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Abstract 

 

This thesis explores procedurally creating voxel based terrains and creating castles 

in them. With the explosion of interest in using voxels in games since the success 

of Minecraft, and even big budget titles like EverQuest Next using this 

technology, this research aims to address an area that has not received adequate 

attention: procedural generation of buildings like castles. 

By utilizing voxels combined with procedural generation of terrain, games like 

Minecraft and its many clones are able to offer worlds of near limitless size for 

the player to explore. However, this presents a challenge to fill this world with 

content worth exploring. Ultimately this means structures that look human-made. 

This project focuses on perhaps the most iconic of fantasy game structures: the 

castle. 

A voxel world engine was developed to explore this problem, complete with a 

procedural terrain generator similar to that used in voxel world games. The terrain 

generator developed for this project is capable of creating a variety of terrains 

randomly to test castle placement and generation in. 

By drawing inspiration from how real castles were constructed an algorithm was 

developed to analyze an area of voxel terrain for optimal positioning and a further 

optimization step was added to adapt the layout of the castle to the terrain. This 

was used to procedurally generate castles that aim to look like they were placed 

into the world by a human agent. 

  



iv 

 

Acknowledgements 

 

I would like to thank everyone who helped to make this research and thesis 

possible. Particular thanks go to the University of Waikato Computer Science 

department for letting me do this Masters. Also the University of Waikato 

scholarship trust for providing me with the financial backing that made this 

possible. 

I want to thank Bill Rogers for guiding me through the process of the research and 

advising me in the writing of this thesis. 

I want to thank all the anonymous participants in my user study that helped me to 

evaluate my work. 

Lastly I want to thank my family for supporting me through this adventure. 

  



v 

 

Table of Contents 
Abstract .................................................................................................................. iii 

Acknowledgements ................................................................................................ iv 

List of Figures .................................................................................................. viii 

List of Tables...................................................................................................... xi 

Chapter 1: Introduction ........................................................................................... 1 

Chapter 2: Literature Review .................................................................................. 7 

2.1 Medieval Castle Construction ....................................................................... 7 

2.2 Procedural Architectural Modelling Methods ............................................... 9 

2.3 Sparse Voxel Octrees .................................................................................. 12 

2.4 Voxel Smoothing Techniques ..................................................................... 14 

2.5 Case Study: Minecraft ................................................................................. 17 

2.6 Case Study: EverQuest Next ....................................................................... 20 

2.7 Summary ..................................................................................................... 22 

Chapter 3: Project Design ..................................................................................... 24 

Chapter 4: Implementation .................................................................................... 27 

4.1 Voxel World Basics .................................................................................... 29 

4.1.1 Introducing VoxBox ............................................................................ 29 

4.1.2 Blocks / BlockEditor ............................................................................ 31 

4.1.3 Chunks ................................................................................................. 36 

4.2 Terrain Generation ...................................................................................... 49 

4.2.1 Libnoise ................................................................................................ 49 

4.2.2 Perlin noise ........................................................................................... 50 

4.2.3 Ridged Multifractal Noise .................................................................... 53 

4.2.4 Vornoi Noise ........................................................................................ 54 

4.2.5 Additional Libnoise Modules ............................................................... 55 

4.2.6 Creating the Heightmap ....................................................................... 56 



vi 

 

4.2.7 Calculating the Blocks ......................................................................... 58 

4.2.8 Trees ..................................................................................................... 62 

4.2.9 Water .................................................................................................... 64 

4.2.10 Smoothing the Terrain ....................................................................... 64 

4.3 Drawing with Voxels .................................................................................. 65 

4.3.1 Drawing Functions ............................................................................... 65 

4.3.2 Brushes ................................................................................................. 69 

4.4 Terrain Analyzer ......................................................................................... 70 

4.4.1 The Smooth Heightmap ....................................................................... 70 

4.4.2 Calculating the Terrain Fitness Score .................................................. 73 

4.5 Castles ......................................................................................................... 75 

4.5.1 Placing the Castle ................................................................................. 77 

4.5.2 Base Parameters ................................................................................... 77 

4.5.3 Constructing the Castle ........................................................................ 84 

Chapter 5: Demonstrations .................................................................................... 91 

5.1 Example 1.................................................................................................... 92 

5.2 Example 2.................................................................................................... 94 

5.3 Example 3.................................................................................................... 97 

5.4 Example 4.................................................................................................... 99 

5.5 Example 5.................................................................................................. 101 

Chapter 6: Evaluation .......................................................................................... 103 

6.1 User Study ................................................................................................. 103 

6.2 Evaluation of Results ................................................................................ 107 

Chapter 7: Conclusion ......................................................................................... 108 

7.1 Review ...................................................................................................... 108 

7.2 Future Work .............................................................................................. 110 

Bibliography ........................................................................................................ 112 



vii 

 

Appendix A ......................................................................................................... 117 

Voxel Brushes ................................................................................................. 117 

Utility Brushes ................................................................................................ 118 

Appendix B ......................................................................................................... 121 

Appendix C ......................................................................................................... 122 

Appendix D ......................................................................................................... 131 

 

  



viii 

 

List of Figures 

Figure 1- Comanche Maximum Overkill (Comanche: Maximum Overkill 

screenshots for DOS - MobyGames) ...................................................................... 1 

Figure 2 – Castle in Skyrim .................................................................................... 4 

Figure 3 - Castles Built by Welsh Princes (Gravett & Hook, 2007) ....................... 9 

Figure 4 - Tree Shapes Generated by an L-System (Prusinkiewicz & 

Lindenmayer, 1990) .............................................................................................. 10 

Figure 5 - Example Buildings Generated with a Shape Grammar (Müller, Wonka, 

Haegler, Ulmer, & Van Grool, 2006) ................................................................... 11 

Figure 6 – Example Building Layouts Created with Stochastic Optimization 

(Merrell, Schkufza, & Koltun, 2010) .................................................................... 12 

Figure 7 - A Visual Representation of a Quadtree ................................................ 13 

Figure 8 - Minecraft .............................................................................................. 14 

Figure 9 – Marching Cubes Unique Cases (Lorensen & Cline, 1987) ................. 15 

Figure 10 - Stanford Dragon Cubes to Marching Cubes Comparison  (Image 

Generated in MagicaVoxel) .................................................................................. 16 

Figure 11 - Mechanical Part Rendered with Dual Contouring (Ju, Losasso, 

Schaefer, & Warren, 2002) ................................................................................... 17 

Figure 12 - Sample of Block Types from Minecraft ............................................. 18 

Figure 13 – Minecraft Village (Village - Minecraft Wiki) ................................... 18 

Figure 14 - Minecraft Stronghold Uncovered (Stronghold - Minecraft Wiki) ..... 19 

Figure 15 – Minecraft Castle on a Mountain (Bear, 2013) ................................... 19 

Figure 16 – Minecraft Castle Ruin (Bear, 2013)................................................... 20 

Figure 17 - EverQuest Next (Haas, 2013) ............................................................. 21 

Figure 18 - Castle in VoxelFarm (Cepero, Procedural World: Castle by the lake, 

2015) ..................................................................................................................... 22 

Figure 19 – Early Prototype .................................................................................. 27 

Figure 20 - Texture Atlas Created by VoxBox ..................................................... 32 

Figure 21 - Flat vs Smooth Normals ..................................................................... 34 

Figure 22 - A Grass Block on a Dirt Block ........................................................... 35 

Figure 23 – BlocksEditor ...................................................................................... 36 

Figure 24 – Lighting Anomaly .............................................................................. 41 

Figure 25 – Smooth Lighting Calculation Illustration .......................................... 42 

Figure 26 – Fake Ambient Occlusion ................................................................... 43 



ix 

 

Figure 27 - Two Chunks Apart Showing Hidden Faces ....................................... 44 

Figure 28 – WedgeBuilder Output ........................................................................ 46 

Figure 29 – WedgeFillBuilder Output .................................................................. 46 

Figure 30 - Random Noise vs Coherent Noise...................................................... 50 

Figure 31 – Perlin Noise ....................................................................................... 51 

Figure 32 – Effect of Changing Frequency on Perlin Noise ................................. 52 

Figure 33 – Effect of Changing Octaves on Perlin Noise ..................................... 52 

Figure 34 – Billow Noise ...................................................................................... 53 

Figure 35 – Multifractal Noise .............................................................................. 54 

Figure 36 – Vornoi Noise ...................................................................................... 55 

Figure 37 – Heightmap Generator Diagram.......................................................... 56 

Figure 38 – Example Heightmap .......................................................................... 57 

Figure 39 - Terrain and Castle Before Mountain Height Adjustment .................. 58 

Figure 40 - Terrain and Castle After Mountain Height Adjustment ..................... 58 

Figure 41 – Example Terrain ................................................................................ 62 

Figure 42 – A Tree Created by the Terrain Generator .......................................... 63 

Figure 43 – A Tree Affected by the Tree Processing Bug .................................... 63 

Figure 44 – Effect of the Terrain Smoothing ........................................................ 64 

Figure 45 - Wall Following the Terrain ................................................................ 70 

Figure 46 - Problematic Wall Section ................................................................... 71 

Figure 47 – Heightmap and Smooth Heightmap .................................................. 72 

Figure 48 – Another Problematic Wall Section .................................................... 73 

Figure 49 – Real Heightmap ................................................................................. 74 

Figure 50 – Terrain Fitness Map ........................................................................... 75 

Figure 51 – Basic Castle Layout Shape (8 Towers) .............................................. 77 

Figure 52 - Obstruction between Towers .............................................................. 81 

Figure 53 - Difficult Obstruction between Towers ............................................... 82 

Figure 54 - Iterations over the Optimization Step ................................................. 82 

Figure 55 - Two Towers Generated Close Together ............................................. 83 

Figure 56 - Problematic Stairs .............................................................................. 86 

Figure 57 – Castle with Courtyard Adapted to Smooth Heightmap ..................... 87 

Figure 58 – Castle with Flat Courtyard ................................................................. 87 

Figure 59 – Castle with Moat ................................................................................ 89 

Figure 60 – Example 1 Terrain ............................................................................. 92 



x 

 

Figure 61 – Example 1 Castle ............................................................................... 92 

Figure 62 – Example 1 Terrain Fitness Map ......................................................... 93 

Figure 63 – Example 2 Terrain ............................................................................. 94 

Figure 64 – Example 2 Castle ............................................................................... 94 

Figure 65 – Example 2 Castle from another Angle............................................... 95 

Figure 66 – Example 2 Terrain Fitness Map ......................................................... 96 

Figure 67 – Example 3 Terrain ............................................................................. 97 

Figure 68 – Example 3 Castle ............................................................................... 97 

Figure 69 – Example 3 Terrain Fitness Map ......................................................... 98 

Figure 70 – Example 4 Terrain ............................................................................. 99 

Figure 71 – Example 4 Castle ............................................................................... 99 

Figure 72 – Example 4 Terrain Fitness Map ....................................................... 100 

Figure 73 – Example 5 Terrain ........................................................................... 101 

Figure 74 – Example 5 Castle ............................................................................. 101 

Figure 75 – Example 5 Terrain Fitness Map ....................................................... 102 

Figure 76 – User Study Result Overall Appearance ........................................... 104 

Figure 77 – User Study Result Terrain Adaptation ............................................. 104 

Figure 78 – Castle with a “Good” Rating for Both Questions ............................ 105 

Figure 79 – Castle with a “Bad” Rating for Both Questions .............................. 106 

Figure 80 – A Minimap Created by the MinimapperBrush ................................ 120 

 

  



xi 

 

List of Tables 

Table 1- Tree Generation Chance Values ............................................................. 61 

Table 2 - Values Used ......................................................................................... 121 

 

 

  



xii 

 

  



 

1 

 

 

Chapter 1: Introduction 

 

Volumetric elements (voxels) are the three dimensional equivalent of pixels. The 

idea is a simple one, dating back to the earliest days of computer graphics 

research, however the large memory requirements of even fairly coarse scenes 

represented in voxels has meant that they have historically found only limited 

application. The primary usage of voxels has been in the medical imaging field, 

where voxel representations are typically used for MRI scan results and the like. 

Voxels have also been tried in video games at various times, with mixed success. 

One of the first uses of voxels was to render the terrain in the 1992 video game 

Comanche Maximum Overkill (NovaLogic Awarded Patent for Unique 3-D 

Graphics Engine, 2000) (see Figure 1). Using a ray-casting approach into a 2D 

heightmap, this allowed for much higher graphical fidelity in the terrain than had 

otherwise been possible at the time. However, the rise of 3D acceleration 

hardware, such as the Voodoo add-in board from 3dfx (now defunct (Form 8-K: 

Bankruptcy or receivership, 2002)), meant that polygon rasterizers advanced by 

leaps and bounds and interest in alternative rendering methods fell away for many 

years. 

 
Figure 1- Comanche Maximum Overkill 

(Comanche: Maximum Overkill screenshots for DOS - MobyGames) 
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As the amount of computer memory and processing power available to programs 

has skyrocketed over the years, the voxel approach has again become more 

attractive. In computer graphics packages for film and television, such as 

AutoDesk Maya™, voxels have now been integrated for various volumetric 

effects workflows, such as cloud and fluid simulation. As such they have been 

used to produce effects for big budget movies such as Lord of the Rings and The 

Day After Tomorrow (Crassin, Neyret, Lefebvre, Eisemann, & Sainz, 2009). 

Starting with the relatively unknown InfiniMiner and being popularized by the 

wildly successful Minecraft, voxels have now managed to spawn a whole new 

genre of video games referred to as “Voxel World” games. In these games the 

entire world is constructed out of voxel cubes. These voxels are converted to 

polygons for rendering on modern graphics cards that are optimized for scanline 

conversion of triangles. A voxel in this case describes a single element in the 

world, much the way a tile does in a 2D tile-based game such as Super Mario 

Bros. While voxels are often converted directly into cubes, they can be converted 

into other shapes (such as torches or stairs in Minecraft for instance). 

The appeal of voxel-based games is that they, unlike traditional games, allow for 

complete manipulation by the player or players. Having a completely destructible 

world has long been a holy-grail of sorts for computer games. A number of 

approaches have been tried, usually by simply making some objects destructible 

and/or by heightmap deformation. All of these methods have been quite limited. 

Voxels not only make the entire world destructible in a coherent fashion; they also 

make the world constructible. Now the player can actually build anything they 

want in a voxel sandbox as well. Other games have also tried to give constructive 

control to the player but the grid-based layout of a voxel world also has a couple 

of big advantages. Firstly, it puts an absolute constraint on the geometric 

complexity that can be achieved in any given area. In contrast any approach that 

lets the player place arbitrary models into the world creates the potential for the 

creation of scenes too complex to render at satisfactory speed. Secondly, the 

concept of stacking blocks on each other is very simple and easy to grasp. Hence, 

even young children have little difficulty in building complex architecture in a 

game like Minecraft, while other construction methods like CSG (constructive 
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solid geometry, i.e. Boolean operations) are frequently difficult for even skilled 

adults to use properly. 

This flexibility and simplicity does come at a price: graphically the world is 

presented at low resolution. Elements are broken up into large chunks, and most 

of the world is constructed from cubes, typically at a scale of about 1m³ relative to 

the player. Such cubes are usually constructed with face-aligned normals, further 

enhancing the harsh and blocky appearance of the world. This coarse appearance 

can put some people off, but the low resolution and blocky nature of these voxel 

worlds is part of what makes building in them so accessible because it just 

becomes a matter of placing or removing large blocks. 

In order to be able to provide the player with a large world to explore, most such 

games employ procedural methods for world generation. In fact, by creating new 

parts of the world on-the-fly, games such as Minecraft are able to provide the 

player with worlds that are in effect limitless
1
 (Persson, 2011). This is a highly 

desirable feature in such games for several reasons. Firstly, since they are 

generally sandboxes and centred on building, an infinite world means infinite 

resources for construction and unlimited space in which to build. Furthermore, the 

game’s unguided nature means that it is up to the individual player to find 

meaning within the game space, and one possible approach for the player to take 

is to go exploring the world. In this case a bigger world translates directly into 

more play hours that can be gained from this activity. 

Of course in order to make exploration to be interesting for the player the world 

must present adequate variety to hold the player’s attention. As an extreme 

example, simply using Perlin noise to generate a heightmap for the world and then 

filling it will create a world with infinite variety. However, in this case the player 

would notice the simplistic nature of the world generator and lose interest in 

                                                 

1
 A naïve implementation eventually runs into floating point precision errors, especially since 

world units in 3D graphics are usually implemented using the 32bit float type, rather than the 

64bit double type (although using double would only push the problem out a little farther). 

This can be rectified by keeping the player character at the origin point and moving the world 

around them instead. Even if this is done, eventually numeric overflow will cause errors in the 

world generation algorithm and numerous other problems. However, in practice it would take so 

long to reach the world edge, as long as the player movement speed is restricted, that for all intents 

and purposes the world can be considered to have limitless size. 
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exploring the world almost immediately. So it is important then, to fill the world 

with a variety of interesting content. To this end such games will layer multiple 

noise functions to generate a multitude of terrain, and typically will create 

different biomes
2
 (such as mountains, hills, tundra, desert, ocean, etc…). This 

process works well for natural terrain but is not suitable for generating “man-

made” structures such as villages and castles. Yet fantasy architecture is a major 

feature in role-playing games such as World of Warcraft or Skyrim (an example 

of a castle in Skyrim can be seen in Figure 2). It adds character to the world and 

makes it feel inhabited, as well as providing incentive for the player to explore. 

 
Figure 2 – Castle in Skyrim 

Minecraft has made some limited attempts at integrating buildings in the world 

creation process and also now has small villages with multiple buildings. 

However, most of the buildings it creates are relatively simple. In order to ensure 

smooth placement, it will only spawn these in biomes that produce mostly flat 

terrain (for example villages only spawn in plains, savannah or desert biomes 

(Village - Minecraft Wiki)). Even so, the world generator sometimes runs into 

problems and produce broken results such as villages that are set two blocks 

higher than the roads they connect to. 

                                                 

2
 Biomes are major ecosystems that consist of a type of environment with vegetation and animal 

life adapted to it. It is term frequently used in voxel worlds to describe a distinct region created by 

the procedural terrain generator. 
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The aim of this project is to take a single kind of large structure, the castle, and 

devise a system for placing and generating it within a voxel world in a way that is 

plausible and well-adapted to the terrain. 

This thesis begins with a review of materials that were considered during the 

design of the project in Chapter 2. We examine techniques used in medieval castle 

construction and the considerations of siege warfare. We then consider approaches 

to procedurally modelling architecture. After this some general techniques for 

working with voxels are looked at, such as sparse voxel octrees (a data structure 

designed for managing voxels) and techniques for smoothing surfaces generated 

from voxel data. Lastly the literature review will cover case studies for two of the 

biggest games using voxel technology so far: Minecraft and EverQuest Next, to 

see what approaches they have used for procedural generation of terrain and 

architecture, and how they have approached working with voxels in general. 

In Chapter 3 the project design is introduced. It examines what was needed to 

make the project possible and divides it up into the major tasks that were 

undertaken. It also discusses the fact that the castle generation algorithm chosen is 

deterministic and that the random nature of the terrain generation process is the 

only source of variation used. 

Chapter 4 is the bulk of this thesis and is where all the details of the 

implementation are covered. It first explains the basic voxel world engine that was 

created to make this project work. Then it discusses the terrain generation process 

employed in creating the terrains that the castles are to be built upon. It continues 

by explaining the drawing system employed by the project to make working with 

voxels easier. This is followed by a look at how the terrains were analyzed to 

allow searching for optimal placements for the castles. Lastly this chapter covers 

how castles were placed, had their layout optimized, and were constructed. 

In Chapter 5 a look is taken at a number of demonstrations of the output generated 

by this project. We examine a number of terrains and look at the castles the 

algorithm generated for them. It includes subjective judgements as to how 

successful castle generation was for each of those cases. It also serves to 

demonstrate some of the variety that is possible for both the terrain generator and 

the castle generation algorithm. 
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This is followed by an evaluation of the project in Chapter 6. In this chapter we 

look at a user study that was done (in the form of an online survey) to gain 

feedback on how well the castle generation algorithm worked in the eyes of 

subjects that had knowledge of voxel world games like Minecraft but had no 

previous knowledge of this research. This chapter also includes a subjective 

evaluation of the results of the project by the author. 

Finally Chapter 7 offers a conclusion to this thesis. A final look is taken at the 

work accomplished and how successful the project was. It also offers some 

suggestions for future work that could be done utilizing the research presented in 

this thesis.  
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Chapter 2: Literature Review 

 

This chapter covers a number of topics relevant to this thesis. First we take a look 

at real medieval castle construction, looking at how siege warfare functioned and 

how this affected the decisions of real castle builders in times past (section 2.1 

Medieval Castle Construction). Then we consider procedural architectural 

modelling methods to see how others have approached the overall problem of 

generating computer graphics models of buildings algorithmically (section 2.2 

Procedural Architectural Modelling Methods). Once this basis is established a 

look is taken at general techniques for working with voxels that could be useful 

for the technical aspect of the project such as the sparse voxel octree data structure 

and methods for creating smooth surfaces from voxel data (sections 2.3 Sparse 

Voxel Octrees and 2.4 Voxel Smoothing Techniques). 

The amount of formal literature available on voxel world games is sparse so far, 

but there is a lot of informal documentation on wiki-based sites, or as discussions 

on Internet forums. We will draw on this informal documentation to take a look at 

case studies of two different voxel world games: Minecraft and EverQuest Next. 

Minecraft is examined because it is the most well known voxel world game and 

because it was the inspiration for this project (section 2.5 Case Study: Minecraft). 

EverQuest Next is included because it shows that a voxel-based approach can be 

used to create a high-fidelity big budget title from a major video games developer 

(section 2.6 Case Study: EverQuest Next). 

2.1 Medieval Castle Construction 

As part of the work of designing the castle generating algorithm a look was taken 

at historical castle construction techniques with a specific focus on what defensive 

features would need to be considered. 

During the siege of a castle the attacking force would surround the castle and cut 

off all routes of escape and supply (Stokstad, 2005). They would then construct a 
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camp fortified with palisades and ditches to strengthen their position. The next 

step would be to construct siege engines to try to break down the walls. A number 

of stone-throwing machines were also employed in siege warfare, such as the 

trebuchet or the mangonel. Another avenue of attack was the mining of tunnels 

under the walls when the castle was not built on solid rock or surrounded by 

water. The tunnels were propped up with timber while being excavated and then 

the timber supports would be set alight, collapsing the wall now bearing down on 

the tunnel with all its weight. Finally, there was the direct attack with knights, 

soldiers and archers. Soldiers would try to scale the walls with ropes or ladders, 

while archers provided covering fire. 

While constructing their defences, castle designers would need to be aware of all 

of this. Castles were built on cliffs or were surrounded with natural defences or 

ditches, in order to make it harder to attack the walls with war machines such as 

battering rams or siege towers. For all of these avenues of attack it is 

advantageous to build the castle in a position with high ground advantage to be 

able to pick off attackers with archers on the wall, and to make it harder to reach 

with stone-throwing siege engines. It is also important that no nearby easily 

accessible points overlook the castle, or else they could be used by the attackers to 

fire upon the castle with the siege engines. 

Medieval castles were frequently constructed to fit the local terrain (Gravett & 

Hook, 2007). For example see Figure 3 for the plans from a number of Welsh 

castles constructed in the late 13
th

 and early 14
th

 centuries. In these plans we can 

see that the castles are not constructed as regular shapes such as rectangles or 

octagons, but rather have been adapted to follow the features of the local terrain 

(the arrows around the castle plans show the slope of the terrain). 
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Figure 3 - Castles Built by Welsh Princes 

(Gravett & Hook, 2007) 

 

2.2 Procedural Architectural Modelling Methods 

In preparation for this project existing approaches to procedurally modelling 

architecture were examined. Typically these make use of some sort of production 

rule system such as L-systems (for an example of L-system output see Figure 4) 

or shape grammars. These define a number of production rules, which themselves 

can be comprised of further rules. They then include an initial rule that starts the 

production system. Rules may be applied serially or in parallel depending on the 

specific system implementation. In an L-system the output is then interpreted to 

produce a final result (for example a drawing or an architectural layout), while a 

shape grammar contains basic shapes that may be output directly to a working 

area as part of the production rules. 

L-systems are well suited to creating shapes like trees that have a self similar 

nature. Consider the trees in Figure 4 that were created by the same L-system. A 

single rule (we can call it “branch”) is applied recursively and with a random 

component. The first time the rule is applied the trunk of the tree is created. The 

next recursion creates the main branches in random locations along the trunk (a 

scaling factor is also applied to shrink the size of the output). A further recursion 
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creates many small twigs along the branches. In this way a single simple rule can 

create a complex shape. By applying one or more random components to the rules 

(for example randomizing the placement, scaling and/or rotation each time the 

rule is applied) huge variation can be achieved in the output. 

 
Figure 4 - Tree Shapes Generated by an L-System 

(Prusinkiewicz & Lindenmayer, 1990) 

An example of this is the laying out architecture with the use of L-systems to 

create the blueprint of a city (Parish & Müller, 2001). They describe the use of 

what they all “self-sensitive” L-systems, capable of changing under local 

constraints to create a plausible layout for a city. The roads systems that make up 
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the underlying structure of a city are similar to trees, with major roadways being 

like trunks, streets are like branches and the side roads can be seen like twigs. 

Unlike when creating a simple tree care needs to be taken that streets do not 

overlap (or at least when they do intersections must be created) and we probably 

do not want two streets running parallel right next to each other (these sorts of 

considerations are solved by making the L-system “self-sensitive”, i.e. changing 

on the local context that a rule is being executed in). 

Similarly, the individual buildings themselves could also be constructed using a 

shape grammar (Müller, Wonka, Haegler, Ulmer, & Van Grool, 2006) (Hohmann, 

Krispel, Havemann, & Fellner, 2009). This approach has even been extended by 

making use of a node-based approach to creating the shape grammar, making it 

easier to use (Silva, Müller, Bidarra, & Coelho, 2013). This could eventually lead 

to this technology being used by game artists to create the massive amounts of 

content required by modern games. See Figure 5 for an example of buildings 

generated with the shape grammar approach. 

 
Figure 5 - Example Buildings Generated with a Shape Grammar 

(Müller, Wonka, Haegler, Ulmer, & Van Grool, 2006) 

Another approach is to combine stochastic optimization
3
 together with a cost 

function to create optimal building layouts (Merrell, Schkufza, & Koltun, 2010). 

By combining machine learning with optimization techniques they manage to 

                                                 

3
 Stochastic optimization means that a large number of random layouts were tried and evaluated 

against a cost function. Better performing samples were kept and random variations were 

introduced. This process is repeated over many iterations, keeping layouts that perform well 

according to the cost function and discarding those that do not. 
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create a variety of visually plausible building layouts from a set of high level 

requirements. Due to the combinatorial explosion of different possible layouts an 

exhaustive search was deemed impossible in this case and for this reason a 

stochastic approach was used. Figure 6 shows a number of building layouts that 

were generated with this method. 

 
Figure 6 – Example Building Layouts Created with Stochastic Optimization 

(Merrell, Schkufza, & Koltun, 2010) 

Both shape grammars and an optimization approach with a cost function were 

considered for this project. With a heavy focus on placing the castles and creating 

a layout adapted to the terrain the shape grammar approach was abandoned. Castle 

placement does make use of a cost function and optimization based approach, 

however in this case an exhaustive search is used (all of this is covered in detail in 

section 4.5.1 Placing the Castle). 

2.3 Sparse Voxel Octrees 

Moving on from the broad underlying concepts of castle construction and 

generating architecture procedurally we look at some of the technical details of 

working with voxels. When discussing voxels it is hard not to at least mention 
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sparse voxel octrees (SVOs). They are frequently mentioned in academic articles 

about voxels such as in (Laine & Karras, 2010). The SVO is a tree data structure 

in which every node is portioned into eight equal octants. The octree is a 3D 

version of the quadtree (an example visualization of a quadtree is shown in Figure 

7). If at any point all leaf nodes would contain the same data (either they are all 

empty, or they all have the same voxel type) the tree terminates at that point 

(hence the “sparse” in sparse voxel octree). This is a highly efficient way to store 

voxel data, especially in cases where many large volumes are empty. 

 
Figure 7 - A Visual Representation of a Quadtree 

  

The SVO is also a data structure well suited to ray casting into, something that has 

been exploited to create very fast methods for directly rendering voxels without 

need to turn them into polygons first (Crassin, Neyret, Lefebvre, & Eisemann, 

GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering, 

2009). 

On the other hand SVOs have some disadvantages for voxel world games as well. 

They are more complex to implement than a simple array-based approach and 

adding, deleting and modifying blocks is potentially an expensive operation 

(potentially causing a large part of the octree needing to be rebuilt). Some voxel 

world games utilize SVOs to store their data (for example EverQuest Next) while 

others, such as Minecraft, do not. 
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2.4 Voxel Smoothing Techniques 

Voxels generally need to be converted to a polygon mesh for display (although 

direct ray casting methods do exist, as mentioned in section 2.3 Sparse Voxel 

Octrees). During the process of converting voxels from their internal 

representation as a uniform grid of values to polygons (i.e. creating an isosurface) 

for display there are several options. One route is to convert to a blocky box-based 

representation, such as that seen in Minecraft and many similar voxel world 

games (Figure 8). 

 
Figure 8 - Minecraft 

If we want a smoother looking polygon mesh we need to do some extra work (this 

is analogous to the concept of anti-aliasing in 2D raster graphics). 

One option is to make use of the Marching Cubes algorithm. Originally developed 

for use with computed tomography (CT), magnetic resonance (MR) and single-

photon emission computed tomography (SPECT) data in order to create smooth 

models; marching cubes is a relatively simple algorithm that uses a pre-computed 

table of shapes to create mesh data (Lorensen & Cline, 1987). A logical cube is 

moved along the voxel or point cloud data and all eight neighbours (the vertices of 

the logical cube) are then considered. If they are considered solid for the purposes 

of the surface we are constructing then that vertex in the logical cube is set to one, 

otherwise to zero (it is important to note that the algorithm was initially designed 

for density data where a threshold value would be used to define what is 
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considered inside or outside of the surface – however in a voxel world game the 

voxels are clearly defined as being either solid and inside the surface, or not). 

There are eight vertices in the cube and two possible states for each (inside the 

surface and set to one, or outside the surface and set to zero) for a total of 256 

combinations. Due to the symmetries that exist, this can be narrowed down to just 

15 unique cases, displayed in Figure 9 below: 

 
Figure 9 – Marching Cubes Unique Cases 

(Lorensen & Cline, 1987) 

Creating a polygon surface then is as simple as calculating the values (1 or 0) for 

each of the vertices in the cube and then making a lookup into a table that contains 

all of the possible cases and the mesh data that they generate. This method can 

generate some ambiguous cases, an issue that can be resolved by making use of 

the asymptotic decider algorithm developed by Nielson and Hamann (Nielson & 

Hamann, 1991). This adds considerable complexity to the algorithm but does 

resolve the ambiguous cases that can arise in the standard marching cubes 
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algorithm. Figure 10 shows the Stanford Dragon rendered with a cube 

representation on the left and using the marching cubes algorithm on the right, 

showing the smoothing this creates. 

 
Figure 10 - Stanford Dragon Cubes to Marching Cubes Comparison  

(Image Generated in MagicaVoxel) 

A further option for creating smooth surfaces from voxel data is dual contouring. 

This is an extension of marching cubes and surface nets (yet another isosurface 

generation algorithm). By making use of a grid that is tagged with Hermite data 

(the intersection points and normals) this method is capable of generating an 

isosurface that contains both smooth and sharp edges (Ju, Losasso, Schaefer, & 

Warren, 2002). Figure 11shows a mechanical part rendered with dual contouring. 

Note how it contains both hard and smooth edges. Dual contouring also operates 

on an octree representation of the voxel data internally, making it capable of 

generating a surface mesh at different resolutions, perfect for creating different 

levels of detail of an object so that lower detail levels can be shown for objects far 

from the player in a game environment. 
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Figure 11 - Mechanical Part Rendered with Dual Contouring 

(Ju, Losasso, Schaefer, & Warren, 2002) 

2.5 Case Study: Minecraft 

Easily the most well known of the voxel world game is Minecraft. First released 

in 2009 and acquired for USD$2.5 billion by Microsoft in 2014 (Peckham, 2014), 

Minecraft is still by far the most popular of the voxel world games that have been 

released so far. In Minecraft players are largely left to their own devices, with 

gameplay driven by the creative choices of the players themselves, rather than the 

rule-set and goals prescribed by the game. Especially the creative mode in the 

game (where players have access to unlimited blocks of all types, are 

invulnerable, and can fly at will) resembles a simple CAD program more than a 

true game. 

Players can place many different types of blocks into the world to build their 

creations. These include regular cube shapes with different types of textures 

applied but also a variety of more complex shapes such as torches, fences, and 

doors. By making creative use of these more complex shapes players are able to 

create designs with more apparent geometric complexity than a 1m³ block size 

would otherwise suggest. 
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Figure 12 - Sample of Block Types from Minecraft 

As of the 1.8 Beta edition of Minecraft released on the 15
th

 of September 2011 

Minecraft is able to generate villages in the world. These are constructed 

procedurally out of prebuilt parts. They are only built in flat areas of the world in 

order to make the placement simple. An example can be seen in Figure 13. Note 

how all the buildings are generated on the same plane on the ground. 

 
Figure 13 – Minecraft Village 

(Village - Minecraft Wiki) 

In the same 1.8 Beta update there was the addition of “strongholds”. These are 

complex structures that spawn underground. Because they are generated entirely 

underground they do not have to take into account the surrounding terrain, they 

are simply generated and displace the voxels that otherwise would occupy the 

space. In Figure 14 we can see a view of a stronghold completely uncovered. Note 
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that none of the inside of the stronghold is visible since it generates walls that 

encase it completely. This creates a complex structure but makes no use of the 

terrain it is in, other than making sure that it is entirely underground. 

 
Figure 14 - Minecraft Stronghold Uncovered 

(Stronghold - Minecraft Wiki) 

Players have created a number of impressive castles. These were crafted by hand, 

rather than procedurally generated but in Figure 15 and Figure 16 it can be seen 

what is possible within the constraints of working with a relatively low resolution 

world such as the one in Minecraft. The images show that it is possible to create 

impressive castle structures within the constraints of Minecraft. 

 
Figure 15 – Minecraft Castle on a Mountain 

(Bear, 2013) 
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Figure 16 – Minecraft Castle Ruin 

(Bear, 2013) 

 

2.6 Case Study: EverQuest Next 

Another game to make use of voxels is the upcoming next instalment in the 

popular massive multiplayer online (MMO) game franchise EverQuest. It is 

notable because it is the first AAA (big budget) game title to make use of voxels 

as a major component in recent years (CryEngine, the engine used in the first 

person shooter franchise Crysis, included some support for voxel based terrain in 

the editor although this has been deprecated as of version 3.5 (Crytek, 2014)). It 

also uses the underlying voxel technology to produce worlds with high graphical 

fidelity unlike Minecraft and its clones. An example screenshot from the game 

can be seen in (Figure 17). All elements in that image, except for the player 

character and the sky, are generated from an underlying voxel representation. The 

voxel size used is smaller than the typical 1m³ used by Minecraft, being about 

0.2m³ per voxel (Voxel - Landmark Wikia, 2014). This smaller voxel size, 

combined with the fact that crease data is stored per voxel, means that scenes can 

have graphical complexity approaching that of games using a purely polygon-

based approach. 
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Figure 17 - EverQuest Next 

(Haas, 2013) 

For the voxel elements of the engine EverQuest2 makes use of the commercially 

available VoxelFarm engine that grew out of a series of voxel terrain experiments 

by Miguel Cepero (Voxel Farm, 2015) (Cepero, Procedural World: EverQuest 

Next, 2013) (Khaw, 2013). To create the isosurface from the voxel representation 

VoxelFarm uses the dual contouring method (Cepero, Procedural World: From 

Voxels to Polygons, 2010). As mentioned in section 2.4 Voxel Smoothing 

Techniques, this means that the world can be created with both smooth and hard 

edges. 

In an interview Steve Klug, the technical director of EverQuest Next, said this 

about voxels: “Creating a world that allowed the dynamic interaction we were 

envisioning drove the decision.  We looked at a number of different approaches 

and the voxel solution was the most appropriate” (EQNexus, 2013). Further on in 

the interview he continues to talk about choosing voxels specifically to allow for a 

user editable world. One in which things could be destroyed by the players, but 

also one that the players could build in. This ability to edit worlds once deployed 

to players is one of the key features that make voxels a compelling technology for 

future games. Importantly, the tools used to edit the world are simple to use, yet 

powerful. Per the interview with Steve Klug quoted above, the tools used by 

players in the game will be exactly the same as those used by the developers. 
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EverQuest Next shows a different usage of the voxel world paradigm, with higher 

fidelity graphics and a mixture of handcrafted
4

 and procedurally generated 

elements. It demonstrates that a voxel representation approach is of interest to 

future AAA games development, and shows that the work done in this project 

may be applicable to a wide variety of games in the future. 

Although architecture in EverQuest Next will likely be handcrafted, the creator of 

the underlying voxel engine (the VoxelFarm engine), has used shape grammars to 

construct elaborate architecture, including castles (although placement into the 

world was done manually) (Cepero, Procedural World: Castle by the lake, 2015). 

Figure 18 shows what such a castle looks like and how much detail is possible. 

Although the castles created by this project do not approach that level of graphical 

fidelity, they are created entirely without human input (unlike those in VoxelFarm 

that are manually placed).  

 
Figure 18 - Castle in VoxelFarm 

(Cepero, Procedural World: Castle by the lake, 2015) 

2.7 Summary 

This chapter has outlined a number of topics relevant to this thesis. It discussed 

medieval castle construction and how builders of these castles would need to take 

into account the realities of siege warfare. This provides a basis making decisions 

                                                 

4
 The EverQuest Next team has released a sandbox game called Landmark for the express purpose 

of allowing players to create buildings and terrain features that may be included in the final game 

(Daybreak Game Company LLC, 2015). 
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on how to place and construct castles (section 4.5 Castles). We then looked at 

procedural modelling techniques for creating architecture. This looked at L-

systems and shape grammars, which were considered but not used for this project, 

and a technique using a recursive optimization function that inspired the castle 

layout optimization process used (explained in section 4.5.2.3 Optimization Step). 

In addition we examined techniques for working with voxels, including the 

marching cubes algorithm for creating smooth surfaces from voxel data. A 

simplified version of this approach was used to create a smoother look for the 

terrain (see section 4.2.10 Smoothing the Terrain). 

Lastly we considered two examples of voxel world games. Looking at Minecraft 

showed us some attempts at introducing procedurally generated architecture to 

voxel world games in the form of villages and strongholds. It also showed us that 

a voxel cell can be converted to more complex shapes than just cubes in mesh 

creation (for example stairs or torches), and this was adapted for this project in the 

form of MicroBlocks (details in section 4.1.3.4 MicroBlocks). The example of 

EverQuest Next showed that high-fidelity graphics can be achieved with a voxel 

approach and shows that this research could be applicable to future big-budget 

titles. Even though it uses procedurally generated terrain it still makes use of 

manual content creation for buildings, suggesting that procedurally generating 

architecture in voxel worlds is an open problem. 
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Chapter 3: Project Design 

 

The common problem among voxel world games is providing the player with an 

interesting environment to explore. One element in particular that is either missing 

or only poorly implemented is any form of man-made structure. In order to look 

plausible such structures must appear to have been placed and constructed by an 

intelligent agent. Since the world generation algorithms used make use of 

pseudorandom processes in the form of coherent noise functions they are poorly 

suited to producing features with such an appearance of agency. Simply placing a 

structure at a random point in the world will frequently result in poor or even 

disastrous results such as placing a castle right into a steep mountain or on the 

ocean floor. In the literature review section on Minecraft (see 2.5 Case Study: 

Minecraft), we saw that restricting placement of structures to flat terrain is a 

possibility but leaves us with limited flexibility. Instead, this project set out to 

place a castle into a voxel world and make use of the procedurally generated 

terrain. The aim was to avoid problematic areas where a castle could not be built 

(such as into steep mountains) while favouring high ground and adapting its 

layout to the terrain. 

In order to produce a sensible result the project then required to be divided into 

four steps: the underlying voxel engine (see section 4.1 Voxel World Basics), the 

initial terrain generation (see section 4.2 Terrain Generation), then the castle 

placement (see section 4.4 Terrain Analyzer and section 4.5 Castles) and lastly the 

actual castle construction (covered in section 4.5.3 Constructing the Castle). 

The underlying voxel engine was developed on top of the Unity3D engine using 

Minecraft as inspiration for many implementation details such as using chunks 

(see section 4.1.3 Chunks) and how lighting is done (see section 4.1.3.1 Lighting 

for details). 
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Terrain generation uses a number of pseudorandom noise functions combined 

together to create a heightmap and to populate the world with blocks (discussed in 

section 4.2 Terrain Generation). 

For the approach to the castle placement and construction a shape grammar based 

approach was initially considered (see section 2.2 Procedural Architectural 

Modelling Methods). However, shape grammars are generally ill suited to taking 

outside factors into account such as the shape of the terrain. For this reason it was 

decided to use a search-and-optimize approach to the castle placement and layout 

generation (as decided in section 2.7 Summary). It would still be possible to make 

use of shape grammars to create individual elements of the castle such as towers 

and buildings but this was not done for this project in the interest of concentrating 

on the placement. This meant that the castle construction was done in a 

completely deterministic manner. Variation would be achieved by adapting to the 

randomly generated terrain, and not by adding random elements to the castle 

generation step. 

The process of developing the actual castle placement and layout creation 

algorithm (covered in section 4.5 Castles) focused on generating what would be 

considered a plausible result by players of a voxel world game (a survey of such 

players was conducted to evaluate the success of this and is discussed in section 

6.1 User Study). A number of test terrains were generated with castles and 

problems were identified. Then heuristics were added to improve the results as 

much as possible. The issues specifically targeted were: avoid problematic areas 

such as steep mountains and gorges/canyons where possible while still making 

good use of the terrain overall (we do not want to restrict castle placement only to 

flat areas but nor do we wish to place the castle into the side of a steep mountain 

or spanning a canyon). Secondly, try to place the castle in a good defensive 

position. For the purposes of this project this meant optimizing for the most 

fundamental of military advantages: occupying the high ground. 

Castle construction was mainly done with the aid of a drawing system adapted 

from 2D (working with pixels) to 3D (working with voxels) for this project (see 

section 4.3 Drawing with Voxels). Once the castle placement and layout is done 

this is a relatively simple process (see section 4.5.3 Constructing the Castle). 
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Chapter 4: Implementation 

 

An initial prototype of this project was attempted using C# and the SlimDX API 

port of Microsoft™ Direct3D11 (see Figure 19 below). Although this progressed 

to a very basic functional stage, it quickly became apparent that as much time 

would be spent on the technical details of essentially creating a game engine from 

scratch as would be spent on the project proper (every additional feature would 

require more coding work to implement from scratch, such as adding a skybox, 

shadows, transparency, collision detection and more). For this reason it was 

decided to switch to using the free version of the Unity3D game engine instead. 

 
Figure 19 – Early Prototype 

The Unity3D engine (www.unity3d.com) provides all the features required for 

this project. In particular it makes it easy to procedurally generate meshes, and 

provides built-in camera controllers as well as collision detection. The only 

feature missing from Unity3D that would have been useful for this project is a 

Direct3D10+ feature called texture arrays. This was used in the initial prototype 

but then replaced with a texture atlas in the Unity3D version (more on this in 

section 4.1.2 Blocks / BlockEditor). 

The “Personal Edition” is free to use (for projects making less than US$100,000 

per year), and as of version 5 includes all engine features (previously advanced 
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features such as deferred shading and image effects were reserved for the Pro 

version). Unity3D features three options as scripting languages to implement the 

game logic: C#, JavaScript and Boo. This project uses the C# option exclusively, 

because it is the recommended language (Aleksandr, 2014) and because I 

personally have the most experience with it over the other options. It is also the 

only way to have access to the full .NET 2.0 API libraries, including in particular 

the generic collection classes such as Dictionary<T> and List<T>. 

The first step to realizing this project was to create a useful voxel world engine on 

top of Unity3D (covered in section 4.1 Voxel World Basics). This had to be 

functional as well as performing fast enough to be practical. Even with the 

massive performance of today’s computers voxel worlds can still quickly tax them 

beyond their limits if great care is not taken during implementation. This is 

because even a relatively small area may contain many tens of millions of voxels 

(with a voxel cell size of 1m³ a volume just 100m³ in size contains 1,000,000 

voxels).  

In addition to a voxel engine capable of managing a reasonable sized voxel world 

and converting it to polygon meshes for display, a prerequisite to this project was 

a terrain generator capable of creating varied terrain in a style similar to voxel 

world games like Minecraft (this is discussed in section 4.2 Terrain Generation). 

After terrain was done we needed a method for working within the voxel world to 

examine and place blocks efficiently. My approach to this was to adapt 2D 

drawing functions designed for working with pixels to 3D to use voxels instead 

(explained in section 4.3 Drawing with Voxels). 

Before we could place the castle into the terrain we would need to analyze it so 

that a good spot could be chosen. How the terrain was analyzed is explained in 

section 4.4 Terrain Analyzer. 

With all of these building blocks in place it was then possible to search for a good 

place for a castle, optimize the castle layout and finally construct the castle in the 

voxel world (discussed in section 4.5 Castles). 
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4.1 Voxel World Basics 

This part of the thesis explains in detail how the voxel world engine was 

constructed within Unity3D. 

Voxel world engines tend to share a number of elements. At the core they have a 

number of different types of blocks, which can be placed into the world in voxel 

cells (elements in a regular 3 dimensional grid array). The voxel storage array 

itself is usually broken up into larger elements called chunks, although other 

storage methods such as sparse voxel octrees (discussed in section 2.3 Sparse 

Voxel Octrees in the literature review) are also possibilities. 

Blocks stored within the voxel grid are then converted to polygons by some 

means for display. Polygon conversion may be as simple as creating a box shape 

the size of one voxel cell (this is true for most block types in Minecraft for 

instance), creating a more complex mesh in the voxel cell location (such as a 

staircase or torch in Minecraft), or may use a more complex algorithm like 

marching cubes or dual contouring to create a smooth surface (see section 2.5 on 

Voxel Smoothing Techniques in the literature review). 

This project also uses a layer system similar to that found in many 2D drawing 

packages, adapted to voxels. The motivation for this was the ability to quickly 

toggle between showing just the terrain, and showing the terrain with the castle 

constructed in it (how this works is discussed in detail in section 4.1.3.5 Layers). 

In order to populate the world with blocks for the player a procedural algorithm is 

used. While the specifics of world generation differ between voxel world games, 

they commonly use some sort of coherent noise function (see section 4.2.1 

Libnoise later in this document for more on coherent noise) as the basis. 

The following section explains how I tackled the challenges of building a voxel 

world engine and creating a base terrain in which to construct a castle. 

4.1.1 Introducing VoxBox 

For the purposes of this project I created a voxel sandbox that I call VoxBox 

(short for Voxel Sandbox). This section discusses the underlying architecture of 

VoxBox. 
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For world-scale I chose to stick with the Unity3D recommended (and intuitive) 

size of 1.0 world unit being equal to 1 metre. In terms of voxel grid scale, I 

decided to use the same scale as Minecraft: 1 voxel cell is 1m³ in size. This was 

done for two reasons: firstly it is a common choice in voxel world games (used in 

Minecraft, FortressCraft, Minetest, among others) and thus output from the 

project would be immediately able to be compared to these popular existing 

games. The second reason is simply that it is a size that strikes good balance 

between world fidelity and performance. Halving the voxel cell size to 0.5m³ 

means an 8x increase in the number of voxels required to fill a given area, 

meaning a significant increase in memory usage, CPU processing of lighting, and 

GPU usage to render the resultant meshes (all roughly linear with the increase in 

the number of voxels). A much faster way to increase world fidelity as needed is 

discussed in section 4.1.3.4 - MicroBlocks. 

In order to keep the user interface responsive while the system is processing the 

world (for example when it is generating the terrain during initialization) two 

threads were used. A foreground thread for tasks that must be done on the main 

thread (any calls to Unity3D API functions must be done from the foreground 

thread) and a background thread for the heavy processing (such as terrain 

generation, lighting calculations, castle generation, and most of the mesh 

generation). Tasks can be scheduled on either the foreground or the background 

thread as needed. Task scheduling uses a simple queue (FIFO) buffer. 

Note on the coordinate system: the 3D coordinate system used by VoxBox is the 

same as the default Unity3D coordinate system. That is the y-axis goes up and 

down, and the horizontal plane is made up of the x and z-axis. Some engines such 

as UnrealEngine 4 use the z-axis as the vertical axis and have the x and y-axis 

describe the horizontal plane. This is a minor detail and the choice is just a matter 

of preference, but it is important to know this for when some of the 

implementation details are discussed later in this chapter. 
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4.1.2 Blocks / BlockEditor 

For the blocks the Flyweight pattern
5
 (Nystrom, 2014) was used. Each block is 

stored as a pointer to an instance of the Block class that contains all the 

information about the block. A block manager stores all the available block 

instances (one for each type of block available for use in this voxel world, such as 

dirt or stone) and allows looking them up by name or an ID number. 

Since blocks will have varying textures depending on type, a texture atlas is 

created when the program starts. The initial prototype program used an advanced 

Direct3D API feature called texture arrays for this, which as the name implies 

allows you to specify an array of textures to use with a mesh object where an 

index to the array is included with each vertex. Since Unity3D does not support 

texture arrays (at least not as of version 5.1, the version used for this project), a 

different solution was needed. The options were to either create a separate mesh 

for every texture used, exploding the number of draw calls that would need to be 

made, or pack all block textures into a texture atlas. That is, all of the textures 

used are placed into a single texture. This allows the same texture to be used 

across the entire terrain mesh, allowing it to be rendered as a single draw call. 

Using a texture atlas therefore offers large performance benefits and this route 

was chosen. Next there were two options for creating the texture atlas: manual 

creation using a program like Photoshop™ or automatic creation by VoxBox. 

Manual creation would have been slightly quicker to get running initially but 

would have meant more work when adding new textures later, so for this reason 

the second route (automatic generation) was chosen. Luckily Unity3D has a built 

in function, Texture2D.PackTextures(), that makes this relatively easy. 

See Figure 20 to see what the texture atlas created by VoxBox looks like. 

                                                 

5
 The flyweight pattern is a software design pattern that minimizes memory usage by sharing as 

much data as possible between similar objects. By using references back to a shared instance of an 

object redundant data storage in memory is minimized. 
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Figure 20 - Texture Atlas Created by VoxBox 

The Block class is simply a collection of information about each type of block in 

VoxBox, and has the following properties: 

 Name (string) 

 ID (int) 

 IsNatural (bool) 

 IsSolid (bool) 

 IsTransparent (bool) 

 BlocksLight (bool) 

 IsSmooth (bool) 

 Geometry (IGeometryBuilder) 

 TopFace (UVRect) 

 BottomFace (UVRect) 

 LeftFace (UVRect) 

 RightFace (UVRect) 

 FrontFace (UVRect) 

 BackFace (UVRect) 

 Light (Color32) 

 Cost (int) 
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Name and ID both provide ways of identifying blocks. Further on in this 

document when needing to refer to a specific type of block, the name of the block 

is written in quotes. For example: “Air”, “Grass”, or “Dirt”. 

IsNatural was going to be used to distinguish blocks generated by the terrain 

generator and those placed by the castle builder, but this was abandoned and 

partly replaced by the layer system (see 4.1.3.5 Layers). 

IsSolid, IsTransparent and BlocksLight all appear to have similar 

function but there are some important differences. IsSolid specifies if the block 

should be included in the collision mesh construction. If set to true, the block is 

added to the collision mesh and as such impassable to the player. 

IsTransparent is used during display mesh generation (see section 4.1.3.2 

Conversion to Polygons). If this is set to true it means that any neighbours will 

generate a face where they share a side. BlocksLight is used during the 

lighting calculation (see section 4.1.3.1 Lighting), and naturally if set to true it 

prevents light from spreading across this block. So for example “Glass” is solid 

(blocks player movement), transparent (neighbouring blocks must have faces 

touching this block created), and does not block light. On the other hand 

“OakLeaves”, the block used for leaves on the trees is solid and transparent, but 

does block light (creating somewhat shadowed areas under trees). 

IsSmooth is used during mesh creation to smooth the normals of blocks marked 

with this property. By default normals are calculated per side of each block, if this 

property is set the vertices that share a single point in space for this block are 

averaged out to give a more smooth appearance. Figure 21 shows a cube with flat 

normals to the left and a cube with smooth normals on the right. Vertex normals 

are shown as short lines at each of the cube corners. The IsSmooth property is 

only used for the grass blocks in this program. 
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Figure 21 - Flat vs Smooth Normals 

Geometry is a pointer to an instance of a class implementing the 

IGeometryBuilder interface (an interface created for this project, for more 

information see section 4.1.3.3 later on in this chapter). The interface has a single 

function prototype: BuildGeometry(). This is called for each non-“Air” (i.e. 

not empty) block during mesh construction. Simple blocks use the BoxBuilder 

implementation of this interface, creating a solid cube in the space for this block. 

Geometry builders are discussed in more detail later on in 4.1.3.3. 

The six UVRect values (TopFace, BottomFace, etc…) encode the position 

on the texture atlas to use for each side of the block. For most blocks these values 

are identical but for example “Grass” blocks have a grass texture on top, dirt on 

the bottom and a grass-to-dirt transition on the sides. Figure 22 shows a grass 

block on a dirt block with the polygon mesh visualized. As can be seen the top 

face is completely green while the side faces show a transition from the green 

grass to the brown dirt. 
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Figure 22 - A Grass Block on a Dirt Block 

The Light value is used for blocks that emit their own light. This could be used 

for torches for example. While no blocks in this project emit large amounts of 

light, they all have a low, but non-zero, value set for this to add some ambient 

lighting to the world (see section 4.1.3.1 Lighting for more information on how 

lighting is computed). 

The Cost can be used to calculate the cost of building a given castle. This is 

arbitrary and would depend on a specific game application. A total castle cost 

value is calculated but not used in the optimization process. It was considered but 

was found infeasible, because to calculate the cost the entire castle must be built 

(i.e. all the voxels for the castle must be placed in the world), a process that takes 

several seconds. The castle placement algorithm tries many possible castles, and 

building each of them fully to get the cost value would make this process 

potentially take hours (rather than constructing the castle at each point, the 

optimization algorithm instead simply checks the computed tower and wall 

positions against the terrain – for more details see section 4.2.5 on castle 

placement). However, for example, in a strategy game making use of the castle 

generation algorithm this might be used to present the player with a cost value for 

constructing the castle. 
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In order to simplify the process of adding new types of blocks to VoxBox a block 

editor program was developed in C# and using Windows Presentation Foundation. 

It consists of a single form with a datagrid component for adding and modifying 

block types. This is saved to an XML file that is then read in by VoxBox on start 

up to initialize the block manager with all the available block types. 

 
Figure 23 – BlocksEditor 

4.1.3 Chunks 

Voxel world games typically divide the world up into units called “chunks”. The 

size of chunks varies between implementations, although sizes of 16³ or 32³ are 

common. Minecraft uses a slight modification on this system. It uses a fixed 

world height of 256 blocks, with one chunk being 16×256×16 blocks. Each of 

these is further divided into 16 units of 16³ blocks for rendering. To maintain 

more flexibility vis-à-vis world height I decided not to use the Minecraft model 

and stick with simple 16³ blocks sizes for chunks in VoxBox so that as many 

chunks as needed could stacked vertically. 

There are several reasons for dividing up the world in chunks, rather than treating 

it as a single monolithic entity. The first is that it allows parts of the world to be 

loaded/unloaded dynamically as the player moves around, which allows for 

worlds far larger than can be drawn at once. For this project this wasn’t a concern 

as only a small area is created. Another benefit is that when changes are made to 

the world only affected chunks need to be updated (such as when the player 

modifies a block or in the case of this project when a layer is toggled on or off). 
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Since recreating the lighting and mesh data is an expensive operation this is 

highly desirable. However, the biggest benefit is in rendering. By splitting up the 

terrain mesh into chunks, any of those not visible to the user (i.e. not in the 

camera view frustum) can be culled prior to rendering, saving GPU power and 

increasing framerate. As mentioned previously this also allows us to stack chunks 

as far as needed vertically. This comes in useful when creating large mountains 

(for more on mountains and the terrain generation process see 4.2.6 ). 

Besides these concerns, the Unity3D Mesh primitive uses 16bit index buffers, 

putting a hard limit of 65,536 vertices on any single mesh. Using a chunk size of 

16³ gives us 4,096 blocks per chunk. The worst case scenario (assuming simple 

cube geometry) is if every second block is set (imagine a 3D checkerboard 

pattern), giving 2,048 cubes, each with 6 sides. Each side uses 4 vertices (two 

corner vertices are shared, faces cannot share corner vertices with each other, 

since they use separate normals and potentially have different texture 

coordinates). This gives us a total of 2,048 × 4 × 6, or 49,152 vertices, just under 

the 65,536 vertex budget. Filling an entire chunk with blocks that have a more 

complex shape or with transparent blocks like glass will actually exceed the 

vertex budget (not a problem in the case of this project but for a game this is a 

case that will need to be handled, perhaps by spawning an additional mesh if 

65,536 vertices is exceeded during mesh creation). The reason not to use smaller 

chunk sizes, such as 8³ is that this would mean more meshes that need to be drawn 

(8 times as many in the case of going from 16³ to 8³), increasing the number of 

draw calls that need to be made, which significantly increases CPU overhead 

during rendering.  

Therefore a chunk size of 16³ blocks was chosen as the best middle ground 

between being too large (and potentially running into problems with overflowing 

the 16bit vertex buffer limit) and being too small (reducing rendering performance 

with too many draw calls). This matches the 16³ render chunks employed by 

Minecraft and appears to be a common choice for other voxel world engines (for 

examples see the thread “After playing minecraft…” on the Unity3D forums at 

http://forum.unity3d.com/threads/after-playing-minecraft.63149/).  
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Some voxel world engines separate the block storage from the display chunks, for 

example choosing to store the blocks in a large flat ringbuffer, rather than as 

multidimensional arrays as part of the chunks. This has some performance 

benefits (cache coherence, less memory fragmentation) but at the cost of 

additional complexity. For the sake of simplicity the later approach was used, 

although block storage was changed from a multidimensional array to a flat array 

after I discovered that the C# runtime will perform three separate bounds checks 

when accessing a 3-dimensional array. Thus switching to a flat array and using 

custom logic to perform a 3d mapping turned out to be significantly faster. 

One thing in common among all voxel world implementations is that the positions 

of voxels are always implicit, at least within their chunk. No positional data is 

ever stored with the individual voxels; rather the location in the storage array 

marks their position in the world (that is the location of a voxel is implicit). To 

access a voxel, the world manager first calculates the chunk position by dividing 

the position values by the ChunkSize constant (16 for this project). Rather than 

hardcode the value of ChunkSize a constant was used, allowing quick alteration 

if for some reason a different size would be needed. This is then used to look up 

the correct chunk. The chunks themselves are stored using the .NET 

Dictionary<T> class (which implements a hashmap), using their chunk-space 

position as a key. This allows fast retrieval of chunks as needed. The chunk-space 

position is the chunk number in each cardinal direction. So going right along the 

x-axis for example the first chunk is at (0,0,0), the second at (1,0,0), the third at 

(2,0,0) and so on. Once the correct chunk is found the remainder of the division is 

used to look up the specific block within the chunk block array. Storing the 

position data with every voxel would require an additional three int32 values 

per voxel (12 bytes). A typical world generated by VoxBox for this project has 

about 5,000 chunks, or 20,480,000 voxels. Storing 12 extra bytes per voxel would 

mean 20,480,000×12 additional bytes or ~234Mbytes of memory without offering 

any extra utility. However, by explicitly storing the location of each chunk we 

never need to create or store chunks that are completely empty. This saves 

memory in a way similar to the sparse voxel octrees discussed in 2.3 Sparse Voxel 

Octrees (although the SVO does not use any explicit position referencing system). 
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4.1.3.1 Lighting 

Lighting in VoxBox is a combination of dynamic and static lighting. Dynamic 

lighting is simply a low ambient light and a directional, shadow-casting light to 

emulate the sun. Because dynamic lighting is handled entirely by Unity3D, 

nothing further will be mentioned on that subject. 

Static lighting is done with a crude global illumination approximation and baked 

into the chunk mesh vertices. The system used is similar to that employed in 

Minecraft. 

First, an array is created for the light data. This is the same size as the block array 

for each chunk, so that one light entry is available for every voxel. Then, for the 

initial pass we trace sunlight from the top of the world down until a block with the 

BlocksLight property is set. This roughly simulates the direct illumination of 

the sun, assuming it is directly overhead (i.e. the 12o’clock position). Most 

importantly this is very fast because it is a simple linear march down the array 

storing the lighting values. A more sophisticated algorithm might utilize path 

tracing to simulate different sun positions but this would require additional 

calculation. 

The next step is to spread the light out to simulate indirect illumination. Here a 

simple multi-pass algorithm adapted from Minecraft is used (Light - Minecraft 

Wiki). Lighting is restricted to 17 shades of illumination (from 0 for areas with no 

light to 16 for areas in full light). The function that calculates the light spread 

loops over the 3D array containing the light values 16 times, processing light 

values from 16 down to 1. During each pass the light entry is examined for every 

voxel cell. If the light value matches the current pass then we examine the six 

neighbour cells. For every neighbour that does not block light (that is the block 

property BlocksLight is not set) the light value of the neighbour is compared 

to that of the voxel being processed. If the neighbouring cell has a light value 

lower than that of the current voxel cell minus one, it has its value set to that of 

the current voxel cell minus one. For example say we are processing the pass for 

light values 8 and have found a voxel with a light value of 8. The neighbour to the 

left has a light value of 3 and contains a voxel that does not block light. Now this 

neighbour is set to have a light value of 7 (one less than the current pass being 
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processed). Now on the next pass processes cells with light values of 7, so this 

cell will be processed. It checks its neighbours and finds that the neighbour on the 

right has a value of 8 (this is the one that spread the light value 7 to this cell in the 

last pass) and therefore does not change that cell (of course the 5 other neighbours 

are examined as well). This way light spreads a maximum of 16 blocks from a 

primary source and diminishes along the way. 

This is only a very crude global illumination approximation but it produces 

surprisingly good looking results while being very fast (11.79 seconds to calculate 

for 5214 chunks on an i7-4712HQ, or ~2.26ms per chunk). Moving the light 

spread function from C# to a C dynamically linked library showed a significant 

speed up even over that (2-3x speed increase) but introduced errors into the 

lighting that were not resolved. These errors may be due to a bug in the C code 

that I wrote, or due to some oddity in the way that multidimensional arrays are 

marshalled to and from native code by the C# runtime. Either way this should be 

resolvable and would offer a good increase in speed for this function. Due to its 

non-critical nature, it was left as is and time allocated to more important aspects 

of the project. However, the native C version of the function was used during 

most of the testing because it is so much faster and the more correct looking C# 

implementation was later used to produce cleaner screenshots. Figure 24 below 

highlights an example of where lighting problems occurred with the native 

implementation of the lighting algorithm. The shadow on the castle wall clearly 

looks incorrect in several areas (a particularly bad area is highlighted with a circle 

and arrow). 
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Figure 24 – Lighting Anomaly 

The final part of the lighting calculation is to apply the lighting values to the 

vertices of the polygon mesh that is generated from the voxel data. We cannot 

apply the light value calculated for a voxel cell to the vertices generated for that 

voxel, since most voxels block light and so would have a value of zero. Instead 

what we want to know is the amount of light hitting a voxel face from the 

surrounding voxel cells. To get smooth transitions from light to dark we take an 

average of the four light values in the voxel cells surrounding the vertex in the 

direction of the voxel face. Figure 25 illustrates this process. In the image the 

solid cube is the voxel we are currently calculating lighting for. The red lines 

show the current face. The red sphere is the current vertex and the red arrow 

shows the vertex normal direction. The four translucent cubes show the four voxel 

cells that are sampled for lighting information for the current vertex. 
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Figure 25 – Smooth Lighting Calculation Illustration 

A side effect of calculating the lighting this way is that vertices in concave areas 

are darker, adding an ambient occlusion
6
 like effect. This can be seen in Figure 

26, where the surface surrounded by blocks is clearly darker than the open 

surfaces. This is a subtle effect that makes the voxel world look more aesthetically 

pleasing, while being cheap to calculate (it only needs to be computed when the 

mesh is created). 

                                                 

6
 Ambient occlusion simulates self-shadowing by casting rays from a surface and darkening the 

area for any rays that hit a surface within a certain distance. 
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Figure 26 – Fake Ambient Occlusion 

4.1.3.2 Conversion to Polygons 

In order to display our voxel world using a traditional GPU we must convert the 

voxel data to a polygon mesh. There are other possibilities, such as raycasting 

directly into a voxel data structure as described by Crassin et al in their paper on 

the GigaVoxels rendering system (Crassin, Neyret, Lefebvre, & Eisemann, 2009). 

However, that approach is more appropriate for much more dense voxel data, such 

as that from Lidar scanning of real world objects or environments. 

A naïve approach would generate polygon mesh data for every non-empty voxel 

cell. This would quickly create a more polygons than can be reasonably displayed 

even by a powerful GPU and would be a massive waste. Instead we only create 

mesh data for exterior (exposed) faces. Figure 27 shows two chunks moved 

slightly apart, showing how the interior faces are not generated (red highlighted 

area). 
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Figure 27 - Two Chunks Apart Showing Hidden Faces 

Neighbour voxels are checked during chunk mesh generation and for any that 

IsTransparent is set to false no face is created. 

We want to support more complex shapes at this point than just cubes, in the same 

way that Minecraft does (this was discussed in the literature review in section 2.5 

Case Study: Minecraft). In order to support many different types of geometry for 

voxels, without a large switch statement in the mesh generation code, the concept 

of a geometry builder was introduced. This is discussed in the next section: 

4.1.3.3 Geometry Builders. 

4.1.3.3 Geometry Builders 

Creating the IGeometryBuilder interface made it simple to control the type 

of geometry created for each non-empty voxel. The interface has only a single 

function definition – BuildGeometry() – that is called once for each non-

empty block during the mesh creation process. The function is passed a reference 

to the chunk object that is calling it and uses this reference to add vertices and 

indices to the chunk. The vertices and indices are stored in a linked list within the 

chunk until BuildGeometry() has been called on every block for that chunk. 

Once complete, the vertex and index data is placed into a Unity3D Mesh object 

on the main thread. Calculating all of the vertex and index data for the terrain 

mesh is done on the background thread, but because all Unity3D functions must 

be called on the main thread the final step of creating the actual Mesh object must 
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be done on the main thread (for more on the threading system used refer back to 

section 4.1.1 Introducing VoxBox). 

The geometry builders implemented for this project are as follows: 

 BoxBuilder – Standard builder used for all regular cube-shaped blocks. 

 MicroBlockBuilder – Described in more detail in section 4.1.3.4 

MicroBlocks below. 

 WaterBuilder – Used for water blocks. Only the top faces are created 

for these and the indices are stored in a separate buffer, making use of the 

submesh functionality in the Unity3D Mesh object. The submesh is 

rendered in a separate draw call, allowing it to use a different shader from 

the rest of the terrain and be translucent. 

 WedgeBuilder – Creates a ramp shape used to smooth out the grassland 

terrain (example output is shown in Figure 28). These are used to smooth 

out the terrain a bit (terrain smoothing is discussed in section 4.2.10 

Smoothing the Terrain). 

 WedgeFillBuilder – Creates a single triangle that can be used to fill 

the sides of the geometry generated by the WedgeBuilder. Also used as 

part of the terrain smoothing algorithm (for an example see Figure 29). 

 XBuilder – Creates an X shape on the block. This is used for grass. 
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Figure 28 – WedgeBuilder Output 

 
Figure 29 – WedgeFillBuilder Output 

4.1.3.4 MicroBlocks 

As shown in the literature review (in section 2.5 Case Study: Minecraft) it is 

possible to create a more detailed look to the world with special blocks like stairs 

or fences. In order to be able to add more complex shapes to the voxel world 
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easily, a special geometry builder was added to VoxBox: the 

MicroBlockBuilder. This builder takes a 3D array of Boolean values. This 

can be any size as long as all 3 dimensions are the same size. It essentially 

subdivides the voxel into smaller cubes  
 

 
   in size (where n is size of each of the 

dimensions in the array). These smaller cubes all share a single texture set (one 

texture per face of the voxel cube) for the sake of simplicity. Texture coordinates 

and lighting information is simply interpolated across the surface of the voxel for 

each micro block. 

Using micro blocks like this allows easily adding new types of geometry like 

stairs, slabs, slits, or poles, all without having to write a new custom geometry 

builder for every new kind of geometry. As long as it can be constructed from 

smaller cube shapes it can be added simply with a MicroBlockBuilder and 

an array of Boolean values indicating which sub-blocks should be filled and 

which should be empty. 

For this project micro blocks were used to add the crenellated battlements to the 

tops of the walls, and to create the stairs for the walkways on the walls. 

4.1.3.5 Layers 

Part way through this project it became apparent that it would be useful to be able 

to make non-destructive changes to the voxel world (for example, the ability to 

toggle the visibility of the castle to be able to check it against the underlying 

terrain). Inspired by the layer system in 2D drawing programs like Adobe 

Photoshop™ I decided to implement something similar in VoxBox. This required 

some changes to how voxels are stored. Instead of being stored in an array as part 

of the chunk they belong to, they were moved into a separate data structure called 

a VoxelLayer. Each chunk now contains two layers: a “background” layer where 

the terrain is drawn and a top layer where the castle is drawn (adding more layers 

would be trivial at this point but two were sufficient for this project). By toggling 

visibility on the top layer we can quickly see the terrain with or without the 

generated castle (for example the screenshots in Chapter 5: Demonstrations were 

created this way, i.e. one with just the terrain and one with the castle in the 

terrain). 
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In addition, a new voxel type was added: the “Empty” voxel. This like the “Air” 

voxel type also marks a voxel cell as empty. On the background layer empty 

voxel cells always use the “Air” type. On the other layers the two types are 

distinguished thusly: “Air” voxels force the voxel cell to be empty, while 

“Empty” voxels are treated the way that transparent pixels would be in a 2D 

drawing program, i.e. they are ignored. When a voxel is accessed the top layer is 

queried first. If the position contains any type other than the “Empty” type then 

that voxel type is returned. If the voxel cell contains an “Empty” voxel then the 

next layer down is queried with the same process until a non-“Empty” voxel type 

is encountered. Since the background layer cannot contain voxels of the “Empty” 

type a valid voxel is guaranteed for each lookup. This is easiest understood by 

comparing it to layers in a 2D drawing package. Typically you start with a white 

page (this would be a background layer with “Air” voxels). When you add an 

empty layer the picture stays the same (like adding a layer with “Empty” voxels). 

Now imagine you draw a black square on the background (like adding “Dirt” 

voxels to the background layer), then you cover this square with a white square on 

the top layer. This way you end up with what looks like a blank page once more 

(this would be like filling the volume of “Dirt” blocks with “Air” blocks on the 

top layer, giving you an empty voxel world). Finally, if we toggle the visibility of 

the top layer we can reveal or hide the black square (the same is true for our voxel 

layer). 

Layers that are entirely empty (either background layers where all blocks are set 

to “Air” blocks, or regular layers with all blocks set to “Empty”) have their voxel 

arrays set to null. This means that empty layers, and indeed empty chunks, use 

very little memory. When queried the empty layers simply return “Empty” or for 

background layers “Air”. As soon as a voxel is set to a non-empty value the voxel 

array is created and the voxel is set in the array. 

To recap: layers function in a way similar to layers found in many 2D drawing 

packages. By drawing the terrain on the background layer and the castle on a 

higher layer we can easily toggle a scene between displaying just the terrain, and 

showing the castle in the terrain. 
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4.2 Terrain Generation 

The common approach to randomly generating any sort of terrain is to make use 

of one or more coherent noise functions (for more information on coherent noise 

see section 4.2.1). This is also the approach that VoxBox uses to create its terrain. 

It uses several different noise functions chained together to generate a small 

variety of terrain. Each of the noise functions used is described in this section, 

followed by a description of how they are combined to reach the final result. 

The terrain generated needs to be complex enough to present an interesting 

challenge for castle placement. It also must be capable of a good amount of 

variation. As discussed in section 4.5 Castles, the castle generation algorithm is 

deterministic, so any variation in the castles will come from the underlying 

terrain. With this in mind the VoxBox terrain generator was built to create three 

broad types of terrain: mountains, rolling hills, and flat grassland. This was 

enough to provide sufficient variation in the terrain and also provide a challenge 

for the castle placement and construction. 

Terrain generation consists of three major steps. First, a heightmap is created for 

the terrain by combining several noise functions. Secondly, a combination of the 

heightmap and several more noise functions is used to calculate a block type for 

every block in the world. Lastly, the terrain is processed to add some extra details 

like trees, water and terrain smoothing. 

This project makes use of Libnoise, a library that provides a number of different 

coherent noise functions. The first part of this section covers Libnoise and what 

coherent noise is. It then follows with descriptions of each of the noise functions 

used and example output from each. How these noise functions are combined to 

create the heightmap used in the terrain generator is covered next in section 4.2.6 

Creating the Heightmap. The terrain generation section concludes with a 

description of how blocks are calculated and descriptions of the final steps that 

cap off terrain generation (adding in trees, water and some terrain smoothing). 

4.2.1 Libnoise 

Rather than implement each of the needed noise functions and a system for 

combining them myself I made use of Libnoise (http://libnoise.sourceforge.net), a 

library designed specifically for this task. Libnoise comes with a variety of noise 
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functions and modules for modifying and combining the outputs of those 

functions. This is perfect for creating the sort of noise generation network needed 

to create interesting terrain. Libnoise contains more noise functions than needed 

for this project; however those that were used are described in more detail below. 

Libnoise generates “coherent” noise, that is it creates a type of pseudorandom 

noise where neighbouring values are related in some way, as opposed to non-

coherent noise where all values are independent of each other. Coherent noise 

when given the same input (i.e. when a location is sampled) will generate the 

same output value, a small change in the input will result in a small change to the 

output, and a large change in input will lead to a random output (Bevins, 2005c). 

 
Figure 30 - Random Noise vs Coherent Noise 

Figure 30 above shows the difference between completely random and coherent 

noise. The smooth gradients that coherent noise creates are well suited to creating 

heightmaps for terrain generation. 

Note that all Libnoise generator modules output values in the range -1 to 1 by 

default, although this can be manipulated with additional modules (covered after 

the noise modules in this section). 

4.2.2 Perlin noise 

One of the most well known noise functions, Perlin noise is a gradient noise 

generator capable of generating a variety of looks such as clouds, glass, water and 

more (Perlin, 1984) (Perlin, 1985) (Perlin & Hoffert, 1989). At its core it 
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functions by creating random values and then interpolating between them to 

create gradients (hence it is called gradient noise). An example of Perlin noise is 

shown in Figure 31 below. 

 
Figure 31 – Perlin Noise 

Perlin noise can be controlled with two key variables: frequency, and number of 

octaves. Frequency affects the spatial frequency of the noise function. This alters 

how rapidly changes occur over any given portion of the function space. This 

effect can be seen in Figure 32 below, showing the same Perlin noise function 

with a frequency of 0.005, 0.05, and 0.5. 
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Figure 32 – Effect of Changing Frequency on Perlin Noise 

The number of octaves changes the amount of detail generated by the Perlin noise 

function. Perlin noise works by adding together multiple passes over the noise 

function at successively higher frequencies to generate additional detail. The 

number of passes done is controlled by the octave number of the function. It is 

important to note that increasing the number of octaves increases the 

computational complexity of the function (i.e. it will take longer to compute the 

noise values). Figure 33 below shows the result of running Perlin noise with 

octave values of 2, 4, and 8. Note the increased complexity in the image as the 

number of octaves is increased. 

 
Figure 33 – Effect of Changing Octaves on Perlin Noise 

Perlin noise is used for most of the terrain generation process, including selecting 

which type of terrain should be generated at any given point. The hilly terrain uses 

a slightly modified version of Perlin noise that Libnoise calls billow noise. 

According to the Libnoise documentation this is identical to Perlin noise except 
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that every octave is modified by an absolute-value function (Bevins, 2005a). This 

produces a billowy look suitable for clouds or in the case of this project the 

heightmap for rolling hills. An example of what this looks like is shown in Figure 

34. 

 
Figure 34 – Billow Noise 

4.2.3 Ridged Multifractal Noise 

Ridged multifractal noise in Libnoise is generated by a similar process to Perlin 

noise but octaves use persistence values derived from previous octaves. This 

creates a feedback loop that creates ridge-like formations in the output (Bevins, 

2005b). This can be seen in Figure 35 below. Note how the white areas in the 

image form long lines with very bright areas along their centre. These are the 

ridges that give ridged multifractal noise their name. 



54 

 

 
Figure 35 – Multifractal Noise 

The terrain generator uses ridged multifractal noise to generate mountain areas 

and to carve out cave systems. 

4.2.4 Vornoi Noise 

Vornoi noise (otherwise known as Worley or cellular noise) is a point-based noise 

generation algorithm. The output is generated by scattering random points across 

a plane and then computing where neighbouring points are equidistant. The plane 

is then divided up by lines along these equidistant regions, creating a Vornoi 

diagram; partitioning the space into cellular regions (Worley, 2002). This kind of 

cellular noise is useful for generating a variety of effects such as the look of lizard 

scales or flagstones. For this project the Vornoi noise was used to generate the 

field areas, however the effect of this in the final computed heightmap is very 

subtle. It is simply used to break up the field areas slightly so that they would not 

be completely flat. An example of Vornoi noise is shown in Figure 36 below. 
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Figure 36 – Vornoi Noise 

4.2.5 Additional Libnoise Modules 

In addition to the noise generator modules a number of other utility Libnoise 

modules were used to connect everything together. These are mostly very simple 

and therefore will only be given a brief explanation here. 

 Scale Bias module – multiplies the output of a module by a scaling value 

and adds the bias value to it. Used to control the height of mountains for 

example. 

 Select module – takes two input modules and a control module as input. 

The output becomes either the value of the first or second module, 

depending on if the value returned by the control module falls within a 

certain selection range that is set when the module is created. 

 Turbulence module – A pseudorandom displacement of an input value. 

Uses Perlin noise modules to displace the x, y, and z values passed into the 

module by some amount. 
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4.2.6 Creating the Heightmap 

The first step is to combine multiple noise modules to generate a heightmap that 

can be used by the terrain generator and that creates areas of plains, hills and 

mountains. This process of adding and rescaling noise functions is also known as 

multifractal construction (Musgrave, 2002). A powerful feature of this approach is 

that individual points can be evaluated without reference to each other. The 

context-free nature of this method is what makes it possible to generate new 

chunks of the world on the fly and enables a voxel world to grow almost 

limitlessly as a player explores. For this project only a small section of the world 

is created but this approach demonstrates how a real voxel world game would 

generate its terrain. 

 
Figure 37 – Heightmap Generator Diagram 

The diagram above (Figure 37) shows how the various Libnoise modules are 

combined to output the final terrain heightmap. For an example heightmap 

generated by this process see Figure 38 below. Note that due to the mapping from 

height values to greyscale; some of the values were clamped resulting in a loss of 

detail in the extremely high (white) parts of the image. 



57 

 

 
Figure 38 – Example Heightmap 

During the development of the castle generation algorithm (described in detail in 

section 4.5 Castles) it was found that mountain areas were far too low (essentially 

just craggy hills when compared in scale to the castles) (see Figure 39). The castle 

being almost as tall as the mountains made it hard to properly evaluate placement 

and did not provide the correct sense of scale. Because the chunk system 

(described in section 4.1.3 Chunks) was designed to allow for flexible world 

height this was as simple as adjusting the heightmap generator to increase the 

height of the mountain areas by 4 times (see Figure 40). This created a much more 

realistic backdrop for the castles, and provided better terrain to test the castle 

placement against. Because the variation in the castles is driven entirely by the 

terrain (explained in section 4.5 Castles) this was an important change. Stronger 

variation in the terrain also meant stronger variation in the castles produced. 
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Figure 39 - Terrain and Castle Before Mountain Height Adjustment 

 
Figure 40 - Terrain and Castle After Mountain Height Adjustment 

4.2.7 Calculating the Blocks 

With the heightmap created the first major step in creating terrain is complete. 

The next step is to compute the terrain blocks using a combination of the 

heightmap and several additional noise modules. 

In addition to the heightmap, three more Perlin noise modules are employed in the 

terrain generation process, one each with a frequency of 0.005, 0.05 and 0.5. This 

gives us a low frequency noise function for large-scale features, a medium 

frequency function for mid-scale features and a high frequency noise module to 
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use for small scale details. They will be referred to as low, medium, or high 

frequency noise modules for the remainder of the section. Furthermore, a 

multifractal noise module is used in the terrain generation process (separate from 

the one used to generate the heightmap). 

Output from each of the noise modules is cached ahead of time so that accessing 

them multiple times does not incur a recalculation. This is done because 

calculating a noise function is expensive and some values will be used multiple 

times. This was not needed during heightmap creation because in that case every 

value is queried just once. 

All the actual terrain calculation is done in a function in the terrain generator 

called CalculateBlock(). This function simply takes a position of a voxel 

cell as an x, y and z value, and returns a block type. Several numbers are used in 

this process, usually as threshold values against a noise function. These were 

mostly arrived at by a process of trial and error to achieve the desired
7
 look of the 

terrain. Where applicable any reasoning behind the values is mentioned. The 

important thing to remember is that values from noise functions are generated in a 

range of -1 to 1, so for example, if a threshold is set to greater than 0, that means it 

will be true about half of the time. If set to greater than 0.5, it would be true about 

a quarter of the time, and so on. Keep in mind that when a block is calculated the 

function immediately returns with that value. That means that block calculations 

that happen further on in the process become increasingly less likely to be reached 

in the first place (for example if the first calculation had a 50% probability of 

generating a block A and the next calculation has a 50% probability of generating 

a block B, then 50% of blocks would be of type A, but only 25% of blocks would 

be of type B, i.e. half of the remaining 50%). 

The operation of this function is as follows (in order of evaluation): 

                                                 

7
 The desired look for this project was one similar to the terrain in Minecraft, which can perhaps be 

best described as heightened or compressed reality. That is that features should be recognizable as 

terrain that exists in the real world (mountains, valleys, forests, deserts, and so on) but compressed 

into a smaller world size so to provide plenty of variation to a player within an accessible radius. 
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1. If the y-value of the block is less than -50 plus the value from the high 

frequency noise module return a “Stone” block. This represents the lowest 

part of the world we care about. Anything lower simply becomes stone. 

2. If the y-value is above the heightmap and above sea level (see 4.2.7 – 

Water) return a block of type “Air”. If it is above the heightmap value but 

below sea level return a “Water” block instead. 

3. Create caves. This is computed by getting a value from the multifractal 

noise generator and returning “Air” if the value is above a certain 

threshold. This threshold is set to 0.8 if the y-value for the current block is 

above 0, otherwise it set to 0.4. Recall that values are generated in a range 

of -1 to 1. This makes caves quite rare above 0 and more numerous below 

0 in the world. 

4. Calculate a depth value. This is simply the value from the heightmap 

minus the y-value of the block being calculated. 

5. Next deserts are added to the mix. If the depth value calculated in the last 

step is less than 20, and the heightmap value for this block is lower than 

15, and the value from the low frequency Perlin noise module is greater 

than 0.42 the block qualifies as a desert block. What this means is that 

desert areas are only generated up to a depth of 20 and only in low-lying 

areas (no mountains made out of sand). If the depth is less than 6 a “Sand” 

block is returned, otherwise a “SandStone” block is returned. So all desert 

areas are simply a layer of sand, followed by a layer of sandstone. 

6. Now stone blocks are calculated. This uses the ridged multifractal noise 

module. If it returns a value above 0.66 a “Stone” block is returned. This 

creates streaks of stone throughout the world to break up the dirt. 

7. Next are the mountaintops. These consist of stone blocks, covered with 

snow blocks. It was important not to create a simple cut-off height for 

snow, otherwise an unnatural straight line could be seen on mountains 

where the snow begins. For this reason a SnowMin and SnowMax value 

were used and compared against the medium frequency Perlin noise 

module. SnowMin was set to 150 and SnowMax to 170. So no snow is 

ever generated below 150 and it is always created above 170. Between 

those values it is sometimes created, depending on the value of the 

medium frequency Perlin noise module. In all cases the “Snow” block is 
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only returned if this block is the top block (i.e. the y-value of this block is 

equal to the value of the heightmap for this location), otherwise “Stone” is 

returned, so that snow only covers the mountaintops in a single layer. 

8. Next, the top layer of what remains is calculated. This is either grass, or 

tree stumps used to generate the trees later on (see section 4.2.8 Trees for 

more detail). First we check if this is the top block (if the y-value is equal 

to the heightmap value for this position). If it is, then there is a chance that 

a tree stump will be created. Whether a tree stump is generated or not is 

determined by a random number generator combined with a low frequency 

Perlin noise generator. This creates forests that thin out to the edges. The 

exact formula for this can be shown as a table: 

Noise value threshold Tree stump chance 

>0.7 1 in 32 

0.5-0.7 1 in 128 

0.3-0.5 1 in 256 

<0.3 1 in 1024 

Table 1- Tree Generation Chance Values 

9. The penultimate step is to calculate gravel blocks. This uses the ridged 

multifractal noise module and returns a “Gravel” block if the value is 

above 0.77. This might seem like a high value (almost 1 in 8) but 

remember this is only reached if none of the other conditions thus far have 

been met. 

10. Finally, if none of the other conditions were met a “Dirt” block is returned. 

For an example of what this all looks like when combined into a final terrain see 

Figure 41 below: 
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Figure 41 – Example Terrain 

4.2.8 Trees 

Trees are generated by placing seed tree stump blocks randomly instead of 

“Grass” voxels as explained in section 4.2.7 Calculating the Blocks. The actual 

trees themselves are generated by passing over all chunks after terrain generation 

has completed and finding all the tree stumps (“OakLog” blocks) placed in the 

world, then generating a tree of random height (5-10 metres) on top of it. This 

process simply involves placing more “OakLog” blocks on top of the seed block 

up to the desired height and then laying out leaf blocks around the top of the tree 

in an approximately hemispherical shape. An example of what these trees look 

like can be seen in Figure 42. 
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Figure 42 – A Tree Created by the Terrain Generator 

For this step care needs to be taken to process the chunks from top to bottom. 

Initially this step was performed by processing chunks from bottom to top as with 

most other operations. This resulted in an interesting bug when trees crossed 

chunk boundaries and their tops were then processed as if they were seed tree 

stumps. The result of this bug can be seen in the figure below (Figure 43). 

 
Figure 43 – A Tree Affected by the Tree Processing Bug 

This was not a major issue, but it did cause some trees to grow far larger than 

desired. It does demonstrate how small changes to the tree generation algorithm 

could be used to generate a variety of different trees. 
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4.2.9 Water 

For water creation there is a sea level constant specified in the world generator. 

For the purpose of this project it was initially set to 0 but moved to -5 to prevent 

some low lying areas from being flooded. Water is added to the world in two 

steps. First, during world creation water is created in voxel cells that are below sea 

level but above the terrain heightmap. This happens before the step that adds 

caves to the world so that caves below sea level are not automatically flooded.  

However, this means that it is possible for there to exist areas where a cave system 

intersects the ground level in a place with water. Once the initial world terrain 

generation is complete all chunks are scanned for water blocks and a recursive 

algorithm is employed to fill the water to empty blocks around and below the 

water blocks. This ensures that any areas where water blocks and cave systems 

intersect are flooded correctly. 

4.2.10 Smoothing the Terrain 

In order to offset the blockier look of the castle from the terrain a bit better some 

simple smoothing is applied to the terrain. All this does is examine the neighbours 

of grass blocks and select to place ramp-shaped blocks for certain configurations 

in a way inspired by the marching cubes algorithm, only simpler (marching cubes 

was discussed as part of the literature review in section 2.4 Voxel Smoothing 

Techniques). The effect of the terrain smoothing step can be seen in Figure 44. 

 
Figure 44 – Effect of the Terrain Smoothing8 

                                                 

8
 Note that the terrain after smoothing exhibits some shading artefacts. This is due to the additional 

geometry (the ram-shaped blocks) being placed on top of the existing terrain geometry. Some extra 

work could be done to detect these areas during mesh creation to avoid these errors. 



65 

 

4.3 Drawing with Voxels 

With terrain generation complete we take a look at how we can add other things to 

the voxel world (such as the castles described in the upcoming section 4.5 

Castles). Constructing buildings in a voxel world is remarkably similar to raster 

drawing on a 2D surface, only in 3D instead. In fact most of the time drawing in 

just two dimensions with the third fixed is all that we need. A number of 2D 

drawing algorithms were adapted and implemented for this purpose. These make 

use of a brush system, much like you would find in a 2D drawing system such as 

the one described in (Foley, van Dam, Feiner, & Hughes, 2001). This turned out 

to be very useful for a number of tasks outside simple drawing as well. 

All of these drawing functions operate along the x and z axis of the world (i.e. 

horizontally). A y-coordinate is also supplied and this is kept fixed throughout the 

drawing process. 

To use the drawing functions first a brush is set in the drawing object and then one 

or more of the drawing functions are called. Where a voxel is to be output by the 

drawing function the WriteVoxel() function is called for the currently set 

brush together with the location of the voxel in the world. 

4.3.1 Drawing Functions 

A number of standard 2D drawing functions were adapted to voxel drawing for 

this project. Functions were added as needed, with all of them using descriptions 

found in Computer Graphics: Principles and Practice by Foley, van Dam, Feiner 

& Hughes, as a basis. This section will outline each of the algorithms used and 

how they work within the voxel framework. Due to the fact that they are just 

simple modifications of well known and understood algorithms this will be brief. 

4.3.1.1 Draw Line 

For line drawing a simple adaptation of the standard Bresenham line drawing 

algorithm is used. This is fast and works perfectly for the purpose of this project. 

The Bresenham algorithm for drawing lines is attractive because it uses only 

integer arithmetic and does not require any rounding operations (Foley, van Dam, 

Feiner, & Hughes, 2001). Although the speed of rounding a few floating point 

values to integers is no longer the same concern that it was when the algorithm 

was developed it is still a very elegant method for drawing lines. 
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public static void DrawLine( int x0, int z0, int x1, int z1, int y ) 
{ 
    if( _brush == null ) 
    { 
        throw new InvalidOperationException( "Set a brush before making a draw call!" ); 
    } 
 
    // Adaptation of the Bresenham Line Drawing algorithm for 3d. 
 
    int dx = Math.Abs( x1 - x0 ), sx = x0 < x1 ? 1 : -1; 
    int dz = Math.Abs( z1 - z0 ), sz = z0 < z1 ? 1 : -1; 
    int err = ( dx > dz ? dx : -dz ) / 2, e2; 
 
    while( true ) 
    { 
        _brush.WriteVoxel( new GlobalVoxelPos( x0, y, z0 ) ); 
 
        if( x0 == x1 && z0 == z1 ) 
            break; 
        e2 = err; 
        if( e2 > -dx ) 
        { 
            err -= dz; 
            x0 += sx; 
        } 
        if( e2 < dz ) 
        { 
            err += dx; 
            z0 += sz; 
        } 
    } 
} 

 

 

Note that in the code segment above, _brush is a variable of type IBrush that 

is a member of the Drawing class that I created. For more information on 

brushes and the IBrush interface that was created for this project see section 

4.3.2 Brushes. 

4.3.1.2 Draw/Fill Circle 

For drawing circles we exploit the eight-way symmetry of circles, thus only 

needing to compute one 45° segment to produce a full circle (Foley, van Dam, 

Feiner, & Hughes, 2001). This is done with a procedure called 

CirclePoints(), the implementation of which is shown below: 

private static void CirclePoints( int x, int y, int z, int xCenter, int zCenter ) 
{ 
    _brush.WriteVoxel( new GlobalVoxelPos( x + xCenter, y, z + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( z + xCenter, y, x + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( z + xCenter, y, -x + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( x + xCenter, y, -z + zCenter ) ); 
 
    _brush.WriteVoxel( new GlobalVoxelPos( -x + xCenter, y, -z + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( -z + xCenter, y, -x + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( -z + xCenter, y, x + zCenter ) ); 
    _brush.WriteVoxel( new GlobalVoxelPos( -x + xCenter, y, z + zCenter ) ); 
} 
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It then uses the midpoint circle scan-conversion algorithm to create the actual 

circles. This is also adapted from the algorithm presented in Foley, van Dam, et al, 

and originally developed by Bresenham.  

public static void DrawCircle( int xCenter, int zCenter, int y, int radius ) 
{ 
    if (_brush == null) 
    { 
        throw new InvalidOperationException("Set a brush before making a draw call!"); 
    } 
 
    int x = 0; 
    int z = radius; 
    double d = 5.0 / 4.0 - radius; 
    CirclePoints( x, y, z, xCenter, zCenter ); 
 
    while( z > x ) 
    { 
        if( d < 0 ) 
           d += 2.0 * x + 3.0; 
        else 
        { 
           d += 2.0 * ( x - z ) + 5.0; 
           z--; 
        } 
        x++; 
        CirclePoints( x, y, z, xCenter, zCenter ); 
    } 
} 

 

 

This algorithm draws a circle in the horizontal (x, z) plane, one voxel thick (with 

the default brush that simply outputs one voxel for every WriteVoxel() call; a 

different brush could in theory draw multiple voxels to create a thick outline 

instead). 

A slightly modified version of CirclePoints() is used in the 

FillCircle() function. It fills in the spans between the edges of the circle, 

creating a filled circle. 

4.3.1.3 Fill Polygon 

For polygon drawing only a filling variant was created, since an outline drawing 

version was not needed. Like the circle drawing function this draws the polygon 

in the horizontal (x, z) plane of the world. The code used is presented below: 
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public static void FillConvexPolygon( Point2D[] points, int y ) 
{ 
    if( points == null ) 
        throw( new ArgumentNullException( "Points must not be null!" ) ); 
    if( points.Length < 3 ) 
        throw( new ArgumentOutOfRangeException( "Polygon must have >3 points."  ) ); 
    if( _brush == null ) 
        throw ( new InvalidOperationException("Set a brush before making a draw call") ); 
 
    Dictionary<int,MinMax> dict = new Dictionary<int,MinMax>(); 
 
    // Back up the current brush, we'll need to replace it once we are done building the 
    // dictionary of polygon points: 
    IBrush oldBrush = _brush; 
 
    // Use a special type of brush to store all the polygon points: 
    _brush = new PolygonBuilderBrush( dict ); 
 
    // Now we can just the regular line drawing function to build the dictionary of                                   
    // points: 
    for( int i = 0; i < points.Length; i++ ) 
    { 
        if( i < ( points.Length - 1 ) )                 
            DrawLine( points[i].x, points[i].z, points[i+1].x, points[i+1].z, y ); 
        else                 
            DrawLine( points[i].x, points[i].z, points[0].x, points[0].z , y );                     
    } 
 
    // Return the brush to the old value: 
    _brush = oldBrush; 
 
    foreach( KeyValuePair<int,MinMax> kvp in dict ) 
        DrawLine( kvp.Value.min, kvp.Key, kvp.Value.max, kvp.Key, y ); 
} 

 

 

This particular implementation only works correctly with convex polygons. Those 

with concave areas will be drawn incorrectly. In practice this was not much of a 

problem since it is mostly used to draw convex polygons (although some castles 

can end up being generated with concave wall sections, causing small problems). 

The algorithm uses the brush system (see section 4.3.2 Brushes) to create a list of 

all the edge pixels and then draws lines to fill the spans between the left and right 

edges of the polygon. 

4.3.1.4 Fill Below 

A special function was added to the drawing toolbox for filling in an area below a 

certain point. When placing the wall or towers sometimes canyons or exposed 

caves cut through the placement area. In order to prevent a wall from being left 

with a large gap underneath it when it spans one of those areas, or to prevent 

towers from being built with only half a foundation these areas are filled in first. 

When buildings are constructed they call this function first with the y-position of 

the lowest point that they will be built on. This function is called first, filling in 

empty blocks until it encounters a non-empty block, at which point it returns. 
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4.3.1.5 Clear Above 

While the castle placement algorithm tries to avoid placing the castle such that it 

cuts into high terrain this still happens sometimes. To prevent terrain from 

blocking a walkway on the castle wall this function is called when a castle wall is 

created. It simply iterates through all voxels above the point given up to some 

maximum height value and sets them to be empty (i.e. “Air” blocks). This method 

is really a cheat to improve the look of the castle in situations where the 

placement is poor. Early in development it helped to clear the walkways when 

walls would be set into the mountain areas. As the placement algorithm improved 

this became a rare occurrence. 

4.3.2 Brushes 

This section covers the brush system used by the drawing code. It will explain 

why this approach was chosen and its benefits. An exhaustive list of all the 

brushes used in this project with explanations of what they do can be found in 

Appendix A. 

Conceptually using a system of brushes is very simple. Instead of writing voxels 

to the world directly the drawing functions call WriteVoxel() on the currently 

set brush instead. All brushes implement the IBrush interface created for this 

project. It only has one function prototype:  

void WriteVoxel(GlobalVoxelPos p). 

GlobalVoxelPos is a structure containing three integer values (x, y, and z), 

representing a single voxel location in the world. 

The brush can then output a single voxel to the world, or it can do something else 

entirely. This makes it simple to implement all sorts of effects, such as outputting 

random blocks or creating a stipple pattern. Some, like the FillBelowBrush, 

output multiple voxels in the y-axis at the given x, z location. It is so flexible in 

fact, that a number of radial search functions used to calculate castle placement 

(such as the one used during initial placement covered in section 4.5.2.1 Initial 

Placement, or the one used to optimize tower placement in section 4.5.2.3 

Optimization Step) are implemented by creating custom brushes and then simply 

using the FillCircle() drawing method to scan the required area (for more 

on this see section 4.5.1 Placing the Castle later on in this chapter). 



70 

 

4.4 Terrain Analyzer 

In order to be able to successfully place the castle we need to first analyze the 

terrain so that we have enough information to make decisions on how and where 

to place the castle. To create the maps for this the brush system described in 

section 4.3.2 Brushes is used. A square that covers the entire created world is used 

in the DrawPolygon() function to create the maps, including images that can 

be saved to be examined later. 

4.4.1 The Smooth Heightmap 

This section is motivated primarily by the wall placement. This is discussed in 

more depth later in section 4.5.3.2 The Wall.  

If we place the castle walls fitted to the terrain directly we experience problems 

even on the mostly flat terrain. Small rises and falls in the terrain are mirrored on 

the castle walls, creating a very unrealistic look (for an example see Figure 45 

below), and if there are any places where the slope is greater than one block a 

break appears in the walkway on top of the wall (this can be seen in Figure 46 

below). 

 
Figure 45 - Wall Following the Terrain 
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Figure 46 - Problematic Wall Section 

In order to combat both the high frequency noise in the heightmap and remove 

large jumps up and down, a smooth version of the heightmap is generated. For 

this purpose a specialized blur function is used. The heightmap used for this 

purpose is the raw heightmap generated by the terrain generator and may not be 

accurate to the exact height in the final terrain. Specifically, it does not take into 

account any caves or canyons carved into the terrain by the ridged multifractal 

noise component in the terrain generator. This is done on purpose since we prefer 

walls to span any canyon areas anyway, rather than dip down to follow the terrain 

in those cases. 

The blur function takes the heightmap as input and transforms it in three steps. 

First it scans across the heightmap and for every value checks the neighbouring 

four values (i.e. above, below, to the right and to the left), and then ensures that 

the current value differs at most by one from these. 

Next the blurring is applied. A modified Gaussian blur was tried for this but the 

results proved unsatisfactory. Rather than a regular blur we actually want to create 

a series of plateaus. A function called RadiusAverage() was created for this 

purpose. The function takes a radius value and the heightmap as input. The 

heightmap is then divided into even squares of size of the radius passed into the 

function. An average value (i.e. the mean) is calculated for each square and values 
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inside the square are nudged towards this average (four passes are made across the 

values and any under the average have 1 added to them in each pass, while those 

over the average have 1 subtracted from them). 

The RadiusAverage() function is called four times across the heightmap 

data, with the output fed into the next call of the function each time. It is called 

with a radius value of 64 first, then 32, 16, and lastly 8. This ensures that large 

areas are averaged out first and then smaller areas. The values were chosen to 

ensure a relatively smooth outcome while still maintaining something of the 

underlying terrain structure. 

Once the blurring is complete a final pass is done to ensure that after all this there 

is still no difference in neighbouring values greater than 1. This is simply a repeat 

of the first step in the process. 

The result can be seen in Figure 47 below, showing a heightmap before and after 

the smoothing operation has been applied. 

 
Figure 47 – Heightmap and Smooth Heightmap 

Placing castle walls using the smooth heightmap as a basis isn’t perfect, but it is a 

huge improvement on placing them on the terrain directly. Small adjustments 

were added to the wall placement function to iron out any remaining issues. These 

are discussed in section 4.5.3.2 The Wall. 
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4.4.2 Calculating the Terrain Fitness Score 

Placing the castle (explained in section 4.5.1 Placing the Castle) using the smooth 

heightmap generated as described above resulted in much better looking sections 

of wall but resulted in another problem. Because the heightmap being used no 

longer matched the underlying terrain as closely it meant that in places the wall 

would be very low. Imagine a steep hill for example, the smooth heightmap using 

an average value of the area and never moving up at more than one unit per voxel, 

will have values much lower than the real terrain. When the wall is placed with a 

fixed height value above the height calculated from the smooth heightmap it now 

might not even reach the real terrain height (if the difference between the smooth 

heightmap and the real heightmap is greater than the chosen wall height). This is 

illustrated in Figure 48 where we can see a wall section set right into a hill. 

Attackers could simply walk up the hill and step onto the walkway, negating the 

entire point of having a wall at all. 

 
Figure 48 – Another Problematic Wall Section 

In addition to avoiding steep hills we might also wish to avoid steep canyons, 

since they will require substantial foundation filling work, lest someone be able to 

access our castle by simply walking along a canyon or ravine and getting under 

the wall. This would be unrealistic and would result in a castle with poor 

defensibility (for example making it easy to undermine the wall, something 

discussed in the literature review in section 2.1 Medieval Castle Construction). 
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Due to how the terrain generation works (see section 4.2.7 C) the heightmap 

might not be entirely accurate. In terrain generation the heightmap is only the 

starting point, with caves subtracted from the terrain in a separate step, and where 

those caves intersect the terrain they can create canyons and ravines. So for this 

purpose a “real” heightmap of the terrain is generated by scanning the entire 

terrain from the top down until a non-empty block is encountered, and the height 

of that block is recorded. This gives us the true height values at each point, 

including trees, and any areas where the cave system has added deep cuts into the 

terrain. 

The result of this step can be seen in Figure 49 below. Note the deep black areas, 

particularly visible in the top left of the image. This is where the cave system has 

penetrated the surface and created deep cuts into the terrain. These are areas that 

should be avoided by the castle. 

 
Figure 49 – Real Heightmap 

For the next step the absolute difference is taken between the smooth heightmap 

and the real height values. The negative of this value is then recorded as the 

terrain fitness score for that location. This is visualized in Figure 50 below. Black 

regions are close or equal to zero, red indicates negative values and white areas 

are very high negative values. 
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Figure 50 – Terrain Fitness Map 

With the terrain fitness score for every location in the horizontal plane calculated, 

this can now be used to make decisions on where to place the castle. Avoiding 

placement on areas with high negative values will prevent the castle from being 

built in a way that creates poorly defensible walls (such as the one seen earlier in 

Figure 48). This value, the terrain fitness score, is the heart of the castle placement 

algorithm used in this project and represents the key innovation developed. 

Together with the smooth heightmap it could be used to place any sort of man-

made structure into a voxel world and ensure at least somewhat plausible 

placement. Note in Figure 50 how the black areas identified as deep cuts into the 

terrain by the cave system in Figure 49 are now bright red, meaning that they will 

be avoided by the castle placement and layout algorithm (this is explained in more 

detail in section 4.5.1 Placing the Castle). 

 

4.5 Castles 

Castle construction is a multipart process. There are a number of parameters 

available for castle construction that can be adjusted to get the desired result. 

These are passed into the castle constructor, which uses them to first place the 

castle, then adjust its shape to better fit the terrain, and finally constructs the 

actual castle by placing voxels into the world using the voxel drawing system 

created for this project (covered previously in section 4.3 Drawing with Voxels). 



76 

 

The castle placement and layout optimization process is mostly heuristic based. It 

functions mainly by calculating an overall fitness score for the castle placement, 

and then performing an exhaustive search across the terrain to find the best 

placement. The aim is to create an overall algorithm that will place the castles 

correctly in a wide range of terrains. By “place correctly” the following criteria 

were identified as being important: firstly the castle layout should avoid problem 

areas such as tall mountains or deep gorges, which would cause significant 

problems during the actual castle construction (such as walls or towers set deep 

into a mountain). Secondly, the algorithm should prefer to place the castle in 

defensively advantages positions. That is, the castle should be preferred to be 

placed on high ground where possible. While there are many other criteria that a 

real castle builder might have to contend with when choosing a site for building 

(such as ease of access, nearby resources, access to clean water), the two chosen 

criteria were considered the most important to create a castle that will look 

plausible to players of a voxel world game. They are also universal to all types of 

terrain that a game might generate, while, for example, consideration for nearby 

resources would be much more game specific (it would depend on the types of 

resources the game has, as well as which of these might be important to a player 

owning a castle). 

In theory parts of the castle construction process could be randomized, but for this 

project a purely deterministic approach was used instead. That is, given a 

particular terrain to work with the castle generation process will create the exact 

same castle every time. Variation in castle layouts is driven entirely by variation 

in the terrains that the castles are placed onto. Chapter 5 will demonstrate a 

number of castles generated and show that the algorithm is nevertheless capable 

of significant variation. 

This section covers the parameters and how they affect castle construction, and 

details the process of finding an initial placement for the castle, how the castle 

shape is adjusted for the terrain, and finally how it is actually built into the voxel 

world. 
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4.5.1 Placing the Castle 

Castle placement is done in several steps. The first is to find an overall starting 

position. Once a position has been found the castle towers are moved around to 

find the best fit. The structure of the castle can be thought of as a polygon, with 

the towers making up the vertices and the walls the edges (Figure 51 shows what 

this basic configuration looks like for a castle with 8 towers). The shape of this 

polygon is adjusted such that it fits well into the given terrain. 

 
Figure 51 – Basic Castle Layout Shape (8 Towers) 

The castle placement and layout optimization step does not involve placing any 

voxels in the world. It is a search-and-optimize algorithm using the terrain fitness 

map (see 4.4.2 Calculating the Terrain Fitness Score) and the heightmap (see 4.2.6 

Creating the Heightmap). 

4.5.2 Base Parameters 

Castles in VoxBox can be constructed with a number of parameters that are listed 

and explained below: 

 Position (Point2D): The position of the centre of the castle in the 

world, given as an x and z value. 
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 Width (int): The diameter of the castle to be generated. The name is a 

holdover from early versions where the size of the castle was described in 

terms of a width and depth value to create a rectangular castle. 

 NumberOfTowers (int): Number of tower nodes to generate for the 

castle (towers in the outer wall of the castle). This value must be 3 at a 

minimum (smallest number of points a polygon can have and have a non-

zero area). The value given here is used as a starting value and there is no 

guarantee that this is the number of towers the final castle will have due to 

the fact that close towers are merged during the final step of castle 

generation. To start with towers are laid out evenly spaced along a circle 

with a diameter equal to the width value mentioned above. 

 OptIterations (int): Number of iterations over the tower placement 

optimization algorithm (described in section 4.5.2.3). The thought was that 

multiple iterations over the optimization function might achieve better 

results. However in practice this resulted in problematic castle layouts, 

shrinking the castle area too much or creating overlapping walls. For this 

reason the value is best left at 1. 

 InitialPlaceSearchRadius (int): The radius of the initial castle 

placement search step. For more information see 4.5.2.1 Initial Placement. 

 PreOptSearchRadius (int): Radius to search for the pre-

optimization step of tower placement. 

 OptSearchRadius (int): Radius to search when optimizing the tower 

placement. During testing it was found that it is best if this value is smaller 

than the one given for PreOptSearchRadius. 

 BidirectionalSearch (bool): Defines if the tower placement 

optimization step should use a bidirectional search algorithm. This is 

explained fully in section 4.5.2.3 Optimization Step. During testing this 

was not found to be very effective however, and generally left as false. 

 TowerMergeRadius (int): If the distance between towers is found to 

be smaller than this value they are merged into one. This is to prevent 

towers from ending up very close to one another or even intersecting. 
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See Appendix B for the values that were eventually chosen to create the majority 

of the example castles shown in this document. 

4.5.2.1 Initial Placement 

For initial placement of the castle we wish to avoid areas that have particularly 

poor terrain fitness scores (such as the middle of a mountain range). To this end a 

test configuration of towers is calculated for the castle that is being placed. This 

configuration is tested at each location across the search radius to find the best 

position. 

For each test castle configuration an overall fitness value is calculated as: 

                 

 

   

                           

 

   

 

 

 

Where n is the number of towers and the coordinates (x, z) are the locations of 

each of the towers in the castle configuration. What this calculation gives us is a 

value that scales linearly with the sum of the terrain height and quadratically with 

the sum of the terrain fitness score. This means it will favour high areas on hills 

over valleys but will avoid steep mountains. 

The castle configuration is then rotated slightly the same process is repeated. This 

is done a total of five times. The angle of rotation (in degrees) is calculated as (n 

is again the number of towers for this castle configuration): 

 
   
 

 

 
 

If the calculated score is better than the previously best calculated score then this 

score becomes the new best score and the position as well as the rotation offset is 

recorded. 

To evaluate the terrain for a suitable position the brush system is utilized. A new 

brush, the InitialTowerPlacementOptimizerBrush, was created that 

creates a test castle configuration at each point that WriteVoxel() is called for 

(using just the x and z coordinates passed in, the y value is discarded). 
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This brush is attached to the drawing context and the circle fill function is used 

with a radius equal to the InitialPlaceSearchRadius value passed into 

the castle generator. To slightly speed up this operation only every second 

position is evaluated by the brush. In the case of an actual game, where speed is 

important, it would probably yield acceptable results testing more sparsely than 

that. Perhaps even every eighth position would be fine since this is only the initial 

placement. Doing away with trying different rotation offsets would also bring a 5x 

speed increase and in most cases would probably not make a large difference. For 

testing, with a search radius of 140 and a castle configuration with 10 towers a 

total of 154,975 different positions were tried in ~15 seconds (on an i7-4712HQ). 

4.5.2.2 Pre-Optimization Step 

In the pre-optimization step individual tower positions are adjusted for better 

placement. A custom brush is used, the PreOptTowerPlacementBrush, and 

it makes use of the same formula as the initial placement. For each tower a 

circular area with a radius equal to the PreOptSearchRadius is analyzed. At 

each point a value v is calculated like this: 

                                  

The point with the highest value is chosen and the tower is moved to that position. 

Once again, this value scales linearly with terrain height and exponentially with 

the terrain fitness score. This ensures that towers are placed in high areas where 

possible but avoid steep terrain features. Because the tower positions are moved 

again by the next step in the process it is preferable if the radius for the pre-

optimization step is larger than the radius for the next step. Otherwise, the final 

position will be dominated almost solely by the final optimization step. 

4.5.2.3 Optimization Step 

So far castle placement has focused only evaluating the terrain at the points that 

the towers will be placed. This step instead looks at what the terrain is like 

between the towers (i.e. where the wall will be built). Consider for example a 

scenario where there is a steep hill between two towers like shown in Figure 52. If 

possible we want to move the towers so that they avoid the obstruction and the 

wall is able to take a clearer path. 
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Figure 52 - Obstruction between Towers 

For each tower a search-and-optimize step is done where the tower is moved 

around in an area surrounding the tower within the radius defined by the 

OptSearchRadius parameter. At each position the worst terrain fitness score 

that is found between this tower and the next is recorded. If bidirectional search is 

set to true then the same is done between this tower and the previous tower. At the 

end the position that yielded the best terrain fitness score is chosen as the new 

location for this tower. 

A limitation of this approach is that only one tower is moved at any given time. 

This means that the algorithm may be incapable of finding the best solution 

possible in some cases. Consider the case shown in Figure 53. The red area is a 

hill we wish to avoid and the black circles are where the towers are now. The grey 

circles show the optimal placement of the towers so that the wall (the line between 

the tower circles) avoids the worst of the hill. This configuration cannot be found 

by only moving one of the towers at a time and optimizing for the best terrain 

fitness between the towers. 
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Figure 53 - Difficult Obstruction between Towers 

An attempt was made to improve this by iterating over the optimization step. This 

produced some interesting results but proved ultimately unfruitful. It did not 

create noticeably better results; in fact the more iterations were tried the worse the 

final castle layouts became (see Figure 54 showing visualizations of castle layouts 

in green on their terrain fitness map). 

 
Figure 54 - Iterations over the Optimization Step 

Because every pass of the optimization step is able to move the towers further the 

castle layout becomes more disconnected from the starting configuration. Without 

any additional constraints this means that often the castle begins to shrink, walls 

start to cross paths and many towers end up close enough together to be merged 

(see 4.5.2.4 Merge Close Towers Step). For this reason it was decided to just 

perform a single pass of this step for the examples shown in this thesis. 
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4.5.2.4 Merge Close Towers Step 

If the initial distance between towers is large enough (either because of a low 

number of towers, or a large build radius), or the search radii for the two tower 

placement optimization steps is kept small enough, then this step would be 

unnecessary. However, during testing it was found that better results were 

achieved by the algorithm when a tower density and search radius size were used 

that could on occasion result in closely placed towers. This did mean however, 

that sometimes towers would be placed only a few blocks apart or would even 

overlap (an example of this can be seen in Figure 55 below). For this reason a 

final check was added to the castle placement calculation to detect towers within a 

certain distance of each other, which could be merged into single towers. 

 
Figure 55 - Two Towers Generated Close Together 

For this step the list that stores the tower points is traversed and a new list is built. 

For each node the distance to the next node is checked and if it is greater than the 

threshold value then it is added to the output list, otherwise it is discarded. Note 

that only neighbouring towers are checked. In a particularly pathological 

configuration it may be possible for non-adjacent towers to become placed close 

to each other, and this would not be detected. This becomes more likely when 

large search radii are utilized for the tower placement and/or the optimization step 

is iterated two or more times. This problem never manifested with the test cases 

that were run (with small search radii, and only one iteration of the optimization 
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step). Since merging non-adjacent towers is not possible, should this be found to 

be an issue another solution may need to be found to move the towers in such 

situations so that they are not too close. 

One other benefit of this step is that it naturally adds additional variation to the 

castles produced by changing the number of towers generated for the outer wall. 

This could, of course, also be achieved by feeding a random value for the number 

of towers to produce into the castle generator, and indeed this is still an option if 

greater variation is desired. If a specific number of towers is desired for some 

reason and the uncertainty introduced by this step is unwanted it can easily be 

disabled by setting TowerMergeRadius to zero. 

4.5.3 Constructing the Castle 

For the purposes of this project only a simple castle is constructed: a number of 

towers connected by walls and a keep in the middle of the area enclosed by the 

outer wall. The focus was figuring out how to place the castle sensibly within a 

randomly generated world and how to adapt the overall shape of the castle to the 

terrain. Creating a more detailed keep and additional buildings such as stables, an 

armoury and/or a chapel is left as an open exercise. 

Castle construction itself is done with a modular approach. Functions were created 

to create different types of towers, and the brush system was used to create 

brushes for flattening the interior area of the castle, as well as to construct the 

outer castle walls. 

4.5.3.1 Challenges 

At this stage in the castle construction the basic layout and placement of the castle 

is already known, so all that remains is the actual placement of voxels into the 

world to create the castle. However, one major difficulty remains: at any given 

point in the castle we do not want to introduce any sudden changes in elevation 

leading to breaks in the wall. For this reason we use the smoothed heightmap 

computed previously (explained in section 4.4.1 The Smooth Heightmap). This 

ensures no large changes in elevation and prevents high frequency noise in the 

terrain height from breaking up the flow of the walls. It also means that the wall 

might be set into the sides of hills or mountains in some cases. While the castle 

placement algorithm specifically tries to avoid areas that would cause such 
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problems it is not always possible. So castle creation must deal with these 

situations as gracefully as possible. 

Another particular challenge was dealing with the inside area of the castle (the 

courtyard). Initial tests tried to retain something of the underlying terrain by 

removing blocks down to the smooth heightmap but this was abandoned for a 

completely flat look instead (for more detail on this see section 4.5.3.3 The 

Inside/Courtyard). 

Building the actual castle required placing a lot of voxels, a task made much 

simpler by making use of the voxel drawing system that was implemented for this 

project (see section 4.3 Drawing with Voxels for more details). For example: 

before the drawing system was added the initial tower creation code explicitly laid 

out where each voxel would be placed for each horizontal slice of the tower, 

requiring a lot of code and giving no flexibility to change the tower radius. With 

the voxel drawing system implemented this was changed to simply calling 

DrawCircle() at each slice and providing a radius, thus creating the tower 

cylindrical shape by building up multiple circles atop each other. 

4.5.3.2 The Wall 

Wall creation was again implemented with a custom brush, making it easy to draw 

the walls in the world simply using the DrawLine() function in my voxel 

drawing toolkit. Each call to WriteVoxel() in this case produces a one voxel 

section of wall. That is, it creates the entire piece of wall from the ground up and 

to a thickness and height specified when constructing the wall brush. The wall 

brush ran into some problems with the context-free nature of the brush system. 

Each call to the WriteVoxel() function of the brush is independent and 

without information on what shape it is drawing. However, the wall brush must 

have access to the direction the wall is being drawn in to be able to select the 

correct orientation to create the wall in. To make this information available the 

brush is given the length of the entire wall line that is expected to be drawn in 

both the x and z directions. By comparing the values a choice is made as to how 

the wall section will be drawn. 

The wall is created by using the smooth heightmap (see section 4.4.1 above) as a 

starting point and creating the wall up from there to a specified height. This 
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ensures that the walkway on the top of the wall stays mostly even and does not 

rise by more than one voxel at a time. This is not perfect however, and in 

particular there were rare cases where a wall moving at an angle diagonal to the 

voxel grid would produce jumps greater than one voxel, resulting in a 

discontinuity along the top of the wall as can be seen in the figure below (Figure 

56). 

 
Figure 56 - Problematic Stairs 

While this occurred only in a very small number of generated castles, when it did 

occur it was very noticeable. For this reason another check was added to the wall 

construction code to ensure that steps between parts of the wall would never 

change by more than one voxel in the y-direction. 

4.5.3.3 The Inside/Courtyard 

Two different approaches were attempted for constructing the inside space of the 

castle area. The initial approach was to shape the area to adapt to the smooth 

heightmap. This produced a result like this: 
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Figure 57 – Castle with Courtyard Adapted to Smooth Heightmap 

The idea was that the rectangular areas created by the smooth heightmap would be 

perfect for placing various buildings and the inside of the castle would keep 

something of the underlying terrain. 

In practice the results were usually not very visually pleasing. Perhaps with a full 

complement of buildings to cover the area it might actually look good but with 

just the keep placed in the interior area it simply looked wrong. It would also 

cause problems with the construction of the keep in some cases, causing it to float 

partly in the air and other issues. 

So a more simple approach was used: the interior was flattened to a single 

elevation value resulting in something looking like Figure 58. 

 
Figure 58 – Castle with Flat Courtyard 
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As for the elevation value used, this was first set to the lowest value found in the 

smooth heightmap across the surface of the castle area, however this caused the 

interior to be too low in some cases. This was changed so that the average height 

of the smooth heightmap across the castle area is used instead. This produces a 

good result in most cases, although it can result the castle interior area being 

higher than the wall in some places. This happens when one side has a very low 

wall and the other sides are very high. To prevent this, the interior height could be 

capped to be just below the lowest section of wall. This was not implemented in 

this project because the number of problem cases is very low (only 1 in 100 

randomly generated castles exhibited this problematic behaviour) but would be 

trivial to fix should the algorithm be used in an actual game. 

4.5.3.4 The Keep/Donjon 

While the keep or donjon is an important feature of most castles it is only 

represented by a very simple facsimile for the purposes of this project. The focus 

of the project was placing the castle and adjusting the outer walls to the terrain, 

with everything else being secondary. Creating an interesting interior to the castle, 

including a more complex keep is something for another project (and indeed 

computing a sensible layout for the castle interior could be a whole project on its 

own). 

Placement for the keep is computed simply by taking an average of all the outer 

wall tower positions. This produces the midpoint of the castle and the keep is 

constructed there. As long as the castle construction parameters are carefully 

chosen this produces a good result. If the tower search radii are made too large or 

if multiple iterations of the optimization step are used then the resulting castle 

layout may end up with the keep intersecting the outer walls, towers, or even 

outside of the castle interior area altogether. A more sophisticated keep placement 

algorithm might adapt to such layouts better, perhaps even rotating the keep to fit 

the interior area more optimally, and/or modifying the shape of the keep itself. 

However, within the parameters chosen for castle construction for this project the 

simple midpoint placement proved sufficient in all tested cases. 
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4.5.3.5 Moats 

A common feature found on many real world castles is the moat. A moat provides 

an additional layer of defence for the castle and makes it more difficult to 

approach and breach the walls.  

The addition of a moat was explored in this project and the functionality exists in 

the castle construction algorithm. This is done by constructing a ring around the 

castle slightly offset from the walls and digging down to slightly below sea level 

(set at 0). If water blocks are encountered during digging, a call is made to the 

SpreadWater() function in the terrain generator once the moat is complete. 

This floods the moat with water; otherwise it is left as a dry-moat. 

 
Figure 59 – Castle with Moat 

The moat building functionality was not used during most of the testing, simply 

because it tends to hide any problems with the castle placement algorithm, by 

making a plausible looking castle almost anywhere. This is because it will 

demolish an entire mountain to create the moat if necessary. Perhaps a better 

approach would be to calculate the number of blocks that would need to be 

excavated in order to construct the moat and only build it if the number is below a 

certain threshold that is deemed appropriate. However, iterating over all the 

blocks that may be needed to create the moat, and then doing it again to actually 

construct it would be computationally expensive. A cheaper option may be to use 

the values from the heightmap to approximate a cost instead. 
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In the end not much more was done to explore the moat idea because it was 

orthogonal to the core of this project: the placement and adaptation of the castle 

on randomly generated terrain. 

4.5.3.6 Future Expandability 

As mentioned in the previous sections there are a number of possibilities for 

future work. With the castle placed, and the outer walls adapted to the terrain 

there are nearly endless possibilities for expanding the actual castle construction 

step to produce better and more varied castles. The first thing would be to create 

additional buildings to be placed in the interior of the castle. Additionally a 

section of wall could be designated as a gate and a gateway with guard towers 

(and perhaps a drawbridge if a moat is present) could be built there. 

Another possibility for future addition is changing the blocks used in construction 

based on the biome where the castle is constructed (using different types of wood 

depending on the types of trees growing near the castle, using sandstone instead of 

regular stone for the walls in desert areas). Other adaptations could also be made 

such as using oriental-style towers when building in a desert biome. 
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Chapter 5: Demonstrations 

 

In this chapter I will present a number of different terrains that were randomly 

generated and show how a castle was created to fit the terrain. I will point out 

areas where the algorithm performed well, and areas where it did not. As well as 

screenshots of the scenes, this section will make use of the terrain fitness maps as 

described in section 4.4.2 Calculating the Terrain Fitness Score and 4.5.2.3 

Optimization Step. These show the terrain fitness score calculated for each point 

(worse scores in red, better scores in black) as well where the castle was 

constructed (in green). These make it possible to see how the castle placement 

algorithm perceives the world, and how well it did with its placement given this 

view. 

The castle placements and layouts created by the algorithm will be examined 

against the criteria set for the algorithm (i.e. to maximize the height of the castle 

placement while avoiding areas with a poor terrain fitness score that would create 

problems during the castle construction). The 5 examples examined in this section 

were chosen from a set of about 30 terrain seeds that were used during the testing 

of the algorithm. They were chosen either because they produced an interesting 

result or because the terrain presented an interesting challenge. These examples 

also show the range of castles that are possible to be generated by the castle 

generation algorithm, simply through the variation in the terrain that they are 

placed in (recall that the castle generation algorithm itself is deterministic as 

discussed in section 4.5 Castles). 
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5.1 Example 1 

 
Figure 60 – Example 1 Terrain 

As can be seen in the image above the terrain is generated with a large mountain 

area, surrounded by hilly areas. 

 
Figure 61 – Example 1 Castle 

When the castle is placed into the terrain the placement selected is on top of one 

of the hills, creating a good defensive position, while avoiding the mountain. This 

is exactly the sort of result expected from the castle placement algorithm. 
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Figure 62 – Example 1 Terrain Fitness Map 

Shown above is the terrain fitness map for this terrain, with the castle shown in 

green. As can be seen the mountain area is lit up in bright white, telling the 

algorithm to avoid this area. The bottom most two tower points sit right up against 

the area where it becomes more bright red (i.e. the terrain fitness score is lower), 

and the wall section between them is also right up against this area, without 

touching it. This can be deemed a satisfactory result then, according the criteria 

set for the algorithm. 
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5.2 Example 2 

 
Figure 63 – Example 2 Terrain 

The above terrain (Figure 63) presents an interesting problem. Two mountains, 

one on the left and one on the right, frame the terrain. In the middle there is a 

rough hilly area, flanked by a lake or estuary. Ideally, we would want to build the 

castle in one of the relatively flat areas near the front or back of the terrain. 

 
Figure 64 – Example 2 Castle 

Instead the algorithm chose to place the castle near the middle on the terrain as 

can be seen in the image above (Figure 64). This is due to the hilly area providing 

some elevation, attracting the initial placement towards it. However, most of the 

hill is bulldozed during the castle construction anyway and one of the towers (the 
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rightmost tower in the image) is left very low because it is built partially into the 

body of water. 

 
Figure 65 – Example 2 Castle from another Angle 

Above is another screenshot (Figure 65) showing the problematic tower more 

clearly. It is pulled down because the smooth heightmap is influenced strongly by 

the body of water, and the very low height values in that area. This pulls the tower 

down with it and causes it to be embedded into the hilly terrain, rather than rising 

above it. 
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Figure 66 – Example 2 Terrain Fitness Map 

Shown above is the terrain fitness map for this terrain. Note that it is rotated about 

180° compared to the other screenshots. The problematic tower is the one furthest 

to the left in this image. It can be seen that it is moved to try to avoid the area of 

poor terrain fitness generated by the hill cutting roughly through the middle of the 

castle plan. The dip in the wall sections caused by this tower is problematic and 

would cause serious issues in the defensibility of the castle. Worst of all: it simply 

looks wrong. A further heuristic could be added to the castle layout algorithm to 

avoid placing towers significantly lower than its neighbours to mitigate this type 

of issue, or the algorithm may be modified so as to avoid water completely. 
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5.3 Example 3 

 
Figure 67 – Example 3 Terrain 

This terrain (see Figure 67 above) has a large mountain range at the back, a big 

hill and some flat terrain with a desert. Ideally the castle should probably be built 

on the hill or into the mountain range. 

 
Figure 68 – Example 3 Castle 

As can be seen in the image above (Figure 68) the castle is not placed on the hill 

but rather set into the mountain range at the back. It actually sits quite well into a 

concave area in the mountain, creating a strong defensive position to the back, 

while avoiding building the castle into the really problematic (steep) areas of the 

mountain. 
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Figure 69 – Example 3 Terrain Fitness Map 

The terrain fitness map above (Figure 69) shows that the castle nicely avoided the 

very problematic (strong white) areas of the mountain range, building into it as far 

as possible to gain height but not so far that it would cause major problems to the 

wall construction. 
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5.4 Example 4 

 
Figure 70 – Example 4 Terrain 

This terrain (seen in Figure 70 above) features a large mountain and a large hill, 

separated by a valley. Expected placement might be on top of the hill or set into 

the front of the mountain. 

 
Figure 71 – Example 4 Castle 

As can be seen in the image above (Figure 71) instead the algorithm placed the 

castle partially into the base of the mountain and partly into the hill, while 

spanning right across the valley. This actually makes a lot of sense both 

strategically and from how the algorithm works. Because the initial placement 

algorithm calculates the overall fitness only from the placement of the towers, the 
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valley area would be largely ignored as long as most of the towers are on the 

mountain base or the hill. Despite defying my instincts on where the castle should 

be placed, the final result can be considered acceptable. 

 
Figure 72 – Example 4 Terrain Fitness Map 

As can be seen in the terrain fitness map above (Figure 72) the towers are 

distributed towards the top and bottom, with a larger gap between the two areas. 

This corresponds with the valley area on the terrain. As expected, the algorithm 

favoured high ground areas for tower placement where possible. 
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5.5 Example 5 

 
Figure 73 – Example 5 Terrain 

The terrain presented above (Figure 73) shows complex rolling hills. There are a 

few possible sites for a castle to go, either on the hill at the back to the left, or to 

the right. It could also go on the large hill at the front, but this would place it 

lower than much of the surrounding terrain, causing a potential defensive 

weakness (i.e. it could be attacked with siege engines from the higher hills at the 

back, as discussed in the literature review section 2.1 Medieval Castle 

Construction). 

 
Figure 74 – Example 5 Castle 
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The castle generated for this terrain (see Figure 74) was placed high on one of the 

hilltops. On the back side of the castle it is set somewhat into the more 

mountainous area. Overall the result is more or less as expected and works well. A 

slight improvement would be if the back wall was not set quite so high into the 

mountainous area. As it is, the back wall has ended up somewhat elevated over 

the rest of the castle. This is not a major problem but a small amount of tweaking 

to the overall fitness score calculation might yield better results in cases like this. 

 
Figure 75 – Example 5 Terrain Fitness Map 

When looking at the terrain fitness map (Figure 75) it can be seen that the 

algorithm has placed the castle as high as possible, while avoiding the problematic 

mountainous area on the left. Although the large area in the middle also has good 

terrain fitness values, i.e. the area is mostly dark on the map, the castle was 

correctly placed into a position occupying high ground.  
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Chapter 6: Evaluation 

 

6.1 User Study 

In addition to analyzing the generated castles myself I also conducted an online 

survey to test the ability of the algorithm to generate castles that look plausible to 

regular gamers familiar with Minecraft, and for it to do so for a large variety of 

terrains. For this purpose 100 terrains were generated with random seeds, and the 

algorithm was used to generate a castle on each (see Appendix C for a selection of 

castles generated for the survey). For every terrain and castle three screenshots 

were taken: one of the terrain and castle from a bird’s eye view, the same view 

with just the terrain and no castle, and one screenshot from the ground 

(representing how the castle might look in an actual gameplay situation). 

An online survey was then created with the images, using the Qualtrics online 

software package. The survey was set up so that every correspondent would see 5 

different terrains with castles. This was deemed a good number
9
 to keep the 

survey brief enough for the correspondents, while still returning enough data to be 

useful. For each castle the correspondents were asked to rate the overall 

appearance on a scale from 1 to 5 (the options were: “Very Bad”, “Bad”, “Neither 

Good nor Bad”, “Good”, and “Very Good”). They were also asked to rate how 

well they thought the castle was adapted to the terrain it was shown in, also on the 

same 5-point scale. Five options were considered enough that respondents could 

give nuanced answers (a choice between “Good” and “Very Good” for example) 

while not being overwhelming. 

Once ethics approval was gained from the University of Waikato Ethics Panel 

(see Appendix D for the ethics approval letter) the survey was made available to 

members of the online Minecraft community through various channels (including 

Twitch.tv, social media and Internet forums). Respondents with expert knowledge 

                                                 

9
 Initially it was proposed that each correspondent would see 10 castle/terrain combinations in the 

survey. This was reduced down to 5 due to concerns by the author that some correspondents might 

abandon the survey early, or click through the final questions without proper consideration, if it 

was too long. 
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of Minecraft were chosen to avoid getting overly negative answers from people 

put off by the blocky nature of the geometry depicted (someone unaccustomed to 

the aesthetics of voxel world games might give low scores for the overall look of 

the castle simply because it is blocky, not realising this is a desired feature in this 

case). 

The results of the study can be seen visualized as pie charts in Figure 76 and 

Figure 77 below. 

 
Figure 76 – User Study Result Overall Appearance 

 
Figure 77 – User Study Result Terrain Adaptation 

As can be seen in the results most of the responses were positive for both the 

overall appearance and the terrain adaptation. Less than 10% of responses in each 

0% 

8% 

19% 

53% 

20% 

Overall Appearance Rating 

Very Bad 

Bad 

Neither Good nor Bad 

Good 

Very Good 

1% 

8% 

21% 

46% 

24% 

Terrain Adaptation Rating 

Very Bad 

Bad 

Neither Good nor Bad 

Good 

Very Good 



105 

 

case were “Bad” or “Very Bad”, showing that the algorithm does a good job in the 

majority of cases. 73% of castles were judged as having “Good” or “Very Good” 

overall appearance, and 70% had “Good” or “Very Good” adaption to the terrain. 

For nearly all responses both questions were answered similarly (within 1 point of 

each other). In fact only in 3 out of the 100 total cases was there a bigger gap (in 

all 3 cases one question was answered with “Good” and the other “Bad” for a 2 

point difference). This confirms what was already suspected: the overall 

appearance of the castle and how it is adapted to the terrain are strongly linked. 

Since the variation in the castles is driven by the terrain this is to be expected. 

We will now look at a castle that was rated “Good” and one that was rated “Bad” 

and speculate as to why the study participants may have given those ratings. 

Figure 78 below shows a castle that received an overall “Good” rating across both 

questions. We can see that the castle has been created close to a high mountain at 

the back. Because the mountain is very steep it provides a defensive advantage at 

there and is unlikely to be able to be used by attackers as high ground for stone 

throwing siege weapons like trebuchets (the respondents may not have come to 

that conclusion via this reasoning but rather may have used an intuitive sense of 

this instead). 

 
Figure 78 – Castle with a “Good” Rating for Both Questions 

In Figure 79 shown below we can see an example of a castle that got a “Bad” 

rating for both overall appearance and terrain adaptation. We can see that this 
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castle was also built with a mountain at the back but with two crucial differences: 

firstly it is built right into the mountain with the back castle walls set into the 

mountain. Secondly the mountain here is rather small (it is just the outer reaches 

of the larger mountain range on the right) and not very steep. It is easy to see how 

attackers might be able to use this mountain to climb right onto the walls, 

obviating the need for scaling ladders or ropes (a technique of siege warfare 

discussed in section 2.1 Medieval Castle Construction). The hill on the left of the 

castle even overlooks some of the wall at the front, making it a perfect place to 

use siege machines to lob stones into the courtyard. In this case the algorithm 

appears to have favoured the high ground created by the mountain range outlier 

too highly. Adjusting the overall fitness score calculation (described in section 

4.5.2.1 Initial Placement) slightly may be enough to resolve cases such as this. 

 
Figure 79 – Castle with a “Bad” Rating for Both Questions 

While the result of the study is encouraging, it also shows that there are likely still 

some issues that would need to be resolved before the algorithm would be ready 

to be deployed in an actual game. Although we can speculate as to why 

respondents felt that some of the castles were badly generated, it might be useful 

to do a further study that could gain insight on what specific reasons respondents 

had for choosing the “Bad” option (i.e. what improvements they feel could be 

made to the algorithm). This input could then be used to modify the algorithm to 

provide a better result. 
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6.2 Evaluation of Results 

Having looked at a broad range of output from this project (the examples shown 

in Chapter 5, all 100 castles generated for the user study, and others created 

during testing) I can make some judgements as to how successful the algorithm 

presented in this thesis is. 

How the castles look is tied directly to the terrain so first I will comment on the 

terrain generator (described in section 4.2 Terrain Generation). The range of 

terrains generated is somewhat limited to different combinations of the three 

major basic terrain types implemented (mountains, rolling hills and flat 

grassland). After looking at many of them a certain amount of repetition in the 

overall look is inevitable. This was done by design: in order to be able to test the 

castle placement algorithm I would need to be able to look at a representative 

sample of terrains to ensure that the algorithm performed well. A more complex 

terrain generator would have created a much broader variation in terrain, meaning 

far more testing would be needed (this is an important caveat to using the castle 

generation algorithm in a real voxel world game: it would need significant testing 

and tuning to ensure good results with a different terrain generator). So for the 

purposes of this project I think that the terrain generator produced good results. 

There is enough variation to provide a good challenge for castle placement and to 

create and number of different and interesting castle configurations. 

The results of the castle placement and layout generation are mixed. In most cases 

the castle will be well adapted to the terrain. Very problematic areas (for example 

the sides of steep mountains) are avoided and the castle usually will occupy a high 

ground position if possible. Even though the castle generation process is entirely 

deterministic and always starts from the same basic layout, the adaptation to the 

terrain is sufficient to create a number of different castles. However, there remain 

some terrains where the castle generation algorithm produces sub-optimal results 

(based on the user study this would be around 8% of the time; see section 6.1 User 

Study). Overall I believe the castle generation algorithm is sound, it just needs a 

little tuning to deal with those edge cases that still present problems. 
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Chapter 7: Conclusion 

 

7.1 Review 

This research aimed to explore the possibility of procedurally generating large and 

complex structures like castles in voxel world games and how they could be 

adapted to randomly generated terrain. 

As discussed in the literature review, consideration was taken for how medieval 

castles were constructed and what defensive features would need to be addressed 

in the context of siege warfare to create a good castle. Existing techniques were 

for building procedural architecture were considered and the most useful (search-

and-optimize) was adapted for our purpose. Ways of smoothing surfaces created 

from voxel data were examined and marching cubes was used as inspiration for a 

simple algorithm to smooth parts of the terrain. Existing voxel world games were 

studied to see what had been done, for inspiration on how to implement a voxel 

world, and to see what is possible to create with voxels. 

Four major components to the project were identified in the project design 

chapter: a voxel world engine, terrain generation, castle placement, and castle 

construction. 

How these components were created was explained in the implementation 

chapter. A voxel world engine was created on top of Unity3D (a general purpose 

game engine) to create a sandbox that could be used to build the other parts of the 

project in. The engine made use of chunks to store the voxels and divide them up, 

allowing the voxel world bounds to grow dynamically (for example to add more 

height for higher mountains). It implemented a simple lighting algorithm capable 

of creating fast approximate global illumination. For display, the engine would 

convert the voxels to polygons, being capable of producing basic cubes but also 

more elaborate shapes. It also introduced a feature novel to voxel world engines: 

layers. By adapting a layer system like that found in 2D drawing packages to a 
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voxel system it allowed the ability to hide/show voxel elements at will, making it 

easy to compare the terrain with and without a castle on it. 

Terrain generation was implemented using a variety of noise functions linked 

together to create a plethora of terrains that castles could be built upon. It first 

creates a heightmap that is used in conjunction with additional noise functions to 

calculate the terrain blocks placed into the world. Additional steps in the terrain 

generation process add trees and water, as well as smoothing parts of the terrain 

using a simplified adaptation of the marching cubes algorithm. 

In order to efficiently place blocks into the world to create buildings 2D drawing 

functions were adapted to work in a voxel engine. These were combined with a 

brush system to allow the flexible manipulation of the voxel world. 

With all the basic tools in place: a voxel world engine, randomly generated 

terrain, and system for working with voxels easily (the drawing system with the 

brushes), it was now possible to create an algorithm to generate castles. First the 

terrain was analyzed and the terrain fitness calculated. The map of terrain fitness 

values was then used to search for the best place to create the castle and it was 

used to optimize the layout of the castle to fit into the terrain.  

With the location and layout calculated all that remained was the final step: 

actually constructing the castle in the voxel world. The walls and towers were 

generated at the perimeter and the inside area was cleared to create a courtyard. 

Then a keep was generated in the centre of the courtyard area. 

The demonstration chapter of this thesis showed five different terrains and the 

castles that were generated in them, as well as the terrain fitness maps that they 

used during the placement and layout optimization process. It discussed where the 

algorithm worked well and where it could have done better. 

A user study was carried out via online survey to get a broader picture of how 

well the algorithm performed at creating castles suitable to be used in a voxel 

world game. This showed that most castles were acceptable but that in just under 

10% of cases the result of the castle generation algorithm was not good enough. In 

addition to the user study the results of the algorithm were evaluated by the 

author. It was concluded that some edge cases do indeed produce poor results 
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from the castle generation algorithm but that this could be fixed simply by tuning 

the algorithm a little more for those cases, and that fundamentally the algorithm is 

sound. 

7.2 Future Work 

There are a number of areas that could be expanded in future work on this subject. 

There are still some terrains where the algorithm produces suboptimal results (for 

example see 5.2 Example 2 and Figure 79 in the section 6.1 User Study). Some 

further small tweaks to the placement and layout algorithm should be able to 

improve results for most of the remaining problem terrains. 

A large amount of work could be done to vary the generated castles. For example 

more tower types could be added and a set could be chosen randomly when the 

castle is created. This would help greatly in creating a more varied look for the 

castles. Even better would be if the castle-look varied depending on the 

surrounding terrain, for example using sandstone in the desert, or a more wood-

heavy construction when near a forest. 

The keep could use a lot of work to make it look more interesting. Perhaps a 

project in itself would be to procedurally generate the keep, including the interior. 

Additionally, some castles have no keep but rather use a large tower, often set into 

the outer curtain wall, so the castle constructor could also randomly create this. 

Furthermore, the entire courtyard area could be procedurally filled with a variety 

of auxiliary buildings such as stables, an armoury or a chapel. Another 

consideration could be to create a more complicated castle layout with a second 

wall interior to the outer curtain wall for a defence in depth approach that some 

castles used. 

This work could also be expanded to generate a whole medieval fortified town. 

The outer wall could be generated in the same fashion as the wall is created for 

the castles in this project, only on a larger scale. The inside area could then be 

populated with procedurally generated buildings, on a procedurally generated 

town plan. A step further could even create a whole populated area with a town, a 

castle, farms, and a road network connecting them all together. 
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Appendix A 

 

This is a list of all the brushes with brief descriptions of what they do. Most of the 

important ones also have more detailed descriptions in the relevant sections that 

explain their operation. Note that a number of these functions reference the 

smooth heightmap – this is explained in more detail in section 4.4.1 The Smooth 

Heightmap. The brushes are broken up into two sections: those that output voxels 

to the world, and utility brushes that perform other functions. 

Voxel Brushes 

 BulldozerBrush – Removes blocks from the y position passed in 

down to the height of the smooth heightmap at this location. The block at 

the height of the smooth heightmap is set to a block type passed into the 

constructor for the brush. 

 CheckerBrush – Outputs a checker pattern of voxels. This is similar to 

the StippleBrush in that it essentially outputs a voxel for every second 

voxel (and does nothing for the other). However, it will always maintain a 

checker pattern by using the following pseudocode: 

    if( x % 2 == 0 && z % 2 != 0 ) 

      OutputVoxel(); 

    else if( x % 2 != 0 && z % 2 == 0 ) 

      OutputVoxel(); 

 FillBelowBrush – Fills the area below the given y position value with 

a block type until a non-empty voxel is encountered or a certain limit is 

reached. 

 FillBelowBrushOnHeightmap – Same as FillBelowBrush but 

uses the y position value as an offset from the smooth heightmap instead 

of the direct location. 

 FlatBulldozerBrush – Removes blocks from the y position down to 

a given height value and places a single block of a given type at the lowest 

position. 
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 MoatExcavatorBrush – Used to create moats. Similar to the 

FlatBulldozerBrush but also keeps track of if it removed any water 

voxels. For more information on moats see section 4.5.3.5 Moats. 

 RandomSolidBrush – Takes two block types and a probability value. 

Randomly chooses one block type or the other to output based on the 

probability value. Used to randomly add mossy stone blocks to the towers. 

 SolidBrush – The simplest brush. Takes a single bock type in the 

constructor. Just outputs a single voxel at the position with the block type 

it is set to. 

 SolidBrushOnHeightmap – Same as SolidBrush but uses the y 

position value as an offset from the smooth heightmap instead of the direct 

location. 

 StippleBrush – Outputs a voxel every other time that 

WriteVoxel() is called. 

 StippleBrushOnHeightmap – Same as StippleBrush except it 

uses the y position value as an offset from the smooth heightmap instead 

of the direct location. 

 WallBrush – Creates a wall section at the given location. Used to create 

the walls. For more information see section 4.5.3.2 The Wall. 

Utility Brushes 

 AreaDefenceCalculatorBrush – Used to calculate the overall 

fitness score over an area. See section 4.5.2.1 Initial Placement for more 

information on how the overall fitness score is calculated. 

 DefenceAdderBrush – Takes an integer value in the constructor and 

adds it to the terrain fitness map (see 4.4.2 Calculating the Terrain Fitness 

Score). 

 HeightmapperBrush – Used to create a black and white 2D 

heightmap image. 

 InitialTowerPlacementOptimizerBrush – Used during the 

initial tower placement (for more on initial tower placement and the 

overall fitness score see 4.5.2.1 Initial Placement). Calculates the overall 

fitness of the castle by summing together the fitness scores at each tower 
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position. It then checks if the overall fitness score calculated is better than 

the others calculated with this brush so far, and if it is the current castle 

location is stored as the best seen so far, and the score is also kept. 

 MinimapperBrush – Used to create a minimap of the terrain. This 

takes the top voxel in the world at the given (x, z) location and writes it to 

an image with a simple colour mapping (e.g. water is blue, grass green, 

dirt brown and so on). This was used in early development to help 

visualize the world. An example output can be seen below this list (Figure 

80). 

 PolygonBuilderBrush – Used by the FillConvexPolygon() 

function to create a list of edge voxels. See section 4.3.1.3 Fill Polygon for 

more information on FillConvexPolygon(). 

 PreOptTowerPlacementBrush – Used in the first step of tower 

placement optimization. For more information see section 4.5.2.2 Pre-

Optimization Step. 

 SmoothHeightmapMinMaxFinderBrush – Used to find the highest 

and lowest points of the smooth heightmap over an area. Also computes 

the average height over the area. Simply reads the smooth heightmap value 

at the given (x, z) location and compares it to the highest and lowest value 

encountered so far. If it is higher than the previous highest then this value 

becomes the new highest value, if it is lower than the previous lowest it 

becomes the new lowest. The value is also added to a running total and a 

count variable is incremented. When the average is requested 
     

     
 is 

returned. 

 TerrainDefenceEvaluatorBrush – Calculates the terrain fitness 

score at the given location and records it in the terrain fitness map. For 

more information on the terrain fitness score see section 4.4.2 Calculating 

the Terrain Fitness Score. 

 TowerPlacementOptimizerBrush – Used during the tower 

placement optimization process. Draws a line to a given anchor point and 

calculates the terrain fitness along the line. For more information on this 

see the section on tower optimization (section 4.5.2.3 Optimization Step). 
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Figure 80 – A Minimap Created by the MinimapperBrush 
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Appendix B 

 

Values used during castle construction in the screenshots in this document. 

Position -50, -50 

Width 100 

NumberOfTowers 10 

OptIterations 1 

InitialPlaceSearchRadius 140 

PreOptSearchRadius 16 

OptSearchRadius 8 

BidirectionalSearch False 

TowerMergeRadius 24 

Table 2 - Values Used 
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Appendix C 

 

This appendix shows a selection of castles generated for the user study. This 

should serve as a good showcase of the range of possible outputs of both the 

terrain generator and the castle generator. 
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