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Abstract. If X is a set, the fix-set quasiorder on a group of permutations of X is
the quasiorder induced by containment of the fix-sets of elements of SX . Axioms for
such quasiorders on groups have previously been given. We generalise these to allow
non-faithful group actions, the resulting abstract quasiorders being called fix-orders.
We characterise the possible fix-orders on a given group G in terms of certain families
of subgroups of G. The special case in which the members of the defining family of
subgroups are all normal is considered. Software is used to construct and analyse the
lattices of fix-orders of many small finite groups.

1. Introduction and summary of main results

In any group of permutations G ≤ SX , in which composition is read left to

right, one may define the fix-set quasi-order � by setting g1 � g2 if and only

if Fix(g1) ⊆ Fix(g2), where Fix(g) = {x ∈ X | g(x) = x}. In [3], it was shown

that � obeys the following laws: for all g, h, k ∈ G,

1 � g ⇒ g = 1, (1.1)

g � g−1, (1.2)

g � h & g � k ⇒ g � hk, (1.3)

g � h ⇔ gk � hk, (1.4)

where gk = kgk−1 is the conjugate of g by k. Conversely, it was shown that any

group G equipped with a quasi-order � satisfying these laws could be faithfully

represented as a group of permutations in such a way that � corresponds

to the fix-set quasi-order. So together with the group laws, the above laws

axiomatize fix-set quasi-orders on permutation groups. Such axiomatizations

of semigroups of functions equipped with various additional quasi-orders or

other binary relations have been considered over the years by a number of

authors: see the survey papers [5] and [6] (although much work has been done

since).

Note that � is not expressible in the language of groups, so the addition

of � to the group signature represents a proper enrichment of the language

of permutations. Such an axiomatization means that every abstract property
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of the fix-set quasi-order on groups of permutations can be formally deduced

from these axioms without reference to concrete models. For example, the

equational implication involving f, g, h, k ∈ SX of the form

∀x ∈ X : f(x) = g(x) → h(x) = k(x)

can be expressed in terms of the fix-set quasi-order as fg−1 � hk−1.

In [3], it was claimed that by dropping Law (1.1) above, the resulting axioms

capture the fix-set quasi-order on groups acting (perhaps non-faithfully) on the

right of a set X, defined as above but with

Fix(g) = {x ∈ X | x · g = x}.

We prove this explicitly here, using a slightly different construction that proves

useful for our other goals.

We shall characterise fix-set quasi-orders on a group in terms of certain

conjugate-closed families of subgroups. We single out the special case in which

the subgroups are all normal; these correspond to examples embeddable in

direct products of groups with a natural quasi-order. We show that the poset

of all abstract fix-orders on a group forms a lattice, with sublattices consisting

of the faithful fix-orders and the normal fix-orders. With the aid of some

computer software, we determine these lattices for a large number of small

finite groups.

2. Definitions and basic properties

A group with fix-order is a structure (G,�) in which G is a group and �
is a quasi-order on G satisfying laws (1.2), (1.3) and (1.4); we also say that

� is a fix-order on G. The group with fix-order (G,�) (and hence also the

fix-order �) is said to be faithful if also (1.1) is satisfied.

Note that if G is abelian, (1.4) is redundant. Abelian groups with fix-order

generalise the abelian groups with a semilattice-valued norm-like operator con-

sidered in [1] where they were called modal abelian groups.

Every non-trivial group G has at least two fix-orders: the full relation, in

which a � b for a, b ∈ G; and the binary fix-order, in which a � 1 for all a ∈ G,

with a � b for all a �= 1 and b �= 1. The binary fix-order is obviously the

largest faithful fix-order on G.

If (G,�) is a group with fix-order, then so is (H,�) whereH is any subgroup

of G. There is also an obvious definition for the direct product of groups with

fix-order. Indeed the class of groups with fix-order is a quasivariety in the

sense of model theory, hence closed under substructures, direct products and

ultraproducts.

It is routine to check that any group acting on a set is a group with fix-

order under the fix-set quasi-order, and is faithful if and only if the group

acts faithfully. Next we prove the converse, namely that every (faithful) group

with fix-order arises in this way. This was proved in a far more general setting
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in [3], but only in the faithful case, and in any case, the group proof is rather

simpler and we give it here for completeness.

We say a subgroup S of a group with fix-order (G,�) is up-closed if a ∈ S

and a � b imply b ∈ S. Let S�(G) be the collection of all up-closed subgroups

of G.

Let (G,�) be a group with fix-order. Then for every a ∈ G, define

Sa = {g ∈ G | a � g}.

Lemma 2.1. In a group with fix-order (G,�), Sa is an up-closed subgroup

for all a ∈ G.

Proof. If x, y ∈ Sa, then a � x and a � y, so a � xy by (1.3), and also

a � x−1 by (1.2) and transitivity, so xy, x−1 ∈ Sa. Obviously, Sa is up-closed,

so Sa ∈ S�(G). �

Theorem 2.2. Every group with fix-order is isomorphic to a group acting on

a set equipped with the fix-set quasi-order, and is faithful if and only if the

group action is faithful.

Proof. Let a, b ∈ G. Note that if for all S ∈ S�(G) we have a ∈ S implies

b ∈ S, then choosing S = Sa gives that a � b; conversely, it is obvious that if

a � b, then a ∈ S implies b ∈ S for all S ∈ S�(G).

Now let G act on the right cosets in G/S, where S ∈ S�(G), by multiplica-

tion in the usual way: (S · x)g := S · (xg). Of course, this is well defined. Do

this for every g ∈ G and then let G∗ =
∏

S∈S�(G) G/S with G acting on the

right of G∗ in the obvious manner. Let � be the associated fix-set quasi-order

on G. The following are equivalent for all g1, g2 ∈ G:

(1) g1 � g2;

(2) for all S ∈ S�(G) and all x ∈ G, (S · x)g1 = S · x → (S · x)g2 = S · x;
(3) for all S ∈ S�(G) and all x ∈ G, S · (xg1) = S · x → S · (xg2) = S · x;
(4) for all S ∈ S�(G) and all x ∈ G, xg1x

−1 ∈ S → xg2x
−1 ∈ S;

(5) for all x ∈ G, gx1 � gx2 ;

(6) g1 � g2.

Hence, � and � coincide. It is obvious that a group action on a set is faithful

if and only if (1.1) is satisfied by the fix-set quasi-order. �

So, every group with fix-order is isomorphic to a group acting on a set

equipped with the fix-set quasi-order, and is faithful if and only if the group

action is faithful.

Every non-faithful group with fix-order can be turned into a faithful one by

factoring out the elements equivalent to unity.

Proposition 2.3. For (G,�) a group with fix-order, S1 = {g ∈ G | 1 � g} is

a normal subgroup of G, and �1 on G1 = G/S1, defined by setting

S1 · a �1 S1 · b if and only if a � b,

is well defined and is a faithful fix-order on G1.
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Proof. S1 is a subgroup by Lemma 2.1. If a ∈ S1, then 1 � a, so for all g ∈ G,

we have 1 = g1g−1 � gag−1 and gag−1 ∈ S1. If a � b, then for any g, h ∈ S1,

we have ag � agg−1 = a � b � bh, so ag � bh; hence, �1 on G1 is well defined.

If S1 · 1 �1 S1 · g, then 1 � g, and so g ∈ S1. Hence, S1 · g = S1 · 1, and so �1

is faithful. �

Suppose G is a group with N normal in G, and suppose (G/N,�) is a group

with fix-order. On G, define �N by setting a �N b if and only if aN � bN .

It is straightforward to see that �N is a fix-order on G, faithful if and only if

N = {1} and � is faithful, and we call it the extension of � by N .

Corollary 2.4. Every non-faithful fix-order on a group is an extension of a

faithful fix-order on some quotient G/N of G by N .

Because every non-trivial group possesses at least one faithful fix-order,

namely the binary fix-order, we obtain the following.

Corollary 2.5. Every fix-order except the full relation on a non-trivial group

is faithful if and only if the group is simple.

3. Fix-orders and families of subgroups

Next, we show that the fix-orders on a group correspond to certain families

of subgroups.

Let G be a group, with S a non-empty collection of subgroups of G. We

say S is conjugate-closed if for all g ∈ G and S ∈ S, gSg−1 ∈ S. For any

conjugate-closed collection of subgroups S of the group G, define the relation

�S by setting, for all g1, g2 ∈ S,

g1 �S g2 ⇔ (∀S ∈ S : g1 ∈ S → g2 ∈ S).

If S has a single element S, we write �S rather than �{S}.

Proposition 3.1. With �S as just defined, (G,�S) is a group with fix-order,

which is faithful if and only if
⋂
S = {1}.

Proof. That �S is a quasi-order is easily seen. Laws (1.2) and (1.3) follow from

the fact that S consists of subgroups. For the final law, suppose g1 �S g2.

Then supposing that ug1u
−1 ∈ S, we have that g1 ∈ u−1Su ∈ S, and so

g2 ∈ u−1Su, so ug2u
−1 ∈ S; hence ug1u

−1 �S ug2u
−1. If 1 �S g, then

g ∈
⋂
S, so �S is faithful if and only if

⋂
S = {1}. �

Obviously, if S and T are conjugate-closed families of subgroups on the

group G, with S ⊆ T , then �T ⊆ �S . The converse fails as the following easy

example shows.

Let G be a non-trivial group, let S = {{1}, G} and T = {{1}}. Then

�T ⊆ �S ; indeed, these two fix-orders both equal the binary fix-order (in

which 1 is largest with all other elements related in both directions), yet S ⊆ T
fails.
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In fact, all fix-orders on a group arise from families of subgroups.

Proposition 3.2. Let (G,�) be a group with fix-order. Then the family of

subgroups S�(G) is conjugate-closed, and � equals �S�(G).

Proof. Let S ∈ S�(G), with g ∈ G. Suppose a, b ∈ G are such that a ∈ gSg−1

and a � b. So, a = gsg−1 for some s ∈ S. Then s = g−1ag � g−1bg from

(1.4), and so because S is up-closed, g−1bg ∈ S; hence, b ∈ gSg−1. Thus,

S�(G) is conjugate-closed. The second part follows easily from the proof of

Theorem 2.2. �

This shows that all groups with fix-order arise from conjugate-closed families

of subgroups. Two distinct such families may give rise to the same fix-order �,

but S�(G) is easily seen to be the largest such family (since if S is a conjugate-

closed family yielding �, then each H ∈ S is up-closed with respect to �, and

hence belongs to S�(G)). There is interest in characterising families of the

form S�(G) without reference to fix-orders.

Proposition 3.3. If S is a conjugate-closed family of subgroups of the group

G with union G, then the subgroup S of G is up-closed relative to �S if and

only if it is a union of intersections of elements of S.

Proof. It is clear that if S is up-closed, then it is the union of the sub-

groups Sa = {b ∈ G | a �S b}, for a ∈ S; but it is easy to see that Sa =⋂
{T ∈ S | a ∈ T}, which is a non-empty intersection since S has union G.

Conversely, if S is a union of intersections of subgroups in S, then S is easily

seen to be up-closed. �

The following notion has a ring-theoretic analog which was explored in [4],

where rings of endomorphisms of abelian groups equipped with the quasi-order

induced by kernel inclusion were axiomatized.

Definition 3.4. For a group G, we call the family of subgroups S order-

complete if it satisfies the following conditions:

• S is closed under arbitrary intersections;

• G ∈ S;
• if S is a subgroup of G that is a union of subgroups in S, then S ∈ S.

Proposition 3.5. A family of subgroups S of the group G equals S�(G) for

some fix-order � on G if and only if S is conjugate-closed and order-complete.

Proof. Suppose S is conjugate-closed and order-complete. By Proposition 3.3,

S is up-closed under �S if and only if it is a union of intersections of elements

of S, that is, it is an element of S. So S = S�S (G).

Conversely, suppose � is a fix-order on G. We saw in Proposition 3.2

that S�(G) is conjugate-closed. Moreover, G itself is obviously up-closed, and

so Proposition 3.3 applies to S�(G). Hence, any intersection of elements of

S�(G) is up-closed, and so is any union which is a subgroup. So, S�(G) is

order-complete. �
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It follows that �F , where F consists of all subgroups of G, is the smallest

fix-order on G, and it is obviously faithful since {1} is a subgroup.

4. Normal fix-orders

If G is a group and S is a family of normal subgroups, then S is trivially

conjugate-closed. In this case, it is easy to see that the additional law

x � xy (4.1)

holds for �S since for a normal subgroup N of G, if x ∈ N , then so is every

conjugate xy of x.

Generalising, let us call a fix-order on a group normal if it satisfies (4.1).

Of course, in an abelian group, every fix-order is normal. Any extension of

a normal fix-order by a normal subgroup is obviously normal. The full and

binary fix-orders on any non-trivial group are both normal.

The following result shows that this law axiomatizes examples arising from

families of normal subgroups.

Proposition 4.1. Let (G,�) be a group with normal fix-order. Then S�(G)

consists entirely of normal subgroups.

Proof. From the proof of Theorem 2.2, S ∈ S�(G) are subgroups. But for any

S ∈ S�(G), if x ∈ S then x � xg and so xg ∈ S, and so S is normal. �

The next result now follows easily from Proposition 3.5.

Proposition 4.2. A family of subgroups S of the group G equals S�(G) for

some normal fix-order � on G if and only if S consists entirely of normal

subgroups and is order-complete.

In the faithful case, another interpretation of the above results is as follows.

Let Gi, i ∈ I be a family of groups and let G = Πi∈IGi. Define the quasi-order

� on G by setting, for (gi), (hi) ∈ G,

(gi) � (hi) if and only if gi = 1 → hi = 1 for all i.

So, (gi) � (hi) means that (hi) has a “1” in at least the same places as (gi).

We call � the coordinate quasi-order on the direct product of the groups Gi.

Any subgroup with fix-order of the group with fix-order (G,�) as just de-

fined is of course also a group with faithful normal fix-order. Conversely, we

have the following.

Proposition 4.3. Let (G,�) be a group with faithful normal fix-order. Then

G is embeddable in a direct product of groups equipped with its coordinate

quasi-order.

Proof. Each S ∈ S�(G) is normal, so each G/S is a group. Now, {1} ∈ S�(G),

so
⋂

S∈S�(G) S = {1} trivially. Hence, G is a subdirect product of the G/S and

� on G maps to the coordinate quasi-order on ΠS∈SG/S under the canonical

embedding. �



	 Groups	with	fix-set	quasi-order	Vol. 00, XX Groups with fix-set quasi-order 7

The criterion for simplicity given in Corollary 2.5 turns out to be just one

of several.

Corollary 4.4. The following are equivalent for the non-trivial group G.

(1) G is simple.

(2) Every non-full fix-order on G is faithful.

(3) Every non-full normal fix-order on G is faithful.

(4) Every normal fix-order on G is either full or binary.

Proof. (1)⇒(2): This follows from Corollary 2.5.

(2)⇒(3): This is immediate.

(3)⇒(1): If G is not simple, let N be a proper non-trivial normal subgroup.

Then G/N is non-trivial and has a faithful normal fix-order (namely the binary

fix-order, in which 1 is the unique largest element and a � b if a, b ∈ G\{1}).
Extend to a normal fix-order on G which is not faithful.

(1)⇔(4): The normal fix-orders on G correspond one-to-one with its order-

complete families of normal subgroups. Clearly, S = {G} is the order-complete

family corresponding to the full fix-order (in which a � b for all a, b ∈ G), and

T = {{1}, G} is the order-complete family corresponding to the binary fix-

order. These are the only order-complete families if and only if G is simple

(as otherwise there will be a bigger one). �

5. The lattice of fix-orders on a group

As we have already seen, the fix-orders on a given group are in one-to-one

correspondence with its conjugate-closed order-complete families of subgroups.

We next extend this correspondence to the structure of the associated lattices.

The results of this section have ring-theoretic analogs in [4].

Let G be a non-trivial group, with CG the collection of all conjugate-closed

families of subgroups of G, and FG the collection of all fix-orders on G. Define

the mappings f : CG → FG and g : FG → CG by setting f(S) :=�S and

g(�) := S�(G), for all families S in CG and fix-orders � in FG.

Proposition 5.1. The pair (f, g) constitutes an antitone Galois connection

between (CG,⊆) and (FG,⊆).

Proof. It is routine to check that � ⊆ �S if and only if S ⊆ S�(G), and hence

� ⊆ f(S) if and only if S ⊆ g(�), for all S ∈ CG and � ∈ FG. �

Under the Galois connection (f, g), the closed sets in (CG,⊆) are exactly

the S�(G), the conjugate-closed order-complete subsets, by Proposition 3.5,

whereas all elements of FG are closed by Proposition 3.2. Both collections of

closed sets are complete lattices in which meet is intersection, and are anti-

isomorphic. So in particular, for conjugate-closed order-complete families S
and T ,

�S ∨ �T = �S∩T .
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Proposition 4.1. Let (G,�) be a group with normal fix-order. Then S�(G)

consists entirely of normal subgroups.

Proof. From the proof of Theorem 2.2, S ∈ S�(G) are subgroups. But for any

S ∈ S�(G), if x ∈ S then x � xg and so xg ∈ S, and so S is normal. �

The next result now follows easily from Proposition 3.5.

Proposition 4.2. A family of subgroups S of the group G equals S�(G) for

some normal fix-order � on G if and only if S consists entirely of normal

subgroups and is order-complete.

In the faithful case, another interpretation of the above results is as follows.

Let Gi, i ∈ I be a family of groups and let G = Πi∈IGi. Define the quasi-order

� on G by setting, for (gi), (hi) ∈ G,

(gi) � (hi) if and only if gi = 1 → hi = 1 for all i.

So, (gi) � (hi) means that (hi) has a “1” in at least the same places as (gi).

We call � the coordinate quasi-order on the direct product of the groups Gi.

Any subgroup with fix-order of the group with fix-order (G,�) as just de-

fined is of course also a group with faithful normal fix-order. Conversely, we

have the following.

Proposition 4.3. Let (G,�) be a group with faithful normal fix-order. Then

G is embeddable in a direct product of groups equipped with its coordinate

quasi-order.

Proof. Each S ∈ S�(G) is normal, so each G/S is a group. Now, {1} ∈ S�(G),

so
⋂

S∈S�(G) S = {1} trivially. Hence, G is a subdirect product of the G/S and

� on G maps to the coordinate quasi-order on ΠS∈SG/S under the canonical

embedding. �
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In the lattice FG, the largest element is the full quasi-order, which arises from

the conjugate-closed order-complete family {G}, and the smallest is �H, where

H consists of all subgroups of G.

Because the binary fix-order on a non-trivial group is the largest faithful

fix-order on it, the Galois connection (f, g) of Proposition 5.1 restricts to one

between the conjugate-closed families S of subgroups in CG for which we have⋂
S = {1}, and the faithful fix-orders of G. The lattice of faithful fix-orders

on G is a complete sublattice of FG (joins are as in FG because the same is

true in CG—the intersection of two families with trivial intersection also has

trivial intersection), having largest element the binary fix-order, and the same

smallest element as FG.

Similarly, restricting to the normal fix-orders on G, we obtain a complete

sublattice of FG (joins are as in FG because the intersection of two order-

complete families of normal subgroups in CG is one also), having largest element

the full relation on G (which is clearly normal), and smallest element �N ,

where N consists of all normal subgroups of G.

Finally, restricting to the faithful normal fix-orders on G, we again obtain

a complete sublattice of FG, having largest element the binary fix-order, and

with smallest element as for the normal case just considered.

6. The poset of inequivalent fix-orders

Given a group G, we say that the fix-orders �1,�2 on G are equivalent if

there is a group automorphism f : G → G such that f(�1) = �2 (that is,

a �1 b if and only if f(a) �2 f(b)). So �1,�2 are equivalent if and only

if the structures (G,�1) and (G,�2) are isomorphic. When this equivalence

relation is applied to FG, the equivalence classes are a poset under inclusion

in the obvious way.

Note that if f is an inner automorphism on the group G, then there exists

g ∈ G such that f(a) = gag−1 for all a ∈ G. In that case, it is clear that any

fix-order equivalent to � must equal �, by law (1.4) for fix-orders. So such

collapsing is only possible if G possesses at least one outer automorphism.

7. The lattices of fix-orders for small finite groups

It is of interest to determine the lattice of fix-orders of some familiar fi-

nite groups, along with their sublattices of faithful and/or normal fix-orders.

For a given small finite group, this can be done by determining all possi-

ble conjugate-closed families of its subgroups (adding in the zero intersection

and/or normality assumption as required in order to obtain the various sub-

lattices). Properties such as modularity and distributivity can also be deter-

mined.

To analyse large numbers of groups, an automated process was needed.

We developed a software package built from the GAP system [2], which was
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used to extract some well-known information about a given group, such as

the number of elements and subgroups of the group. The set of all fix-orders

of the group G considered was generated by first considering all the possible

conjugate-closed families of subgroups of G. For each generated fix-order, its

faithfulness and normality were tested by direct application of the definitions.

Since each fix-order can be generated by more than one family of subgroups,

the duplicate fix-orders were removed, resulting in a list of distinct fix-orders.

(This was necessary because the order-completeness condition on families of

subgroups was not used in this process.)

Once the set of all fix-orders on a group was known, the structure of the

lattice of fix-orders for the group was tested for modularity and distributivity,

and the meet- and join-irreducible elements identified. The lattice was then

drawn as a directed acylic graph using a visualisation library, GraphViz, and

the associated properties (faithfulness, meet-irreducibility etc.) were indicated

on the graph by use of colour and borders of the nodes.

Finally, equivalent fix-orders in the sense of Section 6 were identified and

collapsed together, resulting in a sometimes smaller poset. Examples showed

that this poset is not always a lattice. These automorphism-collapsed posets

were rendered alongside the original lattices.

Using this software, a dataset was created by running the software on many

small groups. The dataset and the software are available at the following URL.

www.math.waikato.ac.nz/Staff/stokes/data/

The generated dataset is presented in a web-based interactive format showing

the properties of the lattice of fix-orders of each group in a tabular format,

categorised by the type of group (for example, “Dihedral group”) and sorted

by the order of the group. The web-pages also allow all of the diagrams for any

group to be viewed together, with filtering options to allow easier comparison

of specific diagrams.

The dataset contains the complete descriptions of the lattices of fix-orders of

all groups of order 15 or less, the first five alternating and symmetric groups,

and most dihedral groups of order 126 or less. For each group, there are

multiple diagrams, which correspond to the combination of properties of the

fix-orders (faithfulness and normality) and the collapsing by automorphisms.

In total, there are 12 diagrams per group and 120 groups in the dataset.

From the accumulated data, the following facts are readily observed:

• All fix-orders are normal in an abelian group. The smallest group having at

least one non-normal fix-order is the symmetric group S3 (the smallest non-

abelian group), and conversely the smallest non-abelian group for which all

fix-orders are normal is the quaternion group (of order 8).

• Every group has a non-faithful fix-order, namely the full relation, which

is normal. The smallest groups with non-normal non-faithful fix-orders are of

order twelve, namely the dicylic group Dic12 and the dihedral group D12, each

of which has two (out of their 20 and 98 fix-orders, respectively).
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where N consists of all normal subgroups of G.

Finally, restricting to the faithful normal fix-orders on G, we again obtain

a complete sublattice of FG, having largest element the binary fix-order, and

with smallest element as for the normal case just considered.

6. The poset of inequivalent fix-orders

Given a group G, we say that the fix-orders �1,�2 on G are equivalent if

there is a group automorphism f : G → G such that f(�1) = �2 (that is,

a �1 b if and only if f(a) �2 f(b)). So �1,�2 are equivalent if and only
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in the obvious way.

Note that if f is an inner automorphism on the group G, then there exists

g ∈ G such that f(a) = gag−1 for all a ∈ G. In that case, it is clear that any

fix-order equivalent to � must equal �, by law (1.4) for fix-orders. So such

collapsing is only possible if G possesses at least one outer automorphism.

7. The lattices of fix-orders for small finite groups

It is of interest to determine the lattice of fix-orders of some familiar fi-

nite groups, along with their sublattices of faithful and/or normal fix-orders.

For a given small finite group, this can be done by determining all possi-

ble conjugate-closed families of its subgroups (adding in the zero intersection

and/or normality assumption as required in order to obtain the various sub-

lattices). Properties such as modularity and distributivity can also be deter-

mined.

To analyse large numbers of groups, an automated process was needed.

We developed a software package built from the GAP system [2], which was
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• The group A5 is noteworthy. It is the only simple group we have so far

discovered that supports more than two fix-orders; it supports 20. Consistent

with Corollary 4.4, the additional 18 fix-orders are all faithful and non-normal.

• All the groups considered here are such that if their lattice of fix-orders is

modular, then it is distributive as well. The same applies to the sublattices of

faithful, normal, and faithful normal fix-orders.

• The smallest group for which the lattice of all fix-orders is not modular is the

Klein 4-group; this is also the smallest group for which the lattice of normal

fix-orders is not modular. However, its lattice of faithful fix-orders is modular.

• The smallest groups for which the lattice of faithful fix-orders is not modular

are the groups of order 8 other than the cyclic group; each of these also has

its lattice of faithful normal fix-orders non-modular.

• Of the 28 groups of order 15 or less, precisely half have modular lattice of

fix-orders, with no further ones having modular lattice of normal fix-orders,

and 21 have modular lattice of faithful fix-orders. (A group of order 18, namely

18-1, has a non-modular lattice of fix-orders but a modular lattice of normal

fix-orders.)

• The smallest group for which the lattice collapses non-trivially under auto-

morphisms is the Klein 4-group.

• The example of 20-5, in which nodes 96 and 123 have no greatest lower bound

(with both nodes 123 and 135 predecessors of both), shows that the poset of

equivalence classes of fix-orders under automorphism equivalence need not be

a lattice in general. The same example shows that this carries over to the

faithful, normal, and faithful normal cases.

The dataset was used to infer patterns, such as the fact that all dihedral

groups of order 2p, where p > 2 is a prime, result in the same lattice of fix-

orders having six elements. This can easily be seen to be true in general by

examining the conjugacy classes of subgroups of each of the groups.

Given the fourth bullet point above, we conjecture that distributivity is

equivalent to modularity for all lattices of fix-orders and their various sub-

lattices (at least for finite groups). This conjecture was tested on about 800

groups (all groups of order 255 or less having fewer than 2000 distinct fix-

orders), and no counterexamples were found.
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