Ecological Survey of Tauranga Harbour

MTM Report No.13 May 2013

ECOLOGICAL SURVEY OF TAURANGA HARBOUR

JOANNE ELLIS¹, DANA CLARK¹, JUDI HEWITT², CAINE TAIAPA³, JIM SINNER¹, MURRAY PATTERSON⁴, DERRYLEA HARDY⁴, STEPHEN PARK⁵, BRUCE GARDNER⁵, ALICE MORRISON⁵, DAVID CULLIFORD⁵, CHRIS BATTERSHILL⁶, NICOLE HANCOCK⁶, LYDIA HALE³, ROD ASHER¹, FIONA GOWER¹, ERIN BROWN⁷, AARON MCCALLION⁷

¹CAWTHRON INSTITUTE, ²NIWA, ³MANAAKI TE AWANUI, ⁴MASSEY UNIVERSITY, ⁵BAY OF PLENTY REGIONAL COUNCIL, ⁶UNIVERSITY OF WAIKATO, ⁷WAKA DIGITAL

ISSN 2230-3332 (Print) ISSN 2230-3340 (Online) ISBN 978-0-9876639-2-4

Published by the Manaaki Taha Moana (MTM) Research Team Funded by the Ministry for Science and Innovation Contract MAUX0907 Main Contract Holder: Massey University www.mtm.ac.nz

Taul Allapie

CAWTHRON INSTITUTE

98 Halifax Street East, Nelson 7010 | Private Bag 2, Nelson 7042 | New Zealand Ph. +64 3 548 2319 | Fax. +64 3 546 9464 www.cawthron.org.nz

REVIEWED BY: Paul Gillespie

APPROVED FOR RELEASE BY: MTM Science Leader Professor Murray Paterson

ISSUE DATE: 17 May 2013

RECOMMENDED CITATION: Ellis J, Clark D, Hewitt J, Taiapa C, Sinner J, Patterson M, Hardy D, Park S, Gardner B, Morrison A, Culliford D, Battershill C, Hancock N, Hale L, Asher R, Gower F, Brown E, McCallion A 2013. Ecological Survey of Tauranga Harbour. Prepared for Manaaki Taha Moana, Manaaki Taha Moana Research Report No. 13. Cawthron Report No. 2321. 56 p. plus appendices.

© COPYRIGHT: Apart from any fair dealing for the purpose of study, research, criticism, or review, as permitted under the Copyright Act, this publication must not be reproduced in whole or in part without the written permission of the Copyright Holder, who, unless other authorship is cited in the text or acknowledgements, is the commissioner of the report.

MIHI

Korihi te manu Takiri mai te ata Ka ao, ka ao, ka awatea Tihei mauri ora!

Ka mihi ake ka tangi ake Ratau te hunga kua moe nga whatu E moe mai ra i te wahangutanga o te po

Tatau e pikau nei i ngā ahuatanga o te ao turoa tatau e kawe nei i ngā wawata o ratau ma kei te mihi

Ki ngā maunga, ki ngā awa, heoi ki ngā iwi e noho taiamio nei i te moana o Te Awanui, kei te mihi

Ki ngā tini, ki ngā mano o Ngāti Ranginui, Ngāi te Rangi me Ngāti Pūkenga Tena koutou katoa

Ka huri ngā mihi ki te Te Taiwhakapiri o Te Awanui, heoi ano ki a Chris Battershill no te Whare Wananga o Waikato, kia Bruce Gardner no te Bay of Plenty Regional Council tena korua ngā pouwhakarae, ngā pouwhakapiriri.

heoi ano ki ngā kaituao maha e hapai ana i ngā kaupapa o te rangahau nei, ma te hoe tahi kua whakakuku te waka ki uta, kua ea ngā wawata.

Na reira tena koutou, tena koutou katoa

© Manaaki Taha Moana Research Team

Published by the Manaaki Taha Moana Research Team
MAUX 0907 Contract Holder:
Massey University
Private Bay 11052
Palmerston North
New Zealand

Disclaimer

While the author(s), the MTM research team and their respective organisations, have exercised all reasonable skill and care in researching and reporting this information, and in having it appropriately reviewed, neither the author(s), the research team, nor the institutions involved shall be liable for the opinions expressed, or the accuracy or completeness of the contents of this document. The author will not be liable in contract, tort, or otherwise howsoever, for any loss, damage or expense (whether direct, indirect or consequential) arising out of the provision of the information contained in the report or its use.

EXECUTIVE SUMMARY

This report summarises the results of biological and physical data collected from a broad scale intertidal survey of Tauranga Harbour conducted between December 2011 and February 2012. The survey was designed to understand more fully the role of various anthropogenic stressors on the ecology of the harbour. The research was conducted as part of the Manaaki Taha Moana (MTM) programme. The wider research project aims to restore and enhance coastal ecosystems and their services of importance to iwi/hapū, by working with iwi to improve knowledge of these ecosystems and the degradation processes that affect them.

In this report we assess the health of macrofaunal benthic communities (bottom-dwelling animals) as well as trends in sediments, nutrients and contaminants. The results indicate that the sites identified as most impacted were generally located in the upper reaches of estuaries in some of the locations least exposed to wind, waves and currents. In addition, the biological community composition characterizing sites with different sediment textures, nutrient and contaminant loadings were found to vary. Sediments within Tauranga Harbour were predominantly sandy with the percentage of mud within a similar range as measured for other New Zealand estuaries. The exceptions included Te Puna Estuary and Apata Estuary, which experience higher rates of sedimentation.

Heavy metal contamination in sediments is often highly correlated with the percentage of mud content due to the adherence of chemicals to fine sediments and/or organic content. It is, therefore, not surprising that heavy metal concentrations were also highest in the depositional inner areas of the harbour, such as Te Puna Estuary. The heavy metal contaminant levels within Tauranga were well below relevant guideline thresholds and lower than concentrations measured in many other estuaries in New Zealand and overseas. Although the three metals recorded were found to be highly correlated, zinc levels tended to be closer to guideline thresholds for possible biological effects.

Sediment nutrient concentrations in the harbour tended to decline with distance from the inner harbour and associated rivers. Te Puna Estuary showed comparatively high nitrogen and phosphorus loadings. Comparison of sediment nutrient concentrations with other New Zealand estuaries indicates that the Tauranga Harbour sits within a range typical for slightly to moderately enriched estuaries. Although total phosphorous was low compared with other estuaries, total N:P ratios suggest Tauranga Harbour is still limited by nitrogen.

We developed a BHM using statistical ordination techniques to identify key stressors affecting the 'health' of macrofaunal communities. Sediments, nutrients and heavy metals were identified as key 'stressors', *i.e.* variables affecting the ecology of the harbour. Therefore, three multivariate models were developed based on the variability in community composition using canonical analysis of principal coordinates (CAP). The ecological assemblages generally reflected gradients of stress or pollution very well. However, the CAP models for sediments and contaminants performed best.

In general, the multivariate models were found to be more sensitive to changing environmental health than simple univariate measures (abundance, species diversity, evenness and Shannon-Wiener diversity). This finding has also been reported in the literature where univariate measures based on abundance and diversity were only able to detect significant differences between the most and least disturbed sites, but were not able to differentiate between smaller relative changes in environmental health. Hence univariate measures were less sensitive to smaller degradative changes in community composition. For Tauranga Harbour, ordination models based on community composition appear to be a more sensitive measure of 'health' along an ecological gradient and should enable long term degradative change from multiple disturbances to be assessed. This BHM approach can be used as a management or monitoring tool where sites are repeatedly sampled over time and tracked to determine whether the communities are moving towards a more healthy or unhealthy state.

The key species at 'healthy' and 'impacted' sites as determined from the CAP models were also identified. Species at 'impacted' sites can be considered to be tolerant to the stressor (*i.e.* sediment, nutrients or contaminants), while species with high abundances at only 'healthy' sites are sensitive to increasing stressors. We also developed density-dependent models for key species identified in the ordination models and culturally important shellfish species. For shellfish, the results suggest the response curves to increasing stress for sedimentation, nutrients and contaminants were either negative or polynomial. A negative relationship means that as the stressor increases the abundance of shellfish decreases. A polynomial response curve results in an increase in abundance associated with the stressor followed by a decrease in abundance beyond critical stressor levels. Therefore, within the harbour, shellfish species populations are either sensitive to elevated silt/clay, nutrient loading or contaminants, or sensitive to these stressors beyond a critical point. The other key species modelled included polychaete worms, whose response curves to various stressors varied by species.

The results from this study are consistent with models of macrofaunal species occurrence with respect to sediment mud content developed across a range of New Zealand estuaries by Thrush *et al.* (2003). Within this report we extend this analysis by also developing models of macrofaunal species occurrence with respect to nutrient and contaminants loadings. Ultimately such statistical models provide a tool to forecast the distribution and abundance of species associated with habitat changes in sediments, nutrients and metals.

In conclusion, Tauranga Harbour is a predominantly sandy harbour with slight to moderate enrichment and low levels of heavy metal contaminants. Sites identified as most impacted by elevated sediments, heavy metal contaminants and nutrients were generally located in the upper reaches of estuaries in some of the least exposed locations. To some extent, this reflects the natural progression of an estuary from land to sea; however, the rates of accumulation of sediments and nutrients have been accelerated as a result of anthropogenic land-based activities. Sediments and contaminants were found to explain the largest variance in benthic communities. Species response curves suggest that shellfish are

negatively affected by increasing sediments, nutrients and metals beyond critical levels while polychaete responses are species specific.

TABLE OF CONTENTS

MIH	II	III
1.	INTRODUCTION	1
2.	MATERIALS AND METHODS	3
2.1.	Study site	3
2.2.	Physico-chemical variables	5
2.3.	Infauna	5
2.4.	Epifauna and macroalgae	6
2.5.	Statistical analyses	6
2.5.1	. General background to multivariate analysis	6
2.5.2	2. Statistical model	7
3.	RESULTS	11
3.1.	Physico-chemical variables	11
3.1.1	Sediment grain size ad organic content	11
3.1.2	2. Nutrients	12
3.1.3	3. Chlorophyll-a	14
3.1.4	l. Heavy metals	15
3.1.5	5. Species distribution	16
3.2.	Key anthropogenic stressors	21
3.3.	Canonical analysis of principal coordinates models	22
3.3.1	Sedimentation canonical analysis of principal coordinates model	22
3.3.2	Nutrient canonical analysis of principal coordinates model	28
3.3.3		
3.4.	Species response curves	36
4.	DISCUSSION	42
4.1.	Physical patterns of elevated sediments, nutrients and heavy metal contamination	42
4.2.	Community based models	47
4.3.	Conclusion	49
5.	REFERENCES	50
6.	APPENDICES	57

LIST OF FIGURES

Figure 1.	Map of Tauranga Harbour showing locations of the study sites and the sampling	_
	strategy.	3
Figure 2.	Photographs of sampling procedure.	4
Figure 3.	Flow chart showing an outline of the logical flow of statistical analyses for the	
	modelling used in this investigation.	
Figure 4.	Grain-size for 75 sites sampled within Tauranga Harbour.	
Figure 5.	Sediment organic content for 75 sites sampled within Tauranga Harbour	
Figure 6.	Total nitrogen in sediments for 75 sites sampled within Tauranga Harbour	
Figure 7.	Total phosphorous in sediments for 75 sites sampled within Tauranga Harbour	
Figure 8.	Sediment chlorophyll- α concentrations for 75 sites sampled within Tauranga Harbour	
Figure 9.	Heavy metal concentrations for 75 sites sampled within Tauranga Harbour	16
Figure 10.	Number of taxa and average total abundance of infauna for 75 sites sampled within Tauranga Harbour	18
Figure 11.	Size class distribution of cockles (<i>Austrovenus stutchburyi</i>) at 75 sites sampled within	
riguic i i.	Tauranga Harbour	10
Figure 12.	Distribution of pipi (<i>Paphies australis</i>) at 75 sites sampled within Tauranga Harbour	10
riguic 12.	and location of sites in relation to channel markers	21
Figure 13.	Canonical analysis of principal coordinates for mud versus percentage silt and clay in	
	sediment for 75 sites in Tauranga Harbour	23
Figure 14.	Canonical analysis of principal coordinates for sedimentation in Tauranga Harbour for 75 sites	24
Figure 15.	Canonical analysis of principal coordinates for nutrients versus the PC1 axes derived	
	from sediment nutrient data for 75 sites in Tauranga Harbour	28
Figure 16.	Canonical analysis of principal coordinates for nutrients in Tauranga Harbour for 75	
		29
Figure 17.	Canonical analysis of principal coordinates for contamination versus the PC1 axes	
	derived from heavy metal concentrations in sediments for 75 sites in Tauranga	
		32
Figure 18.	Canonical analysis of principal coordinates for contamination in Tauranga Harbour for 75 sites	33
Figure 10		
Figure 19. Figure 20.	Relationship between taxa abundance and log percentage mud in ambient sediment	
	Relationship between taxa abundance and percentage mud in ambient sediment Relationship between taxa abundance and log nutrient concentrations in ambient	SΙ
Figure 21.		38
Figure 22.	Relationship between taxa abundance and nutrient concentrations in ambient	30
riguie 22.		39
Eiguro 22	sedimentRelationship between taxa abundance and log contaminant levels in ambient	JS
Figure 23.		40
Figure 24.	Relationship between taxa abundance and log contaminant concentrations in ambient	40
Figure 24.	sediment	11
	Scument	71
LIST O	F TABLES	
Table 1.	Analytical methods and detection limits	
Table 2.	Relative percentage variation explained by different anthropogenic stressors	
	determined using adapting variance partitioning methods.	22
Table 3.	Sedimentation ecological health categories for 75 sites in the Tauranga Harbour and	
	corresponding ranges for key variables for each group.	25
Table 4.	Key species identified along pollution gradients for sedimentation, nutrient and	
··	contaminant models as determined using Distance based Linear Models (DistLM)	27
Table 5.	Nutrient ecological health categories for 75 sites in the Tauranga Harbour and	
	corresponding ranges for key variables for each group.	30
		-

Table 6. Table 7.	Contamination ecological health categories for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. Comparison of average particle size and nutrient characteristics of sediments sampled during the present survey with previously reported values for some other New Zealand estuaries.	34 43
Table 8.	Concentrations of trace metals in sediments from Tauranga Harbour and a selection of New Zealand and overseas estuaries that have been contaminated to varying degrees.	
LIST OF	APPENDICES	
	Tauranga Harbour sampling site location details	57
	coordinates ecological health categories for the 1 mm + 500 µm infauna model	
	only	62

GLOSSARY

Abbreviation	Definition		
AFDW	Ash-free dry weight		
ANZECC	Australia and New Zealand Environment and Conservation Council		
A priori	Independent of experience, therefore, assumptions that may or may not be true are made		
ARC	Auckland Regional Council		
BHM	Benthic Health Model		
CA	Correspondence analysis		
CAP	Canonical analysis of principal coordinates		
Chl-α	Chlorophyll-α		
Cu	Copper		
DistLM	Distance based Linear Modelling		
Epifauna	Animals that live on the surface of the sediment		
Н	Shannon-Wiener diversity index (log _e base). A diversity index that describes, in a single number, the different types and amounts of animals present in a collection.		
Infauna	Animals that live within the sediment		
ISQG	Interim Sediment Quality Guideline, can be high or low		
J	Pielou's evenness, a measure of equitability, or how evenly the individuals are distributed amongst the different species/taxa		
Macroalgae	Seaweeds large enough to be seen with the naked eye		
Macrofauna	Animals large enough to be seen with the naked eye		
nMDS	Nonmetric multidimensional scaling		
Pb	Lead		
PCA	Principle component analysis		
PCO	Principle coordinate analysis		
TN	Total nitrogen		
TP	Total phosphorous		
NIWA	National Institute of Water and Atmospheric Research		
Zn	Zinc		

1. INTRODUCTION

The ecological health of Tauranga Harbour — traditionally known to local iwi as Te Awanui — was recently summarised in order to inform the Tauranga community, iwi and stakeholders of the 'state of the harbour' and to identify information gaps and priorities for field research (Sinner *et al.* 2011). The report was based on a literature review of published scientific papers and technical reports and did not extend to new field work or new analysis and interpretation of data. To summarise, while studies have been conducted on a wide range of topics, studies that assess biodiversity of flora and fauna at the scale of the estuary have not been conducted since 1994. The spatial scale over which information has been collected also varies greatly from one study to the next, reflecting the diverse purposes for which specific studies were undertaken. In order to understand more fully the role of various anthropogenic stressors on biodiversity, a broad scale survey of Tauranga Harbour was recommended (Sinner *et al.* 2011).

This report summarises the results of biological and physical data collected from a broad scale intertidal survey of Tauranga Harbour conducted between December 2011 and February 2012. As well as providing general information on spatial trends of macrofaunal species distributions, sediment types, nutrients and heavy metal contaminant concentrations across the whole harbour, the report also develops a community based model of ecosystem health called a 'Benthic Health Model' (BHM). The BHM was originally developed by Auckland University and the National Institute of Water and Atmospheric Research (NIWA) for the Auckland Regional Council (ARC). The model was developed as a tool to classify intertidal sites within the region according to categories of relative ecosystem health, based on its community composition and predicted responses to stormwater contamination (Anderson *et al.* 2006).

In reviewing existing methods of defining and measuring ecological 'health' it was noted that many of the existing biological diversity indices do not differentiate amongst different types of taxa and are strongly affected by sample size (Dunn, 1994; Gappa et al. 1990). This limits their ability to detect changes in composition across different communities and habitats. Furthermore, it is not immediately apparent what differences or similarities in these indices actually mean to ecological functioning, as a similar diversity value can be obtained from communities with very different species (Clarke, 1993; Dufrene and Legendre, 1997). Many of the existing metrics only detect one kind of impact (e.g. eutrophication or a specific contaminant). As a viable alternative, models that focus on community composition were recommended and developed (see Anderson et al. 2002; Anderson, 2008; Anderson et al. 2006; Hewitt & Ellis, 2010).

Community composition comprises both the number and type of taxa (or animals) that make up a biological community at a site, together with their relative abundances.

Defining community composition requires the same information needed to generate many biological diversity indices; however, by preserving all the information on the abundance of specific taxa, a more sensitive, and more ecologically meaningful, response could be expected (Anderson et al. 2002). The community composition found in areas largely unaffected by anthropogenic disturbances versus that found in more 'impacted' areas can be used as a benchmark against which to assess the relative health of community composition found at specific sites. Thus, relative 'health' can be defined in terms of the range of communities present in comparable locations that are not considered to be affected by anthropogenically-derived inputs and should serve to identify both acute effects and broader-scale degradation. Community composition is generally determined using multivariate techniques including ordination. Multivariate techniques have been applied successfully to indicate the effects of pollution (Ellis et al. 2000; Olsgard & Gray, 1995; Warwick et al. 1990) and subsequent studies have now shown that multivariate methods are better at determining differences between communities with different degrees of anthropogenic disturbance than univariate measures of communities (Hewitt et al. 2005). In the present study, a BHM was applied to Tauranga Harbour to rank the health of intertidal sites based on predicted responses to sedimentation, nutrients and contamination.

2. MATERIALS AND METHODS

2.1. Study site

Tauranga Harbour is a large estuary (approximately 200 km²) located on the western edge of the Bay of Plenty on New Zealand's North Island (37 °40'S, 176 °10'E; Figure 1). The harbour is protected from the Pacific Ocean by a barrier island (Matakana Island) and two barrier tombolos, Bowentown at the northern entrance and Mount Maunganui to the south. Two harbour basins are separated by large intertidal flats in the central area of the harbour. Although the two basins are connected there is little water exchange between the two (Barnett, 1985; de Lange, 1988). The harbour is predominantly shallow (< 10 m deep), with intertidal flats comprising approximately 66% of the total area (Inglis *et al.* 2008).

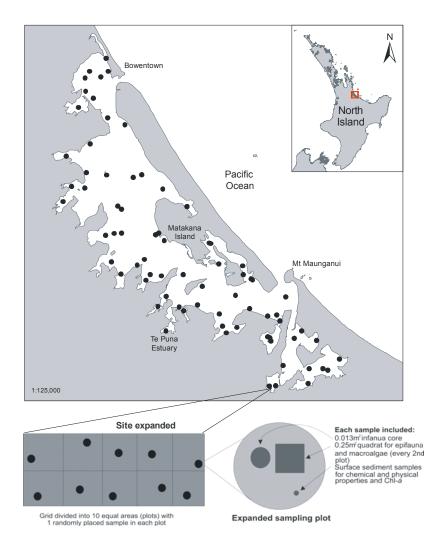


Figure 1. Map of Tauranga Harbour showing locations of the study sites and the sampling strategy.

Sampling was carried out over the December 2011 to February 2012 time period. The sampling design and methodologies were chosen to provide results generally comparable to those generated by the standardised Estuary Monitoring Protocol (Robertson *et al.* 2002a), which has been implemented in a range of New Zealand estuaries. A total of 75 sites across the harbour were sampled for benthic macrofauna and associated sediment characteristics (Figure 1; refer Appendix 1 for site location details). Sites were chosen to reflect a range of habitats including intertidal sand flats, shellfish beds, seagrass meadows and areas likely to be impacted by pesticides. At each site, a 2 x 5 grid of ten plots (10 m x 10 m) was marked out, and replicates were collected from each plot, yielding 750 samples overall (Figure 2, bottom left).

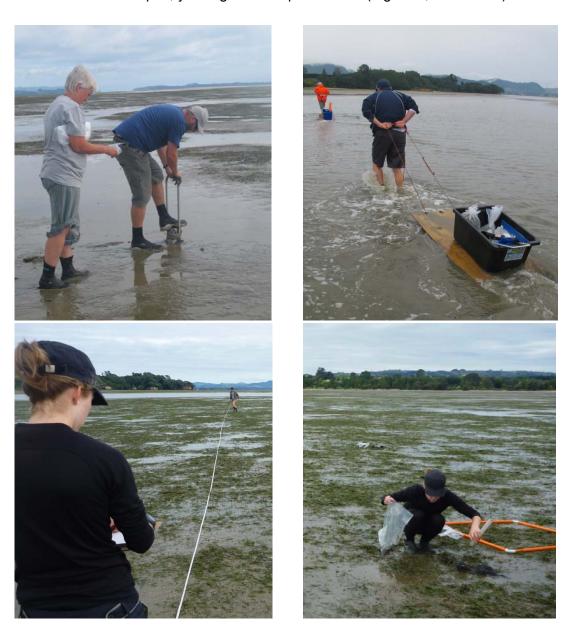


Figure 2. Photographs of sampling procedure. Clockwise from top left: taking infauna core; transporting samples; sampling for surface sediments with quadrat for photographs nearby; measuring out grid.

2.2. Physico-chemical variables

At each site, one 20 mm diameter core extending 20 mm deep into the sediment was collected from each of the 10 plots in the grid yielding 10 replicates for each site (Figure 2, bottom right). The replicates were composited into a single sample and the sediment was analysed for a variety of sediment characteristics (refer Table 1 for details); grain size, organic matter (as ash-free dry weight, AFDW), nutrients (total nitrogen, TN; total phosphorous, TP), heavy metals (lead, Pb; zinc, Zn; copper, Cu) and chlorophyll- α (chl- α). At selected sites (sites 7, 10, 14, 29, 38, 47, 48, 50, 73) sediment samples were also analysed for various pesticides, however, these results are not presented in this report.

Table 1. Analytical methods and detection limits.

Parameter	Method	Detection limit
Grain size	Wet sieving and calculation of dry weight percentage fractions	-
Ash-free dry weight Dry sediment weight loss after combustion at 550 ℃ (APHA 21 st Edn, modified 2540 D+ E)		-
Total nitrogen	APHA 21st Edn 4500N C	0.1 mg/kg
Total phosphorous	USEPA 200.2 Digestion/ICP-MS	20 mg/kg
Lead	USEPA 200.2 Digestion/ICP-MS	< 2.0 mg/kg
Zinc	USEPA 200.2 Digestion/ICP-MS	< 10 mg/kg
Copper	USEPA 200.2 Digestion/ICP-MS	< 0.5 mg/kg
Chlorophyll- α	NIWA Periphyton Monitoring Manual -	

2.3.Infauna

To quantify benthic community structure at each site, samples of the macrofauna living within the sediment (infauna, e.g. worms, shellfish) were collected. One 130 mm diameter core extending 150 mm into the sediment was taken from each of the 10 plots in the grid yielding 10 replicates for each site (Figure 2, top left). The macrofaunal samples were separated using stacked sieves with mesh sizes of 1 mm and 500 μ m. Macrofauna retained on the sieves were preserved with ethanol (diluted to ~70% with seawater). All 10 replicates from the 1 mm mesh size were sorted and identified to the lowest taxonomic resolution. However, due to budgetary constraints, only three replicates from the 500 μ m fraction were processed.

Two versions of each model were constructed; one using only the 1 mm infauna data (means based on 10 replicates per site) and one using both the 1 mm and the 500 µm data (means based on three replicates from the 1 mm and the 500 µm fraction per site). Anderson *et al.* (2002) found that increasing sample size improved the models, most particularly by increasing classification accuracy and precision. However,

although the models using means based on taking three cores at each site (rather than ten) were less precise, they were not biased in any way (Anderson *et al.* 2002).

Length frequency data for cockles (*Austrovenus stutchburyi*) and pipi (*Paphies australis*) were collected to provide an indication of the distribution of culturally important species within the harbour. Shell length (along the longest axis) was recorded for all cockles and pipi found within the infauna core samples. It is acknowledged that core samples are not the most appropriate sampling methodology for organisms of this size and a more detailed study of shellfish in Tauranga Harbour, using quadrat sampling, is in progress.

2.4. Epifauna and macroalgae

To quantify epifauna (animals living on the surface of the sediment, *e.g.* anemones, crabs, sea stars) community structure and macroalgal (seaweeds) cover at each site, one photograph was taken from every second plot in the grid yielding five replicates for each site. This data has been stored so that epifauna and macroalgae can be identified from the photographs and the abundance of percentage cover of each species determined if required.

2.5. Statistical analyses

2.5.1. General background to multivariate analysis

Multivariate analysis is the analysis of the simultaneous response of several variables. As such, it is often used to compare community composition within and between sites, *i.e.*, the types of organisms found and their relative abundances. Ordination is the ordering of observations (in this study, the ordering of sites) relative to one another on the basis of the information contained in the variables (in our case, taxa). The primary purpose of ordination is to reduce the multivariate dimensionality down to one, two or three dimensions in order to view patterns.

In the case of the present investigation, we consider that each taxon found at a site is a variable, and our interest lies in discovering whether the all taxa are responding to the 'pollution' or ecological gradients in a way that can be characterised. The abundance of each taxon at a site gives it a position along each of these dimensions and, therefore, places it in the multivariate space (Anderson *et al.* 2002). Large differences in either the relative abundance or the identities of the taxa between sites will cause the sites to be relatively distant from each other in terms of their position in multivariate space.

There are a number of different (unconstrained) ordination methods that are used to reduce dimensionality and position each sample for interpretation relative to others in

a diagram. The most common of these are: principle component analysis (PCA), correspondence analysis (CA), principle coordinate analysis or metric multidimensional scaling (PCO), and nonmetric multidimensional scaling (nMDS). A good description of these methods is given in Legendre and Legendre (1998). For the current study, PCA was used to derive the ecological gradients for nutrients and contaminants because these stressors were characterised by more than one variable.

The ordination techniques described above allow us to graphically investigate similarities between the variable of interest (e.g. communities or ecological gradient) at different sites. However, in order to determine whether there is a significant relationship between the soft sediment faunal communities of the Tauranga region and the ecological health category (referred to as a rank pollution grouping by Anderson et al. 2006) allocated, we go one step further into constrained ordination. A constrained ordination is one that uses a particular a priori model or hypothesis to draw an ordination diagram, rather than drawing the relative positions of samples based simply on the relative dissimilarities (see Anderson and Willis, 2003). In the present investigation, we use canonical analysis of principal coordinates, or CAP (Anderson & Willis, 2003; Anderson & Robinson, 2003), which allows a constrained ordination to be done on the basis of any dissimilarity or distance measure of choice (such as the Bray-Curtis measure; Bray and Curtis, 1957). All CAP analyses were performed using specialised software by M. J. Anderson, written in FORTRAN and available as an executable file (CAP.exe) or in Primer 6 (version 6.1.13) and PermAnova (version 1.0.3).

2.5.2. Statistical model

An outline of the statistical methods used in this research are provided in Figure 3. Data from Site 48 (Te Puna Estuary) was excluded from the analyses because the measured parameters were outside the range of variation observed at other sites. Preliminary analysis of the Tauranga data using Distance based Linear Modelling (DistLM Primer E; Clark & Gorley, 2006) with a backward selection procedure (AIC selection criteria) was performed to determine the key anthropogenic stressors. This analysis indicated that sedimentation (% mud content), nutrients (TP), chl- α (a measure of food that tends to increase in response to elevated nutrient loadings) and contaminants (Cu, Pb) were important in explaining the variation in the harbour. Therefore three models, hereafter referred to as the sedimentation model, nutrient model and contamination model were developed. For each of the three models there are a number of steps involved in the statistical analyses, which are detailed below.



Figure 3. Flow chart showing an outline of the logical flow of statistical analyses for the modelling used in this investigation (modified from Anderson *et al.* 2006). AFDW = ash-free dry weight, TN = total nitrogen, TP = total phosphorous, $chl-\alpha = chlorophyll-\alpha$, Pb =lead, Cu = copper, Zn = zinc, PCA = principle component analysis; CAP = canonical analysis of principal coordinates; DistLM = distance based linear modelling.

Before developing the ordination models we were interested in assessing the relative contribution of each stressor in driving ecological variation. DistLM was used with variables grouped into three categories: sediment (% mud content), nutrient indicators (TN, TP, $chl-\alpha$) and contaminants (Cu, Pb, Zn). DistLM was run seven times to obtain

the percentage explained (R²) by each group alone, then each pairwise combination and finally all three groups. The relative percentages explained by the different components were then determined by adapting variance partition methods (Anderson and Gribble, 1998; Borcard *et al.* 1992).

Step one:

First the raw data for sediments (% mud content), nutrients (TN, TP), chl- α and contaminants (Cu, Pb, Zn) were analysed and optimal transformations performed if necessary. For sedimentation, the percentage mud was a key variable in explaining the biological variation in the data and this was used directly as the ecological gradient for health modelling purposes. For nutrients and contaminants, however, a range of variables were measured (e.g. contamination was measured using Cu, Pb and Zn) and variables were often correlated. As there were a range of correlated measures, it was logical to seek a single variable which would characterise an overall ecological gradient corresponding to increases in the concentrations of all nutrients or metals in the field. PCA can generate a single variable based on the first PC axis of the ordination.

DistLM identified that nutrient concentrations (specifically TP) were important in explaining the variance in the harbour. However, in developing an overall ecological gradient corresponding to increases in the concentrations of nutrients in the field, we used TP, TN and chl- α in the PCA. Similarly for contaminants DistLM identified that Cu and Pb were important in explaining the variance, but in generating an overall ecological gradient corresponding to concentrations of contaminants in the field we used Cu, Pb and Zn in the PCA. For nutrients and contaminants, PCAs were performed on the basis of square root transformed nutrient concentrations and log transformed metal concentrations using the PRIMER v6 computer program (Clark & Gorley, 2006). Square root transformed TN, TP and chl- α were used in a PCA where the PC1 axis explained 91% of the variance (PCnut). For heavy metals, log transformed Cu, Pb and Zn were used in a PCA where the PC1 axis explained 85.5% of the variance (PCcont).

Step two:

The next step was to determine whether there was a significant relationship between the biotic assemblages and the ecological gradients (as described in Step one). This was done using CAP analyses(Anderson & Willis, 2003). If we consider the biotic data as a multivariate cloud of sample points, the CAP model tries to find the axis through this cloud that is most highly correlated with the ecological gradient.

The model output was then used to place sites along the ecological gradient (referred to as a rank pollution index in Anderson *et al.* 2006) from healthy to impacted sites. In the past a number of methods have been used to determine categories along an environmental health index including the use of *k*-means (see Anderson *et al.* 2006; Legendre & Legendre, 1998). Within this study, ecological health categories were

simply determined by taking the range of CAP values and dividing these equally into five groupings from 1 (healthy) to 5 (impacted).

```
CAP1 = min value + [(max value – min value)/5]

CAP2 = CAP1 + [(max value – min value)/5]

CAP3 = CAP2 + [(max value – min value)/5]

CAP4 = CAP3 + [(max value – min value)/5]

CAP5 = CAP4 + [(max value – min value)/5]
```

Step three:

It was also of interest to determine which species might be driving any relationship between the biotic assemblages and the ecological gradients (PC1). Specifically, it is of biological interest to consider which taxa may be most sensitive to environmental health/pollution gradients. Therefore DistLM modelling was again used to determine key sensitive and pollution tolerant species that may be driving the assemblage differences and the ecological gradients for sedimentation, nutrients and contaminants (Anderson *et al.* 2006). We also investigated maximum density models for key species identified from DistLM, as well as culturally important shellfish species in response to increasing sediments, nutrients and contaminant levels.

Maximum abundance expected to occur was modelled using the method proposed by Blackburn *et al.* (1992). For these models, the sediment mud fraction, PCnut and PCcont were divided into categories and the maximum density of an individual species found in each class calculated. The number of categories included no more than 20 observations in each category, and roughly equal numbers of observations in at least three categories. For each category, the 95th percentile of abundance of each species was calculated. Scatter plots of taxa abundance against sedimentation, nutrients and contaminant categories were plotted separately and used to determine whether natural log transformations would result in linearity. For all species, weighted regressions of the 95th percentile in each category were conducted on raw or loge (+1) transformed data using the number of observations in each category as a weighting. In some cases, the scatter plots indicated unimodal responses (initially an increase in abundance associated with the stressor, followed by a decrease). These were modelled using a two or three degree polynomial, with the category either raw or log e transformed, and the model that had lowest squared deviance was used.

3. RESULTS

Site-specific details of physical variables and infauna descriptors can be found in Appendix 2.

3.1. Physico-chemical variables

3.1.1. Sediment grain size ad organic content

Sediments within Tauranga Harbour were predominantly sandy (51-100% sand), with the exception of Site 48, in Te Puna Estuary, which was primarily mud (76% silt and clay; Figure 4). Sites near Apata (Sites 37 and 38), where the Wainui River flows into the harbour, also had relatively high levels of mud (48-49% silt and clay). In general, inner harbour areas contained more mud than outer harbour sites. The sandiest sites were Sites 20 and 18 in Blue Gum Bay (99-100% sand) and Site 60 in Otumoetai (99% sand).

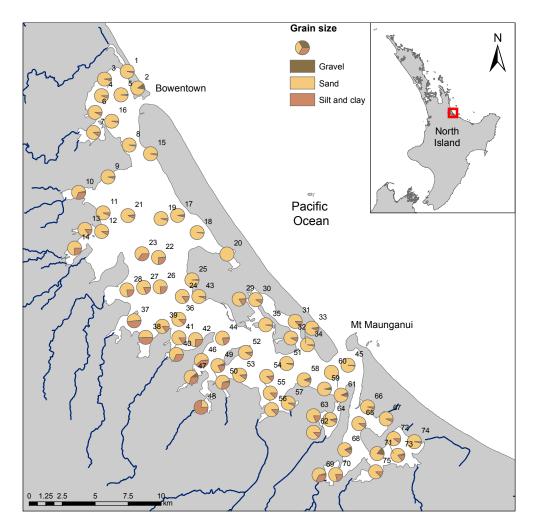


Figure 4. Grain-size (as a percentage of gravel, sand and silt/clay) for 75 sites sampled within Tauranga Harbour. Major rivers and streams entering the harbour are shown in blue.

Organic content of sediments in the harbour generally ranged from 0.9 to 4.5% AFDW (Figure 5). Inner areas of the harbour tended to have higher organic content than outer harbour sites. At 10% AFDW, the organic content of sediments from Site 48 in Te Puna Estuary, the muddiest site sampled, was much higher than measured in the rest of the harbour.

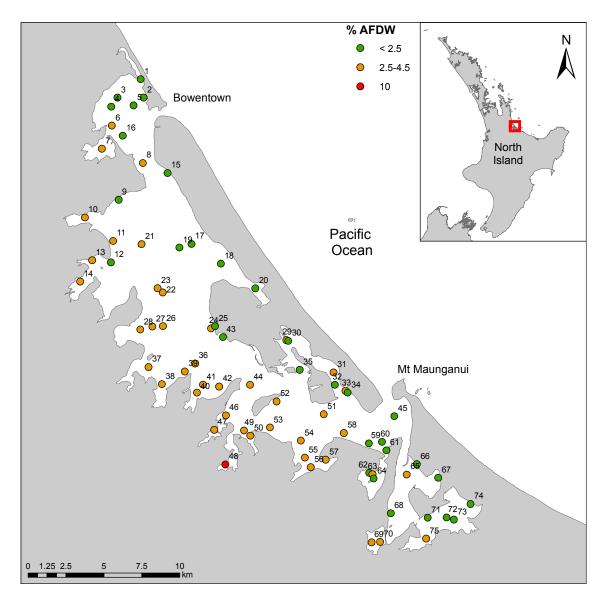


Figure 5. Sediment organic content (as % ash-free dry weight) for 75 sites sampled within Tauranga Harbour.

3.1.2. Nutrients

As with organic content, nutrient concentrations in the harbour tended to decline with distance from the inner harbour region and associated rivers (Figure 6; Figure 7). In general, total nitrogen in sediments ranged from 140 to 1000 mg/kg and total

phosphorous from 51 to 340 mg/kg. Site 48, in Te Puna Estuary, showed comparatively high nutrient levels with nitrogen and phosphorous concentrations of 1900 and 580 mg/kg, respectively. Modeled nitrogen loadings (estimated from Freshwater Ecosystems of New Zealand (FENZ) using CLUES; Figure 6) predicts that the Te Puna Stream, which flows into Te Puna Estuary, would have relatively high levels of nitrogen, possibly explaining the high levels of nutrients in this area. Interestingly, the Kaitemako Stream, which flows into Welcome Bay, had the highest modeled nitrogen loadings in the area, however the sampling site in this area (Site 75) had relatively low nitrogen levels (280 mg/kg).

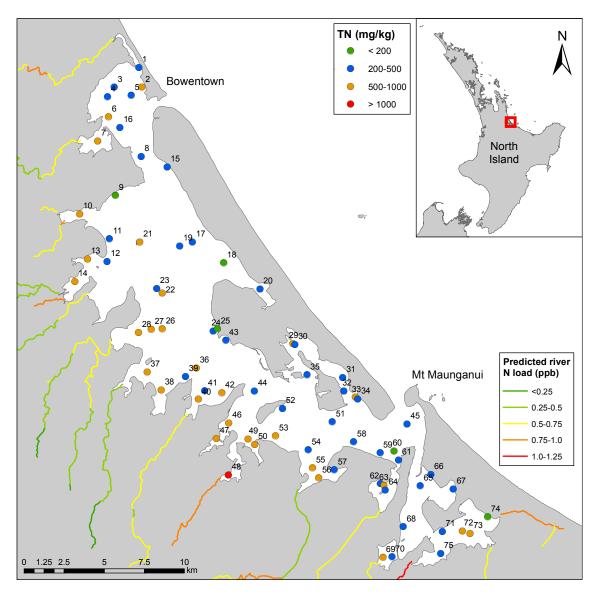


Figure 6. Total nitrogen (mg/kg) in sediments for 75 sites sampled within Tauranga Harbour. Major rivers and streams entering the harbour are shown with colours depicting modelled nitrogen loading (in ppb) for each segment (estimated from FENZ using the Catchment Land Use for Environment Sustainability model; Leathwick *et al.* 2010; Woods *et al.* 2006).

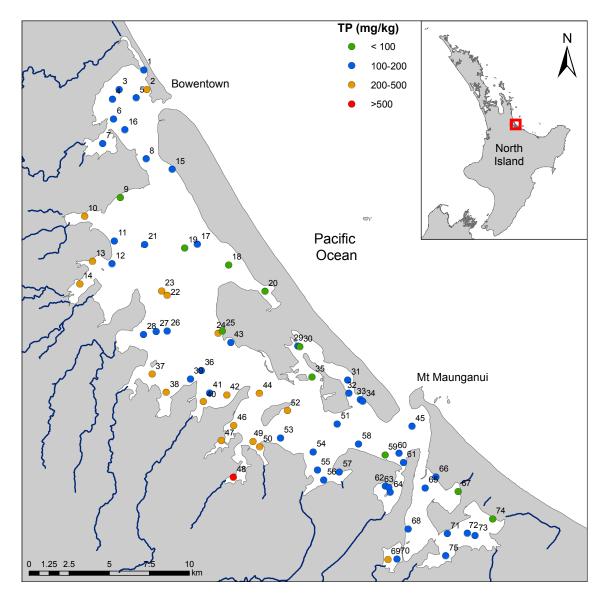


Figure 7. Total phosphorous (mg/kg) in sediments for 75 sites sampled within Tauranga Harbour. Major rivers and streams entering the harbour are shown in blue.

3.1.3. Chlorophyll-a

Sediment chl- α concentrations generally ranged from 1100 to 16000 µg/kg, with particularly low concentrations (210 µg/kg) at Site 18 in Blue Gum Bay (Figure 8). There was no obvious correlation between chl- α and nutrient concentrations. Highest chl- α concentrations were measured at Sites 55 and 56 (16000 and 15000 µg/kg, respectively), near the mouth of the Wairoa River, the largest river entering the Tauranga Harbour (~50% of freshwater input to harbour).

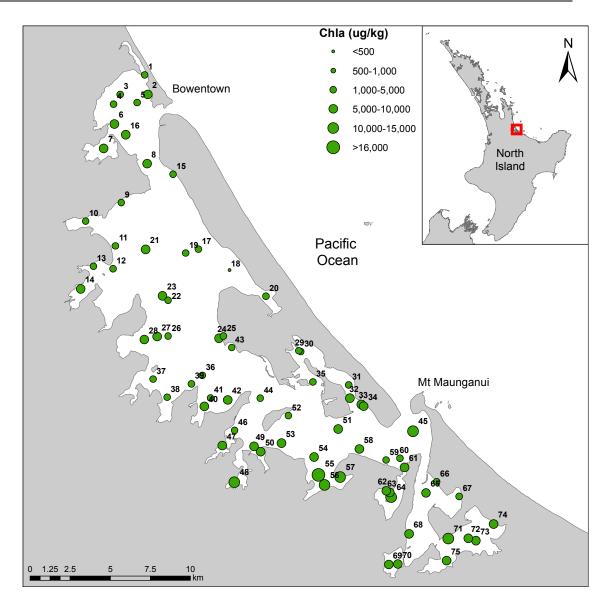


Figure 8. Sediment chlorophyll- α (µg/kg) concentrations for 75 sites sampled within Tauranga Harbour.

3.1.4. Heavy metals

Heavy metal concentrations in the harbour tended to be higher in inner areas compared with outer sites but all were well below Australian and New Zealand Environment and Conservation Council (ANZECC, 2000a) Interim Sediment Quality Guidelines, which provide thresholds for possible biological effects (ISQG-Low; Cu 65, Pb 50, Zn 200 mg/kg; Figure 9). Site 48, in Te Puna Estuary, had the highest copper and lead concentrations (6.1 and 13 mg/kg, respectively), and the second highest zinc concentration (46 mg/kg) after the nearby Site 49 (55 mg/kg). Site 10, in the Uretara Estuary, had the second highest copper (3 mg/kg) and lead concentrations (5.6 mg/kg).

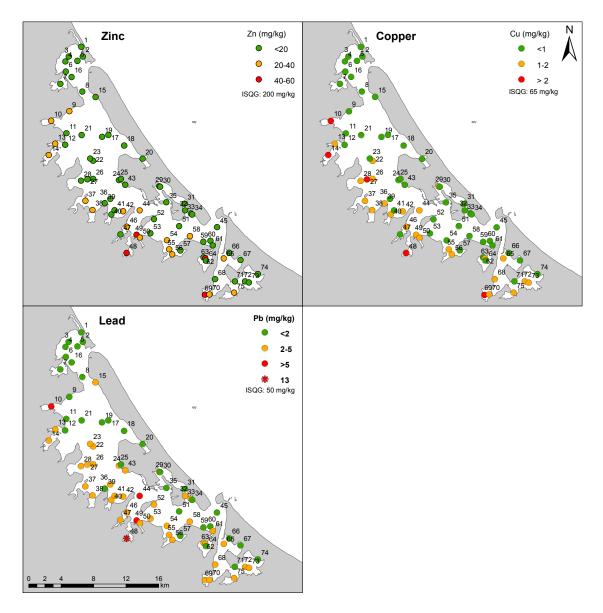


Figure 9. Heavy metal (zinc, copper and lead; mg/kg) concentrations for 75 sites sampled within Tauranga Harbour. ANZECC (2000a) Low Interim Sediment Quality Guidelines (ISQG) for each metal are displayed in the legend.

3.1.5. Species distribution

No clear pattern of infaunal abundance or species diversity was seen with respect to location within the harbour (Figure 10). Total abundance (number of individual animals across all species) ranged from 29 to 333 per core and averaged 117. One hundred and thirty-one taxa were found within the harbour with the number of taxa per site ranging from 10 to 39 taxa (three cores). Site 28, in Aongatete, was dominated by Corophiidae amphipods, giving it the highest infaunal abundance (333 per core) in the harbour but the lowest number of taxa (10 taxa in the three cores). High numbers of Corophiidae amphipods were also partially responsible for the elevated total abundances at Sites 56 (Wairoa Estuary) and 53 (Te Puna). Site 48, the muddy area

in Te Puna Estuary that was observed to have elevated levels of organic matter, nutrients and heavy metals, was found to have low species richness (11 taxa in the three cores from the site) but relatively high abundances (152 per core), suggestive of an enriched environment. Amphipods were primarily responsible for the high abundance at this site.

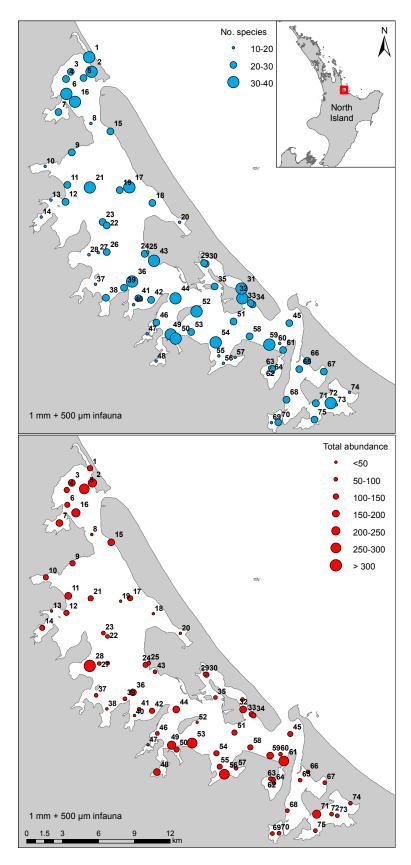


Figure 10. Number of taxa (per site) and average total abundance (per core) of infauna (1 mm + 500 μ m size fractions) for 75 sites sampled within Tauranga Harbour.

Although cockles (*A. stutchburyi*) were fairly ubiquitous throughout the harbour (observed at 65 sites), the largest populations were observed in the northern basin, inshore of the Katikati entrance (Figure 11). Other large populations were observed in the upper north harbour (Site 17) and the Waikaraeo entrance (Site 61). Most sites contained a range of size classes with 5 to 20 mm sized cockles the most frequently observed size class. Large cockles (> 20 mm) were observed at 40% of sites, with the highest abundances seen at the Waikaraeo entrance (Site 61) and in the northern harbour (Sites 2 and 16). Small cockles (< 5 mm) were observed at 63% of sites and most common in the northern harbour (Sites 17, 16 and 6).

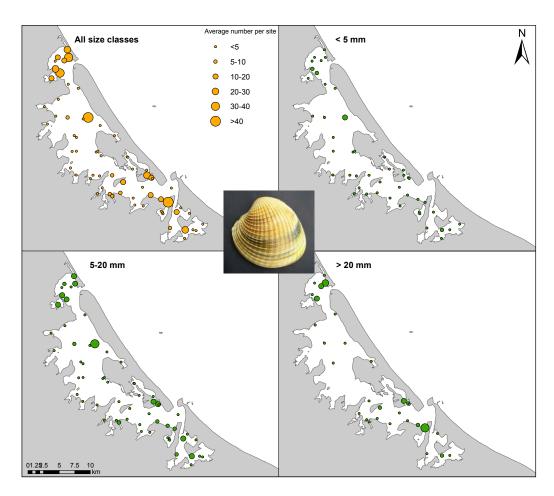


Figure 11. Size class distribution of cockles (*Austrovenus stutchburyi*) at 75 sites sampled within Tauranga Harbour. Numbers are average number per core at each site.

Pipi (*P. australis*) were only observed at 12 of the 75 sites sampled in the harbour and tended to be situated close to the subtidal channels (Figure 12). The largest population (178 pipi counted from 10 cores) was found on the Centre Bank (Site 45), near the Tauranga entrance to the harbour, and was primarily composed of large specimens (74% of pipi > 40 mm; largest 65 mm). Cole *et al.* (2000) also recorded the presence of substantial populations of pipi on Centre Bank. Pipi smaller than 5 mm

were only observed at three sites (Sites 5, 53 and 51) and, even then, only in small numbers (1-2 per site). The largest pipi are usually found in the shallow subtidal (Park & Donald, 1994), therefore, it is likely that our survey did not capture the full distribution of pipi in Tauranga Harbour. For example, Cole *et al.* (2000) recorded pipi with lengths of up to 82 mm in subtidal areas of Centre Bank. In their 1994 benthic macrofauna survey, Park and Donald found a trend of larger shellfish (cockles, pipi and wedge shells) near the harbour entrance and progressively smaller sizes in the upper harbour, and this pattern is typical of estuaries throughout New Zealand (pers. comm. P Gillespie, Cawthron Institute, March 2013). Park and Donald (1994) suggested that shellfish near the harbour entrances may have better feeding conditions due to food availability and better water quality.

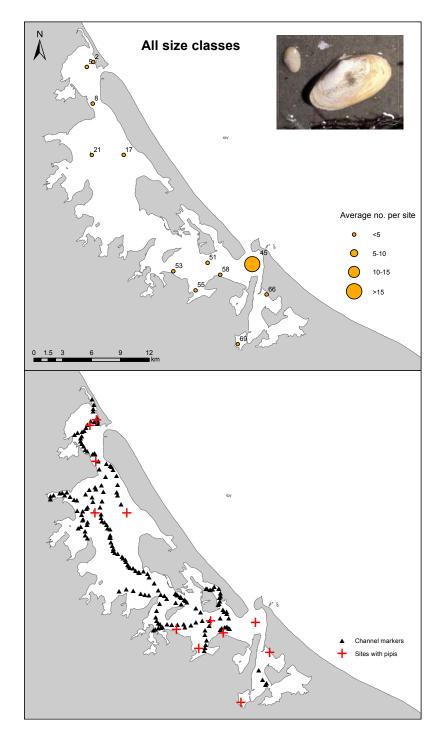


Figure 12. Distribution of pipi (*Paphies australis*) at 75 sites sampled within Tauranga Harbour (top) and location of sites in relation to channel markers (bottom). Numbers are average number per core at each site.

3.2. Key anthropogenic stressors

Adapting variance partitioning methods (Anderson & Gribble, 1998; Borcard *et al.* 1992) showed that sedimentation and contamination alone explained most of the

observed variation (4.9% and 7.5%, respectively). The intersection term of sedimentation and nutrients also explained a high percentage of the variance (6.1%). Therefore sedimentation and contaminants together explained a higher percentage of the variance in the benthic community data than nutrients.

Table 2. Relative percentage variation explained by different anthropogenic stressors determined using adapting variance partitioning methods. Sedimentation (% mud), nutrients (total nitrogen, total phosphorous, chlorophyll-α), contamination (copper, lead, zinc).

Anthropogenic stressors	Relative % variation explained
Sedimentation	4.9
Nutrients	2.7
Contaminants	7.5
Sedimentation*nutrients	6.1
Sedimentation*contaminants	0.7
Nutrients*contaminants	0.8
Sedimentation*nutrients*contamination	1.7

3.3. Canonical analysis of principal coordinates models

These CAP models are based on infauna data sampled down to the 500 µm fraction (including the 1 mm fraction). For information on canonical analysis of principal coordinates (CAP) models generated using only the 1 mm infauna fraction, see Appendix 3. Site 48 was removed from both models because it was outside the range of variation observed at the other sites and was an outlier. Inclusion of Site 48 into the models would have resulted in a reduced sensitivity to detect changes across the sedimentation, nutrient and contaminant gradients.

In general, results indicated that the sites identified as most impacted, for all three CAP models (sedimentation, nutrients and contaminants), were located in the upper reaches of estuaries in some of the least exposed locations. In addition, the sensitivities of organisms characterising sites that have different sediment textures, as well as contaminant and nutrient loadings, were found to vary.

3.3.1. Sedimentation canonical analysis of principal coordinates model

A strong gradient of community change was observed in response to mud content of the sediment (R^2 = 0.7683) suggesting that this BHM can be used to determine potential effects of changes in sediment mud content. Most of the sites (41%) were ranked in ecological health category '2', suggesting fairly healthy communities with regard to sedimentation (Figure 13; Figure 14). The environmental health index, based on biotic assemblages, was closely related to the percentage mud content in the sediment, with the muddiest sites (14-49% mud) ranked as '5' and sandiest sites

as '1' or healthy (0.6-9.5% mud; Table 3). The organic content of the sediment also tended to increase with increasing ecological health category, reflecting the tendency of organic material to accumulate in fine sediments. Sites in category '5' (11% of sites), the most impacted ecological health category, were found in inner estuaries (Figure 14) where deposition of sediments would be expected to be highest. Conversely, sites in categories '1' and '2' tended to be in outer areas of the harbour.

Interestingly, sites closest to the Wairoa sub-catchment (Sites 54, 55 and 56), the largest sub-catchment and therefore greatest contributor of sediment to the southern harbour (46% of total load; Elliott *et al.* 2010), did not show particularly high ecological health values for sedimentation (category '3-4'). However, sites in estuaries near smaller, but higher sediment yielding, sub-catchments (*e.g.* Apata, Te Puna, Wainui) did show correspondingly high ecological health values.

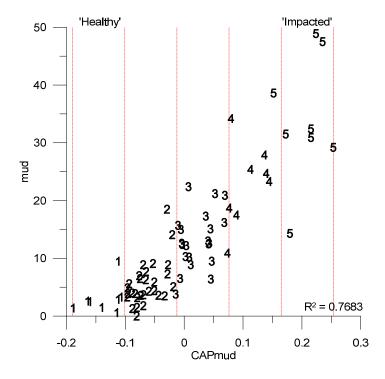


Figure 13. Canonical analysis of principal coordinates (CAP) for mud versus percentage silt and clay in sediment (mud) for 75 sites in Tauranga Harbour (1 mm + 500 µm model). Red dashed lines demarcate the five sedimentation ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

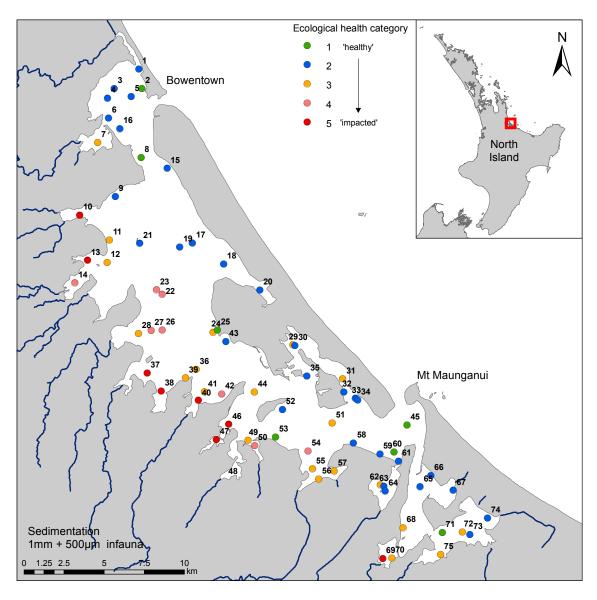


Figure 14. Canonical analysis of principal coordinates (CAP) for sedimentation (1 mm + 500 μm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of sedimentation ('healthy') and a red (high) ranking indicates a high effect ('impacted'). Major rivers and streams entering the Harbour are shown in blue.

Table 3. Sedimentation ecological health categories (1 mm + 500 μ m model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. AFDW = ash-free dry weight, chl- α = chlorophyll- α , N = total abundance per core, S = total number of taxa per site, J = Pielou's evenness, H = Shannon-Wiener index.

-	Category	Sites	% gravel	% sand	% silt/clay	% AFDW	Chl-α (μg/kg)	N	S	J	Н
	1	2, 8, 25, 45, 53, 60, 71	< 0.1–14.6	82.8–99.3	0.6–9.5	0.9–3.1	3600–11000	46–267	16–34	0.5–1.0	1.5–2.4
- 'Healthy'	2	1, 3, 4, 5, 6, 9, 15, 16, 17, 18, 19, 20, 21, 30, 32, 33, 34, 35, 43, 52, 59, 61, 63, 64, 65, 66, 67, 73, 74	< 0.1–6.4	62.7–100	< 0.1–100	0.9–3.8	210–11000	29–263	17–39	0.5–0.9	1.6–3.0
\ \ \	3	7, 11, 12, 24, 28, 29, 31, 36, 39, 41, 44, 49, 51, 55, 56, 57, 62, 68, 70, 72, 75	0.1–7.1	77.2–95.7	3.8–22.4	2.0–4.3	1900–16000	57–333	10–39	0.08-0.8	0.2–2.9
ted'	4	14, 22, 23, 26, 27, 42, 50, 54	< 0.1–3.9	51.6–87.6	10.9–34.2	3.1–4.5	3300–9600	61–133	13–33	0.4-0.8	1.1–2.7
'Impacted'	5	10, 13, 37, 38, 40, 46, 47, 69	0.2–10.2	50.7–85.1	14.3–48.9	3.1–4.5	2800–8800	35–109	14–25	0.4-0.8	1.1–2.4

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).

Infauna numbers were highest at the healthy category '1' sites (mean 145 per core, range 46-267) and lowest at the impacted category '5' sites (mean 66 per core, range 35-109; Table 3). Species richness was similar in the first four categories (means of 23-28 taxa per site) but slightly lower at category '5' sites (mean 19 taxa per site). The key species differences at healthy versus impacted sites along an increasing gradient of siltation are provided in Table 4. Key species associated with high silt and clay included the polychaete worms Nereididae, *Scolecolepides benhami* and *Heteromastus filiformis* and the deposit feeding bivalve *Arthritica bifurca*. Key benthic species associated with low silt and clay included the worms *Scoloplos cylindrifer* and *Scolelepis* sp., the gastropod *Halopyrgus pupoides* and Oligochaete worms.

Table 4. Key species identified along pollution gradients for sedimentation, nutrient and contaminant models as determined using Distance based Linear Models (DistLM). Species that respond negatively to increasing nutrients/contaminants are sensitive to elevated nutrients/contaminants, while species that respond positively to increasing nutrients/contaminants are more tolerant to that stressor and can be found at sites with high nutrient/contaminant loadings. Abbreviations for feeding mode D = deposit feeder, P = predator/scavenger, S = suspension feeder, G = grazer.

Model	Association	Species	Faunal group	Feeding mode
Sedimentation	Low mud	Scoloplos cylindrifer	Orbinid polychaete	D (surface / subsurface)
		Scolelepis sp.	Spionid polychaete	D
		Halopyrgus pupoides	Gastropod	Microalgal and detrital grazer
		Oligochaeta	Oligochaete	D
	High mud	Scolecolepides benhami	Spionid polychaete	D (surface deposit)
	-	Heteromastus filiformis	Capitellid polychaete	D (sub-surface deposit)
		Arthritica bifurca	Bivalve (deposit feeding)	D
		Nereididae	Nereid polychaete	Р
Nutrients	Negative	Scolelepis sp.	Spionid polychaete	D (surface)
	Positive	Scolecolepides benhami	Spionid polychaete	D (surface deposit)
		Heteromastus filiformis	Capitellid polychaete	D (sub-surface deposit)
		Amphipoda indeterminata	Amphipod	D, P, G
Contaminants	Negative	Orbinia papillosa	Orbinid polychaete	D
	Positive	Scolecolepides benhami	Spionid polychaete	D (surface deposit)
		Heteromastus filiformis	Capitellid polychaete	D (sub-surface deposit)
		Arthritica bifurca	Bivalve (deposit feeding)	D
		Amphipoda indeterminata	Amphipod	D, P, G

3.3.2. Nutrient canonical analysis of principal coordinates model

The nutrient CAP model was based on a constrained ordination of benthic community taxa in relation to the ecological gradient (PCnut) generated from the concentrations of TN, TP and chl- α at each site. A gradient of community change was observed in response to nitrogen, phosphorous and chl- α concentrations in the sediment suggesting that the BHM can be used to determine potential effects of changes in nutrient concentrations. Most of the sites (32%) were ranked in ecological health category '3' (Figure 15; Figure 16). The level of impact from nutrients was closely related to concentrations of nitrogen and phosphorous in the sediment, with lower nutrient concentrations at category '1' sites (means of 321 and 157 mg/kg for TN and TP) than category '5' sites (means of 724 and 263 mg/kg for TN and TP; Table 5). Organic content also tended to increase along the nutrient gradient. Sites in categories '4' and '5', the most impacted categories, were generally found in estuaries along the inner coast of the harbour, whereas sites ranked lower tended to be situated in the outer harbour (Figure 16). While this CAP model was generated from a significant community response to a nutrient gradient, its correlation was the lowest $(R^2 = 0.5135)$ compared to the CAP models for sediments and contaminants.

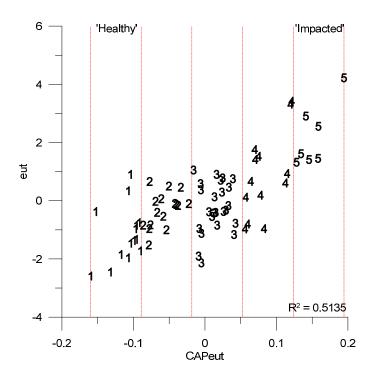


Figure 15. Canonical analysis of principal coordinates (CAP) for nutrients versus the PC1 axes derived from sediment nutrient data (TN, TP, chl-α) for 75 sites in Tauranga Harbour (1 mm + 500 μm model). Red dashed lines demarcate the five ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

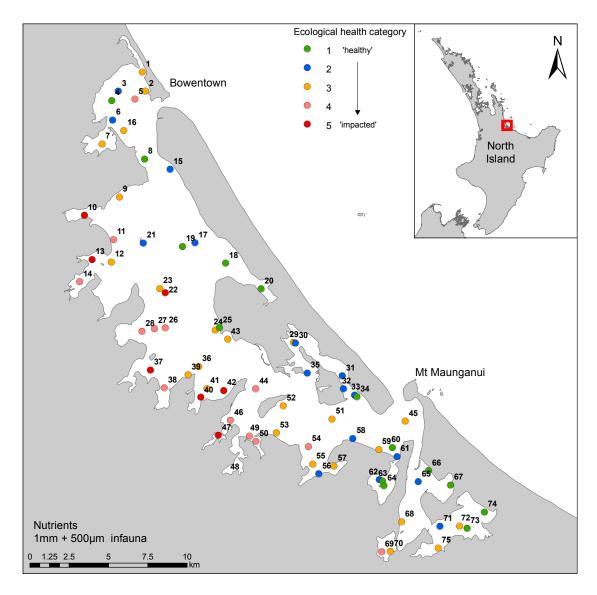


Figure 16. Canonical analysis of principal coordinates (CAP) for nutrients (1 mm + 500 µm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of nutrients ('healthy') and a red (high) ranking indicates a high effect ('impacted').

Table 5. Nutrient ecological health categories (1 mm + 500 μ m model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. TN = total nitrogen, TP = total phosphorous, AFDW = ash-free dry weight, chl- α = chlorophyll- α , N = total abundance per core, S = total number of taxa per site, J = Pielou's evenness, H = Shannon-Wiener index.

	Category	Sites	TN (mg/kg)	TP (mg/kg)	% AFDW	Chl-α (μg/kg)	N	S	J	Н
thy'	1	4, 8, 18, 19, 20, 25, 34, 60, 63, 64, 66, 67, 73, 74	140–640	51–180	0.9–3.1	210–11000	29–116	16–30	0.5–0.9	1.5–3.0
— 'Healthy'	2	3, 6, 15, 17, 21, 30, 31, 32, 33, 35, 56, 58, 61, 62, 65, 71	290–550	93–190	1.4–3.8	1200–15000	57–268	14–36	0.5–0.8	1.4–2.7
	3	1, 2, 7, 9, 12, 16, 23, 24, 29, 36, 39, 41, 43, 45, 51, 52, 53, 55, 57, 59, 68, 70, 72, 75	180–690	78–210	1.0–3.5	1900–16000	43–267	14–39	0.5–0.9	1.2–2.9
'Impacted'	4	5, 11, 14, 26, 27, 28, 38, 44, 46, 49, 50, 54, 69	290–920	120–330	1.6–4.5	2400–9600	35–333	10–39	0.08-0.8	0.2–2.7
ďшI,	5	10, 13, 22, 37, 40, 42, 47	540–1000	220–340	3.1–4.5	1100–8800	38–126	16–24	0.6-0.8	1.7–2.2

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).

No clear trend in abundances of organisms was apparent with infauna numbers highest at category '2', '3' and '4' sites (means of 141, 124 and 149 per core, respectively) and lowest at category '1' and '5' sites (means of 74 and 69, respectively; Table 5). Species richness was similar in the first four categories (means of 22-28 taxa per site) but slightly lower at category '5' sites (mean 19 taxa per site). The univariate measures were, therefore, in general not as sensitive at detecting differences across the ecological health categories. The polychaete *Scolelepsis* sp. was associated with high nutrients while key species sensitive to elevated nutrient loadings included the poychaete worms *S. benhami* and *H. filiformis* and amphipods (Table 4).

3.3.3. Contamination canonical analysis of principal coordinates model

The contamination CAP model was based on a constrained ordination of benthic community taxa in relation to the ecological gradient (PCcont axis) generated from the concentration of heavy metals (Pb, Cu and Zn) at each site. A strong gradient of community change was observed in response to heavy metal concentrations in the sediment (R² = 0.7075) suggesting that the BHM can be used to determine potential effects of changes in metal concentrations. Most of the sites (39%) were ranked in ecological health category '3' (Figure 17; Figure 18). All metal concentrations increased with increasing ecological health category (Table 6). The organic content of the sediment (as % AFDW) also tended to increase with increasing environmental health values, reflecting the tendency of metals to bind with fine sediments. As with the other CAP models, category '5' sites tended to be situated in inner harbour areas and category '1' and '2' sites further out.

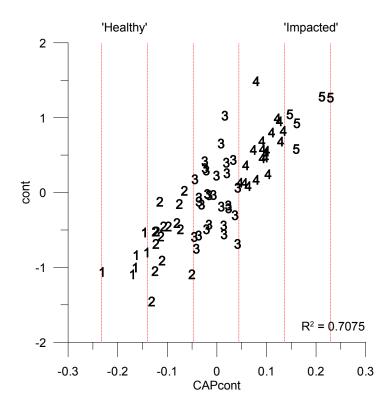


Figure 17. Canonical analysis of principal coordinates (CAP) for contamination versus the PC1 axes derived from heavy metal concentrations in sediments (Cu, Pb, Zn) for 75 sites in Tauranga Harbour (1 mm + 500 µm model). Red dashed lines demarcate the five ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

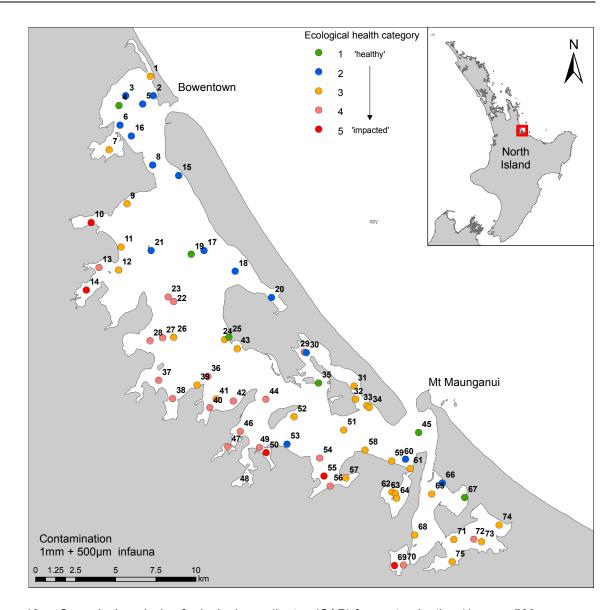


Figure 18. Canonical analysis of principal coordinates (CAP) for contamination (1 mm + 500 μm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of contamination ('healthy') and a red (high) ranking indicates a high effect ('impacted').

Table 6. Contamination ecological health categories (1 mm + 500 μm model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. Pb = lead, Cu = copper, Zn = zinc, N = total abundance per core, S = total number of taxa per site, J = Pielou's evenness, H = Shannon-Wiener index.

•	Category	Sites	Pb (mg/kg)	Cu (mg/kg)	Zn (mg/kg)	% silt/clay	N	S	J	Н
'Healthy'	1	4, 19, 25, 35, 45, 67 2, 3, 5, 6, 8, 15, 16, 17,	< 1.0–1.4	< 1.0	5.1–9.5	1.4–7.0	29–132	17–27	0.6–0.8	1.9–2.6
. Не	2	18, 20, 21, 30, 53, 60, 66	< 1.0–2.2	< 1.0	< 5.0–17.0	< 0.1–9.5	42–267	16–36	0.5–0.9	1.5–3.0
\	3	1, 7, 9, 11, 12, 24, 26, 31, 32, 33, 34, 39, 41, 43, 51, 52, 57, 58, 59, 61, 62, 63, 64, 65, 68, 71, 73, 74, 75	< 1.0–4.3	< 1.0–1.7	7.5–45.0	1.8–23.3	43–263	14–39	0.5–0.8	1.5–2.9
ʻlmpacted'	4	13, 22, 23, 27, 28, 29, 36, 37, 38, 40, 42, 44, 46, 47, 49, 54, 56, 70, 72	2.5–5.4	< 1.0–2.2	14.0–55.0	10.3–48.9	35–333	10–39	0.08–0.8	0.9–2.9
-	5	10, 14, 50, 55, 69	4.2-5.6	1.1–3.0	21.0–44.0	12.6–32.4	96–138	13–31	0.4–0.7	1.1–2.4

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).

Infauna numbers were lowest at category '1' sites (mean 78 per core, range 29-132) and highest at category '2' sites (mean 139 per core, range 42-267; Table 6). Species richness did not differ across the first four categories (means of 23-28 taxa per site) and was reduced only at the most polluted sites (category '5'; mean 18 taxa per site). Again the univariate measures in general were not as sensitive as the multivariate ordinations at detecting differences across the ecological gradient. Key species associated with high contaminant loadings included the polychaete worm *Orbinia papillosa* while species sensitive to elevated contaminant loadings included the polychaete worms *S. benhami*, *H. filiformis*, amphipods and the deposit feeding bivalve *A. bifurca* (Table 4).

3.4. Species response curves

Most species displayed clear differences in abundance as a function of sediment type, nutrient loading or contaminant levels. The models revealed a wide variety of functional forms, indicating that the occurrence of species is influenced by speciesspecific sensitivity to mud content, nutrients or contaminants. Sandy sediments were dominated by bivalve species, including the cockle (A. stutchburyi), the wedge shell (Macomona liliana) and the nut shell (Nucula hartvigiana), and also by the polychaete worms O. papillosa and S. cylindrifer (Figure 20). Some species, including the small bivalve A. bifurca and predatory Nereididae worms, exhibited polynomial response models, reflecting the highest probability of occurrence at intermediate mud content (Figure 19; Figure 20). However, beyond a certain level of increasing mud content their abundances decreased. For increasing nutrient levels many species exhibited polynomial response curves, with an increase in abundance associated with nutrient loading followed by a decrease in abundance levels beyond critical levels. Species exhibiting polynomial response curves included the bivalves A. bifurca, A. stutchburyi, N. hartvigiana and M. liliana as well as the polychaete worms S. benhami, H. filiformis and Nereididae (Figure 21; Figure 22). Increasing sediment contamination levels from heavy metals resulted in decreasing abundance for the bivalves A. bifurca, A. stutchburyi, M. liliana and the polychaetes O. papillosa, S. cylindrifer and Scolelepsis sp. (Figure 23; Figure 24).

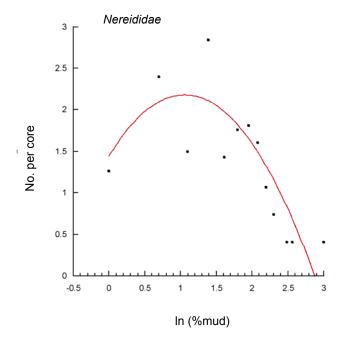


Figure 19. Relationship between taxa abundance and log percentage mud in ambient sediment.

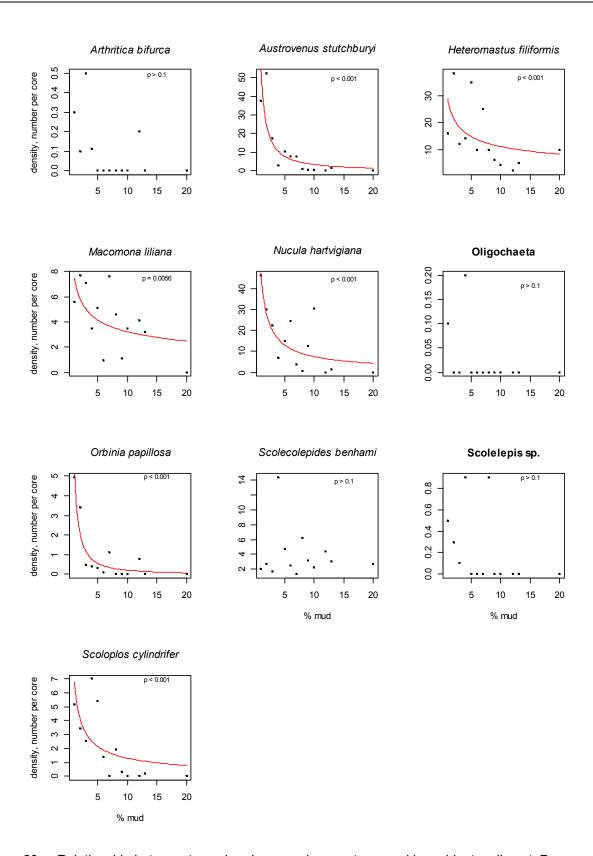


Figure 20. Relationship between taxa abundance and percentage mud in ambient sediment. P values indicate significance of trend, with no trend line displayed if the trend was not significant (p > 0.1).

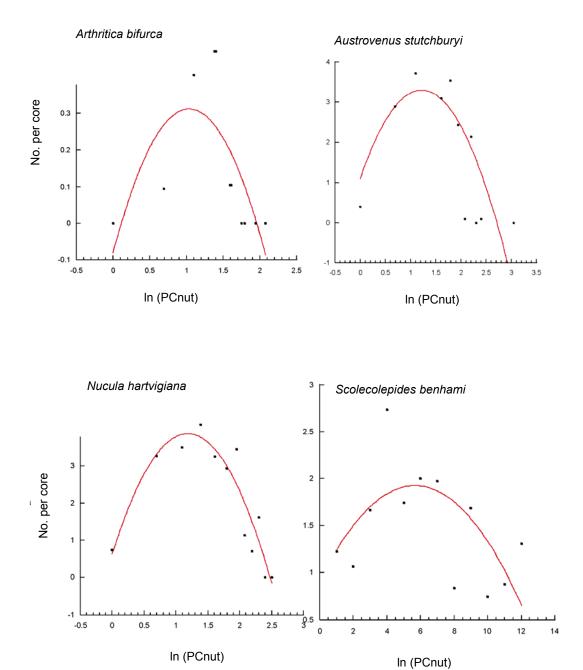


Figure 21. Relationship between taxa abundance and log nutrient concentrations in ambient sediment.

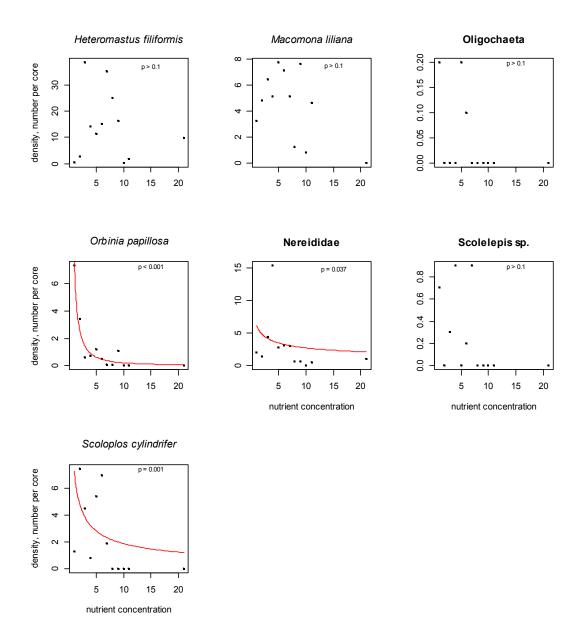


Figure 22. Relationship between taxa abundance and nutrient (PCnut) concentrations in ambient sediment. P values indicate significance of trend, with no trend line displayed if the trend was not significant (p > 0.1).

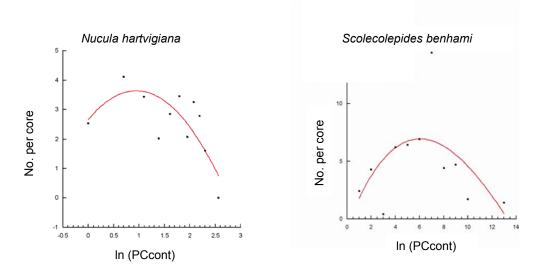


Figure 23. Relationship between taxa abundance and log contaminant levels in ambient sediment.

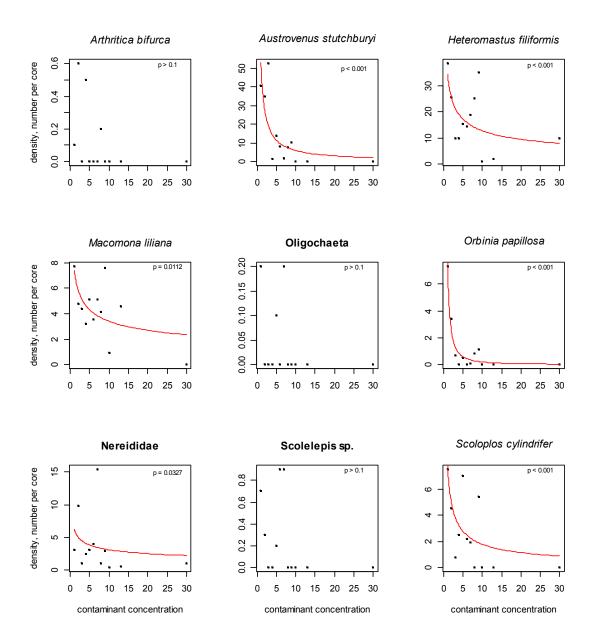


Figure 24. Relationship between taxa abundance and log contaminant (PCcont) concentrations in ambient sediment. P values indicate significance of trend, with no trend line displayed if the trend was not significant (p > 0.1).

4. DISCUSSION

In this report we summarise the results from a broad scale survey of the Tauranga Harbour that assessed both the health of macrofaunal benthic communities (bottom-dwelling animals) as well as trends in sediments, nutrients and contaminants. Sites identified as most impacted were generally located in the upper reaches of estuaries in some of the locations least exposed to wind, waves and currents. To some extent, this reflects the natural progression of an estuary from land to sea (for example, higher sedimentation close to the coast), however, the rates of accumulation of sediments and nutrients have been accelerated as a result of anthropogenic land-based activities.

In addition, the community composition and key species characterizing sites with different sediment textures, nutrient and contaminant loadings were found to vary. Using community data we developed ordination models of ecological health for sediments, nutrients and contaminants. Before discussing the results of these community-based models we first summarize general trends in sedimentation, nutrients and contaminants that were recorded within Tauranga Harbour.

4.1.Physical patterns of elevated sediments, nutrients and heavy metal contamination

Sediments within Tauranga Harbour were found to be predominantly sandy with the percentage of mud within a similar range as measured for other New Zealand estuaries (Table 7). The exceptions included Te Puna and Apata Estuaries, which showed higher rates of sedimentation consistent with previous studies. The inner Te Puna Estuary was identified by Hume *et al.* (2010) as the most depositional subestuary in the southern harbour with net accumulation of 6.51 mm y⁻¹. Similarly, Park (2003) and Hancock *et al.* (2009) identified the Apata Estuary as one of the muddiest areas of the harbour. Modeling of sediment loads into the southern Tauranga Harbour identified both the Te Puna and Apata sub-catchments as having relatively high sediment yields, with the Apata sub-catchment yielding the most sediment of all the sub-catchments modeled due to the relatively high rainfall in conjunction with pasture land use and moderate slopes (Elliott *et al.* 2010).

Table 7. Comparison of average particle size and nutrient characteristics of sediments sampled during the present survey with previously reported values for some other New Zealand estuaries. Mean values are displayed with estuary ranges in brackets beneath. Mud-dominated sites are shaded.

Location	Sand	Mud	AFDW	TN	TP	TN:TP	General estuary condition/health
	%	%	%	mg/kg	mg/kg	Molar	
Tauranga Harbour (present study)							
Sand-dominated sites	85 (51-100)	13 (1–49)	2.8 (0.9–4.5)	462 (140–1000)	164 (51–340)	6.4	slightly to moderately enriched
Mud-dominated site (enriched) ^a	24	76	10	1900	580	7.3	enriched
Other NZ estuaries							
Kaipara (Otamatea Arm site C) ^b	50 (38–56)	33 (21–55)	4.5 (3.1–6.5)	1192 (800–1800)	572 (547–605)	4.6	moderately enriched
Ohiwa ^c	77 (53–92)	20 (7–44)	2.0 (0.7–3.7)	650 (250–1000)	278 (212–350)	5.1	slight to moderately enriched
Ruataniwha ^d	86 (67–94)	9 (6–18)	1.2 (0.5–1.7)	263 (250–700)	458 (330–580)	1.3	slightly enriched
Waimea ^c	74 (25–93)	24 (7–70)	1.4 (0.3–2.8)	506 (250–1000)	433 (243–562)	2.6	slight to moderately enriched
Havelock ^e	77 (68–85)	19 (13–26)	1.6 (0.7–2.3)	422 (70–900)	330 (241–433)	2.8	slight to moderately enriched
Avon–Heathcote ^d	94 (90–97)	5 (3–9)	1.0 (0.5–1.3)	301 (250–600)	327 (298–355)	2.0	moderately enriched
Kaikorai [†]	70 (61–78)	27 (20–33)	5.1 (3.9–6.9)	1650 (1500–2100)	799 (728–913)	4.6	moderately enriched but contaminant affected
New River ^c	98 (96–99)	2 (1–3)	0.6 (0.3–1.4)	250 (250–250)	280 (195–432)	2.0	non-enriched
Delaware (sites B, C) ^g	88 (79–98)	11 (2–20)	2.2 (1.9–2.3)	282 (230–310)	558 (540–580)	0.5	relatively undisturbed, naturally productive
Nelson Haven ^h	87 (78–93)	12 (7–18)	1.4 (1.0–1.8)	276 (140–440)	339 (240–460)	1.8	very slightly enriched

Location	Sand	Mud	AFDW	TN	TP	TN:TP	General estuary condition/health
	%	%	%	mg/kg	mg/kg	Molar	
Moutere ¹	88	12	1.6	339	530	1.4	slight to moderately enriched
	(83–91)	(8–15)	(0.6-2.0)	(280-450)	(474–590)		
Moutpipi ^J	70	30	2.3	743	565	2.9	moderately enriched
	(54-86)	(13–47)	(1.8-2.8)	(570-990)	(520-600)		moderately emiched
Kaipara (Otamatea Arm sites A, B) ^k	27	68	6.3	1850	503	8.1	moderately enriched
	(15–39)	(52–73)	(1.7-7.8)	(1600-2400)	(443-619)		
Delaware (site A)	26 (24–29)	73 (71–76)	3.4 (2.6–4.3)	823 (790–850)	587 (530–630)	3.1	relatively undisturbed, naturally productive
Orowaiti ^m	42 (32–47)	53 (42–60)	3.2 (1.6–5.1)	794 (590–1200)	938 (770–1040)	1.9	slightly to moderately enriched
Waimea ⁿ		82.5	9.1	4340	1063	8.9	highly enriched
(highly enriched site—historical data)							

a Highly enriched site (Te Puna)

- c Mean of four sand-dominated sites from an inter-estuary comparison, 2001 (Robertson et al. 2002b).
- d Mean of three sand-dominated sites from an inter-estuary comparison, 2001 (Robertson et al. 2002b).
- e Mean of two sand-dominated sites from an inter-estuary comparison, 2001 (Robertson et al. 2002b).
- f Mean of one sand-dominated site from an inter-estuary comparison, 2001 (Robertson et al. 2002b).
- g Subset of sand-dominated sites, 2009 (Gillespie et al. 2009).
- h Mean of three sand-dominated sites, 2012, (Gillespie et al. 2012).
- i Mean of two sand-dominated sites, 2006 (Gillespie & Clark, 2006).
- j Mean of two sand-dominated sites, 2008 (Robertson & Stevens, 2008).
- k Subset of mud-dominated sites from an inter-estuary comparison, 2001 (Robertson et al. 2002b).
- I Subset of mud-dominated sites, 2009 (Gillespie et al. 2009).
- m Mean of two mud-dominated estuaries, 2007 (Gillespie & Clark, 2007).
- n Mudflat affected by a freezing works effluent, 1981 (Gillespie & MacKenzie 1990).

b Subset of sand-dominated sites from an inter-estuary comparison, 2001 (Robertson et al. 2002b).

Nutrient and organic matter concentrations in the harbour tended to decline with distance from the inner harbour region and associated rivers. Sediment nitrogen, phosphorus and organic content are indicators of organic nutrient enrichment that are often closely linked with sediment grain size. In general terms, higher nutrient and organic concentrations are usually associated with muddier substrata. This relationship may partially explain the comparatively high organic content and nutrient loadings at Te Puna Estuary (Table 7). Comparison of sediment nutrient concentrations with other New Zealand estuaries (Table 7) indicates that the Tauranga Harbour sits within a range typical for slightly to moderately enriched estuarine conditions. Although sediment phosphorous concentrations were low in Tauranga Harbour compared with other estuaries, the total N:P ratios indicated that the estuary was still limited by nitrogen.

Recent studies have found that levels of nitrogen and phosphorus have changed little within Tauranga Harbour between the early 1990s and 2005 (see Sinner *et al.* 2011). Most major point source discharges of nitrogen and phosphorous (such as sewage outfalls) were removed from the harbour in the early to mid-1990s. Nutrient levels in many of the rivers and streams entering the harbour have declined due to improved rural practices and better control of surface runoff and land use changes. However, many of these rivers still have elevated nutrient levels, and some show increasing trends associated with agriculture and runoff from recently harvested forest (Scholes, 2005; Sinner *et al.* 2011). The low residence times within Tauranga Harbour (see Heath, 1976) result in rapid dilution of nutrients. The flushing rates largely mitigate seabed enrichment effects in the central and outer regions of the harbour, with localised seabed enrichment effects occurring near source streams.

Sediment contamination by heavy metals can also be highly correlated with the percentage of mud content due to the adherence of chemicals to fine sediments and/or organic content (see Green *et al.* 2001). It is, therefore, not surprising that heavy metal concentrations were highest in the depositional inner areas of the harbour, such as Te Puna Estuary. Acceptably low levels of copper, lead and zinc were found throughout Tauranga Harbour compared with ANZECC (2000a) ISGQ trigger guidelines and the TELs (threshold effects level 18.7, 30.2 and 124 for copper, lead and zinc respectively) developed by MacDonald *et al.* (1996) and utilised by the Auckland Council. Although the three metals recorded were found to be highly correlated, zinc levels tended to be closer to guideline thresholds indicating possible biological effects. This trend was also reported for the Auckland region (Anderson *et al.* 2002). Comparison with other New Zealand and overseas estuaries showed Tauranga Harbour is performing well with respect to heavy metal contamination (Table 8).

Table 8. Concentrations of trace metals in sediments from Tauranga Harbour and a selection of New Zealand and overseas estuaries that have been contaminated to varying degrees. Some values drawn from other studies are approximate as they were estimated from figures.

Location		Cu	Pb	Zn	
		mg/kg	mg/kg	mg/kg	
ANZECC (2000a) IS	QG-Low	65	50	200	
ANZECC (2000a) IS		270	220	410	
Tauranga	All sites except 48	1.5 (< 1–3)	2.6 (< 1–5.6)	17.2 (< 5–55)	
(present study)	Site 48	6.1	13.0	46.0	
EMP development	Kaipara (Otamatea Arm)	13.8	11.4	54.5	
study ^a	Ohiwa	4.0	3.4	27.7	
	Ruataniwha	7.1	4.7	37.5	
	Waimea	9.6	7.4	41.8	
	Havelock	10.7	5.6	43.0	
	Avon-Heathcote	3.2	6.3	38.3	
	Kaikorai	16.8	45.3	184.2	
	New River	3.8	0.7	17.1	
Other NZ	Delaware Inlet ^b	11.0	3.8	45.3	
sites	Moutere Inlet ^c	6.1	4.2	25.9	
	Nelson Haven ^d	5.5	3.8	24.3	
	Motupipi Estuary ^e	7.7	5.1	35.7	
	Orowaiti Estuary ^f	1.8	4.3	44.6	
	Tamaki A (E1) ^g	27.8	132.1	136.1	
	Tamaki B (E2) ^g	26.1	72.9	167	
	Tamaki C (E3) ⁹	29.4	69.7	173	
	Tamaki D (E4) ⁹	38.5	145.2	233	
	Manukau (rural catch) h	20	9	114	
	Manukau (industrial catch) h	90	58	285	
	Waitemata Harbour ⁱ	60	65	161	
	Lambton Harbour, Wellington ^j	68	183	249	
	Porirua Harbour, Wellington ^k	48	93	259	
	Aparima Estuary ^I	12	11	49	
	Mataura Estuary ¹	6.6	6.2	27	
Overseas sites	Delaware Bay, USA ^m	8.3	15	49.7	
	Lower Chesapeake Bay, USA m	11.3	15.7	66.2	
	San Diego Harbour, USA ^m	218.7	51	327.7	
	Salem Harbour, USA ^m	95.1	186.3	238	
	Rio Tinto Estuary, Spain	1400	1600	3100	
	Restronguet Estuary, UK	4500	1620	3000	
	Nervión Estuary, Spain ⁿ	50-350	50-400	200-2000	
	Sorfjord, Norway ^m	12000	30500	118000	

Sources: a (Robertson *et al.* 2002b), b (Gillespie *et al.* 2009), c (Gillespie and Clark, 2006), d (Gillespie *et al.* 2012), e (Robertson and Stevens, 2008), f (Gillespie and Clark, 2007), g (Thompson, 1987), h (Roper *et al.* 1988), i (Glasby *et al.* 1988), j (Stoffers *et al.* 1986), k (Glasby *et al.* 1990), l (Robertson, 1995), m (Kennish, 1997), n (Jezus-Belzunce *et al.* 2001).

4.2. Community based models

We used ordination modelling approaches to identify key stressors affecting the 'health' of macrofaunal communities In Tauranga Harbour. Sediments, nutrients and heavy metals were identified as key 'stressors', *i.e.* variables affecting the ecology of the harbour. Therefore, three models were developed based on the variability in community composition using CAP analyses. The ecological assemblages generally reflected gradients of stress or pollution very well. However, the CAP models for sediments and contaminants performed better than for nutrients.

The multivariate models were found to be more sensitive to changing environmental health than simple univariate measures (abundance, species diversity, Pielou's evenness and Shannon-Wiener diversity). For sedimentation, univariate measures did detect changes in abundance and species richness between the most and least disturbed sites. However, for the nutrient and contaminant models the univariate measures only observed differences in species richness at the least healthy sites. No clear patterns in the other univariate measures along the ecological gradient were observed. This trend has also been reported in the literature where univariate measures found significant differences between the most and least disturbed sites, but none of them were able to differentiate between smaller relative differences (Attayde and Bozelli, 1998). It has, therefore, been recommended that utilizing all of the information on the abundance of each taxon can increase the sensitivity and allow a more ecologically meaningful response to be observed (Attayde & Bozelli, 1998, this study; Gray, 2000; Hewitt *et al.* 2005; Pohle *et al.* 2001).

For Tauranga Harbour, constrained ordination models based on community composition appear to be a more sensitive measure than univariate measures of 'health' along an ecological gradient and should enable long term degradative change from multiple disturbances to be assessed. For all three analyses, a significant model relating changes in communities to changes in the environmental measures were able to be developed. This approach can be used as a management or monitoring tool where sites are repeatedly sampled over time and tracked to determine whether the communities are moving towards a more healthy or unhealthy state. New observations can also be placed into the model and community 'health' can be defined based on its position in the ordination space. Hence new sites can be placed into the canonical space in future (Anderson & Robinson, 2003) and sites can be monitored over time to assess long term degradation or improvement in the ecology of an area.

Multivariate analysis based on all taxa also gives the ability to investigate which taxa are associated with changing environmental health (Hewitt *et al.* 2005). The key species at 'healthy' and 'impacted' sites as determined from the CAP models were identified. Species at 'impacted' sites can be considered to be tolerant to the stressor

(*i.e.* sediment, nutrients or contaminants), while species with high abundances at 'healthy' sites only are sensitive to increasing stressors.

We also modelled the upper quantiles of abundances of populations in an effort to investigate limiting factors acting as constraints on organisms (Landcaster & Belyea, 2006). Models were developed for key species identified in the ordination models and culturally important shellfish species. In ecology, a common phenomenon is for data points to be scattered beneath an upper (or above a lower) limit described as a 'factor ceiling' (Thomson *et al.* 1996). The ceiling to the data scatter implies a constraining factor, thus the form the ceiling takes allows us to derive maximum (or minimum) possible response curves to an environmental variable. This implies that over broad scales, while a number of factors (*e.g.* the potential for recruitment, historical conditions *etc.*) may affect the observed density, there is a limit (frequently an upper limit) that is controlled by the variable of interest. Our research results suggest that factor ceiling responses occurred at critical levels of sedimentation, nutrients and contaminants for key shellfish species modelled within Tauranga Harbour.

Shellfish response curves were either negative or polynomial. A negative relationship means that as the stressor increases the abundance of a species decreases. For example, as silt/clay content increased the abundance of cockle (*A. stutchburyi*), wedge shell (*M. liliana*) and nut shell (*N. hartvigiana*) populations all decreased. A polynomial response curve results in an increase in abundance associated with elevated stressor levels followed by a decrease in abundance beyond critical stressor levels. For example, the shellfish *A. bifurca* exhibited such a polynomial response surface, increasing in abundance with increasing percent mud content followed by a decrease in abundance as sediment loading continued to increase. Therefore, most shellfish species populations are either sensitive to elevated silt/clay, nutrient loading or contaminants, or sensitive to these stressors beyond a critical point. The other key species modelled included polychaete worms and their response curves to various stressors varied by species.

Elevated sediment loading to estuaries and coastal environments can lead to broad scale changes in ecology through modifying habitats (e.g. Saiz-Salinas & Urkiaga-Alberdi, 1999; Smith & Kukert, 1996) and, in particular, by influencing the health, abundance and distribution of benthic suspension feeders (Ellis et al. 2002). Increased concentrations of silts and clay in suspension may significantly increase pseudofaeces production, decrease the amount of algal food actually ingested, and may also damage bivalve gills (Bricelj & Malouf, 1984; Iglesias et al. 1996; Morse et al. 1982; Navarro et al. 1992; Navarro & Widdows, 1997; Robinson et al. 1984; Stevens, 1987; Willows, 1992). Exposure to increased concentrations of suspended sediments for an extended time can, therefore, result in decreased amounts of energy available for growth and reproduction, and have deleterious effects on local populations.

Low levels of nutrient enrichment in estuarine and coastal environments can have a positive effect on the benthos due to improved primary productivity, and therefore food availability. However beyond a critical point, excessive nutrient discharges can lead to accelerated eutrophication of coastal environments and adverse symptoms of over enrichment (Cloern, 2001; McGlathery et al. 2007). Metals can be essential for organisms as trace elements, however, at higher concentrations they can become toxic (ANZECC, 2000b). High exposure to heavy metals can cause physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes (Fleeger et al. 2003; Gagnaire et al. 2004; Nicholson, 1999; Peters et al. 1997; Radford et al. 2000).

The results from this study were consistent with Thrush *et al.* (2003) who developed models of macrofaunal species occurrence with respect to sediment mud content. Thrush *et al.* (2003) found similar responses whereby sensitive species with a preference for low mud content included the mobile suspension feeding cockle and the deposit and suspension feeding nut shell. Within this report we extend this analysis by also developing models of macrofaunal species occurrence with respect to nutrient and contaminants loadings as well as sediment mud content. Ultimately such statistical models provide a tool to forecast the distribution and abundance of species associated with habitat changes in sediments, nutrients and metals.

4.3. Conclusion

Tauranga Harbour is a predominantly sandy harbour with slight to moderate enrichment and low levels of heavy metal contaminants. The community composition and key species characterizing sites with different sediment textures, nutrient and contaminant loadings were found to vary. Te Puna Estuary (Site 48) was found to have high levels of mud, nutrients and heavy metals, outside the range of variation observed at other sites.

Sediments, nutrients and heavy metals were identified as key 'stressors' or variables affecting the ecology of the harbour. Sediments and contaminants were found to explain the largest variance in benthic communities. Sites classified as most impacted were generally located in the upper reaches of estuaries in some of the least exposed locations. In general, the multivariate models were found to be more sensitive to changing environmental health than simple univariate measures. Species response curves suggest that shellfish are negatively affected by increasing sediments, nutrients and metals beyond critical levels while polychaete responses are species specific. This BHM approach, initially developed by Auckland Regional Council (in conjunction with University of Auckland and NIWA), can be used as a management or monitoring tool where sites are repeatedly sampled over time and tracked to assess long term degradation or improvement in the ecology of an area.

5. REFERENCES

- Anderson M, Hewitt J, Thrush S 2002. The Development of Criteria for Assessing Community Health of Urban Intertidal Flats, NIWA report prepared for Auckland Regional Council Technical Report No. 184. pp. 54 plus appendices.
- Anderson M.J. 2008. Animal-sediment relationships re-visited: Characterising species' distributions along an environmental gradient using canonical analysis and quantile regression splines. Journal of Experimental Marine Biology and Ecology 366:16-27.
- Anderson MJ, Gribble NA 1998. Partitioning the variation among spatial, temporal and environmental components in a multivariate dataset. Australian Journal of Ecology 23:158-167.
- Anderson MJ, Willis TJ 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511-525.
- Anderson MJ, Robinson J 2003. Generalized discriminant analysis based on distances. Australian and New Zealand Journal of Statistics 45:301-318.
- Anderson MJ, Hewitt JE, Ford RB, Thrush SF 2006. Regional models of benthic ecosystem health: predicting gradients from biological data, Prepared by Auckland UniServices Limited for Auckland Regional Council. Auckland Regional Council Technical Publication 317.
- ANZECC 2000a. Australian and New Zealand Guideliens for Fresh and Marine Water Quality Volume One: the guidelines, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
- ANZECC 2000b. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2: aquatic ecosystems rationale and background information, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
- Attayde JL, Bozelli RL 1998. Assessing the indicator properties of zooplankton assembages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences 55:1789-1797.
- Barnett AG 1985. Overview and hydrodynamics. Tauranga Harbour Study: Part I & III, A report for the Bay of Plenty Harbour Board.
- Blackburn TM, Lawton JH, Perry JN 1992. A Method of Estimating the Slope of Upper Bounds of Plots of Body Size and Abundance in Natural Animal Assemblages. Oikos 65:107-112.
- Borcard DP, Legendre P, Drapeau P 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045-1055.

- Bray JR, Curtis JT 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27:325-349.
- Bricelj VM, Malouf RE 1984. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam *Mercenaria mercenaria*. Marine Biology 84:155-165.
- Clark KR, Gorley RN 2006. PRIMER v6: User manual/Tutorial, PRIMER-E Ltd, Plymouth, UK.
- Clarke KR 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117-143.
- Cloern JE 2001. Our evolving conceptual model of the coastal eutrophication problem.

 Marine Ecology Progress Series 210:223-253.
- Cole RG, Hull PJ, Healy TR 2000. Assemblage structure, spatial patterns, recruitment, and post-settlement mortality of subtidal bivalve molluscs in a large harbour in north-eastern New Zealand. New Zealand Journal of Marine and Freshwater Research 34:317-329.
- de Lange WP 1988. Wave climate and sediment transport within Tauranga Harbour, in the vicinity of Pilot Bay, PhD thesis (Earth Sciences) University of Waikato, Hamilton.
- Dufrene M, Legendre P 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345-366.
- Dunn C 1994. Gaps in GAP. Plant Science Bulletin 40:120-121.
- Elliott S, Parshotam A, Wadhwa S 2010. Tauranga Harbour sediment study: catchment model results, Prepared for Environment Bay of Plenty by NIWA. Client Report: HAM2009-046, Hamilton.
- Ellis J, Cummings V, Hewitt J, Thrush S, Norkko A 2002. Determining effects of suspended sediment on condition of a suspension feeding bivalve (*Atrina zelandica*): results of a survey, a laboratory experiment and a field transplant experiment. Journal of Experimental Marine Biology and Ecology 267:147-174. DOI: 10.1016/s0022-0981(01)00355-0.
- Ellis JI, Schneider DC, Thrush SF 2000. Detecting anthropogenic disturbance in an environment with multiple gradients of physical disturbance, Manukau Harbour, New Zealand. Hydrobiologia 440:379-391.
- Fleeger JW, Carman KR, Nisbet RM 2003. Indirect effects of contaminants in aquatic ecosystems. The Science of the Total Environment 317:207-233.
- Gagnaire B, Thomas-Guyon H, Renault T 2004. In vitro effects of cadmium and mercury on Pacific oyster, *Crassostrea gigas* (Thunberg), haemocytes. Fish & Shellfish Immunology 16:501-512.

- Gappa JJL, Tablado A, Magaldi NH 1990. Influence of sewage pollution on a rocky intertidal community dominated by the mytilid *Brachidontes rodriguezi*. Marine Ecology Progress Series 63:163-175.
- Gillespie P, Clark K 2006. Moutere Inlet Fine-Scale Benthic Baseline 2006, Prepared for Tasman District Council. Cawthron Report No. 1183. pp. 18.
- Gillespie P, Clark K 2007. Orowaiti Estuary Fine-Scale Benthic Baseline 2007, Prepared for West Coast Regional Council. Cawthron Report No. 1274. pp. 19 plus appendices.
- Gillespie P, Clement D, Asher R 2009. Delaware Inlet Fine-Scale Benthic Baseline 2009, Prepared for Nelson City Council. Cawthron Report No. 1594. pp. 28.
- Gillespie P, Clement D, Clark DE, Asher R 2012. Nelson Haven Fine-Scale Benthic Baseline 2012, Prepared for Nelson City Council. Cawthron Report No. 2209. pp. 22 plus appendices.
- Glasby G.P, Moss RL, Stoffers P 1990. Heavy metal pollution in Porirua Harbour, New Zealand. New Zealand Journal of Marine and Freshwater Research 24:233-237.
- Glasby GP, Stoffers P, Walters P, Davis KR, Renner RM 1988. Heavy-metal pollution in Manukau and Waitemata Harbours, New Zealand. New Zealand Journal of Marine and Freshwater Research 22:595-611.
- Gray JS 2000. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology 250:23-49.
- Green M, Williamson B, Bull D, Oldman J, MacDonald I, Mills G 2001. Prediction of Contaminant Accumulation in Auckland Estuaries, Auckland Regional Council, Hamilton. pp. 78.
- Hancock N, Hume T, Swales A 2009. Tauranga Harbour sediment study: harbour bed sediments, Prepared for Environment Bay of Plenty by NIWA. Client Report: HAM2008-123 Hamilton.
- Heath RA 1976. Broad classification of New Zealand inlets with emphasis on residence times. New Zealand Journal of Marine and Freshwater Research:429-44.
- Hewitt J, Ellis J 2010. Assessment of the benthic health model, Prepared by Organisation for Auckland Regional Council. Auckland Regional Council TR2010/034.
- Hewitt J, Anderson MJ, Thrush SF 2005. Assessing and monitoring ecological community health in marine systems. Ecological Applications 15:942-953.
- Hume TM, Green MO, Elliott S 2010. Tauranga Harbour sediment study: assessment of predictions for management, Prepared for Environment Bay of Plenty by NIWA. Client Report: HAM2009-139, Hamilton.

- Iglesias JIP, Urrutia MB, Navarro E, Alvarez-Jorna P, Larretxea X, Bougrier S, Heral M 1996. Variability of feeding processes in the cockle *Cerastoderma edule* (L.) in response to changes in seston concentration and composition. Journal of Experimental Marine Biology and Ecology 197:121-143.
- Inglis G, Gust N, Fitridge I, Floerl O, Woods C, Kospartov M, Hayden B, Fenwick G 2008. Port of Tauranga: second baseline survey for non-indigenous marine species (Research Project ZBS2000/04), Prepared for Biosecurity New Zealand by NIWA. Biosecurity Technical Paper No: 2008/0, Wellington.
- Jezus-Belzunce M, Solaun O, Franco J, Valencia V, Borja A 2001. Accumulation of organic matter, heavy metals and organic compounds in surface sediments along the Nervion Estuary (northern Spain). Marine Pollution Bulletin 42:1407-1411.
- Kennish MJ 1997. Pollution impacts on marine biotic communities, CRC Press, New York. pp. 310.
- Landcaster J, Belyea LR 2006. Defining limits to local density: alternative views of abundance-environment relationships. Freshwater Biology 50:2034-2052.
- Leathwick JR, West D, Gerbeauz P, Kelly D, Robertson H, Brown D, Chadderton WL, Ausseil A-G 2010. Freshwater Ecosystems of New Zealand (FENZ)

 Geodatabase: Version One August 2010 User Guide, Department of Conservation.
- Legendre P, Legendre L 1998. Numerical ecology. Second English edition Elsevier, Amsterdam, The Netherlands.
- Lengendre P, Legendre L 1998. Numerical ecology. Second English edition Elsevier, Amsterdam, The Netherlands.
- MacDonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253-278.
- McGlathery KJ, Sundback K, Anderson IC 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348:1-18.
- Morse PM, Robinson WE, Wehling WE 1982. Effects of sublethal concentrations of the drilling mud components attapulgite and Q-broxin on the structure and function of the fill of the scallop *Placopecten magellanicus* (Glemlin), in: W. B. Vernberg, *et al.* Eds.), Physiological Mechanisms of Marine Pollution Toxicity, Academic Press. pp. 235-259.
- Navarro E, Iglesias JIP, Ortega MM 1992. Natural sediment as a food source for the cockle *Cerastoderma edule* (L.): effect of variable particle concentration on the feeding, digestion and the scope for growth. Journal of Experimental Marine Biology and Ecology 156:69-87.

- Navarro JM, Widdows J 1997. Feeding physiology of *Cerastoderma edule* in response to a wide range of seston concentrations. Marine Ecology Progress Series 152:175-186. DOI: 10.3354/meps152175.
- Nicholson S 1999. Cytological and physiological biomarker responses from green mussels, *Perna viridis* (L.) transplanted to contaminated sites in Hong Kong coastal waters. Marine Pollution Bulletin 39:261-268.
- Olsgard F, Gray JS 1995. A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Marine Ecology Progress Series 122:277-306.
- Park SG 2003. Marine sediment and contaminants survey (2001-03) of Tauranga Harbour, Environment Bay of Plenty Environmental Publication 2003/20, Whakatane.
- Park SG, Donald R 1994. Environment Bay of Plenty Tauranga Harbour regional plan environmental investigations: ecology of Tauranga Harbour, Environment Bay of Plenty Environmental Report No. 94/8, Whakatane.
- Peters EC, Gassman NJ, Firman JC, Richmonds RH, Power EA 1997. Ecotoxicology of tropical marine ecosystems. Environmental Toxicology and Chemistry:12-40.
- Pohle G, Frost B, Findlay R 2001. Assessment of the regional benthic impact of salmon mariculture within Letang Inlet, bay of Fundy. ICES Journal of Marine Science 58:417-426.
- Radford JL, Hutchinson AE, Burandt M, Raftos DA 2000. Effects of metal-based environmental pollutants on tunicate hemocytes. Journal of Invertebrate Pathology 76:242-248.
- Robertson B, Stevens L 2008. Motupipi Estuary 2008 Fine Scale Monitoring, Prepared for Tasman District Council by Wriggle Coastal Management, Nelson. pp. 20.
- Robertson B, Gillespie P, Asher R, Frisk S, Keeley N, Hopkins G, Thompson S, Tuckey B 2002a. Estuarine Evironmental Assessment and Monitoring: A National Protocol. Part A Development of the Monitoring Protocol for New Zealand Estuaries: introduction, rationale and methodology, Prepared for Supporting Councils and the Ministry for the Environment, Sustainable Management Fund Contract No. 5096. pp. 93.
- Robertson B, Gillespie P, Asher R, Frisk S, Keeley N, Hopkins G, Thompson S, Tuckey B 2002b. Estuarine Environmental Assessment and Monitoring: A National Protocol. Part B Development of the Monitoring Protocol for New Zealand Estuaries: appendices to the introduction, rationale and methodology Prepared for Supporting Councils and the Ministry for the Environment, Sustainable Management Fund Contract No. 5096. pp. 159.

- Robertson BM 1995. Southland Estuaries: heavy metal monitoring, Report prepared for Southland Regional Council. Robertson Ryder & Associates, Dunedin. pp. 35.
- Robinson WE, Wehling WE, Morse MP 1984. The effect of suspended clay on feeding and digestive efficiency of the surf clam, *Spisula solidissima* (Dillwyn). Journal of Experimental Marine Biology and Ecology 74:1-12.
- Roper DS, Thrush SF, Smith DG 1988. The influence of runoff on intertidal mudflat benthic communities. Marine Environmental Research 26:1-18.
- Saiz-Salinas JI, Urkiaga-Alberdi J 1999. Faunal responses to turbidity in a manmodified Bay (Bilbao, Spain). Marine Environmental Research 47:331-347.
- Scholes P 2005. NERMN estuarine water quality 2005, Environment Bay of Plenty Environmental Publication 2005/19, Whakatane. pp. 176.
- Sinner J, Clark D, Ellis J, Roberts B, Jiang W, Goodwin E, Hale L, Rolleston S, Patterson M, Hardy D, Prouse E, Brown S 2011. Health of Te Awanui Tauranga Harbour, Manaaki Taha Moana Research Report No. 1. Cawthron Report No. 1969, Palmerston North.
- Smith CR, Kukert H 1996. Macrobenthic community structure, secondary production, and rates of bioturbation and sedimentation at the Kane'ohe Lagoon Floor. Pacific Science 50:211-229.
- Stevens PM 1987. Response of excised gill tissue from the New Zealand scallop Pecten novaezelandiae to suspended silt. New Zealand Journal of Marine and Freshwater Research 21:605-614.
- Stoffers P, Glasby GP, Wilson CJ, Davis KR, Walter P 1986. Heavy metal pollution in Wellington Harbour. New Zealand Journal of Marine and Freshwater Research 20:495-512.
- Thompson BA 1987. Tamaki Estuary water quality guidelines 1985-86, Report No. TP42. Auckland Regional Water Board, Auckland. pp. 30.
- Thomson JD, Weiblen G, Thomson BA, Alfaro S, Legendre P 1996. Untangling multiple factors in spatial distributions: lilies, gophers and rocks. Ecology 77:1698-1715.
- Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Marine Ecology Progress Series 263:101-112.
- Warwick R.M, Platt HM, Clarke KR, Agard J, Gobin J 1990. Analysis of macrobenthic and meiobenthic community structure in relation to pollution and disturbance in Hamilton Harbour, Bermuda. Journal of Marine Biology and Ecology 139:119-142.
- Willows RI 1992. Optimal digestive investment: a model for filter feeders experiencing variable diets. Limnology and Oceanography 37:829-847.

Woods R, Elliott S, Shankar U, Bidwell V, Harris S, Wheeler D, Clothier B, Green S, Hewitt A, Gibb R, Parfitt R 2006. The CLUES Project: Predicting the Effects of Land-use on Water Quality - Stage II, NIWA Client Report MAF05502.

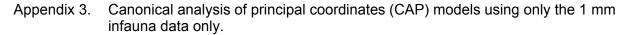
6. APPENDICES

Appendix 1. Tauranga Harbour sampling site location details.

Cito	Laastian	I labitat	Ар	oint	Вр	oint	Chart	Comments
Site	Location	Habitat	NZTME	NZTMN	NZTME	NZTMN	datum	Comments
1	Athenree	BS	1862844	5850790	1862871	5850827	0.512	Small bivalves common
2	Athenree	BS/SF	1863039	5849578	1863034	5849604	0.682	Small bivalves common
3	Athenree	BS	1861313	5849572	1861344	5849525	0.702	Small bivalves common
4	Athenree	SG	1860899	5848974	1860854	5848952	1.132	
5	Bowentown flood delta	BS/SF	1862374	5849061	1862343	5849075	0.882	
6	Tanners Pt	SG	1860947	5847735	1860952	5847782	1.053	Small bivalves common, SG patchy
7	Tuapiro Est.	BS/P	1860284	5846213	1860303	5846242	0.836	Small bivalves common
8	Ongare Pt	BS	1862990	5845258	1863024	5845216	0.223	Bare sand
9	Kauri Pt	BS	1861385	5842837	1861360	5842796	0.384	Occasional Ulva and SG
10	Uretara Est.	BS/P	1859160	5841668	1859115	5841654	0.738	Small bivalves common, muddy
11	Katikati	SG	1861019	5840122	1861018	5840195	0.500	Lots of macroalgae (reds, <i>Ulva</i> , SG)
12	Katikati	BS	1860872	5838709	1860919	5838749	0.719	Occasional SG, small bivalves common
13	Katikati	BS	1859645	5838849	1859665	5838804	0.785	Small bivalves common
14	Rereatukahia Est.	BS/P	1858852	5837443	1858801	5837443	1.003	Bare sand, featureless
15	Matakana north	SG	1864615	5844595	1864572	5844619	0.203	
16	Bowentown flood delta	BS	1861876	5847073	1861837	5847105	0.715	Small bivalves common, <i>Ulva</i> present
17	Upper North Harbour	SG	1866194	5839926	1866229	5839901	0.575	
18	Blue Gum Bay	BS	1868133	5838623	1868083	5838619	1.158	Bare sand
19	Upper North Harbour	SG	1868953	5838230	1868932	5838276	0.955	
20	Blue Gum Bay	BS	1870400	5836995	1870439	5836962	0.919	Occasional small bivalve
21	Egg Island	SG	1862900	5839911	1862896	5839961	0.670	SG thick in places, <i>Ulva</i> and reds present
22	Matahui Pt	BS/SG	1864304	5836733	1864267	5836765	0.691	SG in a few quadrats
23	Matahui Pt	SG	1863958	5837013	1863973	5837060	0.838	
24	Matakana Pt	SG	1867485	5834361	1867456	5834322	0.378	SG thick
25	Matakana Pt	BS	1867748	5834506	1867767	5834455	0.792	Thin patches of SG in 3 quadrats
26	Aongatete	SG	1864309	5834506	1864292	5834551	0.891	
27	Aongatete	BS	1863615	5834467	1863588	5834510	0.598	Bare sand
28	Aongatete	BS	1862821	5834277	1862779	5834317	0.966	Bare sand
29	Hunter's Creek	BS/P	1872451	5833584	1872463	5833633	0.433	Occasional small bivalve

Cito	Site Legation		Ар	oint	Вр	oint	Chart	Comments
Site	Location	Habitat	NZTME	NZTMN	NZTME	NZTMN	datum	Comments
30	Hunter's Creek	SG	1872580	5833532	1872613	5833566	0.505	Neptune's necklace present
31	Hunter's Creek	SG	1875571	5831455	1875524	5831462	0.922	Dense Neptune's necklace
32	Hunter's Creek	BS	1875642	5830632	1875624	5830681	0.497	Patches of reds, <i>Ulva</i> & small bivalves
33	Duck Bay	BS	1876347	5830239	1876299	5830230	0.179	Small bivalves common, <i>Ulva</i> present, thin patches of SG
34	Duck Bay	BS	1876500	5830117	1876537	5830148	0.298	Lots of <i>Ulva</i> , reds present, occasional small bivalve
35	Motungaio Island	BS	1873330	5831630	1873303	5831672	1.278	Occasional small bivalve
36	Ngakautuakina Pt	SG	1866358	5833025	1866386	5833067	0.299	
37	Wainui Est.	BS	1863363	5831812	1863333	5831852	0.875	Occasional small bivalve
38	Apata	BS/P	1864248	5830678	1864219	5830721	1.184	Bare sand
39	Ngakautuakina Pt	SG	1865756	5831517	1865777	5831564	0.713	Thick SG
40	Waipapa Est.	BS/SF	1866357	5830113	1866350	5830064	0.988	Bare sand
41	Omokoroa	SG	1866954	5830644	1866926	5830689	0.748	
42	Omokoroa	BS	1868018	5830518	1867981	5830554	0.191	
43	Matakana Pt	SG	1868270	5833779	1868316	5833756	0.180	
44	Omokoroa	SG	1870057	5830629	1870028	5830592	0.791	Ulva present
45	Center Bank	BS/SF	1879574	5828564	1879623	5828559	0.219	Pipi and <i>Ulva</i> present, covered with water
46	Omokoroa-Mangawhai Bay	BS	1868460	5828617	1868506	5828639	0.706	Small bivalves common
47	Mangawhai Est.	BS/P	1867687	5827666	1867647	5827634	1.150	Bare sand
48	Te Puna Est.**	BS/P	1868434	5825385	1868395	5825360	0.792	Bare mud
49	Te Puna	SG	1869659	5827627	1869609	5827599	0.866	Small bivalves common
50	Waikaraka Est.	BS/P	1870076	5827281	1870060	5827329	1.179	Small bivalves common
51	Rangiwaea Is.	BS/SF	1874915	5828700	1874907	5828649	0.062	
52	Motuhoa Island	SG	1871810	5829542	1871767	5829565	0.496	Small bivalves common
53	Te Puna	BS	1871371	5827820	1871364	5827839	0.461	
54	Te Puna	SG	1873409	5826958	1873449	5826941	0.998	
55	Wairoa Est.	BS	1873681	5825837	1873694	5825787	1.008	
56	Wairoa Est.	BS/SF	1874059	5825206	1874012	5825189	1.117	
57	Matua	BS	1875042	5825703	1875072	5825732	1.207	Bare sand
58	Tilbey Pt	SG	1876239	5827455	1876283	5827431	0.683	Small bivalves common, <i>Ulva</i> present
59	Otumoetai	SG/SF	1877894	5826769	1877941	5826759	0.487	Occasional small bivalve
60	Otumoetai	BS	1878761	5826878	1878756	5826929	0.257	
61	Waikareao Entrance	BS/SF	1879047	5826309	1879032	5826360	0.689	Small bivalves common, <i>Ulva</i> present, SG in 1 quadrat
62	Waikareao Est.	BS	1877913	5824841	1877867	5824820	1.094	Occasional small bivale, <i>Ulva</i> present

0:40	Laatian	llebitet	A p	oint	Вр	oint	Chart	Comments
Site	Location	Habitat	NZTME	NZTMN	NZTME	NZTMN	datum	Comments
63	Waikareao Est.	SG	1878131	5824740	1878083	5824737	1.019	
64	Waikareao Est.	BS	1878213	5824451	1878254	5824481	1.073	Occasional small bivalve
65	Waipu Bay	SG	1880395	5824712	1880349	5824721	1.110	Occasional small bivalve
66	Waipu Bay	BS	1881055	5825407	1881073	5825362	0.558	Occasional small bivalve, <i>Ulva</i> present
67	Waipu Bay	BS/SF	1882458	5824505	1882447	5824558	1.250	Occasional small bivalve
68	Waimapu Est.	BS	1879334	5822166	1879347	5822111	0.697	Small bivalves and <i>Ulva</i> common
69	Waimapu Est.	BS	1878074	5820248	1878124	5820262	0.912	Bare sand
70	Waimapu Est.	BS	1878638	5820282	1878603	5820238	0.798	Bare sand
71	Rangataua Bay	BS	1881779	5821870	1881778	5821840	0.112	Small bivalves common
72	Rangataua Bay	SG	1883024	5821883	1882986	5821900	0.523	Small bivalves common, <i>Ulva</i> present
73	Rangataua Bay	BS/P	1883502	5821744	1883489	5821782	0.573	Occasional small bivalve
74	Rangataua Bay	BS	1884604	5822782	1884578	5822833	1.095	Occasional small bivalve
75	Welcome Bay	BS	1881669	5820495	1881617	5820486	0.757	Small bivalves common


^{*}BS = bare sand, SG = seagrass, SF = shellfish, P = pesticides

Appendix 2. Sediment characteristic data, infauna data and canonical analysis of principal coordinates (CAP) ecological health categories for the 1 mm + 500 μm infauna model. Ecological health categories range from 1 ('healthy') to 5 ('impacted'). Sed = sedimentation, Nut = nutrients, Cont = contamination, AFDW = ash-free dry weight, S/C = silt/clay, TN = total nitrogen, TP = total phosphorous, Pb = lead, Cu = copper, Zn = zinc, chl-α = chlorophyll-α, N = total abundance per core, S = number of species per site, J = Pielou's evenness, H = Shannon-Wiener index.

		Habitat*	CA	CAP category Sediment properties Infa										fauna					
Site	Location		Sed	Nut	Cont	AFDW	Gravel	Sand	S/C	TN	TP	Pb	Cu	Zn	Chl-α	N	S	J	Н
							%	•			(1	mg/kg)	•		(ug/kg)	(per core)	(per site)		
1	Athenree	BS	2	3	3	1.6	0.4	96.0	3.6	380	110	1.1	<1	7.7	4600	116	32	0.7	2.4
2		BS/SF	1	3	2	2.4	10.2	87.3	2.5	590	210	1.4	<1	8.8	6600	239	34	0.6	2.2
3		BS	2	2	2	1.9	1.7	94.5	3.9	380	110	<1	<1	6.1	4600	154	30	0.7	2.3
4	Athenree	SG	2	1	1	2.5	0.4	94.0	5.6	350	120	<1	<1	6.1	3200	116	25	0.8	2.6
5		BS/SF	2	4	2	1.6	1.2	97.4	1.5	290	140	<1	<1	6.5	2400	257	30	0.5	1.9
6	Tanners Pt	SG	2	2	2	3.8	0.7	91.9	7.3	530	180	1.3	<1	11.0	8600	142	36	0.7	2.2
7	Tuapiro Est.	BS/P	3	3	3	3.0	1.1	88.7	10.2	640	180	<1	<1	11.0	10000	197	28	0.6	2.0
8	Ongare Pt	BS	1	1	2	3.0	0.3	96.7	2.9	380	160	1.3	<1	10.0	5300	46	16	0.5	1.4
9		BS	2	3	3	1.0	1.5	94.9	3.6	180	78	1.4	<1	27.0	2200	102	27	0.7	2.3
10	Uretara Est.	BS/P	5	5	5	4.4	2.9	66.2	30.9	1000	340	5.6	3.0	34.0	1100	109	18	0.8	2.2
11	Katikati	SG	3	4	3	2.8	0.9	92.5	6.5	390	120	1.1	<1	12.0	4400	157	27	0.4	1.3
12	1.7	BS	3	3	3	2.0	0.1	91.0	8.9	300	120	1.9	<1	8.7	1900	125	23	0.7	2.2
13		BS	5	5	4	3.1	0.6	85.1	14.3	540	250	3.4	1.5	22.0	2800	39	16	0.7	1.9
14	Rereatukahia Est.	BS/P	4	4	5	4.5	1.0	74.3	24.7	830	330	4.6	2.4	26.0	5600	126	13	0.7	1.6
15	Matakana north	SG	2	2	2	2.1	0.4	95.9	3.7	340	160	2.2	<1	13.0	1200	166	30	0.5	1.8
16		BS	2	3	2	1.8	0.7	96.1	3.3	310	180	1.5	<1	11.0	7000	241	32	0.6	2.0
17		SG	2	2	2	2.1	2.0	94.1	3.9	370	110	<1	<1	8.0	4200	126	32	0.4	1.4
18		BS	2	1	2	0.9	0.2	98.5	1.3	140	53	1.1	<1	<5	210	49	22	0.7	2.0
19		SG	2	1	1	2.1	0.1	95.6	4.3	310	91	1.2	<1	6.9	3000	29	23	0.8	2.5
20		BS	2	1	2	1.6	<0.1	100	<0.1	340	92	1.3	<1	10.0	1200	42	17	0.8	2.0
21		SG	2	2	2	3.8	20	91.3	6.5	540	180	1.3	<1	11.0	5100	134	35	0.7	2.3
22		BS/SG	4	5	4	4.2	0.9	51.6	17.5	700	220	3.5	1.7	18.0	3300	92	22	0.6	1.8
23	Matahui Pt	SG	4	3	4	3.1	0.8	64.9	34.2	430	200	3.1	1.0	14.0	7900	90	23	0.7	2.1
24		SG	3	3	3	2.6	0.8	83.5	15.7	390	200	3.1	<1	19.0	5600	111	25	0.9	3.0
25	Matakana Pt	BS	1	1	1	0.9	1.4	97.2	1.4	180	51	1.4	<1	6.1	3800	54	17	0.8	2.2
26	Aongatete	SG	4	4	3	4.0	0.1	76.5	23.3	590	130	2.7	1.3	13.0	3600	61	26	0.8	2.5
27		BS	4	4	4	4.2	<0.1	81.3	18.7	580	180	4.3	2.2	20.0	7300	82	14	0.7	1.6
28		BS	3	4	4	3.5	0.1	77.5	22.4	520	160	2.8	1.3	14.0	8600	333	10	0.3	0.7
29		BS/P	3	3	4	2.7	1.2	82.6	16.2	690	150	2.5	1.2	16.0	3900	85	25	0.7	2.2
30	Hunter's Creek	SG	2	2	2	1.8	0.5	90.7	8.9	450	97	1.9	<1	8.7	4000	106	29	0.5	1.7
31		SG	3	2	3	3.2	1.0	86.1	13	490	120	1.9	<1	9.5	4800	78	32	0.8	2.6
32		BS	2	2	3	2.3	1.1	91.2	7.7	490	160	2.5	<1	12.0	8100	164	33	0.5	1.9
33		BS	2	2	3	2.6	2.3	91.5	6.3	550	190	2.2	<1	12.0	7200	124	27	0.5	1.6
34		BS	2	1	3	1.8	0.7	96.2	3.2	350	130	1.9	<1	7.5	5400	111	30	0.4	1.3
35		BS	2	2	1	1.4	0.7	96.0	3.3	290	93	1.2	<1	5.1	3300	80	23	0.7	2.2
36		SG	3	3	4	3.3	0.2	87.3	12.6	530	180	3.1	<1	15.0	4700	158	35	0.8	2.6
37		BS	5	5	4	4.5	1.5	51.0	47.5	760	310	4.5	1.4	26.0	3300	78	19	0.7	1.9

193 Ayushautharine P SG 3 3 3 2 0 0 642 115 0 200 200 21 110 25 21 0 0 0 0 0 0 0 0 0																				
Wassepa Ext	38	Apata	BS/P	5	4	4	4.2	0.3	50.7	48.9	620	260	4.1	1.1	21.0	4100	35	21	0.8	2.3
A	39	Ngakautuakina Pt	SG	3	3	3	2.6	0.8	84.2	15.0	460	130	2.0	1.6	12.0	4300	66	30	0.7	2.0
Additional Pt Sign Sign	40	Waipapa Est.	BS/SF	5	5	4	3.8	0.2	68.4	31.5	650	220	4.0	1.4	19.0	6100	39	19	0.8	2.4
Materiann PT	41	Omokoroa	SG	3	3	3	3.5	0.6	84.3	15.1	450	140	2.3	<1	15.0	5000	76	27	0.9	2.7
44 Ornolational Signature Signatur	42	Omokoroa	BS	4	5	4	4.0	0.9	73.9	25.4	760	280	4.3	1.5	27.0	5900	126	24	0.6	1.9
Secret Flank	43	Matakana Pt	SG	2	3	3	1.6	0.6	94.5	4.9	310	120	2.6	<1	14.0	5000	95	32	0.7	2.4
46 Omokoros-Mangawhal Bay 88 5 4 4 3.8 1.5 60.0 38.6 620 240 3.7 1.3 22.0 4900 95 25 0.5	44	Omokoroa	SG	3	4	4	4.3	1.6	77.6	20.9	450	220	5.1	1.3	21.0	5000	198	39	0.6	2.1
47 Mangawhal Est BS/P 5 5 4 4.0 10.2 86.5 29.2 86.0 220 3.3 41 18.0 8800 38 16 0.7 48 To Pura Est.** BS/P - - - 10.0 - - 10.0 - - 10.0 40.0 12.0 - 10.0 40.0 10.0 - - - 10.0 -	45	Center Bank	BS/SF	1	3	1	1.2	1.0	97.5	1.5	320	180	<1	<1	6.4	11000	132	27	0.6	2.0
He	46	Omokoroa-Mangawhai Bay	BS	5	4	4	3.8	1.5	60.0	38.6	620	240	3.7	1.3	22.0	4900	95	25	0.5	1.3
49 Te Puna	47	Mangawhai Est.	BS/P	5	5	4	4.0	10.2	60.5	29.2	660	220	3.3	<1	18.0	8800	38	16	0.7	1.9
50 Walkaraka Est.	48	Te Puna Est.**	BS/P	-	-	-	10.0	<0.1	23.7	76.4	1900	580	13	6.1	46.0	11000	152	11	0.6	1.4
Signature Sign	49	Te Puna	SG	3	4	4	3.0	5.6	77.2	17.3	680	210	5.4	1.7	55.0	5600	234	34	0.6	2.1
Scale Motion Island Scale Scal	50	Waikaraka Est.	BS/P	4	4	5	4.5	3.9	68.2	27.9	920	290	4.2	2.0	34.0	9600	133	31	0.7	2.2
S3 Te Puna BS	51	Rangiwaea Is.	BS/SF	3	3	3	2.7	0.4	95.7	3.8	380	120	1.7	<1	12.0	6700	116	30	0.6	2.1
Fe Funa	52	Motuhoa Island	SG	2	3	3	2.7	1.4	89.7	8.9	450	200	4.3	<1	20.0	4500	144	37	0.6	2.2
So Walroe Est BS So So So So So So So	53	Te Puna	BS	1	3	2	3.1	1.6	88.9	9.5	590	170	2.1	<1	17.0	7500	267	30	0.4	1.3
Second Process Seco	54	Te Puna	SG	4	4	4	3.4	1.5	87.6	10.9	350	120	3.4	<1	24.0	6000	133	33	0.9	2.9
ST Matua BS 3 3 3 3 3 3 3 3 3	55	Wairoa Est.	BS	3	3	5	3.0	0.3	87.0	12.6	590	180	4.3	1.1	21.0	16000	138	14	0.8	2.4
Signature Sign	56	Wairoa Est.	BS/SF	3	2	4	3.3	0.1	87.5	12.5	520	130	4.3	1.3	35.0	15000	268	14	0.5	1.4
Solid	57	Matua	BS	3	3	3	3.2	0.1	93.5	6.4	460	150	2.0	<1	13.0	11000	98	14	0.6	1.3
BS	58	Tilbey Pt	SG	2	2	3	3.5	5.9	88.1	5.9	410	180	2.6	<1	22.0	8700	111	29	0.7	2.4
Fig. Waikareao Entrance BS/SF 2 2 3 2.1 6.4 89.5 4.0 390 180 2.3 <1 20.0 8400 263 26 0.5	59	Otumoetai	SG/SF	2	3	3	1.3	4.0	94.2	1.8	200	91	1.6	<1	8.4	4000	170	39	0.7	2.4
Figure F	60	Otumoetai	BS	1	1	2	1.8	<0.1	99.3	0.6	190	110	<1	<1	11.0	3600	63	20	0.7	1.9
SG 2 1 3 3.1 0.4 81.3 18.5 500 180 3.0 1.3 45.0 7500 108 25 0.8	61	Waikareao Entrance	BS/SF	2	2	3	2.1	6.4	89.5	4.0	390	180	2.3	<1	20.0	8400	263	26	0.5	1.5
64 Waikareao Est. BS 2 1 3 2.5 2.1 62.7 5.1 460 100 1.8 <1 14.0 11000 68 20 0.8 65 Waipu Bay SG 2 2 2 3 3.2 1.0 90.0 9.1 450 160 2.5 1.3 22.0 5400 68 29 0.7 66 Waipu Bay BS 2 1 2 1.5 0.8 94.7 4.4 250 120 1.8 <1 15.0 4100 56 28 0.8 67 Waipu Bay BS/SF 2 1 1 1 1.9 0.4 92.7 7.0 220 89 1.4 <1 9.5 2600 59 24 0.8 68 Waimapu Est. BS 3 3 3 3 2.2 7.1 83.4 9.5 410 150 2.5 1.7 20.0 9000 86 27 0.8 69 Waimapu Est. BS 5 4 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	62	Waikareao Est.	BS	3	2	3	2.5	0.3	87.2	12.4	380	120	2.1	<1	16.0	6600	57	20	0.8	2.1
65 Waipu Bay SG 2 2 3 3 3.2 1.0 90.0 9.1 450 160 2.5 1.3 22.0 5400 68 29 0.7 66 Waipu Bay BS 2 1 2 1.5 0.8 94.7 4.4 250 120 1.8 <1 15.0 4100 56 28 0.8 67 Waipu Bay BS/SF 2 1 1 1 1.9 0.4 92.7 7.0 220 89 1.4 <1 9.5 2600 59 24 0.8 68 Waimapu Est. BS 3 3 3 2.2 7.1 83.4 9.5 410 150 2.5 1.7 20.0 9000 86 27 0.8 69 Waimapu Est. BS 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 74 32 0.9 73 Rangataua Bay BS 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 20.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	63	Waikareao Est.	SG	2	1	3	3.1	0.4	81.3	18.5	500	180	3.0	1.3	45.0	7500	108	25	0.8	2.5
66 Waipu Bay BS 2 1 2 1.5 0.8 94.7 4.4 250 120 1.8 <1 15.0 4100 56 28 0.8 67 Waipu Bay BS/SF 2 1 1 1 1.9 0.4 92.7 7.0 220 89 1.4 <1 9.5 2600 59 24 0.8 68 Waimapu Est. BS 3 3 3 3 2.2 7.1 83.4 9.5 410 150 2.5 1.7 20.0 9000 86 27 0.8 69 Waimapu Est. BS 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 3 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8 75 Welcome Bay BS 3 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	64	Waikareao Est.	BS	2	1	3	2.5	2.1	62.7	5.1	460	100	1.8	<1	14.0	11000	68	20	0.8	2.4
67 Waipu Bay BS/SF 2 1 1 1 1.9 0.4 92.7 7.0 220 89 1.4 <1 9.5 2600 59 24 0.8 68 Waimapu Est. BS 3 3 3 2.2 7.1 83.4 9.5 410 150 2.5 1.7 20.0 9000 86 27 0.8 69 Waimapu Est. BS 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay SG 3 3 3 4 2.4 0.9 88.8 10.3 580 190 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	65	Waipu Bay	SG	2	2	3	3.2	1.0	90.0	9.1	450	160	2.5	1.3	22.0	5400	68	29	0.7	2.4
68 Waimapu Est. BS 3 3 3 3 2.2 7.1 83.4 9.5 410 150 2.5 1.7 20.0 9000 86 27 0.8 69 Waimapu Est. BS 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay SG 3 3 3 4 2.4 0.9 88.8 10.3 580 190 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 3 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	66	Waipu Bay	BS	2	1	2	1.5	0.8	94.7	4.4	250	120	1.8	<1	15.0	4100	56	28	0.8	2.7
69 Waimapu Est. BS 5 4 5 4.0 4.2 63.4 32.4 560 210 4.4 2.2 44.0 8200 96 14 0.9 70 Waimapu Est. BS 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay SG 3 3 3 4 2.4 0.9 88.8 10.3 580 190 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	67	Waipu Bay	BS/SF	2	1	1	1.9	0.4	92.7	7.0	220	89	1.4	<1	9.5	2600	59	24	0.8	2.3
70 Waimapu Est. BS 3 3 4 3.2 0.5 78.2 21.2 280 160 3.1 1.6 38.0 10000 67 21 0.9 71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1	68	Waimapu Est.	BS	3	3	3	2.2	7.1	83.4	9.5	410	150	2.5	1.7	20.0	9000	86	27	0.8	2.3
71 Rangataua Bay BS 1 2 3 2.0 14.6 82.8 2.6 470 150 1.2 <1 18.0 11000 214 25 0.5 72 Rangataua Bay SG 3 3 4 2.4 0.9 88.8 10.3 580 190 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1	69	Waimapu Est.	BS	5	4	5	4.0	4.2	63.4	32.4	560	210	4.4	2.2	44.0	8200	96	14	0.9	2.0
72 Rangataua Bay SG 3 3 4 2.4 0.9 88.8 10.3 580 190 2.7 1.2 20.0 9700 74 32 0.9 73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1	70	Waimapu Est.	BS	3	3	4	3.2	0.5	78.2	21.2	280	160	3.1	1.6	38.0	10000	67	21	0.9	2.5
73 Rangataua Bay BS/P 2 1 3 2.5 4.0 82.0 14.1 640 180 2.7 1.2 19.0 9800 67 18 0.7 74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1	71	Rangataua Bay	BS	1	2	3	2.0	14.6	82.8	2.6	470	150	1.2	<1	18.0	11000	214	25	0.5	1.8
74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	72	Rangataua Bay	SG	3	3	4	2.4	0.9	88.8	10.3	580	190	2.7	1.2	20.0	9700	74	32	0.9	2.9
74 Rangataua Bay BS 2 1 3 1.8 0.3 96.3 3.5 180 93 1.2 <1 9.8 9100 93 19 0.8 75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	73	Rangataua Bay	BS/P	2	1	3	2.5	4.0	82.0	14.1	640	180	2.7	1.2	19.0	9800	67	18	0.7	2.1
75 Welcome Bay BS 3 3 3 2.8 0.9 86.9 12.2 280 180 2.7 1.5 28.0 9100 79 28 0.8	74	Rangataua Bay		2	1	3	1.8	0.3	96.3	3.5	180	93	1.2	<1	9.8	9100	93	19	0.8	2.4
	75	Welcome Bay		3	3	3	2.8	0.9	86.9	12.2	280	180	2.7	1.5	28.0	9100	79	28	0.8	2.5
	Min						0.9	<0.1	23.7	<0.1	140	51	<1	<1	<5	210	29	10	0.3	0.7
Max 10 14.6 100 76.4 1900 580 13 6.1 55 16000 333 39 0.9	Max						10	14.6	100	76.4	1900	580	13	6.1	55	16000	333	39	0.9	3.0
Average 2.9 1.7 84.3 13.2 481 169 2.6 1.0 17.4 6144 119 25 0.7				Average	2.9	1.7	84.3	13.2	481	169	2.6	1.0	17.4	6144	119	25	0.7	2.1		

^{*}BS = bare sand, SG = seagrass, SF = shellfish, P = pesticides and ** Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).

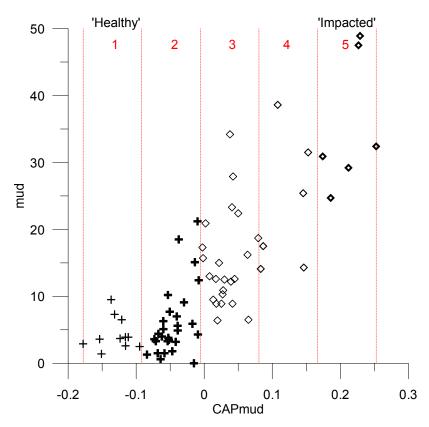


Figure A3.1. Canonical analysis of principal coordinates (CAP) for mud versus percentage silt and clay in sediment (mud) for 75 sites in Tauranga Harbour (1 mm model). Red dashed lines demarcate the five ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

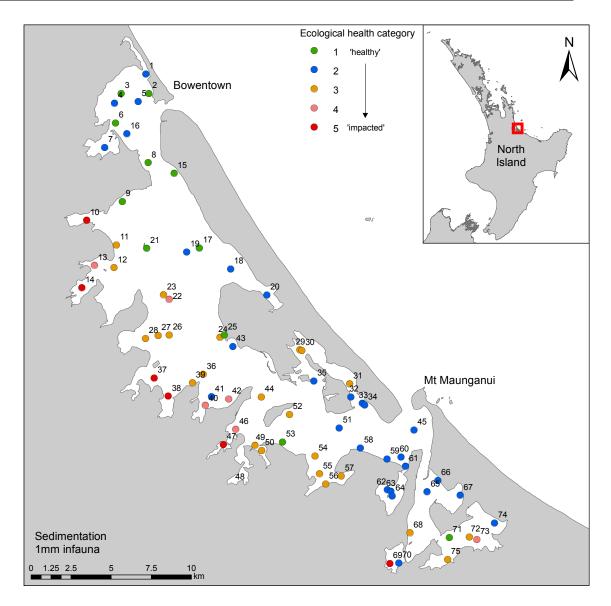


Figure A3.2. Canonical analysis of principal coordinates (CAP) analysis for sedimentation (1 mm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of sedimentation ('healthy') and a red (high) ranking indicates a high effect ('impacted'). Major rivers entering the harbour are indicated in blue.

Table A3.1. Sedimentation canonical analysis of principal coordinates (CAP) ecological health categories (1 mm model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. Top five species contributing to each group determined by SIMPER analysis of 4th root transformed infauna data. AFDW = ash-free dry weight, chl-*α* = chlorophyll-*α*, N = total abundance per core, S = total number of taxa per site.

					0/	0/		N	S	То	p five species		
	Category	Sites	% gravel	% sand	% silt/clay	% AFDW	Chl-α μg/kg	(per core)	(per site)	Scientific name	Common name	% contrib	Cum %
Healthy	1	2, 3, 6, 8, 9, 15, 17, 21, 25, 53, 71	0.3–14.6	82.8–97.2	1.4–9.5	0.9–3.8	1200–11000	13–190	18–37	Macomona liliana Austrovenus stutchburyi Nucula hartvigiana Prionospio aucklandica Heteromastus filiformis	Wedge shell Cockle Nut shell Worm Worm	16.88 16.51 12.03 11.97 7.57	16.88 33.39 45.42 57.39 64.96
	2	1, 4, 5, 7, 16, 18, 19, 20, 32, 33, 34, 35, 41, 43, 45, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 74	< 0.1–6.4	62.7–100	< 0.1–21.2	0.9–3.5	210–11000	8–233	14–39	Macomona liliana Austrovenus stutchburyi Heteromastus filiformis Prionospio aucklandica Nucula hartvigiana	Wedge shell Cockle Worm Worm Nut shell	17.05 11.27 9.46 8.79 8.39	17.05 28.32 37.78 46.57 54.96
	3	11, 12, 23, 24, 26, 27, 28, 29, 30, 31, 36, 39, 44, 49, 50, 52, 54, 55, 56, 57, 68, 72, 75	< 0.1–7.1	64.9–93.5	6.4–34.2	1.8–4.5	1900–16000	14–86	9–33	Heteromastus filiformis Nucula hartvigiana Macomona liliana Scolecolepides benhami Nereididae (juvenile)	Worm Nut shell Wedge shell Worm Worm	18.47 11.64 11.01 10.94 10.04	18.47 30.11 41.11 52.06 62.10
\downarrow	4	13, 22, 40, 42, 46, 73	0.2–4.0	51.6–85.1	14.1–38.6	2.5–4.2	2800–9800	11–61	13–27	Heteromastus filiformis Macomona liliana Scolecolepides benhami Nucula hartvigiana Nereididae (juvenile)	Worm Wedge shell Worm Nut shell Worm	23.30 18.79 15.65 13.09 10.07	23.30 42.09 57.74 70.82 80.89
Impacted	5	10, 14, 37, 38, 47, 69	0.3–10.2	50.7–74.3	24.7–48.9	4.0–4.5	1100–8800	8–27	9–17	Nicon aestuariensis Macomona liliana Scolecolepides benhami Heteromastus filiformis Anthopleura aureoradiata	Worm Wedge shell Worm Worm Sea anemone	25.74 24.01 18.70 13.84 5.44	25.74 49.75 68.45 82.29 87.73

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites)

Figure A3.3. Canonical analysis of principal coordinates (CAP) for nutrients versus the PC1 axes derived for sediment nutrient data (TN, TP, chl-α) for 75 sites in Tauranga Harbour (1 mm model). Red dashed lines demarcate the five ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

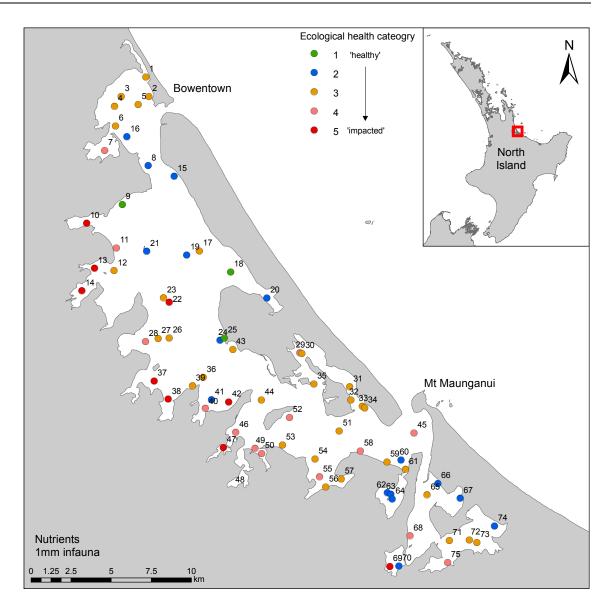


Figure A3.4. Canonical analysis of principal coordinates (CAP) for nutrients (1 mm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of nutrients ('healthy') and a red (high) ranking indicates a high effect ('impacted').

Table A3.2. Nutrient canonical analysis of principal coordinates (CAP) environmental health categories (1 mm model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. Top five species contributing to each group determined by SIMPER analysis of 4th root transformed infauna data. TN = total nitrogen, TP = total phosphorous, AFDW = ash-free dry weight, chl-*α* = chlorophyll-*α*, N = total abundance per core, S = total number of taxa per site.

			TNI	TD	0/		N	S	Тор	five species		
	Category	Sites	TN (mg/kg)	TP (mg/kg)	% AFDW	Chl-α μg/kg	(per core)	(per site)	Scientific name	Common name	% contrib	Cum %
Healthy	1	9, 18, 25	140-180	51-78	0.9-1.0	210-3800	13-17	18-22	Orbinia papillosa Zeacumantus lutulentus Nucula hartvigiana Nereididae (juvenile) Macomona liliana	Worm Spire shell Nut shell Worm Wedge shell	26.00 17.48 11.39 9.40 8.65	26.00 43.48 54.87 64.26 72.92
	2	8, 15, 16, 19, 20, 21, 24, 41, 60, 62, 63, 64, 66, 67, 70, 74	180-540	89-200	1.5-3.8	1200-11000	8-160	14-37	Macomona liliana Nereididae (juvenile) Prionospio aucklandica Scoloplos cylindrifer Zeacumantus lutulentus	Wedge shell Worm Worm Worm Spire shell	22.35 8.71 7.90 7.12 6.39	22.35 31.06 38.95 46.07 52.46
	3	1, 2, 3, 4, 5, 6, 12, 17, 23, 26, 27, 30, 31, 32, 33, 34, 35, 36, 39, 43, 44, 51, 53, 54, 56, 57, 59, 61, 65, 71, 72, 73	200-640	91-220	1.3-4.3	1900-15000	16-233	11-39	Heteromastus filiformis Macomona liliana Austrovenus stutchburyi Nucula hartvigiana Nereididae (juvenile)	Worm Wedge shell Cockle Nut shell Worm	15.53 13.46 13.44 13.14 7.73	15.53 28.99 42.44 55.58 63.31
	4	7, 11, 28, 29, 40, 45, 46, 49, 50, 52, 55, 58, 68, 75	280-920	120-290	1.2-4.5	1100-16000	14-100	9-33	Heteromastus filiformis Macomona liliana Nucula hartvigiana Scolecolepides benhami Nereididae (juvenile)	Worm Wedge shell Nut shell Worm Worm	20.43 13.22 12.25 8.44 7.93	20.43 33.64 45.90 54.34 62.27
Impacted	5	10, 13, 14, 22, 37, 38, 42, 47, 69	540-1000	210-340	3.1-4.5	2800-8800	8-61	9-27	Macomona liliana Nicon aestuariensis Heteromastus filiformis Scolecolepides benhami Nucula hartvigiana	Wedge shell Worm Worm Worm Nut shell	23.81 17.47 16.74 16.21 7.78	23.81 41.28 58.02 74.24 82.02

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).

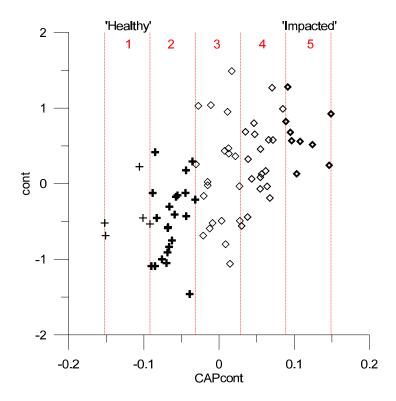


Figure A3.5. Canonical analysis of principal coordinates (CAP) for contamination versus the PC1 axes derived from heavy metal concentrations in sediments (Cu, Pb, Zn) for 75 sites in Tauranga Harbour (1 mm model). Red dashed lines demarcate the five ecological health categories with '1' indicating a 'healthy' community and '5' indicating an 'impacted' community.

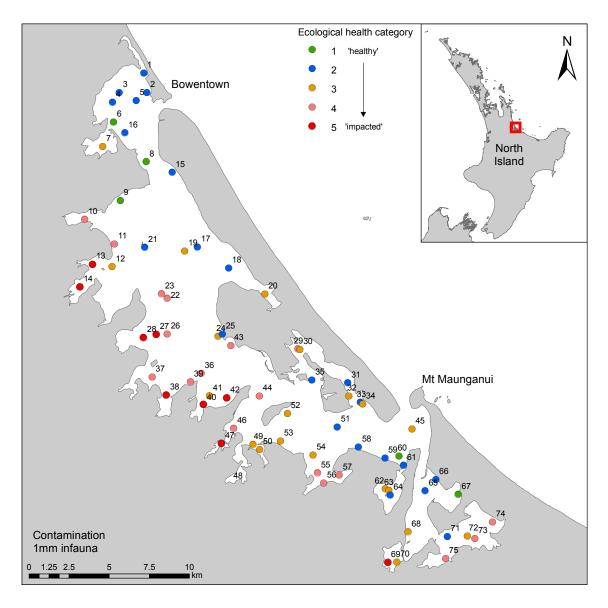


Figure A3.6. Canonical analysis of principal coordinates (CAP) for contamination (1 mm model) in Tauranga Harbour for 75 sites. Colours indicate the ecological health categories where a green (low) ranking indicates a low effect of contamination ('healthy') and a red (high) ranking indicates a high effect ('impacted').

Table A3.3. Contamination canonical analysis of principal coordinates (CAP) ecological health categories (1 mm model) for 75 sites in the Tauranga Harbour and corresponding ranges for key variables for each group. Top five species contributing to each group determined by SIMPER analysis of 4th root transformed infauna data. Pb = lead, Cu = copper, Zn = zinc, N = total abundance per core, S = total number of taxa per site.

			Pb	Cu	Zn	%	N	S	1	Top five speci	es	
	Category	Sites	(mg/kg)	(mg/kg)	(mg/kg)	silt/clay	(per core)	(per site)	Scientific name	Common name	% contrib	Cum %
Healthy	1	6, 8, 9, 60, 67	< 1.0-1.4	< 1.0	9.5-27.0	0.6-7.3	14-53	17-27	Macomona liliana Prionospio aucklandica Magelona dakini Orbinia papillosa Phoxocephalidae	Wedge shell Worm Worm Worm Amphipod	24.73 13.12 10.27 9.41 9.22	24.73 37.86 48.12 57.54 66.75
	2	1, 2, 3, 4, 5, 15, 16, 17, 18, 21, 25, 31, 33, 35, 51, 58, 59, 61, 64, 65, 66, 71	< 1.0-2.6	< 1.0-1.3	< 5.0-22.0	1.3-13.0	13-233	18-39	Austrovenus stutchburyi Macomona liliana Nucula hartvigiana Prionospio aucklandica Heteromastus filiformis	Cockle Wedge shell Nut shell Worm Worm	19.69 14.07 10.93 9.53 7.58	19.69 33.76 44.69 54.22 61.81
	3	7, 12, 19, 20, 24, 30, 32, 34, 41, 45, 49, 50, 52, 53, 54, 62, 63, 68, 70, 72	< 1.0-5.4	< 1.0-2.0	6.4-55.0	< 0.1-27.9	8-190	14-33	Macomona liliana Heteromastus filiformis Nucula hartvigiana Prionospio aucklandica Austrovenus stutchburyi	Wedge shell Worm Nut shell Worm Cockle	16.32 16.10 9.67 8.53 8.35	16.32 32.42 42.09 50.62 58.97
	4	10, 11, 22, 23, 26, 29, 36, 37, 39, 43, 44, 46, 55, 56, 57, 73, 74, 75	1.1-5.6	< 1.0-3.0	9.8-35.0	3.5-47.5	14-59	11-31	Heteromastus filiformis Scolecolepides benhami Macomona liliana Nereididae (juvenile) Nucula hartvigiana	Worm Worm Wedge shell Worm Nut shell	18.35 17.46 15.02 12.32 10.02	18.35 35.81 50.83 63.15 73.16
Impacted	5	13, 14, 27, 28, 38, 40, 42, 47, 69	2.8-4.6	< 1.0-2.4	14.0-44.0	14.3-48.9	8-61	9-27	Scolecolepides benhami Heteromastus filiformis Nicon aestuariensis Macomona liliana Nereididae (juvenile)	Worm Worm Worm Wedge shell Worm	21.98 17.47 15.72 14.50 7.77	21.98 39.46 55.17 69.67 77.44

Note: Site 48 excluded from CAP analysis because it was an outlier (outside the range of variation observed at the other sites).