
Design Patterns for Models of Interactive Systems

Judy Bowen
Department of Computer Science

University of Waikato
Hamilton, New Zealand

Email: jbowen@waikato.ac.nz

Steve Reeves
Department of Computer Science

University of Waikato
Hamilton, New Zealand

Email: stever@waikato.ac.nz

Abstract—Building models of safety-critical interactive sys-
tems (in healthcare, transport, avionics and finance, to name
but a few) as part of the design process is essential. It is also
advised for non-safety critical interactive systems if we want
to be certain they will behave as intended in all circumstances.
However, modelling interactive systems is also challenging. The
levels of complexity in modern user interfaces and the wealth of
interaction possibilities means that modelling at a suitable level
of abstraction is crucial to ensure our models remain reasonably
sized, readable, and therefore usable. The decisions we make
about how to abstract the system to retain enough detail to be
able to reason about it without running into known modelling
problems (state-explosion, verbosity, unreadability) are complex,
even for experienced modellers. We have identified a number of
commonly seen problems in such models based on occurrences
of common properties of interactive systems, and in order to
help both experienced and novice modellers we propose model-
patterns as a solution to this.

I. INTRODUCTION

In software design and development, design patterns are
reusable solutions that can be applied to commonly seen
problems. Described comprehensively in [1], where more than
twenty different patterns are explained and categorised, they
are proposed as useful concepts to assist with code structur-
ing (and, in the case of object-oriented programming, class
structure and generation). They therefore provide a valuable
resource both for teachers and learners since lessons for the
unwary about pitfalls and how to spot them and avoid them, for
example, can be built around them. But also they are important
as they are abstractions, in that some details of a particular
problem can be hidden in order to deal with complexity, and
design and reasoning etc. can go on at a more abstract level.
And as we all know, thanks to Paul Hudak, “abstraction,
abstraction, abstraction” are the three most important ideas
in programming [2] (and by extension computational systems
design). What we abstract here is a pattern which is distinct
from any particular context, and which can hence be used in
many contexts.

Formal models of interactive systems are developed for a
variety of reasons. They can be used prior to implementation
as a way of verifying proposed behaviours of the intended
systems to ensure they will behave correctly under all circum-
stances, or as the basis for generating tests and oracles which
can then be used on the implemented system. Or they may be
reverse-engineered from an existing system and used to support
refactoring or again to ensure that the system is robust and
correct. They may also be used to consider aspects of interac-
tion, usability, functionality, flexibility etc. Our previous work

on developing appropriate models for interactive systems has
focussed on finding ways to combine models of the interface
and interaction with models or specifications of functionality
in order to be able to formally reason about interactive systems
as a whole (and perform the sorts of tasks described above)
[3], [4].

When we model interactive systems we need to remain
at a high enough level of abstraction so that we are not
overwhelmed by superfluous detail, but at the same time ensure
we capture all of the crucial elements of the system’s design so
that we are subsequently able to reason about its correctness.
The ability to correctly choose the amount of detail we need
and the appropriate level of abstraction relies on both the skill
of the modeller as well as the intended end-use of the model.

Our experience of modelling interactive systems, and teach-
ing others to develop similar models, has shown that different
people will model the same system differently. In some cases
they will work at different levels of abstraction, or they may
just view the problem in different ways. Over the years we
have seen evidence of this as we have observed many people
(both students and other researchers) generate different models
to represent the same interactive systems.

Anecdotally we are aware that many people involved in
modelling systems have their own patterns, which may also
extend across teams that they are working within. One of our
aims in this work is to make certain patterns explicit in the
hope that a body of known patterns can be developed in a
similar manner as for programming patterns. In this paper we
describe two interactive systems we have been involved in
modelling (one software and one interactive medical device)
and show how these highlight particular design elements which
we then propose modelling patterns for.

Whilst the sorts of patterns described in [1] and similar
works are aimed at programmers and the programs they write,
we believe that a similar approach can be taken for the creation
of models of systems. That is, our patterns are aimed at
modellers and the models they create. In this paper we identify
several patterns which have been uncovered over the decade we
have been modelling interactive systems. These patterns can
be considered as guides to help the modeller with particular
aspects of the model design. That is, they are not a solution in
and of themselves but rather guide the modeller for particular
parts of the system being modelled.

We have also observed that that there are particular patterns
of interaction (in particular) that occur in the systems being
modelled which are more likely to lead to differences (or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/44289758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

indeed errors) in the model. This has led us to identify corre-
sponding patterns in the models themselves which enable us to
describe a useful and consistent method of abstracting what are
sometimes particularly complex (and we suggest sometimes
overly complex) interactive systems. Similarly we have noted
that the appearance of particular patterns in models may
indicate problematic design elements in interactive systems.

We present a way of describing the patterns themselves in a
formal language (something which is still under investigation).
Leaving the patterns themselves informal, but giving lots of
formal examples, is in some cases reasonable since humans
are great at spotting patterns (it’s their main skill). But having
(possibly correctly) spotted a pattern, formal examples give a
lead into how to actually use the pattern on some concrete
problem, and the formality of the language can be used
ultimately to check that the model, guided by the pattern, is
in fact correct, as usual. Also formal patterns open the door to
automatic (i.e. via algorithmic means) pattern recognition and
also an algebra of patterns [5].

So, we start with the formal patterns in the expectation
that from now on people will spot the sort of problem they
are dealing with and simply instantiate our patterns with their
target concrete modelling language (we give examples of this
using both PIMs [3], [6] and emulink [7]). Thus the patterns
we start with show how problems should be solved. We then
go on to give reasons (via the concrete examples from which
these patterns came) for why these patterns are as they are.

II. ORGANISATION

We start in the next section by introducing our formal
pattern language. We then give two examples of patterns, the
callback and binary choice patterns, and show how we can
describe them using this formalism. Next we give examples
of these two patterns in real-world systems (our motivating
examples) and introduce two modelling notations which can
be used to create the types of models of interactive systems
we are interested in. We then give examples of instantiating
the patterns using these notations. Finally we introduce two
further patterns, using a less formal description, as examples
of other types of patterns that exist.

III. FORMALISING PATTERNS

Some of the standard ways in software engineering of
writing down patterns (for example, as in the “Gang of Four”
work [8]) might be suitable for many uses, but since our central
concern is precision and correctness, we need something more.

We firstly need to be able to describe what the syntactic
form of the thing being characterised by the pattern is, i.e.
we need a grammar so that we can say “here is what a
good solution looks like given your requirements” by giving
a template which is concrete in some respects but abstract
(i.e. hides details) in others, so that many different particular
models are captured by the single description. This is what
we mean by pattern, and it should become clear below exactly
what this means.

So having captured all possible models (with some target
concrete modelling language in mind) with a grammar, we
need to write down constraints which say things like “all

models in language X of this general form are within the
pattern we have in mind” so that a pattern then is really a set of
possible models, usually a subset, characterised by constraints
in first-order logic, of all the models in the language generated
(or recognised) by the grammar.

Happily, all this already exists, so the hard work has been
done, e.g. [5], and we merely use this standard way of giving
formal patterns.

First, a grammar for models. In the cases we are consid-
ering in this paper we are concerned with the interactivity of
systems, and the general idea is that these will be modelled
with abstract state machines of various sorts (concrete ex-
amples are given later as instantiations of our patterns). The
basic grammar is given in Figure 1. We have simplified this
by not saying what the structure (if any) of nodes are, we have
used a placeholder non-terminal symbol which would lead to a
further grammar which defines the syntactic structures (if any)
of nodes. Later, as we will see, these might be complicated
structures like presentation models, or they might simply be
strings (i.e. a name or label) in the case of the charts associated
with emu link models (we briefly describe these two modelling
approaches later).

So, our machines have nodes, edges connecting nodes,
labels for edges (consisting of guards and actions) and local
variables (which allow information to be stored and accessed
by any label, as we will see). To complete this account we
do of course need grammar rules proceeding from the non-
terminals Localvars, Guards and Actions, but we omit these
for brevity. It might be helpful to regard our machines (and
their grammars) as abstract syntax for the various modelling
languages that we (concretely) build or models in.

Also note that these grammars are slightly different from
the usual BNF in that we have added names to the various parts
on the right-hand sides of productions (e.g. nodes : Node+).
These names allow us to put conditions in first-order logic
on the structures that these grammars generate (or recognise).
Finally, as is usual in BNF grammars, the + superscript
denotes a non-empty collection, a ∗ denotes a possibly empty
collection and items in [...] are optional.

We also need to introduce a shorthand predicate for a
transition, given by an arrow, two nodes and a label (of the
form “guard, action”), which is defined as follows:

∀ n0, n1 ∈ nodes •
(n0

g,a−→n1⇔
∃ e : edges • from.e = n0 ∧ to.e = n1 ∧
g ∈ guard.e ∧ a ∈ action.e)

That is, n0
g,a−→n1 is an edge with source n0, target n1 and

g is part (perhaps all of) its guard and a is part (perhaps all
of) its action.

A. Callback Pattern

This is our first example of a pattern. Consider a system
which has many different windows, and in each of these it is
possible to choose to log-out of the system using a ‘logout’
feature. If a user chooses to ‘logout’ the system does not
immediately perform this action, but rather provides the user

Machine ::= nodes : Node+, edges : Edge∗, [localvars : Localvars∗]
Edge ::= from : Node, to : Node, [guard : Guard],

[action : Action]
Node ::= x : X
X ::=

Fig. 1. A part of the grammar for Machines

with a dialogue where they can choose either to cancel this
action—in which case they will be returned to the window
where they selected the ‘logout’ option—or continue to log-
out, in which case they leave the system and are returned to
the initial ‘login’ screen. Later we will see an example system
with exactly this form and we will see how, without a pattern,
the solution that a modeller develops might (quite reasonably)
not be a good one.

More generally we see that most interactive systems
provide ways for a user to navigate through a variety of
different windows and dialogues which provide different
aspects of the system’s behaviours. Physical interactive
devices (medical infusion pumps for example) provide
different modes which have a similar effect. We need to be
able to describe this navigation within our models in order to
understand pertinent properties such as reachability, potential
for deadlock etc. There are often particular windows or
dialogues that exist which a user can access from any part of
the system. The ‘logout’ example given above is a common
example of this. In systems which require a user to log-in
before use and which provides the ability to log-out at any
point during use, it is usual (and indeed good practice) for a
confirmation to be requested prior to the log-out occurring,
so a typical interaction scenario is:

User selects ‘Log-out’
Confirmation window is presented (“Are you sure
you want to log-out?”)
User selects “ok” to continue with log-out or
“cancel” to return to their previous activity

It is the ability to “cancel” the activity which causes the prob-
lem for the modeller, as it requires an explicit representation
of the ability to access the log-out function for every state of
the system. If this is abstracted to a single representation of the
“log-out” feature then we lose the ability to understand (via
the model) what happens when the user selects ‘cancel’. That
is, it is not enough to know that we have reached the log-out
state we must also know where we were immediately prior
in order to correctly model the cancel. However, explicitly
modelling every state/log-out pair is unnecessarily verbose, and
the callback pattern is presented as a more suitable solution.

We now illustrate our use of formal patterns with the
Callback example. What we present is a pattern because it
picks out a whole set of concrete Machines from the set of
Machines defined by the grammar in Figure 1, not just one
of them. The idea is that any Machine in the set picked out
conforms to the pattern.

We follow [5]’s conventions, and add our own convention
that identifiers that start with capital letters are to be taken as

placeholders, essentially bound variables in the logical sense,
and so, uniformly, they can stand for any concrete value.

Callback is any Machine (as defined by the grammar
in Figure 1) which satisfies the following constraints. First,
Callback ∈ Machine, where we understand that Machine is
the set generated by the given grammar (in the usual way we
think of a grammar as either generating a set of sentences, the
language, or of recognising all and only the elements of the
language).

Then, referring to Figure 2, the first section of the con-
straints introduces names for various parts of the Machines we
are interested in. So, we first we have the parts or components
of the pattern. But of course many other Machines (rather
trivially) conform to this pattern too, because this at the
moment covers any five node Machine with a local variable!
So, we then put constraints on these parts so that exactly the
right set of Machines is characterised for the Callback case.
This is the role of the conditions.

The developer, when confronted with the problem of the
callback kind, can look at this pattern and by providing
concrete values for the components they can build a Machine
of our suggested elegant form.

This text stands for a whole set of Machines once the
parameters are made concrete. The important part, as ever
with things containing parameters and with formal things in
general, is the shape of the Machines that are picked out by
the pattern. The actual names used for nodes, local variables
etc. is of course not important, though the use of the same
name for the same parameter (e.g. everywhere that LV appears
in the pattern it must be replaced by the same actually local
variable throughout) has to happen as usual since it is all part
of the structure of the pattern we are trying to define. Recall
the comment above about the components being like logical
bound variables.

Also note that though we have given this example with
an incomplete grammar for Machines, it is not much work to
complete the grammar (i.e. adding the detail we have subsumed
under “X” and its productions) tailored for some concrete
target modelling language (e.g. as we shall see for the charts
in PVSio-web or the PIMs in the PM/PIM models) and thus
be able to interpret these patterns as abstractions of those sorts
of model.

As ever with formalisation, we are expressing the form
of the objects we are dealing with, that is the shape of the
structure or the way various parts connect together.

B. Binary choice pattern

Another common occurrence in interactive systems is
where a user invokes some behaviour (via a series of inter-

Callback ∈ Machine

Components
Stop,Confirm?,Activity0,Activity1,Activity2 ∈ Node
LV ∈ Localvars
A0,A1,A2,OK,Cancel,Logout,Login ∈ Label

Conditions

Confirm?
OK,−→Stop, Stop

Login,−→Activity0,

Activity0
Logout,LV:=A0−→ Confirm?,Confirm?

Cancel.LV=A0,−→ Activity0,

Activity1
Logout,LV:=A1−→ Confirm?,Confirm?

Cancel.LV=A1,−→ Activity1,

Activity2
Logout,LV:=A2−→ Confirm?,Confirm?

Cancel.LV=A2,−→ Activity2 ∈ Edge

Fig. 2. The formal pattern for Callback

action steps) but the outcome (the mode or part of the system
they end up in) is dependent on the specific information they
have entered. For example, in a login window a user might
enter their username and password and click an “OK” button
but the result of this is dependent on the values entered in the
username and password text fields rather than their actions.
They might end up being presented with an error dialogue
informing them they have been unsuccessful, or they might
end up in the main part of the system (indicating successful
login) or they may stay in the login state.

What we are dealing with here are two different activities.
The first is the actions of the user which are independent of
the final result, the determination of which is a distinct second
activity. For example they enter a username and a password
and click an ‘OK’ button. If we model just their behaviour
(which is independent of input values) the resulting model
suggests non-determinism as we can see in the first model of
figure 3. However, if we separated out the two distinct paths
we need to artificially enhance the modelled UI behaviours (we
say ‘artificial’ to mean that we change to level of abstraction
purely to solve the modelling problem). So the second model in
figure 3 has removed the non-determinism but has introduced
separate user behaviours (‘oklogin’ and ‘badlogin’) which do
not actually reflect how the user interacts with the system.

Fig. 3. Login model with non-determinism and artificial UI behaviour

What actually happens in such systems is that there is some
underlying functional behaviour which determines which of
the paths is taken, so what we need is a pattern which describes
this ability to incorporate functional behaviours into the UI
model to represent this.

Figure 4 shows the formal pattern for this, insofar as we
can capture it formally. The reason for this proviso is that we
also have to add a comment to say that “Correct” is a local
variable which is set by some underlying functionality. The
need for this proviso is in fact formally evident since nowhere
in the pattern is “Correct” set (cf. Figure 2 and the “LV” which
is set within the pattern).

C. Motivating Examples

Over the past ten years we have modelled a large number
of interactive software systems using the presentation model
approach described in the next section. We started with small
proof-of-concept example systems as we developed our mod-
elling theories and then progressed to real-world systems, and
more recently to modal medical devices [9]. There is, of
course, a huge variety in the nature of interactive systems
in terms of number of windows and dialogues, modality,
complexity of widgets and interaction approaches etc. When a
number of different people with different levels of experience
are involved in modelling the same system we see a large
divergence in approach and in some cases uncertainty of how
to create the most useful model (where this may depend on the
level of abstraction required and the purpose of the model).
Despite the diversity within different interactive systems we
often observe similarities in their general design and the
appearance of common features. Some of these can cause
particular problems with modelling and in this paper we
describe examples of these.

To provide useful examples for this paper we introduce
a large-scale interactive software application as well as an
interactive medical device we have been involved with mod-
elling and provide examples of the particular problems which
have formed the basis and motivation for the work described
here (although we have, of course, seen these issues in other
systems too). We describe these next and give brief details of
some of the issues that arose during their modelling phase.

1) Gallagher Command Centre: The Gallagher Command
Centre is a commercial software tool developed by the Gal-
lagher Group Ltd.1 used for building control and security to
manage automation of doors, alarms etc.. There are two pieces
of the software: one which enables users to monitor buildings

1www.gallagher.co

Binary ∈ Machine

Components
Login,MainProg,LoginFail ∈ Node
Correct ∈ Localvars
LO,LI,Reset ∈ Label

Conditions

Login
LI.Correct=true,−→ MainProg,MainProg

LO,−→Login,

Login
LI.Correct=false,−→ LoginFail,LoginFail

Reset,−→Login ∈ Edge

Fig. 4. The formal pattern for Binary Choice

and their set-ups (Command Centre Classic); and another
where a super-user can control and change those settings and
control user-access (Command Centre Premier). Both of these
versions of the Command Centre have been (and are still
being) modelled as part of ongoing work between ourselves
and Gallagher.

The Command Centre software has a large number of
windows that users can navigate to, as well as a number
of settings which can be defined and changed which affect
behaviours across multiple windows and widgets. There are
a number of constant menus that sit at the top of all of the
different windows whose behaviour differs slightly depending
on which of the windows is being displayed.

Figure 5 shows one of the windows of the command centre
software in the Alarm Panel Viewer mode. The major cause
of complexity within the Command Centre model is the non-
determinism of the Classic version. This is due to the fact
that the Premier version can modify the behaviour of, and
user access to, the Classic version while it is running. Our
initial approach to modelling the Classic version, therefore,
was to assume a ‘super-user’ (who had access to everything
with no external changes being made) with the intention of
then combining this with the model of Premier to produce a
single model for both.

Figure 6 shows one of the intermediate PIMs for the
Command Centre Classic model which gives some idea of both
the complexity of the interactions as described above, and also
the difficulty in creating a readable, visual model (even for just
part of the system) because of that complexity.

Here we started using composition and value-carrying sig-
nals (both described in the next section) to try and simplify the
descriptions of complex behaviour. It was these experiments
which led to the simpler pattern we describe in the next section.

2) Bodyguard Pain Management Pump: The CME Body-
guard Pain Management Pump is an interactive modal medical
device used to deliver pain medication to patients in a medical
setting. We have modelled this device as part of our ongoing
work with the Waikato Hospital on modelling medical devices
and their contexts of use. The device delivers medication
in pre-defined ‘shots’ (known as a bolus) rather than by
continuous infusion. The interface consists of a number of
soft-keys and a display along with a push-button which the
user uses to initiate bolus delivery.

The software enables the medical practitioner to define pa-

rameters for the bolus delivery (size of bolus, volume permitted
over a set period of time etc.) based on the medication being
delivered.

Each of these systems presented particular modelling chal-
lenges and suggested that there were common themes (in these,
and other systems we had encountered) which might be tackled
in systematic and consistent ways.

IV. INSTANTIATING THE PATTERNS—BACKGROUND

A. The Models

Our aim, motivated by the fact that we are currently
working with safety-critical systems, is to present concrete
examples in “full” languages, i.e. languages with not only
formal syntax and semantics but logics too. Otherwise, how
else are we to do proofs?

Thus our examples will be given using two different
approaches (in order to show the concrete differences but
also, hopefully, the abstract similarities). The first of these
is the PVS approach (which includes the pvsio, pviso-web
and emulink work from the CHI+MED group [10]–[12]) and
the second is the presentation model approach (which uses Z,
µCharts, presentation models, PIMs and PMR) [3], [9], [13].
Describing both of these approaches in full is beyond the scope
of this paper (and best left to the relevant references), but we
provide a brief overview here to support the readability of the
rest of the paper.

1) PVS: Our use of PVS [14] in this paper is in the
background as it provides the foundation for what is our real
focus here, namely the charts which we use to model the
interactive part of systems. Suffice to say that PVS provides
us with a language (think functional with dependent types)
and a theorem-prover/proof assistant to act as the “compiler”
for programs written in the language (as with more modern
languages like Agda [15] and Idris [16], type checking in such
a strong type system needs theorem-proving).

2) PVSio: This is a PVS package that basically adds
imperative features to the PVS language [17], thereby making
more natural stateful things like side effects and input/out
(hence its name). This is useful in that it allows a (perhaps)
more natural setting in which to perform experiments with a
PVS model, and also lends itself to being driven in an input-
state-response way, which is useful when investigating models
(rather than “merely” proving things about them). This then
suggests the final part of the system we use: PVSio-web.

Fig. 5. Gallagher Command Centre

3) PVSio-web: This, for us, provides the counterpart to
µCharts and PIMs. It is a web-based graphical “front end” to
PVS [7] (via PVSio) which allows visualisation via charts and
also (though we will not be using this feature in this paper)
via mock-ups of interactive systems by allowing a pictorial
representation of a system to have areas of a picture made
“sensitive” and linked to handlers within the PVS model.
This allows a modeller to demonstrate a model in a fairly
realistic way, since we could have a picture of the device being
modelled and sensitise areas of the picture to behave as though
we had an actual device to play with.

4) Presentation Models: Presentation models describe an
interface and its interactivity (either an actual implemented
interface or a design artefact such as a prototype) by way of
its component widgets. Each separate window or dialogue of a
UI - or each unique mode of an interactive device - is described
in a presentation model and then these are collected together
to form the complete UI (or device) presentation model. Each
widget is described as a tuple consisting of an identifier, a
category (which denotes the nature of interaction) and a set of
behaviours associated with this widget.

5) PIMs: While the presentation model of a device de-
scribes all possible behaviours of that device (in all of its
given modes), it says nothing about the availability of those
behaviours, i.e. it cannot be used to determine whether or not
a user can ever access the described behaviours or whether the
system contains undesirable properties such as deadlock. The
presentation model is therefore used as a component within
a Presentation Interaction Model (PIM) which can be used to
consider such properties.

The PIM is based on a finite-state description, where each
state represents a mode or window (or rather its associated
presentation model). This abstraction enables the development
of PIMs of systems and devices which avoid a state space
explosion (as the number of states is linked to the number of
different windows or modes rather than behaviours, which are

‘hidden’ in the presentation model). The visual representation
of the PIM is given using the µCharts visual notation [18].

6) Z Specification and PMR: The functional behaviour of
the systems we model is described in a formal specification
using Z [19]. A relation is created between each functional
behaviour (associated with a widget) in the presentation model
and an operation described in the Z specification (this is
the presentation model relation, or PMR) which then gives
meaning to these functional behaviours.

B. Instantiating Callback

Recall that this pattern suggests itself when we wish
to prevent certain kinds of single-state duplication within a
model. If there is a single state which can be reached from
many other states, but from which the system can only ever
return to the state it was reached from, then the Callback
pattern is the appropriate solution.

Note how Callback “fits” the pattern given earlier in Figure
2: X is login, LV is prev, A0 is ao, Cancel is cancel, and so
on.

As a µchart the ‘logout’ example looks like Figure 7 and
the emulink/PVSio looks like Figure 8. Note the similarity
between these two charts (apart from the way we have laid
them out, of course!). This similarity (i.e. the structure and the
shape and the way parts fit together) is of course the essence
of what we try to capture by the idea of a pattern.

C. Instantiating Binary Choice

Again we can see how the single pattern for binary choice
from Figure 4 can be instantiated to give both a PIM version
(Figure 9) and an emulink version (Figure 10).

V. PATTERNS NOT YET FORMALISED

Some sorts of pattern—those where the shape or form of
design can be captured (as in the two examples earlier)—are

Fig. 6. PIM of Top-level of Command Centre

Fig. 7. Callback example using a (extended) PIM

amenable to formalisation. Some examples, like the two which
follow, may have to stay informal because they require not
so much conformance to certain shapes (or forms) but to the
occurrences of certain relationships. Of course, we might (we
hope) be wrong, but currently it is not clear how to capture

formally what these two examples express. Nevertheless, they
do express patterns in the sense of being guidance about how
to write a design when in a certain situation.

We use a more standard textual approach to describing
these - so we introduce the pattern, the problem it addresses,
describe the pattern and then give an example of its use.

A. Iterator Pattern

This is identified when we are describing widgets such as
numeric entry keys, where the behaviour of each widget is
identical, but for the fact there is a value parameter associated
with each of the keys. The interface to the CME pain manage-
ment pump has a keypad for digits in the range of 0 to 9, and
with the exception of the keys with the values 2 and 0 (which
have multiple functions) each of these keys behaves in exactly
the same way.

1) The Problem: We would typically model each of these
numeric widgets separately, but with the same defined be-
haviour. In presentation models, for example, each independent
widget of the device is described within its own triple in

Fig. 8. Callback example using PVS etc.

Fig. 9. Login FSM Enhanced with System Behaviour

the presentation model along with its category and behaviour.
However, there are two problems with this approach. Firstly,
we have unnecessary repetition, which makes the modelling
a more time-consuming process and the models themselves
more verbose. Secondly, the description does not accurately
capture the fact that the behaviour of each of these keys is in
fact subtly different due to the value parameter associated with
it.

2) The Pattern: The Iterator pattern provides a solution to
the occurrence of multiple widgets with identical behaviour
apart from a parameter value. Note that it is not constrained to
numeric keys as per the example above, it is equally applicable
to other groups of widgets which behave in a similar manner.
The pattern abstracts the parameter out from the interaction
model enabling the keys to be modelled as a single widget,
but includes the parameter within the functional behaviour
description. We give some samples of this next.

3) Examples of Use: Staying with the numeric key example
from the CME Pain Management Pump, we can describe these
within each of the pump modes in a presentation model as

Fig. 10. Binary pattern (login example) in emulink

follows:

SetUpMode is
0Key, ActionControl,(S_DisplayVal,S_Dec)
2Key, ActionControl,(S_DisplayVal,S_Inc)
numKey, ActionControl,(S_DisplayVal)

The ‘0’ and‘2’ keys are modelled separately as they have
additional behaviours, but the rest of the numeric keys are ab-
stracted into a single description called ‘numKey’ which have
a behaviour called “S DisplayVal”. In the system specification
the operation which describes this behaviour is then as follows:

SetDisplayValue
∆PumpSystem
i? : N

displayedValue′ = i?

So for each widget with the associated behaviour we have an
input parameter which creates the unique behaviour for that
key.

B. Update Pattern

Interface widgets do not exist in isolation from each other
or from the underlying system functionality. It is often the
case that interacting with a widget has an effect not only on
the underlying systems, but also on other parts of the UI (for
example the display). The UI values and system values exist
independently from each but we need to ensure that these two
values remain consistent with each other at all times.

1) The Problem: Our interface models can easily represent
dependencies between different widgets through describing
shared behaviours. Similarly, dealing with values that incre-
ment or decrement in a functional specification is a straight-
forward task. However, displays of interactive systems may
be constrained to smaller/different values than the underlying

variables represented in code. So for example a 3 digit display
may be used on the interface but a 32-bit signed integer
used for the variable in code. We want to be certain that
the two values remain consistent with each other, particularly
at boundary points (so when the value displayed is at its
maximum value of 999 we should be certain that an increment
has the same effect on both values). We therefore need a
consistent way to relate these in the models which allows us
to perform the necessary proofs that this is always the case.

2) The Pattern: The update pattern requires that any values
displayed as part of the user interface are explicitly included in
the functional description. In a Z specification, for example we
include a separate observation for displayed values and specify
their relationship to other system observations which enables
them to be explicitly linked. This also us to ensure consistency
across different parts of the model and be certain that linked
values remain the same.

3) Examples of Use: The PCA pump has a display screen
which supports the display of both text and values. The
maximum value that can be displayed is 9999 and there are
five different value parameters that can be displayed, each with
their own range of allowable values, for example:

Total infused volume 0 . . 9999 ml
Bag volume 0.1 . . 1000 ml
KVO rate 0 . . 5 ml/h

The PModel for the VTBIConfirm mode of the pump describes
the ‘Display’ widget as follows:

(Display, MValResponder, (S VTBIDisplay))

While we can see here that there is an S-behaviour called S-
VTBIDisplay there is no indication that there is a shared value
relating to this. In the Z specification however, we include this
as a predicate of the related operation as follows:

OutputVTBIOperation
ΞPCAPumpSystem
display! : VALUE

display! = currentVTBI

and also add as a predicate to the PCAPumpSystem that any
observations which relate to values which may be displayed on
the device interface are always the same as their corresponding
values.

VI. CONCLUSIONS AND FUTURE WORK

The patterns described here have emerged from modelling
particular types of systems. It is likely (we hope!) that there
will be other patterns which can be uncovered in similar ways,
as we model more, and different, types of systems. In order to
make progress with this work we intend to now look from the
other direction—so rather than ‘discovering’ patterns during
the process of modelling, we can examine known patterns
from software development and see if they are relevant within

modelling, and if so begin experimentation to investigate this
further.

We also want to approach the problem of identifying
patterns from another angle by looking at specification-level
patterns that others have recognised in the past and seeing if
we can adapt them for our work here. One obvious example
is the promotion pattern and its associated Z formulation as
given in [20].

Our aim is that the patterns described here, and future
patterns, will prove useful not only for our own work, but
also for others modelling interactive systems.

One outcome of having started the process of giving the
patterns formally is that we can start to build, in the style
and following the methods of [21], an algebra of patterns.
We would first need to develop pattern composition operations
(Bayley and Zhu [21] have six in the area of pattern-oriented
software design, and some of those may be useful for us, but
we would expect there to be new ways of composing that
make conceptual sense in the area of interactive system design
which differ from theirs). Having developed some operations
we can then follow the path set out in [21] and prove a set
of algebraic laws that our operations obey, prove properties of
the algebra (completeness, normalisation etc.) and show how
existing models can be expressed in this way, and reasoned
about. This is, of course, looking a long way ahead, but
allowing people to design their own patterns and then be able
(assuming their patterns have certain properties which make
them well-behaved with respect to the pattern operators) to
build larger patterns from smaller ones would be a big step
forward in making the design of expressive but formally-
tractable interactive systems a reality.

VII. ACKNOWLEDGMENTS

Thanks to Jeffrey Brown for initial work with Gallagher
Command Centre and the Callback patterns. Also to Gal-
laghers Ltd. for a licence for, and support for, their Command
system. Also thanks to Paolo Masci for his help with pvsio-
web and for general discussions about the form of this paper.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] P. Hudak, The Haskell School of Expression. Cambridge University
Press, 2000.

[3] J. Bowen and S. Reeves, “Formal models for user interface design
artefacts,” Innovations in Systems and Software Engineering, vol. 4,
no. 2, pp. 125–141, 2008.

[4] ——, “UI-design driven model-based testing,” Innovations in Systems
and Software Engineering, vol. 9, no. 3, pp. 201 – 215, 2013.

[5] I. Bayley and H. Zhu, “Formal specification of the variants and be-
havioural features of design patterns,” Journal of Systems and Software,
vol. 83, no. 2, pp. 209 – 221, 2010.

[6] “PIMed, http://sourceforge.net/projects/pims1/?source=directory.”
[7] “PVSio-web, https://github.com/thehogfather/pvsio-web.”
[8] “Design Patterns, http://en.wikipedia.org/wiki/design patterns.”
[9] J. Bowen and S. Reeves, “Modelling safety properties of interactive

medical systems,” in Proceedings of the 5th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, ser. EICS ’13. New
York, NY, USA: ACM, 2013, pp. 91–100.

[10] Engineering and Physical Sciences Research Council, “CHI+MED:
Multidisciplinary computer-human interaction research for the design
and safe use of interactive medical devices, EPSRC reference:
EP/G059063/1,” 2011. [Online]. Available: http://gow.epsrc.ac.uk/
ViewGrant.aspx?GrantRef=EP/G059063/1

[11] P. Masci, Y. Zhang, P. L. Jones, P. Oladimeji, E. D’Urso, C. Bernarde-
schi, P. Curzon, and H. Thimbleby, “Combining pvsio with stateflow,”
in NASA Formal Methods - 6th International Symposium, NFM 2014,
Houston,TX, USA, April 29 - May 1, 2014. Proceedings, 2014, pp. 209–
214.

[12] P. Masci, Y. Zhang, P. L. Jones, P. Curzon, and H. W. Thimbleby,
“Formal verification of medical device user interfaces using PVS,” in
Fundamental Approaches to Software Engineering - 17th International
Conference, FASE 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings, 2014, pp. 200–214.

[13] J. Bowen and S. Reeves, “A simplified Z semantics for presentation
interaction models,” in FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, 2014, pp. 148–

162.
[14] “PVS, http://pvs.csl.sri.com.”
[15] “Agda, http://en.wikipedia.org/wiki/agda (programming language).”
[16] “Idris, http://www.idris-lang.org.”
[17] “PVSio, http://shemesh.larc.nasa.gov/people/cam/pvsio/.”
[18] G. Reeve, “A refinement theory for µcharts,” Ph.D. dissertation, The

University of Waikato, 2005.
[19] ISO/IEC 13568, Information Technology—Z Formal Specification

Notation—Syntax, Type System and Semantics, 1st ed., ser. Prentice-
Hall International series in computer science. ISO/IEC, 2002.

[20] S. Stepney, F. Polack, and I. Toyn, “Patterns to guide practical refactor-
ing: examples targetting promotion in z,” in ZB2003: Third International
Conference of B and Z Users, Turku, Finland, ser. LNCS, D. Bert, J. P.
Bowen, S. King, and M. Walden, Eds., vol. 2651. Springer, 2003.

[21] H. Zhu and I. Bayley, “An algebra of design patterns,” ACM Trans.
Softw. Eng. Methodol., vol. 22, no. 3, pp. 23:1–23:35, Jul. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2491509.2491517

