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Abstract—A novel mutation operator for the wind farm layout

optimisation problem is proposed and tested. When a wind farm

layout is simulated, statistics such as an individual turbine’s wake

free ratio can be computed. These statistics are in addition to the

global measure being optimised, for example the overall cost of

energy extraction of the farm. We present algorithms that first

of all build a predictive model of the wake free ratio across an

entire wind farm. This model is then used inside a mutation

operator to perturb turbines towards positions of high predicted

wake free ratio. We evaluate our approach by comparing a 1+1

Evolutionary Strategy using this new mutation operator vs. the

same algorithm with a more standard random mutation operator,

and show that our new operator leads to the discovery of wind

farm layouts having a statistically significantly lower cost of

energy extraction.

Keywords-wind farm layout optimisation problem, evolution-

ary strategy, mutation operator, wake free ratio, cost of energy,

machine learning, predictive model, stochastic hill climbing

I. INTRODUCTION

An important issue in wind farm design is assigning location
and other properties to the turbines on the farm in order
to optimise some metric such as the cost of wind energy
extraction. This problem is by no means trivial: to illustrate, if
each turbine is specified solely by an (x, y) position (meaning
that all the turbines are identical and have no other properties),
then for a 400-turbine layout, the problem amounts to an 800-
dimensional optimisation task. Solving such a problem analyt-
ically is likely to be either extremely difficult or impossible.
To further complicate the problem, many additional factors
must also be taken into account: for example the farm’s initial
construction and maintenance costs is likely to be significant
and so should be included in any cost estimates; and the
aesthetic impact of the farm on the environment should also
be considered.

Given so many conflicting objectives, meta-heuristic search
algorithms are an ideal tool to find solutions.

The primary novel contribution of this paper is an adaptive
model-based mutation operator for wind farm layouts that can
be used to solve the wind farm layout optimisation problem.
We focus on the more difficult continuous version of the
layout optimisation problem in which turbines may be placed
at any valid location on the farm. In comparison, other earlier
approaches to solving this problem often constrained turbine

placement, for example to discrete locations on a grid (an
approached utilised by seminal works in this area, such as
Mosetti et al. [4]). Our approach also copes with obstacles of
any shape and size.

The metaheuristic search algorithm that we use in this
paper is the Evolutionary Strategy (ES, [1]), which in its
simplest form (the 1+1 variant) is equivalent to the well-known
stochastic hill climbing algorithm.

Traditionally, search algorithms such as ESes rely on the
availability of a value function in order to provide a single
numeric measure of the value of a particular solution. It is this
single measure that the ES optimises. Wind farm simulation
models, however, provide a much richer description of the
wind farm’s performance than a single objective value. Each
turbine can have a multitude of statistics computed about it
as a wind farm simulation executes. These are basically “side
effects” of the simulation. An example used in this research the
wake-free ratio, a metric representing the theoretical maximum
wind energy that a turbine can receive which is not degraded
by the wakes of other nearby turbines.

In this paper, we show that a predictive model of the wake
free ratio across a wind farm layout can be built based on
two factors: the absolute position of the turbine, and the local
configurations of nearby neighbouring turbines. This model
can then be used to predict wake free ratios at vacant positions
in the layout, which in turn can be used to improve the
performance of the ES algorithm’s mutation operator.

We evaluate our model-based mutation operator against a
random mutation operator on the twenty benchmark scenarios
proposed for the 2015 Wind Farm Layout Optimisation com-
petition [7] and obtain statistically significant improvements in
the cost of energy extraction across all scenarios.

II. BACKGROUND

A. Wind Farm Layout Optimisation Problem

The Wind Farm Layout Optimisation Problem concerns
finding an optimal placement for wind turbines (and optionally
setting their properties as well) on a wind farm [5]. Typically,
the number of wind turbines that must be positioned is high
(for example, in the hundreds of turbines in more recent
publications) and there may be obstacles (e.g. water) on the
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farm where turbines cannot be placed. Furthermore, turbines
cannot be placed too closely to each other because of the
extreme turbulence that they generate. According to Samorani
[5], a minimum distance three times the diameter of the wind
turbine rotors is sufficient to avoid damage.

Despite this minimum distance constraint, nearby wind
turbines still interact. The primary mechanism for this is known
as the wake effect. Essentially, the wake effect is a “spreading
cone” of slow, turbulent air downwind of a turbine that reduces
the amount of harvestable energy by other turbines in its path.
Wake effects from multiple turbines amalgamate if there are
many nearby turbines upwind.

Evaluating the performance of a particular wind farm layout
is quite challenging therefore: factors for consideration include
the distribution of wind speeds and directions (which are often
characterised using a wind rose, see Figure 2 for examples);
the wake effects between turbines; as well as the particular
characteristics of the turbines themselves (for example, dif-
ferent turbines may have different cut out speeds at which
they switch off if the wind speed is too strong). A complex
simulation is therefore required in order to estimate the total
energy output of a farm. With respect to wake effect modelling,
approaches range from extremely complex fluid dynamics
simulations [5] to relatively less complex models such as the
Park model (which none-the-less has time-complexity O(n2)
in the number of turbines [6]).

B. 1+1 Evolutionary Strategy

In this paper we utilise one of the simplest metaheuristic
optimisation strategies, namely the 1+1 ES [1]. Pseudocode for
the algorithm in the context of a cost minimisation problem is
depicted as Algorithm 1.

Input: MAX EV ALS

begin

best create random solution();
best cost evaluate(best);
num evals 1;
repeat

candidate mutate(copy(best));
candidate cost evaluate(candidate);
num evals num evals+ 1;
if candidate cost  best cost then

best candidate;
best cost candidate cost;

end

until num evals �MAX EV ALS;
return best

end

Algorithm 1: 1+1 Evolutionary Strategy.

There are two primary reasons for adopting the 1+1 ES in
this research. Firstly, the algorithm is simple to implement
and understand, and it requires only a minimum number
of parameters (specifically, the maximum allowable number
of solution evaluations, which is a critical parameter in the

wind farm layout optimisation problem because evaluation is
expensive). This reduced number of parameters makes the
1+1 ES highly amenable to experimentation as the effects
of different parameter settings on experimental results can be
minimised.

The second reason for utilising this algorithm is that it
requires a problem-specific mutation operator only. Other more
sophisticated algorithms such as the genetic algorithm require
more operators to be specified, for example both a mutation
and a crossover operator. Since this research is focused on a
problem-specific mutation operator for the wind farm layout
optimisation operator, using the 1+1 ES makes sense. (In fact,
in our initial experiments with a genetic algorithm, we found
that a poor choice of crossover operator significantly degrades
the algorithm’s overall performance.)

III. ADAPTIVE MODEL-BASED MUTATION OF WIND FARM
LAYOUTS

Both the mutation operator and the objective function in a
1+1 ES are problem-specific. In this section, we discuss our
approach to designing a mutation operator that is specific to
the wind farm layout optimisation problem.

To begin with, Algorithm 2 is pseudocode for a simple
randomised mutation operator for wind farm layouts. It moves
a small number of turbines (for example, 5%) to a new ran-
dom location. This algorithm represents the simplest possible
approach to mutating a wind farm layout. The mutation rate
parameter, an input to the algorithm, dictates the size of
the random layout changes – this is compared to a uniform
random number between 0 and 1 to determine which turbines
are to be moved. Such an approach is typical in generic
evolutionary strategies and makes no use of problem specific
information except for the random valid location() function
which selects a random point on the layout subject to the
constraints (i.e. a point is invalid if it lies on an obstacle or is
too close to an existing turbine).

Input: turbine positions T = {(x1, y1), (x2, y2), ...},
mutation rate MUT RATE

repeat

for each turbine position (xi, yi) 2 T do

if random(0, 1) < MUT RATE then

(xnew, ynew) random valid location();
replace (xi, yi) with (xnew, ynew) in T ;

end

end

until the layout has been changed;
Algorithm 2: Baseline mutation operator.

Wind farm layouts must be simulated in order to evaluate
their effectiveness, however, and there is more information
available than simply the objective value of a layout and
whether or not a vacant point is valid. In fact, the simulation
we are utilising calculates the wake free ratios for each wind
turbine in the layout, and the approach proposed in this paper
exploits that information.
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Fig. 1: Example of turbine t’s neighbourhood where K = 3.
The three closest turbines to t are n1, n2 and n3.

To explain, we first of all introduce the concept of a local
neighbourhood of wind turbines. A local neighbourhood is
defined by a neighbourhood size parameter K, and it simply
consists of

• the (x, y) position of the turbine on the layout, and
• the K nearest neighbours to the turbine.

An example of a local neighbourhood is given in Figure 1. The
motivation for this concept is that, intuitively, a wind turbine’s
particular performance (i.e. its wake free ratio) is most likely
to be influenced by its absolute position on the farm as well
as the relative positions of its nearest neighbours.

For example, if a turbine is being placed at the edge of
the layout that is nearly perpendicular to the strongest wind
direction, this may be advantageous for the turbine. This
information is best captured by the turbine’s absolute position.
However, if that location also contains several other turbines
partially upwind of the position being considered, the position
may actually turn out to be disadvantageous for the turbine
because of local wakes. That information is best captured by
the relative position of the turbine with its neighbours.

The notion of a local neighbourhood of turbines is also
used by the Turbine Displacement Algorithm [6], but in
that algorithm the local neighbourhood’s only purpose is to
calculate a turbine displacement vector in a relatively simple
way, and absolute position is ignored. Here, we use a more
sophisticated approach that exploits both absolute and relative
information, and uses that information to build a predictive
model.

In order to represent a local neighbourhood, we record the
(x, y) position of the central turbine under consideration along
with the relative polar distance from (x, y) to each of the
turbine’s closest neighbours. In the figure, therefore, the small
local neighbourhood of size K = 3 would be represented by
one 2D coordinate and three relative polar coordinates for
n1, n2 and n3. The dimensionality required to specify the
neighbourhood is therefore eight in the example, or 2(K + 1)
in general.

We use the absolute position and the local neighbourhood
of turbines in the layout to construct a predictive model that
can evaluate vacant positions in the layout. Algorithm 3 lists
the exact steps required to achieve this.

Input: turbine positions T = {(x1, y1), (x2, y2), . . . },
wake free ratios W = {w1, w2, . . . },
neighbourhood size K

begin

D  create empty dataset();
for each turbine position (xi, yi) 2 T do

knn k nearest neighbours(K, (xi, yi));
for each neighbour (xj , yj) 2 knn do

dj  distance((xi, yi), (xj , yj));
✓j  angle((xi, yi), (xj , yj));

end

sort by distance(knn);
ex example(xi, yi, d1, ✓1, . . . , dK , ✓K , wi);
add example(D, ex);

end

P  build model(D);
return P

end

Algorithm 3: Model building algorithm. It is assumed that
each turbine has an associated wake free ratio, i.e. |T | = |W |.

In more detail, the algorithm constructs a dataset in which
examples (i.e. rows) are 2(K +1)-dimension specifications of
local neighbourhoods. Examples consist of the (x, y) position
of the turbine plus the relative polar positions of the K nearest
neighbours, in ascending order of distance. Once the example
is constructed, it is labelled with the wake free ratio of the
turbine at (x, y), a metric which is available after the wind
farm layout has been simulated. The example is then added to
the dataset, and this is repeated for each turbine in the layout.

Once the dataset is complete, a predictive model is learned
from the data using any standard machine learning for regres-
sion algorithm. The model is returned by the algorithm.

We now define in Algorithm 4 a more advanced mutation
operator than that shown in Algorithm 2. This new mutation
operator utilises the model produced by Algorithm 3 to en-
hance the effectiveness of the 1+1 ES. Briefly, for each turbine
that is selected for displacement, N random valid points on
the layout are chosen. The predictive model P is then used to
predict the wake free ratio at each of the N points, and the
point with the best prediction is chosen as the turbine’s new
location.

One issue concerning our approach is the computational
overhead of repeatedly learning the predictive model. There
are two issues here: the frequency with which Algorithm 3 is
invoked as the ES runs, and the computational overheads of the
model. With regards to the first issue, we chose a compromise
between building the model once and once only vs. running it
after every single change to the best layout. This compromise
is to re-learn the model (i.e. invoke Algorithm 3) at regular
intervals of every 100 evaluations. The second issue is the
computational overhead of the model itself. However, since
different machine learning algorithms have vastly different
learning and prediction algorithm complexities, overall com-
plexity depends on the choices made which is not this study’s



Input: turbine positions T = {(x1, y1), (x2, y2), ...},
mutation rate MUT RATE, number of attempts
N , predictive model P

repeat

for each turbine position (xi, yi) 2 T do

if random(0, 1) < MUT RATE then

(xbest, ybest) random valid location();
wbest  predict wfr(P, (xbest, ybest));
if N > 1 then

for j = 2 . . . N do

(x, y) random valid location();
w  predict wfr(P, (x, y));
if w > wbest then

(xbest, ybest) (x, y);
wbest  w;

end

end

end

replace (xi, yi) with (xbest, ybest) in T ;
end

end

until the layout has been changed;
Algorithm 4: Adaptive model-based mutation operator.

focus. In practice however we found no adverse computational
overheads because the datasets used are typically small in
machine learning terms.

IV. EVALUATION

We use the 2015 Wind Farm Layout Optimisation competi-
tion sample scenarios [7] for evaluation. The metric to optimise
is the cost per kilowatt produced by the wind farm, subject
to minimum proximity constraints between turbines and the
presence of obstacles where turbines cannot be placed. To
calculate the cost per kilowatt, the evaluation function first of
all computes the total power output of the farm after accounting
for wake effects as described in [8] and [3]. Once the farm’s
power output is known, this can be combined with an estimate
of the farm’s total cost (incorporating multiple factors such as
construction cost, yearly operating costs, and interest) to arrive
at the average cost per kilowatt [3].

There are twenty scenarios in this competition dataset, and
the scenarios are paired, i.e. there are ten different wind direc-
tion/speed profiles, and they either do not contain obstacles
(scenarios 00. . . 09) or they do contain obstacles (scenarios
obs 00. . . obs 09) .

The wind speed profiles for the scenarios are depicted in
Figure 2. Figure 4 depicts one of the layouts with obstacles.

We apply two versions of an ES to each of the twenty
scenarios. The first version of the ES uses the simple random
layout mutation operator (Algorithm 2), while the second
version uses our model-based mutation operator (Algorithm
4). Since ES is a randomised search strategy, the algorithms
are executed 10 times on each scenario so that the average best
cost per kilowatt across runs can be computed.

TABLE I: Results with a mutation rate of 1%.

Scenario Baseline Model-based p value
00 0.0013583901 0.0013542407 2.6⇥ 10�7

01 0.0007969357 0.0007958982 2.6⇥ 10�5

02 0.0017544719 0.0017470270 5.1⇥ 10�10

03 0.0014432728 0.0014368881 2.2⇥ 10�11

04 0.0015679967 0.0015607555 4.4⇥ 10�12

05 0.0011646289 0.0011605462 2.3⇥ 10�9

06 0.0010474572 0.0010454045 9.2⇥ 10�7

07 0.0011448322 0.0011420824 1.4⇥ 10�5

08 0.0010458873 0.0010433371 1.4⇥ 10�7

09 0.0010152074 0.0010121736 2.3⇥ 10�13

obs 00 0.0013584928 0.0013552892 1.7⇥ 10�8

obs 01 0.0007974060 0.0007963625 2.5⇥ 10�4

obs 02 0.0017552517 0.0017477544 4.6⇥ 10�12

obs 03 0.0014444463 0.0014393110 1.1⇥ 10�8

obs 04 0.0015684290 0.0015615758 1.4⇥ 10�11

obs 05 0.0011655843 0.0011611535 4.4⇥ 10�11

obs 06 0.0010479667 0.0010457651 1.2⇥ 10�10

obs 07 0.0011450053 0.0011425157 1.9⇥ 10�6

obs 08 0.0010459960 0.0010435213 3.7⇥ 10�8

obs 09 0.0010158474 0.0010126265 5.0⇥ 10�12

all 0.001234175 0.001230211

In all runs, the number of turbines is fixed at 400 and the
maximum number of evaluations (i.e. the MAX EV ALS pa-
rameter) per scenario is 1000. The N parameter in Algorithm
4 is set to 10 and the neighbourhood size parameter K is also
fixed at 10. The specific predictive model that we use is an
implementation of the Random Forest algorithm adapted for
regression [2] with 100 trees.

The mutation rate is an important factor influencing perfor-
mance in ESes, and to this end we test three different mutation
rates: 1%, 5% and 15%, representing small, medium, and large
amounts of mutation respectively.

The results are depicted in Tables I, II and III. Each table
contains the average cost of energy extraction by both scenario
and algorithm, as well as an overall average comparing both
algorithms. Since there are ten runs per scenario/algorithm
combination, we also performed a statistical test to determine
the probability that the mean performance of both algorithms
is the same. The p-values resulting from these tests are given.
P-values less than 0.01 indicate a greater than 99% probability
that the means are different.

The first noteworthy observation to make is that across
all algorithms, a lower mutation rate is more effective. For
example, the 1+1 ES with a model-based mutation operator
achieves best mean costs of 0.001230211, 0.001234030, and
0.001236389 respectively for mutation rates of 1%, 5% and
15%. A similar pattern is followed the 1+1 ES algorithm with
the random mutation operator.

The second noteworthy finding is that the ES with the
adaptive model-based mutation operator consistently outper-
forms the baseline algorithm on all scenarios regardless of



(a) Scenario 00 (b) Scenario 01 (c) Scenario 02 (d) Scenario 03 (e) Scenario 04

(f) Scenario 05 (g) Scenario 06 (h) Scenario 07 (i) Scenario 08 (j) Scenario 09

Fig. 2: Wind profiles used in each scenario. Depicted are the wind roses, which give the average wind speed in each direction.
Directions are discretised into 15� bins. Each concentric circle in a rose represents a wind speed increase of 2 m/s. Wind speeds
are usually less than 12 m/s except in Scenario 01, which has a uniform average wind speed of 13 m/s in all directions.

TABLE II: Results with a mutation rate of 5%.

Scenario Baseline Model-based p value
00 0.0013642280 0.0013592191 1.3⇥ 10�10

01 0.0008003460 0.0007984432 2.6⇥ 10�9

02 0.0017626870 0.0017528339 2.4⇥ 10�12

03 0.0014505825 0.0014424547 4.6⇥ 10�12

04 0.0015757560 0.0015654734 2.2⇥ 10�13

05 0.0011695491 0.0011637115 3.8⇥ 10�12

06 0.0010513250 0.0010477027 1.7⇥ 10�10

07 0.0011505656 0.0011459973 1.2⇥ 10�7

08 0.0010497525 0.0010466045 6.8⇥ 10�11

09 0.0010180373 0.0010143776 4.4⇥ 10�12

obs 00 0.0013644110 0.0013595903 2.8⇥ 10�9

obs 01 0.0008004016 0.0007989995 6.1⇥ 10�5

obs 02 0.0017626268 0.0017539464 4.9⇥ 10�12

obs 03 0.0014515488 0.0014433616 9.5⇥ 10�12

obs 04 0.0015765581 0.0015672729 9.9⇥ 10�13

obs 05 0.0011700848 0.0011640779 5.0⇥ 10�14

obs 06 0.0010516695 0.0010485993 1.7⇥ 10�8

obs 07 0.0011508833 0.0011468338 9.4⇥ 10�9

obs 08 0.0010499596 0.0010463940 7.4⇥ 10�10

obs 09 0.0010186799 0.0010147030 1.9⇥ 10�13

all 0.001239483 0.001234030

the mutation rate. Furthermore, the difference in performance
between the two algorithms is extremely significant, as the
p-values in the tables show.

To further investigate the difference in behaviour between
the two algorithms, we plotted convergence curves for each
mutation rate/scenario pairing. One of them, as an example,

TABLE III: Results with a mutation rate of 15%.

Scenario Baseline Model-based p value
00 0.0013684841 0.0013620713 4.3⇥ 10�13

01 0.0008024467 0.0008002416 5.4⇥ 10�9

02 0.0017670298 0.0017562541 2.8⇥ 10�14

03 0.0014546409 0.0014450204 9.2⇥ 10�14

04 0.0015801424 0.0015689822 5.8⇥ 10�16

05 0.0011722525 0.0011655343 1.1⇥ 10�15

06 0.0010537881 0.0010500097 2.5⇥ 10�10

07 0.0011539474 0.0011497614 1.3⇥ 10�9

08 0.0010518797 0.0010478246 3.4⇥ 10�12

09 0.0010200588 0.0010154878 2.5⇥ 10�13

obs 00 0.0013685772 0.0013636066 1.2⇥ 10�6

obs 01 0.0008031774 0.0008009511 1.2⇥ 10�9

obs 02 0.0017683653 0.0017560260 2.3⇥ 10�16

obs 03 0.0014557098 0.0014463438 1.5⇥ 10�11

obs 04 0.0015812786 0.0015700461 4.5⇥ 10�15

obs 05 0.0011725839 0.0011658291 7.5⇥ 10�16

obs 06 0.0010538718 0.0010503070 8.8⇥ 10�10

obs 07 0.0011545737 0.0011497825 3.4⇥ 10�10

obs 08 0.0010523206 0.0010480330 2.5⇥ 10�10

obs 09 0.0010206659 0.0010156657 4.7⇥ 10�15

all 0.001242790 0.001236389

is depicted in Figure 3.1 The figure shows number of evalua-
tions vs. mean cost of the best solution, averaged over runs.
The curves clearly show a significant performance difference
between the two algorithms. Interestingly, the adaptive model-

1Space prevents us including all of the figures.
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Fig. 3: Example of convergence curves for the obs 05 scenario.
Both curves are averages over ten runs, and vertical bars
indicate the standard deviation in cost over the runs at each
point in the optimisation. The mutation rate used is 1%.

based mutation operator achieves most of its gains over the
baseline algorithm early in the optimisation process; after a
certain number of evaluations, the rate of cost decrease for
both algorithms tends to be about the same.

We were also interested in determining if there was any
clear visual difference in the ES-optimised layouts compared
to the initial random layouts that the ES starts with. To this
end, Figure 4 depicts layouts for Scenario obs 05 before and
after application of our ES. The obstacles in this example are
depicted by rectangles, and the turbine positions by points.
Visual inspection shows that there is a difference between the
two layouts. In particular, Figure 4(b), the optimized layout,
has turbines placed closer to the edges of the layout and
the border of obstacles compared to Figure 4(a), the random
layout. This makes sense intuitively for two reasons. Firstly,
if the layout has more turbines closer to its edge, then the
interior spacing between turbines increases and this reduces
the possibility of turbines within the layout interfering with
each other. Similarly, placing turbines closer to the edges and
obstacle borders increases the chance that a turbine’s wake will
spread out over an area where other turbines cannot be placed.
This also reduces wake interference. Both observations may
be useful for designing a more advanced turbine placement
heuristic in the future.

V. CONCLUSION

To conclude, the novel contribution of this paper is a new
mutation operator (based on predictive modelling) for the wind
farm layout optimisation algorithm. This operator may be
used either in conjunction with a more sophisticated search
algorithm or simply with a standard ES. Evaluation shows
that this novel approach is superior compared to a typical
randomised mutation operator.
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