
Using State Machines for the Visualisation of
Specifications via Refinement

Colin Pilbrow
Department of Computer Science

University of Waikato
Hamilton, New Zealand

colinpilbrow@gmail.com

Steve Reeves
Department of Computer Science

University of Waikato
Hamilton, New Zealand

stever@waikato.ac.nz

ABSTRACT
We talk in this paper about using state machines and refine-
ment to characterise the visualisation of a computation.

We use Z specifications to give examples of systems in the
usual way, and then use Z schemas to also represent states
and transitions in state machines, which we consider to be
a particular kind of visualisation of a specified system.

We have investigated the principle of substitutivity and
the idea of downward simulation to check whether or not a
refinement relation exists between the specification and the
state machine. We are looking at this because we believe
that the soundness of the visualisation can be captured by
such a refinement relationship.

1. INTRODUCTION
Refinement first appeared as an informal process in [10]

where via “stepwise refinement” we move in a series of steps
from a high-level specification to a lower-lever implemen-
tation. These steps typically involve replacing high-level
descriptions of properties with lower-level descriptions that
preserve the intended properties given by the specification
but which are closer and closer to being expressed completely
in the target programming language. This idea was for-
malised into what we call refinement by defining both the
specification language and also what counts as a valid step,
and this in turn allows us to prove that the steps preserve
properties. Also, via transitivity, the final lower-level version
(usually an implementation) preserves the intended proper-
ties of the original specification.

Refinement is used to prove correctness when developing
systems from specifications, and we will argue here that it
can also be used to prove the acceptability (or otherwise)
of visualisations of specifications. We will talk in this paper
about using state machines as visualisations and the idea
of refinement to characterise the sound visualisation of a
computation. We write both machines and specifications in
Z. We check to see whether the Z that represents the state
machines is a refinement of the Z that expresses the initial
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASWEC ’ 15 Vol. II, September 28-October 01, 2015, Adelaide, SA, Aus-
tralia
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3796-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2811681.2811702

specification. If it is, we argue, then the resulting state
machine is both an acceptable visualisation of the original
system and also one that it in some sense does not mislead
us relative to the initial specification.

In the rest of the paper, we introduce Z very briefly, and
then introduce some of the ideas and formalisation concern-
ing refinement. We go on to give examples of state machines
that may or may not be sound visualisations, and give ex-
amples of checking, via trying to prove that a refinement
relation of the right sort exists, whether or not these are in
fact acceptable or not.

We are, in this paper, going to ignore concerns around aes-
thetics, graphic design, usability and so on. There are clearly
important when considering visualisation of a computational
systems, but they are not what this paper is about.

2. Z SPECIFICATIONS

2.1 Schemas, bindings, states and operations
The state space of a system is described by Z state schemas.

These give the names and types of the parts of the state
that can be observed, which we call observations, together
with predicates which express properties of and constraints
on and between these observations. Each schema describes
a set of allowable states, and formally each state is repre-
sented by a binding, which is simply a record-like structure
which, for each of the observations in the state schema, tells
us what that observation’s value is in that state. Bindings
are only part of a state space if the relationship between
its observation values actually satisfy the predicates in the
state schema.

Further, we have operation schemas which describe, in
terms of changes to observations, how the state of the system
changes from one state to another. Again, the operation
schemas denote sets of bindings. This time instead of each
binding representing an allowable state of the system, the
bindings in an operation schema show, for each observation,
what its value is before and after the operation takes place.
So, each binding in this case is rather like an element in a
relation between before and after states.

We illustrate these ideas in the next section with two ex-
amples. More details are readily available (e.g. [3,11]) since
Z has been extensively used for a number of decades now to
specify computational systems.

2.2 Birthday Book
This example is the old standard, but one that we will

adapt in our examples later in this paper: Spivey’s Birth-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Commons@Waikato

https://core.ac.uk/display/44289756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

day Book example [8, 9]. The Birthday Book is a system
for recording people’s birthdays. There are operations for
adding or removing people, or finding the names of people
with a given birthday.

The sets NAME of people’s names, and DATE , of dates,
are taken as given; their structure is of no concern for this
level of detail of specification:

[NAME ,DATE]

We make clear what can be seen of a system via the observations
possible in the state. The Birthday Book uses an obser-
vation of a partial function birthday to record the birth-
days of known people, and the observation of the set known
that contains the names of the people whose birthdays are
recorded:

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

So this schema defines the state space of the system. Ini-
tially, there are no recorded birthdays:

InitBirthdayBook
BirthdayBook

birthday = ∅
known = ∅

The AddBirthday operation registers a new birthday, given
a name and a date:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known

birthday ′ = birthday ∪ {name? 7→ date?}

Note that the prime on an observation means, by convention,
that this is the observation after the operation has taken
place.

In a complete specification there would also be schemas
for further operations like removing someone’s birthday, or
looking up a birthday given a name, and so on. Finally,
there is also a schema calculus which has operations like ∧
and ∨ for putting schemas together to make larger schemas.
These essentially put the predicate parts of schemas into
conjunction or disjunction respectively.

3. REFINEMENT

3.1 Principle of Substitutivity
Essentially what the Principle of Substitutivity (PoS) says

is: if we substitute your ideal, specified system with our ac-
tual system and you cannot tell the difference, or our system
at least does everything your ideal would, then our system
must be acceptable to you.

Morgan’s book [5] (especially its introductory chapters)
has a very good discussion of all this with compelling exam-
ples.

This principle, for us, is the basic conceptual foundation
upon which we base our search for ways to formally capture
what it means to be a sound visualisation of a computa-
tional system. So, we will not consider personal or aesthetic
aspects of visualisation; we will concentrate on trying to for-
malise what a sound visualisation is, i.e. one that does not
mislead the user, with the understanding that whatever else
a visualisation is, it must be sound. If your visualisation is
not sound, then however fancy and impressive is looks, it is
worthless.

For this much more modest goal, the PoS will serve us well.
It also leads on, in its formalisation, to the idea of (formal)
refinement, which we will take as our basic foundation for
soundness of visualisation. We say more about this near the
end of the paper.

We now formalise the ideas behind the PoS. If we are
given the specification of some operation which changes the
state of a system and we are asked to implement that oper-
ation then the implementation counts as correct under the
following conditions: (a) it can be used in all the situations
that the specification of the operation says it can be used
(and perhaps more situations); and (b) the results of its use
are amongst the results specified for the operation (that is,
it does not do anything to the state outside of the possi-
bilities of what can be done to the state as allowed by the
specification).

Later we also use data refinement. This is based on the
PoS, but also features a relation between the specification
state space and the visualisation state space.

4. STATE MACHINES USING Z
Here we provide methods for writing state machines using

schemas, as a prelude for formally checking for refinement.

4.1 State Machines using Schemas
Each state and each collection of transitions with the same

name is written using schemas.
For example, the state space of a state machine with two

states can be defined by

StateSM ::= State0 Y State1

where State0 and State1 are both schemas representing
states in the state machine. The schema calculus being used
here is simply stating that the system is either in State0 or
State1, but not both (so we have the idea of an exclusive-or
being expressed in the schema calculus).

A transition representing operation Op1 going from State0
to State1, for example, can be defined as simply by

Op1 :== State0 ∧ State1′

If there are several Op1 transitions in the state machine,
they can be collected using more schema calculus, for exam-
ple

Op1 :== (State0 ∧ State1′) ∨ (State1 ∧ State0′)

would be a suitable definition if there were transitions from
State0 to State1 and from State1 to State0.

5. SOUNDNESS OF A VISUALISATION
We have repeatedly claimed that we are using refinement

to check the soundness of visualisations, and here we address
that claim.

The visualisations that we prove are refinements of speci-
fications have the following properties:

• every trace and transition in the visualisation is also
in the specification;

• if an operation is enabled in the specification, it must
also be in the visualisation;

• the visualisation can use observations of different types
than those in the specification (via a retrieve relation)
to help visualise different parts of the specification.

Visualisations are often considered to be an abstraction
of the system being visualised, so why are we not refining
the visualisation into the specification? If we have a visu-
alisation that refines to the specification, we will know that
every trace in the specification is in the visualisation, i.e.
is being visualised. However, the visualisation may also in-
clude traces and transitions that are not in the specification.
We consider such visualisations to be misleading. Addition-
ally, it is possible to have operations enabled in a state that
are not visualised as transitions from the respective state in
the state machine.

Hence, we are checking soundness of our state machine
visualisations by checking that a refinement relation exists
from specification to visualisation.

6. STATE MACHINE REFINEMENT
Using the above formalisation of state machines, we will

provide two example visualisations to investigate refinement
between the visualisations and the birthday book specifica-
tion. We have chosen these examples because they relate to
the “archetypal” birthday book example, and also because
they seem to cover some obvious choices that might be made
when visualising this example.

6.1 Empty/NonEmpty State Machine
The first visualisation considers only the states where the

book is empty or nonempty to be important to the user.

∅Init ∅

Add

Remove

Edit
Add

Remove

The state machine is initialised in the state where the
birthday book is empty. The only enabled operation in this
state is the Add operation, which changes the state to the
state where the birthday book is not empty. We can also Add
when the birthday book is not empty, and the book stays
nonempty. Edit is enabled only when the book is nonempty,
and does not change the state. Remove is also only enabled
when the book is nonempty, and will either result in an
empty book or a nonempty book.

So, we have removed the information that lets us know if
we are removing the last friend from the book, which has
created some nondeterminism in the state machine. We can
also add a friend that may have already been added, or edit
a friend that may not have been added.

The following Z schemas describe the state space and tran-
sitions of the state machine.

The State1 and State2 schemas remain abstract through-
out, but can still be manipulated using schema calculus to

give the desired schemas.

StateSM ::= State1 Y State2
InitSM ::= State1′

Add ::= State2′

Remove ::= State2
Edit ::= State2 ∧ State2′

Note that Add and Remove have been simplified. Add will
always end up in State2 from either state, and Remove will
always start in State2 and end in either state.

The relation between the specification state and the state
machine state shows how the specification and the state ma-
chine are related: when the specification is in a state where
known = ∅ the state machine is in State1, otherwise the
state machine is in State2. (This relation is important when
we consider refinement, when it is usually called the retrieve
relation. It is the same relation that we talked about in
section III(b) when discussing data refinement and its sim-
ulation relation.) It can be written:

R
State
StateSM

(known = ∅ ∧ State1)
∨
(known 6= ∅ ∧ State2)

We can check whether a refinement relation holds by seeing
whether a downwards simulation exists (and by considering
the principle of substitutivity). We can prove that, in fact,
the visualisation is not a downwards simulation of the spec-
ification, so a refinement relation does not exist and so, we
say, the visualisation is not sound. For example, the trace

InitSM ,Add(Alan Turing , 010112),
Remove(Alan Turing)

can end in either the empty or nonempty state, however
the specification will always end with an empty book. This
example shows that this method can help reveal that a vi-
sualisation is unsound.

6.2 Alan Turing Birthday Book
The second example involves a slightly more complicated

visualisation, focusing on the status of a particular name in
the book.

In figure 1 we have used the following abbreviations:
StateT : states in which birthday books contain

Alan Turing 7→ 230612

i.e. this maplet is part of the function birthday in such states.
StateF : states in which birthday books contain the name

Alan Turing , but with some date other than 230612.
State0 : states in which birthday books do not contain the

name Alan Turing .
The operations are separated out into the cases where the

name and date are equal to or different from Alan Turing
and 230612, respectively.

In the state machine the operation names have been given
subscripts to represent the inputs in order to save space. For
example, AddA,T is the add operation with inputs Alan Turing
and 230612, EditO is the edit operation where the name is
not Alan Turing and the date is any date. RemoveA,F is the

State0

StateF

StateT

AddA,F

AddA,T

RemoveA

EditA,T

EditA,F

RemoveA

EditO
AddO

RemoveO

EditO
AddO

RemoveO
EditA,F

EditO
AddO

RemoveO
EditA,T

Figure 1: Visualising the Alan Turing birthday book

remove operation where the name is Alan Turing and the
date is not 230612.

So, the transitions have been separated into transitions
that have Alan Turing as input, and those that do not. The
transitions that do not have Alan Turing as input do not
change the state, but are still present in the state machine
to prevent these operations from behaving chaotically. The
transitions that have Alan Turing as input have the same
preconditions as the original specification.

We need the transitions in schema form to check for a
refinement. These concrete schemas are the combination of
each of the appropriately named transitions.

A : NAME
T : DATE

StateSM ::= State0 Y StateT Y StateF

InitSM ::= State0′

Add0,Edit0,Remove0 ::=
((State0 ∧ State0′) ∨ (StateT ∧ StateT ′) ∨
(StateF ∧ StateF ′)) ∧ name? 6=A

Add ::= Add0 ∨
(State0 ∧ StateF ′ ∧ name? =A∧ date? 6=T) ∨
(State0 ∧ StateT ′ ∧ name? =A∧ date? =T)

Remove ::= Remove0 ∨
(StateF ∧ State0′ ∧ name? =A) ∨
(StateT ∧ State0′ ∧ name? =A)

Edit ::= Edit0 ∨
((StateT ∨ StateF) ∧ StateF ′ ∧ name? =A

∧ date? 6=T) ∨
((StateT ∨ StateF) ∧ StateT ′ ∧ name? =A

∧ date? =T)

The simulation relation between the states of the specifica-
tion and the state machine is given by:

R
State
StateSM

(A /∈ known ∧ State0)
∨ (A ∈ known ∧ birthday A 6= T ∧ StateF)
∨ (A ∈ known ∧ birthday A = T ∧ StateT)

We can prove that this visualisation is a downwards simula-
tion of the specification. So, we can say that this visualisa-
tion is sound. Every sequence of operations performed in the
specification will end with the same status for Alan Turing
when the same sequence if performed in the visualisation.

7. MORE "VISUAL" VISUALISATIONS—AN
ALTERNATIVE TO STATE MACHINES

An example of this, which also allows us to illustrate more
pictorial examples of visualisation beyond state machines, is
given by typical uses of ProB [6]. Here we present the simple
jars visualisation.

We have two jars, j 3 has a volume of 3 litres, whereas j 5
can contain 5 litres.

Jars ::= j 3 | j 5

max fill : Jars → N

max fill = {j 3 7→ 3, j 5 7→ 5}

Each jar currently contains a certain amount of liquid.

Level
level : Jars → N

∀ j : Jars • level(j) ≤ max fill(j)

In the beginning, all jars are empty.

Init =̂ [Level | ran level = {0}]

A (not full) jar can be filled completely.

Fill Jar
∆Level
j ? : Jars

level(j ?) < max fill(j ?)
level ′ = level ⊕ {j ?}C max fill

There are several further operations. The important thing
here, though, is that fact that this example is the standard
one used in an already existing notion of visualisation in a
formal framework, namely the idea of animation (as they
call it) in ProB. In ProB there is the facility for represent-
ing states by pictures that change when operations are per-
formed, thus animating the specification. So, if we started
in a state where a jar was not full and then applied the
Fill Jar operation the ProB animation would show this as
a change in pictures from a non-full jar to a full jar:

This example and method is in contrast to previous work
in this paper, where we have used state machines as our
visualisation choice. However, our refinement ideas can eas-
ily be used on this sort of visualisation as well, to check for
soundness in the same sense as we checked the state machine
visualisations.

We should also note here that the visualisations via state
machines that we talk about in the rest of the paper are not
animated in the sense that ProB’s are. That is, as operations
are used and the system moves from state to state then
ProB animates this process by showing visually that the
state has changed (like the before and after pictures above).
We, by contrast, show the whole state space and the possible
changes between its states all together. However, we could
animate our visualisations by, for example, making the state
that the system is currently in a different colour from the
rest. In the future we will investigate to see whether or not
an aesthetic difference such as this can affect the idea of
soundness propounded in this paper.

8. CONCLUSIONS AND FUTURE WORK
We have started, in this paper, to explore using the well-

established formal notion of refinement as a way of telling
whether or not a state machine visualisation of a specifi-
cation is sound, by which we mean that a presentation of
the system via the visualisation would not be misleading—
anything that the visualisation showed us the system doing
would be something the original specification allowed.This
would be important if we were using the visualisation to
present a system to a non-programmer for example, where
all the messy details of implementation would be unwelcome,
but where “what the system does” has to be demonstrated.

One area where a more general notion of visualisation of
a computation has been long and widely explored is in the
teaching of programming. The work of Rogers et al. [1],
Stasko et al. [4] and even our own (from decades ago) in [2,7]
might be relevant here.

Also, visualisations are commonly used to validate a spec-
ification. That is, early design decisions can be checked with
clients to ensure that those design decisions, which will later
become cast into the software of an implementation, are still
valid ones as far as the client (and their specification of what
they want) is concerned.

We have, of course, barely scratched the surface here, and
there is much further work and investigation to be carried
out.

Acknowledgments
Thanks for Judy Bowen and Robi Malik for their ideas and
encouragement concerning this work. We also thank the
anonymous referee who suggested the teaching of program-
ming world might have something to teach us—which we
had evidently forgotten!

9. REFERENCES
[1] A. Akingbade, T. Finley, D. Jackson, P. Patel, and

S. H. Rodger. Jawaa: Easy web-based animation from
cs 0 to advanced cs courses. In In Proceedings of the
34 th ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2003, pages
162–166. ACM Press, 2003.

[2] D. Goldson. A symbolic calculator for non-strict
functional programs. The Computer Journal,
37(3):177–187, 1994.

[3] M. C. Henson and S. Reeves. Investigating Z. Journal
of Logic and Computation, 10(1):1–30, 2000.

[4] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In In Proceedings of the 24th
International Conference on Software Engineering,
pages 467–477, 2002.

[5] C. Morgan. Programming From Specifications (2nd
ed.). Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1998.

[6] ProB Project. http://stups.hhu.de/prob/.

[7] S. Reeves, D. Goldson, P. Fung, T. O’Shea,
M. Hopkins, and R. Bornat. The Calculator
Project-formal reasoning about programs. In
M. Purvis, editor, Proceedings of Software Education
Conference (SRIG-ET’94), pages 166–173. IEEE
Computer Society Press, 1995.

[8] J. Spivey. An Introduction to Z and Formal
Specification. IEE Software Engineering Journal,
4(1):40–50, 1989.

[9] J. M. Spivey. Understanding Z: A Specification
Language and its Formal Semantics, volume 3 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1988.

[10] N. Wirth. Program development by stepwise
refinement. Communications of the ACM,
14(4):221–227, April 1971.

[11] J. Woodcock and J. Davies. Using Z: Specification,
Refinement and Proof. Prentice Hall, 1996.

