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ABSTRACT 

Bis-(3-triethoxysilylpropyl) tetrasulphane (TESPT) was employed for surface modification of iron 

sand for use in magnetorheological elastomers (MREs). The amount of TESPT was varied at five 

levels (2,4,6,8 and 10wt%) relative to iron sand content to assess the optimum amount of coupling 

agent for interfacial bonding and damping performance. Evidence that coupling had occurred 

between iron sand and TESPT was identified by Raman Spectroscopy and the grafting percentage 

was determined by thermogravimetric analysis. Subsequently, isotropic MREs containing 

unmodified and modified iron sand particles and natural rubber were prepared. Crosslink density 

assessment by swelling testing provided evidence that the tetrasulphane group of TESPT formed 

crosslinks with the rubber chains. The results exhibited the advantages of TESPT as a coupling 

agent between iron sand particles and rubber and also revealed that 6% TESPT content produced 

the highest crosslink density. The effects of the amount of TESPT on dynamic mechanical 

properties the morphological characteristics of the MREs were also investigated. 

Keywords: A. Particle-reinforcement; B. Interface/interphase; D. Surface analysis; E. Surface 

treatments 
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Magnetorheological elastomers (MREs) are a new group of damping materials which 

consist of a non-magnetic matrix (normally an elastomer) containing a suspension of magnetically 

permeable particles. The most commonly used magnetic particles for MREs are carbonyl iron 

particles and suitable matrix materials include natural rubber, silicone rubber, polybutadiene, 

polyisobutylene, polyisoprene, and polyurethene rubber [1-7].  The main advantage of MREs is 

that the damping and stiffness can be varied by application of an applied magnetic field during 

fabrication or in service. Damping occurs by the viscous flow of the rubber matrix and inclusion 

of magnetic particles in rubber enables additional damping through magnetic particle interaction 

and interfacial damping. MREs can be classified into two kinds: isotropic MREs and anisotropic 

MREs. Isotropic MREs can be characterized by having a uniform magnetic particle distribution in 

the matrix. Anisotropic MREs have a special chain-like structure of magnetic particles in a matrix 

resulting from curing the matrix under an applied magnetic field.  Over the past few years, MREs 

have attracted increasing attention and have been considered for applications such as  adaptive 

tuned vibration absorbers [8], automotive engine mounts [4] and semi active seismic dampers [9]. 

New Zealand iron sand possesses physical and magnetic properties that make it suitable 

for use in MREs. Compared to commonly use magnetic particles, such as pure iron and carbonyl 

iron, iron sand has a number of advantages, including high permeability and saturation 

magnetisation, low cost and it is readily available in New Zealand. It is derived from erosion of 

andesitic and rhyolitic volcanic rocks which are the main types of iron ore deposits in New 

Zealand. Iron sand is a dark, high-density sand that occurs along the west coast of the North Island 

from Wanganui to Kaipara Harbour near Auckland, over a distance of 480 km. It contains 

titanomagnetite, a mineral containing iron and titanium, which is highly magnetic [19, 20]. 
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Similarly for all MREs, the damping of MREs depends not only on the types of rubber 

matrix and magnetic particles, but also on the level of adhesion between the particles and the 

rubber matrix such that the strength of interaction between the particles and matrix has to be 

sufficiently strong to obtain efficient interfacial damping. For MREs this sets a challenge. Here, 

as for other MRE components, the incompatibility of the inorganic magnetic fillers and the matrix 

can actually lead to poor wettability and adhesion between the filler and matrix as well as non-

uniformity of filler dispersion leading to low energy absorption [10-12]. Therefore, it is sensible 

to modify the surface of the iron sand in order to improve ease of adhesion with and dispersion 

within the rubber matrix in order to realise the full potential of MREs. 

Surface modification of inorganic particles can be achieved using a number of approaches 

[13]; most commonly, the filler surface is chemically modified to become more compatible with 

the matrix using methods such as polymer coating [14], surfactant absorption [15] and bifunctional 

coupling agent treatments [16, 17]. Among various modification approaches, the bifunctional 

coupling agent treatment using silane based coupling agents is the most successful and cost 

effective treatment for improving the adhesion between inorganic particle and rubber matrix. 

These chemicals are silicon-based chemicals that contain hydrolysable groups (such as methoxy, 

ethoxy or acetoxy) at one end that will interact with inorganic materials and organofunctional 

groups (such as amino, vinyl or sulphide) at  the other end that can react with  the rubber matrix. 

Therefore, inorganic and organic materials can be coupled together with the silane coupling agent 

acting as a bridge between them. Although this type of surface modification is well established for 

enabling different types of fillers such as silica [18, 19], aluminium powder [20], halloysite 

nanotubes [21], wood flour [22] and natural fibre [23, 24] to be used as reinforcement fillers in 

rubber compounds, its effect on inorganic magnetic particles for used in MREs has not been 
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extensively studied. Some research has been reported on modification of carbonyl iron particles 

using silane coupling agents used as a filler in  silicon rubber [25, 26] and polyurathene rubber 

[16] based MREs; the results showed that the mechanical and damping performance of MREs 

increased due to increased dispersion and interaction between particles and the matrix. Although 

it is accepted that the effectiveness of silane to interact with the substrate is dependent on a number 

of factors including hydrolysis time, presence of solvent, temperature and pH [27], none have 

assessed the optimum silane content coupled to the particles to allow for improved subsequent 

bonding. Furthermore, as far as the authors are aware, there is no work carried out on surface 

modification of inorganic magnetic particles for use in natural rubber based MREs.  

In this study, isotropic MREs based on iron sand and natural rubber were prepared. Bis-(3-

triethoxysilylpropyl) tetrasulphane (known as TESPT or Si 69) which is the most popular and 

effective silane coupling agent for hydrocarbon rubber (see Figure 1) was used for surface 

modification of iron sand particles [13]. TESPT contains ethoxy hydrolysable groups at both ends 

that enable the silicon groups to bond with iron sand particles and the tetrasulphane group of its 

centre which is capable of bonding with the rubber matrix. Iron sand contains stable oxides that 

potentially have reactive sites including Fe-O bonds and OH groups on their surface [28, 29]. 

Therefore, there is potential for improvement of iron sand and natural rubber interaction by using 

TESPT as a coupling agent. The effects of TESPT content on dynamic mechanical properties were 

investigated using two methods. The loss tangent, commonly called tan δ, is considered as the 

fundamental parameter to assess damping. Tan δ gives a comparison of the energy lost to that 

stored; it is obtained by dividing the loss modulus (G′′ or E′′) by the storage modulus (G′ or E′) 

[30]. The other estimate of damping used was the amount of energy dissipated during cyclic 

deformation, which can be calculated from the area of the hysteresis loop (hysteresis loss). 
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EXPERIMENTAL 

Materials 

Natural rubber (SMR L grade) and other chemicals including zinc oxide, stearic acid, n-

cyclohexyl-2-benzothiazole sulfenamide (CBS), tetramethylthiuram disulphide (TMTD), paraffin 

oil, and naphthenic oil were all purchased from Field Rubber Limited, Auckland. Bis-(3-

triethoxysilylpropyl) tetrasulphane (TESPT) was purchased from Leap LabChem Co. Limited, 

China. Iron sand was collected from Ngarunui Beach, Raglan. The iron sand was milled using a 

planetary mono mill (Pulverisette 6) produced by Fristech GmbH and subsequently sieved to 

obtain a 45-56 μm particle size. 

Surface Modification of Iron Sand Particles 

The surface modification of iron sand particles was carried out by an aqueous alcohol solution 

method. The particles were subjected to surface treatment with TESPT at 2, 4, 6, 8, 10% by weight 

(wt%) of the particles. An aqueous alcohol solution of 95% ethanol was used and the pH of the 

solution was adjusted with acetic acid to 4.0 – 4.5. The TESPT of predetermined quantity was 

dispersed in the ethanol solution at a ratio of 1:100 and the mixed solution was stirred for 5 minutes 

to assure the hydrolization of the silane coupling agent. The iron sand particles were then added 

and stirred for an additional 30 minutes at room temperature to ensure a uniform distribution of 

the coupling agent on the surface of iron sand particles. The mixture was filtered and washed three 

times with ethanol to remove unreacted coupling agent. The treated iron sand particles were then 

dried at 80oC in an oven until a constant weight was achieved. 

Preparation of iron sand-natural rubber isotropic MREs 
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The compound formulation used in this study is given in Table 1. Formulations were compounded 

using a conventional laboratory two roll mill (model XK150) according to ASTM designation 

D3184-80. The front roller speed was 23.86 rpm and the rear roller speed was 32.81 rpm, diameter 

of rolls was 150 mm, friction ratio of two rolls was 1:1.4 and the roller temperature was set at 

80oC. The nip gap (distance between front and back roller) was maintained at 2 mm during 

compounding. The compounding began with softening the rubber on its own in the two roll mill 

(mastication). Mastication reduces the viscosity and increase the plasticity of natural rubber which 

is brought about by heat generated in two roll mill through conduction from the heated roller and 

shearing of rubber during milling. After mastication, during which the rubber had become invested 

on the hot roll (2-3 minutes), additives (other than accelerators and sulphur) were then added 

followed by iron sand; addition of accelerators and sulphur were delayed to the last part of the 

process to prevent premature vulcanization during compounding. The mixing time was 

approximately 40 minutes. The cure time at 150°C was then determined according to the procedure 

as described in reference [31] and the results are shown in Table 1. Compounded rubber samples 

weighing 13g were placed in a mould 60 x 50 x 3 mm and were cured in a compression moulder 

at 150°C under a pressure of approximately 12 MPa  

Raman spectroscopy 

Raman spectra were acquired with a Ramanstation 400R (PerkinElmer) spectrometer equipped 

with an air cooled charged coupled device (CCD) detector and data points were recorded at        1 

cm-1 intervals. The excitation source was a 785 nm near infrared laser focused on surface of 

samples with a spot approximately 200 μm in diameter. Calibration was validated against a 

polystyrene standard disk (PerkinElmer) prior to measurement. Samples were analysed while 

placed on aluminium foil. The Raman instrument was visually focused onto the surface of each 
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location to be analysed on the modified iron sand samples. Laser power was set to approximately 

40mW (40% of maximum, estimated to be 6 105 W/m2 on the 200 μm diameter spot) to acquire 

spectra from all samples (after initial trials) for consistency across the range of materials analysed. 

Spectra were collected over the range 3200 – 200 cm-1 and each spectrum was acquired as the sum 

of five repeats of 60s exposures on the sample. Five separate spectra were acquired at different 

locations on each sample analysed. 

Thermogravimetric analysis 

The grafting percentage of silane coupling agent with iron sand particles was determined by 

thermogravimetric analysis (TGA) using an TA Instrument SDT 2910 thermal analyser operated 

in dynamic mode, heating from ambient temperature to 300oC at 5oC/min in air purged at 150 

ml/min with an empty pan used as a reference. Thermal gravimetric curves were obtained. The 

grafting percentage was calculated as the fraction of the mass of grafted silane coupling agent 

divided by the mass of iron sand particles at 280oC [32, 33] as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑔𝑔𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑆𝑆𝑔𝑔 (%) =
𝐺𝐺𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝐺𝐺 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔 𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑔𝑔/𝑔𝑔

𝑆𝑆𝑔𝑔𝑐𝑐𝑆𝑆 𝑠𝑠𝑆𝑆𝑆𝑆𝐺𝐺 𝑐𝑐𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑠𝑠/𝑔𝑔
 (1) 

The amount of grafted silane coupling agent was calculated from the weight loss of treated iron 

sand at 280oC minus weight loss of iron sand particles at 280oC. 

Crosslink Density 

Determination of crosslink density in MREs was obtained using a swelling test. MREs samples 

with dimensions of 30mm  5mm  3 mm were weighed, and then immersed in toluene for 72 

hours at room temperature in a dark environment. The toluene was replaced at 24 hours intervals 

over this time to minimise interference from toluene soluble fractions remaining in the samples. 

After 72 hours, samples were drained and dried and the swollen mass was recorded. Samples were 

then dried at 80oC in an oven until a constant weight was achieved. For each experimental point, 
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3 samples were produced and the average values were calculated. The crosslink density was 

calculated by applying the Flory-Rehner equations as follows  [34] 

𝑉𝑉𝑟𝑟 =
𝑉𝑉𝑝𝑝

𝑉𝑉𝑝𝑝 +  𝑉𝑉𝑠𝑠
=  

𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑
𝜌𝜌𝑟𝑟

(
𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑
𝜌𝜌𝑟𝑟

+  
𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤 −  𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑

𝜌𝜌𝑠𝑠
)

 (2) 

  

[𝑋𝑋] =
− [ln(1 − 𝑉𝑉𝑟𝑟 ) + 𝑉𝑉𝑟𝑟 +  𝜒𝜒 𝑉𝑉𝑟𝑟2]

𝑉𝑉𝑜𝑜 (𝑉𝑉𝑟𝑟
1
3 −  𝑉𝑉𝑟𝑟2 )

 

 

(3) 

where Vr is the volume fraction of MREs, mwet is the swollen equilibrium mass, mdry is the dry 

MREs mass, ρr is the density of natural rubber (910 kg/m3), ρs is the density of toluene (866 kg/m3), 

[X] represents the crosslink concentration in mol/cm3, χ is the interaction parameter between the 

rubber and toluene (0.393) and Vo is the molar volume of toluene (106.4 cm3/mol). 

Morphology 

The microstructures of isotropic MREs were observed using a Hitachi S-4700 scanning electron 

microscope (SEM). The samples were frozen and snapped into pieces to expose their interior and 

coated with a thin layer of platinum prior to observation at an accelerating voltage of 20kV. 

Dynamic mechanical analysis 

Dynamic mechanical analysis was carried out using a Perkin Elmer dynamic mechanical analyser 

(DMA 8000). Tan δ was measured over a wide range of frequency, strain amplitude and 

temperature. The influence of frequency and strain amplitude on tan δ was assessed using two 

circular disc specimens with a diameter of 10mm and a thickness of 3mm in shear mode at room 

temperature. Tan δ was measured over the frequency range of 0.01–130 Hz at a fixed strain 

amplitude of 0.5% and over a strain amplitude range of 0.1–4.5% at a fixed frequency of 100Hz. 

For the influence of temperature on tan δ, the samples were analysed in dual cantilever mode at a 
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frequency of 1 Hz, with a strain amplitude of 0.5% over a temperature range of  -100 – 50 °C. The 

samples were rectangular with dimensions 30 mm ×6 mm ×3 mm. 

Hysteresis 

Hysteresis loss is defined as the amount of energy dissipated during cyclic deformation when the 

samples are stretched and then allowed to retract at the same rate to the unstretched state. In this 

study, the hysteresis loss was determined for tensile dumbbells using an Instron 4204 at a crosshead 

speed of 500mm/min according to ASTM D412-80. The stress-strain curve was recorded and 

hysteresis loss was calculated as 

Hysteresis loss = Area under the loading curve - Area under the recovery curve (4) 

 

RESULTS AND DISCUSSION 

Characterization of surface modified iron sand particles 

Figure 2 shows a schematic of the potential reaction mechanisms of TESPT with iron sand 

particles. In the presence of water in an ethanol solution and under acid catalysed conditions the 

ethoxy reactive groups of the silane are hydrolysed thereby forming silanol groups                (-Si-

O-OH) and liberating ethanol [35, 36]. The silanol groups are highly reactive intermediates which 

are presumed responsible for bond formation with the iron sand. When iron sand was added into 

the solution, the hydroxyl groups on the surface of the iron sand is believed to react with the silanol 

groups and subsequent drying condenses silanol groups to form siloxane linkages. Evidence for 

this was provided by Raman Spectroscopy analysis of unmodified and modified iron sand particles 

as shown in Figure 3. For iron sand, a number of peaks can be seen including a broad peak between 

1100 and 1900 cm-1, similar to observation elsewhere [37]. The growth of peaks at around 300 cm-

1 for all modified iron sand particles is indicative of the formation of Si-O-iron sand and/or Si-O-
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Si bonds that would occur during reaction of iron sand with TESPT, although, the latter could also 

occur due to polymerisation of TESPT to produce siloxane; however, production of siloxane would 

not be expected to improve interfacial bonding. The increased height of the peaks around 1400 

cm-1 (representing CH2 bending in TESPT) from 0 to 6 wt% TESPT followed by no further 

increase from 6 wt% onwards suggests that coverage of iron sand particles by TESPT increases to 

6 wt% when it reaches a saturation coverage [38]. 

Figure 4 shows TGA curves for unmodified and modified iron sand particles at different 

TESPT contents. All samples showed weight loss over the temperature range of 50oC to 280oC 

with weight increase above 280oC which is believed to have resulted from the oxidation of iron 

sand particles [39]. Similar trends have been observed in TGA curves for other magnetite particles 

[40]. As can also be seen, the unmodified iron sand particles were relatively stable in the air and 

only slightly weight loss between 100oC to 280oC which was probably due to vaporization of 

physically absorbed water at the surface of iron sand particles. The weight losses for modified 

particles increased with increasing TESPT content until 6% and then reduced for 8% and 10% 

TESPT. The weight loss for modified particles could be attributed to the decomposition and 

evaporation of silane coupling agent on the surface of iron sand particles such that suggests the 

silane coupling agent is strongly bound to particle surfaces by what is expected to be covalent 

bonds [41]. The amount of TESPT attached to the surfaces of iron sand particles was quantitatively 

determined by TGA (taking the loss due to physically absorbed water into account) over the 

temperature range of 50oC to 280oC (each value representing an average from 3 samples) and is 

presented in Figure 5. It was not possible to conduct TGA analysis of TESPT on its own, however, 

a separate experiment was conducted where TESPT was heated at 280oC in a furnace for which a 

residual weight of only 0.6% was obtained. Thus, residual TESPT is not considered to have a 
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significant effect on the obtained data. It can be seen that the percentage of grafted silane appears 

to increase with increasing TESPT content until it reached a maximum value at 6% TESPT and 

thereafter decreased for higher TESPT contents (8% and 10%). At high TESPT content, the 

potential for hydrolysed TESPT to react with itself to produce polymeric siloxane increases as an 

alternative to reacting with iron sand. This polymeric siloxane could act as a barrier between 

TESPT and iron sand preventing reaction, particularly given that the siloxane polymer can react 

with multiple OH groups on the iron sand particles and screen other OH groups between those 

bonded with polymeric siloxane as described in the literature [42]. Polymeric siloxane that has not 

reacted with OH groups on iron sand would easily have been removed by washing the modified 

iron sand with ethanol and evaporation by drying during the preparation of the modified particles. 

This was checked by an extra wash with dichloromethane (DCM) following three times washing 

with ethanol for which the TGA weight loss and silane grafting percentage was found to be no 

significant different with those washed using just ethanol. Any remaining unreacted polymeric 

siloxane may also form e.g. oligomers by hydrogen bonding to the grafted TESPT such that may 

weaken the composites properties since the silane molecules may not link the filler to the matrix 

[42]. 

Figure 6 shows a schematic of possible reaction mechanisms for the tetrasulphane group 

of TESPT with natural rubber. The tetrasulphane group of the TESPT could have been first 

dissociated during the compounding process to produce sulfidic radicals that subsequently react 

either directly or through sulphur crosslinking agent (Sx) with the rubber molecules in the presence 

of accelerators at elevated temperature during vulcanization to form crosslinks with the rubber 

molecules [43-45]. Evidence for this would be provided by crosslink density measurements of 

MREs filled with unmodified and modified iron sand particles at different TESPT contents as 
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shown in Figure 7. It can be seen that the crosslink density gradually increased as the TESPT 

content increased from 2% to 6%; this highlights the potential formation of new crosslinks in the 

rubber network due to interaction between tetrasulphane group of TESPT with the rubber 

molecules. In order to assess the time required for the tetrasulphane group of TESPT to react with 

rubber and form crosslinks, another compound was prepared, the same as that containing 6 wt% 

silane coupling agent except that the sulphur crosslinking agent was excluded. It was found that 

the compound cured in 5.63 minutes which is not too different from time used here supporting 

substantial TESPT rubber crosslinking could have occurred. At higher TESPT contents (8% and 

10%) the crosslink density decreased which is not surprising given the evidence from TGA results 

that at such TESPT contents less silane is coupled to the iron sand, which would be expected to 

lead to less crosslinking between iron sand and rubber. The obtained results support the use of 

TESPT as a coupling agent for iron sand particles and natural rubber and also a content of 6% 

TESPT is more suitable than 8% and 10% TESPT. 

 

Morphology 

Figure 8 shows SEM images of fracture surface of isotropic MREs with unmodified and 

modified iron sand particles. It can be seen for unmodified particle MREs, the surface is smooth 

with less matrix tearing and uneven distribution of iron sand particles in the rubber matrix. Clearly, 

there are a lot of cavities remaining due to the particle pull out from the rubber matrix and obvious 

gaps between iron sand particle and rubber, suggesting weak interaction between iron sand and 

rubber (Figure 8 a).  In Figure 8 b, the surface of isotropic MREs with modified iron sand particles 

is rougher due to matrix tearing than for MREs with unmodified particles. It is also evident that 

iron sand particles are more evenly dispersed in the rubber with much less aggregates in the matrix. 
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Clearly, much less particle pullout can be seen supporting improved interfacial adhesion between 

iron sand and natural rubber suggesting stronger interaction between iron sand and rubber was 

obtained by using modified iron sand particles supporting    Si-O-iron sand bonding. 

 

Dynamic Mechanical Properties 

The variation of tan δ with frequency for MREs with different TESPT contents is shown 

in Figure 9a. Tan δ is the highest for the MREs with modified iron sand treated with 6% TESPT 

and the increases in tan δ compared to MREs with unmodified iron sand is on average 40% over 

the whole frequency range explored. G’ and G” are also plotted in Figure 9 (b and c) to help 

highlight the mechanisms involved.  G’ and G”, similar to tan δ are frequency dependent. It can 

be seen that the increase of tan δ as the frequency increased, is mainly due to increasing G” as 

opposed to changes in G’. The increased energy loss is assumed to be due to covalent bonding 

bringing about more intimate contact between the particles and rubber such that during 

deformation, increasing energy is expended overcoming friction, physical bonding as well as 

covalent bonding. At high TESPT content (8% and 10%), the lower tan δ values could again be 

explained by less silane grafting due to the formation of siloxane oligomer attached to the first 

layer of reacted TESPT on particle surfaces which could further reduce the energy absorption 

capability of the MREs. Energy loss in the materials could also be attributed to interfacial friction 

of weakly or partially bonded iron sand particles and rubber with increasing frequency. It is also 

apparent that the G’ for MREs with modified iron sand are higher compared to MREs with 

unmodified iron sand. Explanation for general increment of G’ for MREs with modified iron sand 

could be related to efficient stress transfer between particles and matrix which can improve 

stiffness, strength and failure strain of the materials [46]. Furthermore, improved interfacial 
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bonding and degree of iron sand particle dispersion in the matrix might increase the effective 

particle-matrix interfacial area such that increased constraint of polymer chains occurs during 

deformation and improved the ability of the material to store elastic energy associated with 

recoverable elastic deformation [47]. 

The variation of tan δ with strain amplitude for MREs with different TESPT contents is 

shown in Figure 10a; G’and G” are also plotted in Figure 10 (b and c). As expected, MREs with 

modified iron sand treated with 6% TESPT had the highest tan δ over the whole strain amplitude 

range explored with a 20% increase in tan δ compared to MREs with unmodified iron sand. As 

can be observed in Figure 10 (a and b), the tan δ and G’ were amplitude dependent at low strain 

amplitudes before reaching a plateau, with the tan δ for MREs with modified iron sand reaching a 

plateau at around 2.5% strain amplitude, whereas the tan δ of the MREs with unmodified iron sand 

reached a plateau at 2% strain amplitude. It was evident that strong interfacial bonding between 

the iron sand and rubber as well as better dispersion increased the dependency of tan δ on the 

amplitude of the applied strain and the change of tan δ values over the strain amplitude range for 

all tested samples is mainly due to a decrease in G’ as the strain amplitude increased. The decrease 

in G’ as the strain amplitude increased for MREs with modified iron sand could be explained by 

the increase of particle detachment from the matrix with increasing strain amplitude. As can also 

be seen, G” for MREs with modified iron sand are higher compared to MREs with unmodified 

iron sand. The higher loss modulus could be attributed to the energy loss due to stress released 

after debonding and increase of energy absorbed during viscous flow which is more constrained 

due to formation of chemical linkages between iron sand and rubber. Once the strain amplitude is 

high enough, all the interactions are destroyed to such an extent it cannot be reconstructed and 

consequently, the energy loss is largely reliant on the viscous flow of the rubber matrix. 
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Figure 11 presents the tan δ versus temperature curves for MREs with different TESPT 

contents. The tan δ peak is associated with glass transition temperature (Tg) of the materials. In 

the glass transition zone, the energy dissipation is mainly from the segmental motion of 

macromolecular chain of rubber matrix in spite of breakdown of filler-filler or filler rubber 

interaction [48]. It can be seen that the presence of coupling agent does not strongly affect the peak 

height and width of the curves. This is in agreement with similar finding reported by other 

researchers [23, 49, 50]. However, an enlarged graph of the tan δ versus temperature around the 

peaks showed a slight decrease of the height of the tan δ peak and the Tg values shifted to a slightly 

higher temperature for MREs with modified iron sand compared with MREs with unmodified iron 

sand. In addition, the decreased height of the tan δ peak was in an order similar to the silane grafting 

percentage as previously discussed. The decrease height of the damping peak and a shift of Tg to 

higher temperature could be attributed to strong filler rubber interaction which resulted in 

restriction in mobility and flexibility of rubber chains in the materials. 

Figure 12 shows hysteresis loss for MREs with different TESPT contents. As can be seen, 

hysteresis loss increased with increasing TESPT content until it reached a maximum value at 6% 

TESPT and thereafter decreased at higher TESPT content ( 8% and 10%). The results are in 

agreement with the silane grafting percentage as previously discussed. The effect of coupling agent 

on the hysteresis loss of MREs could again be explained by the energy loss due to stress released 

after debonding and increase of energy absorbed during viscous flow which is more constrained 

due to formation of chemical linkages between iron sand and rubber. Some authors have 

considered constraint in liaise of a rubber shell mechanisms [13]. The molecular chain mobility 

would be reduced by the formation of silane linkages between iron sand and rubber, resulting in a 

rubber shell on the filler surface in which the polymer viscosity and Young modulus would be 
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increased. The higher Young’s modulus of rubber near the surface of iron sand in the rubber shell 

would gradually decrease with increased distance from the filler surface and finally reach the same 

level as that of the rubber matrix at a certain distance. When the MREs were subjected to dynamic 

strain, the rubber shell around the particles would begin to break down and increase the amount of 

energy loss. In addition, hysteresis loss could also be attributed to interfacial friction at the filler 

matrix interface and breakdown of filler aggregates. The decrease of hysteresis loss at higher 

TESPT content could again be explained by the lower silane grafting and formation of weak 

siloxane oligomer that  may begin to break down at a relatively lower level of strain. 

CONCLUSION 

In this work, iron sand particles were modified at five different TESPT contents ( 2, 4, 6, 8 and 10 

wt%) relative to the iron sand content to assess the optimum amount of for use in MREs. TESPT 

contains ethoxy hydrolysable groups that enable bonding with iron sand particles and a 

tetrasulphane group capable of bonding with the rubber matrix. Raman spectroscopy showed 

evidence that siloxane linkages were formed between TESPT and iron sand. Weight loss measured 

using TGA supports that silane coupling agent is strongly bound to particle surfaces and the silane 

grafting percentage was found to be the highest at 6% TESPT. Crosslink density measurement of 

MREs made using TESPT treated iron sand highlight that the tetrasulphane group of TESPT 

formed crosslinks with the rubber molecular chains. Treated iron sand was found to be more evenly 

dispersed in the rubber with much less particle pullout on fracture surface supporting improved 

interfacial adhesion with natural rubber. Tan δ was found to be highest for the MREs with modified 

iron sand treated with 6% TESPT and 40% larger than that unmodified iron sand over the whole 

frequency range explored and 20% higher over the whole strain amplitude explored. However, the 

presence of coupling agent did not strongly affect the peak temperature of tan δ versus temperature 
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curves. An increase in hysteresis loss was also obtained for MREs with modified iron sand treated 

with 6% TESPT content compared with MREs with unmodified iron sand.  
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FIGURE CAPTIONS 
 
Figure 1 Molecular structure of TESPT 

Figure 2 Illustration of the reactions of TESPT with iron sand particle surface. 

Figure 3 Raman spectra of iron sand particles at different TESPT contents 

Figure 4 TGA curves for iron sand particles at different TESPT contents 

Figure 5 Silane grafting percentage for iron sand particles at different TESPT contents 
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Figure 6 Schematic illustration of the reaction mechanisms of tetrasulphane group of TESPT 

with the natural rubber (S2● represents sulfidic radicals of tetrasulphane group of TESPT) 

Figure 7 Crosslink density of MREs with different TESPT contents. 

Figure 8 SEM images of fracture surface of isotropic MREs with; (a) unmodified and (b) 

modified iron sand particles (treated with 6% TESPT) 

Figure 9 (a) Tan δ, (b) storage modulus (G’) and (c) loss modulus (G”) vs. frequency for MREs 

with different TESPT contents. 

Figure 10 (a) Tan δ, (b) storage modulus (G’) and (c) loss modulus (G”) vs. strain amplitude for 

MREs with different TESPT contents. 

Figure 11 Tan δ versus temperature curves for MREs with different TESPT contents. 

Figure 12 Hysteresis loss for MREs with different TESPT contents. 

 
 
 
TABLE CAPTION 
 

Table 1 Formulation of rubber compound 

 

 
 

Table 1  

Materials Function loading (phr) 
natural rubber raw material/matrix 100 100 100 100 100 100 
ZnO activator/peptiser 5 5 5 5 5 5 
stearic acid activator/peptiser 1 1 1 1 1 1 
paraffin oil plasticiser 2 2 2 2 2 2 
naphthenic oil plasticiser 3 3 3 3 3 3 
iron sand filler 70 70 70 70 70 70 
CBS accelerator 2 2 2 2 2 2 
TMTD accelerator 1 1 1 1 1 1 
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sulphur crosslinking agent 1.5 1.5 1.5 1.5 1.5 1.5 
Silane coupling agent level (wt %) 
TESPT coupling agent 0 2 4 6 8 10 
Curing characteristics (minutes) 
Cure time  (t90) 4.57 4.53 4.33 4.23 4.40 4.46 
* phr = per hundred rubber       

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1  
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Figure 2 
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Figure 6 
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Figure 7  
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Figure 9 
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Figure 10 
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Figure 11  
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