
Working Paper Series
ISSN 11 70-487X

Multiple Viewpoint Systems
for Music Prediction

Ian H. Witten
Darrell Conklin

Working Paper 93/12

December. 1993

© 1993 by Ian H. Witten & Darrell Conklin
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton. New Zealand

Multiple Viewpoint Systems for Music Prediction

Darrnll Conklin

Dept. of Computing and Information Science

Queen's University

Kingston, Ontario, Canada

co11 klin@q ucis .q ueensu .ca.

(613) 545- 6301

Abstract

Ian H. Witten

Dept. of Computer Science

The University of Waikato

Hamilton, New Zealand

ihw@waikato.ac.nz

This paper examines the prediction and genern.tion of music using a ·multiple
viewpoint system, a collecLioa of independent views of Lhe musical surface each of
which models a specific type of musical phenome11a. Both Lhe general style and a
particular piece a re modeled using dual short-term and long-term theories, and
Lhe model is created using machine learning techniques on a corpus o(musical
examples.

The models a.re used for analysis and prediction, and we conject.ure that highly
predictive theories will also generate original, acceptable, works. Although the
quality of the works generated is hard to qua.ntify object ive ly, the preclicti ve power
of models can be measured by the notion of entropy, or unpredict.ability. Highly
predictive theories will produce low-entropy estimates of~ musical language.

The methods developed are applied l,o Lhe l3ach chorale melodies. Mu1Liple·
viewpoint, systems a re learned [rom a sample of 95 chorales, esLirnales of entropy
are produced, and a predictive theory is used lo generate uew, unseen pieces.

Keywords : music pTediction. machine l<,>arning, conLext. models, multiple viewpoint
systems, entropy, music generation, chorale melodies.

1 Introduction

This paper is concerned witb machine learning and evaluat.ion of music theories. A theory
of music is an intensional description of some musical language. Theories are evaluated
according to the predictions they make about particular pieces of music. ln addition to
explaining known pieces, a theory of a musical style is expected to generate new pieces
that are acceptable - even creative - specimens of the style. Musical styles are vast and
complex languages; we have begun our work by tackling the problem o[constructing theories
for melody, a necessary prerequisite to more advanced issues such as polyphony and harmony.
The Bach chorale melodies were chosen as the object o[analysis due to their abundance,
simplicity and general display of good melodic form.

There are two approaches to the construction of a generative theory for a musical lan­
guage. The firsL is the knowledge engineering approach. where rules and constraints are
explicitly coded in some logic or grammar (Cope, 1987; Ebcioglu, 1986; Lidov and Gabura,
1973; Hiller , 1970; Baroni and Jacobini, 1978). The seco11d is the empirical induction ap­
proach, where a Lheory is developed through an anaJysis of existing com positions (Brooks et
al., 1956; Kohonen, 1989; Conklin and Cleary, L988). The knowledge engineering approach
was discarded after careful consideration. There are too many exceptions to any logical sys­
tem of musical description, and it will be difficult to ensure the completeness of an intuited
theory. The system wi ll always exclude some valid pieces. Tbe generations of a theory are
bound to reflect the biases of an engineer; this is the only way they might be called "creative."
This paper uses the empirical induction approach Lo generative theory construction.

Predicting plausible cont,inuations in a musical style presents difficu lties not encountered
in other domains. In addition to capturing general stylistic rules, a prediction system must
also capture sequeni,ial structure, pattern, and repetition within a particular work (Brown
and Dempster, 1989). The presence of these two interacting levels of description makes
music a unique problem domain. A theory of a musical style needs Lo represent two concepts
simultaneously - tha.L of "piece in a style,'' as well as "next event in a piece.,, The combined
concept being acquired here is that of "next. event in a, chorale melody."

This research is motivated by the goal of learning generative Lheories for the chorale
genre. The evaluation of generative theories wiU always be subjective, varying with indjvidual
listeners. To assess Lhis researcl1, it is necessary t.o have a more precise and replicatable
method for evaluating music theories. The conjccl,ure of Lliis paper is that highly predict ive
theories for the chorales will also genera.Le original , acceptable works. The predictiveness of
a. theory can be precisely measured using entropy.

This paper is structured as follows. Section 2 develops t,be formal basis for prediction ,
entropy estimation, and generation of music. It reveals the idea of non-exclusive music the­
ories which do not. view pieces as being "true" or "false/' but rather regard all representable
musical surfaces as possible. Section 3 presents a general framework for learn ing about se­
quences, and describes the model used to represent and learn sequence-generating rules.
This framework , derived from research OLl data compression and grammatical inference, is
substantially extended in Section 4, where muJtiple viewpoint systems are introduced. These
a.re a novel distributed knowledge representat,ion scheme, that can concurrent ly represent
and 1·eason about multiple properties of the musical surface. Section 5 shows t,he chorales

2

to be amenable to a multiple viewpoint representation1 and develops an appropriate sel of
viewpoiats. Finally1 Sectjon 6 presents some experimental results, which indicate that the
entropy of the chorale genre is probably oot greater than 1.87 bits/pitch. An example of a
generated chorale is presented.

2 Pre diction, e ntropy, and generation of music

ln bis paper "Prediction and Entropy of Printed English," Shannon (J951) outlined the idea
of a predictive theory of a language as a transducer of letters into compressed codes. Thls
transduction is reversible, so tha,t it is also possible to exactly reconstruct a letter from a
compressed code. Figure 1 out.Jines this prediction scheme for general sequences. A context
- a sequence of events - and an event are sltowll to a theory T, which is in "prediction"
mode and produces a compressed code. When the code and original context are shown to a
theory - which is now in '1generate'' mode - the migina.1 event is reproduced.

The predict ion scheme of F igure l forms the basis for modern data compression theory
(Bell et al., 1990). lt can be shown that if the probability of an a rbitrary event e, given a
context c and theory T, is pr(elc), the code produced cannoL have a length of less than

- log2 PT(elc) (1)

bits. Furthermore, there arc coding techniques that. can almost achieve this lower bound
(Witten et al ., 1987).

Let (e1, ••• , e11) be a subsequence from an clement of the language L. The sequence
c = (e1 , ... , en-d is the context, and e = en is the event to be predicted. The entropy of
the language L, with respect. to a probabilistic predictiv<" theory T, is the minimal expected
code length of an event.. It can be estimated as

n
(2)

where n is the number of subsequences used in the estimation. As n grows, statist.ically more
reliable estimates of the entropy are produced. Theories wl1ich minimize the entropy estimate
in Expression 2 are more predictive of the language under investigation.

Predictive theories can also be used to generate new music. lf a t.heory T minimizes
t.he entropy estimate of the language, the codes produced will be incompressible, and hence
highly random, bit. strings. Thus in addition to evaluating a theory according to its predictive
power, it is possible to inspect the music generated by a t.heory when provided with random
codes.1 A conjecture of tliis research is that highly predictive theories will also be good
generative theories . Tbus the goal of developing generative Lheories, which is a. subjecLive
process, can be replaced by Lhe one of developing highly predicLive theories. Furthermore,
predictive Lheories of a musical style can be learned from examples of the style. as the next
section will discuss.

1In the implementation, we generate music by random sampling from a ctmrnlative probability distribu­
tion. This has the same effect as sending the generative theory random codes.

3

event---
T

(predict.) code

contexl

T
(generate) --• eve11L

Figure l: Shannon's formulation of a predicLive theory as a compressor of events.

There is an important point to note regarding the prediction scheme. Since log O is un­
defined, it is necessary that pr{eic) be non-zero for a ll possible contexts a.nd events. This
means that, according to ,i theory T, no sequence of events is impossible, however unlikely
it may be. Adopting Rahn 's (1989) term, we say that prc<licLive theories of music must be
non-exclusive. This means that a. theory could conceivably generate any sequence of events.

PredicLion is not the same th ing as ge11erat ion of music. 1 11 the above scheme, all predictive
theories are generative. However, there are genera.Live t.heories which are not predictive.
Consider, for example, various music composition techniques of ars combinatoria (Ratner,
1970), including musical dice games, fra.ctal music, and so on. Even though these techniques
may generate reasonable pieces, they are almm;t a.lways exclusive and are not amenable to
incorporation into a predict.ion scheme.

3 Machine learning of context models

This section presents the machinery we use to represeut and learn about sequences. The
power of this representation wil l be substantia lly enhanced in the next section, where multiple
viewpoint systems are introduced. For this exposition, it is necessary to introduce a bit of
notation. We will sometimes use the notation en as an abbreviation for a sequence (e1 , •.. 1 en)·
The set of all representable evenLs will be called the evenl space, and denoted by the symbol
(The set of alJ sequences that can be built from elemeuts of' a set S will be denoted by S'*.
The catenation of an event e onto a sequence c will be denoted by c :: e. The cardinality of
a seL 8 will be denoted by ISi.

3.1 Context models

Here we describe context rnodels, a subclass of the probabi lisLic finite state, or Markov,2 class
of grammars. Context. models have a. conceptually simple induction procedure, and many
modjfica.tions to their basic structure can be made without sacrificing ease of induction.
A context model has three features: l) a database of sequences over an event space, 2) a
frequency count attached to each sequence, and :3) an inference met.hod which is used to
compute the probability of a tuple.

Deductive inference from a context model can be performed as follows. The conditional
probability PT(elc) of an event e given a context c is the number of Limes the sequence c :: e

2See A.mes (1989) for a good overview of Markov modelling of music.

4

occurs jn the dat,abase divided by the number of t imes the context c occms. The problem
with this simple method is that the frequency of the context c could be 0, and PT(eic) will
then be undefined. An innovative solution to this problem is the partial match algorithm
(Cleary and Witten, 1984). The conditional probability PT(enl(ei, ... , en-J)) is computed by
blending the various quantities

PT(enlen-1),

Pr(enlen-2),
...)

PT(el()).

Higher weights are given to terms appearing earlier in the above enumeration. It is possible
that the conditional probability is still undefined if the last quantity above is undefined.
This will occur when the one-event sequence (en) does not appear in t he database. To solve
this, the -final probability mea.sure is blended with 1/1(1. The final result of blending is a
probability distribution over all events in l, given a context.

3.2 Induction of context models

Induction of context models is incremental. The ini tial Lheory of the concept is the most
general theory possible, assigning equal probability to any Luple. Each example that arrives
specializes the theory, since after incorporating the example, the theory will give higher
probability to it. As such, induction of context models can be viewed as a hill-climbing
search of a specialization hierarchy of probabilistic theories (Gennari et al., 1989; Buntine,
1988).

For a sequence en comprising n events, the machine is given n (context, next event) tuples

((), e1),

((e1), e2),

((e1,e2),e3),
... ,

Suppose an example (en- l, en) is given. Induction processes the sequence en as follows.
If en is not in the database, add it, set its frequency counL Lo 1, and recursively process the
sequence (e2, ... , e,i) . If en is in the database, increment its frequency count, and recursively
process the sequence (e2 , ... , en)· The operation terminat,es a.fLer the null sequence () is
processed. We call the first type of probabilistic specialization - the addition of a new
sequence - structural, and the second type - the incrementing of frequency counts -
statistical.

The database would qujcldy become unwieldy if we simply added to it every sequence that
was encountered. This is because up to n + 1 sequences can be stored for a tuple (en-I, en)·
We impose the restriction that if a sequence is longer tban a certain length h, it is not added.

5

():10 (A):3 (AB) : 1 (ABA):l
(G):4 (AG) : l (AGG):l
(D):1 (GA) : 1 (GAB):l
(B):2 (GG) : 2 (GA B):l

(GD) : 1 (GGA):l
(DB) : 1 (GDB):l
(BA) : 2 (DBA):1

(BAG):l

Table 1: A small context database after incorporation of the first ten pitch classes (sequence
GGDBAGGABA) from chorale 1.

That is, for a tuple (en-1, en), only the sequences (en-li+l, ... , en), (en-h+2, ... , en), ... , ()
are processed. Nothing is done if n < h. We also use a very efficient access/update trie data
structure to store the sequences.

As an example of the cont.ext model induct.ion procedure, refer t.o Table 1, which shows
the state of a context database (with h = 3) after incorporating the first ten pitch classes from
chorale 1 (see Figure 4). This table simply presents an enumerat ion of database contents,
and the set. of sequences is actually represented much more efficiently using a trie.

The quantity h - J is called the order of the context model. A well- known problem of
fixed- order context models is that very low order models arc too general, and <lo not capture
enough structure of the concept.; very high order models arc too specialized to the examples
from which they were constructed, and do not capture enough statistics of the concept. The
induction scheme described above, us ing the parLial match inferen ce method , will tend to
avoid such extreme overgeneralization or overspecial izatiou.

3.3 Short and long term models

In sequence prediction using context models, two forces contribute to the sequence-genera.ting
rule. One is provided by long -term effects, and is governed by structure and statistics induced
from a huge corpus of sequenc..:e!:l from the same genre. The other is provided by short- term
effects, by st.ructure and statistics particular to the sequence being predicted. Tbis research
explicitly represents the short and long term forces as different context models. The short­
term model is transitory in the sense that it is discarded after a particular sequence is
predicted, and dynamic in the sense that it adapts to a particular sequence.

More precisely, suppose a tuple (c, e) is encountered. A short - term model of this tuple
is a context model of the sequence c. Short- term models are also non- exclusive. The final
probabi lity of an event is a combination of its probabiliLy accord ing t.o the short- term and
long-term models. Figure 3 depicts the process of short/long term model combination.

6

4 Multiple viewpoint systems

The main problem with basic contexl models, which makes t.heir use for music unsatisfactory,
is that they require an exact match of supplied contexts lo contexts in the database. They
were not meant to deal with domains, such as music, where events an have an internal struc­
ture (e.g., musical events have pitch, durations, and start- times) and are richly representable
in languages other than the basic event language. To handle this problem, we introduce a
unique distributed problem solving method for sequences, called multiple viewpoints.

Multiple viewpoint systems address various weaknesses with stnndar<l context models.
First, they are adaptive, in Lhe sense that. a model of a particular piece will change as that
piece progresses. They supporl models which "look back" any number of events in a sequence
to extract a context. T he mathematical formalism of multi pie viewpoints, described. in this
section, precisely guides the development of many different styles of context models.

4.1 D erived types

The cent.ral idea behind viewpoints is lo use background domain knowledge to derive new
ways of expressing events in a sequence. A type is an abstract property of events, such as
scale degree or its melodic interval with its predecessor. For every typer, Lhere exists an
associated partial function \ll 'T which maps sequences of events to elements of typer. 'vVe use
the notation [r] to denote the set of all syntactically valid element.s of typer, and thus [rJ­
is the set of all sequences represcutable using elen1ents of t.y pe , . A vicwvoinl comprises 1) a
part ia l [unction W7 : C _. [r], and 2) a context model of srq uences in [r]". v'or conven ience,
we will often refer to a viewpoint by I.he type it models, and we ask the reader to keep in
mind that all viewpoints have an underlying context model. A collect.ion of viewpoints forms
a m:idtiple viewpoint system.

The problem of context models has now been inverted; a system of viewpoints models no
correlation between any basic types in an event. Such a system will have a limited represen­
tational and pre<lict.ive power. A solution to this problem is t.o model interact.ions explicit.ly;
the resuHing model is called a liuked viewpoinl . The idea of linked vi<·wpoints was motivated
by Lewin 's (1987) direct product systems.

A product type r 1 ® · . . @rii bet.ween n constituent types 1 1 , • . • , T11 is itself a typer, where
e lements of Lhe product. type are elemculs of the cross product of Lhc constituents, that is,
[r) = [r1] x ... x [r11]. For a product typer = r1 ® ... 0 rn., '11T(ek) is undefined if \JJ T,(ek) is
undefined for any i E {1 ... , n}, else it is a tuple (w'T1 (ek), ... , \ll.,.,,(ek)). 3

The com plete space of product types form s a. set partially ordered on the subset relation
among constituents. Pigure 2 displays the lattice or such a. set for three primitive types r1,

r2 and r3 . On the bottom of the lat.lice is the empty lype; on the top, the product type
between all three primitive Lypes. T he second level of the la.ttice contains all 2-constituent
product types, and the third level contains aU primitive l.ypes. A multiple viewpoint system
can be viewed as a set of points on Lhis lattice. For example. {11,r3 }, {r2 ,r1 0 r3 }, and
{ 12, r1 0 r2, r3 } are multiple viewpoint systems.

3 For couvenicnce, if a produci type has only one constituent, tht! augled brackets around a tuple will be
omitted.

7

0

F igure 2: The lattice of product types for three primitive types.

For a system of n primitive types, the number of possible primitive multiple viewpoint
systems that can be formed is 0(2n). Once linked viewpoints with any number of constituents
are allowed, this number explodes to O(nn) . A heuristic, such as degree of correlation of
constituent viewpoints , might be used to guide the search for the best possible system of
linked viewpojnts . This constructive formation of new models during the learning process
is recognized as one of the harder problems in sequence learning (Dietterich and Michalski ,
1986) , and will not be explored in this paper.

'Ne supply a multiple viewpoint system with an informal semantics. Whereas (r] repre­
sents the set of syntactically valid elements of type r , [r] represents the semantic domain
of interpretation, or the set of possible meanings for type r. For primitive types, this is a
set. For a product type r1 0 .. . 0 Tn, [r1 0 . . . 0 rn] is a set of tuples [rl] x .. . x [rn]. The
notation [·].,. denotes the meaning of a typical element from [r], that is, [·].,. is a funct ion
from (r] to [r]. We wm leave off the subscript r when it is evident from the context.

A sequence can be viewed as a set of derived seque11ces, one for each primitive type
used in a multiple viewpoint system . This set of derived sequences is represented using a
structure called a solution array (Ebcioglu, 1986). A solution array for n primitive viewpoints
Ti , ... , Tn and a basic event sequence ek is an n x k matrix , where locaLion (i,j) holds the
value W.,.,(ej), or the symbol 1- jf W.,.;(e;) is undefined. Product Lypes do not need a row in
the matrix, as they can be derived from their constituent rows. Section 5 will present and
discuss the solution array for a. Bach chorale.

4.2 Infe rence using viewpoints

Given a context c and an event e, each viewpoint T in a. multiple viewpoint system must
compute the probabiUty p.,.(elc) . This cannoL be done directly, as a viewpoint T is a context
model over sequences in [r]*, not in C'. Thus it is first necessary Lo convert the sw-face string

8

c :: e in C to a string in [rJ-. The vjewpoint then predicts a djstributjon over [r), using the
inference method outlined in Section 3.1. The conversion of the surface string is done using
the <I>-r [unction, where <I>-r : C ~ [rJ- is defined inductively as

<I>r(O)

<l>-r(ek)
W -r(ek) defined,
otherwise.

Computing the probability of an event usi11g a viewpoint is a bit more complicated than for
normal context models, because the mapping <I>-r is, in general, many- to-one. That is, Lbe
sequence <I>r(c :: e) could represent many sequences of events other than the sequence c :: e,
and the probability must be divided by the number of all such sequences.

Inductive inference of a. multiple viewpoi11t system is similar Lo induction of regular
context models . Suppose an example (c, e) is seen. For all viewpoints r. if '1i-r(c :: e) is
defined, Lhe sequence <I>-r(c :: e) is added to the database for the viewpoint, in exactly the
manner described in Section 3.2. It is necessary Lo make the check Lltat \J! -r(c :: e) is defined,
since otherwise the sequence in [rJ- could be incorporated into the database multiple times for
the same example. This foJlows from the definition of <l>-r given above; if W-r(ek) is undefined,
then <I?-r(ek) = <I>-r(ek_.).

4.3 Inference using multiple viewpoints

Figure 3 summarizes the archiLecturc of a multiple viewpoint system. This architecture is
cerLainly not the only one possible, but is the one chosen for th.is study. The final probabiljty
of an event, given a context, is a function of many independent context models. On the left
part of the figure, all short term models for every viewpoint combine into a predjction: on
the right side aU long term models. At the bottom part of the figure, predictions from the
short term and long term models are combined iuLo a final prediction.

There are numerous ways to combine predictions fron1 viewpoi 11Ls and short/ long term
models, including weighted linear combinations (HambW"gcr, 1986)i Dempster-Schafer (DS)
theory (Garvey el al., 1981) and fuzzy set Lheory (Dubois eL al., 1992). We do not claim to
have found a fully satisfactory solution, but have used a weighting scheme for viewpoints,
and a DS scheme to combine short/long term models, witli reasonable success. The weight­
ing given Lo a viewpoint is designed so that viewpoints Lhat are very uncertain about the
outcome are given lower weight. UncertaiJ1ty is measured 11sing Sb an non 's entropy function.
A viewpoint combination approach which also seems to work reasonably well first converts
the viewpoi11t distributions to ranked lisLs, combines these rankings, and finally transcribes
the ranked list back into a probability distribution. Further research on context model com­
bination schemes is necessary.

5 Musical viewpoints

As an example of all Lypes that will be discussed in this section, refer to Figure 4, which shows
the first two phrases from chorale 1, and the para.lie) streams of description (see Section 4)

9

viewpoints (short term) viewpoints (long term)

combine viewpoints combine viewpoints

combine short term, long term

Figure 3: The architecture of a multiple viewpoint system.

for the fragment. Table 4 shows some applications of the functions \J! and <I> (see Secbon 4)
using some of the types discussed below and the chorale fragment of Figure 4. Note that the
result of \J! -r is an element of [r], whereas the result of <I>-r is an element of [r]*.

5.1 Basic types

A chorale is represented as a discrete event sequence, that is, all events in a chorale have
discrete types, stait- times and durations. Time aL1d key signatures are included as basic
types of an event. This choice ensures that no special circumstances have to be constructed
for their prediction. It ensures homogeneity, and allows key and time signature to be linked
with other types, using the viewpoint linking technique described in Section 4.1.

The event space for the chorales is:

[pitch 0 keysig 0 t imesig 0 ferrnata 0 st 0 duration}
1

where pitch is the pitch of the event, keysig and timesig are the key signature and time
signature of the chorale, fermata is a boolean type that indicates whether an event is under
a fermata, st is the start-time, and duration is the duration of the event

The fundamental unit of time is the sixteenth note; all start- times and durations are
measured as multiples of this unit. The longest value in [duration] is a whole note. The
start- time of any chorale is 0, the zero time point representing the beginning of the first bar,
complete or incomplete, in the chorale. Due to upbeat effects, the first event in a chorale
may have a non-zero start-time (as in the chorale in Figure 4). The semantic domain of
interpretation [pitch] ranges from Cq4 (middle C) to Gq5 (19 semitones above middle C) .
Pitches are integer-encoded in a twelve tone system. The integer representation for pitch is
the MIDI4 standard - [pitch] ranges from O to 127, [60] = Cq4, [72] = Cq5, and so on.
As a result, there is no notion of enharrnonic inequivalence; for example, CU5 is semantically
equivalent to Db 5. Rests are not events; they are modelled by a difference in time between
the end of one event and the start of the next , as cUscussed in more detail below. Repeated

4 M usica.l Instruments Digital Interface.

10

sections are not expanded. Ties over a bar line are also not explicitly represenied; only one
event. with the cumulative duration is encoded.

The key signature only states bow many sharps or flats the chorale has, and says nothing
about its mode or tonic. Since sharps and flais cannot. occur together in the signature, and
their number cannot exceed 7, the key signature can be uniquely encoded as a number in
the set { - 7, ... , 7} : [- 7] means "seven flats", and [7] means ((seven sharps", and so on.
The time signature is measured in terms of sixteenth notes per bar; for example, [12] = 3/4
time, and [16] = 4/4 time. Furthermore, [v] means that bar lines occw· at. multiples of v
time units.

Information about. phrases is notated in a consistent manner throughout. all chorales using
fermatas . This information provides very strong clues about the properties of the next event
- for example, many phrases in the chorales begin on i, 3, or 5, few end on 7, and so on.
Phrase endings are represented on the score by means of a fermata symbol. These symbols
can be represented by a boolean type fermata: [T] mca.ns tha.t afl eveut is under a fermata.
The bcginnjng of a phrase is assumed to be Lhe evenL immedia.Lcly following an event under
a fermata.

The syntact.ic domain of any basic type must contain all elements of the type that could
be encountered in the chorales. The syntactic domains were discovered by a simple anal­
ysis of 100 chorales. For example, the syntactic domain [duration] is not {l, ... , 16} but
{l, 2, 3, 4, 6, 8, 12, 16}, and only 9 of Lhe possible 15 key sjgnaLures are actually encountered
in the chorale melodies.

5.2 Derived types

About twenty different derived types for the chorales have been implemented. This section
presents these derived types, categorizing them according to the primary basic type from
which they are derived. Table 2 summarizes all derived types that will be encountered. The
first column of the table gives ihe symbolic name of the type. The second column informally
gives its semantic valuation function. The third column details the syntactic domain of the
type, and the last column shows the basic types the type is derived from, and hence is
capable of predicting. The symbol z+ denotes the positive integers {l,2,3, . . . }. The top
part of Table 2 shows aU basic types. The boUom part shows some threaded derived types .
These types inspect. a variable number of previous events in a chorale. Not all types of Table 2
will form useful viewpoints; some are used only Lo simplify the expression of others.

5.2.1 Start-time

If all events in a sequence followed each other immediately, lhere would be oo need for a st
type; it could be calculated if necessary by summing the durations or all previous events.
In music, however, we must deal with the phenomenon of the rest: although th.ese are not
common in the chorales, they are nonetheless present. For the delta start- Lime iype, [v]
means that tbe difference in time between the start- time of an event and the end-time of its
predecessor is v time units. The gis221 viewpoint [a.ftcr Lewin 1s (1987, page 22) generalized
interval system 2.2.1], assumes a value that is the difference in starL- time between an event
and iLs predecessor. For the gis221 viewpoint, [v] means that the difference between the

11

I [r1 Derived from II
st start-time of event {O, 11 2, . . .) st
pitch pitch, in { CQ4 , ... , GQ5} {60, ... , 79} pitch
duration quarter note, eighth note, etc. {1,2,3,4,6,8,12,16} duration
keysig 1 sharp, 1 flat, etc. {-4, . .. , 4) keysig
timesig 3/4 time, 4/4 time {12, 16} timesig
fermata event under / not under fcrmata.? {T,F} fermata
deltast rest, no rest {0,4} st

gis221 difference in start-time {l, ... , 20} st
posinbar positiou of event in bar {O, ... , 15) st
fib first. / not first in bar {T,F} st
seq int sequential melodic interval see texl pitch
contour rising, falling, static {-1, 0, 1} pitch
referent referent of piece {0, .. . , 11} keysig
intfref vertical in terval from referent [seqint0] pitch
inscale in / not in scale {T,F} pitch
intfib interval from first event. in bar (seqint.,] pitch
intfip interval from first event in piece [seqint,1] pitch
intphbeg interval from phi-ase beginning [seqint ,1] pitch

thrbar seqint at bars [seqint,1] x z+ pitch, st
!phrase length of phrase z+ fermata, st
thrph seqint at phrases [seqintA] X z+ pitch
thrqu seqint at quarters [seqint,1] x z+ pitch, st

Table 2: The basic and some primitive derived types for Lhe chorales.

Table 3: Some example applications of the functions \[I and <I>.

II Function I Parameter II Result II
Wst e1 36

llloitch e12 74

Ill intfref0 seqint cio (2, - 2)

'1! .lds221®seq int ej undefined

Ill gis221®seqint e 13 (8, 2)

Ill intfre:fn.fib e1 (0, T)

<I>st e1 (8,12 , 20,24,30,32,36)

<I> g:is221@seqint e1 ()
<l>gis2210 seqint e1 ((4, O} , (8, 7) , {4 , - 3) , (6 , -2), (2 , -2} , (4 , 0))

Table 4: Some exampJe applicatio11s of the functions (11 and <I>.

l2

,..., ,...,
=&~ J u l

hi J
l j j LA ~ f I r· J) J)

F I F I r r I F I
1 2 3 4 5 6 7 8 9 10 L 1 12 13 14 15 16

Type Event number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

st 8 12 20 24 30 32 36 42 44 48 56 60 68 72 76 84
pitch 67 67 74 71 69 67 67 69 71 69 71 74 72 71 69 67
duration 4 8 4 6 2 4 6 2 4 8 4 8 4 4 8 8
keysig 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tirnesig 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
ferrnata F F F F F F F F F T F F F F F T
deltast .l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gis221 J_ 4 8 4 6 2 4 6 2 4 8 4 8 4 4 8
posinbar 8 0 8 0 6 8 0 6 8 0 8 0 8 0 4 0
fib F T F T F F T F F T F T F T F T
seq int J_ 0 7 -3 - 2 -2 0 2 2 -2 2 3 - 2 -1 -2 - 2
contour J_ 0 1 - 1 -1 - 1 0 1 1 - 1 1 1 -1 - 1 -1 -1
referent 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
intfref 0 0 7 4 2 0 0 2 4 2 4 7 5 4 2 0
inscale T T T T T T T T T T T T T T T T
intfib 0 0 7 0 -2 -4 0 2 4 0 2 0 -2 0 -2 0
intfip 0 0 7 4 2 0 0 2 4 2 4 7 5 4 2 0
intphbeg 0 0 7 4 2 0 0 2 4 2 0 3 1 0 -2 - 4
thrbar .l 04 .l 412 .l .l - 41 2 .l .l 212 J_ 512 .l -312 .l -412
lphrase .l .l .l .l .l .l J_ .l .l 40 .l J_ .l .l .l 28
thrph .l .l J_ .l J_ .l J_ J_ J_ J_ 44g J_ J_ .l .l J_
thrqu J_ 04 7a -34 J_ -4g 04 J_ 4s -24 2s 34 - 2a -l.1 -24 - 2s

Figure 4: Parallel streams of description, chorale 1, phrases 1 and 2, for a collection of basic
and primitive derived types.

13

start-time of an event and the start- Lime of its predecessor is v t ime units. Note that the
phenomena modelled by gis221 cannot. be captured by a product type duration® del tast.

Another useful way to characterize t.he start- time of an event is by posit.ion in tbe bar.
This is the "position in the ba.r» (posinbar) type: [vD means that the start- l ime of an
event relative to t.he "start- t ime» of the bar is v time units. By Linking it with some other
type, we can capture metrical and position- dependent effects of that type (posinbar itself
is expressed using the time signature). The «first in bar» type (fib) takes on boolean values:
[T] means that an event has a posinbar value equal to 0. In long sequences it can model
effects such as "number of notes per bar ,>' and can usefully be Linked with timesig.

The fib type is used in the e>.l)ression of the "threaded barn (thrbar) type. This is an
example of a threaded type: it.s values are only defined at certain point.s throughout a. chorale.
For an event with t he posinbar value equal to 0, [ab] means that the interval (in the seq int A

system - see below) between its pitch and the pitch or first note of the previous bar is a.
The quantity bis Lhe timescale o[the value; it is t.hc difference in st.art.-time between the two
events. Note that the timescale varies and is not, always the same as the time signature; the
first event in the previous bar need not have a posinbar value of 0. This is the first example
of a type which is derived from two basic types - pitch and st.

A threaded type similar to thrbar, the thrqu type, works as follows. If an event falls on
a quarter note pulse, [v] means that. the interval between it and the latest earlier event that
falls on a quarter note pulse is v. Note that this t.ype also possesses a timescale; for example,
event e6 of the chorale in Figure 4 occurs 8 time units after the latest. earl ier event that. falls
on a quarter note pulse (event e4) .

Another useful way to characteri ze the start -Lime of an evenL is by position in the bar.
This is the "position in the bar" (posinbar) type: [v] means that the st.art- time of an
event relative to the "start- time" of the bar is v time units. By linking it with some other
type, we can capture metrical and position- dependent effects of that. type (posinbar itself
is expressed using t.he Lime signature). The "first in bar" type (fib) takes on boolean values:
[T] means that an event has a posinbar value equal to O. In long sequences it can model
effects such as '<number of notes per ba.r ," and can usefully be Jinked with timesig.

5.2.2 Pitch

The abst ract mathematical properties of twelve- Lone pitch syste- rns a.re very important to
th is study because they facili tate the construction of a rich set of derived types . The basic
teueL of these systems is that pitch is discrete, corresponding to the equal-tempered semitone
scale. Absolute points on the scale may be of interest in some ff1usical theories; in the chorales,
however, relative pitch is more impor tant .

Lewin (1987) has noted Lhat if a binary operation + induces a mathematical group
on a set of musical interval mea.smes fr], interesting constructive properties emerge, based
on the notion of a quotient g1'0up. The axioms of a mathematical group ((r], +) are that
1) the combination of any interval with the interval O yields the original in terval, 2) for
every interval, there exists an inverse which '<undoes,, its effect, and 3) the operation + is
associative. If these axioms hold , it is easy to derive new musical interval measures from a
group, given a congruence on ([r], +). We omit. the details; see (Lewin, 1987) .

14

T derived from congruence [r] emphasized equivalence u
seqintA (Z ,+) - z unison -
seq int a seqintA - (mod 12) {0, ... ,11} octave -
seqintc seqint 8 - (mod 2) {0, 1} major second, octave
seqint0 seqint8 = (mod 3) {0,1,2} minor third, octave -
seqintE seqintR - (mod 4) {0,1,2,3} major third, octave
seqintp seqint8

- (mod 6) {0,1,2,3,4,5} tritone, octave =

Table 5: Shepard's multiple dimensions on pitch.

Table 5 shows some quotient groups for musical intervals, characterized by Shepard
(1982) . The most basic metric is the familiar type seq int A : [seqintA] is the domain of
twelve- tone melodic intervals, and [seqintA] = Z, the set of all integers.

The last column of Table 5 states the emphasized equivalence of the type; for example, in
the seqintc type, two intervals are equivalent if they differ by an integral number o{ octaves
or major seconds. The seqintB type models the familiar "octave equivalence,'' where two
intervals are equivalent if and only ii they differ by a. multiple of octaves.

The reason for this somewhat formal discussion of pitch is to display types wh_ich range
over a spectrum of generality. For example, the seqintc system is very general, and given an
event context , any interval maps onto many events. Contrast this with seqintA, where an
interval uniquely determines a pitch . In between these extremes are the seqint

0
, seqintE,

and seqintF types. Although it is possible to test the utility of each seqint type on the
chorale data, in practice it is doubtful that all of them will perform well. Multidimensional in­
terval systems, emphasized by Shepard, can easily be constructed by linking multiple seq int
systems using the viewpoint linking techniques discussed earlier.

There is another interesting descriptor of pitch. This is Lhe contour type, wh ich measures
whether an event presents a rise, fall> or no motion from its predecessor. Pitch contour is
an extremely important component of melody. Analytical studies have, for the most part>
subordinated contour to other melodic descriptors. Recently, however, the study of contour
has gained prominence (Marvin and Laprade, 1987).

So far, all types derived from pitch have depended only on relations in a. sequentia1
context. Simultaneously, there also exists a harmonic or 'Vertical context in terms of the
scale degrees of events as they move through time. As mentioned earlier> however, only the
key signature is encoded, and information about the tonic of a piece is not available. Some
reasonable approximation to scale degree is necessary. The referent type represents the
tonic of the majonnode that has a particular key signature; note that referent is derived
from keysig. The referent can be viewed as an unchanging "drone bass." For the "interval
from referent type (intfref), [v] means that the interval, modulo 12, between the pitch of
an event and the referent is v . The inscale type takes on boolean values: [T] means that
an event is in a major mode scale constructed on the referent.

Two long- range types derived from pitch are included in Table 2. The first is the "interval
from first in bar" (intfib) type: [v] means that the interval between the first event in a bar
and a given event is v. The interval from the first event in the bar and itself is defined to be 0.

15

The second is "interval from first in piece," (intfip): [v] means that the interval between an
event and the first event of the piece is v. There is an interesting sort of symmetry between
this type and intfref; intfip views the first note in the piece as the "drone," and a link
between the two may help alleviate the problems with modes discussed above.

5.2.3 Duration

There are few expressive ways to talk about the duration of an event in a chorale other
than absolute duration. Lewin (1987) proposes a handful of interval systems that might
be considered. One, for example, specifies that one note lasts for a certain fraction of the
duration of another. This type can expressively model phenomena such as augmentation of
fugue subjects. It is felt that although Lewi111s systems for duration may be useful constructs
for certain musics, their applicability to the chorales is debatable. The set of durations used
in the chorales is quite small, and absolute durations are used in a very consistent manner.
Although no types are derived from duration, linking the basic type dur ation with others
gives useful abstractions. For example, a linked viewpoint duration ® intfref can capture
the relative durations of various referent-degrees, and a. linl<ed viewpoint duration@fermata
can model the duration of events ending phrases.

5.2.4 Fermata

A periodic threaded type threads a sequence at periods o[a fixed number of events. The
predictions of ferrnatas gives a perfect example of a situation where simple periodic threaded
types are unsatisfactory. The non-periodic "length of phrase" (lphrase) type is derived from
both fermata and st. If an event ends a phrase, [v] means that its start- time minus the
start-time of the -first event in that phrase is v time units. Phrase lengths become even more
redundant with knowledge of the time signature, pointing towards another potentially useful
product type lphrase @ timesig.

The "threaded phrase1
' type is a sort of hybrid, where if an event starts a phrase, [v]

means that the interval between the first note of the previous phrase is v. It is derived from
neither start-times nor fermatas, but threads the piece a.L non-periodic timescales, and is
derived from pitch. Finally, for the "interval from phrase beginning" (intphbeg) type, [v]
means that the interval between an event and the first event in the phrase containing it is
v. This type may be linked with contour, for example, and sequences of the product type
would detail the exact contour of a phrase.

6 Experimental results

A machine learning system called SONG/3 (Stochastically Oriented Note Generator)5 based
on multiple viewpoints has been implemented, including about twenty different viewpoints.

5 SONG/1 [described in (Conklin and Cleary, 1988)] was implemented in PROLOG, and only produced
generative theories. When no common ground existed among viewpoints, backtracking to the last event
generated took place. SONG/2 was also implemented in PROLOG, and only considered predictive theories.
SONG /3, implemented efficiently in Common LISP, has a facility for generating music from predictive
theories.

16

ti System I Viewpoints II Result II
1 pitch 2.05
2 seqintA 2.33
3 seq int A ® gis221 2.13
4 seqint,1 ® gis221,

pitch 2.01
5 intiref ® seq int A 2.12
6 intfref ® seqintA,

seqintA ® gis221 1.94
7 intfret ® seq int A,

seqint A ® gis221,
pitch 1.92

8 inttref ® seq int A,

seq int A ® gis221,
pitch,
intfref ® fib J.87

Table 6: Average enLropy of pitch for different multiple viewpoint systems.

One hundred Bach chorales from The 371 Pour- Pa1·l Chorales (Edition Mainous and OUman)
were encoded using the event space described in Section 5. These were divided into 1) a ran­
domly chosen test set comprising 5 choraJes, and 2) a training set comprising the other 95.
The training set comprises a.bout 1500 (context, next event) tuples: the test set slightly over
200. In the experiment described here, we restrict our at ten Lion to the basic type pitch. That
is, the machine is given the rhyl,hmic skeleton, key signature, time signature, and position
of the fermatas for every Lest chorale.

Table 6 shows some results that were obtained. Each row of t he table represents an
experiment. The second column defines the multiple viewpoint system used. The orders of
the short- term and long-term context models for every viewpoint are fixed at 2 and 3,
respectivc1y. The third column of the table is Llie entropy estimate given by a particular
system. This estimate is obtained as described in Section 3.2; a theory is juduced from the
training set, and the figure in the third column is the average number of bits requfred to
specify pitch. This a.verage is over all (context, next event) tuples in Lhe test set.

Table 6 shows, for example, Lhat the pr imi tive system {pitch} can represent the basic
type pitch using an average of 2.05 bits (system 1). The entropy of pitch with respect
to the {seqintA} system is 2.33 (system 2). According to Lhe conjecture underlying this
research, system 1 should generate beUer chorales Lhan sysLem 2. When the product type
seqintA @ gis221 is used as a viewpoint, performance improves (system 3). This means
that the types seqint A and gis221 are correlated in the chorales.

Systems l to 3 are single- viewpoint ones. The system { seqintA ® gis221, pitch} con­
tains two viewpoints (system 4) . It is interesting that il performs better than either of
its constituent viewpoints (systems 1 and 3). This means that the viewpoint combination
method described in Section 4 is effective. Systems 3, 5, and 6 show a similar phenomena.
Adding the viewpoint pitch to system 6 further improves it (system 7).

It was hypothesized that. the scale degree is correlated with the fact that an event does

17

or does not begin a bar. A product type intfref 0 f ib was added to system 7. The result
(1.92 bits decreases to 1.87 bits) shows that this hypothesis was correct (system 8). The low
entropy estimate of 1.87 bits/pitch is interesting, as humans do not seem to do much better
at the chorale prediction task (\i\f itten et al., 1993): their entropy estimate is about 1. 75
bits/pitch . However, this human estimate is probably unstable as it is averaged over only
two test chorales.

A useful way to present the results of prediction is with an entropy profile, where the
number of bits needed to specify an event (recall Expression l) is plotted against the event
number in a particular piece. Figure 5 shows the entropy profile for pitch for chorale 151,
using the last system of Table 6. The peaks show which events the computer finds surprising
and very hard to predict, and the troughs show the predictable events. The two high-entropy
peaks of chorale 151 correspond to events 6 and 23. The mach ine predicted B4 aL event 6
with probability 0.97. This is most certainly due to Lhe fact that the short-term viewpoint
of pitch must revert to an zero-length context to make a prediction; and out of the five
pitches so far, three of them have been B4. Event 23 is a leap of a minor seventh to begin a
phrase. This is a bighly unpredictable event, for both computers and people. The machine
predicted 04 at event 23 with probability 0.40: certainly a reasonable prediction.

The predictive theory was used to generate some new pieces. This was done by taking a
context, generating an event (recall Section 2), then catenating that event to the context,
producing a new context. This process is iterated a fixed number of times. Figure 6 shows
one of the generations produced in this manner. The first seven events, and the complete
rhythmic skeleton of chorale 151, were supplied to the system.

7 Conclusion

This research was motivated by the goal of learning generative theor ies for Lhe chorale genre.
This goal was replaced by one of minimizing the estimated entropy of the genre, due to the
conjecture that predictive power is a sufficient criteria for generative capability. The entropy
was estimated by a process of analysis and prediction.

The generated chorale presented in the previous section seems to be reasonable, but we
cannot claim to have fully answered the conjectme about predictive theories . Of course,
theories with a very high measure will likely generate something close to white noise, and
it is reasonable to minimize the estimated entropy - to some extent. What we might find,
however, is that beyond a certain point further attempts a.t minimization may not be worth
the effort - the gains in generative capability may be so slight and subtle as to be impossible
to notice.

This work suggests several areas of future research on predicLion and entropy of music.
It should be possible to devise better multiple viewpoint systems for the chorales. The
multiple viewpoint formalism could be extended to deal with multiple voice music. With
this extension, for example, complete four-part chorales could be predicted and generated.
Finally, much work is necessary to determine good alternative architectures and inference
methods for multiple viewpoint systems. These will lead us towa.rd our goal of a general­
purpose machine learning system for music.

18

7

6

5

B 4
1

t
3 s

2

1

0
5 10 15 20 25

Evc11t number

~ c F f F f I r=r
'-'

F I F F J;;q I P=F Ja
6

~ - 1
!":'\ '-'

J J J J I r r I J S§I F r F
23

Figure 5: Bottom: chorale 151; Top: entropy profile, chorale 151.

19

SONG/3

r... ,~ c
F F F f I r r r I J j f f I F

J J
r... r.', r.', ,~ I J f f F I F r F I r J J J I F J f
(j

Figure 6: A piece generated by SONG/3. The first seven events of chorale 151 were supplied
as a context.

References

[Ames, 1989] Ames, C. 1989. The Ma.rkov process as a compositional model - A survey and tutorial.
Leonardo 22(2):175- 187.

[Baroni and Jacobini, 1978] Baroni, M. and Jacobini, C. 1978. Provosal for a Grammar of Melody. Les
Presses de l'Universite de Montreal.

[Bell et al., 1990] Bell, T. C.; Cleary, J. G.; ru1d Witten, I. H. 1990. Text Compression. Prentice Hall.

[Brooks et al., 1956) Brooks, F. P.; Hopkins Jr., A. L.; Neumann, P. G.; and Wright, W. V. 1956. An
experiment in musical composition. IRE Transactions on Electronic Computers EC-5: 175- 182.

[Brown and Dempster, 1989) Brown, M. and Dempster, D. J. 1989. The scientific image of music theory.
]01,rnal of M1tsic Theory 33(1).

[Buntine, 1988] Buntine, W. 1988. Generalized subsumption and its application to induction and redun­
dancy. Artificial Intelligence 36:149-176.

[Cleary and Witten, 1984] Cleary, J. G. and Witten, I. H. 1984. Data compression using adaptive coding
and partial string matching. IEEE Trans. Communications COM-32(4):396-402.

[Conklin and Cleary, 1988] Conklin, D. and Cleary, J. G. 1988. Modelling and generating music using
multiple viewpoints. In Proceedings of the First Workshop on Al and Music. The American Association
for Artificial Intelligence. 125- 137.

[Cope, 1987) Cope, D . 1987. An expert system for computer- assisted composition. Computer Music Journal
11(4):30- 46.

[Dietterich and Michalski, 1986] Dietterich, T. G. and Michalski, R. S. 1986. Leaming to predict sequences.
In Michalski, R.; Carbonell, J.; and Mitchell, T., editors, Machine Learning: An Artificial Intelligence
Approach, volume II. Morgan Kaufmann.

[Dubois et al. , 1992] Dubois, D.; Lang, J.; and Prade, H. 1992. Dealing with multi-source information in
possibilistic logic. In Neumann, B., editor, Proc. ECAI- 92 : Tenth Eur·opean Conference on Artificial
Intelligence. John Wiley and Sons. 38- 42.

[Ebcioglu, 1986) Ebcioglu, K. 1986. An Expert System for Harmonization of Chorales in the Style of J. S.
Bach. Ph.D. Dissertation, Department of Computer Science, SUNY at Buffalo.

[Garvey et al., 1981] Garvey, T. D.; Lowrance, J. D.; and Fischler, M. A. 1981. An inference technique for
integrating knowledge from disparate sources. In IJCAI-81. 319- 325.

20

[Gennari et al., 1989] Gennari, J. H.; Langley, P.; and Fisher, D. 1989. Models of incremental concept
formation. Artificial Intelligence 40:11- 61.

[Hamburger, 1986] Hamburger, H. 1986. Representing, combining, and using uncertain estimates. In Kanal,
L.N. and Lemmer, J.F., editors, Uncertainly m Artificial lntelligence. North- Holland. 399--414.

[Hiller, 1970] Hiller, L. 1970. Music composed with computers - a historical survey. In Lincoln, H. B.,
editor, The Computer cmd M'ltsic. Cornell University Press. chapter IV.

[Kohonen, 1989] Kohoncn, T. 1989. A self learning musical gramnuu·. In Proc. fut. Joint. Conf. 011 Neural
Networks, Washingto11, D.C. , USA.

(Lewin, 1987) Lewin, D. 1987. Generalized Musical lnter·vc,ls and Tra11sformations. Yale University Press.

[Lidov and Gabura, 1973] Lidov, D. a.nd Gabura, J. 1973. A melody writing algori thm using a formal
language model. Computer Studies in the llumanities 4(3-4):138- 148.

(Marvin and Laprade, 1987] Marvin, E.W. and Laprade, P.A. 1987. Relating musical contours: Extensions
of a theory for contour. Jour11al of Music Theory 31(2):225- 267.

[Rahn, 1989] Rahn, J. 1989. Notes on methodology in music theory. Journal of Music Th.eo1·y 33(1):143- 154.

[Ratner, 1970] Ratner, L. 1970. Ars combimitoria: Chance and choice in Eighteenth- century music. In
Landon, Robbins, editor, Studies in Eighteenth Century Music. Unwin Brothers Limi ted.

[Shannon, 1951] Shannon, C. E. 1951. Prediction and entropy of printed english. Bell System Technical
Journal 50- 64.

[Shepard, 1982] Shepard, R. N. 1982. Structural representations of musical pitch. In Deutsch, D. , editor,
The Psychology of Music. Academic Press, New York.

[Witten et a.1., 1987] Witten, I. H.; Neal, R.; a.ud Cleary, J. G. 1987. Arithmetic coding for data compression.
Commimications of the A CM 30(6):520- 540.

[Witten et al., 1993] Witten, I .H.; Manzara, L. C.; and Conklin, D. 1993. Comparing human and compu­
tational models of music prediction. Computer Music Journal. In press.

21

