likewise but at the same time differently, the close-by
friends service suddenly showed that a friend of Katherine’s
was nearby. It showed where that friend was and some con-
tact information. This close-by friends service would be com-
posed of several services: one service that discovers nearby
friends, one that offers a chat functionality, and another that
provides information on the friends, for example. The close-
by friends service co-operates with other services, such as the
information service. However, if its own chat service is not
available, the close-by friends service would simply display
the friend’s location and possibly some other information. If
another chat service was available, the close-by friends ser-
vice could use it.

5

We identify some issues that a new architecture should
consider. We explore the different questions in depth later.
The main requirements concern (1) communication between
services, (2) service management (3) server management,
(4) rule-based subscriptions, (5) data handling and (6) privacy
and confidentiality.

1. Communication between services:

1a. Prompt3 communication. Some services need recent
information. The close-by friends service, as depicted
in 3.1, needs to be notified whenever a friend’s location
changes, so that it is able to display the new location on
the map accordingly. Published information should be
delivered to subscribing services swiftly. We call this
prompt communication. An event should be transmitted
to all subscribers within a fixed time after the event was
generated.

1b. Local communication Services that run on the same node
should communicate without a detour to the server. We
think this could reduce expensive radio communication.

2. Service management Services offer functionalities. When
a service that offers a certain functionality, e.g., location
data, disconnects, its functionality becomes unavailable
to the subscribers. Whenever other services that offer the
same functionality are available, the disconnected ser-
vice should somehow be replaced by one of the other
services. However, when a functionality becomes un-
available, the subscribers cannot fulfil their tasks.

Several services can offer the same or similar functional-
ity. An interested service ought to be able to choose the
service whose functionality best matches the requester’s
needs. For this reason, functionalities offered by services
may need to be categorised hierarchically. Let us look
at an example: Location data can be provided through
different means, such as GPS coordinates, an address,
or the coordinates used by the map service. The GPS-
service could categorise its data as location/gps,
while the address-service could categorise its data as
location/address. When the GPS-service is un-
available, the service that requests location/gps-
data would change its request into a location-request.
The request would be answered by the map service and
by the address service. The first requirement that we pre-
sented, connect to another service with the same func-
tionality, may easily be tested when several services pro-
vide the same functionality at the same time. The re-
quester selects one of the services. When that service
disconnects, the requester should connect to another ser-
vice provider.

The second requirement may be tested with a similar
scenario: Several services that offer similar services are

3We use “prompt” in the meaning that “something will happen within the
next seconds, or within a minute”, i.e., near in time. We do not use the term
real-time that typically connotes a communication that takes place within mi-
croseconds. We need communication that happens near in time, but not in
real-time

available. The service requester connects to one of them,
that becomes unavailable. The requester should connect
to the service provider that offers the best similar service.

3. Rule-based subscriptions This requirement does not
emerge out of the usage scenario, as some of the re-
quirements above did. However, it arises partly out
of requirement “Service management“, which asks for
loosely coupled and possibly transparent services. When
the subscribing service decides what kind of data it needs
instead of specifying a certain publisher, the disconnec-
tion of the publisher may be transparent to the subscriber.
When the subscribers specify the data needed, publisher
and subscribers are further decoupled. Services should
always subscribe to the best data available.

4. Server management When more than one server is avail-
able, the client may need to choose between them, or to
connect to more than one server at the same time. The
user should be able to define in their profile whether to
connect to a new server, at least when it offers services or
data the user has to pay for. We think it is desirable that
the client is able to connect to more than one information
server simultaneously. Obviously, the user experience is
enhanced when more information is available.

5. Data handling TIP stores and distributes data towards the
users. The same datum, e.g., basic information on a mu-
seum, may be shown as an information to one user, and
as a recommendation to another user. The map, or a dis-
play service like the browser, shows information data and
recommendation data in different shades. These services
have to be able to distinguish between informations and
recommendations although the data themselves might be
the same. The datum needs to be tagged by its provider
before it is delivered to the client. However, the tags can-
not be static, as they depend on the producing service.
On the other hand, TIP differentiates sight types (top-
ics), e.g., architecture sights and historical sights. Items
that are included in a TIP database are associated with
one or several topics.

Data that are up to date and accurate increase the attrac-
tiveness of a tourist information system. We are con-
vinced that user input – e.g., restaurant reviews, or hints
about events – contributes to up-to-date data. However,
data that were supplied by TIP users could be faulty. We
propose that users ought to be able to rate data. Suitable
rating can help users to decide whether they trust an in-
formation datum. The rating of information enables the
TIP system to rank information data according to their
trustworthiness and quality, as well.

The rating of data through the users could be a sensible
approach to handle spam. Of course, other measures will
be needed as well, but spam protection is not the scope
of our project [8]. We identify two requirements: (5 a)
Data classification and (5 b) mechanisms that help to en-
sure data trustworthiness and quality. We acknowledge
this issue but will not attempt to resolve it in this paper.

6

6. Privacy and confidentiality User data like the user profile
and user history that is stored on the server should be pro-
tected from unauthorised access. We think that the user
should have a chance to agree to whether their profile
will be shared with other (“foreign”) servers, e.g., dur-
ing the registration process. The user profile is sensible
data. However, everyone in a user’s vicinity can eaves-
drop on data that is sent to them from the server. This
makes it rather easy to guess their interest profile. As
countermeasure, the filtering of the data could be moved
to the node. The server would transfer all information
and recommendation data to the client, where a filtering
machine would match them against the user profile. In-
deed, we think that the matching of data and user profile
ought to take place on the server, so that no unnecessary
data is transferred. Another solution is to use encrypted
communication between the server and client.

Our extended user scenario showed a number of fea-
tures that a mobile tourist information system should provide.
Based on the scenario, we defined requirements addressing is-
sues like communication between services or how services are
managed. We identified a number of open questions: interac-
tion and communication between services or between services
and the TIP server, privacy-related issues or safety-related is-
sues. The following section discusses related work and com-
pares them to the requirements.

4 Related Work
In this section we analyse related work: mobile tourist infor-
mation systems, a rule-based middleware for sensor networks.
In the first section, we compare mobile tourist information
systems. Section 4.2 discusses a rule-based and event-driven
middleware for mobile sensor networks and general basics on
event-driven architectures. Lastly we summarise the results
of our comparisons and compare them to our requirements.

Although pull systems, such as the Google search engine
or other search engines available on the internet, may be used
by tourists, we do not include them for several reasons: With
search engines, the user has to request information. Unlike
TIP, the information is not displayed automatically, without
any actions on the user’s side. Search engine results and
Google’s catalogues have to be filtered by the user, a task that
can be rather tedious. In TIP, the filter engine undertakes the
task of filtering. The user has to know the name of the sights,
or at least that a sight exists, and where it is located. Other-
wise, it is difficult to obtain good results from search engines.
Imagine a tourist in front of the Berliner Dom in Berlin-Mitte,
who does not know that the huge church is called Berliner
Dom. A search at google.de on “Lustgarten Berlin” returns
the google map, the URL for a sex-bar, several homepages
that offer pictures from the Lustgarten, and some pages that
supply information on the actual place. This makes search en-
gines rather useless to tourists.
Neither do we look at technologies as dynamic mash-ups. Dy-
namic mash-ups combine information and knowledge from
several sources into a new product. Dynamic mash-ups can

open up existing information sources and internet sites for
TIP, while they preserve TIP’s advantages. A dynamic mash-
up could filter and personalise Google search results. Dy-
namic mash-ups can be used by TIP services. They are no
rivalling system, but a complementing technology.

4.1 Mobile Tourist Information Systems
Mobile tourist information systems usually are context-aware
systems. They have to be highly adjustable, i.e., they adjust
themselves to a change of context. It is desirable that they
are personalisable as well. We are convinced that context-
awareness, personalisation and �exibility add to an enhanced
user experience. Studies have shown that users benefit from
mobile tourist information systems. They discover and visit
more sights than without the guiding system [22]. Users are
ready to accept and use mobile tourist information systems,
even those who have little previous experience with comput-
ers.

In this section, we present three mobile tourist informa-
tion systems: the Dynamic Tour Guide, the George Square
System and GUIDE. We choose the systems as they represent
different facets in the field of mobile tourist information sys-
tems. The Dynamic Tour Guide [27], [21], [22] is an event-
driven, context-aware tourist information system. It has been
used by many real tourists in an on-field study. GUIDE [5] is a
well-known mobile tourist information system that is often re-
ferred to as standard tourist information system. The George
Square System [20] comprehends a real-time communication
system. It concentrates on the sharing of experiences with
other users. TIP 2 and TIP 3* are the previous versions of the
TIP system.

In this section, we firstly present a system’s functionality.
The following part introduces the user interface, i.e., how the
user can interact with the system, and what features it offers.
In the last part, we explain how the system works.

4.1.1 The Dynamic Tour Guide

The Dynamic Tour Guide [21, 22, 27] (DTG) is a mobile
tourist information system that was developed at the Univer-
sity of Applied Sciences Zittau/Görlitz, Germany. It offers
two different usage modes:

• the Explorer mode: A map shows the tourist’s surround-
ings, with all surrounding sights. The Explorer mode re-
acts dynamically to the user’s behaviour: whenever they
enter a sight, or stops at a sight, a presentation is started.
The presentation stops when the user leaves the sight or
stops it by hand.

• the Planner mode: The aim was to imitate a human per-
sonal guide. The Planner mode asks tourists about their
interests and develops a city tour adapted to the user pro-
file and other user constraints. Only the sights in the
personalised tour are shown on the map. The informa-
tion presentation on a sight starts when the user arrives
at that sight. The Planner mode offers the chance to adapt
the tour while walking, by adding or dropping sights.

7

Location data is provided through a GPS device con-
nected to the mobile client. Sights are stored in Tour Building
Blocks (TBB). A TBB contains the sight address, some cate-
gorisation data, picture and audio files, and additional infor-
mation on the sight. Every TBB has a Web service where its
data is stored and offered to users. The Web services register
with a UDDI registry. The audio hints and the navigation map
are stored on the mobile client.

Comparison to the Requirements We analysyse to what
extend the Digital Tour Guide meets our requirements (Sec-
tion 3.2):

1a. Prompt Communication The DTG immediately responds
to the user’s location, as it either adjusts the map and
shows the sights nearby (Explorer mode) or displays in-
formation on a visited sight (both modes). The map and
information displayer have to be notified about the cur-
rent location, that is ascertained through the connected
GPS device. We therefore assume that the DTG offers
prompt communication. However, this prompt commu-
nication mainly takes place on the mobile device. The
mobile device and the server communicate only when
the user is asked about their interests, and when the
server computes a route for the Planner mode.

1b. Local Communication The DTG disposes of several ser-
vices: a navigation service, tour planner, tour adapter,
navigation software, among others. Most of the services
are located on the mobile device. The tour planner is an
exception. The services that are located on the device,
e.g., the GPS service and the map, communicate locally.

2. Service Management The DTG offers several services,
e.g., the tour planner, the display of information, the
map, or the location service. However, it does not supply
any means to replace a failing service through another.
Even more important is that the DTG cannot include new
services, a characteristic that makes it difficult to intro-
duce new features. We therefore argue that the DTG does
not meet our requirements.

3. Rule-based subscriptions The Planner mode shows in-
formation on sights, if the sight matches the user profile
and is part of the proposed tour. The sight data and other
information are wrapped in Web services. However, to
the best of our knowledge this architecture includes a
publish-subscribe aspect. Therefore we suppose that the
DTG contains some rule-based data forwarding compo-
nent. However, this does not guarantee that a service
always subscribes the best data available.

4. Server Management The DTG architecture, such as it
is described in [21], uses only one server. The server’s
main tasks are to compute the guided tours, and to store
the user profiles and the data that was gathered during the
field study. We assume that it cannot handle more than
one server at a time, though it should not be to difficult
to extend the system.

5a. Data ClassificationSight and information data is classi-
fied in several ways: sights are distinguished from such
things as restaurants. An ontology was used to model the
sight information. The sights are classified into several
interest topics. DTG obviously provides some means of
data classification.

5b. Data Trustworthiness and Data QualityThe issue of data
trustworthiness is not raised in any of the papers about
DTG. We assume that data trustworthiness is not imple-
mented in the DTG, especially as it seems to be a one-
server system administered by trustworthy staff. The
DTG was implemented for a field study with the goal
to investigate and analyse user acceptance and the usage
of mobile tourist information services by everyday users.
The data upon sights and other points of interest, such as
restaurants or cafés, was put in at once, by trustworthy
personnel. User input was not arranged for, therefore
there was no need to handle or edit it in any way. We
think that this applies for data quality and data evalua-
tion as well.

6. Privacy and Confidentiality The DTG project’s aim was
to examine and analyse the acceptance and usage of mo-
bile tourist information systems by usual tourists. The
users’ movements and interactions with the system were
recorded, so that they could be analysed later on. Users
were asked for their interests when they used the DTG
Planner. All data that were produced by users – interest
profiles, gps track, system interactions etc. – were stored
on the DTG server.

4.1.2 The George Square system

The George Square system [20] (GS) is a tourist information
system that focuses on the sharing of experiences. It was de-
veloped at the University of Glasgow. Users are shown a map
of the visited town, either the users current neighbourhood, or
the location where the user placed her avatar. Sights, recom-
mendations and other users’ avatars are shown on the map.
The map data are downloaded from a map server on the in-
ternet. Users can talk to other users via IP telephony. This
gives the users the chance to interact with other users, e.g., a
friend at home, and to immediately show photos taken with
the camera to someone else. Users can place their photos
on the map. They can also browse the web for information,
or visit web pages recommended by the Recommender. The
George Square System offers two different usage modes, ei-
ther on-site, i.e., touring a town or off-site, when the user pre-
pares her journey, shares it with other users, or shares user’s
experiences while they are on-site.

The George Square system has an event-based architec-
ture. It uses the EQUIP middleware, which provides commu-
nication between devices or sensors on one network node and
between different network nodes. The communication model
supports peer-to-peer communication. Location data is pro-
vided through a GPS device connected to the Tablet PC. A
camera is also connected to the PC.

8

Comparison to the Requirements The George Square
System does not meet all of the requirements defined in Sec-
tion 3.2:

1a. Prompt CommunicationThe George Square system can-
not perform without a network connection. The mobile
device has to be connected to some network, otherwise
the system does not provide information on the sights.
This permanent network connection obviously supports
prompt communication.

1b. Local Communication The George Square system uses
the EQUIP middleware, which offers local communica-
tion.

2. Service Management The EQUIP software is an event-
based system. To the best of our knowledge, it does not
offer any kind of service management.

3. Rule-based subscriptions The EQUIP middleware, that is
used for the system, is an event-based, distributed tuple
space system. In a tuple space system, the producers
publish their data in the tuple space. The consumers use
rules to retrieve data from the tuple space. The George
Square system fulfils our requirements.

4. Server Management The used EQUIP software offers
peer-to-peer communication and does not rely on a cen-
tral server. We conclude that the George Square system
to some extent provides means of server management.
However, the client needs to be connected to one or sev-
eral peers that offer the requested data, e.g., map tiles.

5a. Data Classification The George Square system offers
some rough data classification, as it distinguishes be-
tween sights, recommendations and user avatars. The
authors do not go into detail on the implementation, as
the research focus lay on sociability. Indeed, the data
classification is static and not dynamic.

5b. Data Trustworthiness and Data Quality The described
system relies on and lives on user input. A user sees other
users’ photographs, or the websites other users have vis-
ited on a location. However, the George Square system
does not provide any means of securing that the users’
input really is interesting, or trustworthy. In the same
way, this system does not furnish its users with any in-
struments to assess the offered data. The George Square
system does not meet our requirements.

6. Privacy and ConfidentialityThe emphasis of the system
lays on the sharing of the users’ experiences, ideas and
knowledge. Privacy and confidentiality are somewhat
opposed to the thought of sharing all information and
impressions that a user has gained during her visit, and
are not an issue with the George Square system.

4.1.3 GUIDE

GUIDE [5] is a mobile tourist information system, targeted at
pedestrians. It was developed at Lancaster University, United

Kingdom. GUIDE can be used to create a tailored guided
tour to the city, though the tourists have to select the sights
they want to visit out of a list. The GUIDE user interface
looks and acts like a common web browser. On site, GUIDE
provides access to information on a sight. Using this browser,
the user can choose a web page containing information about
the visited sight. When the user leaves a sight, GUIDE shows
them how they reache the next sight on her tour. The tour is
rescheduled dynamically, e.g., when a sight closes before the
user has visited it, or when the user skips one or more sights
on the tour. The user can access some online services like
room booking, or buying a cinema ticket through GUIDE.
When a user needs to ask something of the tourist informa-
tion, they can send a message via the GUIDE system.

GUIDE knows two modes, online and off-line. The off-
line mode restricts the functionality, for example, the online
booking services are not available. Information on sights is
only available if it was downloaded and cached beforehand.
As the GUIDE system uses WaveLan cells to identify the
user’s location, location is not available while off-line. Every
WaveLan cell is equipped with a cell server that is connected
to a web server. The cell servers provide the clients in their
cell with informations about the cell, i.e., with information on
sights that are located in the cell.

Comparison to the Requirements We now discuss to what
extend the GUIDE systems fulfills the requirements defined in
Section 3.2:

1a. Prompt Communication While the client is connected to
a cell server, GUIDE provides for prompt communica-
tion.

1b. Local Communication The GUIDE client mainly con-
sists of a browser and some caching mechanisms. When-
ever cached information is requested, the browser and
the cache communicate locally. However, this is an ex-
ception, and most communication is not local.

2. Service Management The GUIDE system offers a static
set of services. Some services, like the tour guide, are
available both in the online and of�ine mode. Other ser-
vices like the online booking service are available only
in the online mode. To the best of our knowledge, the
GUIDE system does not offer any kind of service man-
agement that go much farther than the differentiation of
online and of�ine availability. The GUIDE system does
not meet our requirements on service management.

3. Rule-based subscriptions GUIDE is an event-based sys-
tem, therefore it probably provides rule-based data for-
warding. However, to the best of our knowledge GUIDE
does not assure that services always subscribe the best
data available.

4. Server Management The GUIDE system, as it is de-
scribed in [5], probably would allow for more than one
web server. However, the clients cannot connect to more
than one cell server.

9

5a. Data Classification The sights are arranged in different
categories, e.g., “historical sights”. GUIDE provides ba-
sic means of data classification, however it does not dis-
tinguish between information data and recreation data,
as the TIP project does (see Sections 4.1.4 and 4.1.5)

5b. Data Trustworthiness and Data Quality The information
stored on the GUIDE web server was provided by tourist
information personnel. However, GUIDE offers its users
the possibility of browsing web pages that lay outside
the tourist information’s responsibility. GUIDE does not
offer any mechanisms to ensure trustworthiness neither
for the intern information nor for the external web pages.
GUIDE users cannot evaluate or rank the information.

6. Privacy and Confidentiality Privacy and confidentiality
are no issues with the GUIDE project, as no user data
was collected.

4.1.4 TIP 2

The Tourist Information Provider [14], [15] (TIP) is a context-
aware mobile tourist information system. It was developed at
the Freie Universität Berlin, Germany and the University of
Waikato, New Zealand.

The user interacts with TIP 2 through the browser on a
mobile device. On first usage, they register with the TIP
server and creates her profile. In the profile, the user speci-
fies the topics that interest them, e.g., history, archeology and
bicycling. A map shows the user’s current location. While
the client is connected to the TIP server, icons on the map in-
dicate adjacent sights matching the user’s profile. When the
user visits a sight, the browser shows information on the sight.

TIP 2 is an event-based system. It provides a communica-
tion infrastructure, so that the different services can commu-
nicate directly with each other. However, messages or events
are always sent via the TIP server. At the moment, the ba-
sic services are a location service, an information service, a
recommendation service and a map service. The services are
described in detail in Section 2. When the location service ob-
serves a new location, it notifies the TIP server and sends the
new location to the TIP server. On the TIP server, the filter en-
gine and the location engine select the sights and informations
matching the user’s profile and location and forward them to
the mobile client.

Comparison to the Requirements TIP 2 meets some, how-
ever not all of the requirements defined in Section 3.2:

1a. Prompt Communication TIP 2 provides prompt commu-
nication as long as the mobile client is connected to the
server. However, as soon as the mobile device and the
server are not connected any longer, prompt communi-
cation between services is no longer available.

1b. Local Communication TIP 2 does not offer local com-
munication. All messages are sent through the TIP 2
communication infrastructure relying on the server.

2. Service Management TIP 2 does not offer any means of
service management. The services are tightly coupled,
and if a service fails, its consumers have to find a re-
placing service by themselves. However, at the moment
nearly all services are unique, i.e., a replacement does
not exist. TIP 2 does not offer any infrastructure that
facilitates the locating of replacement services.

3. Rule-based subscriptions The TIP communication infras-
tructure forwards events from the event producer to the
event consumer. Nevertheless, the consumer cannot pro-
vide its own rules or conditions on the data, therefore
TIP 2 does not fully meet our demands in this issue.

4. Server Management TIP 2 does not offer the management
of multiple servers, it is a single-server system.

5a. Data Classification Sights are grouped in several topics.
However we need a classification at runtime: The same
piece of data can be classified as ”recommendation data”
when sent to one client, and as ”information data” when
it is sent to another client, depending on the sender ser-
vice.

5b. Data Trustworthiness and Data Quality The current
TIP 2 system does not offer any means for users to put
in any data, except for the user profile. Data that was put
in by TIP personnel was regarded as trustworthy by the
designers therefore services that help ensure the trust-
worthiness of data were not planned. TIP 2 does not
provide mechanisms that help ensure the quality of the
stored data, or its evaluation.

6. Privacy and Confidentiality All user data are stored on
the server, more precisely in the TIP 2 database. They
are neither shared with or distributed to other servers, as
TIP 2 handles only one server at a given time, nor are the
user profiles shared with or distributed to other clients.
However, if someone eavesdrops on the transmission be-
tween server and client, she may soon detect the main
interest topics.

4.1.5 TIP 3*

TIP 3* continued the development of TIP. In a first step, [17]
proposed the concept of a service-oriented architecture for
TIP and introduced a new component to the architecture, the
broker. The functionality of TIP 2 was maintained. The de-
sign is still a client-server architecture, where several TIP 3*
services run on the server, such as an information service.
The TIP 3* client provides a set of services, e.g., an infor-
mation service, a location service or a map service. When a
service has been started, it registers with the broker, advertises
the provided information and subscribes to the information it
needs. Services do not communicate directly with each other,
but publish their messages to the broker. The broker forwards
messages to the respective subscribers.

A small prototype of TIP 3* was implemented by
Michel [26]. Michel focused on the introduction of a caching

10

service to reduce duplicate downloads. The prototype imple-
ments an event-based communication middleware, the broker.
However, no service management has been implemented yet.
TIP 3* does not solve the problem of starvation: a subscriber
can wait for its subscribed data indefinitely, if there is no re-
spective publisher.

Comparison of TIP 3* to TIP 2 TIP 2’s functionality is
largely preserved, even though the underlying software archi-
tecture changes. The shift to a new architecture brings along
the need for re-implementing the TIP services as the exist-
ing TIP 2 services cannot be used. A translating service is
needed alternatively. Nevertheless, from a functional point of
view the main services will be an information service, a loca-
tion service, a recommendation service and a map service. A
caching service has been added to reduce downloads from the
server. The TIP user interface was not changed.

Discussion of TIP 3* The TIP 3* architecture is not com-
pletely event-based, even though services react to incoming
location events. The remaining communication between co-
operating services indeed uses the event notification mid-
dleware, however the communication between co-operating
services resembles communication between services in a
service-oriented architecture. TIP 3* services are loosely cou-
pled. However, once two services are coupled, they stop
looking for other cooperation partners. A service may well
starve when its cooperation partner vanishes for some rea-
son. TIP 3* took first steps towards service-orientation, al-
though some service-oriented principles like the service con-
tract were not considered.

Comparison to the Requirements We defined our require-
ments on the new TIP version in Section 3.2. We now analyse
how TIP 3* meets these requirements:

1a. Prompt Communication TIP 3* provides for near-in-time
communication. The broker filters and forwards data as
soon as it receives them, so that subscribers receive their
respective data soon. We consider that TIP 3* meets our
requirement in this point.

1b. Local Communication In TIP 3*, services communicate
indirectly via the local broker. The broker forwards data
to the respective subscribing services. If a local service
subscribes to data from a local publisher, the broker for-
wards the data directly to the subscriber, without a detour
via the server. TIP 3* meets our requirement.

2. Service Management In TIP 3*, there is no service discov-
ery process. A service subscribes to all the event types
needed. If a necessary event type is not available, the
service cannot function. On the one hand, this makes the
service discovery process that is typical for a SOA re-
dundant, and facilitates the broker. On the other hand,
a service is useless if it cannot provide its functionality.
The service itself should be notified that necessary data
is not available. TIP 3* does not meet our demands in
this aspect.

3. Rule-based subscription TIP 3* offers simple means of
rule-based data forwarding: the broker forwards events
from the event publisher to one or many event sub-
scribers. Indeed, subscribing services cannot inform the
broker about the rules selecting the appropriate events.
TIP 3* does not fully meet our demands in this aspect.

4. Server Management TIP 3* can handle several servers –
it can connect to and use services from several servers at
once.

5a. Data Classification TIP 3* offers basic means of data
classification, as the events are categorised. However,
data cannot be tagged as information and recommenda-
tion data at the same time, it has to be sent twice in an
information event and a recommendation event.

5b. Data Trustworthiness and Data Quality TIP 3* does not
offer mechanisms to ensure and enable data trustworthi-
ness. Data Quality is not an issue with TIP 3*.

6. Privacy and Confidentiality Privacy and confidentiality
were not an issue with TIP 3*. User profiles are stored
on one or more servers. TIP 3* clients are not able to
access them. As with TIP 2, if someone intercepts the
transmission, she probably will be able to reconstruct at
least the user’s interests.

4.2 FACTS – A Rule-based Middleware for
Distributed Data Processing

In this section we discuss FACTS, a rule-based middleware
for sensor networks as an example for a middleware for rule-
based systems.

FACTS [31] is a rule-based middleware architecture for
wireless sensor networks. It was developed at the Freie Uni-
versität Berlin. It offers an event-based programming inter-
face to application programmers. An application can com-
municate with other applications through the FACTS middle-
ware. Applications have to provide a rule set, so that they can
select the information needed. Even though FACTS uses rules
in a different way than TIP 3 does, it was the main in�uence
for our concept of rule-based communication.

The FACTS architecture consists of three main con-
stituents: facts, rules and functions. Information is stored as
facts, irrespective of what the information itself is about. The
facts are stored in the fact repository. Every fact has an owner
node, an unique identifier, a non-unique name and a set of
properties.

Rules express algorithms, i.e., they define how the appli-
cation responds to external events. A rule consists of a set
of conditions and a set of statements. The conditions specify
when a rule is triggered. The statements declare what should
be done by the rule. The rule engine examines the rules pe-
riodically. It triggers a rule when the rule’s conditions are
satisfied. The functions call a firmware or operating system
procedure. Functions are called by the Rule Engine.

11

Comparison to the Requirements We compare FACTS to
the requirements defined in Section 3.2:

1a. Prompt Communication FACTS provides prompt com-
munication through the wireless communication inter-
face.

1b. Local Communication Services, or event producers and
consumers, communicate through the change of facts.
The facts are stored in the local facts repository situated
on the node. Two or more local services can thus com-
municate through shared facts in the local repository, so
that local communication is available.

2. Service Management Service management in the notion
that another service – or rule – with the same functional-
ity should be chosen as a substitute when a service fails
is not implemented. The rule engine checks the appli-
cations conditions periodically, and triggers their rules
when all conditions are met. However, the rule engine
does not search for replacements of failing applications.

3. Rule-based subscriptions The designers of FACTS found
that event-driven programming re�ects the changing and
dynamic nature of sensors’ environments, i.e., the real
world.

FACTS provides rule-based subscriptions.

4. Server Management FACTS does not know off any
servers. On the other hand, it is intended for peer-to-peer
networks.

5a. Data Classification Data – or facts – can be classified
through their properties. However, FACTS does not pro-
vide an ontology, or other means towards data classify-
ing. We therefore consider FACTS to meet this require-
ment partly only.

5b. Data Trustworthiness and Quality FACTS is intended
for a sensor network, where sensors produce data. A
sensor may be prone to errors, i.e., it’s data is not nec-
essarily correct. However, FACTS does not offer any
mechanisms to ensure data trustworthiness. We think
that this issue could be a task for an application that is
implemented with the FACTS middleware. FACTS does
not offer any mechanisms to ensure data quality or the
evaluation of data.

6. Privacy and Confidentiality Because FACTS is a middle-
ware for wireless sensor networks, it does not address
issues as privacy or confidentiality.

4.3 Summary of Related Work
Table 1 summarises to which extent the different approaches
and systems meet our requirements. Our first requirement is
prompt communication (Requirement 1a), i.e., that commu-
nication between two partners takes only a certain amount of
time. This requirement is more or less met by nearly all re-
lated works and approaches we examined. However we have

to add that we simply analysed whether the communication
would be likely to be completed within a given period of time.
We did not measure this. The next requirement, for local com-
munication (Requirement 1b), is also met by most of the ex-
amined systems.

Requirement 2, service management, is met by the
GUIDE system, TIP 3* and the event-driven architectures and
FACTS. Most of the analysed works do not provide for rule-
based subscriptions (3), indeed only FACTS and the George
Square System let the subscribers or event consumers provide
rules selecting the interesting events. The + indicates that
the system provides for rule-based event or data forwarding,
however, it lacks the feature that the event consumer provides
the rules that select the events. Server management (Require-
ment 4), i.e., the ability to handle more than one server, is
met partly by the George Square System and GUIDE. The
designers of TIP 3* foresaw the need, although they did not
implement this feature.

The most important point is if and how services are man-
aged. Service management describes that a service is notified
when a subscribed data type is no longer available. Services
should be notified when new data types are made available,
enabling them to select new co-operation partners if neces-
sary. None of the examined systems meets our demands com-
pletely. Indeed, service-oriented and event-driven architec-
tures give attention to that matter, out of different points of
view. In the next section, we discuss service-oriented archi-
tectures, web services and event-driven architectures.

Some way of data classification (5a) is provided by nearly
all examined systems, however, no system is able to change
or complement the classification on the �y. The issue of data
trustworthiness and quality (5b) is not addressed by any sys-
tem. Privacy and confidentiality (6) is solved to some parts by
some systems, TIP 2 and TIP 3*.

The three requirements that we identify as the most im-
portant are (2) service management, (3) rule-based subscrip-
tions and (4) server management. The different systems ex-
amined only partly meet our requirements to rule-based sub-
scriptions. FACTS is the only system that partly imple-
ments service management in the meaning that co-operating
software applications are notified when a new possible co-
operation partner connects, or disconnects. Most of the anal-
ysed systems fail to meet our requirements as to server man-
agement. TIP needs an architecture that combines the func-
tionality from TIP 3* with the enhanced �exibility that service
management and rule-based subscriptions provide. The new
TIP system also needs means to connect to several servers at
once.

Data classification and trustworthiness (requirements 5a
and 5b) and privacy and confidentiality (6) are important is-
sues, especially in a mobile tourist information system that re-
lies on content input from its users. Users feel the importance
of privacy and confidentiality, so that their private profiles and
user data are not accessible by anyone. Although these issues
are interesting and important, we cannot address theses issues
in this paper. This is a task for a future implementation of the
TIP 3 design, but a model cannot solve them.

12

Table 1: Related Work and our Requirements: ++ = completely met; + = mostly met; − = partly met; −− = not met.
Requirements Related Work

D
yn

am
ic

To
ur

G
ui

de

G
eo

rg
e

Sq
ua

re
Sy

st
em

G
U

ID
E

T
IP

2

T
IP

3*

FA
C

T
S

1a. Prompt Communication ++ + ++ + ++ ++
1b. Local Communication ++ ++ − −− ++ ++
2. Service Management −− −− − −− −− +
3. Rule-Based Subscriptions − ++ − − − ++
4. Server Management −− + − −− + −
5a. Data Classification + + − + + +
5b. Data Trustworthiness −− −− −− −− −− −−
6. Privacy and Confidentiality −− −− −− + + −−

5 Service-oriented and Event-driven
Architectures

In this section, we present the main features of service-
oriented and event-driven architectures. TIP 2 was conceptu-
alised as an event-driven system. However, the initial imple-
mentation [25] followed a request-response design. With the
TIP 3* middleware first steps towards an event-driven archi-
tecture were made. The new design of TIP 3 brings together
service-oriented design and event-driven architectures.

5.1 Service-oriented Architectures
This section presents the basic principles behind service-
oriented architectures (SOA) and their main components. TIP
is a modular system, where the different services co-operate
with one another. The TIP map service displays a sight’s loca-
tion on the map. The map is centred around the user’s current
location. The map service co-operates both with the TIP lo-
cation service and the TIP information service. The location
service informs the map about the current location, and the
information service informs the map service about a sight’s
location. The question of how TIP provides the map service’s
functionality can be answered in several ways. One possibil-
ity is to design it as a monolithic service that only can co-
operate with the information and location service. However,
the map service should be able to display more than icons on
sights: a tourist might be looking for a hotel room, a restau-
rant or even for a �at to rent or buy. All this information
could be supplied by one all-encompassing information ser-
vice or by several services providing information data. If the
map service is designed as a monolithic service that can only
co-operate with one other service, it cannot display points of
interests provided by other services. This could be solved by
several monolithic map services, where each map service dis-
plays another kind of information. Another way to solve the
problem is to re-design the map service. Functionality and

data would be split – the map service could co-operate with
services that provide two data types: location data for points
of interest and icons the map should display on the location.
The map service’s functionality is to display the icons on a
given location.

Service-orientation is an approach to split a problem, and
the solution to this problem, into several independent and au-
tonomous logical entities, or services. An SOA consists of
services that encapsulate functionalities. An SOA does not
depend on an operating system, a programming language or a
certain transmission protocol. We now discuss the main prin-
ciples in SOA: (1) service re-usability, (2) service contracts,
(3) loose coupling, (4) service abstraction, (5) service com-
position, (6) service autonomy, (7) service statelessness and
(8) service discoverability (see [7]).

(1) Service re-usability means that one service’s in-
terface should not be tailored to another service. Service
interfaces should be designed so that each service may inter-
act with many other services, especially when the underlying
service logic could be needed by several services.

(2) The service contract binds a specific functionality
to a specific service. It defines the service’s endpoint, the
service’s operation, i.e., its functionality, the in- and outgoing
messages and the service’s rules and properties. It also
defines which functionality a message corresponds to.

(3) Loose coupling means that services are not tightly
bound to one another. It prevents that services depend on
each other. Services should be able to collaborate with
several services, or to use several services’ functionalities.

(4) Service abstraction means that a service encapsu-
lates its underlying logic. The service requester does not
need to know how the service performs its functionality. Es-
pecially, the requester does not know whether the operations
were completed by the service provider, or if the provider on

13

process

message

stateless

processed

message receive message

Figure 4: A stateless service. Upon receiving a message, the
stateless service is stateful, until it has finished processing of
the message.

its part used other services.

(5) Service composition implies that a service can use
other services to provide its functionality. A service provider
may request other services, and combine them with its
operations into a new service. Service composition requires
service re-usability, and at the same time it enhances it.

(6) Services are autonomous or self-governed and
do not depend on another service. However, the service
designers have to balance service autonomy against service
granularity and against service composability. Service
granularity and service composability can bring forward a
service’s dependence on other services, .

(7) Services are stateless, unless they receive, send or
process a message. When a service receives a message, it
is stateful, until the message has been processed, as shown
in Figure 4. Service statelessness is useful to prevent that
the service is blocked by a task, e.g., while waiting for a
requested service. Statelessness enhances service re-usability
and system scalability. To acquire statelessness, the messages
between services have to be almost self-describing. They
need to carry some information for the receiver as to how the
message content should be processed, i.e., carry some kind of
state information.

(8) Services are discoverable. This means that an SOA
provides ways for a service to know about, locate and contact
other services. This helps to avoid redundant services and
enhance service re-usability. Service discoverability can be
achieved through UDDI service registries, or service reposi-
tories.

An SOA consists of cooperating services and a service
repository. A service is offered by the service provider and
requested by the service client. The service repository is a
central point in the SOA. Services belong to a service provider
that is called their owner. Services have a simple, well defined
interface that helps avoiding artificial dependencies, and en-
ables loose coupling [34].

Services register with a repository, thus advertising their
services. Whenever a service needs another service’s func-
tionality, it can find this service via the repository. A Univer-
sal Description Discovery and Integration (UDDI) registry or
service repository provides

Service
Repository

5

8 Service Call

9 Response

5 Response

4 Service Call

10 Response

7 Service Location

1 Register

2 Look up services

3 Service locations

1 Register

1 Register1

6

Service A Service B

Service C Service D

Service Call

Register

Look up service

Figure 5: Service interaction in an SOA

• White Pages providing general information on service
providers (business), such as the business name, descrip-
tion, contact data – the White Pages answer the question
“Who am I”?

• Yellow Pages classifying the service provider, or the ser-
vices – the Yellow Pages address the question “What do
I offer”?

• Green Pages offering technical information on the ser-
vices, i.e., the technical specification and the service ad-
dress – the Green Pages provide instruction on “how to
call me and my phone number”

In an SOA, the service repository publishes the yellow pages
in which service providers announce their services and the of-
fered functionalities. The white pages can be referred to when
general information on the service provider is needed. The
green pages are useful for programmers of other services that
should co-operate with an existing service. White and green
pages are stored by the UDDI service repository. Whenever a
service disconnects, its customers – i.e., the service requesters
– have the possibility to look up another service provider in
the repository.

However, if a service provider fails for some reason, and
does not disconnect properly, its customers can wait indefi-
nitely. The SOA approach does not require the customers to
stop waiting. In a worst case scenario, they will wait, although
other service providers offering the same functionality may be
available. When a service has found another service providing
the expertise needed, the requesting service will typically col-
laborate with the service provider, without checking whether
a new, possibly better service provider has registered with the
repository in the meantime.

Figure 5 shows the example interaction between four ser-
vices and a service repository. In Step 1, the services register
with the service repository. Service A needs external exper-
tise. It asks the service repository which service or services
can solve its problem (Step 2). The repository responds with a
message containing the service locations of services B and C
(Step 3). The repository recommends these services because
they registered with the service repository, and their service

14

contracts fit service A’s demands. In our example, service A
calls service B and service C, in Step 4 and 5. Service B
replies in Step 5, while service C cannot reply immediately.
Service C submits a service lookup to the service repository
in Step 6. The service repository replies with service D’s lo-
cation (Step 7). In Step 8, service C calls on service D. After
service D has replied (Step 9), service C can reply service A’s
service request (Step 10). Whenever service A needs the ex-
pertise provided by services B and C from now on it will call
them directly, without asking the service repository if other
services are available.

In an SOA, the typical communication pattern mostly is
call-response, i.e., the requester calls a service and waits for a
response. SOA mostly apply synchronous communication.

The messages between services should describe the call-
ing service’s problem, i.e., what it wants the called service to
do, but not how to do it [34]. An SOA is easier to expand,
and it is easier to introduce new services if the message are
easy to understand. The message grammar should be extend-
able and allow for additions. Software designed following the
SOA principle can provide a message grammar to assure ex-
tendable messages.

The main concepts of service-oriented architecture ad-
dress issues of how software applications co-operate. More
technical issues such as prompt or local communication are
not necessarily required of an service-oriented architecture.
For example, a service provider does not have to send its re-
ply immediately after it has finished its computations. Ser-
vices communicate and co-operate through a common net-
work. Service-oriented architectures do not define how this
network is organised. Although services located on the same
computer could communicate locally, they could also use an
intranet for communication.

The UDDI repository provides information for service lo-
cation. Whenever a service disconnects, its customers – i.e.,
the service requesters – have the opportunity to look up an-
other service provider in the repository. However, if a service
provider for some reason fails and does not disconnect prop-
erly, the SOA approach does not require the customers to stop
waiting after a certain amount of time. In the worst case, they
will wait forever although other service providers that offer
the same functionality are available. Service-oriented archi-
tecture does not meet our requirements on service manage-
ment.

Services in a service-oriented system are loosely coupled.
They communicate directly with one another, without inter-
mediate, and do not use rule-based subscriptions.
In an SOA, the issue of server management addresses the
question of how the service repository is organised. It may be
distributed, or there may be more than one repository, or there
is only one service repository. Hence, this issue is not solved,
or addressed, by general SOA. Service-oriented architectures
need some way of service classification, otherwise they could
not offer a really working service repository; at least the ser-
vice descriptions would be inconsistent, so that service con-
sumers possibly would not find the service provider they were
looking for. While service-oriented architectures offer rea-
sonable means of service classification, they do not provide

for data or event classification.
Data trustworthiness is not an issue of service-oriented archi-
tectures in general. Designers could conceptualise a service-
oriented system that comprises data trustworthiness. Data
trustworthiness may be provided for through trust services in
an SOA. Similarly, data quality is not addressed by service-
oriented architectures in general. Data quality and evaluation
are not addressed by SOA in general. They may be offered
by services that are part of a particular SOA. Privacy and con-
fidentiality do not pose an issue with SOA per se. However,
they may be important in a certain service oriented system.

5.2 Web Services

Over the last years, Web Services have become an important
way of integrating web-based applications. Web Services of-
ten are mentioned in an SOA context, nevertheless they are
not automatically designed following the SOA paradigms. A
Web Service is offered by the service provider to customers
through the internet, or any other network. The W3C Work-
ing Group [33] defines

A Web Service is a software system designed
to support interoperable machine-to-machine inter-
action over a network. It has an interface de-
scribed in a machine-processable format (specifi-
cally WSDL). Other systems interact with the Web
Service in a manner prescribed by its description
using SOAP messages, typically conveyed using
HTTP with an XML serialisation in conjunction
with other Web-related standards.

A Web Service is self descriptive, i.e., it provides a descrip-
tion of its functionality and information on needed parame-
ters. A Web Service description contains information on a
service’s public interfaces, on what data types are needed in
order to communicate with the service, the transport protocol
and the service location, i.e., the address where the service
can be called. A Web Service description is typically written
in the Web Service Description Language (WSDL). WSDL is
independent of a platform or a programming language.

Web Services are modular. They do not depend on an op-
erating system or a certain programming language, but on an
usable and accessible communication platform like the inter-
net.

As in an SOA, Web Services can use UDDI repositories
for the service discovery process. However, unlike services in
a service-oriented system, Web Services can be tightly cou-
pled as well as loosely coupled. They do not necessarily im-
plement a service-oriented architecture.

Figure 6 illustrates how Web Services interact. Web Ser-
vice A requests Web Service B (Step 1). Web Service B
receives the request in Step 2. B processes the request and
replies (Step 3). Although Web Service A and B are located
on the same machine, the reply is transferred through the net-
work. At the same time, Web Service A sends another request
to Web Service C (Step 4). It then receives B’s answer in
Step 5. C receives and processes the request and replies to it

15

Web service CWeb service A Web service B

Communication Structure

B’s response
5

C’s response

8

A’s request

2

Response

3

6

A’s request

Response

7
Request to B

1

Request to C

4

Figure 6: Web Service interaction

(Step 6 and 7). Some time later, Web Service A receives C’s
answer (Step 8).

Unlike services in a service-oriented architecture, Web
Services are not necessarily loosely coupled. A Web Ser-
vice can use remote procedure calls to invoke other Web Ser-
vices. Similar to SOA, Web Services may enhance service
re-usability. If a Web Service implements a service-oriented
design, it will have a service contract, however not every Web
Service has a service contract. Web Services may, but do
not have to abstract from the underlying logic. Neither are
Web Services necessarily stateless. A Web Service can dis-
cover another Web Service through a request to a Web Service
repository, however, the co-operating Web Service’s address
and technical details as to how the Web Service should be
contacted can also be stored by the calling Web Service.

However, Web Services face several problems. One main
problem concerns the subject of service discovery and inte-
gration. Automated service discovery and integration can be
difficult, as the service description can be interpreted ambigu-
ously [29, p. 42]. Indeed, service discovery, location and in-
vocation are mainly handled by humans and are difficult to
automate [35, p.64]. During the service discovery, the user
may not find the service that meets the requirements best sim-
ply because they do not know enough about the service [24,
p. 162]. If a service disconnects, its partners have to search
a replacement by themselves. Web Services communicate
through a network whose characteristics, such as transmission
times, can be unknown and unpredictable.

Web Services may, but do not necessarily have to use
prompt communication. As with service-oriented architec-
tures, a Web Service could transfer its reply to a request im-
mediately, or it could wait for some time. Web Services usu-
ally are distributed on the network. Even if two co-operating
Web Services were hosted on the same server, they would use
the network for communication, and not communicate locally.

As in service-oriented architectures, Web Services may
use UDDI repositories for service discovery. If a service dis-
connects, its partners have to look for a replacement by them-
selves. The kind of service management we identified where
co-operating services are notified if a service is disconnected
is not an issue of Web Services.

Co-operating Web Services communicate directly with
each other. If two Web Services communicate through an

intermediate, for example, a Web Service that translates the
output from one Web Service into the input format the other
service can process, this intermediate Web Service could of
course use rules to determine the receiver. However, rule-
based subscriptions are not an issue of Web Services in gen-
eral.

Web Services may use a service repository for the locali-
sation of other Web Services. If they use an UDDI repository,
our requirement on server management addresses the issue of
how this repository is managed. On the other hand, a web ser-
vice can locate its co-operation partner through a built-in ad-
dress. Similar to service-oriented architectures, our demands
on server management are not met.

Co-operating Web Services need some kind of shared
or common data classification, otherwise they could not co-
operate. Data trustworthiness and data quality are not issues
with Web Services as such. A web service may provide for
data trustworthiness, or implement a rating mechanism that
helps to ensure data quality. Web Services can provide privacy
and confidentiality. They can also contribute to the violation
of privacy and confidentiality depending on the implemented
functionality.

5.3 Event-driven Architectures
Event-driven architectures (EDA) are another approach to dis-
tributed computing where operations are divided into inde-
pendent logical units that collaborate with one another. The
communication between collaborating applications is indirect
and �exible.

An EDA consists of event publishers and event con-
sumers. The publishers and consumers do not communicate
directly with each other but indirectly through an event noti-
fication system or event manager. Before we go into further
details on EDA, we will define some terminology.

An event is something interesting that happens and can
be observed [28]. The datum that describes the event and rep-
resents it in a computer system is defined as notification or
event notification. However, we use the term event when we
refer to the event notification. We are convinced that the in-
tended meaning will be apparent. We expanse the definition
of event by the notion of an absence event. An absence event
occurs whenever something was expected to happen during a
specified time frame and did not happen, e.g., a theatre ticket
was bought, however, the payment was not received during
the following five minutes, and the purchase was cancelled.

An event producer is software that publishes an event. A
consumer is software that subscribes to and consumes events.
An application can be both publisher and consumer of events.
Publishers advertise the event types with the broker, or event
manager, and publish the events to the broker. Consumers
subscribe to events at the broker. The broker filters incoming
events and forwards them to the subscribers.

The communication between producers and consumers is
asynchronous.

Figure 7 illustrates the transmission of events. In a first
step, event consumer 1 connects to the event manager and
subscribes to event A. The event manager now creates a filter

16

Manager

Event

Event

Producer A

5 advertise event B

7 publish event B 6 subscribe to event A, B

93 publish event A

2 advertise event A

10 publish event C

9 advertise event C

1 subscribe to event A

4 10 filter event A

8 store and filter event B

10 store and filter event A

Event

Consumer 1

Event

Consumer 2
Event

Producer C

Event

Producer B

Figure 7: Event Producers and Consumers in an Event-driven
Architecture

from the subscription. The filter specifies that events of type
A should be forwarded to event consumer 1. In Step 2, event
producer A connects to the event manager and advertises that
it publishes event A. Event producer A then publishes event A
in Step 3. The event manager applies the filter to the incoming
event and forwards it to event consumer 1 in Step 4. In Step 5,
event producer B advertises event B. Event consumer 2 then
subscribes two events, event A and B (Step 6). Again, the
event manager creates a filter from the subscriptions. Event
producer B publishes event B (Step 7). Event consumer 2 is
unreachable when the event manager tries to filter event B,
so that it stores the event and filters it when B is reachable
(Step 8). In the following Step 9, two things happen at once:
event A is published, and event producer C advertises event C.
In Step 10, the event manager filters event A, i.e., it forwards it
to event subscriber 1 and stores it for the disconnected event
subscriber 2. At the same time, event producer C publishes
event C.

EDA can easily adapt to asynchronous or unpredictable
environments, as an event consumer does not depend on a
certain event producer. Event-driven design and development
have several advantages, the most important ones are that
new and existing applications can easily be (re)composed and
reconfigured, and that existing applications and components
may easily be re-used. EDA do not comprise services. How-
ever, if we – in this case – regard the applications that form
an event-driven system as services, the event-driven approach
does not involve replacement of a failing or disappearing ap-
plication. EDA do not necessarily rely on a server. The event
manager, an EDA component that could be compared to a
server, can be decentralised. Therefore, EDA does not meet
our requirements in this respect. The events need to be clas-
sified in some manner, so that producers and consumers can
communicate, in the first place. The actual decision of how
the events are classified is left to the system designers. EDA
meets this requirement.

5.4 Comparison of SOA and EDA
Event-driven and service-oriented architectures are two dif-
ferent architectural styles for the co-operation of applica-
tions. We compare them in this section, and elaborate on their
strengths and weaknesses. Table 2 summarises the results of
our discussion.

In event-driven systems, applications react to incoming

events. Consumers and producers are extremely loosely cou-
pled, nearly decoupled. They communicate indirectly with
each other via the event manager. This advances the �ex-
ibility of the whole system. Services react to a service re-
quest from another service in a service-oriented system. They
communicate directly with each other. Even though they are
loosely coupled, service-oriented systems are not as �exible
and do not adapt to changes in the service environment as
event-driven systems. We argue that event-driven systems are
more suited for a highly dynamic environment of changing
services, such as the TIP system.

In service-oriented systems, services share a service con-
tract. This provides for a certain degree of reliability – ser-
vices know who their co-operation partners are. Event-driven
architectures do not provide for something like a service con-
tract per se. Applications in an event-driven system have to
rely on the fact that the event notification middleware only
allows reliable publishers. The service contract of service-
oriented architectures provides several advantages that event-
driven architectures lack. TIP would benefit from the inclu-
sion of service contracts.

The service discovery process in a service-oriented archi-
tecture uses a service repository where services look up col-
laboration partners. In event-driven systems, event publishers
simply publish their events to the event manager. The event
consumers subscribe to their needed events at the event man-
ager even if there is no event publisher who publishes this
event. Both approaches have advantages: in an SOA, a service
can only request services from registered publishers, however,
once it has selected a co-operation partner it will not neces-
sarily select another. In EDA, the event manager forwards
events to the respective subscribers. Even if a publisher regis-
ters with the event manager after a subscriber has registered,
the publisher’s events will be forwarded to the subscriber.

We propose that subscribing services register for the
event types needed if they are available. Services may spec-
ify certain conditions on the publisher and the events, such
as the quality of data, or a specific data format. Subscribing
services are notified whenever a new publisher registers with
the middleware, so that they may adjust their subscriptions.
This ensures that subscribers always subscribe the best events
available.

Both service-oriented and event-driven architectures fa-
cilitate service abstraction. In an EDA, the event consumers
do not necessarily know which event producer actually pub-
lishes the events. In a service-oriented architecture, services
know their co-operation partners, however, they do not know
how their co-operation partners solve the problem. Service
composition is a main principle of SOA, but service composi-
tion is feasible with EDA, as well. Service-oriented systems
enable the autonomy of services. In an EDA, some event pro-
ducers may be autonomous, however, the event consumers de-
pend on event producers. In EDA, applications are stateless,
as services should be in a service-oriented architecture.

17

needed by characteristic of
TIP 3 EDA SOA

event-based communica-
tion

++ ++ −−

extremely loose coupling ++ ++ −−
�exibility ++ ++ −−
communication style indirect and asynchronous indirect and asynchronous direct and synchronous
reliability ++ −− ++
service discovery process −− ++
service re-usability ++ ++ ++
service abstraction ++ ++ ++
service composition ++ ++ ++
service autonomy ++ ++ ++
service statelessness ++ ++ ++

Table 2: Comparison of the characteristics of event-driven and service-oriented architectures and the demands of TIP 3. ++
indicates that the architecture provides the characteristics or that TIP needs it. −− shows that the respective architecture does
not offer the characteristic. - indicates that the characteristic can be achieved with the respective architecture, but that it is not
built-in.

5.5 Summary of the Comparison
In this section we have discussed service-oriented architec-
tures, Web Services and event-driven architectures. Service-
oriented architectures and event-driven architectures share
several characteristics that the TIP system would benefit from.
The following section shows how we have integrated service-
orientation into an event-driven system.

6 Architecture and Design of TIP 3
TIP consists of several co-operating software applications.
Event-driven and service-oriented architectures are two ap-
proaches as to how software applications can co-operate.
Both approaches have their advantages and disadvantages as
we discussed in Section 5. A composition of the two com-
bining the advantages of service-oriented architectures with
those of event-driven architectures meets the requirements on
a future TIP architecture. This section discusses the architec-
ture and the new design for TIP 3.

6.1 The Architecture of TIP 3
The TIP 3 architecture is a peer-to-peer architecture. It is
shown in Figure 8. A TIP 3 peer may either be a client peer
that exchanges events with other peers, or a server peer. We
refer to the server as server peer and to the client as client
peer to distinguish between server and client. The client peer
provides services and user interface to the services. The client
peer provides a location service. The server peer provides ser-
vices, such as the information service, or other services that
access the TIP database. When the client peer is connected
only to a server peer and not to other client peers, the archi-
tecture resembles a client-server architecture.

A TIP 3 peer hosts several services. The services commu-
nicate indirectly via the local broker. They are administered
by the observer. Auxiliary services offer functionalities such

as converting data from one data format to another. Every ser-
vice registers to the local broker, i.e., it advertises the events
it publishes, and subscribes to the event it needs. Later on,
it publishes its events to and receives events from the broker.
The broker provides the functionality of a publish/ subscribe
middleware. It filters the events and forwards them to the re-
spective subscribers. The observer observes the connection
between broker and services and other brokers respectively.
The observer notifies the broker when a service or peer dis-
connects. It also re-evaluates and adjusts a service’s subscrip-
tions if necessary.

TIP 3 services are classified into service categories. Ser-
vice categories are a new concept to TIP. A service category
describes the functionality a service provides. A service cat-
egory groups services, so that services with similar function-
ality belong to the same service category. Different informa-
tion and recommendation services belong to the “informative
service” category whereas map services belong to the “map
service” category. A good example is the “map service” cat-
egory. Two map services A and B both offer a user interface
where the user sees their current location on a map. Map ser-
vice A offers basic features: the map displays sights; the user
can zoom in and out from the map, i.e., change the map’s
scale. Map service B offers the same features as map service
A and some additional features: the user can also select a new
location, e.g., by dragging the map; the user can select a start
and an end point for a route planner that map service B co-
operates with. Both map services belong to the same service
category.

Similarly, TIP events are classified into event types. An
information service subscribes to location events. Whenever
it has processed a location event it publishes an information
event. Event types are classified into event categories. When
the information service publishes a location event, this lo-
cation event and the information events belong to the event
category “information events”, enabling subscribers to differ-
entiate between location events from different publishers and

18

User User

Network

Service

Service

RulesConditions

Advertisement
description

Auxiliary
Observer

service

TIP

Databases

Broker

Server peer

Service

Service

RulesConditions

Advertisement GUI
description

Client peer

Auxiliary
Observer

service

Broker

Service

Service

RulesConditions

Auxiliary
Observer

Advertisement

service

GUI
description

Broker

Client peer

Figure 8: The TIP 3 architecture. The main components are the services, the TIP databases and the broker. Services provide
a service description, an advertisement, a set of functional conditions and of subscription rules. The broker provides auxiliary
services and the service observer. The observer’s task is to evaluate the service rules and conditions, and to monitor the
availability of services and external brokers. The auxiliary services convert between data formats, e.g., from metric to imperial
units of measurement. The TIP databases are located on the server peer.

to treat them accordingly. A location event belonging to the
“information event” category is treated differently by the map
service than a location event belonging to the “location event”
category, for example.

Figure 8 shows the TIP 3 architecture. We start with a
short discussion of a TIP 3 peer. We then discuss TIP 3 ser-
vices and their attributes before we discuss the observer and
the broker.

A TIP 3 peer accommodates services, the broker and the
observer. The TIP 3 server peer additionally accommodates
the TIP databases. The TIP 3 client peer does not necessarily
accommodate a database. It provides a user interface, so that
the user can interact with the TIP 3 services. Most services
on the TIP 3 client peer provide a graphical user interface,
so that the user can interact with the TIP system, e.g., click
on an information icon on the map. The main difference be-
tween client peer and server peer is that the client peer does
not provide a database.

A TIP 3 service offers functionalities, e.g., sights on loca-
tions and information about the sights. A service may publish
events and subscribe to events. Event publishers provide an
advertisement. Event subscribers provide a set of functional
conditions and subscription rules. Every service provides a
service description.
A service does not locate co-operation partners. It simply is
subscribed to the events needed to provide its functionality.
Services are grouped into service categories. For example,
services providing information on sights belong to the “infor-
mative service” category while services offering map tiles and
services displaying the map tiles belong to the “map service”
category.
A TIP service provides a service description, an advertise-
ment, functional conditions and subscription rules.

The service description provides information about the ser-
vice. It specifies what service category the service be-
longs to. It defines the event categories used by the ser-
vice, as well as the event types it publishes. Furthermore

19

it informs about the quality of the published data, the
service’s maximum latency and the service’s maximum
failure rate. The service description also informs about
the owner of the service and provides other administra-
tive information.

The service advertisement tells about the data published of
the service. It defines the event and service category,
the event type and the quality of data. A service may
provide several advertisements, one for each event type
that it publishes.

The service conditions specify a subscriber’s functional pre-
conditions. The service defines the event it requires
to be able to supply its functionality, e.g., location
events. It may further specify what kind of service
should publish the data, i.e., the publisher’s service
category. The subscriber can also decide if the pub-
lisher should be a local service, i.e., a service that
is located on the same device, or an external ser-
vice. The information service, for example, would re-
quire location data from a location service. If the ser-
vice’s pre-conditions are not satisfied, the service can-
not provide its functionality. A service condition is a
tuple <data category, service category,
local publisher, remote publisher>.

The subscription rules define these conditions in more
detail – the required data format, quality of service and,
if necessary, the publishing service, amongst others.
Rules enable the service to prioritise certain event types
over others or to choose between several publishers.
Rules are grouped into groups of three. In a group,
the rules are prioritised: a priority can be set on high,
medium or low. Rules with high priorities are evaluated
before those with lower priorities. If the rule with a
higher priority has been evaluated successfully, i.e., the
evaluation resulted in a subscription, rules that have
lower priorities and belong to the same group are not
evaluated. This gives the service the opportunity to
choose between different event types from the same
event category, or between different data qualities.
Subscription rules are a tuple <priority, event
type, event category, quality, exclu-
sive subscription, service category
of publisher, publisher, local, ex-
ternal, allowable latency, maximum
failure rate>.
The event category is needed to select the subscribed
event type if the same event type is offered by several
services: location data may, for example, be published
by the location service, and by the information service.
A service that is only interested in the user’s current
location will subscribe to location data from the location
category. Another service interested in location data
from sights, would subscribe to location data from the
information category.
When a service subscribes to events from only one
publisher we call this an exclusive subscription. For

example, the map service should only subscribe to
location data from one location service, and not from
several location services at the same time. The map
service would then have to name its favourite publisher.
The service category of the publishing service can be
named as well. The map service subscribes to location
data both from the location service and the information
service. The information service subscription is not
exclusive, however. The map service then defines in a
rule that it wants to subscribe to events that are published
by services belonging to the category of information
services.
Services can also specify if they want to subscribe to
data generated locally, or if the data should be computed
remote, e.g., on a client. This is needed for location
subscriptions, amongst others. The allowable latency
and the maximum failure rate specify features of the
publishers, and prevent that a service subscribes to
publishers that provide poor quality.

The observer evaluates the service conditions and rules. It
monitors the connection to services or brokers, i.e., it moni-
tors if services or brokers have been disconnected. In case of
disconnection the observer removes the advertisements and
subscriptions from the disconnected service or broker.
Although the observer may behave like an independent actor,
it is located at the broker. The observer is called during the
service startup routine. A service delivers its advertisements
and subscription rules to the observer. The observer then se-
lects some event types from the available types at the broker,
i.e., from the event types other services have advertised, us-
ing those rules. When a newly registered publisher advertises
its data, the subscriptions may be changed if needed or pos-
sible. When a publisher disconnects, the subscriptions are
re-evaluated as well.

When a service wants to subscribe to data not available
in the requested data format, the observer requests that the
broker starts an auxiliary service that can convert the available
data format into the requested.

The broker or event-manager provides a communication
interface for local services and for other brokers. It connects
local services with one another and connects to external bro-
kers. The broker receives the events from publishers, filters
them and forwards them to the respective subscribers. The
broker starts auxiliary services if needed. The broker keeps
track on which service publishes what data type, and which
service subscribes to what data type.

The auxiliary services convert from one data format to an-
other. They are managed by the broker, i.e., if an auxiliary
service is requested, the broker starts it.

The publisher and subscriber index are used by the bro-
ker to keep track on what service publishes which data, and
who subscribes to which data. The subscriber index is ac-
cessed during the filtering process. The publisher index is

20

accessed during the evaluation of rules and conditions.

The TIP databases are typically located at the TIP 3 server
peer. They store geo-spatial data, information on sights and
user data. Other services access the databases through a
database service.

6.2 The Design of TIP 3
This section introduces the design of TIP 3. We then brie�y
discuss the design constraints.

6.2.1 The Design

The main actors in TIP 3 are the brokers, the observers and the
services. The actors take part in several interactions: When
a service is started, it registers with the broker. Publishing
services advertise their events to the broker and then publish
events to the broker. The broker filters events and forwards
them to subscribing services. Subscribing services transmit
their functional conditions and their subscription rules to the
broker. The observer evaluates a service’s functional condi-
tions and stops the registration process if the conditions are
not satisfied. The observer also evaluates a subscriber’s sub-
scription rules and subscribes the service to events. A service
disconnects and unregisters from the broker. The observer
may also unregister a service from the broker if this service is
disconnected without unregistering.

When two TIP 3 peers connect, brokers interact with
other brokers. They advertise their events and subscribe to the
other broker’s events. They forward events to one another and
receive events from remote brokers. The observer notifies the
broker when a remote broker disconnects, so that the remote
broker’s advertisement and subscriptions are removed. The
observer re-evaluates the subscribing services’ subscriptions
when a remote broker has connected or disconnected, so that
services always are subscribed to the best available events.

Service registration When a service is started, it registers
with the broker located on the same device. We call this bro-
ker the local broker. During the registration process, the ser-
vice first publishes its service description to the broker. When
a service subscribes to events, its functional conditions are
evaluated in the next step. This ensures that a service is only
registered if the absolutely essential event categories are avail-
able. The event categories have to be known to the service
providers so that the service conditions can be formulated
properly. If the conditions are satisfied, the service is sub-
scribed to the best possible event types. For this purpose, ev-
ery subscribing service brings a set of subscription rules. A
subscription rule specifies the characteristics of an event type
the service needs to subscribe to. It also delivers information
about the publisher. In case the service can co-operate only
with a special, named service the subscription rule directly
identifies the publisher. When a subscribing service also pub-
lishes data, it publishes its advertisement to the broker after
the evaluation of the subscription rules. The registration pro-
cess of a subscribing service is then completed.

Location

service

Information

service
1

2

3

4

Broker Map service

5

Figure 9: Interaction of services in TIP 3. When the location
service publishes a location event to the broker, the event is
forwarded to the subscribers. The information service pro-
cesses the location event and publishes an information event
that is filtered and forwarded to the map service. For reasons
of simplification the broker middleware in this figure unites
both the local and remote broker as well as the network be-
tween them.

When the service only publishes events, it transmits its adver-
tisement directly after the service description. The registra-
tion process is completed directly after the advertisement.

Interaction between services TIP 3 services communicate
and co-operate with each other. Figure 9 illustrates how TIP 3
services interact. When the location service publishes a new
location event to the broker in Step 1, the broker filters it and
forwards it to every subscribing service (Step 2). The sub-
scriber, e.g., the map service or information service, reacts to
the incoming event according to the designers’ definition. The
map service may centre the map at the received location. The
information service may process the location in Step 3 and
may publish an information event (Step 4). The map service
subscribes to information events. Therefore the broker filters
the information event and forwards it to the map service in
Step 5, enabling the map service to display sights on the map.

Service deregistration When a service disconnects from
the broker, the broker removes the service’s advertisement and
subscriptions. Services may announce to the broker that they
disconnect. If the service disconnect without announcement,
the observer notifies the broker. The broker then removes
the advertisement and subscriptions. The subscription rules
of subscribing services are re-evaluated and subscriptions are
updated if necessary.

Broker registration Services on the TIP peers communi-
cate indirectly via their respective broker. When two brokers
connect (see Figure 10), they first exchange advertisements,
i.e., they exchange information about the event types that local
services published and also the service descriptions from the
local services. In Step 2, each broker examines the received
advertisement and notifies the observer. The observer evalu-
ates the subscription rules from the services (Step 3) and if
necessary adjusts the service subscriptions (Step 4). The bro-
ker then submits its subscriptions to the other broker and re-
ceives the subscriptions from the other broker (Step 5). From
now on, published events are forwarded to the external broker
if it has subscribed to them.

21

Observer

Observer Rules

2 notify

1 advertise

5 subscribe

3 evaluate advertisement

3 evaluate advertisement

2 notify

4

4

Broker

Broker

Rules

subscription

subscription

Figure 10: When two brokers connect, they first advertise
their local events to one another. The observers then evalu-
ate the advertisements and re-evaluate the local services’ sub-
scription rules.

Interaction between brokers When a broker has con-
nected to another broker and both brokers have subscribed to
event types from one another, one broker forwards incoming
events to the other if the latter has subscribed to them. Bro-
kers may forward events in a multi-hop peer-to-peer network.
This scenario could be further explored.

Broker deregistration Broker A may announce to a con-
nected broker B that it disconnects. Broker B then removes
broker A’s advertisement and subscriptions. When broker A
simply disconnects without a prior announcement, broker B
is notified by its local observer. Broker B removes broker
A’s advertisement and subscriptions. The subscription rules
of subscribing services are re-evaluated and subscriptions are
updated if necessary.

User interaction with TIP 3 There are two ways the user
can interact with the TIP 3 system: active or passive. (1) They
can actively use the TIP user interface, e.g., click on icons or
click on the map. When the user clicks on an information
icon on the map, the map may publish an information event
to the broker. Thus, user input can result in a new TIP event.
(2) When the user moves, the location service publishes a new
location event to the broker. We call the second kind of inter-
action “passive interaction” because the user does not actively
interact with the TIP 3 user interface, but simply moves.

6.2.2 Design Constraints

The design of TIP 3 does not address issues as how services
may contact the broker, or how a broker connects to another
broker. We disregarded these technical aspects of TIP. We
also assume that the event types, and event and service cate-
gories and their respective descriptions are known to the ac-

tors. These simplifications are made for reasons of modelling.
We revisit them in Section 9.

6.3 Service-orientation and Event-drivenness
in TIP 3

TIP 3 integrates service-oriented aspects into an event-driven
architecture. The TIP 3 services are extremely loosely cou-
pled, although loose coupling is possible if necessary. The
communication between services, between services and bro-
ker and between brokers is event-driven, as services react to
incoming events and publish events. This enhances the �exi-
bility of the TIP 3 system: de-coupled services can easily co-
operate with several services, without having to locate them
first. When a publisher connects or disconnects, the subscrip-
tions are re-evaluated, and adjusted if necessary, resulting in
subscribers receiving events from alternative event publishers.

Although the communication style is asynchronous and
event-driven, important aspects from service-oriented archi-
tectures are maintained. The service conditions and rules
together with the advertisements and service description are
used in stead of the service contract from service-oriented
architectures. Subscribers can define important features the
subscribed events should meet. The service owner and the re-
sponsible for the service are defined in the service description.
This enhances the reliability of TIP 3 services. The service
conditions specify the functional requirements from a service
that are typically defined in the service contract as well. The
service type is defined via the service category. TIP 3 inte-
grates service-oriented aspects, such as the service contract,
into an event-driven architecture.

6.4 Comparison of TIP 3 and TIP 3*
TIP 3* offers a simple event-driven middleware that services
subscribe with and publish their events with. The TIP 3*
middleware forwards events to the subscribers. TIP 3*
services are loosely coupled, however, once they have
selected a co-operation partner, the services remain coupled
. TIP 3* cannot react and adapt to a dynamic environment
of changing services. TIP 3 addresses this deficiency. It
provides an event-driven middleware. The design enables
service-orientation through the service conditions and rules,
advertisements and the service descriptions. In contrast to
TIP 3*, TIP 3 can easily adapt to changing service availability
and a highly dynamic set of available events. The services’
subscription rules ensure that TIP 3 services always subscribe
to the best possible set of events available.

Figure 11 shows how the difficulty and complexity in TIP
and in the development of TIP have changed. In the first ver-
sions, the implementations were not easily extendable. TIP 3*
was implemented in [26] as a small prototype, however, the
main purpose was to provide a framework for the implemen-
tation of caching mechanisms. Our design includes service
conditions and service rules, so that TIP 3 provides major
service-orientated principles. On the one hand, this facilitates
the co-operation of services. On the other hand, the design

22

analysis,

formal model

extended design &small

prototype

design &

prototype
design & implementation

of modelprototype

TIP 2:
TIP 3:

TIP 3:TIP 1: TIP 3*:

Figure 11: The difficulty and complexity in the development of the TIP system have grown bigger with each new version. The
size of the boxes corresponds to the complexity of the problem.

and especially the examination and the analysis of the design
are more complex than in previous versions of TIP as the ser-
vices’ interactions have become more complex.

We have presented a new design for TIP 3 that easily
adapts to a dynamic environment. We have added several
components to the TIP architecture, such as the observer, the
functional conditions, and the subscription rules for services.
They contribute both to the high adaptivity and to the en-
hanced service-orientation of TIP 3.

7 Methodology
In this section, we discuss methods of modelling software sys-
tems. There are several ways of exploring and analysing soft-
ware design and architecture. One of them is examining and
analysing formal models. A model can be used to detect �aws
of existing software systems [9]. A formal model can also be
used to ascertain that a design has certain properties, or that a
design solves the problem posed.

Section 7.1 begins with an informal definition of the term
formal model. This is followed by an introduction to mod-
elling terminology and the modelling tool UPPAAL4. Here
the terms system state and trace are discussed, using exam-
ples to illustrate the concepts. We show how a simulation
helps to understand the model’s behaviour. We then examine
if our example model satisfies a simple property, and explain
what verification means in the context of formal modelling.
Section 7.2 explains why we decided to implement a formal
model instead of a software implementation. The last sec-
tion gives a more detailed overview on UPPAAL and its mod-
elling and query languages. We discuss timed automata, their
semantics and the semantics of networks of timed automata
in detail. We explain how UPPAAL extends timed automata.
We show how processes can communicate with each other.
We explain the different types of queries that UPPAAL offers.
Lastly we demonstrate the different effects of urgent and com-
mitted locations with an example. This section serves as back-
ground to Section 8, where we present and discuss the model
of the TIP 3 architecture.

7.1 Introduction to Formal Modelling
Formal modelling is an acknowledged method to examine and
analyse software systems [1].

A formal model of a system represents the system at-
tributes and characteristics, using a specified modelling lan-
guage. A formal model can be used to simulate and thereby

4http://www.uppaal.com

explore the system behaviour. A modelling tool like UP-
PAAL [2–4, 23] helps developing formal models of a system.
UPPAAL provides several utilities: a modelling language, a
user interface to create the model, means for automated sim-
ulation, a query language that helps formulating properties,
means for automated verification and automatically generated
traces if the verification of a property fails. We explain the
meaning of the different terms later in this section.

UPPAAL uses timed automata, or clocked automata, as
modelling language. A timed automaton is a finite state ma-
chine extended by clock variables. A finite state machine
consists of several vertices, here called locations, and edges
between locations. A clock variable evaluates to a real num-
ber. All clocks advance synchronously. Clock variables can
be used in conditions on edges and locations. Every timed
automaton represents a process. In UPPAAL, concurrent pro-
cesses are represented by a network of several timed automata
that run in parallel. Whenever we use the term system in this
section, it refers to such a network of timed automata with
variables and other extensions to timed automata offered by
UPPAAL. The theory of timed automata and the extensions
that UPPAAL provides are discussed in more detail in Sec-
tion 7.3.
The state of the system is defined by the location of each au-
tomaton, the clock constraints for every location, and the vari-
able values. When an automaton fires an edge, separately or
synchronously with one or several other automata, the system
state can change.
A trace or state trace is a sequence of system states. One sys-
tem state can lead to several different state traces, as is shown
later.
We now discuss these concepts with the help of a simple
model of a sender and receiver.

Example

Figure 12 shows a small system that models a
sender and a receiver. Sender and receiver run in
parallel. The sender is modelled in Figure 12(a).
It has two locations, IDLE and PUBLISHING. The
initial location of an automaton is marked with a
double circle. In both automata the initial location
is named IDLE. Figure 12(b) shows the receiver. It
has three locations, IDLE, RECEIVING and ERROR.

When the sender initiates the sending of a
message, it fires the edge that is labelled
initPublishToBroker!. Thereby it syn-
chronises with initPublishToBroker?,
switches to the PUBLISHING location and starts to

23

PUBLISHING

IDLE

publishedToBroker!
sent++

initPublishToBroker!

(a) Sender.

ERROR

RECEIVING

IDLE
timeout >= 10

initPublishToBroker?

timeout = 0

timeout < 10
publishedToBroker?

(b) Receiver.

Figure 12: A simplified example of sender and receiver.

send. The sender uses a binary synchronisation
channel to synchronise and communicate with
the receiver. Binary synchronisation channels
are a pair, initPublishToBroker! and
initPublishToBroker?, where the exclama-
tion mark indicates the initiating process, and the
question mark the responding. Only the sender can
start the synchronisation, because it fires the edge
labelled initPublishToBroker!.

The receiver switches to the RECEIVING location.
The system state changes, from the state where
both automata are in their initial locations, to the
state where the sender is in the PUBLISHING lo-
cation and the receiver in the RECEIVING location.
In the synchronisation, the receiver’s clock is reset
to 0. The receiver now waits to synchronise with
publishedToBroker!. However, if the sender
does not finish the transmission during a specified
interval (10 time units in our example), the receiver
detects an error. It switches to the ERROR location
when the timeout of more than 10 time units has
been detected by the clock timeout and the re-
ceiver consequently fires the edge that is labelled
with the condition timeout ≥ 10. In our exam-
ple, one of several possible traces consists of the
state sequence (IDLE, IDLE), (PUBLISHING, RE-
CEIVING), (PUBLISHING, ERROR), another is the
state sequence (IDLE, IDLE), (PUBLISHING, RE-
CEIVING), (IDLE, IDLE), (PUBLISHING, RECEIV-
ING). We have omitted the clock variables in the
examples.

During the examination of this system, the designers need
to ensure that the sender always sends the whole message, i.e.,
that the sender always reaches the IDLE location again. Re-
formulated, this property is “A message transmission is al-
ways completed”. This cannot be guaranteed in our model.
The receiver has the possibility to detect timeouts with its
clock and to detect transmission errors with the help of its
clock. In our example, this can of course be detected eas-

ily. However, f the model is more complex, a property may
not be checked simply by sharp scrutiny. The property has
to be checked by using an algorithmic model checking tool
that verifies the model, i.e., it examines if the model satis-
fies one or several properties. Thus model verification means
that a model checking tool examines and analyses a model
with respect to specified properties. The model checking tool
examines every possible reachable system state for property
satisfaction.

7.2 Formal Model vs Implemented Prototype
Modelling a software design and implementing a prototype of
the same design are different ways to explore, examine and
analyse the design. We decided to implement a formal model
of the TIP architecture. Such a formal model describes the
system characteristics accurately [11]. A model helps the de-
signers to detect and identify the properties of a ubiquitous
system [12]. A model makes it easy to explore alternative de-
signs. Model checking tools typically provide some means
of simulation, so that traces can be generated and evaluated.
These traces can be used for scenario development. A model
has to be detailed enough so that properties can be checked
and traces can be generated. System states that were not an-
ticipated in the scenarios or design can be detected through
the traces of unsatisfied properties. New scenarios can be de-
veloped or the design can be adapted. A software implemen-
tation can be analysed with software testing tools. However,
the analysis can only examine a limited number of scenar-
ios that hopefully cover all significant cases. Model checking
tools are an accepted and recognised automated algorithmic
technique.

TIP is a location-aware mobile tourist information sys-
tem. It is composed of several extremely loose coupled ser-
vices. Service availability cannot be taken for granted. While
the user moves, they can walk in and out of the area where a
service is available (cf. Figure 13). The set of available ser-
vices changes dynamically as the user moves. Services sub-
scribe and unsubscribe, advertise and unregister. This feature,
although desired, complicates the analysis and examination of
the architecture [1] and of the behaviour of a single service.
A single service can be examined alone, however, the exam-
ination and analysis of service co-operation in a dynamically
changing publish/subscribe system is difficult and can soon
become quite complex. A model of the publish/subscribe
middleware that connects publishers and subscribers can help
to understand the behaviour of the system [1]. From the point
of view of a service designer, a model of the TIP middleware,
such as we provide, can be more than helpful to fully under-
stand the behaviour of the service.

TIP is a ubiquitous system. Ubiquitous systems are com-
plex to design [12]. A model allows the designer to assess
how a decision or change of design affects the system. The
analysis of a model gives the developers the chance to change
the design before implementing the prototype, thereby saving
time and money. The system analysis should consider the in-
teractions between user and system, the user experience, the
usability of different hardware devices and software usability.

24

Figure 13: The movement of the user is shown in the drawn
line. While they move, the user first comes into the area of
service A. They walk out of the reach of service A and into
the availability of service B. After they have walked out of the
area of service B, they walk into service C, and then into the
area of service B. They then leave the reach of service C.

Problems The model scalability may pose some problems.
Memory and time limitations of the UPPAAL model check-
ing tool make it difficult or impossible to examine and verify
large models as thorough as necessary. A general problem
is the mapping of informal formulated properties to a model,
and the mapping of the model to an implementation.
The modelling process is an extra step in the system develop-
ment process that may induce higher costs and that may take
more time. With a prototype implementation, the user inter-
action can be examined. For instance, the frequency of how
often features are used, can be determined. This cannot be
obtained with a model.

7.3 UPPAAL
UPPAAL is a tool-box for the verification of real-time systems.
It is being developed by Uppsala University and Aalborg Uni-
versity. [2] give several examples where UPPAAL has been
used to check systems, such as an audio/video protocol [13]
and a commercial field bus protocol [6]. In this section, we
introduce UPPAAL’s modelling language and query language.

7.3.1 UPPAAL's Modelling Language

UPPAAL uses timed automata to model processes. We now
define the syntax and semantics for timed automata, follow-
ing [2], before introducing UPPAAL’s extensions to timed au-
tomata.

A timed automaton is a finite directed graph with a set of
conditions over integer and clock variables and resets of clock
variables. C denotes a set of clocks, and B(C) is the set of
conjunctions over simple conditions, such as x� c, x− y� c,
where x, y ∈ C, c ∈ N, and � ∈ {<,≤,≥, >}.

De�nition 1: Timed Automaton [2] A timed automata is a
tuple (L, l0, C,A,E, I), where

L denotes the set of locations,

l0 is the initial location,

C denotes the set of clock variables,

A is a set of actions, co-actions and τ -actions,

E ⊆ L×A×B(C)× 2C × L is the set of edges that con-
nect locations, with the assigned actions, conditions and
the set of clocks that are reseted when the edge is fired,
and

I : L→ B(C) assigns invariants to locations.

The semantics of timed automata describe the transition
relation between states. There are two types of transitions, as
Definition 2 shows: (1) the delay transition and (2) the action
transition. In a delay transition, the automaton does not switch
to a new location. It stays in the current location, but the
automaton’s clock progresses, i.e., time passes. In an action
transition the automaton fires an enabled edge. Time does not
necessarily pass during an action transition.

The function u : C → R≥0 denotes a clock valuation that
evaluates a clock c ∈ C to a non-negative real number. Let
RC be the set of all clock valuations. Let u0(x) = 0 for all
x ∈ C. Guards and invariants are considered as sets of clock
valuations. u ∈ I(l) means that u satisfies I(l).

De�nition 2: Semantics of timed automata [2] Let
(L, l0, C,A,E, I) be a timed automaton. The semantics is
defined as a labelled transition system 〈S, s0,→〉 where S ⊆
L × RC is the set of states, s0 = (l0, u0) is the initial state,
and →⊆ S × R≥0 ∪A × S is the transition relation. The
transition relation is defined by:

1 (l, u) d→ (l, u + d)if∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l),
and

2 (l, u) a→ (l′, u′) if there exists an edge e = (l, a, g, r, l′) ∈
E so that u ∈ g, u′ = [r 7→ 0]u, and u′ ∈ I(l),

where for d ∈ R≥0, u+dmaps each clock x ∈ C to the value
u(x) + d. [r 7→ 0]u identifies the clock valuation that maps
every clock in r to 0 and agrees with u over C\r.

A network of timed automata consists of n timed au-
tomata that share a set of clocks and actions: Ai =
(Li, l0i , C,A,Ei, Ii), 1 ≤ i ≤ n. A location vector l̄ =
(l1, . . . , ln) is a vector where the individual locations li, 1 ≤
i ≤ n are the current locations of the respective automata. The
invariant functions for the automata’s locations are composed
into a common function over location vectors I(l̄) = ∧iIi(li).
l̄[l′i/li] identifies the vector where the ith element li is re-
placed by l′i.

De�nition 3: Semantics of a network of timed au-
tomata [2] Let l̄0 = (l0i , . . . , l

0
n) be the initial location vec-

tor that consists only of the automata’s initial states. The se-
mantics of a network of timed automata is defined as a transi-
tion system 〈S, s0,→〉, where S = (L1×. . .×Ln)×RC is the
set of states, s0 = (l̄0, u0) is the initial state, and→⊆ S × S
is the transition relation. The transition relation is defined by

25

– (l̄, u) −→ (l̄, u+ d) if ∀d′ : 0 ≤ d′ ≤ d⇒ u+ d ∈ I(l̄)
– no process in the network fires an edge that leads to an-
other location, or: all processes remain in their previous
locations, if the locations’ invariants are still satisfied.

– (l̄, u) −→ (l̄[l′i/li], u
′), if ∃li

τgr−→ l′i, so that u ∈ g, u′ =
[r 7→ 0]u and u′ ∈ I(l̄).

– (l̄, u) −→ (l̄[l′j/lj , l
′
i/li], u

′), if ∃li
c?giri−→ l′i and lj

c!gjrj−→
lj so that u ∈ (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u and
u′ ∈ I(l̄). This defines the synchronisation between two
processes.

UPPAAL's extensions to timed automata

UPPAAL adds several features to timed automata. A meaning-
ful example that includes every of the listed extensions would
be very comprehensive and complex. We therefore opted to
refer to this explanation in Section 8, whenever one of the fea-
tures actually is used in our model. Here we limit ourselves
to a general description of the extensions.

Templates In UPPAAL, a process is modelled as an automa-
ton which can have one or several parameters. If the au-
tomaton does not have any parameters, it can only be
instantiated once in the system declaration. However, if
the automaton has parameters, it may serve as a process
template. Process templates can be instantiated several
times in the system declaration. The parameter values
are then assigned in the process instantiation. A tem-
plate parameter can be of any type, e.g., int. Templates
enable the reuse of the model in several processes.

Constants The scope of a constant can be global or local,
i.e., for the instantiation of one automaton. Constants
must have integer values. Constants are declared const
name value.

Bounded integer variables A bounded integer variable int
[min, max] x is a variable that has min as lower
and max as upper bound. UPPAAL checks automatically
upon verification if the bound is violated. This might as
well be expressed as a guarding expression, or a loca-
tion invariant, but then the guard or invariant would have
to be checked on every edge and in every location. We
explain the concepts of guarding expressions and loca-
tion invariants later. Bounded integer expressions can be
used in expressions of the type guard, assignment and
invariant.

Arrays can be of the data type (bounded) integer, clock,
or constants and channels. Arrays can be multi-
dimensional. They are declared as chan n[3];
clock c[10]; int[1,4] i[5];.

Binary synchronisation An edge that is labelled with
name! synchronises with an edge that is labelled with
name?. If several combinations are possible, a synchro-
nisation pair is selected non-deterministically. The pro-
cess that fires the synchronisation with the exclamation

mark (name!) is usually called the sender or initiator of
the synchronisation, while the process that reacts to the
synchronisation by firing the synchronisation with the
question mark (name?) is called the receiver or listener.
Only the sender can initiate a synchronisation. Binary
synchronisation channels can block the process if only
one of sender and listener is available. Binary synchro-
nisation channels are declared as chan name.

When two processes synchronise with a channel from an
array of channels, they have to use an array index to de-
cide what channel to synchronise on, e.g., synch[2]!.

Broadcast channels enables a sender to synchronise with
zero or many listeners at once, i.e., they allow 1-to-
many synchronisations. An edge that is labelled with
name! synchronises with none or any number of lis-
teners name?. If a listener is able to synchronise in its
present state, it has to. The broadcast channel cannot
block the sending process, i.e., if there is no listener, the
sending process will still send the broadcast. A broad-
cast channel blocks the listening process if no sender
synchronises with it. A broadcast channel is declared
as broadcast chan name.

Urgent synchronisation An urgent synchronisation that is
enabled must not be delayed, i.e., the respective edges
have to be fired before the following system state
change. Urgent synchronisation channels cannot have
clock guards. Urgent synchronisation channels can be
used for binary synchronisation and for broadcast syn-
chronisation. When an urgent synchronisation is used,
the clocks are not increased before and during the syn-
chronisation, i.e., it is impossible to delay in a location
when it has an outgoing edge that is labelled with an
urgent synchronisation. However, an alternative edge,
where the guarding conditions are satisfied, can be fired
instead of the urgent synchronisation. Urgent synchroni-
sation channels are declared as urgent chan name
respectively urgent broadcast chan name.

Urgent locations are equivalent to adding a clock constraint
t to a location and adding an invariant t ≤ 0. t is re-
set on all incoming edges. When the automaton is in an
urgent state, the time does not pass, i.e., the clocks are
not incremented. This means that the operation does not
take time in respect to the clocks, and time does not pass
in an urgent location.

Committed locations If any location of the current system
state is committed, then the state itself is committed. In
the next step, an edge must be fired that leaves one of
the committed locations. Committed locations are more
stern than urgent locations. Committed locations can be
used to model atomic operations and to model synchroni-
sations between more than two processes if the synchro-
nisations should “happen at once”. However, if several
processes are in a committed location at the same time,
they can interleave, so that the atomicity of the opera-
tions is lost.

26

Initialisers initialise integer variables and arrays of in-
teger variables, e.g., int i = 0; int z[3] =
0,2,4;.

Expressions in UPPAAL

Expressions label the edges in an automaton. They are either
evaluated or executed before or when the edge is fired. UP-
PAAL distinguishes between four types of expressions:

Guards are evaluated before an edge is fired. A guarding
expression has no side effects. It evaluates to a boolean
value. Guards reference only clock or integer variables
and constants, or arrays thereof. Clocks and clock differ-
ences can only be compared to integer expressions.

Synchronisation labels either have the form expr! or
expr? or they are empty. They must not have side ef-
fects and evaluate to a channel. Synchronisation labels
only reference integer variables, constants or channels.

An assignment is a list of comma-separated list of expres-
sions. The expressions in an assignment must have side
effects. Assignments reference clock and integer vari-
ables and constants. A clock variable can only be set to
a non-negative integer value.

Invariants do not have side effects. They reference clock or
integer variables and constants. An invariant is a con-
junction of conditions of the form x < e or x ≤ e,
where x is a clock reference and e evaluates to an in-
teger.

In addition to the extensions to timed automata and expres-
sions, UPPAAL also offers the possibility to define data types
and methods. The data types and methods are defined in a
subset of the C programming language.

7.3.2 UPPAAL's Query Language

Formal models are used to verify that certain properties hold,
i.e., that the model satisfies their requirements. A formal lan-
guage wherein the verification properties can be expressed is
necessary. If the verification should be conducted by com-
puters, the properties should be expressed in a well-defined
and machine readable language. UPPAAL uses a subset of
computational tree logic. UPPAAL’s query language features
state and path formulae, however not nested path formulae.
Path formulae can verify three types of properties, reachabil-
ity, safety and liveness properties, which we explain later.

State formulae A state formula is an expression that is eval-
uated for a state. The overall behaviour of the model is not
considered. A state formula can simply check if a process
is in a certain location. It may be an expression, or ex-
amine if the system can deadlock. The syntax of state for-
mulae is a superset of the syntax of guards. Disjunctions
are allowed. Like guards, state formulae must not have any
side effects. A state formula in our example in Section 7.1
is Receiver.RECEIVING && Receiver.timeout >

(a) E ♦φ (b) A �φ (c) E �φ (d) A ♦φ

φ

ϕ

ϕ ϕ

(e) φ ϕ

Figure 14: The property types that UPPAAL can verify.

10. It formulates that the Receiver should be in the RECEIV-
ING location, and that the receiver’s clock timeout should have
a value > 10, i.e., u(timeout) > 10. This formula holds
whenever these conditions are satisfied. Another state for-
mula, Sender.sent > 100 is true whenever the sender
has sent a message to the receiver more than 100 times. UP-
PAAL uses a special state formula deadlock to check for
deadlocks. deadlock is satisfied if a deadlock can occur in
a reachable state.

Reachability properties Let φ be a state formula. Reach-
ability properties examine if there exists a state where φ is
true (cf. Figure 14(a)). Reachability properties are often used
for sanity checks during the modelling process. In our model,
many processes send messages to other processes, and the re-
ceivers possibly reply to them. A typical sanity check is to
verify that the sender really can send the first message, that
the intended receiver indeed receives the message, and is able
to reply, or react in some other ways. This does not prove
that our design is correct, or that the model really represents
the design, but examines the essential characteristics of the
model.

A reachability property, i.e., that some state satisfying the
state formula φ should be reachable, is expressed with the
path formula E ♦φ. In UPPAAL, this is expressed with E<>
φ. In our example on page 24 we would like to check that
both the receiver’s ERROR and IDLE locations can be reached.
The query for this property is E<> Receiver.IDLE ||
Receiver.ERROR. This property is satisfied.

Safety properties Safety properties are used to prevent that
something undesirable happens, e.g., that a message is deliv-
ered to more than the intended receivers. Let φ be a state
formula. Then A�φ expresses that φ should be true in ev-
ery reachable state (cf. Figure 14(b)). E�φ expresses that
there exists a maximal path, where φ is always true (cf. Fig-
ure 14(c)). A maximal path is an infinite path, or a path where
the last state cannot be left by any leaving edges. In UPPAAL,
safety properties are expressed as A [] φ respectively E []
φ.

In our example, we do not want that the re-
ceiver switches to the ERROR location before the time-
out. The safety property A[] !(receiver.ERROR&&
receiver.timeout < 10) expresses that the receiver
cannot detect an error when the timeout has not been reached
yet. Our model satisfies this property.

27

(a) A normal location with an
invariant.

(b) An urgent location.

(c) A committed location.

Figure 15: UPPAAL features three location types: normal, ur-
gent and committed locations. The urgent and committed lo-
cations can be identified through the u respectively c.

Liveness properties Liveness properties ensure that some-
thing will happen, however without any notions as to when it
will happen. For example, when a service has registered with
the broker and advertised certain event types, the event types
will be made available to other services. A liveness property
can be expressed in two ways. Let φ, ϕ be state formulae.
Then A ♦φ means that φ will be true eventually (cf. Fig-
ure 14(d)). A more complex form is the leads to or response
property φ ϕ: if φ is satisfied, then ϕ will be satisfied
eventually (cf. Figure 14(e)).
In UPPAAL, these properties are expressed as A<> φ and
φ--> ϕ.

7.3.3 Time in UPPAAL

Time is modelled with a continuous time model in UPPAAL.
Clock constraints in guards and location invariants have dif-
ferent effects. A clock constraint in a location invariant forces
the process to leave that location, i.e., to fire an outgoing edge
before the invariant is not satisfied any longer. If this is impos-
sible, the system reaches a deadlock state. A clock reference
in a guard prevents that the process fires the corresponding
edge if the guard is not satisfied. It does not force the process
to leave a location. For example, let x be a clock variable
and let the location invariant be x < 10. This means that
an outgoing edge must be fired within 10 clock ticks. A guard
expression x < 10 on an outgoing edge simply prevents that
this edge is fired if x is greater than 10. Another edge might
be fired, or the process does not or cannot leave the current
location at all.

Committed and urgent locations UPPAAL knows three
types of locations, normal, urgent and committed. Figure 15
shows that urgent and committed locations are marked u re-
spectively c. A normal location is not marked.
An urgent location is the same as a location where the incom-
ing edge resets a clock y, and the location is labelled with the
invariant y ≤ 0. Whenever a process is in an urgent location,
the system is in an urgent state. If the system is in an urgent
state, time cannot progress, however interleavings with nor-
mal states are allowed. Clock updates are not allowed in an
urgent state.

A committed location is more restrictive than an urgent
one. Whenever a process is in a committed location, the next
transition has to fire an edge that leaves the committed loca-
tion. A state that has a committed location is called commit-

ted. In a committed state, the committed location has to be
left in the successor state. If a committed state has several
committed locations, at least one of the committed locations
has to be left in the successor state.

We demonstrate the different effects of urgent and com-
mitted locations in an example.

We return to our previous example (cf. Figure 12,
page 24) and extend it by adding a processor and change the
sender and receiver processes. The result can be seen in Fig-
ure 16: The sender (16(a) and 16(b)) synchronises with the
receiver to initiate a transmission (send!). The transmis-
sion can either turn out to be faulty, or free of errors. When
the transmission is errorless, the receiver uses the enqueue-
method to enqueue the received message in the in-queue. The
enqueue-method and the in-queue are not declared in the au-
tomaton, therefore the in-queue cannot be seen in Figure 16.
The enqueue-method is called on the edge that leads from the
RECEIVING location back to the IDLE location.

When the in-queue is full (len == N-1), the receiver
starts a processor that processes the messages in the in-queue
(proc!). When the processor has processed a message it
synchronises with processed!. The receiver can now re-
move a message from its in-queue and receive the message
that was sent by the sender.

The processor can randomly process messages, as well.
We now discuss the two different systems. Each system

consists of a sender, a receiver and a processor, as above. The
receiver and processor processes are the same in the two sys-
tems. In the system that we discuss firstly, the sender process’
PUBLISHING location is an urgent location. The sender and
the receiver synchronise with send. The sender randomly
selects the looping edge that immediately leads back to the
IDLE location, or the edge that leads to the PUBLISHING lo-
cation. Both edges are labelled send!. When the sender
switches to the PUBLISHING location, the receiver switches
to the RECEIVING location if its in-queue is not full yet. If
its in-queue is full, the receiver starts the processor (proc!)
and waits in the WAIT location until the processor signals that
it has finished (processed!).

The receiver then dequeues the processed message in the
in-queue and switches to the RECEIVING location. The re-
ceiver’s RECEIVING location has three outgoing edges. One
is fired when the processor synchronises with processed!
to signal that it has processed a message from the in-queue.
The second is fired before a timeout has been reached and the
sender signals that it has completed the message transmission
(sent!). The message is then enqueued. The last outgo-
ing edge is fired when the timeout has been reached. The re-
ceiver then switches to the ERROR location and consequently
to the idle location. Whenever the sender process has reached
the urgent PUBLISHING location, the system is in an urgent
state. This means that time cannot progress until the system
leaves that state. However, other processes than the sender
can fire edges, update variables and change their locations,
unless clock variables are updated. If the in-queue from the
receiver is full, the receiver can wait for the processor until it
has processed a message. The system is deadlock free.

In the second system, the sender process’ PUBLISHING

28

PUBLISHINGIDLE

s:int[1,10]
s==1
send!

sent!

send!

(a) The sender process with an urgent location.

PUBLISHINGIDLE

s:int[1,10]
s==1
send!

sent!

send!

(b) The sender process, with a committed location.

ERROR

WAITCALL

RECEIVINGIDLE

timeout >= 10

len > 0
processed?
dequeue()

len > 0
processed?
dequeue()

processed?
dequeue()

proc!

e:ID
len == N-1
send?
sender = e,
timeout = 0

timeout < 10
sent?
enqueue(sender)

e:ID
len < N-1
send?
timeout=0, sender = e

(c) The receiver.

processed!
delay = 0

proc?

delay > 120
processed!
delay = 0

(d) The processor.

Figure 16: This extended example shows the difference between committed, urgent and normal locations. The sender’s
PUBLISHING location can either be an urgent location as in 16(a), or a committed location (16(b)). We have combined two
different systems in this figure: one system consists of a sender with an urgent location, a receiver and a processor, the other
system consists of the sender that has a committed location, a receiver and a processor.

location is a committed location. Whenever the system state
contains a committed location, the next edge that is fired has
to leave at least one of the committed locations. Normal ac-
tions cannot interfere. This means in our case that the sender
has to fire the edge that is labelled sent! in the next step
when it is in the committed PUBLISHING location. However,
the sender cannot synchronise with sent! if the receiver
has to wait for the processor to process messages from the
in-queue. The second system is not deadlock free.

8 Model Description and Validation

We created a formal model of the TIP 3 architecture that we
present and discuss in this section. The model was divided
into three parts for reasons of clarity and verification. We de-
cided to model the client peer and its services in one model.
The server peer and its services are modelled in a second
model. The communication between several peers is mod-
elled in a third model.

There are several concepts that have to be treated in a dif-
ferent way in a model than in a software implementation, e.g.,
the user movement. The first section discusses the modelling
and verification process and how these processes often inter-
leave with each other. Section 8.2 presents how different real
world concepts are represented in the model. In Section 8.3
we present the model of the client and the services running
on the client. The model of the server and its services is dis-
cussed in Section 8.4. Section 8.5 introduces the model of
how brokers communicate with one another. In Section 8.3,
8.4 and 8.5 we first present and discuss the model and then
show how we have examined and analysed it. In Section 8.6
we argue how the three models could be combined into one
and how they would be able to communicate with each other

if they were combined. Section 8.7 discusses the problems
encountered during the modelling process. In Section 8.8 we
return to the requirements formulated in Section 3 and discuss
how our model meets them.

The modelling terminology that is used in this section was
explained in Section 7.

8.1 The Modelling and Veri�cation Process

The design and modelling process comprises three interleav-
ing steps. In the first step, the usability requirements should
be recognised, as they are later needed during the design and
modelling process. During the modelling process, the prop-
erties are identified and formulated as verification queries in
the second step. The requirements are used to formulate the
properties. In the third step, the model is verified using the
properties.

The verification of the properties often leads to a revision
of the model. It may even lead to a completely new model,
if the model did not satisfy a property. Indeed, the different
steps often interleave: the analysis of the verification results
can lead to a re-engineering of the model or the property, so
that the model has to be verified again or the new property
has to be verified. Finally the results of the last verification
are analysed.

The result analysis differentiates two cases: either the
property holds under the assumptions upon which the model
is based, or it does not hold. If the property does not hold, it
is examined and analysed why. As a consequence, either the
model, the underlying assumptions or the property have to be
revisited. The model can be adjusted and complemented. It
has to be examined whether the assumptions on which the
model is based are correct or if they can be improved. The
property can be adjusted and complemented. A property that

29

PUBstartLocMove?

more.datatype =
 LOCATIONDATA,
more.datacat =
 LOCATIONCATEGORY,
more.publisher = id,
more.quality = BEST,
more.id = device

publish[id]!

Figure 17: The automaton simulates user movement by pub-
lishing location events.

does not hold shows weaknesses of the model and should re-
sult in a better model or property.

8.2 Real World Concepts

Several phenomena that occur in the real world have to be
treated differently in a model than in a software implementa-
tion. The most important ones are discussed in this section.

User movement When the user moves and changes their lo-
cation, the TIP location service publishes a location event. In
a software implementation, user movement may be simulated
through a playback of recorded geo-data.

In a model, user movement is simulated by the publishing
of location events by the location service, not by a sequence of
coordinates. The automaton shown in Figure 17 publishes lo-
cation events. It is randomly selected out of several automata
belonging to the same network of timed automata.

Modelling events A model has to abstract from the actual
data published in an event. The fact that a new event is pub-
lished is important. Hence we model that a new event is pub-
lished and abstract from the content of the event. User mo-
bility and movement, for example, are not modelled through
a trace of the user’s geographical movements, but through the
publishing of a location event by the location service. As
a consequence, the model cannot simulate database queries
containing a specific SQL query or the database’s response.
The model can simulate a generic database query and a
generic database response. However, this level of abstraction
is necessary. The model still represents the modelled system.

The graphical user interface (GUI) TIP services use the
GUI of the mobile client for interaction with the the user.
When the user selects an element providing some functional-
ity, analogue to clicking on a button with a mouse on a desk-
top computer, this may result in a new event published by the
respective service. In a software implementation, only the ap-
plication being in focus may react to user input. This service
is typically identified by the operation system. In our model,
we had to model this part of the operation system. Otherwise,
several services could react to mouse clicks and similar.

8.3 Model of the Mobile Client Peer
In this section, our model of the mobile client peer is pre-
sented and discussed. It is the first part of the model of the
TIP 3 architecture. This model implements the client-side
services and the user interaction with the system. It captures
the behaviour of the TIP 3 system on the user’s mobile client.
Services that are located on the mobile client react to each
others’ events. They interact with the user and with services
running on the server.

8.3.1 The Model

Actors and processes involved Before discussing the
model, we identify the actors and the situations that have to be
modelled. The actors are the broker, the observer, the user and
the client-side services. They were introduced and discussed
in Section 6. The actors interact with each other in different
situations, such as (1) the service registration, (2) when ser-
vices publish events to the broker, (3) the broker filters the
events and forwards them to the subscribers, (4) the user in-
teracts with the TIP system and (5) a service deregisters from
the broker.

In our model, one process represents an actor in a certain
situation. Therefore the broker is represented by several pro-
cesses in the model, as is the observer, as are the services. We
now describe how we have modelled the different situations.
The respective automata may be found on the accompanying
CD. As an example, the user interaction (4) is described in
detail discussing the automata.

(1) Service Registration At startup, a service registers with
the local broker. A service publishes its service description to
the broker. A service may provide a set of functional condi-
tions and a set of subscription rules. We introduced the con-
cept of functional conditions and subscription rules in Sec-
tion 6. The observer evaluates the service’s functional condi-
tions. If they are satisfied, the service’s subscription rules are
evaluated by the observer. The observer subscribes the service
to the specified events. If the conditions are not satisfied, the
registration process is stalled until an appropriate advertise-
ment has been published to the broker so that the conditions
are satisfied.

The service advertises its published event types.
The service process interacts both with the broker process and
the observer process. In a programmed implementation, the
observer should simply observe the communication between
the broker and the service and react to it. The service and its
observer should not communicate with each other. However,
this cannot be modelled in UPPAAL. Therefore we decided to
add an observer process communicating with the processes it
needs to observe in order to obtain the same result.

During the service registration, the service’s conditions
and subscription rules are evaluated by the observer. From a
conceptual point of view, the observer is part of the broker.

(2) Publishing events to the broker A service publishes
its events to the local broker, i.e., it notifies the broker that

30

it will publish a message, and notifies the broker when the
transmission of the message has been completed. We decided
to split this operation into two steps, enabling the verification
that services may publish events to the broker. A typical query
is E <> locPublish.PUB. The query examines the prop-
erty ascertaining that the process representing the location ser-
vice’s publishing component may indeed reach the PUB loca-
tion. This location can only be reached when synchronising
with the broker, thus publishing an event to the broker. The
broker then enqueues the message in its in-queue.

(3) Filter events Whenever a service has published an event
to the broker, the broker filters the event. It checks if any ser-
vices have subscribed the event. The broker then synchronises
with sendToService! and notifies the respective services
of the transmitted an event. The service receive the event and
enqueue it in their respective in-queue. If the receiver is a sec-
ond broker, the sender would notify it with b2bPublish!
and publishedToBroker!. The broker distinguishes re-
mote brokers from subscribing (local) services for modelling
reasons. The filtering automaton is nearly the same in the
three models. However, we wanted to examine whether a
broker really filters events to remote brokers in the model of
the communication between brokers discussed in Section 8.5.
Brokers, services and observers are identified by a number,
their respective identity number. Service processes synchro-
nise with the respective observer processes using a synchro-
nisation channel identified by their shared identity number. If
the broker would filter events to services and brokers using
one synchronisation channel, the receiver could not be iden-
tified unambiguously. Especially in a model containing both
several brokers and services, this would lead to an unexpected
and undesired behaviour of the model.

(4) User interaction with TIP The user interaction with
TIP 3 services is modelled by the automata shown in Fig-
ure 18, Figure 19 and Figure 20. Figure 18(a) shows the
automaton modelling how a user may interact with the TIP
GUI. For reasons of verification we decided to use respec-
tively named locations. We now discuss the different user
interactions shown in Figure 18(a) and how they are modelled
in detail. We refer to the automaton shown in Figure 18(a)
as Input. The automaton shown in Figure 20 is referred to as
GUI-Handler.

The first described interaction, the user starting a new
service, is modelled by the input automaton, shown in Fig-
ure 18(a). The discussion refers to the letters in Figure 18(a).

(a) Input models the user starting a new service
by synchronising with startNewService!. The
GUI-Handler replys with startNewService?
and moves to the START SERVICE location.
It then randomly5 identifies a TIP 3 service
(requested : int[1, NUMBEROFSERVICES-1]).
If the selected service is not yet running

5The model selects a service, that would otherwise have been selected by
the user. The user would not select a random service.

CHANGECLOSE

STARTNEWSERVICE

INSERVICE MINIMISE

IDLE

minimise!
startNewService!

closeService!
changeService!

inService!

a

b

c

d
e

(a) input.

setHidden[id]?
visible[id] = false

setVisible[id]?
visible[id] = true

(b) Service visibil-
ity.

Figure 18: Model of user input. 18(a) models user interac-
tions through the GUI. We refer to this automaton as input.
18(b) shows a service switching between being visible and
unseen.

(!registered[requested]), the GUI-
Handler starts the service by synchronising with
startReqService[requested]!. The currently
visible service is set to identify the requested service and the
GUI-Handler moves to the SET ANOTHER VISIBLE location.

We now brie�y explain how the GUI-Handler (see Fig-
ure 20) handles previously visible services that are hidden be-
hind the currently visible one. The explanation is necessary
for understanding the automaton. The model is based on the
assumption that previously used services are still maximised
though hidden when a new service is maximised, i.e., the only
service visible on the mobile device’s screen. If the currently
visible one would be minimised, another service would be
seen. Hence, the automaton needs to remember the previously
visible services that were neither stopped nor minimised, but
simply hidden by another service. This is achieved by the
oldVisibles variables, a queue storing the services identi-
fications. The integer variable visibleService identifies
the currently visible service.

If the GUI-Handler may select an already registered and
running service when leaving the SET ANOTHER VISIBLE lo-
cation. It then only enqueues the currently visible service’s
identification number in the oldVisibles queue and up-
dates the variable visibleService so that it identifies
the currently visible service. GUI-Handler then moves to the
SET ANOTHER VISIBLE location.

If the oldVisibles queue is empty
(head(oldVisibles) <= 0), no action is
taken and the automaton moves to the DONE loca-

31

N
O

_V
IS

IB
L

E
_S

E
R

V
IC

E

S
E

T
_N

E
W

_V
IS

IB
L

E
H

ID
E

M
IN

IM
IS

E
D

S
T

A
R

T
_S

E
R

V
IC

E
C

L
O

S
E

D

D
O

N
E

S
E

T
_A

N
O

T
H

E
R

_V
IS

IB
L

E

ID
L

E

se
tV

is
ib

le
[v

is
ib

le
S

er
vi

ce
]!

st
ar

tG
U

I?

vi
si

bl
eS

er
vi

ce
 =

 tm
pS

er
vi

ce

he
ad

(o
ld

V
is

ib
le

s)
<

=
0

re
qu

es
te

d:
in

t[1
,N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

-1
]

re
gi

st
er

ed
S

er
vi

ce
s[

re
qu

es
te

d]

en
q(

vi
si

bl
eS

er
vi

ce
, o

ld
V

is
ib

le
s)

,
vi

si
bl

eS
er

vi
ce

 =
 r

eq
ue

st
ed

e:
in

t[1
,N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

-1
]

re
gi

st
er

ed
[e

]

ch
an

ge
S

er
vi

ce
?

vi
si

bl
eS

er
vi

ce
 =

 e

st
ar

tN
ew

S
er

vi
ce

?

vi
si

bl
eS

er
vi

ce
 <

=
 0

vi
si

bl
eS

er
vi

ce
 >

 0
se

tH
id

de
n[

vi
si

bl
eS

er
vi

ce
]!

vi
si

bl
eS

er
vi

ce
 =

 r
eq

ue
st

ed
V

is
ib

le
S

er
vi

ce

vi
si

bl
eS

er
vi

ce
 >

 0

ha
nd

ov
er

G
U

Ito
?

en
q(

vi
si

bl
eS

er
vi

ce
, o

ld
V

is
ib

le
s)

se
tH

id
de

n[
vi

si
bl

eS
er

vi
ce

]!

vi
si

bl
eS

er
vi

ce
 =

 d
eq

(o
ld

V
is

ib
le

s)

vi
si

bl
eS

er
vi

ce
 >

 0
m

in
im

is
e?

re
qu

es
te

d:
in

t[1
,N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

-1
]

!r
eg

is
te

re
dS

er
vi

ce
s[

re
qu

es
te

d]

st
ar

tR
eq

S
er

vi
ce

[r
eq

ue
st

ed
]!

en
q(

vi
si

bl
eS

er
vi

ce
, o

ld
V

is
ib

le
s)

,
vi

si
bl

eS
er

vi
ce

 =
 r

eq
ue

st
ed

st
ar

tN
ew

S
er

vi
ce

?

st
op

S
er

vi
ce

[v
is

ib
le

S
er

vi
ce

]!

vi
si

bl
eS

er
vi

ce
 =

 d
eq

(o
ld

V
is

ib
le

s)

vi
si

bl
eS

er
vi

ce
 >

 0
cl

os
eS

er
vi

ce
?

e:
in

t[1
,N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

-1
]

!v
is

ib
le

[e
] &

&
 r

eg
is

te
re

d[
e]

ch
an

ge
S

er
vi

ce
?

en
q(

vi
si

bl
eS

er
vi

ce
,

 o
ld

V
is

ib
le

s)
,

vi
si

bl
eS

er
vi

ce
 =

 e

vi
si

bl
eS

er
vi

ce
 >

 0

se
tV

is
ib

le
[v

is
ib

le
S

er
vi

ce
]!

he
ad

(o
ld

V
is

ib
le

s)
 >

 0

se
tH

id
de

n[
he

ad
(o

ld
V

is
ib

le
s)

]!

Fi
gu

re
20

:G
U

I-
H

an
dl

er
:T

hi
s

pr
oc

es
s

de
sc

ri
be

s
ho

w
th

e
m

od
el

id
en

tifi
es

th
e

cu
rr

en
tly

vi
si

bl
e

se
rv

ic
e.

It
al

so
sh

ow
s

ho
w

m
in

im
is

at
io

n,
m

ax
im

is
at

io
n,

se
rv

ic
e

st
ar

ta
nd

se
rv

ic
e

te
rm

in
at

io
n

ar
e

ha
nd

le
d

fr
om

th
e

sy
st

em
’s

po
in

to
fv

ie
w

.

32

HANDOVER_TO_MAP

MOUSECLICKIDLE

publish[id]!

showOnMap()

publish[id]!

nearbySights()

handoverGUIto!

requestedVisibleService =
 MAPSERVICE

publish[id]!

moreInfo()

visible[id]
inService?
r.originator = id

(a) The information service

PUBmore.datatype =
 LOCATIONDATA,
more.datacat =
 LOCATIONCAT,
more.publisher = id,
more.quality = BEST,
more.id = device

publish[id]!

(b) The location service

INFOREQUEST

VISIBLEIDLE

publish[id]!
clickOnIcon()

!visible[id]

handoverGUIto!

requestedVisibleService = INFORMATIONSERVICE

publish[id]!

clickInMap()

visible[id]
inService?

(c) The map service

Figure 19: The three processes describe how the services react
to a user’s interactions and movement.

tion. Otherwise, the automaton synchronises with
setHidden[head(oldVisibles)]!, i.e., with a
process like that shown in Figure 18(b) and moves to the
DONE location. In our model, every running service pro-
viding a GUI needs such a process. This process accesses a
boolean array visible[]. The array keeps track for each
service if it is visible and may react to user input.

The GUI-Handler then leaves the DONE location by syn-
chronising with setVisible[visibleService]!, set-
ting the service previously requested visible. The GUI-
Handler to the IDLE location. This synchronisation is guarded
(visibleService > 0) for modelling reasons.

(b) The Input process models the user selecting an item in
the currently visible service’s user interface by synchronis-
ing with inService!. One of the automata shown in Fig-
ures 19(c) and 19(a) synchronises with inService?, de-
pending on which service is currently visible. If the map ser-
vice is the currently visible service, the automaton shown in
Figure 19(c) moves to the VISIBLE location. The map ser-
vice modelled can react to two user actions. The user may
either centre the map on another location, or select an in-

formation icon on the map. In the first case, the map ser-
vice publishes an event and returns to the IDLE location. In
the second case, the map service publishes an event synchro-
nising with publish! and moves to the INFOREQUEST lo-
cation. It then synchronises with handoverGUIto! and
the GUI-Handler. The map service sets the global variable
requestedVisibleService so that it identifies the in-
formation service.

The GUI-Handler synchronises with handoverGUIto?
and enqueues the map service in the oldVisibles
queue. It then synchronises with setHid-
den[visibleService]! and updates the
visibleService variable, so that it identifies the
information service. The GUI-Handler then moves to the
DONE location and returns to the IDLE location as explained
above.

(c) The input automaton models the user minimising the
currently visible service by synchronising with minimise!.
This synchronisation is enabled only if at least one service
is visible: the synchronisation minimise? in the GUI-
Handler is guarded (visibleService >= 0). The GUI-
Handler moves to the MINIMISED location. It then syn-
chronises with setHidden[visibleService]!, set-
ting the currently visible service invisible and moves to
the SET NEW VISIBLE location. visibleService is set
so that it identifies the service lastly visible. If there is
no such service (visibleService <= 0) the automa-
ton switches to the NO VISIBLE SERVICE location and waits
for the startNewService? or the changeService?
synchronisation. When the input automaton synchronises
with startNewService!, the GUI-Handler moves to the
START SERVICE location and proceeds as shown above (see
(a)).

When the input automaton synchronises with
changeService!, the GUI-Handler randomly se-
lects a running service, updates visibleService so
that it identifies the selected service and moves to the
SET ANOTHER VISIBLE location. From here, the GUI-
Handler proceeds as shown above (see (a)).

(d) The input automaton models the user changing to an-
other service by synchronising with changeService!.
The GUI-Handler randomly selects a running service and en-
queues visibleService in the oldVisibles queue.
visibleService is then update to identify the ser-
vice selected by the user. The GUI-Handler moves to
the SET ANOTHER VISIBLE location and proceeds as shown
above (see (a)).

(e) The input automaton models the user closing
the currently visible service by synchronising with
closeService!. The GUI-Handler then stops
the currently visible service by synchronising with
stopService[visibleService]!, updates
the visibleService variable and moves to the
SET NEW VISIBLE location. From there it proceeds as

33

shown above (see (c)).

(5) Service deregistration A service is deregistered from
the broker if the service is shut down or if the service is dis-
connected. When a service disconnects, the respective ob-
server deregisters the service from the broker after a certain
time interval. The broker simply removes the service from
its list of subscriptions and publishers and stops forwarding
events to the service. Eventually the subscriptions of other
services are re-evaluated and changed if necessary.

The observer does not deregister the service immediately
after detecting the lost connection. Hence, a service that only
disconnects for a short time and then reconnects again, does
not have to register again and subscription rules do not have
to be evaluated.

8.3.2 Veri�cation of the Model

We could verify basic properties, for example, “the location
service can register”, through simulations. Our simulations
showed that the model functions properly: services are able
to register, i.e., publishers can advertise, subscribers are sub-
scribed to events, if their functional conditions are satisfied;
publishers can publish events to the broker; the broker fil-
ters events to the subscribers; services can deregister, or are
deregistered by the observer in case of disconnection. The ob-
server evaluates services’ functional conditions and subscrip-
tion rules. When a new publisher has advertised to the broker,
every subscribers’ subscription rules are evaluated and sub-
scriptions accordingly updated. If a registering service’s func-
tional conditions are not satisfied, the registration process is
stalled until an appropriate advertisement has been published
to the broker. Our simulations have shown that a only the
currently visible service reacts to user input.

However, owing to UPPAAL’s limitations,
we were not able to completely verify the
model. We wanted to examine queries like E <>
registeredServices[MAPSERVICE] and
registeredServices[INFORMATIONSERVICE]
and !subscriberIndex[2][2][0][2][1][1].
The query assures that the map service always sub-
scribes to events published by the information service
if both services are registered. While examining the
query, UPPAAL needed more memory than it is able
to address. Another query that could not be veri-
fied for the same reason is (input.CHANGE and
visibleService[INFORMATIONSERVICE]) -->
(!visibleService[INFORMATIONSERVICE] and
visibleService[MAPSERVICE]). It examines the
GUI-Handler automaton. We wanted to assure that the map
service is always set to visible if a) the information service is
visible and b) the map service is registered and c) the service
is changed. When the service is changed, the input automaton
moves to the CHANGE location.

A complete set of the queries can be found on the accom-
panying CD.

Simulation runs helped examining the model’s function-
ality. They showed that the model provides basic function-

ality. More complex and important queries such as the ones
shown above could not be verified.

8.4 The Server Peer and its Services
In this section we describe how we have modelled the server
peer and its services. The server peer’s model resembles the
client peer’s.

8.4.1 The Model

Actors and processes involved In this model, the main ac-
tors are services, the broker and the observer. The main pro-
cesses that these actors are involved in include (1) service
registration, (2) service deregistration, (3) publishing events
to the broker and (4) filtering events. Unlike the client peer,
the server peer provides a TIP database that services can ac-
cess. Server-side services do not provide a GUI.

We now discuss how the different situations are modelled.
The respective automata may be found on the accompanying
CD. The filtering of events is exemplarily described in detail.

(1) Service registration When a service registers with the
broker, it first publishes its service description to the bro-
ker. A subscribing service provides a set of functional con-
ditions and subscription rules. The observer evaluates the
conditions. If they are satisfied, the observer evaluates the
service’s subscription rules and subscribed the service to the
events needed. Otherwise, the registration process is stalled
until the conditions are satisfied, i.e., until the events needed
have been advertised to the broker. Publishing services an-
nounce their advertisement.

(2) Service deregistration When a service deregisters, its
advertisement is removed. The subscriptions are removed as
well. The broker does not try to filter messages to a subscriber
that does not exist any more. After a time interval, services
are deregistered from the broker by the observer if the service
for some reason has been disconnected. This avoids deregis-
tering of services and re-evaluation of subscription rules when
a service disconnects for a short time and then re-connects.

(3) Publishing events to the broker Services publish
events to the broker. The publishing process is identical to
that on the client peer.

(4) Filtering events When the broker receives events from
local services or from other brokers, it filters the events and
forwards them to the respective subscribers.

Figure 8.4.1 and Figure 8.4.1 show the participating pro-
cesses. In Step 1, a service (21(a)) synchronises with the bro-
ker (21(b)) through initPublishToBroker! and sends
its message (publishedToBroker!). The broker receives
the event and enqueues it in its in-queue. Sometime later the
broker in Figure 8.4.1 dequeues the message again (Step 2)
and first checks if there are any subscribers (Step 3) or if the

34

IN
IT

L
O

O
P

B
r
o

k
e
r

S
E

N
D

IN
G

ID
L

E

id
le

T
im

e
 <

 1
0

F
IL

T
E

R
IN

G

k
−

D
E

V
IC

E
S

 !
=

 d
e
v
ic

e
 &

&
 s

u
b
s
c
ri
b
e
rs

[k
]
&

&
k
 >

=
 N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

 &
&

k
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 +

D
E

V
IC

E
S

s
ta

rt
B

F
[d

e
v
ic

e
]?

id
le

T
im

e
 =

 0

e
.d

a
ta

ty
p
e
 >

=
 0

e
.d

a
ta

ty
p
e
 =

=
 −

1

id
le

T
im

e
 =

 0

b
2
b
P

u
b
lis

h
[k

 −
 D

E
V

IC
E

S
]!

fi
lt
e
re

d
[k

 −
 D

E
V

IC
E

S
]
=

 e
,

s
u
b
s
c
ri
b
e
rs

[k
]
=

 f
a
ls

e
,

re
c
e
iv

e
rs

−
−

s
u
b
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 +

 D
E

V
IC

E
S

 &
&

 e
.i
d
 =

=
 i
d
 &

&

s
u
b
s
c
ri
b
e
rI

n
d
e
x
[d

e
v
ic

e
][
e
.d

a
ta

c
a
t]
[e

.d
a
ta

ty
p
e
]

[e
.q

u
a
lit

y
][
e
.p

u
b
lis

h
e
r]

[s
u
b
][
L
O

C
A

L
]

s
u
b
s
c
ri
b
e
rs

[s
u
b
]
=

 t
ru

e
,

re
c
e
iv

e
rs

+
+

,
s
u
b
+

+
s
u
b
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 +

 D
E

V
IC

E
S

 &
&

!(

 e
.i
d
 !
=

 i
d
 &

&
 s

u
b
s
c
ri
b
e
rI

n
d
e
x
[d

e
v
ic

e
][
e
.d

a
ta

c
a
t]

[e

.d
a
ta

ty
p
e
][
e
.q

u
a
lit

y
][
e
.p

u
b
lis

h
e
r]

[s
u
b
][
O

U
T

S
ID

E
]
||

 e

.i
d
 =

=
 i
d
 &

&
 s

u
b
s
c
ri
b
e
rI

n
d
e
x
[d

e
v
ic

e
][
e
.d

a
ta

c
a
t]

[e

.d
a
ta

ty
p
e
][
e
.q

u
a
lit

y
][
e
.p

u
b
lis

h
e
r]

[s
u
b
][
L
O

C
A

L
])

s
u
b
+

+

s
u
b
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 +

 D
E

V
IC

E
S

 &
&

 e
.i
d
 !
=

 i
d
 &

&

s
u
b
s
c
ri
b
e
rI

n
d
e
x
[d

e
v
ic

e
][
e
.d

a
ta

c
a
t]
[e

.d
a
ta

ty
p
e
][
e
.q

u
a
lit

y
]

[e
.p

u
b
lis

h
e
r]

[s
u
b
][
O

U
T

S
ID

E
]

s
u
b
s
c
ri
b
e
rs

[s
u
b
]
=

 t
ru

e
,

re
c
e
iv

e
rs

+
+

,
s
u
b
+

+

n
u
m

b
e
rO

fS
u
b
s
c
ri
b
e
rs

[d
e
v
ic

e
][
e
.d

a
ta

ty
p
e
]
>

 0

re
a
d
S

u
b
s
c
ri
b
e
rI

n
d
e
x
[d

e
v
ic

e
]!

s
u
b
 =

 0
,
re

c
e
iv

e
rs

 =
 0

p
u
b
lis

h
e
d
T

o
B

ro
k
e
r[

k
 −

 D
E

V
IC

E
S

]!
k
+

+

re
c
e
iv

e
rs

 >
 0

 &
&

k
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 &

&

s
u
b
s
c
ri
b
e
rs

[k
]

s
e
n
d
T

o
S

e
rv

ic
e
[k

]!

fi
lt
e
re

d
[k

]
=

 e
,

s
u
b
s
c
ri
b
e
rs

[k
]
=

 f
a
ls

e
,

k
+

+
,
re

c
e
iv

e
rs

−
−

s
u
b
 =

=
 N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

 +
 D

E
V

IC
E

S
s
u
b
s
c
ri
b
e
rR

e
a
d
F

in
is

h
e
d
[d

e
v
ic

e
]!

k
 =

 0

n
u
m

b
e
rO

fS
u
b
s
c
ri
b
e
rs

[d
e
v
ic

e
][
e
.d

a
ta

ty
p
e
]
<

=
 0

id
le

T
im

e
 =

 0
e
 =

 d
e
q
u
e
u
e
(b

ro
k
e
rI

n
q
u
e
u
e
[d

e
v
ic

e
])

k
 <

 N
U

M
B

E
R

O
F

S
E

R
V

IC
E

S
 +

D
E

V
IC

E
S

 &
&

(!
s
u
b
s
c
ri
b
e
rs

[k
]
&

&
 r

e
c
e
iv

e
rs

 >
 0

)
||

k
 =

=
 d

e
v
ic

e
+

D
E

V
IC

E
S

k
+

+

k
 =

=
 N

U
M

B
E

R
O

F
S

E
R

V
IC

E
S

 +
 D

E
V

IC
E

S
 |
|

 r
e
c
e
iv

e
rs

 =
=

 0

id
le

T
im

e
 =

 0

2

3 4

5

Fi
gu

re
22

:T
he

au
to

m
at

on
m

od
el

lin
g

ho
w

th
e

br
ok

er
fil

te
rs

in
co

m
in

g
ev

en
ts

.

35

PUB

IDLE

publish[id]?

alivePublisher[id]!

publishedToBroker!

initPublishToBroker!
dequeue(serviceOutqueue[id]),
returnvalue.receiver = −1,
enqueue(brokerInqueue, returnvalue)

1

(a) A service publishes an event.

RFB

REC

IDLE
b2bPublish[device]?

initPublishToBroker?

publishedToBroker?

1

(b) The broker receives an event.

RECEIVED

IDLE

processEvent[id]!

aliveSubscriber[id]!
period = 0

sendToService[id]?
enqueue(serviceInqueue[id], filtered[id]),
period = 0

5

(c) A service receives an event.

Figure 21: The processes modelling how a service publishes
events to and receives events from the broker. 21(a) shows
the service publishing an event. 21(b) shows how the broker
receives an event. 21(c) shows how a service receives an event
from the broker.

message was published by the database service. If the mes-
sage was published by the database service, the event is for-
warded directly to its recipient and the broker returns to the
IDLE location. Otherwise the broker identifies the subscribers
in Step 4. In our example, another service has subscribed to
the event. In Step 5, the broker synchronises with the sub-
scribing services through sendToService[k]!. The in-
dex k identifies the subscribing service and selects a com-
munication channel. The service receives the message (Fig-
ure 21(c)).

The TIP 3 Database There is a major difference between
a server peer and a client peer: The server peer hosts the TIP
database and a service providing access to a database, while a
client peer interacts directly with the TIP user. We modelled
the database as a service subscribing to database queries, cf.
Figure 23. A service needing access to the TIP database pub-
lishes a database query to the broker. The broker filters the
query and forwards it to the database service, cf. Figure 23(a).
The database service executes the query (Figure 23(b) and en-
queues the resulting event in its out-queue. It then publishes
the result to the broker. The broker then forwards it to the

RECEIVED

IDLE

processEvent[id]!

aliveSubscriber[id]!

period = 0

sendToService[id]?

enqueue(serviceInqueue[id], filtered[id]),
period = 0

(a) The database receives a query.

DB_ACCESS

IDLE publish[id]!

enqueue(serviceOutqueue[id], e)

processEvent[id]?

e = dequeue(serviceInqueue[id]),
query(e)

(b) The database processes a query.

Figure 23: The automata modelling access to a TIP database.
23(a) model’s the database service receiving a query and call-
ing 23(b) by synchronising with process[id]!. 23(b) processes
the query.

requester.

Additional source and sink Services running on the server
peer typically react to events published by client peers. The
services publish events that are forwarded to client peers. We
decided to add a source and sink process. The source process
replaces the client peers that would be connected to the broker.
It publishes events to the server broker, just like a client broker
would do. The client process is represented by an automaton.
It uses the same synchronisation channels to send messages to
the server broker as the broker processes in the model of the
communication between brokers do (compare Section 8.5).

8.4.2 Veri�cation of the Model

Rather simple properties, assuring that a certain location can
be reached, were verified during the modelling process, either
through formal queries, e.g. E<> iReg.REGISTERED.
This property verifies that the information service can reg-
ister with the broker. When a subscribing service has regis-
tered with the broker, its functional conditions have success-
fully been evaluated by the observer. Likewise, its subscrip-
tion rules have been evaluated by the observer and it has been
subscribed to the events needed.

More complex properties examining the co-operation
of services, e.g., mapService.RECEIVED -->
sink.RECEIVED could not be verified. The property
examines the co-operation between the server peer’s map

36

service providing map tiles to the client and the client peer’s
map service, needing map tiles. We wanted to ascertain that
the server peer’s map service provides a client peer’s map
service with map tiles. When the server peer’s map service
receives an event, it should eventually publish an event that is
forwarded to the client. In our model, the sink represents the
client.

A complete set of queries can be found on the accompa-
nying CD.

8.5 Communication between Brokers
This section presents and discusses the model of communi-
cation between several brokers. Brokers subscribe to events
from and forward their local events to other brokers.

8.5.1 The Model

Actors and processes involved In this model, brokers are
the only actors. Brokers participate in several interactions:
they connect to each other and (1) advertise and (2) process
another brokers advertisement, that is they subscribe to event
types. They (3) receive and filter events and (4) disconnect
from one another.

(1) Advertising When two brokers connect to each other,
each first creates an up-to-date advertisement by aggregating
the advertisements published by its local services. The broker
then advertises them to the other broker.

(2) Processing an advertisement When a broker receives
an advertisement from another broker, it notifies the observer.
The observer evaluates the subscription rules introduced in
Section 6, from every local subscribing service. It then in-
forms the broker about the needed event types. The broker
sends the services’ subscription to the foreign broker. When a
broker subscribes to events from another broker, the observer
monitors the connection and notifies its broker when the con-
nection is lost.

Figure 24 shows the advertising and subscription au-
tomata and how the brokers communicate in detail. Minor
automata, as those modelling the indices of publishers and
subscribers, are not included for clarity reasons. The shown
automata co-operate with them. Figure 25 shows a diagram
of the actions and messages transmitted between the two bro-
kers.
In Step 1, broker A (24(a)) aggregates the event types pub-
lished by local services. In the second step, it synchronises
with broker B through the binary synchronisation channel
advertise[device][id]!. Figure 24(b) shows broker
B receiving the advertisement. At first it waits for the syn-
chronisation advertise[e][id]? in the IDLE location.
After the synchronisation with broker A (Step 2) it updates its
event indices. It then calls for the observer to re-evaluate the
services’ subscriptions (Step 3). When the observer returns
in Step 4 (updateAD?), the broker checks if any data types
from the external broker are needed by the local services. In
Step 5, it synchronises with broker A via the synchronisation

Observer B

re−evaluation of

subscription rules

Broker A

collects advertisement

update

update filter index

Broker B

1

6

5

2

Step

advertise

subscribe
compare subscriptions

3 evaluate

updateAD4

Figure 25: Broker A advertises its events to broker B. This se-
quence diagram shows messages transmitted and actions exe-
cuted during the advertising process.

subscribe[forDevice][id]! and transmits its sub-
scriptions. Broker A (Figure 24(c)) subsequently updates its
filter index in Step 6.

(3) Receiving and �ltering messages When a broker re-
ceives events from a service or another broker, it filters the
events and transmits them to the subscribers.

(4) Disconnecting TIP 3 is an information system for mo-
bile users. The mobile devices move in and out of each others
reach. When two TIP 3 peers loose contact their observers
detects this after some time. The observer then signs off the
remote peer. During the deregistration process, the advertise-
ments and subscriptions from the remote broker are removed.

When a broker becomes aware of an imminent loss of
connectivity or has to end the connection for some other rea-
son, it first notifies the remote broker, so that it can deregister.

8.5.2 Veri�cation of the Model

Simulation runs assured that simple properties, e.g., that
a broker can indeed advertise to another broker, are veri-
fied. Another query, E <> client1BR.RFB, verifies the
property that a client broker can receive events from a con-
nected broker. The property holds for our model. How-
ever, even seemingly simple properties like this could only
be verified by simulation runs. While examining this prop-
erty, UPPAAL reached its memory limitations and aborted
the verification. Therefore, we could not verify more com-
plex queries, such as A<> !(serverSource.sending
and (serverBR.IDLE or serverBR.RFB) are sat-
isfied. The query examines whether a server peer service may
publish an event to the broker while the broker either is idle
or receives an event from a remote broker.

Our simulations showed that brokers may advertise to one
another. Advertisements are processed and result in subscrip-
tions. When a remote broker disconnects, its advertisements
are removed. The observer re-evaluates the subscription rules
and updates the subscriptions.

37

PREP

START

ADVERTISED

startAdv[device]?

startIA[device][id]!

readPublisherIndexFinished[device]!

readPublisherIndex[device]!

collectADT(brokerAdvertisements[id].localDatatypes,
 publisherIndex[device]),
brokerAdvertisements[id].localSD = servicedescriptions[device][device]

advertise[device][id]! 2

1

(a) The advertising process from broker A.

evalSub

ESO_done

SUBSCRIBED

waitForReEvalToFinish

PROCESS

UPDATE_PI
IDLE

subscriberReadFinished[device]!

readSubscriberIndex[device]!
SIBackup = subscriberIndex[device]

subscribe[forDevice][id]!
theSubscriber[forDevice][id] = device

updateAD[device]?
compare(forDevice)

change[device]!

writePublisherIndexfinished[device]!

writePublisherIndex[device]!
c = updateIndex(device, id)

e : int[0,DEVICES−1]
e != device
advertise[e][id]?
availDTBackup =
 availableDatatypes[device],
forDevice = e,
updateIndices(forDevice, id, device)

4

2

3

5

(b) Broker B processes the advertisement from broker A.

UPDATE_SI

GET_SUBIDLE

subscriberWriteFinished[device]!

writeSubscriberIndex[device]!
updateSI(theSubscriber[device][id])

subscribe[device][id]?
isSubscriber[device][id] = true

6

5

(c) Broker A receives the subscriptions from broker B.

Figure 24: The three main automata modelling the advertising and subscription process.

8.6 Joining the Models

Although we would have liked to create one single model,
we had to split it into several parts due to UPPAAL’s limited
memory, discussed in the following section. The models of
the server peer, the client peer and the communication be-
tween brokers were presented in the previous sections. These
three models may be joined to one single model. Their com-
mon interface are the filter and receive processes, shown in
Figure 26 and Figure 27.

The automaton representing the filter process is basically
the same in all three models. In Figure 27, the relevant part
of the automaton modelling the filter process for communica-
tion between brokers is shown. The brokers from the client
peer (27(a)) and server peer model (27(b)) are identical. The
only differences between Figures 27(a) and Figure 27(b) on
the one hand and Figure 27(c) on the other hand are how the
synchronisation channel b2bPublish[]! is selected, and
the broker in Figure 27(c) avoiding to forward events to itself.

Let us consider a situation with two brokers A and B,
located on peer A respectively peer B. They already have sub-
scribed to each others data, as described in Section 8.5. When
a service on peer A publishes data to broker A, the broker fil-
ters the data. If peer B subscribed to this event, broker A filters
the data and synchronises with broker B through the synchro-
nisation b2bPublish[B]!. If a local service on peer A
subscribed to the event, broker A synchronises with send-
ToService! and forwards the event to the service. These

two synchronisations are available in all three automata pre-
senting the filter process.

The automata that model how the broker receives data are
the same in all three models. They are shown in Figure 27.
When a broker publishes an event to another broker, it ini-
tialises the transmission with the publishToBroker[k]!
synchronisation. The receiver uses the same synchronisation
and switches to the RFB (Received From Broker) location.
The transmission is completed when both processes synchro-
nise with publishedToBroker. The received event is
then enqueued in broker B’s in-queue.

A service cannot receive a message that was sent to a bro-
ker, because services cannot synchronise with publishTo-
Broker[k]?.

The automata that model how a broker filters and re-
ceives events require minor adjustments if the three models
are merged. No other automata have to be changed.

8.7 Issues encounteres
This section discusses some major issues we encountered dur-
ing the modelling process. The problem that affected us most
is the fact that UPPAAL can address only 4GB in memory6.

6see the statement made by Gerd Behrmann, associate professor at
Aalborg University and UPPAAL developer, http://bugsy.dominic.
auc.dk/cgi-bin/bugzilla/show_bug.cgi?id=63: “(. . .) First,
uppaal is a 32-bit process (even on 64-bit Solaris). This means that there is
no way that uppaal can address more than 4GB of memory.(. . .)”

38

SENDING

subscribers[k] &&
k >= NUMBEROFSERVICES &&
k < NUMBEROFSERVICES +DEVICES

publishedToBroker!
k++

b2bPublish[k]!
filtered[k] = e,
subscribers[k] = false,
receivers−−

receivers > 0 &&
k < NUMBEROFSERVICES &&
subscribers[k]

sendToService[k]!
filtered[k] = e,
subscribers[k] = false,
k++, receivers−−

k < NUMBEROFSERVICES +DEVICES &&
!subscribers[k] && receivers > 0
k++

(a) The client peer model.

SENDING

subscribers[k] &&
k >= NUMBEROFSERVICES &&
k < NUMBEROFSERVICES +DEVICES

publishedToBroker!
k++

b2bPublish[k]!
filtered[k] = e,
subscribers[k] = false,
receivers−−

receivers > 0 &&
k < NUMBEROFSERVICES &&
subscribers[k]

sendToService[k]!
filtered[k] = e,
subscribers[k] = false,
k++, receivers−−

k < NUMBEROFSERVICES +DEVICES &&
!subscribers[k] && receivers > 0
k++

(b) The server peer model.

Broker SENDING

k−DEVICES != device && subscribers[k] &&
k >= NUMBEROFSERVICES &&
k < NUMBEROFSERVICES +DEVICES

b2bPublish[k − DEVICES]!
filtered[k − DEVICES] = e,
subscribers[k] = false,
receivers−−

publishedToBroker[k − DEVICES]!
k++

receivers > 0 &&
k < NUMBEROFSERVICES &&
subscribers[k]

sendToService[k]!
filtered[k] = e,
subscribers[k] = false,
k++, receivers−−

k < NUMBEROFSERVICES +DEVICES &&
(!subscribers[k] && receivers > 0) ||
k == device+DEVICES
k++

(c) The broker communication model.

Figure 27: The relevant part from the filter processes. 27(a) from the client peer model, 27(b) from the server peer model and
27(c) from the communication between brokers.

During the verification process, UPPAAL explores every pos-
sibly reachable state of the model and examines if the prop-
erty still holds. Especially when verifying safety and liveness
properties UPPAAL often needed more than 4GB of memory.
It then aborted the verification process before reaching a re-
sult. Therefore we decided to split the model into several parts
early in the modelling process. However, even the split mod-
els soon became too big for UPPAAL. The execution of a sim-
ple sanity check could take several hours on a Sun Fire 480R
with four 900 MHz Sparc III CPUs and 32 GB of memory.
During the simulated execution of a model that had run �aw-
lessly in earlier simulation runs, suddenly a deadlock could
occur.
Hence we could not prove that the model is deadlock free.
Some properties could not be examined, so we often had to
rely on the simulation of the models.

The model could have been split into more parts, e.g., one
model of the service registration process, one for the GUI and
user interaction, one for the filtering and receiving of events
etc. However, joining the models would have become more
difficult. Also the models share common data, e.g., all mod-
els of the client peer share the the indices of published events

and subscriptions. These shared data are modified by several
processe such as the service registration or filtering of incom-
ing events by the broker. Hence the shared data have either to
be created in the different models, or to be passed as a tem-
plate parameter. Passing the shared data as a parameter to a
process is a very likely source of error.

Also the different processes interact with one another.
When a publisher registers with the broker, other service’s
subscription rules are evaluated by an observer process and
subscriptions may be changed. The same observer process
evaluates a service’s subscription rules during the service reg-
istration process or when a publisher disconnects from the
server. Several processes would be part of more than one
model, the models would not be as small as aimed for.

Another problem we encountered is that UPPAAL cannot
model the observer pattern. Instead of simply observing the
communication between brokers and services or brokers and
brokers, the observed objects have to actively synchronise and
communicate with the observer.

39

RFB REC

IDLE
b2bPublish[device]?

initPublishToBroker?

publishedToBroker?
enqueue(brokerInqueue, published[id])

(a) The client peer model.

RFB

REC

IDLE
b2bPublish[device]?

initPublishToBroker?

publishedToBroker?

(b) The server peer model.

RFB
REC

IDLE

b2bPublish[device]?
published[device][id] =
 filtered[id]

initPublishToBroker[device]?

publishedToBroker[device]?
enqueue(brokerInqueue[device],
 published[device][sid[device]])

(c) The broker communication model.

Figure 26: The receiver processes from the three models.
26(a) from the client peer model, 26(b) from the server peer
model and 26(c) from the model of the communication be-
tween brokers.

8.8 Comparison to the Requirements
In Section 3.2 we defined our requirements for a new archi-
tecture and design for the TIP 3 system. We identified six
requirements whose fulfilment we now discuss in detail:

(1 a) Prompt communication TIP 3 services do not commu-
nicate directly. They communicate indirectly, i.e., a ser-
vice publishes its event to the broker. The broker then
filters the event and forwards it to the respective sub-
scribers. In our model, the broker regularly checks for
new events in its in-queue. Figure 28 shows a part of
the filtering automaton. We added a clock timeout to
the automaton and the invariant timeout < 10 to the
filter automaton’s IDLE location. This forces the automa-
ton to leave the location and check for new events before
the timeout is reached.

The FILTERING location is urgent. This means that time
cannot pass as long as the automaton stays in this loca-
tion.

The LOOP location and the transitions leaving it do not
depend on any other processes.

Several synchronisations leave the SENDING loca-
tion. When the broker filters a message to a local
service, the service immediately synchronises with
sendToService[id]?. The service cannot block
the broker, as it receives messages only from the broker.
When the broker needs to forward an event to another

broker, it first moves to a committed location, firing the
edge with the guarding expression subscribers[k]
&& k >= NUMBEROFSERVICES && k <
NUMBEROFSERVICES +DEVICES. When a pro-
cess is in a committed location, the whole system is in
a committed state. While the system is in a committed
state, the transitions leaving a committed location are
prioritised. Transitions leaving normal or urgent states
are not fired until the system has left the committed
state. Hence, publishing an event to a remote broker
does not block the broker.

The internal transition returning from the SENDING to
the IDLE location does not depend on another process.
We therefore argue that the filtering of events takes lim-
ited time. Hence, TIP 3 meets this requirement.

(1 b) Local communication Services located on the same de-
vice communicate locally without detour to the server
peer. The broker filters the evens and forwards them di-
rectly to the subscribers. TIP 3 meets this requirement.

(2) Service management After a publisher disconnects, its
event types are removed from the index of available
events. Every subscriber’s subscription rules are eval-
uated and subscriptions are renewed. When a new pub-
lisher registers with the broker, its event types are added
to the index of available events. The subscription rules
of subscribing services are re-evaluated by the observer.
Subscriptions are renewed when necessary. Subscribers
always subscribe to those events they prefer the most
among those available. TIP 3 meets this requirement.

(3) Rule-based subscriptions Rule-based subscriptions are
the basis for the TIP 3 design. Subscribing services pro-
vide a set of subscription rules, enabling the observer to
select the most appropriate events out of those available.
TIP 3 clearly meets our requirements on rule-based sub-
scriptions.

(4) Server management A TIP 3 broker may connect to sev-
eral other brokers at once, both to server peers and to
client peers. An implementation might enable the user
to choose whether to connect to several brokers, and to
choose between a peer-to-peer mode and a client-server
mode. TIP 3 meets our requirements on server manage-
ment.

(5) Event classification The data, or events, in TIP 3 are
coarsely classified into event categories. TIP 3 mostly
meets this requirement.

(6) Privacy and confidentiality This model of TIP 3 does
not address issues such as privacy and confidentiality,
beyond the characteristics provided by the publish sub-
scribe scheme.

9 Summary and Future Work
The focus of this paper lay on the re-design of the TIP sys-
tem. We identified the basic features TIP should offer: (1) TIP

40

SENDING

INIT

IDLE
timeout < 10

FILTERING

e.datatype >= 0

e.datatype == −1
timeout = 0

registrationFinished?
timeout = 0

numberOfSubscribers
[e.datatype] <= 0
timeout = 0

e = dequeue(brokerInqueue)

k == NUMBEROFSERVICES + DEVICES ||

 receivers == 0
timeout = 0

Figure 28: A part of the automaton representing the filtering process, c.f. Figure 8.4.1. The IDLE location must be left before
the clock “timeout” reaches its timeout of 10.

Table 3: Related Work, TIP 3 and our requirements: ++ = completely met; + = mostly met; − = partly met; −− = not met.
Requirements Related Work

D
yn

am
ic

To
ur

G
ui

de

G
eo

rg
e

Sq
ua

re
Sy

st
em

G
U

ID
E

T
IP

2

T
IP

3*

FA
C

T
S

T
IP

3

1a. Prompt Communication ++ + ++ + ++ ++ ++
1b. Local Communication ++ ++ − −− ++ ++ ++
2. Service Management −− −− − −− −− + ++
3. Rule-Based Subscriptions − ++ − − − ++ ++
4. Server Management −− + − −− + − ++
5a. Event Classification + + − + + + +
5b. Data Trustworthiness −− −− −− −− −− −− −−
6. Privacy and Confidentiality −− −− −− + + −− +−

Table 4: Features the TIP system should provide.
TIP 2 TIP 3* TIP 3

(1) extendability − − ++
(2) extremely loose coupling − − ++
(3) combine event-driven and service-
oriented architectures

− + ++

41

should be easily extendable, enabling new services to co-
operate with existing ones. (2) Services should be extremely
loosely coupled. (3) The design should combine event-driven
communication with service-oriented features. These three
characteristics enable the TIP system to adjust to a dynamic
environment and to the changing availability of services and
events. Table 4 summarises the comparison of TIP 2, TIP 3*
and TIP 3. The TIP 2 implementation did not realise any of
these features, although the design included some. TIP 3* ex-
tended the TIP 2 design. It made first steps towards service-
orientation. However, the main focus of TIP 3* lay on the in-
troduction of caching and pre-fetching mechanisms. TIP 3 is
easily extendable. Its services are extremely loosely coupled.
It combines the asynchronous communication style typical for
event-driven architectures with the advantages of service ori-
ented architectures.

The project consisted of theoretical and practical parts. In
the first theoretical part, Section 1 defined our understanding
of location based systems and context-awareness. Section 2
discussed the current TIP 2 system. Section 3 analysed the
requirements. Section 4 reviewed related work. In Sec-
tion 5, service-oriented and event-driven architectures were
discussed and compared. The first practical part, Section 6,
introduced and discussed the architecture and design of
TIP 3. The following theoretical part, Section 7, introduced
formal modelling. The last Section 8 presented and discussed
the model.

All major goals of the project were achieved. TIP 3 ser-
vices provide functional conditions that are evaluated during
the service startup and registration process. Functional condi-
tions and subscription rules are explained in Section 6.1, see
page 20. If events essential for the service’s functionality have
not been advertised, the service cannot register. TIP 3 services
may subscribe to events published by several services. When
a publisher deregisters or a new publisher registers to the bro-
ker, the services’ subscription rules are re-evaluated. The ser-
vice may then be subscribed to new events. Old subscriptions
may be revoked. Services therefore always subscribe to the
best events available. We consider the goals service manage-
ment and rule-based subscriptions to be obtained.
The TIP broker can communicate with several remote brokers
at the same time. We consider the goal “server management”
to be reached, as well. A future model or implementation
should enable the user to decide if the broker should connect
to a remote broker. The user should be able to choose be-
tween a peer-to-peer mode and connecting to one or many
server peers (client-server mode).
The goal to provide a framework for the analysis and exami-
nation of services could only be partly achieved. Future work
may include using a future 64bit version of UPPAAL, or a dif-
ferent modelling tool with different memory management or
higher memory limitations. This would enable researchers to
join our three models into one global model, and to verify
the remaining properties. We also developed a design for TIP
combining service-orientated aspects with event-driven com-
munication.

A future model or implementation may help researchers

learn more about the effect of differently formulated rules.
However, the overall behaviour of the system and the interac-
tion of services have already been described by the model.
A future model or implementation will have to decide on an
ontology for the categorisation of events and services. We
supplied a coarse categorisation for a small number of event
types and services. However, the design assumes that event
and service categories are known (cf. Section 6). The ap-
plication of an ontology in our model would have enlarged
the model. It would have unnecessarily complicated the ser-
vice advertisements and service descriptions as well as the
services’ functional conditions and subscription rules. We
therefore decided not to use one of the existing ontologies.
However, there are several ontologies available that may be
used in TIP, such as the OWL7 ontology. Another possibility
is the application of adaptive group-based service discovery
as suggested by Katharina Hahn [10].
A future model or implementation may examine how services
contact the broker, or how a broker connects to another bro-
ker. In Section 6, we abstracted from these technical details.
A future model or implementation may have to address the
problem arising out of the way subscription rules are re-
evaluated every time a new publishing service advertises to
the broker. At the moment, an advertisement to the broker
inevitably leads to a re-evaluation of all subscription rules.
When several services register consecutively, the subscrip-
tion rules are evaluated several times. A solution could be
to re-evaluate subscription rules of already registered services
when every current service registration is completed.
A future model or implementation should address the require-
ments the model did not address, i.e., rating of data, privacy
and confidentiality. The implementation may be used to ex-
plore both the usability of the TIP user interface as well as the
usability of the design.

The model could be extended, enabling further explo-
ration and analysis of the system’s behaviour in a MANET
or multi-hop peer-to-peer network.
We successfully introduced the concepts of functional condi-
tions and subscription rules to TIP. This paper reports on a
proof-of-concept, demonstrating the applicability of the con-
cepts of rules and conditions. Future works could focus on a
more detailed model of functional conditions or subscription
rules. The effect of different kinds of rules or conditions may
be examined in a more detailed model. However, this task
goes beyond the scope of this paper.

The development of a model checking tool targeted at the
examination and analysis of large-scale publish/subscribe sys-
tems would be an interesting and challenging project. UP-
PAAL showed its limitations during the modelling process, as
many other modelling tools would have done as well. Our
future research aims at developing new formal methods and
new modelling techniques, that is, new modelling languages,
logic and methods, for collaborating services in context-aware
mobile systems. This paper contributes to the project with a
thorough understanding of the strengths and weaknesses of
current modelling methods when applied to event-based ser-

7http://www.w3.org/TR/owl-ref/

42

vice collaboration.

References
[1] L. Baresi, C. Ghezzi, and L. Zanolin. Testing Commercial-

off-the-Shelf Components and Systems, chapter Modeling and
Validation of Publish/Subscribe Architectures, pages 273–291.
Springer, Berlin Heidelberg, Dec. 2005.

[2] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
UPPAAL. In Proceedings of Formal Methods for the Design
of Real-Time Systems(SFM-RT 2004), number 3185 in LNCS,
pages 200–236, September 2004.

[3] G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Pettersson,
and W. Yi. UPPAAL - Present and Future. In Proc. of 40th IEEE
Conference on Decision and Control, 2001.

[4] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algo-
rithms and Tools. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lecture Notes on Concurrency and Petri Nets, number
3098 in LNCS. Springer–Verlag, 2004.

[5] K. Cheverst, N. Davies, K. Mitchell, and A. Friday. Expe-
riences of developing and deploying a context-aware tourist
guide: the GUIDE project. In Mobile Computing and Network-
ing, pages 20–31, Boston, USA, Aug. 2000.

[6] A. David and W. Yi. Modelling and Analysis of a Commercial
Field Bus Protocol. In Proceedings of the 12th Euromicro Con-
ference on Real Time Systems, pages 165–172. IEEE Computer
Society, 2000.

[7] T. Erl. Service-Oriented Architecture. Concepts, Technology,
and Design. Prentice Hall, Upper Saddle River, NJ, USA,
2005.

[8] L. Eschner. Design and formal model of an event-driven and
service-oriented architecture for a mobile tourist information
system. Master’s thesis, Freie Universität Berlin, Department
of Computer Science, August 2008.

[9] W. Fokkink, A. Kakebeen, and J. Pang. Adapting the Uppaal
Model of a Distributed Lift System. In Proceedings of the
2nd IPM Symposium on Fundamentals of Software Engineer-
ing, volume 4767 of Lecture Notes in Computer Science, pages
81–97. Springer–Verlag, 2007.

[10] K. Hahn. Exploring Mobility and Service Discovery in
MANETs. PhD thesis – work in progress, 2008.

[11] M. D. Harrison, J. C. Campos, and K. Loer. Research Meth-
ods in Human Computer Interaction, chapter Formal Analysis
of Interactive Systems: Opportunities and Weaknesses. Cam-
bridge University Press, Cambridge, United Kingdom, August
2008. To appear.

[12] M. D. Harrison, C. Kray, and J. C. Campos. Exploring an
option space to engineer a ubiquitous computing system. In
P. Curzon and A. Cerone, editors, Pre-proceedings of FMIS’07,
pages 67–82, 2007.

[13] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal
Modelling and Analysis of an Audio/Video Protocol: An In-
dustrial Case Study Using Uppaal. In Proceedings of the 18th
IEEE Real-Time Systems Symposium, pages 2–13, San Fran-
cisco, California, USA, 3-5 December 1997.

[14] A. Hinze. Location-based system TIP: Challenges of a multi-
faceted project, 2006. talk held at Freie Universität Berlin, Au-
gust 2006.

[15] A. Hinze and G. Buchanan. The Challenge of Creating Coop-
erating Mobile Services: Experiences and Lessons Learned. In
Proceedings of the 29th Australasian Computer Science Con-
ference (ACSC 2006), volume 48 of CRPIT, pages 207–215,
Hobart, Australia, 2006. ACS.

[16] A. Hinze and S. Junmanee. Advanced Recommendation in a
Mobile Tourist Information System. Technical Report 04/2005,
Department of Computer Science, University of Waikato, May
2005.

[17] A. Hinze, P. Malik, and R. Malik. Towards a TIP 3.0 Service-
Oriented Architecture: Interaction Design. Technical Report
08/2005, Dept. of Computer Science, University of Waikato,
Aug. 2005.

[18] A. Hinze and A. Voisard. Combining Event Notification Ser-
vices and Location-based Services in Tourism. Technical re-
port, Freie Universitaet Berlin, 2003.

[19] A. Hinze and A. Voisard. Location- and Time-based Informa-
tion Delivery in Tourism. In Proceedings of Conference in Ad-
vances in Spatial and Temporal Databases (SSTD 2003), vol-
ume 2750 of LNCS, Santorini Island, Greece, July 2003.

[20] N. Hristova, G. O’Hare, and T. Lowen. Agent-based Ubiqui-
tous Systems: 9 Lessons Learnt. In Proceedings of UbiSys ’03,
System Support for Ubiquitous Computing Workshop, Seattle,
Washington, USA, October 2003. UbiComp 2003, The Fifth
Annual Conference on Ubiquitous Computing.

[21] R. Kramer, M. Modsching, and K. ten Hagen. Development
and Evaluation of a Context-driven, Mobile Tourist Guide. In-
ternational Journal of Pervasive Computing and Communica-
tion, March 2005.

[22] R. Kramer, M. Modsching, K. ten Hagen, and U. Gretzel. Be-
havioural Impacts of Mobile Tour Guides, 2007.

[23] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–
2):134–152, Oct. 1997.

[24] K. Li, K. Verma, R. Mulye, R. Rabbani, J. A. Miller, and A. P.
Sheth. Semantic Web Services, Processes and Applications,
chapter Designing Semantic Web Processes: the WSDL-S Ap-
proach. Springer, New York, NY, USA, 2006.

[25] K. Löf�er. User-Adapted Information Delivery in Context-
Aware Systems. Master’s thesis, Freie Universität Berlin, De-
partment of Computer Science, Jan. 2004.

[26] Y. Michel. Location-aware caching in mobile environments.
Master’s thesis, Freie Universität Berlin, Department of Com-
puter Science, June 2006.

[27] M. Modsching, R. Kramer, K. ten Hagen, and U. Gretzel. Ef-
fectiveness of Mobile Recommender Systems for Tourist Des-
tinations: A User Evaluation, 2007.

[28] G. Mühl, L. Fliege, and P. R. Pietzuch. Distributed Event-
Based Systems. Springer, Berlin, Heidelberg, 2006.

[29] M. Nagarajan. Semantic Web Services, Processes and Applica-
tions, chapter Semantic Annotations in Web Services. Springer,
New York, NY, USA, 2006.

[30] P. Ottlinger. Design and Implementation of an extensible Soft-
ware Architecture for Distributing Context-sensitive Informa-
tion (in German). Master’s thesis, Freie Universitaet Berlin,
Department of Computer Science, June 2004.

43

[31] K. Ter�oth, G. Wittenburg, and J. Schiller. FACTS - A
Rule-Based Middleware Architecture for Wireless Sensor Net-
works. In Proceedings of the First International Conference
on COMmunication System softWAre and MiddlewaRE (COM-
SWARE’06), New Delhi, India, Jan. 2006.

[32] K. Virrantaus, J. Markkala, A. Garmash, V. Terziyan, J. Vei-
jalainen, A. Katanosov, and H. Tirri. Developing GIS-
Supported Location-Based Services. In Proceedings of WGIS
2001 - First International Workshop on Web Geographical In-
formation Systems, pages 423–432, Kyoto, Japan, 3-6 Decem-
ber 2001.

[33] Web Services Architecture Group. Web Services Architecture.
W3C Working Group Note 11 February 2004, February 2004.

[34] A. Wenzler. Web Services and Service Oriented Architecture,
June 2004.

[35] M. Zaremba, M. Kerrigan, A. Mocan, and M. Moran. Seman-
tic Web Services, Processes and Applications, chapter Web ser-
vices Modeling Intology. Springer, New York, NY, USA, 2006.

44

