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ABSTRACT 

The Dry Valley region of Victoria Land is the largest ice-

free area in Antarctica. Within the frigid arid environment 

o of the Dry Valleys, where the mean annual air temperature is -20 C, 

there are several permanently ice-covered, amictic, saline lakes 

occupying undrained bedrock depressions. Three of these lakes, 

namely Lakes Yanda , Bonney and Joyce, have been studied with the 

aim of determining the nature of their bottom sediments and 

relating the stratigraphy of bottom sediment cores to Holocene 

climatic fluctuations. These lakes have an area of 0.8 to 

2 5.2 km , are from 35 to 68m in maximum depth and have an ice-

cover 3 to 4m thick. The lakes are chemically and thermally 

s~!atified and receive their water from meltwater streams draining 

the local glaciers. 

The bottom sediments consist of detrital sands and silts, 

chemical precipitates and organic material. The detrital sedi-

ments consist of feldspar and quartz with smaller quantities of 

hornblende, augite, hypersthene and mica that are derived locally 

from the rocks exposed on the adjacent valley sides. 'rhesa 

sediments are mainly wind-transported or, to a lesser extent, 

river-transported into the lakes. The wind derived sediments are 

either blown onto the lake-ice, where they eventually sink to 

the lake-floor, or they are blown into the moat developed about 

the shores of the lake in summer. The chemical precipitates 

consist mainly of gypsum, halite, aragonite and calcite whose 

constituent elements were derived from meltwa ter streams discharg-

ing into the lakes; however Lake Bonney also received dissolved 
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solids of marine origin about 300,000 years B.P. and 1,200 years 

B.P. 

From the sequence of chemical prec"ipitate - rich bands and 

grain-size cycles in cores from Lakes Vanda and Joyce, together 

with the stratigraphy in the Lake Bonney cores, a sequence of 

climatic fluctuations is inferred. Colder climatic phases are 

most probably associated with periods of low lake-level during 

which chemical precipitates formed following the concentration of 

brines under frigid evaporitic conditions. At these times the 

sediment input from meltwater streams was low because of the 

locking-up of water in valley glaciers, and the main source of 

sediment would probably then be wind-derived. 

U/Th dating of the chemical precipitates has provided an 

absolute record of past climatic changes which indicate that the 

major glacier systems in the Dry Valley region were nonsynchron­

ous. Low lake levels occurred in Lake Vanda some 2,000 and 

5,500 years B.P. and on at least four earlier occasions. Sediment 

cores from Lake Joyce indicate a period of low lake-level about 

3,000 years B.P. The Lake Bonney cores suggest periods of low 

lake-level occurred following each of the marine incursions into 

the valley (300,000 and 1,200 years B.P.) and that the advance 

of the Taylor Glacier into the Bonney Basin at least 10,000 

years B.P. probably coincided with the Taylor I Glaciation. 

Frigid evaporitic conditions have continued to operate in Lake 

Bonney since 1,200 years B.P. with halite crystals forming on 

the lake-floor. However, the lake-level has been steadily rising 

over the last 500 years. 
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C HAP T E R I 

INTRODUCTION 

The Victoria, Wright and Taylor Valleys, often referred to 

6S the Dry Valleys, together cover about 2,500 km2 of the 

VictoTia Land region of Antarctica. The ice-free valleys lie 

about 70 km north-west of Scott Base and are bounded by the 

Polar Plateau on the west and the Wilson Piedmont Glacier on the 

east (Fig. 1.1). The lakes studied are amictic, permanently 

ice-covered, and include Lake Vanda in the Wright Valley and 

Lakes Bonney and Joyce in the Taylor ValleJo 

Lake Vanda, which has a length of 5.64 km and a width of 

1.51 km, occupies an undrained bedTock depression in the lowest 

part of the Wright Valley. Lake Bonney is situated at the 

terminal snout of the Taylor Glacier and is split into two lobes 

by a bedrock protuberance known as the Bonney Reigel. The 

western lobe, .which adjoins the Taylor Glacier snout, is a 

lobate depression 1.8 km long, while the eastern lobe is 

elongate and about 4 km long. Lake Joyce occup~es a near­

circular basin, approximately 700 m in diameter, the south­

eastern boundary of which is formed by the Taylor Glacier. 

1.1 PURPOSE OF STUDY. 

The objective of this study was to present a detailed 

description of the sedimentology of Lakes Vanda, Bonney and 

Joyce. The texture and mineralogy of the detrital bottom 

sediments has been studied so as to deter~ine the mechanisms 

of transport and deposition of these sediments and to elucidate 

their provenance. The composition of the chemical precipitates 

1 
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in the sediments was investigated with the aim of relating them 

to the chemical and physical composition of the lake waters. 

From the study of the bottom sediments and the stratigraphy 

preserved in deep cores, a sequence of Holocene climatic 

fluctuations has been inferred. 

1.2 PREVIOUS WORKERS. 

The literature concerning the geology of the Dry Valleys 

and the unique chemical structure of the waters in the lakes 

of this region is quite extensive (eg. Angino and Armitage, 

1962; McKelvey and Webb, 1962; Haskell et al., 1965; i-lilson, 

3 

1967; Boswell et al., 1967; Denton et al., 1971). Sedimento­

logical data on the lakes of the Dry Valley region have been 

outlined only by Goldman et ale (1967), Nelson and Wilson (1972), 

the Dry Valley Drilling Project (1974), Craig et ale (1974) 

and McCabe (1974). 

1.3 GEOLOGICAL SETTING. 

The geology of the Dry Valleys (Fig. 1.2) consists of a 

basement of Precambrian to Cambrian metamorphic rocks of the 

Skelton Group and the Ordovician to Silurian granitic rocks of 

the Granite Harbour Intrusive Complex. The granites of the 

complex are intruded by a highly complex system of lamprophyre 

and porphyry dykes. The basement rocks are overlain by the 

Devonian to Juraseic sandstones of the Beacon Supergroup and 

the Jurassic to Cretaceous Ferrar Dolerites. The mineralogy 

of the above-mentioned rocks is summarised in Fig. 1.2. The 

geological record for the Lower Tertiary is as yet unknown 

(Neall and Smith, 1967). The Upper Tertiary however is 

represented in the geological record by moraine and by basalt 

flows and small scoria cones (McMurdo Volcanics). 
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Fig. 1.2 Geological map of the Wright and 
Taylor Valley region, Antarctica. 
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The Late Cenozoic history of the Dry Valleys has been the 

subject of considerable investigation. That multiple glaciation 

has played a dominant role in shaping these valleys has been 

recognised by many workers (eg. Nichols, 1965; Denton et al., 

1971; Calkin and Bull, 1974). Calkin and Bull (1974) grouped 

the main events in the history of the Dry Valleys, for the last 

several million years, into five sequential phases: 

(1) alpine glaciation in the Tertiary; coalescence of 

glaciers flowing inland and formation of the ice sheet of 

Greater Antarctica; 

(2) cutting and enlargement of the valleys by large outlet 

glaciers flowing from the ice sheet; 

(3) final retreat of the through-valley outlet glaciers, 

accompanied by extensive meltwater erosion and. followed, at 

least in the I-Iright and Taylor Valleys, by marine submergence; 

" (4) cooling, thinning of glaciers and valley emergence by. 

late Pliocene to Pleistocence time, with 3 or 4 episodes of 

local alpine glaciation and glacial advances along the valleys 

from both ends; and 

(5) the present (Holocene) phase, in which the local 

glaciers are nearly in equilibrium. 

Past fluctuations of the three major glacier systems in 

the Dry Valleys were not synchronous. Therefore the history 

and chronology of each system must be considered independently, 

as indicated in Fig. 1.3. The first glacier system, the 

ice sheet of east Antarctica, is represented in the Dry Valleys 

by the Taylor and Wright Upper Glaciers. These two glaciers 

are small tongues of the ice sheet that spillover bedrock 

thresholds and occupy the western ends of the Taylor and Wright 

Valleys (Fig. 1.1). The second glacier system, the Ross Ice 

Shelf, has a number of ice tongues which extend westward up the 
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Dry Valleys from the Ross Sea. Finally, independent alpine 

glaciers occur throughout the Dry Valley region. 

The Taylor Glacier drains the ice sheet in East Antarctica 

and on at least five occasions in the past (Fig. 1.3) increases 

in the surface level of the ice sheet have caused major advances 

in the Taylor Glacier. The present tongue of the Taylor 

Glacier is in physical contact with the deposits of Ross Sea I 

and Ross Sea II ' ages. Subsequent to the recession of Ross Sea 

I ice and concomitant draining of lake water from the Taylor 

Valley, the Taylor Glacier advanced across Ross Sea I strand~ 

lines, across moraines deposited by alpine glaciers during the 

Ross Sea 11/1 interval of ice recession and across Ross Sea II 

strandlines (Fig. 1.3). The data of Denton et al. (1970) 

indicate that the Taylor Glacier, the Wright Upper Glacier, and 

the adjoining ice sheet were smaller than at present during, 

Ross Sea I and II times, and that they have since advanced. 

Since the major valley-cutting period, the Wright Upper 

Glacier has invaded the west end of Wright Valley at least 

three times prior to the present (Fig. 1.3). The earliest of 

these advances, Wright Upper Glaciation IV, was the most 

extensive and extended to the east end of the depression now 

occupied by Lake Vanda. 

The Dry Valleys have experienced possibly four west­

flowing glacial invasions from the Ross Sea and McMurdo Sound 

areas. In the Wright Valley these advances have been recorded 

by movement of a lobe of the Wilson Piedmont Glacier, the 

Wright Lower Glacier. In the Taylor Valley during the Ross 

Sea II and Ross Sea I Glaciations, ice tongues from Ross Sea 

ice sheets pushed westward to the vicinity of the present 

Canada Glacier (Fig. 1.1). 'rhese tongues dammed large lakes 

in the Taylor Valley the strandlines 

1 
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of which are common throughout the eastern half of the valley, 

those of Ross . Sea I age occurring up to about 310 m in altitude 

and those of Ross Sea II age reaching 400 m (Denton et al. 1970). 

The small alpine glaciers obviously respond more completely 

and quickly to changes in the local climate than do the axial 

glaciers considered above. In the Wright Valley, the alpine 

glaciers on the eastern part of the south side of the valley 

appear to be out of phase with the westward moving advances 

of the Wright Lower Glacier (Calkin et al., 1970). In the 

Taylor Valley, only minor iluctu ations of· alpine glaciers 

occurred, the youngest two alpine glaciations being opposite 

in phase to the Ross Sea Glaciations. 

Evidence suggests that valley glaciation occurs when the 

ice sheet thickens, causing ice to pour over valley-head cols. 

The Ross Ice Shelf also thickens, perhaps as a result of 

surface-level changes in the East Antarctic ice sheet, and 

expands northwards, thus causing ice to intrude into the Dry 

Valleys. Wilson (1964) suggested the possibility that when the 

ice shelf advanced the supply of moisture to inland areas was 

reduced because incoming snow was forced to fallon the 

expanded ice shelf. This would have the effect of reducing 

alpine glaciation at that time when valley glaciation was at a 

maximum, and vice versa. 

While the gross U-shaped cross-section of the Dry Valleys 

is undoubtedly the result of glacial action, the present frigid 

arid climate has greatly modified the terrain, largely through 

the influences of strong winds, fluvial action,frost riving 

and chemical weathering. 

1.1+ CLIMATE. 

Features of the climate include low temperatures, low 

precipitation, low humidity and relatively low mean cloud cover. 

9 



At Lake Vanda the maximum and minimum mean monthly air temperat­

ure for 1970 was respectively + 2.40 0 in January and - 36.90 0 

in July (Thompson et al., 1971). With the exception of January 

and December all months of the year have a mean air temperature 

below OOC. 

In the summer of 1969 and 1970 Vanda Station experienced 

a well developed sequence of up- and down-valley winds with 

velocities of generally 8 to 10 m/sec (Thompson et al., 1971). 

During the warmer part of the day easterly winds were recorded 

whiler'overnight", when the input of solar radiation was at a 

minimum westerlies occurred. 'linter winds are generally light. 

In 1970 winds exceeded 17 m/sec (gale force or 33 knots) on 

55 days, and the maximum gust recorded was 41 m/sec from the 

west on 6th August. 

One can reasonably assume that the climate at Lake Bonney 

is similar to that at Lake Vanda. Lake Joyce, because of its 
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higher altitude, experiences colder temperatures and predominantly 

westerly winds due to katabatic flow from the Polar Plateau. 

The 1973/74 summer field season, in Which the writer 

participated, was remarkably warm with temperatures above 00 0 

for two consecutive weeks. 

1.5 DRAINAGE, BATHYMETRY AND LAKE-ICE THICKNESS. 

Data obtained at Lake Vanda over the last five summers 

indicate little overland flow occurs into Lake Vanda except via 

the Onyx River ( P.W. Anderton, pers. comm.). The supply of 

meltwater to the Onyx River is mainly from the Lower Wright 

Glacier. Hydrological data for the Onyx River for the 1971/72 

(Hawes, unpublished) and 1973/74 summer season (P.\i. Anderton, 

1974, pers. comm.) are summarised in Table 1.1. 



Table 1.1 Summary of Onyx River discharge characteristics. 

1971 / 72 

Flow co~menced on 29/1/71 and ceased on 9/2/72 (72 days) 

Mean daily discharge 

Maximum daily discharge 

Total volume 

Daily sediment discharge 

Mean daily discharge 

Maximum daily discharge 

2}.29 (cusecs) 

176.06 (cusecs) 

4.106 x 106 m3 

1.036 tons/day 

15.298 tons/day 

Total suspended sediment deposited into 

Lake Vanda for 1971 / 72 summer = . 75.66 tons 

197} / 74 

(preliminary data) 

Flow 'commenced on 1/1/74 and ceased on 12/2/74 (4} days) 

Total volume }.255 x 106 m3 

A generalised bathymetric map for Lake Vanda (Fig. 3.16) 

was constructed by Nelson and \vilson (1972). A maximum depth 

of 68.8m occurs near the centre of the western lobe of the 

lake wi thin a 68m "depression" aligned roughly north-south 

across the general east-west trend shown by the shallower 

isobaths. The maximum depth zone appears to correspond to 

that position farthest removed from the influence of easterly 

and westerly sediment sources. The Lake Vanda ice-cover is 

about 1.7 to 3.2m thick (Cutfield, 197}). 

Lake Bonney acts as a drainage trap for meltwater streams 

from the Rhone, Lacroix, Matterhorn, Calkin, Hughes and 

Sollas valley-side glaciers as well as the main Taylor 

Glacier (Fig. 1.1). The bathymetry of the west lobe (Fig. 4.2}) 

11 



indicates a lobate depression containing the deepest part of 

Lake Bonney (35m). The east lobe consists of a flat floored 

elongate basin some 33m deep. Prior to the 1973/74 summer 

thaw the Lake Bonney ice thickness was approximately unifo·rm 

at 3 to 4m. Warm summer temperatures in the 1973/74 field 

season gave rise to considerable meltwater from the watershed 

glaciers which resulted in a rise in lake level of at least 

1m • . At the· same time, the lake-ice thinned to 2 to 3m 

thickness. 

Lake Joyce occupies a circular basin into which meltwat~r 

from the Taylor Glacier, Catspaw Glacier and an unnamed 

glacier to the west of Catspaw flow. The bathymetry of Lake 

Joyce (Fig. 5.5) is characterised by a narrow trough, 40m 

deep, trending south-east to north-west. The Taylor Glacier 
\ 

forms the 300m long south-east boundary of Lake Joyce with a 

moraine barrier separating the basin from the glacier for 

most of the lakes southern boundary. The average lake ice 

thickness is 3.5 to 4.2m although the ice is 7.2 m thick 

adjacent to the Taylor Glacier. 

During the austral summer months a moat of water forms 

about most of the shores of all three lakes. The width of the 

moat varies although considerably greater melt-out occurs 

where meltwater streams enter the lakes. A moat up to 10m 

wide occurs where the Onyx River enters Lake Vanda and where 

the meltwater stream from the Lacroix and Sallas Glacier 

enters Lake Bonney. 

The amount of meltwater flowing into the lakes, the 

thickness of ·the floating lake-ice and the width of the 

meltwater rim around the lakes varies considerably, both 

seasonally and annually. 
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1.6 PHYSICAL AND CHENICAL DATA. 

The lakes studied have unique temperature and chemical 

concentration gradients Crable 1.2 and Fig. 1.4). Chemical 

analyses of the lake water (Table 1.2) emphasise the highly 

saline nature of the lakes. The density of the Lake Vanda 

bottom water is 1.10 (Wilson, 1967) and 1.20 for Lake Bonney 

(Angino and Armitage, 1962). The salinity of Lakes Vanda, 

Bonney and Joyce is 138.2%., 424.1%- amd 2 .3%. respectively. 

The salinity values are calculated from chlorinity according 

to the empirical relationship: Salinity = 0.03 + 1.805 x 

chlorinity. The dense saline lake bottom waters appear to 

be conducive to the formation of the chemical precipitates 

listed in Table 1.3. Salt formation in Lakes Vanda and Bonney 

is probably aided by the relatively high concentrations of 

magnesium which has the effect of markedly decreasing the 

solubility of sal·ts, particularly sodium chloride (Sraitsch, 

1971). The concentration of brines and deposition of salts 

under frigid conditions (Thompson and Nelson, 1956) is also 

a process that cannot be discounted in the formation of the 

Dry Valley lake chemical precipitates. 

1.7 GENERAL SEDIMENT CHARACTERISTICS. 

The lake-bottom detrital sediments consist of a varied 

assemblage of sands and silts whose mean size and sorting 

is related to proximity to meltwater stream outlets, 

13 
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Table 1.2 Chemical analyses of the bottom water of the Dry 
Valley Lakes (after Boswell et al., 1967). 

Lake Vanda Lake Bonney Lake Joyce Seatlater 

Na 11,300 94,200 1,250 10,500 

K 350 3,900 95 380 

Mg 35,300 43,000 215 . 1,350 

Ca 1.600 1,200 35 400 

Cl 127,400 248,000 2,150 19,000 

Total Solids 176,500 390.900 5.000 35.000 

Table 1.3 Approximate limiting density and salinity values 
within which various salts precipitate from 
solution (after Clarke. 1924). 

Salt . Lower Limit Upper Limit 
Density Salinity Density Salinity 

(ppt) (ppt) 

CaC03 1.05 72 1.12 199 

CaS04 1.12 199 1.20 332 

CaS04 + NaCl 1.21 353 1.25 427 

NaCl 1.27 457 1.30 523 

Mg2S04 1.21 353 1.30 523 



Fig. 1.4 Temperature and chlorinity profiles for (a) Lake Vand 
(b) Lake Joyce and the (c) west lobe and (d) east lobe of Lake 
Bonney. After Hoare et al. (1964), \'ilson and i~ellman (1962t and 
Hendy et al. (1973) . 



"'Ilter of uniform , 

and unifex-m 

OENSfTV(g/cm') 

,. 
CHLORIDE (ppm) 

, 
"'-~- ..... .. 

~ 

• , , 
• 

a 

~ 

~ 

I 
Itcmp<-roture 
I 

20 

j ccmposition 

I 30 
I 

E I 
o . 

J;; 

'''~ ...... - a. .... -.. 40c; 

108 1·10 

2C-S 
J;; 

~ , ii 
" o 

. 0 CHLC~ji)E (ppm) 

C 

........ Temperature 

I 

• t 
I 

• , , , 
100 

30 

140 

_. - Chloride 

..... ... , 

500 - 1000 
CHLORIDE (ppm) 

b 

Temperature ·C 

, 
\ , , 
I , 
I 
I 

I , 
I 

15 

10 

20 

\ 30 , 
\ 
\ 
\ , 
" .. ...... 

.. 40 

1500 2000 

-2.0 0.0 2.0 4.0 6.0 
!-L-'---'-..L.1-I-<,2'lZ7'k;7I/ ///-,-,-' ~<-L."-'I 

\ 
\ , .. .. ..... .... 

10 

E 

"', , , 20~ 
\ 

o 80 160 

d 

·30 

240 

.C 
a. 
" o 



wind-exposure and to lake water depth. The locally derived 

detrital sediments are either river-transported or wind-blown 

into the lakes. In t -akes Vanda and Joyce two broad sediment 

facies can be distinguished on the basis of sediment relation­

ship to aerobic/anaerobic zones. The Lake Vanda aerobic 

sediments are generally medium grained sands often containing 

organic floc. The anaerobic sediments are generally fine to 

medium-grained sands that typically contain varve-like 

chemical precipitate and terrigenous silt bands. In Lake Joyce 

the aerobic sediments are fine-grained sands whereas the 

anaerobic sediments are fine to medium-grained sands that 

contain calcareous sand-silt bands. The highly saline bottom 

waters of the Lake Bonney east lobe -have produced a sediment 

facies consisting almost entirely of halite. However, the 

Lake Bonney west lobe and remaining east lobe bottom sediments 

consist of detrital medium-grained sands and sandy silts that 

are intermixed with various chemical precipitates. 

16 
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C HAP T E R II 

PROCEDURE 

2.1 COLLECTING ME'rHODS. 

Sampling locations were planned so as to cover as fully 

as possible the various lake environments. Following augering 

with a Sipre Auger, lake bottom s&~ples were collected using a 

40cm - long gravity corer or a small .cone-shaped gravity sampler. 

In addition eight longer cores were collected to elucidate ·the 

stratigraphy of Lakes Vanda and Bonney. In these cases the 

corer .. consisted of a steel pipe, 2m - long and 5cm in diameter, 

with a plastic liner (4cm in diameter). By lifting and dropp­

ing a lead sleeve on a second wire attached to the rig on the 

lake ice coveT the core pipe was pounded into the sediment 

(Fig. 2.1). 

At Lakes Vanda and Bonney sediment was also collected from 

the lake ice-cover and from the snout of the Taylor Glacier. 

Suspended sediment samples were collected at various levels 

in the water column at Lake Vanda using a Nansen water bottle. 

The bottom sediments of Lake Vanda were collected by 

C.S. N~lson and A.T. Wilson in January, 1972. The Lake Vanda 

long cores and all the Lake Bonney samples were obtained by 

the writer in January, 1974. The Lake Joyce samples were 



Fig. 2 .1 Corer in use at Lake Yanda. Note strandlines 
on northern shore. 
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collected by the 1972/73 University of Waikato Expedition in 

January, 1973. 

2.2. LABORATORY METHODS. 

Cores were split longitudinally and described lithologically 

using the Wentworth grain size classification (Table 2.1) and the 

Revised (1967) Standard Soil Colour Charts (Oyama and Takehara, 

1967), Figure 2.2 illustrates the procedure adopted for 

laboratory analyses. 

Table 2.1 Grain size scale for sediments. 

MILLIMETRES PHI (¢) VIENTWORTH SIZE CLASS 

Boulder 
I- 256 -B.o 

Cobble H 
ril 

,I- 64 -6.0 - > 
Pebble p!j 

C) 
,..- 4 . -2.0 

Granule 
'-- 2 -1.0 

Very coarse sand 
- 1 0 

Coarse sand 
f- 0.5 1.0 

Medium sand A 

I- 0.25 2.0 
z 
< 

Fine sand 
U) 

I- 0.125 3.0 
Very fine sand 

I- 0.063 4.0 
Silt 

I- 0.0039 B.o A 

Clay 
;:> 
:.; 

Sediment textural classes (after Folk, 196B) were deter-

mined following analysis of the sand, silt and clay content. 

The textural parameters of mean grain size, standard deviation, 



20 

Raw sediment 

Reference 
sample 

Total and 
inorganic carbon 

analyses 

X-ray fluorescence 
(X R F) 

analyses 

X-ray diffraction 
(X R D) analyses 

of chemical 
precipitates 

Treat .with dilute H202 for 

removal of organic matter Dry 

Bulk sediment 
X R D analyses 

Weigh. Treat with 
CH3COOH to remove 
carbonate minerals. 

Dry, reweigh and 
calculate wt. % C03 ----Disperse with sodium metahexaphosphate 

(Calgon) and wet sievedwith a 4 ¢ (63 ~)sieve 

Dry sand fraction and 
sieve at ~ ¢ intervals 
for textural analyses 

selected samples for 
heavy mineral separation 
using tetrabromoethane 

(S.G. = 2.7) 

1 
Microscopic analyses of 
light and heavy sand 

mineralogy 

Fig. 2.2 

The %20)1, 6 J1 and 2 )l mud 
fractions determined 

using pipette methods 

X R D analyses of clay 
fraction «6)l and (2 )l) 

Analytical procedure 



skewness and kurtosis (Table 2 . 2) were calculated and compared 

using graphical methods. 

Some attempt was made to calculate the percentages of 

minerals in samples using X-ray diffraction (X R D) techniques, 

although the inherent errors of the procedure in the presence 

of salts, and particularly carbonates (Runnells, 1970), is 

realised. The clay mineralogy was studied by X R D. Oriented 

particle mounts of the < 6 }l and < 2 J1 fractions were prepared 

using the dropper-on-glass-slide technique. Identification 

of the clay minerals was based on the analyses of air-dry, 

glycolated, and heated (5500C) mounts (Carrol, 1970). 

Selected gypsum, aragonite, calcite and halite samples 

from Lakes . Vanda and Bonney were analysed with the University .. 

of Waikato Ortec X-ray fluorescent (X R F) analyser. Long­

scan runs (2,000 seconds/sample) without standards were made 

to compare elemental peak intensity ratios between samples. 

The mineralogy of the sand fraction was studied using a 

petrographic microscope with the distinction between glass 

(~= 1.50 - 1.51), quartz (~ = 1.54) and feldspar (~= 1.52 -

1.58) being made by mounting sand grains in ani sol 

(~ = 1. 518) , an aromatic ester. 

A Beckman Total Carbon Analyser was used to determine 

the inorganic and organic carbon content. Total carbon is 

determined by measuring the carbon dioxide produced in a 

21 



Graphic Mean 
4ll6+ 4l50+4l8lJ. 

3 

Inclusive Graphic Standard Deviation 

.4>811 - <1>16 4195 - CPS 
°I = +---

lJ. 

Verbal Classification: 

0I under 0.354l 

o. 35 to O. s04l 

0.50 to 0.714l 

0.71 to 1. Ocjl 

1.0 to 2.04l-

2.0 to lJ..04l 

over 11.04l 

Inclusive Graphic Ske'fll'less 

6.6 

very well sorted (\iws) 

well sorted (ws) 

IlPderately well sorted (lIMs) 

mxlerately sorted (ms) 

poorly sorted (ps) 

very poorly sorted (vps) 

extremely poorly sorted (eps) 

Slc _ cjll6 + cjl8lJ. - 24150 cjl5 -~ cjl95 - 24150 
--~ - + 

2(cjl8lJ. - 4l16) 2(cjl95 - 4l5) 
'. 

Verpa! Classification: 
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s~ from +1.00 to +0.30 

+0.30 to +0.10 

+0.10 to -0.10 

-0.10 to -0.30 

strongly fine-skewed (sfs) 

fine-skewed (fs) 

near--syrranetrica1 (ns) 

coarse-skevled (cs) 

-0.30 to -1.00 

Graphic Kurtosis 

~ = 4195 - cjl5 

2.lJ.lJ.(cjl75 - 4l2s) 

Verbal classification: 

KG under 0.67 

0.67 to 0.90 

0.90 to 1.11 

1.11 to 1.50 

1.50 to 3.00 

over 3.00 

strongly coarse-skewed (scs) 

very platykurtic (vpk) 

platykurtic (pk) 

mesokurtic (mk) 

leptokurtic (lk) 

very leptokurtic (vlk) 

extremely leptokurtic (elk) 

TABLE l.1 Statistical Parilllleters (after Folk, 1968) 
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non-dispersant infra-red analyser after the sample has been 

subjected to a temperature of 9500 C and passed on to a cobalt 

oxide catalyst. The total inorganic carbon content is measured 

similarly following the passage of the sample through a column 

(heated at 1500 C) which contains quartz chips soaked in 

phosphoric acid. The difference between the two results gives 

the content of organic carbon. 



/, 

Fig. 3.1 View of the Wright Valley from the west: Lake Vanda in foreground. 
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C HAP T E RIll 

LAKE VANDA SEDIMENTS 

3.1 INTRODUCTION. 

The detrital sediment entering Lake Vanda is wind-blown 

or river-transported by the Onyx River (Table 1.1). Sample 13 

is wind blown sediment obtained from the lake-ice at site 13. 

Sample 14 was collected by C. Hendy and R. Holdsworth from 

near site 6 (Fig. 3.16) during a storm lasting several days in 

late September, 1973. During gusts of at least sixty knots 

(R. Holdsworth, 1974, pers. comm.) the westerly to south­

westerly winds blew sand in sheets that were generally no higher 

than 2m above the lake-ice surface although sheets were seen 

10m above the lake, particularly in the area around site 1. 

Sand ' grains settling on the lake ice begin to sink. 

following the format~on of an icy crust under the grains. 

Eventually the sand particle falls through the ice because of 

its insulating properties whereby melting takes place around and 

beneath the icy crust. The melting proceeds towards the surface 

of the ice resulting in the collapse of the unsupported crust. 

Aerial photographs of Lake Vanda show a series of semi-

parallel "dirtlines" on and within the lake-ice which are 

especially prominent along ·the southern side of the main lobe 



N 

~xR, 

9 .. lkm ,J 
Fig. 3.2 "Dirt lines" on the Lake Vanda ice cover. The, "dirt' lines" appear as roughly aligned 

ablation pits and probably represent the inner edges of former moats. 
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of the lake (Fig. 3.2). On the ice surface the "dirtlines" 

appear as a series of roughly aligned ablation pits and probably 

represent the inner.piges of former moats. The fact that the 

lines are not parallel to the depth contours suggests the ice 

cover, once free-floating is capable of lateral movement in 

strong winds. 

3.2 GENERAL SEDIMENT CHARACTERISTICS. 

The bottom sediments of Lake Vanda (Fig. 3.16) were shown 

by Nelson and Wilson (1972) to consist of a varied assemblage 

of organic rich, chemical precipitate-bearing, quartz and 

feldspar-rich sands. Broadly, two contrasting bottom sediment 

facies are present, each sharply separated by the 60m depth 

contour. Shallower than 60m the environment is aerobic and the 

sediments are mainly pale fawn, massive, medium quartz and 

feldspar-rich sands overlain by a lighter coloured layer of 

organic detritus up to 13cm thick (cores 1 and 3 - Fig. 3.3). 

In very shallow locations the sediments are difficult to core 

as they become increasingly gravelly and resemble those above 

the present shore of Lake Vanda. 

In contrast, below 60m the environment is anaerobic, the 

sediments emit a strong hydrogen sulphide odour, and are grey 

and grey-green medium and fine-grained sands containing finely 

disseminated organic matter and variable, but significant 



Fig. 3.3 Lake Vanda bottom sediment cores. Cores 1 (field 
notation A) and 3 (E) are aerobic sediments composed of medium 
grained sands overlain by lighter coloured organic floc. The 
anaerobic cores 15 (I), 16 (N ) and 17 (R) consist of grey, 
medium to fine grained sands and chemical precipitates. 
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quantities of calcite and gypsum, often in the form of varve-like 

bands (cores 14, 15 and 16 - .Fig. 3.3). 

3.3 TEXTURE 

The bottom sediments of Lake Vanda range from sand to silty 

sand only, which reflects the restricted range of variables 

acting on the sedimentary system (Fig. 3.4). Silty sand textures 

are restricted to bottom sediments at sites 6 and 7 which are 

located in the deepest part of the lake. Pure sand textures 

include the wind-blown samples 13 and 14 and the remaining 

samples whose water depths range from 14.0 to 67.8m. The 

stratigraphy of the site 6 deep core (Fig. 3.8) shows a series 

of chemical precipitate/terrigenous silt bands separated by 

detrital sand and silty sand (Fig. 3.5). The silty sands are 

generally located near the evaporitic bands and compared to the 

sandy samples, have higher organic carbon and chemical precipi-

tate content. 

The grain size parameters for the Lake Vanda bottom sedi-

ments are summarised in Table 3.1. Scatter plots of combina-

tions of textural parameters are presented .in an attempt to 

differentiate various lacustrine sub-environments (Fig. 3.7). 

The mean grain size ranges from 2.9 ¢ (O.14mm) to 1.0 ¢ 

(0.50mm). Sediment sorting ranges from 0.6 ¢ (moderately well 

sorted) to 2.9 ¢ (very poorly sorted). The approximately north-

south transect indicates that bottom sediments at depths of 
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Table 3.1 Textural parameters of the Lake Yanda detrital 

bottom sediments. 

Sample number Hean size Sorting Skewness Kurtosis 
(depth cm) (Hz )6) (o'r)6) (Skr ) (KG) 

1 1.1 1.0 +0.1 1.3 

2 1.7 1.2 +0.3 1.9 

3 1.2 1 . 5 0.0 2.3 

4 1.4 1.1 +0.2 1.9 

5 1.6 0.9 +0·3 1.4 

6 (B) 1.6 1~B +0.3 1.7 

7 (5) 2.9 1.B +0.3 1.2 

7 (25) 2.B 2.4 +0.1 1.0 

7 (3B) 2.7 2.3 +0.4 1.1 

B 1.0 0.9 -0.2 1.2 

9 1.6 1.B +0.1 2.6 

10 1.1 o.B -0.1 1.0 

11 1.3 0.9 -0.1 1.3 

12 1.6 3.2 +0.1 1.0 

13 (from lake 2.0 0.6 -0.1 o.B 
- ice) 

14 (wind-blown) 1.4 0.6 0.0 1.1 

less than 2'1m are poorly sorted and have a mean size of 1.65 13 

to 1.70 ¢ (Fig. 3.6) . At depths of between 40m and 52m the 

sediments are poorly to moderately sorted (or¢ from 0.9 to 1.5) 

and have a mean size range of 1.0 ¢ to 1.2 ¢. The transect 

shows that below the 52m depth there is a general trend of 

decreasing mean size (1.44 ¢ to 2.47 ¢). Sorting is better on 

the northern side of the lake compared to the southern transect 
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sites. Comparing the mean grain size to sorting (Fig. 3.7), the 

wind-blown samples 13 and 14 encompass a mean size (2.1 ¢ to 

1.44 ¢) which includes the mean for sediments from a wide range 

of depths but they are the only samples'that are moderately 

well sorted. 

Skewness values indicate that sediments at shallow depths 

are fine-skewed with a trend to near symmetrical values at 27 

to 40m depth and coarse skewness at 52 to 57m depth. Sites 

deeper than 57m are fine - to strongly fine-skewed. Kurtosis 

values present a more complex picture, although sediments 

at shallow depths are typically very leptokurtic while those 

from the deeper parts of the lake are mesokurtic and leptokurtic. 

Analyses of the site 6 deep core shows a broad association 

between the very poorly sorted fine sands (eg. 20 and 113cm 

depth) and high chemical precipitate and organic carbon 

contents {Figs. 3~8 and 3.9). Both medium sands and the fine 

to very fine sands are in the poorly to very poorly sorted 

range. Skewness and kurtosis values show no obvious relation-

ship to these grain-size cycles although the fine-grained sands 

associated with the chemical precipitate/silt bands are often 

more finely skewed. 

Textural analyses of Lake Vanda bottom sediments illustrate 

the importance of wind-derived detrital sediment in the total 

lake sediment budget. In strong winds sand would be expected 
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Lithology Depth(cm) 
Ok. gr: grey sUt. 
Grey mod. sand with 
gypsum gralns(tot5cm). 
Lt. gr. grey fine $Ond 
above and below 5&. 
white gypsum-calcltel 
slit bonds. 
Olive grey meet. sand 
with gypsum· calcite 
grains. 

Gr. black 11'ne sand. 

Olive grey mod. sand . 
Gy. white gypsum .. calclte! 
slit bands (see Flg.2). 

Black very fine sond. 

Gr. grey medl"'Cs. sand. 

Ok. gr. grey fine sand. 
Gy. white gypsum-calcltel 
s/lt bands grading below 
into gypsum·rlch sand. 

Gr: grey fine sand. 

Lt. gr. grey med. sand 

with scattered gypsum 

gralns(to1.2cm) and Q 

thin gr. grey gypslterous 

silt band at 112cm. 

Olive grey med.-flne 

sand with occaSional 

gypsum gralns(to2cm). 

Dk. olive grey med. sand 

with two thin gr: grey: 

silt bands and scattered 

gypsum grains neQr base. 

'lJ:)rg:Jnic 'I, 
carbon Calcite 

0.·30 0.·2 

0.86 0.·3 
0.·7, 0.., 

0.0.7 0.., 

0.'2 oe 

0.0.4 (>4 

0.'9 2·2 

0..,0. 0., 
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'I.Calc. Mean SortingSI<ewnessKurtosis 
'gyp. size(Mzl/$ (111</» (SkI) (Ko) 

'0.-.'5 '-6 ,·a +0·3 1-7 

<5 2-4 "5 '0.<4 ',3 

<5 "7 "3 ·0·3 ,-9 

5-,0. 2-9 "7 .03 oe 

<5 29 \08 '(>3 oe 

5-,0. 1-7 ' ,2 +0·3 ~, -

'(H5 ',2 "3 -0.5 "5 

<5 ~5 ~Q ·0.3 ',2 

<5 3<4 ~8 .(>4 oe 

'5-20 ~5 \08 .0-5 ,,3 

'5-20. 2'7 ~Q .Q.6 ,,2 

<5 2·3 '·7 .o.s ,·e 

[J .... Sand 

0 Silt 

• Gypsum-calcite rich 

Fig. 
SedimentQlQgical log of the 2-metre site 6 CQre 

of Lake Vanda (dk.=darK; It.=light; gr.=greenish; gy.=greyish; 
med.=medium; cs.=cQarse). Calcite % based Qn inorganic C 
analyses, and calcite + gypsu~ % was determined using X R D. 
Textural parameters are after Folk (1968). 
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to move across the lake i~e at a considerably faster rate than 

would occur over a loose rock/sand surface. According to Bagnold 

(1960) sand saltates in high speed wind whereas once fine 

particles « 0.03mm) settle they cannot be swept up again 

individually because they sink into a surface layer of non­

turbulent air. The lake-ice may act as a dust trap. 

The lake bottom sediments are mainly wind-derived sands 

and silty sands. The detrital sediments entering the lake 

edge, particularly via the summer moat, are notably silty sands. 

The silt fraction is either deposited at this shallow depth or 

is kept in suspension until it is deposited in the less turbu­

lent water in the deepest part of the lake. The transect across 

the width of the lake's mid-section shows the sand to be best 

sorted on the steeper 25 to 50m depth slope where water 

turbulence appears to be greatest. The western lobe of the 

lake consists of wind-derived detrital sediment whereas the 

eastern lobe sediment is siltier and may be primarily deposited 

by discharge from the Onyx River. 

The site 6 deep core detrital sediments show the lake 

sedimentary environment has varied in its recent history 

(Fig. 3.8). The chemical precipitate/terrigenous silt bands 

are varve-like and suggest periods of low sedimentation rates. 

Variations in lake-level is inferred from the grain-size cycles. 
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3.4 DETRITAL MINERALOGY. 

Bulk sediment analyses show the detrital constituents to 

consist almost entir"ly of quartz and feldspar. The quartz: 

feldspar ratio ranges from 0.7 to 3.1 in the bottom sediments 

(Table 3 . 2). Plagioclase is the dominant feldspar with the potash , 

feldspar: plagioclase mean value being 0.9. In the site 6 

deep core the quartz : feldspar ratio ranges from 0.7 to 4.3 

(Fig. 3.2) with quartz generally the dominant mineral. In 

contrast to the bottom sediments potash feldspar dominates over 

plagioclase in the site 6 deep core. 

The light mineral fraction (s.g. = <. 2.7) consists of quartz, 

feldspar, rock fragments, mica and volcanic glass. Notes on 

these constituents are presented below. 

Quartz grains are subangular to subrounded and occasionally 

rounded. Grains are anhedral to subhedral and generally have 

frosted surface textures. Inclusions are common and often 

oriented in trains. About hal f of the inclusions are opaque 

minerals and include cubic magnetite. 

Feldspars are generally subangular to angular and consist 

of oligoclase, microcline, orthoclase and labradorite. 

Rock fragments are abundant in some samples and examina-

tion of the 2mm plus fraction shows a dominance of grey gneiss, 

granite, lamprophyre and dolerite lithologies. }lany of the 

rock fragments are pitted and show evidence of physical weather-

ing. 



Table 3.2 Quartz and feldspar ratios of the bottom sediments 
of Lake Yanda (based on XRn analyses). 

Sample number 
(depth em) 

1 

2 

4 

7 (5) 

7 (38) 

8 

12 

6 (1 ) 

(10) 

(18) 

(31) 

(42) 

(62) 

(71) 

'(83) 

(86) 

(96) 

(112) 

( 165) 

(180) 

Quartz/Feldspar 

1.1 

2.4 

0.7 

1.2 

0.8 

1·5 

2.1 

1.8 

1.3 

2.1 

2.3 

2.6 

1.1 

4.} 

Potash feldspar/ 
plagioclase 

1.2 

0.5 

1.0 

2.0 

50.0 

1.3 

2.9 

0.7 

2.7 

3.0 

1.3 

1.8 

13.0 

1.5 

1.3 

11.0 
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Biotite, and to a less extent muscovite, occur in minor 

amounts in most samples. Mica is most common in the deepest 

part of the lake (eg. site 6) and is generally i .• the form of 

small subrounded plates. 

Minor amounts of clear volcanic glass, in grains up to 

1.0mm in si~e, occur in the upper 70cm of the site 6 deep 

core. The glass occurs either as spheres with gas vacuoles 

(Fig. 3.10) or as conchoidally fractured grains. 

Fig. 3.10 Volcanic glass spheroid (0.8mm diameter) 
with gas vacuoles. 

41 
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The quartz originates mainly from the Granite Harbour 

Intrusive Complex of which the Larsen Granodiorite forms the 

Lake Vanda bedrock. The rounded quartz grains, however, may be 

derived from the sandstone of the Beacon Supergroup. The source 

of the feldspar is complex, although the plagioclase is derived 

from the Granite Harbour Intrusive Complex and to a minor 

extent from the Ferrar Dolerite and lamprophyre and porphyry 

dykes in the Lake Vanda area. The main source of potash feld­

spar is probably the porphyry dykes, which are particularly 

common immediately south of Lake Vanda , and the Larsen 

Granodiorite, which has a variable feldspar composition (Dry 

Valley Drilling Project, 1974). The reason for the dominance 

of potash feldspar over plagioclase in the sediments from the 

deep part of the lake remains uncertain but may be related 

to the fine-grained nature of the orthoclase derived in 

abundance from the groundmass of the porphyry dykes (McKelvey 

and Webb, 1962). 

Micaceous minerals are derived from the local granites 

(which contain <10% mica) and the lamprophyre (25 to 30% mica) 

and prophyry (minor amounts of mica) dykes. 

The volcanic glass is derived either from the small basal­

tic cinder cones located in the lower Wright Valley or from 

Ross Island (Jones et al., 1973). 



The heavy mineral (s.g. > 2.7) content of the lake bottom 

sediment ranges from 16.1 to 21.6 percent. Table 3.3 shows the 

influence of sediment sorting processes with heavy mineral 

content decreasing towards the deeper parts of the lake. The 

site 6 deep core heavy mineral content shows no clear relation-

ship to grain-size cycles. 

Table 3.3 Percentage of heavy minerals in the bottom sediments 
of Lake Yanda. 

Sample number 

1 

2 

5 

11 

12 

13 (from lake ice) 

6 (depth cm) 

1 

9 

22 

31 

42 

62 

70 

80 

98 

112 

162 

177 

% Heavy minerals 

16.1 

17.3 

16.6 

21.6 

2.2 

20.2 

11.2 

21 . 5 

16.8 

15.6 

14.8 

16.9 

30.1 

24.7 

14.2 
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The heavy minerals are dominated by hornblende, hypersthene 

and augite with minor amounts of opaque minerals, zircon, 

apatite and chlorite (Table 3.4). According to their 

pleochroic tints, hornblende occurs in two varieties, namely 

a green to light brown hornblende and a light brown to dark 

reddish brown variety. The latter variety dominates. Inclusions 

are common and are mainly opaques, apatite and zircon. Grains 

are subangular to subrounded with occasional sub rounded elongate 

forms. Hypersthene generally occurs as subangular elongate 

prisms. Inclusions of opaque minerals and apatite are 

occasionally present. The hypersthene is pleochroic from pale 

pinkish green to pinkish brown. Augite is generally pale green 

to brown and occurs mainly as subrounded grains. Inclusions 

are common and include mainly opaques and apatite. The opaque 

minerals in the sediments are mainly magnetite and are most 

abundant in the fine-sand grade. 

Table 3.4 Percentages of individual heavy mineral species in 
the total sand fraction. 

Sample number Hornblende Hypersthene Au.gite Opaques Others 

1 24 30 36 R 10 

2 40 30 22 R 8 

5 44 30 22 R 4 

11 44 18 22 R 16 

12 30 28 30 R 6 

R = rare 
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The hornblende is derived from the Granite Harbour Intrusive 

Complex (Fig. 1.2). The lamprophyre and porphyry dykes contain 

up to 40% brown hornblende while the granites contain up to 5% 

hornblende. It is concluded that the lamprophyre and porphyry 

dykes are the main source of hornblende. The pyroxenes are 

largely derived from the Ferrar Dolerites which contain augite, 

pigeonite and hypersthene. The porphyry dykes contain minor 

amounts of titano-augite. 

The clay mineralogy is dominated by illite with lesser 

amounts of montmorillonite, chlorite and mixed-layer illite-

montmorillonite (Fig. 3.11). Judging from the broad and 

diffuse nature of basal reflections the clay minerals have poor 

crystallinity. Semiquantitative analysis (Weaver, 1958 a), 

shows there is little variation in the abundance of individual 

clay mineral species throughout the lake and that the following 

values are typical : illite » ohlori te > montmorilloni te = 

mixed-layer illite-montmorillonite. 

Selected clay samples were subjected to mild treatment 

with potassium hydroxide (Weaver, 1958 b) to distinguish 

montmorillonite derived from non-micaceous minerals such as 

volcanic material and hornblende and that derived from micas. 

Weaver showed that when mica-derived montmorillonite is subject 

to KOH treatment it will collapse to IO~, indicating the 

montmorillonite has inherited much of the high interlayer 
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o 
Heated (500C ) 
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Fig. 3.11 Representative X-ray diffraction patterns of the 
patterns of the <.2)l fraction from the site 6 
sediments of Lake Yanda. 
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dharge of the mica. If there is no collapse, or only slight 

collapse to 12 to 13 R, the montmorillonite is of non-micaceous 

origin. Fig. 3.11 shows that approximately 50% of the 

montmorillonite in the lake sediments appears to be of 

micaceous origin. 

It is concluded that the illite, micaceous montmorillonite 

and mixed-layer clays are derived from the micas present in the 

granites. The chlorite is also derived from granite. 

3.5 CHEMICAL PRECIPITAT£S. 

Table 3.5 and Figures 3.8 and 3 .12 show the percent 

chemical precipitate in the lake sediments. The chemical 

precipitate content increases with depth, particularly below 

64m, where the environment is non-turbulent. 'rhe percent 

inorganic carbon in the sediments (Fig. 3.8 and 3.13) is taken 

as representing the amount of calcite present. 

Prominent white evaporitic beds up to 6cm thick occur in 

cores 5, 7 and 6 (deep core). Although occasionally massive, 

the beds typically consist of numerous varve-like alterations 

of gypsum-calcite and/or terrigenous silt (Fig. 3.14). At 

least 20 bands of gypsum, calcite and terrigenous silt 

occur at the 55cm level in core 6 and the 12cm level in core 5. 

The a~~unt of calcite present in each gypsum-calcite band varies 

from 7 ·to 3276. Poorly developed and possibly reworked 

evaporitic layers occur at the 110cm, 165cm and 195cm levels 
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Fig. 3.12 Chemical precipitate content of Lake Vanda bottom sediments. 
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Fig. 3.14 Calcite-gypsum/terrigenous silt bands at the 
55- to 60-cm level in the Lake Vanda site 6 core. 



Table 3.5 Weight percent chemical precipitates in the 
bottom sediments of Lake Vanda. 

Sample number 
(depth. cm) 

1 

2 

3 

4. 

5 

7 (5) 

7 (25) 

7 (38) 

8 

9 

.10 

11 

12 

% Chemical precipitates 

0.2 

0.6 

1.0 

1.0 

2.1 

16.1 

19.4 

1.7 

O.} 

0.3 

1.2 

0.5 

1.4 

in the site 6 deep core (Fig. 3.8). These reworked beds may be 

the product of frost riving. 

The multibanded evaporitic beds in the sites 5 and 7 cores 

occur at 10 to 15cm depth. These bands are similar in structure 
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to the 55cm evaporitic band in core 6. The core 6 15cm evaporitic 

band has a more massive structure. X R F analyses (Table 3.6) for 

specific elements, also suggests a correlation between the 55cm 

evaporitic bed in two cores from site 6 with the 10cm bed in core 7. 

Comparison between the 18cm and 55cm evaporitic beds in core 6 

indicates that the upper bed has more P, 'K, Ca, Mn and Fe than 

the lower bed. Variation between the evaporitic beds is however 
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Table 3.6 X-ray fluorescent 
'evapori te bands. 

analyses of the Lake Vanda 

Sample 6 6 6 7 
(depth c,m) (55,core i) (55,core ii) (18,core 1) (10) 

Elements Intensity 

p 0.19 0.20 0.16 0.19 

S 0.22 0.48 0.51 0.29 

Cl 0.76 0.44 0.39 0·52 

K 0.27 0.22 0.15 0.26 

Ca 2.35 2.41 1.98 2.35 

Mn 0.53 0.38 0.25 0.45 

Fe 3.19 1.98 , 0.81 2.81 

Br 0.30 0.30 0.31 0.29 

Sr 0.34 0.36 0.38 0.34 

Background 
level 32.56 27.28 27.94 31.38 

apparent and the possibility of correlation between the 15cm beds 

in cores 5, 6 and 7 cannot be discounted. 

While the gypsum is interpreted as being evaporitic, the 

calcite may have originated from (1) the calcite-bearing rocks 

in the area, (2) authigenic growth or (3) have precipitated 

under 'evaporitic conditions. The formation of calcium carbonate 

by the reduction of carbon dioxide in the presence of algae, 

bacteria and diatoms in the bottom sediments may also account 

for some of the calcium carbonate present (Table 3.9). However, 

the qU~lltity of calcite present suggests an evaporitic origin 

is the dominant source. 
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Field (1?75) states that groundwater flow is more important , . 

than river flow in the transportation of salts into Lake Vanda. 

- 2+ + The groundwater contains Cl • Ca and Na in the same order of 

concentration as in the lake bottom water. From the measurement 

of ionic ratios Boswell et al. (1967) suggested that Lake Vanda 

received its saline contents from glacial meltwater and not 

seawater. The high magnesium content of the lake bottom water 

(Table 1.2) would have a "salting out" effect (Braitsch. 1971) 

and contribute to the precipitation of evaporites. Chemical 

analyses of the lake bottom waters show the salinity at 66m 

depth is in the appropriate range for calcium carbonate precip-

itation (Table 1.3). 

The evaporitic beds may indicate colder climatic periods 

in the lake history. In a cold period the supply of lake water 

from the catchment glaciers decreases and the lake level drops 

to an extent that, depending on the salinity, calcite or 

gypsum precipitates. The fine bands in the evaporitic beds 

are suggestive of short-term fluctuations in temperature and 

rates of evaporation which control also fluctuations in salinity. 

The precipitation of the salts is undoubtedly complex. 

The precipitation of salts as a result of freezing of brines 

has commonly been neglected in the literature on evaporite 

deposition. The cold climate of the Dry Valleys has probably 

influenced the precipitation of salts, referred to here ae 
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evaporitic, to a significant extent. When salts are added to 

fresh water the temperature of maximum density, as well as the 

freezing point, is lowered (Thompson and Nelson, 1956). 

Thompson and Nelson noted that for seawater with a salinity of 

24.7%. (Chlorinity 13.67%0), the freezing point and the tempera-

o ture of maximum density are identical, namely -1.33 C. The 

temperature of maximum density of pure water is 3.98°C. For 

each increase of one part per thousand in salinity, the tempera-

ture of maximum density is lowered O.2150 C. With sufficient 

lowering of the temperature, crystals of ice will form which 

further increases the density of the saline water, causing it 

to sink. 

A cold period will result in more water freezing than is 

added to .the lake and eventually only a single residual brin~ 

layer will remain. The residual brine's freezing point may be 

depressed by its salinity to the point where ice can no longer 

form except during unusually low temperatures in the winter 

(Jones and Faure, 1969). 

Preliminary analyses of the Dry Valley Drilling Project 4 

(Lake Vanda) core, by this writer, suggest that at least two 

additional evaporite-forming cold climatic phases occurred prior 

to those recorded in the site 6 core. The two additional 

calcite-gypsum beds occur in the lower half of the 4 metre 
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core that was interpreted by Cartwright et al. (1974) as 

being lacustrine sediment. 

3.6 ORGANIC HATrER. 

During the summer months prolific biological growth occurs 

in the lake environment. Organic carbon ana~yses of the water 

column in January 1974, showed a high organic carbon content 

immediately below the ice-cover (Table 3.7). At deeper levels 

uniformly low organic carbon values occurred down to 45m whe~~ 

the organic carbon content slightly increased. This stratific-

ation, due essentially to algae, appears to be related to the 

temperature profile for Lake Vanda (Fig. 1.4). Table 3.8 

summarises the biological content of the lake sediment (Flint, 

1972 pers. comm. to A.T. Wilson). 

Table 3.7 Carbon content of the water column near site 6 at 
Lake Yanda. 

Water Total C Inorganic C Organic C 
(depth cm) (mgm/l) (mgm/l) (mgm/U 

10 22.70 7.70 15.00 

15 16.75 8.60 8.15 

20 21.25 12.70 8.55 

30 15.50 7.00 8.50 

35 20.75 12.25 8.55 

45 20.00 18.00 2.00 



Table 3.8 Biological content of the bottom sediments of 
Lake Vanda (Flint, pers.comm. to A.T. Wilson). 

Site 9: 

,Numerous diatoms • 

. - mainly empty frustules 

- some living Nitzschia and Hantzschia 

Algae 

green algae Chlorella 

Bracteacoccus 

Troschia - like spores 

Site 10: 

Living diatoms. 

- Navicula and Nitzschia 

Microscopic clumps of green algae 

- Bracteacoccus 

The highest content of organic carbon (Table 3.9 and 

Fig. 3.15) appears to occur where the lake waters are least 

turbulent, namely the deep part of the lake (eg. sites 6, 7 and 

10) and the gently sloping locations at sites 1 and 12 . In the 

site 6 deep core the highest organic carbon content occurs in 

the silt bands, and particularly in those associated with the 

evaporitic beds (eg . 180m, 88cm and 1120m depth). Many laborat-

ory studies (eg. Loder and Hood, 1972) have shown that large 

quantities of organic compounds may be absorbed onto clays, 

especially in brackish waters. Fine silts and clays such as 

those associated with the evaporitic beds may act as a substrate 
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for the adsorption of macromolecules by microorganism populated 

natural detritus and thereby account for its comparatively high 

organic content. 

Table 3.9 Carbon content of the bottom sediments of Lake Vanda. 

Sample number 

1 

2 

3 

5 

7 

10 

12 

6 (depth cm) 

8 

20 

22 

80 

87 

100 

113 

185 

% Total C 

0.31 

0.06 

0.18 

0.06 

1.26 

0.16 

0.20 

0.32 

0.89 

0.72 

0.08 

0.13 

0.09 

0.45 

0.08 

% Inorganic C 
(%CaC03) 

0.01 (0.1) 

0.01 

0 •. 04 (0.3) 

0.01 

0.07 

0.04 (0.3) 

0.02 (0.1) 

0.03 (0.2) 

0.01 

0.01 

0.01 

0.05 (0.3) 

0.26 (2.1) 

0.01 

% Organic 

0.29 

0.06 

0.06 

0.05 

0.61 

0.15 

0.16 

0.30 

0.86 

0.71 

0.07 

0.12 

0.04 

0.19 

0.07 

3.7 RATES OF SZDIMENTATION AND URANIUM/THORIUH DATING RZSULTS. 

On the basis o-f Pb210 levels in a core from site 9, HcCabe 

(1974) calculated that the rate of sedimentation in Lake Vanda 

is 0.2 kgm/m2/yr (0.02 cm/yr), assuming a uniform sedimentation 

rate. On the basis of total suspended sediment deposited in 

Lake Vanda by the Onyx River during the 1971/72 summer 



-4 (Table 1.1) the rate of sedimentation is 5.51• x 10 em/yr. 
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U/Th dating (C. Hendy, 1974 pers. comm.) indicates no 

detectable age difference between the 18cm and the 55cm evaporitic 

beds from the deep core at site 6 (Fig. 3.8); they are, however, 

post glacial and in the order of 2,000 to 13,000 years old. 

On the basis of the above data, and considering the relat-

ive unimportance of river-derived compared to directly wind-

derived sediment in the lake, a sedimentation rate of about 

0.01 cm/yr appears reasonable, suggesting an age of about 

2,000 and 5,500 years for the 18cm and 55cm evaporitic beds in 

core 6, respectively •. 

14 Based on C analyses of algae present in strandlines 

around the lake, \,ilson and Wellman (1962) suggested Lake Vanda 

reached its highest water level about 3,000 years B.P. Chloride 

concentration gradients (\vilson, 1967) suggest a low lake level 

some 1,200 to 2,000 years B.P. at which time the volume of water 

in the lake may have been similar to the highly saline Don Juan 

Pond (Fig. 1.1) whose salts presently crystallise-out during 

the winter. 

3.8 SUMMARY AND CONCLUSIONS. 

Broadly the Lake Vanda bottom sediments consist of two 

contra ~ting facies each sharply separated by the 60m depth 

contour. Shallower than 60m the environment is aerobic and the 

sediments are pale fawn, massive medium sands overlain by 
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organic detritus. Below 60m depth the environment is anaerobic 

and the sediments are grey to grey-green, medium- to fine-grained 

sand containing finely disseminated organic matter and variable 

but significant amounts of calcite and gypsum. 

Textural analyses of Lake Yanda bottom sediments emphasise 

the prime importance of wind-derived detrital sediment. Sediment 

transported by the Onyx River is of comparatively minor import­

ance in the total lake sediment budget. In general the detrital 

sediment is either blown onto the lake-ice cover where it event-

ually sinks through to the lake floor, or is blown into the 

lake's summer moat. Sediment blown into the moat is either 

deposited at shallow depth or, in the case of the silt fraction, 

is kept in suspension before settling in the non-turbulent 

deeper part of the lake. Water turbulence on the steeper slopes 

of the lake between 25 and 52m depth is suggested by the improv­

ed sorting of these sands compared to the bottom sediments in 

shallower and deeper locations. The stratigraphy of the deep 

core shows a series of grain-size cycles which suggest that the 

level of Lake Yanda has varied in the recent past. 

The detrital miner~logy indicates the sediments are probably 

of local origin and ~ind transported. The detrital sediment is 

largely derived from the granites and lamprophyre and porphyry 

dykes of the Granite Harbour Intrusive Complex, and the Ferrar 

Dolerites. 
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Chemical precipitates in the lake bottom sediments consist 

of gypsum and comparatively minor amounts of calcite. The 

chemical precipitate content increases with depth, the highest 

values occurring below 64m depth. The origin of the chemical 

precipitates is undoubtedly complex. From the measurement of 

ionic ratios Boswell et al. (1967) suggested that Lake Vanda 

received its saline contents from glacial meltwater. Based on 

the quantity of chemical precipitates an evaporitic origin is 

suggested. The formation of evaporites was aided by such factors 

as a high magnesium content of the lake water and by frigid 

conditions. Prominent white calcite-gypsum/terrigenous silt 

bands occur at 18cm and 55cm depths in the site 6 core, with 
, . 

reworked evaporitic phases at the 165 em and 195cm levels. Two 

further evaporitic phases are suggested in the lower half of the 

4m long D.V.D.P. (Lake Vandal core. The evaporitic/terrigenous 

silt bands further suggest fluctuations in the salinity and 

level of Lake Vanda in its recent history. 

Organic matter in the lake consists mainly of algae, 

bacteria and diatoms. The organic content of the bottom sediments 

is highest in the dee~est part of the lake and in restricted 

shallower locations where water turbulence is minimal. 

Based mainly on various dating techniques, notably U/Th 

dating methods, a rate of sedimentation for Lake Vanda is calcu-

lated to be about 0.01 cm/yr. The presence of evaporitic beds 
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in the sediments has provided a datable record of past climatic 

changes. It is suggested from the site 6 deep core stratigraphy 

that cold climatic periods lead to low lake levels which, depend­

ing on the salinity of the lake water reached, permit precipita-

tion of evaporitic sediment phases. Based on the occurrence of 

evaporitic beds, at least two and possibly four cold climatic 

phases have occurred in about the last 15,000 years, the ages 

of the two youngest cold periods being about 2,000 and 

5.500 years B.P. 
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C HAP T E R IV 

~E BONNEY AND TAYLOR GLACIER BEDIHENTS 

~c1 INTRODUCTION. 

To date the study of Lake Bonney sediments (Fig. 4.23) 

has been restricted to notes on the halite crystals discovered 

on the floor of the Lake Bonney east lobe (Goldman at al~, 1967; 

Craig at al~t 1974)~ The present study of the bottom sediments 

and stratigraphy of the deep cores has elucidated the recent 

history of Lake Bonney, particularly the different environment-

al IJroCesses opera.~ing in the west and east lobes. Analysis of 

the "debris bands" exposed in the snout of the Taylor Glacier 

has also been included to determine the origin of these bands 

and their possible relationship to the history of the Lake 

Bonney west lobe. 

4e2 TA!LOR GLACIER AND ADJACENT qUTWASH SEDIMENT. 

Detrital sediment and chemical precipitates were collected 

from the Taylor Glacier snout IIdebris bandst! and "abla.tion 

platform H ., and the meltwater stream of the Rhone and 'faylor 

Glaciers (Figs. 4~1, 4.2 and 4.3). 

The salldy''debris bands" are best exposed on the sides of 

the Taylor Glacier and range from 005 to 20cm thick, averaging 

2 Thn ban.ds dl.·~ 20° to 30° west and, although E!,bout 1 to em.. y !" 



Fig. 4.1 The summer moat on the southern shore of 
Lake Bonney west lobe. The Taylor Glacier 
is in the background. Note the "debris 
bands" on the glacier snout. Photo taken 
in January, 1974 by C.P. Reynolds. 





Fig. 4.2 

Fig. 4.3 

The snout of the Taylor Glacier viewed from 
the north slope of the Taylor Valley. Note 
the ice cone on the top of the glacier and 
the "debris bands", "ablation platform" and 
"red stain" on the glacier face. Photo­
A.B. Field. 

"Debris bands" exposed on the 'faylor Gl 9.cier 
snout. '£he writer is standing on the dehris 
-covered "ablation platform". Photo-
T.R. ' Healy.-
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coalescing of bands is not uncommon, they are often conformable 

for several metres. The "debris bands" are composed of 60% 

sediment and 40% ice, whereas the ice between the bands is 

relatively clean, consisting of less than 5% sediment. The 

"ablation platform" is composed of glacial ice containing "debris 

bands", but covered by a veneer of sediment dumped as a result 

of the ablation of overlying ice. The sediment on the 

"ablation platform" consists of both sand and gravel. 

4.2. 1 SEDINENl' ANALYSES. The glacier sediment and sedimer.+. 

from the adjacent outwash fan consists of medium sand which is 

very poorly sorted and exhibits near symmetrical skewness 

(Table 4.1). The river sample is very platykurtic whereas the 

samples from the glacier are mesokurtic and very leptokurtic. 

Table 4.1 Textural parameters of the detrital Taylor 
Glacier sediments. 

Sample number Mean size Sorting Skewness 
(Hz )6) (o'I)6) (SkI) 

1 river sediment 1.1 3.3 0.0 

2 "debris bands" 1.4 2.6 +0.2 

3 "ablation platform" 1.3 2.7 0.0 

Kurtosis 
(KG) 

0.6 

1.9 

1.0 

On the basis of textural parameters three broad facies of 

bottom sediments occur in the Lake Bonney west lobe (Section 

4.3. 1). The first facies is derived from the Taylor Glacier 

and from river-transported sediment and the second facies is 

derived from mainly wind-transpoI~ed sediment. The third facies 

occurs in the deepest part of the west lobe and consists of both 
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Taylor Glacier and river-transported sediment and wind-transported 

sediment. The sediments analysed from the "debris bands" and 

"ablation platform" are texturally similar to the third facies 

described above. 

The "debris bands" and outwash detrital sediments consist 

mainly of subangular to subrounded feldspar and quartz (Table 

4.2) although grains from the river sediment are the more 

angular. Plagioclase is the dominant feldspar species. The quartz 

grains in the glacier sediment occasionally exhibit effects of 

physical weathering such as pitting. The heavy minerals comprise 

8 to 12% of the bulk sediment fraction and consist dominantly of 

brown hornblende, augite, hypersthene and minor amounts of 

biotite and magnetite, especially in the fine sand grade. Sub-

angular to angular slabs of granite, up to 0.6m long, are found 

on the Taylor Glacier "ablation platform". The clay mineralogy 

is dominated by illite with minor amounts of chlorite, montmorill-

onite and mixed-layer illite-chlorite. 

Table 4.2 Quartz and feldspar ratios of the Taylor 
Glacier sediments. 

Plagioclase/ 
Sample number Feldspar/Quartz Potash feldspar 

1 river sediment 1.1 1.4 

2 "debris bands" 1.8 2.0 
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The detrital mineralogy suggests the sediments are locally 

derived, probably from the granites of the Granite Harbour 

Intrusive Complex (Fig. 1.2) which consist of quartz, plagioclase, 

biotite and minor hornblende. The lamprophyre and porphyry 

dykes and Ferrar Dolerites found on the valley sides are also 

contributors to the bulk detrital mineralogy, but to a lesser 

extent. 

The percentage of chemical precipitates in the outwash fan 

is low with only slightly higher amounts from the glacier sedi-

ment (Table 4.3). Gypsum is the principle precipitate in the 

sediment with minor amounts of calcite (Table 4.4). However, 

salts of gypsum, calcite, thenardite (Na2 S04) and tachyhydrite 

(Ca Mg C16 • 12 H20) occur in the glacial ice. X R D analysis 

of the "red stain" on the snout of the Taylor Glacier (Fig . 4.2) 

showed the presence of gypsum, although chemical analyses by 

Keyes (1972) revealed a variety of salt compounds are also 

present. 

Table 4.3 Weight percent chemical precipitates in the 
Taylor Glacier sediments. 

Sample number % Chemical precipitates 

1 river sediment 1.0 

2 "debris bands" 1.8 

3 "abalation platform" 2.0 
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The organic carbon content of the glacier "ablation platform" 

sediment and river sediment (Table 4.4) is low compared to the 

"debris bands" sample which is similar to the organic content 

of the west lobe sediments that range from 0.13 to 0.26% organic 

carbon. 

Table 4.4 Carbon content of the Taylor Glacier sediments. 

Sample number % Total C % Inorganic C % Organic C 
(% CaC0

3
) 

1 river sediment 0.01 0.10 (0.8) 0.04 

2 "debris bands" 0.30 0.04 (0'.3) 0.25 

3 "ablation platform" 0.13 0.09 (0.7) 0.04 

Dating of gypsum from the glacier snout proved difficult 

because of the low U content; however, an age of about 

28,000 years B.P. has been calculated (Appendix I). 

4.2. 2 ORIGIN OF THE TAYLOR GLACIER SEDIHEN'f. The detrital 

mineralogy shows the sediment is locally derived from the granite, 

dolerite and lamprophyre and porphyry dyke rocks exposed on the 

valley sides. It is suggested that the sa nd in the Taylor 

Glacier, was originally windblown, and probably to a minor 

extent river-transported along with gravel, from the adjacent 

valley slopes onto a more westward extension of the present 

Lake Bonney west lobe. 

The west lobe is envisaged as having been sufficiently 

saline to allow the precipitation of salts under probably 



evaporitic conditions and, with the subsequent advance of the 

glacier during the Taylor I Glaciation (Denton et al., 1970) 

this extreme western portion became covered. The chemical 

precipitates may not be entirely palaeo-lacustrine sediments, 

for they may have been concentrated through the crystallisation 

of brines; under frigid conditions, in permeable layers and/or 

fissures in the glacial ice. The dated sample of 28,000 years 

B.P. may have precipitated from englacial saline meltwaters. 

The debris layers within the glacier have probably formed 

by a freezing-in process at the glacier bed and by the upwarping 

of the flow lines at the margins of the glacier. Weertman's 

theory (1961) adequately explains this t~pe of debris layer 

in which a grain-size selective process occurs with only sand 

represented. The process may be the result of the formation of 

regelation. ice during the freezing-in process, which incorpor-

ates small particles while blocks and slabs remain on the 

glacier bed. 

The boulders on the "ablation platform" are probably of 

supraglacial origin. The differential ablation of debris-rich 

ice and subsequent accumulation of the sediment has produced the 

hummocky, stagnant-ice platform. 

4.3 LAKE BONNEY \'IEST LOBE SEDIMENTS. 

The textural classes of the detrital constituents of the 

west lobe bottom sediments and the site 11 deep core (Fig. 1 •• 23) 
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range from sand to silt (Fig. 4.4). 

4.3. 1 TEXTTIRE. The mean grain size of the west lobe bottom 

sediments ranges from medium silt to coarse sand (Table 4.5). 

Fig. 4.5 shows the source of most of the fine-grained material 
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is in the Taylor Glacier meltwater, with most of the silt. 

component being deposited in the western and in the deep portion 

of the lobe. The west lobe bottom sediments are poorly' to very 

poorly sorted. The most poorly sorted sediments are found in 

the area most affected by the deposition of fine-grained sediment 

introduced into the lake by the Taylor Glacier snout and outwash 

(eg. samples 4 and 5). The least poorly sorted sediments are 

at shallow locations on the northern side of the west lobe 

(eg. sites 7 and 12 ). 

Skewness values (Table 4.5) show near symmetrical values 

in the sediments of the extreme west and east portions of the 

west lobe (eg. sites 4, 5 and 21) while in the deep portion of 

the lobe ,coarse skewed sediments occur (eg. sites 9, 12 and 

16). Skewness values are more complex for the remaining west 

lobe samples, although fine- to very fine-skewed sediments occur 

in the eastern portion of the lobe (eg. sites 17, 18, and 20) 

and strongly coarse-skewed sediments occur in the remaining 

shallow locations in the western portion of the lobe (eg. 7. 14 

and 15). Kurtosis values range from platykurtic to very 

leptokurtic. Mesokurtic to platykurtic sediments occur in the 
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Fig. 4.6 Sedimentological log of core 11 from the Lake 
Bonney west lobe . The top 22cm consists of 
gypsiferous silt with occusional detrital sandy 
phases. At depths of 20- to 35.5cm .silty gypsum 
occurs. The gypsum is either fine-grained or in 
the for,n of banded platey chunks. Underlying the 
gypsum is a 1cm thick fine sand layer, . the base 
of which is iron-stained. The reddish-brown stain 
is restricted to the fine-grained gypsum present 
in th~ sandy layer. At depths of 36.5- to 39.5-
a fine- to medium-sand occurs, however the basal 
section of the core is a pebbly sand. The total 
length of core 11 is 47.7cm. Scale in centimetres. 





Leptokurtic samples occur in shallow to intermediate depths 

(7 to 27m depth) in the centre of the lobe (eg. site 16, 18 and 

15). 

The texture of detrital sediments in the site 11 deep core 

(Fig. 4.6 and Table 4.5) show the silty top section is moder-

ately to poorly sorted and the sandy bed above the iron-stained 

level to be moderately sorted. The pebbly sand basal section is 

very poorly sorted. Skewness shows near-symmetrical values at 

all depths except at the 30 to 37cm which is coarse skewed. 

Kurtosis shows mesokurtic values at 15 and 39.5c01 depth and 

leptokurtic values at 30 to 37 and 45cm depth. 

Scatter plots (Fig. 4.7) of standard deviation versus mean 

grain size and skewness versus mea n ,grain size show three broad 

sediment facies. The 'first facies consists of sediment derived 

from the Taylor Glacier and deposited adjacent to the glacier 

snout (eg. samples 4 and 5). The second facies is generally 

restricted to the deeper part of the lobe and consists of 

Taylor Glacier derived sediment and ,lind transported sediment 

(eg. samples 14, 16 and 12). The third facies is primarily 
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wind blown sediment (eg. sa~ples 17 and 20). The kurtosis versus 

skewness scatter plot does not show any clearly defined facies 

differentia tion. 

West lobe bottom sediments are either derived from the Taylor 

Glacier or wind-transported into the lake. Wind-transported 



~ 
M 

"0 

,,-
Vl 

78 

<4 SANf> ",un 

1. .17 .~~ 
.20 

VI'S .1l(D) 3 •• 1g 
21. 2. .9 

.8 '~·'<4.'3 I-2 
.18 7. 

'1l( II) PS 

12' 
.IHC) ,e' MS 

n(A} ~ MWS 
WS 

0 VW~ 

4 
, 
0 <4 6 

Mzp 

SAND • MUD 

." 
.17 SFS 

I, ·8 .'9 .7 
:20 FS 

18. 2' 
0 

.,,(0) 21- 3 •• IHC) 15 
NS 

'16 
12- 'i1 

13. (A 
11<11) • '9 es 

5. 
~. ses 

-1L-______ -r ________ ~---J 
~ 0 6 · 

Mzp 
ses es NS, FS 

.18 

.13 
2 

1<4!5. n.(s) .IHO) 
• .9 "12 
8 .18 

.7 ,,(e) 
4 •• 3 
21' '11 ( A) l 

'5 '20 '11l 

.1 

.17 

1. SAMPLE NO 
DEPTH eM 

• TAYLOR GLACIER 
SITE 

SITE " DEPTHS 
IN eM. 

tA) 15 
VLK . (B) 30-37 

~) 39-5 
(D) 45 

LK 

I-
MK 

PK 
I-

0·5L-__________ ,-__________ -4 
-1 ., 

5K, 0 

STANDARD DEVIATION 

MEAN SIZE 

c"r¢ 
Mz¢ 

SKEWNESS 
KURTOSIS 

SKI 
KG (after FOLK.1968) 

Fig. 4.7 Scatter plots of detrital sediments of the Taylor 
Glacier and Lake Bonney west lobe. 



79 

sediment is either blown onto the lake ice where, eventually, 

it sinks through to the lake floor, or the sediment, particularly 

the more silty sands, is blown into the summer moat. Sediment 

from the Taylor Glacier is either transported by the rivers 

adjacent to the glacier or is released from the ablating base 

of the glacier (Fig. 4.8). 

Fig. 4.8 Main circulation in a glacial lake (Duff et. al., 
1967). Assumed direction and strength of 
currents indicated by arrows. 

Textural analyses of the west lobe bottom sediment enables 

three broad sediment facies to be defined. The first facies, 

located adjacent to the Taylor Glacier, consists of a very 

poorly sorted, near symmetrically skewed, mesokurtic silt. The 

sediment is derived from the Taylor Glacier and its associated 

rivers. The second facies is generally restricted to the deeper 

parts of the west lobe and consists of both wind-transported 

and Taylor Glacier sediment. The sediment is very poorly sorted, 

coarse skewed, mesokurtic to leptokurtic coarse silt. The third 

facies, loca~rld in shallow depths and particularly in the eastern 
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portion of the lobe, is wind-transported sediment that is very 

poorly sorted, fine skewed medium sand. 

Interpretation of the textural data for the site 11 deep 

i 
core suggest that since the deposition of the silty -sediment at 

36cm depth, the Taylor Glacier has advanced contributing an 

increasing amount of sediment to the total west lobe sediment 

budget. The base of the silty section probably consists mainly 

of wind-derived sediment. The medium sand at depths of 36.5 to 

39.5cm may be either wind-derived sedimen~ or sediment 

deposited under deltaic conditions. A low lake-level is sugges-

ted. The basal pebbly sand section may be outwash or, more 

likely, Taylor II Glaciation moraine, the extent of which is 

indicated in Fig. 1.3. 

4.3. 2 DETRITAL MINERALOGY. X R D analyses indicate that the 

detrital sediment consists mainly of quartz and feldspar (Table 

4.6). The quartz grains are either frosted and subangular to 

subrounded or clear and more angular. The feldspars are predom-

inantly plagioclase and are subangular and often contain opaque 

mineral inclusions. Occasional jagged to rounded mica flakes 

of biotite, and less commonly muscovite, are present, particu-

larly in the sediments from the deepest part of the lobe. 

The heavy mineralogy, which comprises 7 to 16 percent of the 

total sand fraction, is dominated by hornblende (60 to 80%) 



Table 4.6 Quartz and feldspar ratios of the bottom sediments 
of Lake Bonney west lobe. 

Quartz/Feldspar Plagioclase/ 
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Sample number 
(depth cm) Potash feldspar 

4 0.8 10.0 

.7 4.0 

8 1.2 7.0 

11 (10) 1.6 

11 (0) 4.2 8.0 

11 00-40) N.D. 

15 4.0 3.0 

16 6.0 2.0 

18 1.4 ... 
20 1.0 3.0 

N.D. = Not Detectable 

with minor amounts of augite and hypersthene, and rare fine-

grained opaque minerals, particularly magnetite. The hornblende 

is generally subangular and mainly of the brown variety, although 

small amounts of green-brown hornblende occur. Augite is more 

abundant than hypersthene and both pyroxenes are subangular. 

Subangular, low·spericity, gravel-sized clasts consist mainly 

of granite with granules of dolerite and lamprophyre dyke rock. 

The gravel at the base of the site 11 deep core, is of a similar 

composition and shape although some clasts are iron-stained. 
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The clay minerals are dominated by crystalline illite with 

lesser amounts of chlorite, mixed-layer illite-chlorite and 

montmorillonite. Illite is most abundant in shallower sites. 

The quartz, plagioclase, hornblende, mica and magnetite are 

probably derived mainly from the Larsen Granodiorite, which 

encloses the lake (Fig. 1.2). The remaining minerals are derived 

from the Vida granite and, in the case of the pyroxenes, from 

the lamprophyre dykes and Ferrar Dolerite. Grain shape and 

surface texture suggest that the sediment is mainly wind-blown 

and, to a lesser extent, river-transported into the lobe. The 

detrital sediments are mainly locally derived. Differential 

settling velocities for clay minerals (ioJhitehouse et a1., 1958) 

probably account for the larger amounts of illite at shallow 

depths in the lobe. 

CHEIIICAL PRECIPITATES. The chemical precipitates in 

the west lobe bottom sediments are mainly gypsum with a minor 

amount of calcite (Table 4.8). The percentage of chemical 

precipitates in the bottom sediments (Table 4.7) ranges from 

1.1 to 11.4% with the highest values in the deep central to east-

ern portion of the lobe. The distribution and concentration of 

these salts reflect water depth, water movement and sediment 

influx from the western river sources (Fig. 4.9). 

Gypsum occurs as plates or in a fine-grained form. Platey 

gypsum occurs everywhere at water depths below 18m except near 
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Table 4.7 Weight percent chemical precipita tes in the sediments 
of the Lake Bonney west lobe. 

Sample number 
(depth em) % Chemical precipitates 

4 

5 

7 1.4 

8 

9 9.8 

11 (5) 

11 <30-40) 12.6 

11 (45) 0.4 

12 
8.1 

13 8.4 

14 
11.2 

15 

16 

17 11.4 

18 
1.4 

19 
8.3 

20 
6.1 

21 
1.1 

the Taylor Glacier (eg. site 5). The plates are often sharp-

edged, lcss than 1cm across, and contain up to four banda in 

each plate. The calcite pres~nt in all cases is microcrystalline. 



The gypsum near the 15cm level in the site 11 deep core 

(Fig. 4.6) is in the form of strongly curved discs which may be 

"oolitic" (Fig. 4.10). The "oolites" are 0.3 to 0.8mm in 

diameter and commonly have a nucleus of calite crystals or a mica 

flake. The interior of individual "oolites" contains a number of 

growth rings broken by radial microfractures. The exterior of , 

the "oolites" is generally smooth. The gypsum from 25 to 35cm 

depth shows occasional swallow-tail twinning (Fig. 4.11). 

The chemical precipitates are probably evaporitic; having 

formed with the aid of a frigid, magnesium-rich lake bottom 

environment. The gypsum plates have originated by reworking of 

evaporitic beds (ie, are intraclastic), perhaps as a result of 

frost riving during a period of lower lake level. The "oolites" 

attest to at least mild water agitation during their formation, 

while the twinned gypsum may be diagenetic or have formed by the 

slow evaporation of gypsum··saturated sodium chloride solutions 

(Shearman, 1966). The iron-stained gypsum at 36.5cm depth in 

core 11 (Fig. 4.6) probably formed under anaerobic conditions 

during the period of associated gypsum formation. 

4.3. 4 ORGANIC MATTBR. The organic carbon content ranges from 

0.13 to 0.26% in the bottom sediments (Table 4.8) and is highest 

in the finer-grained sediments in the deepest part of the lobp 

and also in the channel between the two lobes. Prolific algal 

growth occurs in the channel where the water gepth is shallow 



Fig. 4.10 

Fig. 4.11 

Gypsum "oolites" (average diameter O.7mm) from 
the 15cm depth in core 11 of the Lake Bonney west 
lobe. 'rhe "oolites", generally found "in frag­
ments, consist of a number of growth rings broken 
by radial fractures. The "oolites" often have 
a nucleus consisting of a mica flake or calcite 
crystals. 

Swallow-tail t\1inned gypsum (1.5mm long) present 
at depths of 25cm to 35cm in core 11 of the 
Lake Bonney west lobe. 





Table 4.8 Carbon content of the sediments of 
Lake Bonney west lobe. 

Sample number 'f, Total C % Inorganic C 
(depth cm) (%CaC03) 

11 (5) 0.52 0.26 (2.1 ) 

11 (20) 0.30 0.15 (1.2 ) 

11 (37) 0.19 0.04 (0.3) 

11 (45) 0.17 0.07 (0.6) 

15 0 . 25 0.10 (0.8) 

16 0.22 0.05 (0.4) 

18 0.34 0.16 (1 .3) 

19 0.16 0.03 (0.2) 

21 0.19 0.02 (0.1 ) 

% Organic C 

0.26 

0.15 

0.15 

0.10 

0.15 

0.17 

0.18 

0.13 

0.17 

and the lake-ice broken thereby providing optimum light condit-

ions for organic growth. The organic carbon content in core 11 

appears to be related to sediment size with the lowest values 

associated with the basal pebbly sands. 

4.3. 5 URANIUM/THORIUM DATING. U/Th dating proved difficult 

because of the low U content (C. Hendy, pers.comm.). The 

gypsum plates at site 16 give an age of at least 300,000 years 

(Appendix I). U/Th ages of the gypsum in cores 10 and 11 were 

not entirely concordant; however, homogeneity in the U234/U238 

ratio exists indicating a different origin for this uranium 

compared to that in the gypsum plates at site 16, the latter 
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having a U234/U238 ratio of 1.2 which is similar to that in 

seawater, namely 1.1. 

4.3. 6 SUHHARY and CONCLUSIONS. The west lobe detrital bottom 

sediments are either derived from the Taylor Glacier or wind-

transported into the lake. The detrital sediments range from 

silt to sand and, on the basis of texture, three broad sediment 

facies are distinguished. The first facies, located adjacent 

to the Taylor Glacier, consists of poor~y sorted, near symmet-

rically skewed, mesokurtic silt. The sediment is derived from 

the Taylor Glacier and its associated rivers. The second facies 

is generally restricted to the deeper parts of the lobe and 

consists of both wind-transported and Taylor Glacier sediment. 

The sediment is very poorly sorted, coarse skewed, mesokurtic 
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to leptokurtic coarse silt., The third facies, located in shallow­

er depths and particularly in the eastern portion of the lobe, 

is wind-transported sediment that is very poorly sorted, fine 

skewed medium sand. 

The detrital sediment is mainly derived from the Larsen 

Granodiorite which encloses the lake, with minor contributions 

from the Vida Granite, lamprophyre dykes and Ferrar Dolerite 

exposed on the valley sides. Sediment surface textures and form 

show evidence of both wind- and river-transporting processes. 

The chemical precipitate content of the bottom sediments 

increases with depth although this relationship is also affected 



by water movement and sediment influx from the Taylor Glacier. 

The chemical precipitates consist of gypsum and calcite and were 

probably formed under frigid evaporitic conditions. Platey 

gypsum found in the deeper part of the lobe has probably been 

derived by reworking of frost riven gypsum layers during a period 

of lower lake level. U/Th dating gives an age of 300,000 years 

for the platey gypsum and the U234/U238 ratio of this gypsum 

suggests a marine origin. 

The organic carbon content is highest in the deep part of 

the lobe and in shallow locations where optimum light conditions 

exist. The relationship between organic growth and the chemical 

and physical lake sub-environments is undoubtedly complex. 

The basal pebbly s a nds in the west lobe deep cores are at 

least 300,000 years old and probably represent Taylor II Glac-

iation moraine. A moderately sorted medium sand, possibly 

deposited under deltaic conditions, overlies the above-mentioned 

moraine deposit. A low lake level is envisaged at that time 

with anaerobic conditions existing. A marine incursion of the 

Taylor Valley subsequently occurred and under frigid evaporitic 

conditions salts were preCipitated from the seawater about 

300,000 years B.P. Seawater is envisaged as at least draining 

into the Bonney Basin. The gypsum was precipitated in a variably 

saline environment and, upon induration, was probably broken-up 

by frost rivin~ during a period when the lake level was perhaps 



only 18m deep. The very saline conditions existing at that time 

are indicated by the swallow-tail twinned gypsum, while the 

gypsum "oolites" indicate at least mild water agitation and 

very low terrigenous influx. 

Since the precipitation of gypsum the rate of sedimentation 

has been about 3.6 x 10-4cm I year. The rate of sedimentation 

has not been uniform as sandy phases are present and there is an 

overall increase in the silt content towards the top of the 

core. The fine-grained sediment found in the upper sections 

of the deep core shows that meltwater from the Taylor Glacier 

has been an increasingly important source of sediment in the 

west lobe, probably for at least 10,000 years. The entry of the 

Taylor Glacier into the Bonney Basin is probably evidence of 

the Taylor I Glaciation advance. 

Denton et al. (1970) report the presence of ROGS Sea I and 

II Glaciation strandlines in the Taylor Valley at 310 and 400m 

altitude, respectively. Wilson et aL (1974) found 6,000 year 
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old strandlines about 210m above Lake Bonney which may represent 

the Ross Sea I Glaciation. It is postulated by the above-mentioned 

authors that during the Ross Sea I and II Glaciations ice 

tongues from the Ross Sea ice dammed large lakes in the Taylor 

Valley. A rapid drop in the high lake level was considered 

likely as a result of the melting of the ice tongues of the Ross 

Sea Glaciations. The occurrence of these two very high lake 



levels is not noticeably apparent in the stratigraphy of the 

Lake Bonney west lobe sediments. 

4.4 LAKE BONNEY EAST LOBE SEDIMENTS. 

The extent of the 1973/74 summer thaw on the Lake Bonney 

east lobe was inMcated by: (a) the degree of ablation of the 

lake-ice which annually ablates about 41cm of ice (Fig. 4.13); 

(b) the l'apid developl!1ent of melt­

water streams and overland flow (Fig. 4. Q4); 
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(c) the steadily rising lake level. 

Contrary to e'arlier reports (eg. Taylor, 1922), this running 

water was clearly an important source of sediment for the east 

lobe during the 1973/74 field season. Lake Bonney appears to 

have been increasing in size since the turn of this century. In 

February 1911, the width of the channel connecting the two lobes 

was 30.2m (Taylor, 1922), while in January 1974, it "was 41m wide 

and 9m deep. This represents a depth increase of 2.4m. The 

lake level increased t.15m during the 1973/74 summer melt. 

The east lobe bottom sediments can be grouped into three 

broad facies, the lithologies of which are largely related to 

water depth. At depths below 30m the sediment is composed of 

halite crystals covered by a veneer of organic detritus and silt; 

the second facies, between 18 and 30m depth, consists of gypsUm, 

aragonite, halite, calcite and detrital sand and silt; the third 

facies, at depths generally shallower than 18m, is gravel, sand 

and silt. Proximity to the major meltwater stream outlets 

largely determines the extent of facies 3 . The sediments at 

the shallowest depths are similar to the lake-shore sediments. 

Sand from the eastern slope of the Bonney Reigel (Fig. 4.15) 

was analysed since the Reigel acts as a trap for wind-blown sand. 

In addition wind-blown sediment was collected from the ablating 



Fig. 4.12 Lake Bonney east lobe with the Bonney Reigel and west lobe on the left side of 
photo. The Asgard Range in the background forms the north side of the Taylor 
Valley. Photo - T.R. Healy. 



Fig. 4.13 

Fig. 4.14 

Ablation of the lake-ice surface, Lake Bonney 
east lobe. The flat ice platform (a) in the 
extreme foreground was formed in 1973; the ice­
axe is on the partially ablated ice platform 
(b) formed in 1972. An annual ablation rate of 
about 41cm can be deduced. Photo taken in 
January 1974. 

Meltwater streams from the Hughes Glacier, 
'-Caylor Valley. Photo taken from the Lake 
Bonney east lobe in January, 1974. 
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Fig. 4.15 

--
-, ---

The sandy eastern slope of the Bonney Reigel 
viewed from the south on the Lake Bonney 
east lobe ice-cover. 
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lake ice-cover at site 26. Although the sediment on the lake-ice 

is almost entirely of sand grade, two near-spherical granite 

boulders, 1.L and 2m across, wete found ·on the lake ice about 

100m from the north shore (Fig. 4.23). The boulders probably 

rolled down the adjacent hillslope onto the lake-ice prior to the 

formation of a summer moat. The insulating properties of the 

rocks were sufficient to prevent ablation of the underlying ice 

and the boulders have subsequently been rafted towards the centre 

of the lake in a manner similar to the Lake Vanda "dirtlines" 

(Section 3.1). 

4.4. 1 TEXTURE. The detrital sediments range from sand to muddy 

sand to silt (Fig. 4.16). The mean grain size of the bottom 

sedtments ranges from a medium silt to very coarse sand and 

sorting ranges from moderately to very poorly sorted (Table 4.9). 

Fig. 4.17 shows the relationship of mean grain size .. and Borting 

to the location of meltwater streams and to >later depth. Skewness 

values for the bottom sediments range from strongly fine skewed 

to strongly coarse skewed with most samples being fine skewed. 

Kurtosis values range from very platykurtic to very leptokurtic. 

The wind-blown sediments are moderately well sorted, near 

symmetrically skewed, mesokurtic medium sands. 

The stratigraphy of core 6 (Fig. 4.22) shows a silty upper 

3cm underlain by a variety of chemical precipitates intermixed 

with detrital silt and sand. The silt probably represents 

sediment washed from shallower depths by the east lobe water 

circulation. The bathymetry of the site 6 area (F'ig. 4.23) 

suggests that the basal pebbly sand is outwash material that was 

deposited as a terrace. 

Two modes of sediment transport operate in the east lobe, 

namely the wind and meltwater streams. The scatter plots 
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Table 4.9 Textural parameters of the detrital sediments of 

Lake Bonney east lobe. 

Sample number Mean size Sorting Skewness Kurtosis 
(depth em) (Mz ¢) (o'rlin (Sk

r
) (Kg) 

1 4.0 2.0 -0.3 0.7 

2 2.0 0.9 +0.3 2 .0 

3 0.4 1.8 +0.2 1.5 

4 (5) 3.3 2.4 +0.6 1.2 

4 (20) 0.6 1.6 +0.5 1.2 

5 (5) 3.8 2.9 -0.2 1.2 

5 (20) 2.3 2.8 +0.3 0.8 

6 (5) 6.0 1.7 -0.6 1.4 

6 (25) -0.3 3.5 -0.4 0.8 

7 0.7 1.9 +0.2 1.6 

8 0.9 1.2 -0.2 0.9 

11 2.7 1.7 +0.4 . 0.9 

13 6.0 2.1 -0.4 0.8 

14 1·5 1.8 +0.3 2.3 

15 1.1 1.4 +0.1 1.5 

16 1.8 0.8 +0.2 1.4 

17 2.5 2.7 +0.2 0.9 

20 1.9 1.2 +0· 3 1.7 

22 0.5 3.0 +0.6 0.7 

23 2.5 1.6 +0.1 1.0 

25 (5) 2.4 2.4 +0.5 0.6 

25 (30) 0.7 1.9 +0.2 0.9 

26 -0.8 1.6 +0.1 1.2 

27 0.9 2.5 -0.2 1.2 

26(from lake ice) 1.0 1.1 -0.1 1.0 

Reigel sand 1.4 0.4 +0.1 1.1 
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(Fig. 4.18) separate the silts from the deepest part of the 

lake (eg. sample 15) and the remaining samples; however, no clear 

differentiation of sediments according to mode of transport is 

apparent. Sorting of terrigenous sediment decreases with depth 

although the content of detrital sediment is minimal on the flat 

lake-floor where chemical precipitates are dominant. The bulk 

of the sediment is probably wind-blown onto the lake-ice or, 

more importanly, into the moat developed about the lake in summer. 

However inflow of sediment from meltwater streams is important 

locally. The silt transported into the lobe at shallo'l depths 

remains largely in suspension and is ultimately deposited in 
, 

the non-turbulent environment in the deepest part of the lobe. 

4.4. 2 DETRI'rAL MINERALOGY. The detrital components of the 

sediments are dominated by quartz and feldspar. Sand grains 

are g~nerally subrounded to subangular, the latter being partic-

ularly evident in sites close to the major melt'later streams on 

the southern shore (eg. sample 16). The light and heavy mineral-

ogy of the east l obe sediments exhibit the same general charact-

eristics as the west lobe mineralogy although relative abundances 

differ within the light minerals. Plagioclase is the dominant 

mineral species (Table 4.10). Together with quartz and potash 

feldspar, the light minerals also include relatively large 

sub-rounded flakes of biotite and lesser amounts of muscovite, 

particularly in the deeper sites. The heavy minerals comprise 

less than 22% of the total sand fraction and consist of horn-

blende, augite, hypersthene and opaque minerals (mainly magnetite). 

Terrigenous subangular pebbles in the analysed sediments 

consist mainly of granite with occasional granules of Ferrar 

Doleri te. 



Table 4.10 
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Quartz and feldspar ratios of the bottom sediments 
of Lake Bonney east lobe. 

Sample number Feldspar/Quartz Plagioclase/ 
(depth cm) Potash feldspar 

2 0.7 11.0 

} 1.1 18.0 

5 2.} 4.} 

6 (25) 2.6 2.8 

11 2.7 4.4 

14 2.1 4.7 

2} 2.} 2.5 

25 2.6 3.3 

27 1.4 2.9 

Clay mineral content does not appear to vary· with depth and 

is dominated by relatively crystalline illite with ~inor amounts 

of chlorite and montmorillonite. 

The source of the detrital minerals, as was the case for the 

west lobe detrital sediments, is mainly the granites of the 

Granite Harbour Intrusive Complex, the Ferrar Dolerites and the 

lamprophyre dykes found on the adjacent valley slopes. 

4.4. 3 CHEMICAL PRECIPITATES. Two of the three general sediment 

facies mentioned in the introduction to this section contain 

significant amounts of chemical precipitates. The distribution 

and amount of chemical precipitate is indicated in Figure 4.19 

and Tables 4.11 and 4.13. 

The first facies, found at depths below 30m, is exemplified 

by cores 9 a~d 10 (Figs. 4.20 and 4.21) and consists of halite 

crystals whose sizes range up to at least the internal diameter 

of the core liner, namely 3.4 cm. The translucent halite crystals 

often have well-developed cubic faces, exhibit hopper growth and 
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Table 4.11 Weight percent chemical precipitates in the 
sediments of Lake Bonney east lobe. 

Sample number (depth cm) 

1 

2 

3 

4 (5) 

4 (20) 

6 (5) 

6 (25) 

7 

8 

11 

13 

14 

15 

16 

17 

20 

22 

23 

25 (5) 

25 (30) 

26 

27 

Reigel sand 

% Chemical precipitates 

3.7 

2.3 

54.0 

10.0 

75.1 

2.0 

17.4 

1.9 

0.8 

68.8 

2.5 

1.4 

2.8 

42.0 

6.8 

28.2 

1.0 

4.0 

2.2 

appear to be in equilibrium with the lake waters, as the thin 

algal mat overlying some of the samples is neither cOlltinu'ous 

nor impermeable. 
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Fig. 4.20 

~'ig. 4.21 

Core 10 (field notation E 9), unsplit, from 
33m depth in the Lake Bonney east lobe. The 
core consists of halite crystals intermixed 
with organic floc and terrigenous silt with a 
gypsiferous band at 20cm depth. Scale in 
centimetres. 

Core 9 (field notation Ey) from the Lake 
Bonney east lobe. The sediments . consist 
almost entirely of halite with minor amounts 
of terrigenous silt occurring in phases 
throughout the core length. Although not 
as distinct in core 9 as in the adjacent 
core 10, a gypsiferous band occurs 20cm 
below the large, loose, hopper halite 
crystals on the sediment surface~ Scale i!' 
centimetres. 
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Cores indicate that almost pure halite persists in depth 

with but minor amounts of terrigenous silt. In core 10, however, 

a silty gypsum band containing some calcite and aragonite is 

round from 19.5 to 21cm depth and yields a U/Th age of about 100 

years B.P. (Appendix I). X R F analyses (Table 4.12) shows 

,there is significant differences in the halite stratigraphy of 

core 10 with more Ca and S. and less Fe and Cl occurring towards 

the bottom of the core. The 1974/75 University of Waikato 
f 

·expedition obtained a 1.6m long halite core from the Lake Bonney 

~st lobe, the bottom two-thirds of which consists mainly of 

dihydrohalite (A.T. Wilson, pers. comm.). Calculations indicate 

t ·hat at least 3 million tonnes of salt occur on the bottom of 

the Lake Bonney east lobe. 

Table 4.12 X-ray fluorescent analyses of the Lake Bonney 
east . lobe evaporites. 

Sample number 10 (5) ' 10(20) 10(28) 13 
(depth cm) halite gypsum halite gypsum 

Elements Intensity 

p 0.02 0.08 0.03 0.14 

oS 0.13 · 0.24 0.19 0.14 

Cl 6.68 0.82 5.69 1.37 

K 0.04 0.33 0.04 0.29 

Ca 0.09 . 0.93 0.19 1.82 

MIl 0.16 0.41 0.16 0.30 

Fe 0.57 7.12 0.27 3.22 

Br 0.32 0.89 0.37 0.69 

Sr 0.33 0.50 0.32 1.04 

Background 
level 23.59 29.30 22.71 27.06 
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Craig et al. (1974) suggested that hydrohalite (NaCl • 2H20) 

may be the primary precipitate in the Lake Bonney east -lobe. The 

total dissolved chloride in the lake waters (Table 1.2) suggests 

that salinity conditions close to the halite saturation curve may 

exist during the Antarctic winter (Table 1.3). 

The second facies, found from 18 to 30m depth, consists of 

halite, gypsum, aragonite, calcite and possibly mirabilite. 

Halite is found as crystals less than 1cm in diameter while 
< 

gypsum, aragonite and calcite occur either in a microcrystalline 

form or as multibanded plates. The plates, which are composed 

of up to four bands, are generally less than 1sq. cm in area and 

2cm thick. They are creamy white, relatively indurated, and 

composed mainly of microcrystalline gypsum. The plates are 

either intermixed with terrigenous sand, particularly in shallow 

sites and in wind exposed locations (eg. site 22), or are over-

lain by terrigenous silt and fine-grained chemical precipitates 

in areas of low sediment input (eg. site 6 - Fig. 4.22). The 

calcium carbonate content in the east lobe chemical precipitates 

is generally low however percentages for the bottom sediments 

range from 0.5 to 18.9% Crable -4.13); the highest values occur 

in the facies 2 sediments (eg. site 6). 

U/Th dates of the chemical precipitates in facies 2 are 

summarised as follows: 

Site number (depth) Years B.P. 

6 (5 to 7 cm) 240 (! 240) 
(11 to 12 cm) 1200 (! 150) 

7 aragonite 900 
gypsum 1050 

Chemical precipitates in the facies 1 sediments are maii~Y 

calcite although the total precipitate content is generally 

less than 2%. 



Fig. 4.22 Core 6 from the Lake Bonney east lobe. The 
stratigraphy consists of a silty top 3cm 
underlain by gypsum, aragonite, halite, 
calcite, and terrigenous silt and sand to a 
depth of 11cm. The chemical precipitates are 
either fine-grained or multibandedplates . .. 
The basal 15cm section is pebbly sand. Scale 
in centimetres. 
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The origin of the Lake Bonney east lobe salts is complex. 

Jones and Faure (1968) speculated that the salts were the product 

of chemical weathering of bedrock. An important contribution of 

salts comes from dissolved salts entering the lake via meltwater 

streams and groundwater flow. Chemical analyses of these waters, 

originally derived largely from atmospheric precipitation, indic-

- + ++ ++ ate the presence of Cl , Na ,Mg and Ca ions in decreasing 

order of abundance (Field, 1975). On the basis of ionic ratios 

(Angi,no et al., 1964; Boswell et a1., 1967) and the recent age 

and extent of the salt deposits, it is also likely that seawAter 

has ,contaminated the lake water. The Lake Bonney east lobe 

water is' probably a combination of seawater and water derived 

from the catchment glaciers which has been concentrated to an 

extent that salts have precipitated under frigid evaporitic 

conditions. The high concentration of Mg++ in the lake water 

would also have aided the preCipitation of halite since it 

markedly decreases the salt's solubility (Braitsch, 1971). 

The cemented halite crystals in cores from the deepest 

part of the lobe attain a maximum size of generally less than 

1cm, presumably because of variations in salinity and possibly 

increased water turbulence and sedimentation at the time ~f their 

formation. The large, loose, hopper halite crystals on the 

bottom surface indicate relatively constant salinity, mild water 

agitation and low sediment input. Underlying the halite one 

might expect gypsum and, at the base, calcite-aragonite to have 

precipitated under the evaporitic conditions. 

The precipitation of the banded gypsum and subsequent 

induration and break-up into plates may be indicative of periods 

of salinity variation associated with lake-level changes, similar 

to the situation envisaged for the west lobe. A lower lake level 
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might have allowed the gypsum to indurate with the subsequent 

break-up into plates being caused by frost-riving. The largely 

gypsiferous nature of the plates may be explained by the non-

precipitation of calcite in the presence of aragonite once the 

calcite saturation point has been exceeded (Reeves. 1968). 

4.4. 4 ORGANIC MATTER. The unique biological character of Lake 

Bonney is at present the subject of study by members of the 

Virginia Poly technical Institute of the U.S.A. Evidence of high 

biological productivity in the lake is seen in the summer months 

with occasionally algae visible beneath the lake-ice, especially 

at shallow water-depths. Algal growths are particularly notice-

able in the shallow gap between the two lobes. 

The organic carbon content of the bottom sediments ranges 
, 

from 0.08 to"1:~~1% (Table 4.13) with highest values found in 

fine-grained sediment particularly where the lake-ice has broken 

or melted (eg. site 1). 

Table 4.13 Carbon content of the bottom sediments of Lake 
Bonney east lobe. 

Sample number 
(depth cm) 

1 

2 

6 (5) 

6 (20) 

17 

19 

22 

25 

27 

% Total C 

1.41 

0.20 

3·13 

0.18 

1.58 

0.89 

0.30 

0.21 

0.18 

% Inorganic 
(%CaC03) 

0.10 (0.8) 

0.12 (0.9) 

2.27 (i8.9) 

0.10 (0.8) 

0.79 (6.5) 

0.54 (4.5) 

0.14 (1.1) 

0.08 (0.6) 

0.07 (0.5) 

C % Organic C 

1.31 

0.08 

0.86 

0.08 

0.79 

0.35 

0.15 

0.13 

0.11 
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Part of the evidence for a marine origin of the lake is 

described by Angino et al. (1964) with their discovery of several 

complete speciments of Globigerina sP. Sediment analyses by 

this writer, however, have not revealed calcareous fossils in 

Lake Bonney. 

4.4. 5 SUMMARY AND CONCLUSIONS. The extent of the summer thaw 

was more evident in the 1973/74 field season than that indicated 

in previous reports. The field season saw rapid development of 

meltwater streams and overland flow. Lake 30nney appears, however, 

to have been increasing in size since the turn of this century •. 

The east lobe sediments can be grouped into three broad 

facies, the lithologies of which are largely related to water 

depth. At depths below 30m the sediment is composed of halite 

crystals covered by a veneer of organic detritus and terrigenous 

silt; the second facies, between 18 and 30m depth, consists of 

gypsum, aragonite, halite, calcite and detrital sand and silt; 

the third facies, at depths generally shallower than 18m, is 

gravel, sand and silt. Proximity to the major meltwater stream 

outlets largely determines the extent of facies 3. 

The detrital sediments range from sand to muddy sand to 

silt. Two modes of sediment transport operate in the east lobe, 

namely the wind and meltwater streams. However, no clear differ­

entiation of bottom sediments according to mode of transport is 

apparent. Sorting of terrigenous sediment decreases with depth 

although the content of detrital sediment is minimal on the 

flat lake-floor where chemical precipitates are dominant. The 

sediments below about 30m depth are generally very poorly sorted 

very fine sands (<. O.125mm). At depths shallower than 30m the 

sediments are poorly to moderately sorted and range up to coarse 

sand size. The bulk of the detrital sediment is probably 



, 111 
wind-blown, with sediment derived from meltwater streams being 

important locally. Silt that is transported into. the lake appears 

to remain largely in suspension until eventually being deposited 

in the non-turbulent lake bottom. 

The detrital sediments consist mainly of quartz and feldspar. 

The source of the detrital minerals is mainly the granites of the 

Granite Harbour Intrusive Complex, the Ferrar Dolerites and the 

lamprophyre dykes found on the adjacent valley slopes. Detrital 

~ineral form and surface texture show that wind- and river-

.transporting processes operate in the east lobe. 

The facies 1 "halite" cores contain only minor amounts of 

terrigenous silt and sand, and a single band of gypsum, aragonite 

and calcite at 20cm depth. The halite crystals on the lake-floor 

exhibit hopper growth and reflect the relatively constant salinity 

and low sediment input at that depth. rhe · flat-bottom lake 

topography suggests the halite is in equilibrium with the lake 

bottom water with possibly hydrohalite forming in the colder 

winter months. Dating of the "gypsum" band yields a U/Th age 

of· about 100 . years. 

The facies 2 chemical precipitates occur either in a 

microcrystalline form or as multibanded plates. The plates 

consist mainly Of gypsum and give a U/Th age of 240 to 1200 

years B.P. 

The Lake Bonney east lobe salt deposits are probably the 

product of the precipitation of salts from both seawater and water 

derived from the catchment glaciers. The saline brines were 

concentrated, and the salts precipitated, under frigid 

evaporitic conditions. 

The organic content is highest in fine-grained sediment 

particularly where the lake-ice has melted or broken-up. 
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The sequence of events recorded in the Lake Bonney east lobe 

bottom sediments suggest: 1. that at least 2,000 years B.P., 

outwash terraces were being deposited in the east lobe during a 

period of lower lake-level; 

2. that prior to 1,200 years B.P. a 

marine incursion of the Taylor Valley occurred resulting in at 

least contamina tion of the east lobe with seawater; 

3. that since 1,200 years S.P. evapor-

itic conditions have concentrated the saline lake water and 

precipitated various salts; 

4. that 900 to 1,200 years B.P. the 
, , 

salts precipitated on the 18m depth outwash terrace were broken-

up, possibly by frost-riving, during a period of lower lake level 

than at the present time; 

5. that dispite an increasing lake 

level, a highly saline lake bottom environment has been main-

tai·ned to the present, resulting in the precipitation of halite; 

6. that since the precipitation of 

salts 1,200 years B.P., the rate of sedimentation of detrital 

sediments appears to be increasing; 

7. that since at least 450 years B.P. 

water from the west lobe has been contributing to the east lobe 

water budget. 
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Fig. 5.1 Lake Joyce viewed from the north with the Taylor 
Glacier forming the south-east boundary of the 
lake. The Kukri Hills are in the far background. 
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C HAP T E R V 

LAKE JOYCE SEDIMENTS 

Cores from the bottom of Lake Joyce indicate the sediments 

are sands and silts, with an aerobic/anaerobic boundary at approx­

imately the 29m water depth (Fig. 5.5). The olive coloured 

aerobic sediments (Fig. 5.2) are composed of sand and occasionally 

contain organic floc. The black to greyish-black anaerobic 

sediments (Fig. 5.2) also consist of ~nd; how;ever, they smell 

strongly of hydrogen sulphide and have varve-like sand-silt bands. 

There are as many as twelve sand-silt bands, each about 1 to 2mm 

thick, with up to 10 laminae within a single silt band. 

5.1 TEXTURE. 

The sediments are mainly silty sands (Fig. 5.3). The mean 

grain size ranges from coarse silt to medium sand (Table 5.1). 

Differentiation of aerobic and anaerobic facies on the basis of 

sediment texture is difficult. The main textural distinction 

between the two sediment facies is that aerobic sediments general­

ly consist of fine sands that are poorer sorted than the medium 

sands characteristic of the anaerobic facies. 

Two modes of sediment transport operate, namely, the wind 

and meltwater streams. It is suggested that the generally better 

sorted and coarser grained sediments in the deepest part of the 

lake are primarily wind-blown onto the lake-ice where they 

eventua~ly sink through to the lake-floor (eg. sample 5). Sample 

4, is probably sediment transported into the lake from the 

northern outwash fans (Fig. 5.5). Sites at similar depths 



• 

• • 

Fig. 5.2 

Lake 

Q I R 

Lake Joyce bottom sediment cores. Cores 1 
(field notation G), 2(Q) and 6(M) are 
anaerobic sediments composed of sand and 
occasionally organic floc. Cores 5(R) and 
7(1) are grey-black anaerobic sediments also' 
composed of sand; however, they smell strongly 
of hydrogen sulphide and have varve-like 
~and-silt bands. 
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Fig. 5.3 Textural classes of the detrital sediments of Lake Joyce. 
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Table 5.1 Textural parameters of the detrital bottom sediments 
of Lake Joyce. 

Sample number Mean size Sorting Skewness Kurtosis 
(depth cm) (Hz ¢) (dI ¢) (SkI) (Kg) 

1 2.3 2.1 +0.4 1.2 

2 3.1 2.4 +0.5 1.0 

3 (2) 4.2 1.9 -0.8 0.6 

3 (15) 2.1 2.1 ,+0.3 1.4 

4 2.3 1.1 +0.1 1.4 

5 (6) 1.8 1.1 ,+0.4 1.4 

5 (12) 2.1 2.3 +0.4 0.1 

6 3.6 2.3 ,. -0.1 0.6 

1 1.1 0.9 -0.3 1.5 

(eg. sample 1) ar~ more poorly sorted and positively skewed and . 

are likely to be wind-blown, either onto the lake ice where the 

sediment eventually sinks through to the lake-floor, or into 

the summer moat. 

The sediments are generally strongly fine skewed, with the 

exception of the two southern-most sites (samples 6 and 1). 

Jikewness values therefore probably indicate that wind-blown 

sediment is transported from northerly directions across the 

. lake. 

Sediment variation within individual cores suggests changes 

in lake-level and sediment supply have occurred in the lake's 

recent history. Textural analyses of the basal sediments of 

core 3 and 5 suggest possibly a lower lake-level at the time of 

their deposition. During this period, the basal silty sands 

may have been wind-blown similar to the situation found at 

site 1. ~he varve-like sand-silt bands found in the anaerobic 

cores at 4 to 5cm depth suggest periods of variable but low 
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sediment input, at least below the present 29m water depth, at 

the time of deposition. 

Comparison .of textural parameters (Fig. 5.4) confirms the 

association of sediment texture to the modes of sediment trans-

port described above (eg. the similarity of samples 3 (15cm) and 

5 (12cm) to sample 1) • 

.2.d- DETRITAL I1INERALOGY. 

In general at least 85% of the detrital minerals of Lake 

Joyce consist of feldspar and quartz (Table 5.2). Plagioclase 

is the dominant feldspar species. In decreasing amounts, the 

heavy minerals consist of brown hornblende, au~ite and hypersth-

ene. Minor amounts of fine grained biotite, muscovite and 

magnetite and other opaque minerals are present, particularly 

in the silty sediments. The clay fraction is composed mainly 

of illite with minor amounts of montmorillonite and chlorite. 

There is little variation in the abundance of clay mineral 

species between samples. 

Table 5.2 Quartz and feldspar ratios of the bottom sediments 
of Lake Joyce. 

Sample number Feldspar/Quartz Plagioclase/ 
(depth cm) Potash feldspar 

1 1.1 2.5 

2 0.6 8.0 

5 (6) 1·5 1.4 

5 (12) 0.8 12.0 

Sand-size grains are most commonly subangular suggestin.1l 

local derivation from the weathering of the Irizar Granite, 
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Larsen Granodiorite and Ferrar Dolerite sills that form the 

adjacent valley slopes (Fig. 1.2). 

5.3 CHEMICAL PRECIPITA-rES AND ORGANIC MATTER. 

X R D analyses indicate that calcite is the only chemical 

precipitate in the Lake Joyce bottom sediments. Although present 

in amounts of generally less than 2%, highest ' calcite values are 

recorded in the anaerobic cores, particularly in the sand-silt 

"varves". Inorganic carbon analyses (Table 5.3) show the 

percentage of calcite ranges from 0.1 to 1.9%. The low calcite 

value for sample 5 (12) suggests the environment of depositicD, 

indicated by textural analyses, was one of shallow water. 

l'able 5.3 Carbon content of the bottom sediments of 
Lake Joyce. 

Sample number % Total C % Inorganic C % Organic C 
(depth cm) (% CaC03) 

1 0.17 0.06 (0.5) 0.11 

,2 0.80 0.23 (1.9) 0.56 

5 (3) 0.54 0.15 (1.2 ) 0.39 

5 (12) 0.33 0.02 (0.1) 0.31 

6 0.22 0.06 (0.5) 0.16 

7 0.46 0.10 (0.8) 0.36 

The organic carbon content (Table 5.3) ranges from 0.11 to 

0.56~ with the highest values occurring generally in the deepest 

part of the lake. The compara tively high organic content of 

site 2 may reflect the non-turbulent bottom water at that location. 

The organic matter is probably similar in nature to that in the 

lakes described previously, consisting mainly of algae, diatoms 

and bacteria. 
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The calcium carbonate in the sand-silt"varves"may be the 

product of the concentration of brines and the precipitation of 

salts under frigid evaporitic conditions, possibly during a 

period of low lake level. However the presence of calcite in the 

surficial sediments may be the product of carbonate precipitation 

following the formation of carbon dioxide by the bacterial 

oxidation of organic matter, since the present salinity of the 

lake water (Fig. 1.4) is too low to account for carbonate forma­

tion. 

5 .. 4 SUMJ.1ARY AND CONCLUSIONS. 

The bathymetric map of Lake Joyce (Fig. 5.'5) does not suggest 

moraine walls exist within the lake and therefore the Taylor 

Glacier has probably not advanced beyond its present position 

since the basin was formed. There has, however, been a consider-

able influx of deltaic sediments from the nortQ wall of the 

Taylor Valley, derived from the Catspaw and an adjacent unnamed 

glacier, and as overflow from Lake Hause, filling about half 

the original basin. This has caused the original round and flat­

bottomed depression to become an elongated trough. 

Cores from the bottom of Lake Joyce indicate the sedl.ments 

are sands and silts, with an aerobic/anaerobic boundary at 

approximately the 29m water depth. The aerobic sediments are 

generally fine sands that are more poorly sorted than the fine 

to medium sands in the anaerobic zone. The anaerobic sediments 

also contain varve-like sand-silt bands and smell strongly of 

hydrogen sulphide. 

Two modes of sediment transport operate, namely, the wind 

and meltwater streams. Sediments transported by meltwater 

streams occur in the northern part of the lake. The remaining 

sediments are mainly wind blown, with more silty sands being 
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deposited in shallow depths presumably because the silt compon-

ent, unlike the sand, is not wind-saltated across the lake-ice. 

The silt is deposited at shallow depths in an apparently non­

turbulent lake environment created possibly by the thickness of 

the lake-ice and narrow summer moat. The wind transports sedi­

ment from the north Taylor Valley side and deposits it either into 

the summer moat or, more commonly, onto the lake-ice where it 

eventually sinks to the lake floor. 

The detrital sediments are locally derived from the weather­

ing of the Irizar Granite, Larsen Granodiorite and Ferrar Dolerite 

sills that form the adjacent valley slopes. 

Calcite is the only chemical precipitate in the bottom 

sediments and occurs mainly in the anaerobic sediments, partic­

ularly in the sand-silt varves. Its presence in the surficial 

sediments may be the product of carbonate formation following the 

formation of carbon dioxide by the bacterial oxidation of organic 

matter. The organic content is highest in the anaerobic 

sediments and probably consists mainly of algae, bacteria and 

diatoms. 

The existence of an aerobic/anaerobic 'boundary is probably 

related to a chloride diffusion cell, the bottom of which is 

close to the 29m water depth (Fig. 1.4). The diffusion, cell 

represents a zone in the lake in which oxygen can only be supplied 

by diffusion whereas organic matter is being supplied by the rain 

of algal debris from above (Hendy et al., 1973). The chloride 

concentration gradients measured in 1963 by A.T. Wilson (pers. 

comm.) are believed to have been operating for 2,000 to 3,000 

years. 

It is suggested that the 2,:)00 to 3',000 year old "residual 

brine" comprising the Lake Joyce bottom water was formed at the 
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same time as the calcareous sand-silt'varves"were deposited, 

that is, during a period of low lake level. The calcite in the 

"varves"is probably evaporitic in origin. Textural analyses of 

. " sediments below the varves suggest a water depth intermediate 

between the present lake-level and the low lake-level envisaged 

during "varve" deposition. The possibility cannot be discounted 

that evaporitic phases occur in the sediment a·t greater depths. 



Fig. 5.5 Bathymetry and sample locations 
for Lake Joycee 
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C HAP T E R VI 

6.1 EVAPORITIC PHASES AND CLIMATIC REGIHEN. 

The basic assumption in this study is that periods of extreme 

aridity in the Dry Valleys have occurred during the Holocene, 

and that such periods are considered indicative of colder climat­

ic phases. The cold dry phases are believed to be associated 

with periods of lower lake levels which permitted the concentra­

tion of brines and formation of chemical precipitates under 

frigid evaporitic conditions. The sediment contribution from 

meltwater streams would, under a cold climatic phase, be low 

because of the locking-up of the water supply to meltwater 

strea,ms by valley glaciers. The main source of detri tal sediment 

during such a phase would probably be wind-derived material. 

The incursion of seawater further contributes to the salini.ty 

of some of the lakes. However, lake level and salinity appear 

dependent on the balance of discharge of meltwater and the rate 

of sublimation of ice. The dense brines on the bottom of the 

lakes, and particularly the evaporitic bands in the lake sediments, 

could represent residual liquids from earlier periods when loss 

of water may have exceeded discharge of meltwater. 

6.2 THE NATURE OF THE DRY VALLEYS AND DRY VALLEY LAKES. 

The Dry Valleys consititute the largest ice-free area in 

Antarctica. To account for this Wilson (1967) explains that it 

is ne~p.ssary to consider the precipitation/evaporation balance 

in the region. In the Dry Valleys the nett precipitation· is 

negative (ie. sublimation exceeds precip1tation) while above 

the snowline it is positive. For a given region the nett 
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precipitation increases as altitude increases. Thus the dry 

areas are those areas which lie below the snowline and into which 

ice from above the snowline cannot flow. However the nett excess 

precipitation in a snowfield will flow below the snowline as a 

glacier (Wilson, 1967). Usually the glacier pushes sufficiently 

far below the snowline for some summer melting to take place. 

In such cases, for a few weeks of the. year during the hottest 

part of the summer, a stream flows away from the glacier snout 

and feeds a lake which occupies the lowest point of that partic­

ular drainage basin. 

The size of the lake is determined by that area needed to 

balance the evaporation/precipitation equation for that particular 

area. If there is a nett precipitation increase to the area the 

lake level will rise and if there is a decrease in precipitation 

the lake level will fall. Thus the Dry Valley lakes are very 

sensitive indicators of changes in nett precipitation and hence 

of glacial advances and retreats. 

The above treatment was considered by Wilson (1967) as an 

oversimplification of the situation because it deals with 

climatic change only in terms of nett precipitation. However 

Wilson (1967) considered 'the effect of temperature to be limited. 

A further effect is that the retreating glacier is replaced by a 

stream which can contribute almost as much evaporation as the 

glacier it replaces. For example, the 29km length of the Onyx 

River provides as much evaporation as the whole surface of Lake 

Vanda (,Iilson, 1967). 

Calkin and Bull (1974) noted that the history revealed in 

the Dry Valleys gives no assuranc~ that changes in the past 

climata are applicable to other parts of the continent and, 

around most of the ice sheet, the local picture cannot be 



determined from studies on land because the ice extends to the 

continental edge. The Dry Valley climatic regimen may be 

related, therefore, to the position of the Ross Ice Shelf. 

Wilson (1967) suggested the hypothesis that during periods 

of high lake level the Ross Ice Shelf was much further south 

than its present position. This would mean that there would 

have been more open sea closer to the snowfields supplying the 

Dry Valley lakes. The local alpine glaciers, as distinct from 

those fed from the Polar Plateau, are fed by local snowfall and 

are therefore controlled by mean uistance from the sea (ie. the 

position of the Ross Ice Shelf). 

However, the sequence of climatic events revealed in the 

bottom sediments of the lakes studied probably reflect the 

nonsynchronous nature of past fluctuations in the three major 

glaci~r systems. 

6.3 THE SEQUENC E OF CLIHATIC EVENTS REVEALED IN THE LAKE BOTTOH 

SEDHlENT3. 

The sequence of events in the Taylor and \~right Valleys 

as revealed by analyses of the bottom sediments of Lake's Vanda, 

Bonney and Joyce in the present study are as follows: 

(1) that the Taylor II Glaciation occur'red at least 

300,000 years B.P.; 

(2) that flooding of the Taylor Valley with'seawater occurr­

ed about 300,000 years B.P. to an extent that the then 

shallow Lake Bonney west lobe was at least contaminated 

by marine water which became sufficiently saline to 

precipitate salts; 

(3) that the Taylor Glacier entered the Bonney basin at 

least 10,000 years B.P., its advance coinciding with 

the Taylor I Glaciation; 



(4) that Lake Yanda experienced at least four periods of 

low lake level prior to the 5,500 year B.P. drop in 

lake level; 

(5) that the Lake Joyce water level was lower about 

3,000 years B.P.; 

(6) that Lake Yanda was only a few metres deep about 

2,000 years B.P.; 

(7) that prior to 1,200 years B.P. a marine incursion 

occurred in .. the '£aylor Valley with contamination of 

the Bonney Basin by seawater; 
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(8) that at least 900 to 1,200 years B.P. the precipita­

tion of essentially marine salts was initiated in the 

then shallow Lake Bonney east lobe and has continued 

to the present, with halite crystals forming on the 

lake floor; 

(9) that since at least 450 years B.P. water from the 

Lake Bonney west lobe has been contributing to the 

east lobe water budget; 

(10) that the Lake Bonney water level has been steadily 

rising since the turn of this century. 

6.4 SUMHARY OF THE LAKES VANDA. BONNEY . AND JOYCE BOT'rOM 

SEDIHENTS. 

The sediments of Lake Yanda and Lake Joyce may be broadly 

categorised into · two sediment facies, namely aerobic and anaero­

bic. In Lake Yanda the boundary of the two facies occurs at the 

60m water depth while in Lake Joyce the boundary is at 29m depth. 

Sediments in the aerobic zone typically consist of light­

coloured massive sands that occasionally contain organic floc. 

The anaerobic sediments are generally blackish sands that smell 
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of hydrogen sulphide, and contain 2 to 3cm thick varve-like 

cal'careous sand-silt bands or, in the case of Lake Vanda, 

chemical precipitate - terrigenous silt bands. The varve-like 

bands can often be further subdivided into a number of fine 

laminae. Deep cores obtained from Lake Vanda show a series of 

grain size cycles in which medium to fine sands alternate with 

chemical precipitate - silt bands. 

The Lake Bonney west lobe bottom detrital sediments are 

categorised according to sediment source. The sediment is either 

derived from the Taylor Glacier or wind-transported into the 

lake. On the basis of texture three broad sediment facies are 

.distinguished. The first facies, located adjacent to the 'Taylor 

Glacier, consists of sediment derived from the glacier and its 

associated meltwater streams; the second facies, located generally 

at shallow depth, is mainly wind-derived sediment; the third 

facies is located mainly in the deep part of the lobe and consists 

of both Taylor Glacier and wind-transported sediment. 

The Lake Bonney east lobe sediments are grouped into three 

facies, the lithologies of which are mainly related to water 

depth. At depths below 30m the sediments is composed of halite 

cystals covered by a veneer of organic detritus and terrigenous 

silt; the second facies, between 18 and 30m depth consist of 

gypsum, aragonite, halite, calcite and detrital sand and silt; 

the third facies, at depths generally shallower than 18m, is 

gravel, sand and silt. 

The detrital mineralogy of the lake bottom sediments is 

compatible with generally local derivation. Grains are commonly 

subangular to subrounded and the pitted and frosted surfaces, 

particularly of quartz grains, is indicative of wind transport. 

The sediments are composed mainly of quartz and feldspar. 
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Feldspars consist mainly of plagioclase with lesser amounts of 

potash feldspar. The remaining light minerals (S.G. < 2.7) consist 

of biotite and muscovite, and rare volcanic glass occurs in the 

Lake Vanda deep core. Heavy minerals (S.G.>2.7) consist mainly 

of hornblende and lesser amounts of augite, hypersthene and opaque 

minerals (mainly magnetite). Clay minerals consist mainly of 

illite with minor amounts of mixed-layer illite-chlorite, 

chlorite and montmorillonite. 

The detrital mineralogy is derived mainly from the granites 

of the Granite Harbour Intrusive Complex, namely the Irizar 

Granite (Vida Granite), Larsen Granodiorite and the Olympus 

Granite Gneiss. However contributions, particularly of heavy 

minerals, come from the Ferrar Dolerites and lamprophyre and 

porphyry dykes. Some of the rounded quartz grains may be derived 

from the sandstones of the Beacon Supergroup. 

Textural analyses of the lake bottom sediments have enabled 

sediments to be differentiated partly according to mode of 

transport. Sediments are generally wind transported onto the 

lake-ice, where they eventually sink to the lake-floor, or are 

blown into the lake's summer moat. In the three lakes studied 

river-transported sediment is generally of local importance only. 

However the Lake Bonney west lobe receives much of its sediment 

from the Taylor Glacier either via the associated meltwater 

streams or from the release of sediment following basal sublima­

tion of the glacier. The lake bottom sediments are generally 

poorly sorted sands and silty sands with sediments becoming 

finer-grained and more poorly sorted with increasing depth. The 

silty component in the sediments is commonly kept in suspens~on 

until deposition occurs in the less-turbulent waters on the lake­

floor. Lake ·Joyce sediments, however, show an improvement in 
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sorting and an increase in grain-size with dep.th. The silt com-

ponent of the sediments appears to be deposited at shallow 

depths because of the seemingly non-turbulent character of the 

lake water there. 

The chemical preCipitates present in the lakes vary consider-

ably in origin, mineralogy and abundance. In Lake Vanda chemical 

precipitates occur mainly in bands that were probably formed under 

evaporitic conditions. Gypsum is the main chemical precipitate 

with minor amounts of calcite. In Lake Joyce calcite occurs 

mainly in the calcareous ·sand-silt bands which are also consider-

ed evaporitic. The calcite present in the surficial anaerobic 

sediments may, however, be the product of the precipitation of 

carbonates following the formation of carbon dioxide by the 

bacterial oxidation of organic matter. Most of the salts in the 

above-mentioned lakes appear to have been transported in solution 

by meltwater streams draining the local glaciers. 

The Lake Bonney sediments contain chemical precipitates of 

both marine and meltwater origin. In the west lobe the chemical 

precipitates are mainly gypsum with minor amounts of calcite. 

The gypsum chips present in the bottom sediments are probably 

derived from seawater, being preci pited under frigid evaporitic 

conditions. The east lobe chemical precipitates are probably 

mainly of seawater origin and consist almost exclusively of halite 

covering the extensive flat-bottomed east lobe floor. fhe bottom 

surface hopper halite crystals appear to be in equilibrium with 

bottom waters. At shallower depths chemical precipitates occur 

in either a micro-crystalline form or as multibanded plates. 

Gypsum is the main precipitate with ·lesser amounts of aragonite, 

halite and calcite. The platey chemical precipitates found in 

Lake Vanda and in Lake Bonney's east and west lobe are thought 



to be the product of reworking of frost-riven salts. 

The organic matter in the sediments consists mainly of 

algae, bacteria and diatoms. In general the organic content 

increases with water depth and is most often associated with 

fine-grained sediment. 
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Sample number U ppm U234 / U238 Th232 / U234 Th230 / U234 Age Th230 / U234 Age 
(depth cm) maximum Years Years 

(deviation) (deviation) (deviation) 

Taylor Glacier 0.130 2.6 0.35 0.60 85,000 0.22 28,000 
gypsum (0.40) (0.10) 

west lobe 

16 1.900 1.2 0.15 0.97 300,000 
(0.07) 

10 (30-40) 0.097 2.2 1.30 1.60 infinite 0.37 
(0.30) (0.20) (0.3) 

11 (30-40) 0.350 2.0 0.72 1.20 infinite 0.17 20,000 
(0.16) (0.11) 

east lobe 

6 (5-7) 17.0 3.61 0.015 0.017 ' 1,900 0.002 240 
(:!: 240) 

6 (11-12) 28.0 3.29 0.006 0.016 1,800 0.010 1,200 
(! 150) , 

7 aragonite 28.0 3.29 0.011 0.018 2,100 0.0073 900 

gypsum 2.3 3.30 0.029 0.037 4,500 0.0083 1,050 

10 (20) 3.1 3.82 0.08 0.083 10,000 0.001 z 100 

Appendix, I Uranium / Thorium Dating Data from the .Taylor Glacier and Lake Bonney (after C.H. Hendy, pers.comm. ) . ~I 
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APPENDIX II 

RELATIONSHIP OF THESIS SANPLE NUHBERS TO UNIVERSITY OF 'tiAIKATO 

CATOLOGU~ NU MBERS 

Thesis No •. U. of W. Thesis No. U. of 'vI .Thesis No. U. of W. 
No. No. No. 

Lake Vanda Lake Bonney Taylor Glacier 
(depth) east lobe (T.G.) 

.5 
10 

7 

7 
1 

2 

4 

12 

13 

9 

3 
11 

8 
6(Oto75cm) 

6(Oto92cm) 

6(93to200cm) 

14 

15 

16 

Wind-blown 
sand at 
si te 6. 
Water column 
samples. 

Lake Joyce 

1 

2 

3 
4 

.5 
6 

7 

8 

T10025 

T10026 

T10027 

T10028 

T10029 

T10030 

T10031 

T10032 

T10033 

T10034 

T10035 

T10036 

T10037 

T10038 

T10039 

T10040 

T10041 

T10042 

T10043 

T10081 

T10044 

T10045 

T10046 

T10047 

T10048 

T10049 

T10050 

T10051 

1 

2 

3 
4 

5 
6 

7 
8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

T10052 T.G. 1 

T10053 T.G. 2 

T10054 T.G. 3 

T10055 T.G. Salts 
T10056 West lobe 

T10057 

T10058 

T10059 

T10060 

T10061 

T10062 

T10063 

T10064 

T10065 

T10066 

T10067 

T10068 

T10069 

T10070 

T10071 

T10072 

T10073 

T10074 

T10075 

4 

5 
6 

7 
8 

9 
10 

11 

12 

13 

14 

1,5 

16 

17 

18 

19 

20 

21 
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