
Inferring User Actions from Provenance Logs

Xin Li, Chaitanya Joshi
Department of Statistics
University of Waikato

Hamilton, New Zealand
xl282@students.waikato.ac.nz, cjoshi@waikato.ac.nz

Alan Y. S. Tan, Ryan K. L. Ko
Cyber Security Lab, Department of Computer Science

University of Waikato
Hamilton, New Zealand

yst1@students.waikato.ac.nz, ryan@waikato.ac.nz

Abstract—Progger, a kernel-spaced cloud data provenance
logger which provides fine-grained data activity records, was
recently developed to empower cloud stakeholders to trace
data life cycles within and across clouds. Progger logs have
the potential to allow analysts to infer user actions and
create a data-centric behaviour history in a cloud computing
environment. However, the Progger logs are complex and noisy
and therefore, currently this potential can not be met. This
paper proposes a statistical approach to efficiently infer the
user actions from the Progger logs.

Inferring logs which capture activities at kernel-level granu-
larity is not a straightforward endeavour. This paper overcomes
this challenge through an approach which shows a high level
of accuracy. The key aspects of this approach are identifying
the data preprocessing steps and attribute selection. We then
use four standard classification models and identify the model
which provides the most accurate inference on user actions. To
our best knowledge, this is the first work of its kind. We also
discuss a number of possible extensions to this work. Possible
future applications include the ability to predict an anomalous
security activity before it occurs.

Keywords-Log Mining; User Actions; Progger; Provenance
Mining; Data-centric Logger; Data Provenance; Data Security;
Cloud Computing.

I. INTRODUCTION

Data is arguably the most important asset in cloud com-
puting. For the purposes of data security, leakage detection
and provenance, a data-centric thinking has replaced the
classical preventive, system-centric thinking [1]. In the last
few years, there have been several data-centric logging tools.
To our best knowledge, Progger [2] is the most advanced
data-centric logging tool so far. Compared to the data-centric
logging tools proposed earlier, namely Flogger [3], [4] and
S2Logger [5], Progger has certain advantages. These advan-
tages include (1) the ability to provide log tamper-evidence
and prevention of fake/manual entries, (2) accurate and
granular timestamp synchronisation across several machines,
(3) log space requirements and growth, and (4) the efficient
logging of root usage of the system [2].

While Progger logs provide fine-grained data activity
audit, the logs are not deterministic. Progger logs gener-
ated by certain user action on different occasions are not
identical, therefore an appropriate approach is required for
inferring the user actions. On a large scale (e.g. above

thousands of instances in clouds), it is generally difficult
to infer meaningful actions quickly from the deluge of log
data. Hence, it is still a challenge to infer the user actions
from aggregated provenance logs. We aim to address these
issues in this paper, and make the inference of user data
actions near real-time, meeting present day security situation
awareness needs.

Some attempts have previously been made to infer user
actions using provenance logs [6], [7], [8], [9]. However,
each of these was designed for a particular application
(e.g. data curation, lab recording, scientific workflows) and
does not necessarily capture the user actions at a fine-
grained level. Also none of these systems was developed
for applications to cloud computing, data security or cloud
forensics.

In this paper, we set out to develop a statistical approach
to infer user actions especially using Progger logs. Section
II displays the structure of Progger log file, addresses the
critical issues of Progger logs, defines user scenarios and
explains the data simulation process. Section III describes
the process we follow to find the algorithm for inferring
user actions which yields the highest accuracy. Section IV
reports the performances and summarizes the main findings
as well. Finally, we discuss the limitation and future work
in Section V.

II. PROGGER LOGS & USER SCENARIOS

A. Introducing the Progger Log File

With reference to a real Progger log file shown in Figure
1, it can be seen that Progger logs start with timestamps,
ID information and key words “kernel” and “Progger”. The
numbers next to these keywords are the system call type
numbers. Each system call type number corresponds to a
system call type (Table I) [2]. Following the system call
type number, there is some more information related to the
system call such as user name, process ID and parent process
ID.

B. Critical Issues Identified in Progger Logs

While manual inspection is possible, it is not feasible or
scalable to infer user data actions from raw Progger logs.
Automating the process is also a challenge because the logs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/44289501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Part of the Progger log showing user scenario Create1

Table I
SYSTEM CALL LIST

System Call Number System Call Number
OPEN 0 FCHOWN 16
UNLINK 1 LCHOWN 17
WRITE 2 FCHOWNAT 18
CREAT 3 CHMOD 19
MOVE 4 FCHMOD 20
CLOSE 5 FCHMODAT 21
READ 6 S SENDMSG 22
S CONNECT 7 S ACCEPT 23
S SENDTO 8 S SOCKET 24
UNLINKAT 9 SENDFILE 25
MKDIR 10 S RECVFROM 26
RMDIR 11 S RECVMSG 27
SYMLINK 12 DUP2 28
LINK 13 PIPE 29
LINKAT 14 PIPE2 30
CHOWN 15 DUP 31

generated by certain user action on different occasions have:
(1) varying orders, (2) varying lengths, (3) redundant data.
These variations will significantly reduce the accuracy of
the inferring process and make the inferring process very
difficult.

1) Varying Orders: The orders of the logs generated on
different occasions are inconsistent. This is because some
processes are concurrent and the order of logs are according
to the order in which they enter the kernel buffer. For
instance, Figure 2 shows the system call sequences for the
same user scenario Read6 but for three different users. In
fact, they all have the sane system calls but with different
order. The bold numbers in Figure 2 are where they are
different. Current defined user scenarios and their basic
descriptions can be found in Section II-C along with their
examples.

Figure 2. System Call Sequences for the Same User Scenario with Varying
Orders

Figure 3. System Call Sequences for the Same User Scenario with Varying
Lengths

2) Varying Lengths: One simple command line generates
logs of different lengths. The reason is that the Progger logs
all actions of the user including the typing errors and text
input actions. We are not concerned with this part of logs.
For instance, in Figure 3, these three system call sequences
represent the same user scenario Read9 but the lengths are
different.

3) Redundant Data: The background system processes
are usually run as root. However, it is not the real user and
does not contribute towards user actions inference or user
behaviour prediction. Hence the log entries with user “root”
need to be removed before inferring. Figure 1 gives a direct
visualization of the Progger logs. As we can see, there are
some logs for which the user is “root”.



C. User Scenarios

Before we get started, we have to answer the question:
what are user scenarios? We have defined user scenario
as a narrative of foreseeable interaction of the user role
and the Linux system in the cloud, but at this stage, we
only focus on file activities. Therefore, we consider thirty
user scenarios which have been classified into four basic
categories. These are create, update, read and delete. Table
II lists the categories and their basic description.

Table II
SCENARIO GROUP LIST

Group Name Description
Create Create a non-existing file
Update Change the content of an existing file
Read Display without changing anything
Delete Remove the file

Each user scenario corresponds to a specific action that
user takes. Table III shows the description of these scenarios.
For simplicity, we use the acronym to represent the scenarios
in this study.

It should be noted that some of the system calls are
referred to using the same English verbs that are used to
describe the user scenarios. For example, the system call
read means a request to the operating system (kernel) to read
from a file descriptor. Whereas, the user scenario category
read means that the user reads the content of a file. One user
scenario generates a series of system calls. For instance, the
logs shown in Figure 1 all corresponds to one user scenario.

D. Data Simulation

In this study, we use a training data set which is a log
file generated by implementing each of the user scenario
several times. This includes the logs generated for different
users as well as the logs generated for the same user at
different instances. Thus, the training data set is expected
to capture the variability in the log data. We also use two
testing data sets: (1) mono-scenario testing data set, (2)
interleaving scenario testing data set. The mono-scenario
refers to a situation where several scenarios are implemented
in a sequential fashion, i.e. one after the other. On the other
hand, the interleaving scenario refers to a more realistic
situation where several scenarios are run concurrently (i.e.,
log entries from different scenarios may interleave each
other). The interleaving scenario simulates multi-tasking on
an operating system.

Figure 4 presents an example that generates an interleav-
ing scenario data set. First, the user carol creates a new file
test.txt using the touch command. At time 0002 carol opens
the file test.txt using the nano editor, writes something to
the file and closes the nano editor at time 0005. However,
at time 0004, carol writes something to a file result.txt using
the echo command. As a result (nano editor at time 0002 &

0005, touch at time 0003 and echo at time 0004) the logs
generated interleave.

Date: 12th Dec
User: carol
Time Sequence of operations carried out
0001 create a flie : touch test.txt
0002 write “This is a test for Progger” with nano editor : nano test.txt
0003 create a file : touch result.txt
0004 write “This is a test for Progger” : echo “This is a test for Progger”
> result.txt
0005 quit nano editor
0006 read content of a file and append it to another existing file : cat
test.txt >> result.txt
0007 delete test.txt : rm test.txt

Figure 4. README File of Interleaving Scenario Data Set

Figure 5 presents an example that generates a mono-
scenario data set. First, the user Alice creates a new file
test.txt using the vim editor and exits the vim editor by saving
the file. Then, Alice uses cat command to display the content
of test.txt. After this, Alice copies the content of test.txt to a
non-existing file test2.txt. Finally, Alice deletes the previous
file test.txt.

Date: 30th Oct
User: Alice
Time Sequence of operations carried out
0028 vim test.txt
0029 cat test.txt
0030 cp test.txt test2.txt
0031 rm test.txt

Figure 5. README File of Mono-scenario Data Set

III. OUR APPROACH

An accurate and efficient statistical approach is necessary
for inferring user actions from the Progger logs. The ap-
proach we develop involves data preprocessing, followed by
using standard classification algorithms and model evalua-
tion (Figure 6). Data preprocessing is an essential step in
the inferring process because the quality of the input will
strongly affect the final classification accuracy [10]. After
data preprocessing, we use four classification methods for all
possible combinations of the attributes considered and select
the best algorithm based on the classification accuracy. We
discuss this approach in detail below.

A. Data Preprocessing

The raw data presented in the log file is messy and
complex (as illustrated by the log shown in Figure 1).
Hence the contents of the log file need to be cleaned in this
preprocessing step. The redundant data are removed and this
eliminates the noise in the Progger log data. The logs are
then converted into a format appropriate for the classification
algorithm to be used. The data preprocessing step involves
the following sub-steps:



Table III
USER SCENARIO LIST

No. Acronym Description Command Example
1 Create1 Create a new empty file in user home directory touch test.txt
2 Create2 Create a new file in user home directory with content echo “Progger” > test.txt
3 Create3 Create a new file in user home directory with content using vim vim test.txt
4 Create4 Create an empty file using vim editor vim test.txt
5 Create5 Create an empty file using a C program, createfile ./createfile
6 Create6 Create an empty file using nano editor nano test.txt
7 Create7 Launch editor inside program to create file ./cmdcreatefile
8 Create8 Redirect and append data into new file echo “Progger” >> test.txt
9 Create9 Write to new file with nano editor nano test.txt
10 Create10 Copying of files cp test.txt result.txt
11 Create11 Copy file using redirect cat test.txt > result.txt
12 Create12 Cut and paste file using redirect mv test.txt > result.txt
13 Update1 Delete partial data from a file using nano editor nano test.txt
14 Update2 Delete partial data from file using vim editor vim test.txt
15 Update3 Delete content of file using pipe > test.txt
16 Update4 Redirect (or append) data into an existing file echo “Progger” > test.txt

echo “Progger” >> test.txt
17 Update5 Redirect (or append) content of an existing file into an existing file cat test.txt > result.txt

cat test.txt >> result.txt
18 Read1 Read file by piping out the file from command line cat test.txt
19 Read2 Read file using nano editor nano test.txt
20 Read3 Read file using vim editor vim test.txt
21 Read4 Open and read file using user program (C user program) ./readfile
22 Read5 Read file using tail command (built-in linux command) tail test.txt
23 Read6 Read file with cat and pipe it to grep for filtering cat test.txt | grep Progger
24 Read7 Redirect content of file to command/program grep Progger < test.txt
25 Read8 Read content of file and display in default format using fmt command fmt test.txt
26 Read9 Read and redirect content of file to fmt fmt < test.txt
27 Read10 Read content from file and pipe to fmt cat test.txt | fmt -w 5
28 Read11 Read data into vim editor’s buffer vim test.txt and “yank” line
29 Read12 List file names in user home directory ls
30 Delete1 Create a new empty file in user home directory rm test.txt

Figure 6. Steps of Finding the Optimal Algorithm

1) Data Cleaning: The data cleaning step solves the
major data quality problems that were discussed in Section
II-B. First, the root usage logs can be removed using the
user name. Second, the logs generated because of the user
editing the content are repetitive “6 -2(READ – WRITE)” in
nature. This pattern can be detected and the noise generated

can be minimised by merging the repetitive pattern.
2) Session Identification: The system call sequence is an

on-going number sequence in practice. It embodies more
than one user scenario. We have to find a way to split
into subsequences and make sure each subsequence roughly
matches a user scenario. Observing the training data set,
it can be seen that the system call sequence of every sce-
nario starts with a fixed pattern: “24-22-5-29 (S SOCKET
– S SENDMSG – CLOSE – PIPE )”. In addition, this
special pattern does not appear anywhere else. This pattern
is therefore used to identify the start of a new user scenario.
This way, the system call sequence is split into several
subsequences, each corresponding to a specific user action.

3) Data Conversion: This is a conversion of the data
in the log file into the format needed by the classification
algorithms. The actual system call types are numerical
values. In this step, the numerical values have been replaced
with a descriptive name for readability and convenience.

We will be using the classification algorithms in WEKA
[11]. As such the pooled system call sequences set is con-



verted to an ARFF file to match the input format requirement
of WEKA. An ARFF (Attribute-Relation File Format) file
is a text file that describes a list of instances sharing a set
of attributes. It was developed by the University of Waikato
for use with the WEKA software [11].

B. Attributes Selection

After conversion, the ARFF file includes three variables:
SystemCallString, Length, UserScenario. The first two are
attributes and are used to infer the classes, the last one is
used to evaluate the classification accuracy. The “System-
CallString” represents the system call sequence. A system
call sequence is an ordered system call type list and, as
mentioned in Section II-A, the system call type is the focal
point of the logs. It is the most important attribute for
inferring the user actions. The “Length” is another important
attribute. It represents the number of log entries that are
related to one user scenario. The logs generated by some of
the user scenarios are short (length < 70), whereas the others
are much longer (length > 250). Therefore, the length data
are simply grouped into two clusters. Thus, the length data
is likely to be helpful in distinguishing these two clusters
and therefore likely important in inferring the user actions.
As explained in Section II B, the logs generated by the
same user scenario at different instances have very similar
(but not exactly the same) lengths. The similarity of log
lengths explain why we consider it as an efficient attribute
for classification.

After conversion, the data become a sequence of English
words. If we simply input it into a classification algorithm,
the information about the order will be lost. In Text Mining,
often, a collection of co-occurring terms may describe the
contents of a document better than any single term [12] [13].
For example, ”cloud computing” might be such a phrase,
which is a specific reference to a computing term, but has
nothing to do with the common use of the term ”cloud” as
it might, for example, be used in descriptions of a visible
mass of liquid droplets. Likewise, we try to treat the co-
occurring system call as one attribute. We pool some system
call together with different window lengths. The value of
“window length” represents how many system calls have
been pooled together. Figure 7 shows the original system
call sequence of Create1. Figure 8 shows the reconstructed
system call sequence (Window Length = 3) of Create1. We
implement the classification methods with different window
lengths to determine the value of the window length that
yields the highest accuracy.

S-SOCKET S-SENDMSG CLOSE PIPE CLOSE CLOSE CLOSE CLOSE
OPEN CLOSE OPEN READ CLOSE OPEN READ CLOSE OPEN READ
CLOSE OPEN CLOSE CREATE DUP2 CLOSE CLOSE CLOSE CLOSE
WRITE WRITE READ WRITE

Figure 7. System Call Sequence before Pooling

S-SOCKETS-SENDMSGCLOSE S-SENDMSGCLOSEPIPE
CLOSEPIPECLOSE PIPECLOSECLOSE CLOSECLOSECLOSE
CLOSECLOSECLOSE CLOSECLOSEOPEN CLOSEOPENCLOSE
OPENCLOSEOPEN CLOSEOPENREAD OPENREADCLOSE
READCLOSEOPEN CLOSEOPENREAD OPENREADCLOSE
READCLOSEOPEN CLOSEOPENREAD OPENREADCLOSE
READCLOSEOPEN CLOSEOPENCLOSE OPENCLOSECREATE
CLOSECREATEDUP2 CREATEDUP2CLOSE DUP2CLOSECLOSE
CLOSECLOSECLOSE CLOSECLOSECLOSE CLOSECLOSEWRITE
CLOSEWRITEWRITE

Figure 8. System Call Sequence after Pooling (Window Length = 3)

C. Classification Algorithms

In this step, we use different classification algorithms
and compare their performance to find the best performing
algorithm for classifying Progger logs. This application
requires a classification algorithm that is accurate as well
as highly efficient. Efficiency is very important since in a
real life deployment, this approach will be implemented on
the huge amount of streaming log data generated by a cloud
computing environment. For this reason, we use simple
and time tested classification methods. We employ four
commonly used classification methods, namely, Naive Bayes
Classifier, Multinomial Naive Bayes Classifier, Nearest-
neighbour Classifier (IB1) and Decision Tree (J48). Each
method is implemented both with/without length attribute,
and also using different window lengths.

In this paper, these algorithms are implemented in WEKA
[11]. WEKA is a data mining software that has been
developed at the University of Waikato (New Zealand).
The WEKA package names for each of the classification
algorithms is shown in Table IV [11].

The attribute SystemCallString is a string attribute. How-
ever, Naı̈veBayes, Naı̈veBayesMultinomial and IB1 can not
deal with string attributes directly. Therefore, we need a filter
to convert string attributes into numeric vectors first. String-
ToWordVector produces numeric attributes that represent the
frequency of words in the value of a string attribute [14].
The new attribute set is determined from the training data
set. By default each word becomes an attribute whose initial
value is 1 or 0, reflecting that word’s presence in the string.

Table IV
CLASSIFIER LIST

Classifier Name WEKA Package Name
Naı̈ve Bayes Classifier NaiveBayes
Multinomial Naı̈ve Bayes Classifier NaiveBayesMultinomial
Nearest-neighbour Classifier IB1
Decision Tree J48

D. Evaluation

We compare the output of the candidate statistical ap-
proaches to find the best one. The performance measure is
the classification accuracy. The approaches are evaluated,



first, using sixfold cross-validation on the training data set,
and then by measuring the classification accuracy on the
mono-scenario testing data set and the interleaving scenario
testing data set. We discuss the results of this evaluation in
Section IV.

IV. PERFORMANCE

A. Statistical Approach

Table V shows the sixfold cross-validation accuracy
achieved for each algorithm. Each algorithm was imple-
mented for all possible combinations of the two attributes,
Length and window length. It can be seen that the clas-
sification accuracy achieved in most cases is in the range
of about 80% to 90%. The Nearest-neighbour (IB1), the
Naive Bayes and the Decision Tree (J48) seem to perform
well but the accuracy achieved using the Multinomial Naive
Bayes algorithm is significantly less. It is clear that including
the length information does not necessarily improve the
accuracy significantly. In general, the length feature seems
to be only helpful when the window length is small (less
than four) or equal to the length. For Multinomial Naive
Bayes, the length lowers the classification accuracy except
when the window length equals to one.

In a cross validation, both the testing data and the training
data come from the same data set. As a result, the cross
validation may often overestimate the accuracy [14]. To get a
more accurate estimate of the accuracy that may be achieved
in practice, we need to implement the algorithms on the two
testing datasets. The cross validation results do however help
us identify the optimal combinations of attributes that are
likely to provide the highest possible accuracy for each of
the algorithms. The four algorithms were then implemented
using these optimal combinations of attributes on the two
testing data sets, namely, the mono-scenario testing data set
and interleaving scenario testing data set. The results are
summarized in Table VI.

Nearest-neighbour (IB1) with length attribute, window
length = 6 and without length attribute, window length
= 5 seems to outperform the others on the classification
accuracy achieved on both the mono-scenario data set as
well as the interleaving scenario data set. Note that in some
cases, for e.g., IB1 with window length = 7, the accuracy
on the test data sets is significantly lower than the cross
validation accuracy. This is possibly because the test datasets
were small in size and did not incorporate a wide range of
user scenarios.

B. Summary

We have built a novel approach to infer the user actions
using the Progger logs. The first challenge is how to define
and remove the “noise” in the system call sequence. As de-
scribed in Section III-A, data preprocessing is an important
step in this study. As a result of this step, the variation due
to noise is nearly eliminated.

Another challenge is to identify the key attributes. In
theory, having more features should result in more discrimi-
nating power. However, in practice, adding irrelevant or dis-
tracting attributes to a data set often confuses classification
systems [14]. It can be seen that the length attribute does not
seem to have any sizable effect on the classification accuracy.
Thus, a case could be made to remove it. Eliminating an
unnecessary attribute may also likely improve the efficiency
of the algorithm.

Finally, this work has identified a classification approach
that is both accurate as well as efficient for the limited set
of Linux user scenarios considered.

V. FUTURE WORK AND CONCLUSION

This paper discusses a statistical approach that is able to
infer, with high accuracy, the user actions using the Progger
log data. This is the first such work to the best of our
knowledge. Although, this study only considered a limited
set of user scenarios, it has showed that by cleaning the
Progger logs appropriately and then looking up for specific
patterns in the system call sequence, satisfying accuracy can
be achieved. The nearest-neighbour classifier (IB1) seems to
be the best choice for this data. It also showed that the length
information may be dispensable and the optimal window
length was five for this data. However, this is a pilot study.
Further work is needed to develop an algorithm which can
produce efficient and accurate inference on user actions in
a real life environment. This is described below.

A. Future Work

1) Real Time Analysis for Data Streams: As described
in Section II-C, we only focus on the file activities and
therefore only consider thirty user scenarios. In fact, user
scenarios are non-exhaustive. The real scenarios on the cloud
are much more complex and variable. The main contribution
of the present work is to show how a statistical approach
could be developed to accurately and efficiently identify the
user scenarios. The next stage is to incorporate more user
scenarios, such as network communication and interprocess
communication scenarios and implement this approach to
develop a classification algorithm that can work on stream-
ing cloud data. It may happen that a real life data may
provide very little training data for certain rare scenarios.
How the training should be handled for such scenarios is
a challenge. Further, the classification models will need to
be implemented on data stream mining platforms such as
Massive Online Analysis (MOA) [15]. MOA is designed
to deal with the challenging problem of scaling up the
implementation of state of the art algorithms to real world
dataset sizes.

2) Improving the Accuracy: There are two possible ways
to achieve higher accuracy for a given set of user scenarios.
The first one is to identify additional features and second
by using additional classification algorithms such as support



Table V
ACCURACY OF CLASSIFIERS ON SIXFOLD CROSS-VALIDATION

Classifier Length Window Length
1 2 3 4 5 6 7 8 Whole

Naive Bayes Yes 70.83% 88.02% 90.10% 92.19% 92.71% 92.71% 93.23% 93.23% 86.46%
No 41.67% 82.29% 89.06% 92.19% 92.71% 92.71% 93.23% 93.23% 80.21%

Multinomial Naive Bayes Yes 47.40% 59.38% 53.65% 57.29% 63.54% 49.48% 47.40% 43.23% 7.29%
No 37.50% 65.63% 73.44% 84.90% 86.46% 86.46% 89.06% 90.10% 79.69%

Nearest-neighbour (IB1) Yes 78.65% 89.58% 92.19% 92.19% 92.19% 92.71% 92.71% 91.15% 84.90%
No 33.33% 77.08% 86.46% 90.63% 93.23% 92.71% 92.71% 91.15% 78.13%

Decision Tree (J48) Yes 78.65% 90.63% 91.67% 93.23% 92.19% 93.23% 92.71% 91.67% 83.85%
No 40.63% 82.81% 88.02% 91.67% 92.19% 93.23% 92.71% 91.67% 71.35%

Table VI
ACCURACY OF CLASSIFIERS ON SUPPLIED TESTING DATA SETS

Classifer Length Window Length Sixfold Cross-validation Mono-scenario Interleaving Scenario

Naive Bayes Yes 8 93.23% 50.00% 66.67%
No 8 93.23% 50.00% 83.33%

Multinomial Naive Bayes Yes 5 63.54% 50.00% 66.67%
No 8 90.10% 66.67% 83.33%

Nearest-neighbour (IB1)
Yes 6 92.71% 83.33% 83.33%
Yes 7 92.71% 58.33% 55.56%
No 5 93.23% 83.33% 83.33%

Decision Tree (J48)
Yes 4 93.23% 58.33% 83.33%
Yes 6 93.23% 66.67% 83.33%
No 6 93.23% 66.67% 83.33%

vector machine and neural networks. This need to be ex-
plored. The proposed approach has achieved considerable
accuracy, however, the accuracy will need to be even higher
for successful data provenance and security applications.

3) Data Leakage Detection: A data distributor has given
sensitive data to a set of supposedly trusted agents. However,
data leakage frequently happens along around the world. For
example, in 2013, 1143 leaks of confidential information
were recorded and reported in the media and registered by
InfoWatch Analytical Center [16].

Our approach presents an efficient way of data leakage
detection. Using the log sequence, we can infer the user
actions in the cloud. The user includes the legal user and
malicious user such as a hacker. Since the logs are at the
system level, it is impossible for the hacker to hide his/her
track. Another strength of our approach is that our output
gives a fine-grained data activity audit so that the cloud user
can judge whether the data leakage is happening.

4) Cloud Data Provenance: With the proliferation of
database views and curated databases, the issue of data
provenance – where a piece of data came from and the
process by which it arrived in the database – is becoming
increasingly important, especially in scientific databases
where understanding provenance is crucial to the accuracy
of data.

As we discussed before, our approach can infer data
provenance when the data of interest has been created,
updated, read or deleted by any command which include
database queries. It will be interesting to see result of

applying our approach in this area.
5) User Behavior Prediction: Data provenance is only

about the process of tracing and recording the origins of
data and its movement between databases. It is not sufficient
to successfully keep away from security hazards in cloud
computing. An intelligent cloud service needs a mechanism
for predicting user actions and giving correct early warnings
[17]. User behavior prediction is a problem in which we
attempt to predict the next set of user actions based on
the knowledge of the previous actions. The aggregation
and comparison of behavioral patterns in cloud represent
a tremendous opportunity for understanding past behaviors
and predicting future behaviors. Once this approach is ex-
tended to able to infer the user actions in a streaming cloud
data, it can be used to document the user behavior history
which can then be used to predict the future actions by the
user.

Since most attacks follow the same pattern (bait, redirect,
exploit, additional malicious software delivery, check-in)
[18], [19], [20], our results above indicated that it may be
worthwhile to tie these steps together with security alarms
and timestamps. This can then be used to predict and
therefore prevent future attracts.

B. Conclusions
In the last few years, the emergence of cloud and cloud

computing related technologies has changed the way people
store and share their data. In order to make a completely
secure environment for the data, a great number of cloud
security applications and products have been developed.



However, many studies point out that security is still the
top challenge for the cloud systems. The cloud users would
like to know what has happened to their data. A professional
cloud data service should be able to answer this question.

This paper introduces a novel statistical approach for in-
ferring what has happen on cloud data. This problem appears
highly under-studied before. The logs data are multivariate
and contain noise. However, we have shown that by looking
up specific pattern in the system call sequence, considerable
accuracy can be achieved. This approach would be a suitable
and powerful tool to enhance the trust between the cloud
users and service providers.

The cloud computing environment may never be com-
pletely free of security problems, however, further studies to
identify potential problems and solution in the areas of data
leakage detection, cloud data provenance and user behaviour
prediction should result in a much more safe and reliable
environment.

REFERENCES

[1] R. K. L. Ko, M. Kirchberg, and B. S. Lee, “From system-
centric to data-centric logging-accountability, trust & security
in cloud computing,” in Defense Science Research Conference
and Expo (DSR), 2011. IEEE, 2011, pp. 1–4.

[2] R. K. L. Ko and M. A. Will, “Progger: An efficient, tamper-
evident kernel-space logger for cloud data provenance track-
ing,” in Cloud Computing (CLOUD), 2014 IEEE 7th Inter-
national Conference on. IEEE, 2014, pp. 881–889.

[3] R. K. L. Ko, P. Jagadpramana, and B. S. Lee, “Flogger: A
file-centric logger for monitoring file access and transfers
within cloud computing environments,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011
IEEE 10th International Conference on. IEEE, 2011, pp.
765–771.

[4] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson,
M. Kirchberg, Q. Liang, and B. S. Lee, “Trustcloud: A
framework for accountability and trust in cloud computing,”
in Services (SERVICES), 2011 IEEE World Congress on.
IEEE, 2011, pp. 584–588.

[5] C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and
B. S. Lee, “S2logger: End-to-end data tracking mechanism
for cloud data provenance,” in Trust, Security and Privacy
in Computing and Communications (TrustCom), 2013 12th
IEEE International Conference on. IEEE, 2013, pp. 594–
602.

[6] D. W. Archer, L. M. Delcambre, and D. Maier, “A frame-
work for fine-grained data integration and curation, with
provenance, in a dataspace.” in Workshop on the Theory and
Practice of Provenance, 2009.

[7] D. Gotz and M. X. Zhou, “Characterizing users’ visual
analytic activity for insight provenance,” Information Visu-
alization, vol. 8, no. 1, pp. 42–55, 2009.

[8] P. J. Guo and M. Seltzer, “Burrito: Wrapping your lab
notebook in computational infrastructure.” in TaPP, 2012.

[9] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation
for scientific data provenance,” in E-Science (e-Science), 2012
IEEE 8th International Conference on. IEEE, 2012, pp. 1–8.

[10] C. I. Ezeife and Y. Lu, “Mining web log sequential patterns
with position coded pre-order linked wap-tree,” Data Mining
and Knowledge Discovery, vol. 10, no. 1, pp. 5–38, 2005.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–
18, 2009.

[12] H. Ahonen, O. Heinonen, M. Klemettinen, and A. I. Verkamo,
“Applying data mining techniques for descriptive phrase
extraction in digital document collections,” in Research and
Technology Advances in Digital Libraries, 1998. ADL 98.
Proceedings. IEEE International Forum on. IEEE, 1998,
pp. 2–11.

[13] I. H. Witten, “Text mining,” Practical handbook of Internet
computing, pp. 14–1, 2005.

[14] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[15] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,
T. Jansen, and T. Seidl, “Moa: Massive online analysis, a
framework for stream classification and clustering.” 2010.

[16] I. A. Labs, “The global data leakage report for the 2013,”
InfoWatch Analytical Labs, Tech. Rep., 2014.

[17] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov,
and E. Horvitz, “Modeling and predicting behavioral dynam-
ics on the web,” in Proceedings of the 21st international
conference on World Wide Web. ACM, 2012, pp. 599–608.

[18] E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble,
“Why we search: visualizing and predicting user behavior,”
in Proceedings of the 16th international conference on World
Wide Web. ACM, 2007, pp. 161–170.

[19] M. A. Awad and I. Khalil, “Prediction of user’s web-browsing
behavior: Application of markov model,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 42, no. 4, pp. 1131–1142, 2012.

[20] J. J. Lee, R. McCartney, and E. Santos Jr, “Learning and pre-
dicting user behavior for particular resource use.” in FLAIRS
Conference, 2001, pp. 177–181.


