
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


 

 

 

Linear Genetic Programming with Experience 

 

 

A thesis 

submitted in fulfilment   

of the requirements for the degree 

of 

Master of Science (Research) 

at 

The University of Waikato 

by 

Liang Liu 

 

 

2015 

 

 

 

 



ii 

 

Abstract 

A novel method of using Machine Learning (ML) algorithms to improve the 

performance of Linear Genetic Programming (LGP) is studied. This method uses 

structures, which are called Experience Models (EMs), to organize the trained ML 

models. EMs are used for different mutate actions of the mutation operator in 

LGP. The purpose of using EM is to regulate the random search performed by the 

mutation operator. The aim of using EMs is to let the suitable candidates have 

higher chances to be selected.  

In this study, two sources of knowledge are used to create the training sets that are 

used to train ML models. The first source is the pre-existing knowledge of 

symbolic regression. This knowledge reflects the effect of adding one math 

function segment to another math function segment. The second source is the 

knowledge generated during the evolution of LGP. This knowledge reflects the 

effect of using different gene components at different chromosome indexes on the 

overall fitness. Based on these two sources of knowledge, two types of EM are 

designed. They are Static Model (SM) and Dynamic Model (DM). The SM uses 

ML models trained with the first knowledge source. A SM tries to achieve the aim 

of using an EM by reducing the size of the candidate sets used by the increase 

action of the mutation operator. The DM uses ML models trained with the second 

knowledge source. A DM tries to achieve the aim of using an EM by creating 

distributions of gene component types, which can reflect the information in the 

second knowledge source, for change action of the mutation operator. In this 

study, SM is used only for increase action in the mutation operator; DM is used 

only for change action in the mutation operator.  

From the experiment results, if compared with an LGP, when an LGP using a SM, 

it tends to need fewer generations to have a hit, at the same time achieving similar 

mean best fitness. In contrary, when used with a DM, an LGP do not show 

performance improvements. 
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1. Introduction  

1.1 Overview 

This thesis studies a novel method of using Machine Learning (ML) models to 

improve the performance of Linear Genetic Programming (LGP) (Brameier, 

2004). The idea of this method is by adding a layer of organize structure called 

Experience Model to organize trained ML models as classifiers. When 

recombination operators need to perform, the EMs will first let the ML models 

give predictions for given individuals, then give suggestions to recombination 

operators. The actual change to the given individuals by the recombination 

operators will be performed based on these suggestions. That is, EMs can 

influence the behavior of recombination operators which will then give influence 

to the evolution of LGP. 

A novel gene representation and new recombination operators are adopted for 

LGP to simplify the utilization of ML models. To demonstrate the effect of using 

ML models with less performance influences from recombination operators, all 

recombination operators are designed to have only basic functionality, only one 

function if possible.  

In this study, two sources of knowledge are used to create training sets to train 

ML models. They are knowledge acquired before and during an LGP run. The 

trained ML models are used in EMs. There are two types of EM, Static Model 

(SM) and Dynamic Model (DM). SM uses ML models trained with the training 

sets derived from the pre-existing knowledge of symbolic regression, which can 

be acquired before an LGP run. ML models in a SM will not change during an 

LGP run. On the other hand, DM uses ML models trained with the knowledge 

generated during the LGP evolution. The ML models in a DM will be updated at 

each generation. A third model, Hybrid Model (HM) is also studied; it is a model 

that uses a SM and a DM at the same time. Therefore, the LGP types used in this 

study are LGP, LGP with SM, LGP with DM, and LGP with HM.  

In this study, two sets of recombination operators are used: the first set is roulette 

wheel selection, single-point uniform crossover, and single-action mutation; the 
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second set is roulette wheel selection, multi-point uniform crossover, and multi-

action mutation (for more details see Chapter 3).  

In this study, EMs are used only for mutation operator. In all three actions of the 

mutation operator, increase, change, and decrease, SM is used only for the 

increase action; DM is used only for the change action. Decrease action is not 

modified. In four LGP types, an LGP uses a mutation operator without EM; an 

LGP with SM uses a mutation operator with modified increase action; an LGP 

with DM uses a mutation operator with modified change action; an LGP with HM 

uses a mutation operator with both modified increase action and modified change 

action. 

In this study, the influence of an EM is designed to be limited in one gene. The 

reason for this is the difficulty of creating necessary training sets to train 

classifiers for the SM, and the computational difficulty of utilizing complex 

models for the DM.  

SM is used to give suggestions for increase action. In the modified increase action, 

new genes will be added to the last of a chromosome instead of being inserted into 

random indexes. The function of a SM is to reduce the size of the suggestion sets 

for increase action at the same time keep the suitable candidate can be selected. 

DM is used to give suggestions for change action. In the modified change action, 

when choosing a new gene component, the choice is made based on the 

distribution given by the DM instead of using the uniform distribution. The 

function of a DM is to increase the probability of the gene components that 

usually appear in individuals that have higher fitness and decrease the probability 

of the gene components that usually appear in individuals that have lower fitness.  

In this study, the symbolic regression benchmark set introduced in Uy et al. (2011) 

and the concrete dataset introduced in Yeh (1998) are used as benchmark sets. 

The experiment results are compared in two ways: mean generations needed to 

have a hit and mean best fitness. From the experiment results, we can see that 

when used with a SM, an LGP tend to need fewer generations to have a hit at the 

same time achieving similar mean best fitness. When used with only a DM, an 

LGP usually does not show performance improvements. 
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1.2 Motivation 

Usually, two types of knowledge that can give influence to our process of solving 

a problem. They are static knowledge and dynamic knowledge. Static knowledge 

is the knowledge we learned before we encounter the problem. Usually, it is well 

structured and often tested. Dynamic knowledge is the knowledge about the 

problem. It represents how well we understood the problem. This knowledge will 

change (or say increase) as we learn more about the problem.  

The EM is a general framework try to mimic the idea above. The Static Model 

represents the static knowledge and Dynamic Model represents the dynamic 

knowledge. In this thesis, ML models are used to learn two types of knowledge.  

1.3 Chapter Arrangement 

Chapter 1 is used to give an overview to this study. Chapter 2 is used to give 

general background information for evolutionary algorithms, LGP, symbolic 

regression, and machine learning. Chapter 3 is used to introduce the LGP model 

used in this study. Chapter 4 is used to introduce the experience model. Chapter 5 

is used to introduce experiment settings and give experiment results. Chapter 6 

shows the conclusion of this study.  
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2. Background 

2.1 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are optimization methods inspired by Darwinian 

Theory (Jones, 2002). They do stochastic optimization by creating diverse 

samples as individuals each represent a possible solution. At each generation, the 

algorithm updates a population composed of individuals through recombination 

operators. EA access the fitness of an individual in the population using problem 

specific fitness function. If the algorithm reaches the maximum generation, it will 

pick the best individual recorded as a solution. Alternatively, if any individual 

satisfies the stop criterion during the evolution, the algorithm will stop and present 

it as a solution. The abstract of evolutionary algorithms can be seen in Figure 2.1. 

 

Figure 2.1 Abstract of evolutionary algorithms 

Several branches of EA exist (Cantú-Paz and Kamath, 2001; de Castro, 2007), 

including Evolutionary Strategy (ES), Evolutionary Programming (EP), Genetic 

Algorithms (GA) and Genetic Programming (GP). Many theories and frameworks 

were also created based on EA. For example, Estimation of Distribution 

Algorithms (EDA) (Pelikan et al., 2002; Hauschild and Pelikan, 2011), 

Evolutionary Dynamic Optimization (EDO) (Nguyen et al., 2012), Genetics-

Based Machine Learning (GBML) (Kovacs, 2012), Search Based Software 

Engineering (SBSE) (Harman et al., 2012) and Learning Classifier System (LCS) 

(Bacardit et al., 2008).  

2.2 Linear Genetic Programming 

In Poli et.al (2008), genetic programming (GP) is described as:  

 “… an evolutionary computation (EC) technique that automatically solves 

problems without requiring the user to know or specify the form or structure of the 

Create the first generation of population,

and set it as the current generation

Get fitness for all individuals in the current generation

Any individual satisfy

the stop criterion?

Generate the next generation N from the current generation,

 and set N as current generation

Return that individual

Is maximum

generation 

has been reached?

Return known best individual

Y
N

Y

N
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solution in advance. At the most abstract level GP is a systematic, domain-independent 

method for getting computers to solve problems automatically starting from a high-level 

statement of what needs to be done.” 

Linear Genetic Programming (LGP) is a form of GP (Brameier, 2004). The 

differences between them mainly lie in the chromosome representation (Brameier 

and Banzhaf, 2007). As the name of LGP implies, LGP uses linear representation. 

Figure 2.2 gives a comparison between linear representation and tree 

representation.
1
  

Both tree representation and linear representation are the logical structure of their 

genetic contents. In tree representation, the atomic structure is node. One node 

contains one non-terminal or one terminal. The term non-terminal is used for all 

operators which can be set as inner nodes and cannot be set as leaf nodes 

(consider the situation when a + is placed at the leaf node). Terminal is the name 

for all variables and constants, they can be set as leaf nodes and cannot be set as 

inner nodes (consider the situation when a constant 1 is an inner node and a 

variable x is the descendent of 1). Therefore, the logical organization of gene 

components in GP with tree representation can be naturally split into two sets, a 

non-terminal set and a terminal set. In linear representation, because a list is used 

instead of a tree, one node has to have all the necessary components to be able to 

function alone (consider the situation when a list with two × and an 1). Therefore, 

the terminology of non-terminal and terminal cannot be used to describe nodes in 

LGP. However, they can be used to describe the components within a gene, which 

is the atomic structure of the LGP. A gene used in LGP has to contain at least two 

parts, one terminal and one non-terminal to be able to represent a math function 

properly. 

Figure 2.2 Comparison between tree representation and linear representation. The figure 

on the left is tree representation. The figure on the right is linear representation. They 

both represent the same polynomial 2 + 3 × 𝑥. 

                                                 
1
   Figure 2.2 is only used to demonstrate the differences between these representations.  

In Brameier (2004) and Brameier and Banzhaf (2007), the basic gene structure used is 

𝑜𝑝𝑟, 𝑟𝑒𝑔𝐷, 𝑟𝑒𝑔1, 𝑟𝑒𝑔2, … 𝑜𝑝𝑟 is one of the commands in the command set, 𝑟𝑒𝑔∗ is the register 

used. 𝑟𝑒𝑔𝐷 is the register used to store calculated result. 𝑟𝑒𝑔1, 𝑟𝑒𝑔2  and the following 𝑟𝑒𝑔∗ are 

the terms of 𝑜𝑝𝑟. Here, we can think 𝑜𝑝𝑟 as a non-terminal and all the 𝑟𝑒𝑔s as terminals.  

In the right graph, 𝑛𝑢𝑙𝑙 means the non-terminal does not exist at this index. 

+ 

2 × 

3 𝑥 

𝑛𝑢𝑙𝑙 2 

+     3 

×     𝑥 
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Unlike tree-based GP, genes in LGP do not have direct relationship between each 

other. This makes LGP very versatile which has several meanings. The first is the 

capability of reorganizing itself and the capability of exchanging genetic materials 

between individuals. Because there are no direct relationships between any two 

genes, linear chromosomes are robust. We do not need to worry about the index of 

a particular gene in the chromosome. Therefore, any number of genes between 

any two indexes can be safely deleted from one chromosome or exchanged 

between two individuals. Such action cannot be done with the tree representation 

(a leaf node cannot be swapped with an inner node). The second is LGP can use 

recombination operators from different sources. This study borrows uniform 

crossover from genetic algorithms (see Section 3.2.2). 

The recombination operators in LGP are selection, crossover, and mutation. 

Selection and crossover works together. Selection is used to select individuals 

from the population. Crossover is used to exchange genetic contents between 

selected individuals. Mutation is used to replace existing genetic materials with 

new elements of an individual. Workflow of recombination operators in one 

generation is shown in Figure 2.3. 

 

Figure 2.3 Workflow of selection, crossover, and mutation operators in one generation 

Current population 

Selection: 
Select m individuals from the given population 

Crossover: 
Produce n children from the selected individuals 

Mutate: 
Mutate o individuals from the individuals given by crossover operator 

Does the size of the next generation 
reach the population limit? 

Put the created individuals into the next generation 

Return the next generation 

 Y 

N 
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Elitism is a method that tries to keep the best population for the next generation. 

When using elitism, the best individuals from the current generation and the 

individuals in the next generation will be merged together and compete for 

survival and the worst individuals will be removed from the next generation. The 

evolution of LGP with elitism can be seen in Figure 2.4. 

Many variations and applications based on LGP have been published. Oltean and 

Groᶊan (2003) compared several LGP variants used for symbolic regression. 

Oltean et al. (2009) presented a review for GP variants with linear representations. 

Recent developments of LGP are listed Table 2.1 and 2.2.  

 

Figure 2.4 Evolution with elitism 

Table 2.1 Recent developments on theory of LGP  

Article Topic 

Hu and Banzhaf (2009), Hu 

et al. (2011) and Hu et al. 

(2013) 

Study on various aspects of evolvability in LGP system. 

Wilson and Banzhaf (2008) Gives comparison between Cartesian Genetic 

Programming and LGP 

Watchareeruetai et.al (2011) Studies the effect of redundancies in LGP. 

Harwerth (2011) Discusses the effect of applying islands in LGP. 

Gaudesi et al. (2013) Proposes a new distance metric for LGP 

Downey et al. (2010) Introduces one child selective crossover for LGP for 

multiclass object classification. 

McPhee and Poli (2008) Introduces how to use soft assignment in LGP. 

 

2.3 Symbolic Regression 

In Genetic Programming (GP) (Koza, 1992), symbolic regression is defined as: 

Get fitness for all individuals in the next generation 

Can stop? 
Generate next generation 

from the current generation 
using the recombination operators 

Y  N 

Elitism:  (will not perform at first generation) 
Step 1. Let the stored elites compete within the next generation. 
           Remove the worst individuals to keep the population size constant. 
Step 2. Refresh elites with individuals in the next generation. 

Initialize the first generation as the next generation 

Return the best individual recorded 

Set the next generation as the current generation 
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 “… finding a mathematical expression, in symbolic form, that provides a good, 

best, or perfect fit between a given finite sampling of values of the independent variables 

and the associated values of the dependent variables. That is, symbolic regression 

involves finding a model that fits a given sample of data.” 

There are two essential parts in symbolic regression: a terminal set and a function 

set. The terminal set can have variables, constants, and function calls without any 

input (Poli et.al, 2008). The function set can also be called as non-terminal set. It 

usually includes algorithm operators (+, −,×,÷) and mathematical functions like 

exponent, logarithmic, sine and cosine (Poli et.al, 2008). In this study, the former 

is called Double Variable Non-Terminals (DVNT), and the latter is called Single 

Variable Non-Terminals (SVNT).  

Table 2.2 Recent studies on applications of LGP 

Article Topic 

Wilson et al. (2011) Uses LGP to produce trade action for stock trading 

with multiple time frames. 

Wilson and Banzhaf (2009) Uses LGP and development GP with soft memory for 

stock trading. 

Wilson and Banzhaf (2010) Uses LGP for foreign exchange trading. 

Shavandi and Ramyani (2013) Uses LGP to predict solar global radiation. 

Zahiri and Azamathulla (2012) Uses LGP for the prediction of flow discharge in 

compound channels. 

Zahiri and Azamathulla (2014) Studies the performance of LGP and M5 tree for 

predicting flow discharge in compound channels. 

Mehr et al. (2013) Uses LGP for the prediction of streamflow. 

Mehr et al. (2014) Uses LGP for successive-station monthly streamflow 

prediction. 

Guven and Kişi (2011) Uses LGP to model daily pan evaporation. 

Guven and Kişi (2013) Studies the application of monthly pan evaporation 

modeling using LGP. 

Gandomi (2010) Uses LGP for the formulation of elastic modulus of 

concrete. 

Gandomi et al. (2014) Uses LGP for the prediction of shear strength on 

reinforced concrete beams without stirrups. 

Saeed et al. (2013) Uses LGP to predict the strength of concrete under 

multiaxial compression. 

2.4 Machine Learning 

Machine Learning (ML) is a major research field. It includes many mature 

algorithms such as linear regression, Artificial Neural Networks (ANN), decision 

trees, Bayes networks etc.  

EA and ML can complement each other. Models of ML algorithms like ANN, 

decision tree, rule-based classifier, Bayesian networks, and support vector 
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machines can be generated through EA (Cantú-Paz and Kamath 2001; Larrañaga 

et al., 2013; Kumar and Beniwal, 2013). On the other hand, ML models can also 

be used in EA. Examples are learnable evolution model (Wojtusiak, 2009; 

Cervone et al., 2000) and cultural algorithms (Reynolds, 1994; Coello and Becerra, 

2002; Reynolds and Peng, 2005). Zhang et al. (2011) gave a review on recent 

applications of using ML algorithms in GP. 

In general, when using ML algorithms, there are four steps: 

1) The generation or acquisition of training set 

In this step, the training set used to train ML models is acquired. The class of each 

instance in the training set is labeled. Training set is a dataset contain rows of 

instances. Each instance contains several attributes, each attribute occupy one 

column of the training set. Usually, the last attribute, or the last column is the 

class attribute. However, sometimes this can be changed. The class value in the 

class attribute of an instance is the learning target for the ML algorithm. 

2) Preprocessing 

The aim of this step is to make the training set more suitable for training. If the 

training set is already appropriate, this step is not necessary. Actions in this step 

may include removing or replacing inappropriate values in the training set, e.g. 

null values; standardizing or normalizing the training set; and reducing the 

dimension of the training set. 

3) Training of the ML models 

In this step, a ML model is trained with the training set. During this step, usually 

the performance of several ML algorithms needs to be compared in order to find 

the algorithm that can give the highest accuracy. Often, a ML algorithm needs to 

be tuned (changing its parameters) to make the training more efficient. There are 

many methods to evaluate the trained models. The most usual one of them is the 

10-fold crossover
1
. The training set can also be used for evaluation purpose, 

especially when the training set is small. The usual desired state for the trained 

models is to be neither overfit (give good prediction accuracy on the training set 

                                                 
1
 10-fold crossover is a method which use 10% of the training set as the test set to evaluate the 

training performance. The training accuracy is the mean accuracy on all 10 test sets.  
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but give bad prediction accuracy on the test set
1
), nor underfit (cannot give desired 

prediction accuracy at all).  

4) The use of trained models 

After having a ML model, it can be used to give predictions on new samples. 

However, these samples might need to go through step 2 to make them suitable.  

 

  

                                                 
1
 Test set have the same composition as training set. Usually, test set is a part of the training set 

that is purposely left out to test the training performance. Sometimes, test set is a separate data set, 

which may or may not have the same origin as the training set, and the sole purpose of it is to test 

the training performance. 
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3. Linear Genetic Programming in This Study 

In this study, a novel gene representation is adopted for LGP. The reason of using 

it is to make the use of EM more convenient. The crossover and mutation 

operators adopted in this study have only basic functions. The single-point 

uniform crossover and multi-point uniform crossover can only exchange genes 

between two individuals and cannot cause chromosome length changes. The 

mutation operators separate their different functions into different actions 

(increase action, decrease action and change action), so that each action has only 

one function (increase the length of a chromosome, decrease the length of a 

chromosome and mutate one gene in the chromosome). The aim of using these 

operators is to minimize the influence from the recombination operators on the 

evolution of LGP to make the analysis on the performance improvements of using 

EM with LGP more straightforward. Roulette wheel selection is used in this study. 

The reason of using it is that the crossover and mutation operators used are weak 

operators that only introduce minor changes into individuals. In order to keep the 

diversity in population
1
, roulette wheel selection is used. 

3.1 Gene and Chromosome Representation
2
 

When considering a standard math function, it is simple to separate it into 

segments as shown in Figure 3.1. 

 

Figure 3.1 Separate math function into segments 

If we write these math function segments vertically, we can have an LGP program 

as shown in Figure 3.2. 

                                                 
1
 Less surviving pressure can keep the diversity in the population to some degree. 

2
 The structure of this representation is designed with only the benchmark set I (see section 5.1) in 

mind. Although this gene representation can represent other functions in other benchmark sets, it is 

not the author’s intention to create a general representation.  

𝑥2 + 𝑥 + 1 𝑥 × 𝑥 + 𝑥 + 1  Function Segment    𝑥    × 𝑥    +𝑥    +1 
Segment Index         0       1          2       3 
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Figure 3.2 An LGP program 

If we include parentheses, this gene representation can be written as: 

LB RB DVNT SVNT ,                                                                                        (3.1) 

where LB and RB are the indexes in the chromosome. They represent where the 

brackets will be placed in the translated math function. DVNT stands for double 

variable non-terminals, including +, −,×,÷. SVNT stands for single variable non-

terminals, including 𝑛𝑢𝑙𝑙1, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝 and 𝑙𝑜𝑔. T stands for terminals. It can be 

seen as a set of variables and constants. In this study, a left bracket will always be 

placed between a SVNT and a T; a right bracket will always be placed after a T. If 

we have a chromosome as shown in Table 3.1, we can translate it into 𝑠𝑖𝑛(𝑥) −

𝑒𝑥𝑝(𝑥 × (𝑥)/(1) + 𝑐𝑜𝑠(1)) with Algorithm 3.1. 

Table 3.1 A chromosome 

Index LB RB DVNT SVNT T 

0 1 4 + 𝑠𝑖𝑛 𝑥 

1 2 3 − 𝑒𝑥𝑝 𝑥 

2 3 0 × 𝑛𝑢𝑙𝑙 𝑥 

3 0 2 / 𝑛𝑢𝑙𝑙 1 

4 5 5 + 𝑐𝑜𝑠 1 

                                                 
1
 If we want to represent a math function properly, it is necessary to have a symbol that can let 

situations like +𝑥 exist. Therefore, 𝑛𝑢𝑙𝑙 is included. 

 

LGP program 
Index  Gene 
 0           𝑥 
 1         × 𝑥 
 2         +𝑥 
 3         +1 
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Algorithm 3.1 Convert chromosome into math representation 

It is possible to have situations when brackets are not balanced.
1
 Algorithm 3.2 is 

used to rebalance the brackets. 

 

Algorithm 3.2 Rebalance brackets by deletion  

To explain Algorithm 3.1 and 3.2 clearly, consider the following example: 

If we have a chromosome as shown in Table 3.1, the math function of it can be 

translated by using the following steps: 

                                                 
1
 Although genes are created with balanced brackets, there are various ways to introduce 

unbalance. The first is the change action of the mutation operator. In it, the LB and RB 

components are chosen randomly and do not try to keep the balance of brackets. The second is the 

effect of crossover. A gene that can let an individual have balanced brackets might not able to let 

another individual have balanced brackets. The third is the decrease action of the mutation 

operator. This action can delete genes that have brackets paired with other genes. 

Math function with unbalanced brackets 

From left to right accumulate the difference D between the number of left brackets and  
right brackets at every index. If at any index i, D become negative, remove right brackets 
at index i with number equal to the absolute value of D. Then set D to 0. 

D > 0? Return math function with balanced brackets 

From right to left, delete D left brackets 

N 

 

Y 

A Chromosome C 

Create n empty segments S as storage. 
They are used to store brackets, non-terminals, and terminals. 

n = length of C 

For each gene at index i: 
1. Place gene components DVNT, SVNT and T into Si. 
2. Insert left and right brackets to the indexes recorded with LB and RB. 
    Assume index recorded in gene i is j for LB and k for RB: 
    Left bracket is inserted between SVNT and T in Sj. 
    Right bracket is inserted after T in Sk. 

Put all segments together and remove the first DVNT 

Return the translated math function 
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1) Write down DVNT, SVNT, and T combinations by the order of the gene they 

belong.  

Storage Segments +𝑠𝑖𝑛𝑥 −𝑒𝑥𝑝𝑥 × 𝑥 /1 +𝑐𝑜𝑠1 

Chromosome Index 0 1 2 3 4 

 

2) Insert left and right brackets as LB and RB of the gene at the 0th index. 

Storage Segments +𝑠𝑖𝑛𝑥 −exp (𝑥 × 𝑥 /1 +𝑐𝑜𝑠1) 

Chromosome Index 0 1 2 3 4 

3) Insert left and right brackets as LB and RB of the gene at the 1st index. 

Storage Segments +𝑠𝑖𝑛𝑥 −exp (𝑥 × (𝑥 /1) +𝑐𝑜𝑠1) 

Chromosome Index 0 1 2 3 4 

 

4) Insert left and right brackets as LB and RB of the gene at the 2nd index. 

Storage Segments +𝑠𝑖𝑛𝑥) −exp (𝑥 × (𝑥 /(1) +𝑐𝑜𝑠1) 

Chromosome Index 0 1 2 3 4 

 

5) Insert left and right brackets as LB and RB of the gene at the 3rd index. 

Storage Segments +sin (𝑥) −exp (𝑥 × (𝑥) /(1) +𝑐𝑜𝑠1) 

Chromosome Index 0 1 2 3 4 

 

6) Insert left and right brackets as LB and RB of the gene at the 4th index. 

Because they are larger than the largest valid gene index, they will be placed at 

the last valid chromosome index, 4. 

Storage Segments +sin (𝑥) −exp (𝑥 × (𝑥) /(1) +cos (1)) 

Chromosome Index 0 1 2 3 4 

 

7) Remove the first DVNT. 

Storage Segments sin (𝑥) −exp (𝑥 × (𝑥) /(1) +cos (1)) 

Chromosome Index 0 1 2 3 4 

 

8) Write down the first row. We get 𝑠𝑖𝑛(𝑥) − 𝑒𝑥𝑝(𝑥 × (𝑥)/(1) + 𝑐𝑜𝑠(1)). 

Then consider the chromosome show in Table 3.2. It is the chromosome show in 

Table 3.1 with an additional gene. 
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Table 3.2 A chromosome with six genes 

Index LB RB DVNT SVNT T 

0 1 4 + 𝑠𝑖𝑛 𝑥 

1 2 3 − 𝑒𝑥𝑝 𝑥 

2 3 0 × 𝑛𝑢𝑙𝑙 𝑥 

3 0 2 / 𝑛𝑢𝑙𝑙 1 

4 5 5 + 𝑐𝑜𝑠 1 

5 5 0 × 𝑛𝑢𝑙𝑙 𝑥 

 

To create a function, 1) write down DVNT, SVNT and T combinations by the 

order of the gene they belong. 

Storage Segments +𝑠𝑖𝑛𝑥 −𝑒𝑥𝑝𝑥 × 𝑥 /1 +𝑐𝑜𝑠1 × 𝑥 

Chromosome Index 0 1 2 3 4 5 

 

2) Insert all the brackets. 

Storage Segments +sin (𝑥)) −exp (𝑥 × (𝑥) /(1) +cos 1) × ((𝑥) 

Chromosome Index 0 1 2 3 4 5 

3) Delete first DVNT and write down the function. 

sin (𝑥)) − exp (𝑥 × (𝑥)/(1) + cos 1) × ((𝑥) 

Now we have an unbalanced function. We can apply Algorithm 3.2 to rebalance it.  

1) Remove excessive right bracket from left to right, we get 

sin (𝑥) − exp (𝑥 × (𝑥)/(1) + cos 1) × ((𝑥) 

2) Remove excessive left bracket from right to left, we get 

sin (𝑥) − exp (𝑥 × (𝑥)/(1) + cos 1) × (𝑥) 

The gene representation described in this section is designed to ease the difficulty 

on using the Experience Models. There are benefits of using this representation 

with LGP.  

First, it is simpler for Dynamic Model (see Section 4.2) to find less biased 

relationships between gene components at a chromosome index and the overall 

fitness when linear representation are used and with all genes are functional 

(guaranteed by Algorithm 3.1). If using the gene representation introduced in 

Brameier (2004) or Brameier and Banzhaf (2007), because of the introns (non-

functional genes. See Brameier (2004) or Brameier and Banzhaf (2007)) are 

included, it is not possible to find an unbiased relationship between a gene 
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component and the overall fitness. The same is true for tree representation because 

of the bloat. 

Second, the insertion index for Static Model (see Section 4.1) is much simpler to 

be determined. The insertion index is the chromosome length in this study (the 

counting start from 0, therefore, the index after the last chromosome index is 

chromosome length). With tree representation, when bloat does not exist, static 

model has to determine which inner node or leaf node is the most suitable location. 

If bloat exists, this becomes much more difficult because the index found might 

not able to let the inserted gene cause the expected effect, as the structure might 

have changed after the insertion, the nodes in the bloat block might become active. 

It is the same for LGP with introns. As introns are segments of code that are 

purposely marked as non-functional (permanent) or functionally jumped through, 

the introns functionally jumped through might become active after the insertion 

because some conditions might have changed.   

3.2 Initialization 

In this study, the genes in the initial generation are generated randomly. For these 

genes, their LB and RB components are sampled 

from [0, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ –  1], their SVNT, DVNT, and T 

components are chosen randomly from the corresponding non-terminal set or 

terminal set. 

3.3 Recombination Operators 

3.3.1 Selection 

Roulette wheel selection is used in this study. It is also called as Fitness-

Proportionate selection (Luke, 2009). It is a select with replacement method. The 

algorithm is shown in Algorithm 3.3. The selection operator is used with 

crossover operator. If crossover operator needs 𝑛 individuals, roulette wheel 

selection has to run 𝑛 times to choose 𝑛 individuals from the population. 
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Algorithm 3.3 Roulette wheel selection 

3.3.2 Crossover 

In this study, the uniform crossover operator described in Luke (2009) is used 

with two modifications. The first is, instead of exchanging genes with same 

indexes, genes will be exchanged with random indexes.
 1
 The second is, instead of 

making exchanging decisions for all indexes, only one or a percentage of genes 

will be exchanged between two individuals.
 2

 

The workflow of the crossover operator is shown in Figure 3.3. The crossover rate 

is a predefined float number between [0,1]. It is used to control how often the 

crossover operator should perform. 

 

Figure 3.3 Workflow of crossover operator 

 

                                                 
1
 We cannot do the same, because the length of the chromosomes might be different. 

2
 As genes are exchanged randomly, we can use this equivalent method. A random float number 

between (0, 1) is used in the uniform crossover algorithm in Luke (2009) to limit the number of 

genes exchanged between two individuals. In this study, single-point uniform crossover limits the 

amount of genes exchanged between two individuals to one; multi-point uniform crossover limits 

the amount of genes exchanged between two individuals to a fixed percentage of total genes of the 

shorter chromosome of the two individuals. 

Current population

Get total fitness t

by adding the fitness 

of all individuals together

Get a random float number f

f ~ U(0,1)

Get target figure n

n = t x f

Set accumulated fitness a as 0 Is a >= n?

Return current individual

Get next individual,

set it as current individual,

let a += the fitness of current individual

Y

N

Selected 2 individuals 

Generate a float number F ~ [0, 1] 

F > Crossover Rate? 

Create 2 Children with crossover algorithm 

Return selected individuals  

Return 2 children  

Y 

 N 
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1) Single-Point Uniform Crossover 

This crossover algorithm uses two individuals. One gene is chosen randomly from 

each individual, then the selected genes will be swapped between two individuals 

to create two children.   

2) Multi-Point Uniform Crossover 

This is an extended version of single-point uniform crossover. Instead of only 

exchanging one gene, a percentage of genes will be exchanged between two 

individuals. The algorithm can be seen in Algorithm 3.4. 

 

Algorithm 3.4 Multi-point uniform crossover 

3.3.3 Mutation 

Mutation is a recombination operator used to change an individual asexually. The 

workflow of the mutation operator used in this study is shown in Figure 3.4. The 

mutate rate is a predefined float number between [0,1]. It is used to control how 

often the mutation operator should perform. 

In this study, the functions of mutation operators are separated into three aspects. 

They are increase action, which will add new genes into a chromosome, decrease 

action, which will delete existing genes from a chromosome, and change action, 

which will change the content of an existing gene with different element.  

 
Figure 3.4 Workflow of mutation operator 

Parents

Get the number of genes to be exchanged between parents n1,n2, 

by multiplying a predefined percentage p with the chromosome length l1,l2 of the parents.

 If n1 or n2 is not an integer, they will be truncated.

 If n1 or n2 is smaller than 1, the one smaller than 1 will be set to 1.

Get the number of genes to be exchanged n = min(n1,n2).

Do single-point uniform crossover n times without replacement. Children

An individual 

Generate a float number F ~ U(0,1) 

Is 
F > Mutate Rate ? Return the original individual 

Mutate the individual with mutate algorithm Return mutated individual 

Y 

   N 
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1) Single-Action Mutation 

Single-action mutation operator is shown in Algorithm 3.5. It mutates a candidate 

only one time with one mutate action. When a candidate has a chromosome length 

of 1, no decrease action will be performed on it. When a candidate has 

chromosome length of the maximum chromosome length, no increase action will 

be performed on it.  

In the increase action, the LB component will be acquired by sampling from 

[0, 𝑐𝑙] , where 𝑐𝑙 is the chromosome length of the candidate, the RB component 

will be acquired by sampling from [𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝐵, 𝑐𝑙], the SVNT, DVNT 

and T components are acquired by choosing randomly from the corresponding 

non-terminal set or terminal set. In the change action, if there are values other than 

the existing value, new values will be acquired by choosing randomly from them. 

For the LB and RB components, new values will be acquired by sampling 

from [0, 𝑐𝑙 –  1]. If the new value of the LB or RB component is equal to the 

existing value, it will be minus with 1 to be different from the existing value. In 

addition, if the new value is 0, it will be increased by 1. In the decrease action, one 

gene will be deleted randomly from the candidate. 

 

Algorithm 3.5 Single-action mutation operator 

2) Multi-Action Mutation  

The algorithm for multi-action mutation is shown in Algorithm 3.6. It can be seen 

as an extended version to the single-action mutation operator. Instead of only 

Choose mutate action type  
randomly 

Add a new gene to a randomly selected index. 
The gene components in the new gene are: 
LB: randomly select from [0, chromosome length of the individual ] 
RB: randomly select from [LB, chromosome length of the individual] 
SVNT: randomly select from the SVNT set 
DVNT: randomly select from the DVNT set 
T: randomly select from the T set 

Delete one gene randomly 

Choose one of the gene component types to be mutated randomly 

Choose which gene to be mutated randomly 

Change that gene component with a random new value 

An individual 

Return mutated individual 
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mutate with one action, this operator can mutate an individual multiple times with 

multiple action types. The maximum mutate times is an integer used to control 

how many mutate actions can be performed. The maximum chromosome length is 

a predefined integer to control the maximum chromosome length of a 

chromosome.  

This mutation operator is designed with the emphasis on decrease action to limit 

the changes in an individual. The aim is to make the mutation operator do not 

introduce too many new genes into an individual, and therefore, make the 

population have a more gradual evolution. 

3.4 Fitness 

In this study, mean absolute error (MAE) is used to measure the error between the 

target values and the values of an individual at the training cases of the benchmark 

problem. It is shown in Equation (3.1): 

𝑀𝐴𝐸 =  
1

𝑛
∑ 𝑎𝑏𝑠(𝑒𝑖)

𝑛
𝑖=1 ,                                                          (3.1) 

where 𝑒𝑖is the error at position 𝑖. The fitness is calculated by Equation (3.2): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  1
(1 + 𝑀𝐴𝐸)⁄                                                          (3.2) 

From Equation (3.2), we can see that the maximum fitness is 1.0. 
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Algorithm 3.6 Multi-action mutation operator 

 

  

Is the chromosome length

of the candidate

 L == 1?

 

N  

 Y

Get mutate times T ~ [0, maximum mutate times]

Is L <= T?

Is L + T > maximum chromosome length?

N

Do not do delete

Change the candidate C times

C  ~ 0 or 1

If T - C > 0

Add R random genes 

to the candidate

R = T - C

Delete D genes randomly

D ~ [0, L - 1]

Change the candidate C times

C ~ [0, L - D]

Add R random genes to 

the candidate

R = T - D - C

Y

Delete D genes randomly

D ~ [0, T]

Add R random genes

to the candidate

R ~ [0, D]

Is T - D > D ?

Y

Add R random genes

to the candidate

R ~ [0, T - D]

Change thecandidate C times

C = T - D - R

 Y

 N

Delete D genes randomly

D ~ [0, T]

Change the candidate C times

C ~ [0, T - D]

Add R random genes to the candidate

R = T - D - C

  N

An individual as candidiate

Return the mutated individual
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4. Experience Model 

Experience Model (EM) is a technique used to regulate the random search 

performed by recombination operators. As a population based metaheuristic 

algorithm, when an LGP is used to acquire the solution of a task, its 

recombination operators continuously sample the solution space. During their 

search, some regions of the space that cannot bring gain for fitness are repeatedly 

visited. The effort of search in these regions is wasted. With regulated 

recombination operators, the number of such action can be reduced. In this study, 

EMs are used to regulate the search activities of the mutation operator in LGP.  

In this study, the structures used to organize trained machine learning (ML) 

models are the EMs. There are two types of information used for training: the first 

type is the pre-existing knowledge that can be acquired before an LGP run; the 

second type is the information generated during an LGP run. In this study, the EM 

model uses the ML models trained by the first information type is called as Static 

Model (SM); the EM model uses the ML models trained by the second 

information type is called as Dynamic Model (DM). ML models in a SM will not 

change after their creation; ML models in a DM need to be updated at each 

generation. A third EM model, Hybrid Model (HM), is also used. Its purpose is to 

test the performance improvements on LGP when an LGP uses both SM and DM.  

SM and DM, when used in mutation operator, only one instance of them can exist 

at any LGP run. In LGP with SM, only one SM will be used for increase action. In 

LGP with DM, only one DM will be used for change action. In LGP with HM, 

one SM will be used for increase action and one DM will be used for change 

action. The workflow of single-action mutation operator with HM is shown in 

Figure 4.1. For multi-action mutation operator, as its functions are separated as 

single-action mutation operator, the usage of EMs in it is the same as the usage of 

EMs in single-action mutation operator. In both mutation operators, if a SM is 

used, when three new genes are needed, the increase action will asks the SM three 

times for support. Decrease action is not modified to keep an important source of 

randomness. 
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Figure 4.1 Workflow of single-action mutation operator with HM 

4.1 Static Model 

In this study, Static Model (SM) is the EM model used to learn the pre-existing 

knowledge of symbolic regression. To use a SM we have to go through 4 steps: 1) 

acquire a dataset; 2) create training sets from the dataset acquired; 3) train 

classifiers with the training sets created; 4) organize the trained classifiers to form 

a SM. 

The abstracted workflow of the usage of a SM can be seen at Figure 4.2. The SM 

works as a per instance basis. That is, for each new gene needed, an unlabeled 

instance is generated for the SM; then, based on the given instance, the SM 

generates the suggestions sets for mutation operator; after that, based on the 

provided suggestion sets, the new gene is created.  

 

Figure 4.2 Abstracted workflow of the usage of SM 

The function of a SM in a mutation operator is to reduce the amount of candidates 

in candidate sets. This can redirect the search activities to more proper regions as 

Candidate Choose one mutate action

Increase Action

The value of candidate at sample points as unlabeled instance I

Predict I using classifiers in SM

SM outputs suggested candidate sets S based on the predictions

Create new gene G from S

Add G to C

Decrease Action

Change Action

Candidate C

Choose one gene G from C and choose one gene component M of G to mutate

Get distribution D of target gene component type T of M from DM

Choose one gene component N from T with D 

Change G with N

Mutated candidate
Mutated candidate

Mutated candidate

Static Model 

<<In Increase Action of Mutation Operator>> 
New Gene Generation 

LB     : sample from [0, candidate chromosome length]  
RB    : candidate chromosome length 
SVNT: randomly select from suggested SVNT set 
DVNT: randomly select from suggested DVNT set 
T      : randomly select from suggested T set 

An instance 

A new Gene 

Suggestion sets for 
gene component types 
SVNT, DVNT, and T 
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candidates that are not accepted by the SM cannot be selected by the increase 

action. The ML models used in SM are classifiers. They are used to give 

predictions on which gene components should have the chance to be selected and 

which are not. As EM is a general framework, the ML algorithm used to create 

ML models for SM can be any ML algorithms as long as it can satisfy the 

following conditions: 1) it can deal with numeric attributes
1
; and 2) the outputs 

should be numeric value
2
.  

4.1.1 Pre-existing Knowledge of Symbolic Regression 

In this study, the pre-existing knowledge of symbolic regression is the relationship 

between math function segments with brackets. In other words, the knowledge 

considered is the effect of adding a math function segment to another sequence of 

segments. In this study, because of the limitation of compute capability, only 

relationships between two math function segments are considered. 

If we have a function 𝑥, we want to know the effect of +1, we can do the 

following calculation 𝑥 + 1 − 𝑥. Here, 𝑥 and +1 can be seen as math function 

segments. We can acquire the effect of +1 by minus the first segment from the 

combination of the two.  

In this study, these differences are called as signatures. Because most of the math 

function segment sequences have different signatures, this means signatures can 

be used for creating training set to train ML models.  

4.1.2 Dataset 

In this study, the values of signatures at the training cases of the benchmark 

problems form the datasets. Therefore, to acquire the datasets, the enumeration of 

math function segments has to be found. In this study, because only relationships 

between two math function segments are considered, brackets have only two valid 

positions, 0 and 1. When considering bracket positions for creating the 

enumeration, only brackets in the first segment will be considered. Under this 

situation, there are only two choices for the brackets combinations. They are 

shown in Table 4.1.  

                                                 
1
 This condition is listed here because the attributes in training set and the unlabeled instances need 

to be predicted are numeric values. 
2
 This condition is required because the predictions are considered as confident values. 
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Table 4.1 Combination of brackets 

Type LB RB Example 

A 0 0 𝑠𝑖𝑛(𝑥)  + 1 

B 0 1 𝑠𝑖𝑛(𝑥 + 1) 
 

If we write a signature in gene representation, we can have Table 4.2. LB and RB 

is not included in Table 4.2. 

Table 4.2 Signature in gene representation 

Gene Index DVNT SVNT T 

0 D1
1
 S1 T1 

1 D2 S2 T2 

2 − S1 T1 
 

Templates of signatures can be acquired by adding brackets with indexes show in 

Table 4.1 into the translated math function of Table 4.2. These templates can be 

seen in Equations (4.3) and (4.4):  

𝑆1 (𝑇1) 𝐷2 𝑆2 𝑇2 − 𝑆1 𝑇1                                                                                 (4.3) 

𝑆1 (𝑇1 𝐷2 𝑆2 𝑇2) − 𝑆1 𝑇1                                                                                 (4.4) 

The type A combination of brackets is used in Equation (4.3) and the type B 

combination of brackets is used in Equation (4.4).  

In this study, some signatures are ignored. This is because either they are 

redundant or they cause conflict in training set
2
. They are: relationships between 

constants, like sin(1) + cos (1); 0 conditions, like log(1) +, log(1) −, +log (1), 

and −log (1); when relationships between same variable and different constants 

appear, only one will be used. For example, if we have 𝑥 + sin (1), 𝑥 + cos (1), 

𝑥 + exp (1), and 𝑥 + 1, only 𝑥 + sin (1) will be used. Signatures with × 1 or ÷ 1 

are also ignored; when signatures with the type B bracket combination are 

mathematically equivalent with signatures with the type A bracket combination, 

signatures with the type B bracket combination will be ignored. 

If we have a DVNT set as +, −,×,÷, a SVNT set as 𝑛𝑢𝑙𝑙, and a T set as 𝑥, we can 

have signatures shown in Table 4.3 by using Equations (4.3) and (4.4). 

 

                                                 
1
 D1 is not important here, as it will be ignored. 

2
 It is necessary to remove redundancy from the beginning. It is much easier to do so at this stage. 
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Table 4.3 Signatures created from DVNT set of +, −,×,÷, SVNT set of 𝑛𝑢𝑙𝑙, and T set as 

𝑥 

(𝑥) + 𝑥 − 𝑥 (𝑥) − 𝑥 − 𝑥 

(𝑥 + 𝑥) − 𝑥 (𝑥 − 𝑥) − 𝑥 

(𝑥) × 𝑥 − 𝑥 (𝑥) ÷ 𝑥 − 𝑥 

(𝑥 × 𝑥) − 𝑥 (𝑥 ÷ 𝑥) − 𝑥 

 

After ignoring certain enumerations, we can have signatures that will be used for 

creating the dataset. They are shown in Table 4.4. 

Table 4.4 Signatures used for creating the dataset 

(𝑥) + 𝑥 − 𝑥 (𝑥) − 𝑥 − 𝑥 

(𝑥) × 𝑥 − 𝑥 (𝑥) ÷ 𝑥 − 𝑥 

 

A dataset can be acquired by having the values of the created signatures at the 

training cases of a benchmark problem. Because the training cases are real values, 

the attributes in the dataset are numeric attributes. 

If we have training cases of (−1, −0.5, 0.5, 1), we can have the dataset show in 

Table 4.5 from signatures shown in Table 4.4. 

Table 4.5 Dataset without information for labeling 

Signatures Dataset 

Row Index Attributes 

A1 A2 A3 A4 

(𝑥) + 𝑥 − 𝑥 1 −1 −0.5 0.5, 1 

(𝑥) − 𝑥 − 𝑥 2 1 0.5 −0.5 −1 

(𝑥) × 𝑥 − 𝑥 3 0 −0.25 −0.25 0 

(𝑥) ÷ 𝑥 − 𝑥 4 2 1.5 0.5 0 

 

In order to create a training set, the dataset has to be labeled. In this study, each 

row of the dataset corresponds to one signature. Because the cause of change on a 

math function is what we want the classifiers to predict, the labeling information 

is the DVNT, SVNT, and T combination in the second math function segment 

used to create the signatures.  

When we have Table 4.5, we can mark it to create the dataset used for creating 

training sets. It is shown in Table 4.6. 
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Table 4.6 Dataset with information for labeling 

Row of Dataset Information for Labeling 

DVNT SVNT T 

(−1, −0.5, 0.5, 1) + 𝑛𝑢𝑙𝑙 𝑥 

( 1, 0.5, −0.5, −1) − 𝑛𝑢𝑙𝑙 𝑥 

(0, −0.25, −0.25, 0) × 𝑛𝑢𝑙𝑙 𝑥 

( 2, 1.5, 0.5, 0) ÷ 𝑛𝑢𝑙𝑙 𝑥 

 

4.1.3 Training Set 

In this study, the class attribute is numeric binary class. That is, only two possible 

values for class attribute in the training sets, they are 0 and 1.
1
 For each classifier, 

one training set will be created for it. The accuracy of the classifier is its accuracy 

on its training set.
2
 

The first step to create a training set is to standardize every row in the dataset 

to[−1,1].3 The second step is to label all the instances with one of the labeling 

methods. The third step is to remove duplicates.
4
 When all duplicated instances 

have same class value, only one of them will be kept. If any duplicated instances 

have class labeled as 1, instances with class labeled as 0 will be discarded and 

only one instance with class labeled as 1 will be kept. 

In this study, two labeling strategies are used. The first is to label only one row of 

the dataset as 1, all the other rows are labeled as 0. Under this labeling method, 

one classifier will be trained to discriminate one instance from the rest, and the 

labeling information associated with the instance will be transferred to the 

corresponding classifier. Therefore, the amount of classifiers trained is equal to 

                                                 
1
 In this study, the predictions are seen as confidence values. This is possible because all the 

predictions are numeric values with range of [0, 1].   
2
 Other methods cannot be used here because of the size of the dataset can be small (several 

instances). Further, we wish the classifiers to learn as much as possible. The reason for this is that 

signatures are created from the combination of two segments. In the evolution of LGP, the 

chromosomes can easily grow over that size. From this, we can see that the dataset is not sufficient 

for the real situations. Therefore, further separates a training set into a training set and a test set 

might lead to lowered accuracy on all cases. 
3
 This is a standard procedure on training artificial neural networks (ANN). Its purpose is to 

increase the prediction accuracy. The MLPRegressor algorithm (Pentaho, n.d.) used in this study is 

a multilayer perceptron (MLP) with one hidden layer. It can deal with numeric attributes and can 

output numeric predictions (the reason of using regressor). It is one of the WEKA implementation 

of the multilayer perceptron algorithm. 
4
 Duplicates have to be removed. First, they can cause conflicts as instances have same attribute 

values but have different class values. Second, duplicates can cause unnecessary high weight on 

one instance because of multiple appearances.  



28 

 

the number of the instances. This method is called as Type I labeling method. The 

concept of Type I labeling method is shown in Figure 4.3.  

If we have the dataset show in Table 4.6, we can use Type I labeling method to 

create the training set used to train the classifier with labeling information of 

+, 𝑛𝑢𝑙𝑙, 𝑥. This training set is shown in Table 4.7.  

In the second method, the training sets are created based on the labeling 

information in the dataset. For each gene component of a gene component type, a 

classifier will be created to discriminate it from the rest of its type. Therefore, the 

total amount of classifiers trained is equal to the total number of gene components 

in all gene component types. This method is called as Type II labeling method. 

The concept of Type II labeling method is shown in Figure 4.4.  

If we add another row to the dataset show in Table 4.6
1
, we can have a new 

dataset as shown in Table 4.8. We can use Type II labeling method to create the 

training set shown in Table 4.9 from Table 4.8. It is used to train classifier 

responds to give predictions for DVNT+.  

 

Figure 4.3 Concept of Type I labeling method 

                                                 
1
 We do not need to care how we acquired this dataset and the exact labeling information. This 

example is just a demonstration of how a training set is created using Type II labeling method. 

Dataset

data   | labeling information

--------|------------------------

row 1| L1

--------|-------------------------

row 2| L2

--------|-------------------------

row 3| L3

--------|-------------------------

.......

Training Sets

data   |class

--------|------

row 1 | 0

--------|------

row 2 | 1

--------|------

row 3 | 0

--------|------

  ...... | 0 

data   |class

--------|------

row 1 | 1

--------|------

row 2 | 0

--------|------

row 3 | 0

--------|------

  ...... | 0 

data  |class

-------|------

row 1 | 0

--------|-----

row 2 | 0

--------|-----

row 3 | 1

--------|-----

  ...... | 0 

......

Classifier with L1

Classifiers

Classifier with L2

Classifier with L3

......

Training

Generate

Training

Training
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Table 4.7 A training set created with Type I labeling method 

Row Index Attributes 

A1 A2 A3 A4 Class 

1 −1 −0.5 0.5 1 1 

2 1 0.5 −0.5 −1 0 

3 0 −0.25 −0.25 0 0 

4 2 1.5 0.5 0 0 

 

 

Figure 4.4 Concept of Type II labeling method 

Table 4.8 Dataset with one more row  

Row of Dataset Information for Labeling 

DVNT SVNT T 

(−1, −0.5, 0.5, 1) + 𝑛𝑢𝑙𝑙 𝑥 

( 1, 0.5, −0.5, −1) − 𝑛𝑢𝑙𝑙 𝑥 

(0, −0.25, −0.25, 0) × 𝑛𝑢𝑙𝑙 𝑥 

( 2, 1.5, 0.5, 0) ÷ 𝑛𝑢𝑙𝑙 𝑥 

some data other than the first row + 𝑛𝑢𝑙𝑙 𝑥 

Dataset

data  | labeling information

        | DVNT | SVNT | T

-------|---------|--------|-------

row 1|    +    | null   |  x

-------|---------|--------|-------

row 2|    -     | sin     |  1

-------|---------|--------|-------

row 3|    +    | null   |  x

-------|---------|--------|-------

row 4|    -     | sin     | 1

-------|---------|--------|-------

......

Training sets for DVNTs

data  | class

-------|-------

row 1|    1

-------|-------

row 2|    0

-------|-------

row 3|    1

-------|-------

row 4|    0

-------|-------

......

Training set for

non-terminal +

data  | class

-------|-------

row 1|    0

-------|-------

row 2|    1

-------|-------

row 3|    0

-------|-------

row 4|    1

-------|-------

......

Training set for

non-terminal -

Training sets for SVNTs

data  | class

-------|-------

row 1|    1

-------|-------

row 2|    0

-------|-------

row 3|    1

-------|-------

row 4|    0

-------|-------

......

Training set for

non-terminal null

data  | class

-------|-------

row 1|    0

-------|-------

row 2|    1

-------|-------

row 3|    0

-------|-------

row 4|    1

-------|-------

......

Training set for

non-terminal sin

Training sets for Ts

data  | class

-------|-------

row 1|    1

-------|-------

row 2|    0

-------|-------

row 3|    1

-------|-------

row 4|    0

-------|-------

......

Training set for

terminal x

data  | class

-------|-------

row 1|    0

-------|-------

row 2|    1

-------|-------

row 3|    0

-------|-------

row 4|    1

-------|-------

......

Training set for

terminal 1

Classifiers used to predict DVNTs

Classifier used to give predictions for non-terminal +

Trained by training set for non-terminal +

Classifier used to give predictions for non-terminal -

Trained by training set for non-terminal -

Classifiers used to predict SVNTs

Classifier used to give predictions for non-terminal null

Trained by training set for non-terminal null

Classifier used to give predictions for non-terminal sin

Trained by training set for non-terminal sin

Classifiers used to predict Ts

Classifier used to give predictions for terminal x

Trained by training set for terminal x

Classifier used to give predictions for terminal 1

Trained by training set for terminal 1

......

......

......

Training sets for other DVNTs

......

Training sets for other SVNTs

......

Training sets for other Ts

......

Generate

Training

Training

Training

Classifiers for other SVNTs

Classifiers for other DVNTs

Classifiers for other Ts
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Table 4.9 A Training set created with Type II labeling method 

Row Index Attributes 

A1 A2 A3 A4 Class 

1 −1 −0.5 0.5 1 1 

2 1 0.5 −0.5 −1 0 

3 0 −0.25 −0.25 0 0 

4 2 1.5 0.5 0 0 

5 some data other than the first row 1 

4.1.4 Samples for Predictions 

In this study, the samples used for the classifiers to give predictions are acquired 

from the differences between the target values and the values of the candidate 

individual on the training cases of the benchmark problem. The difference at 

position 𝑖 is shown in Equation (4.1): 

𝑠𝑖 = 𝑡𝑖 − 𝑐𝑖,                                                                                                          (4.1) 

where 𝑠𝑖 is the difference at position 𝑖, 𝑡𝑖is the target value at position 𝑖, 𝑐𝑖is the 

value of the candidate individual on training case 𝑖. If we put all the 𝑠𝑖 together, 

we can have the unlabeled sample 𝑆 as shown in Equation (4.2): 

𝑆 = ⋃ 𝑠𝑖 𝑖                                                                                                              (4.2) 

We can see that sample 𝑆 does not have a class attribute. Therefore, before 

sending it to a SM, a pseudo class attribute will be added to 𝑆 to make it become a 

complete instance.  

The reason of using Equation (4.1) is that the direct way to increase the fitness of 

an individual is to minimize the differences between the target values and the 

values of the individual at the training cases. As signatures can be seen as 

descriptions of the effect of one math function segment added to the end of 

another math function segment, if a given sample is similar with the values of a 

signature at the training cases, then it is possible that the gene components 

correspond to the signature can reduce these differences.  

4.1.5 Structure of Static Model 

In this study, two types of SM structure are used. The first type is based on the 

Type I labeling method and is called as Type I structure. With this structure, a SM 
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uses the same set of classifiers to give the predictions for all gene components. 

When an unlabeled sample is transferred to a SM with Type I structure, the SM 

will let each classifier give its prediction on the sample, and then these predictions 

will be used to make the decision of whether a gene component can be included in 

the suggestion set. For any gene component, if the labeling information of a 

classifier contains it, then the prediction of that classifier will be used on the 

evaluation of whether this gene component should be included. Figure 4.5 shows 

the workflow of Type I structure.  

 

Figure 4.5 Workflow of Type I structure 

The second type is based on the Type II labeling method and is called as Type II 

structure. With this structure, a SM uses different groups of classifiers to give 

suggestion sets for different gene component types. Whether or not a gene 

component can be added to its corresponding suggestion set is based on the 

prediction given by the classifier trained to predict for this gene component. That 

is, whether a gene component will be accepted or not only rely on the prediction 

Sample

Classifiers

Classifiers  |  Labeling Information

                  | DVNT | SVNT | T

---------------|--------|---------|-------

Classifier 1 |    +   |  null   | x

---------------|--------|---------|-------

Classifier 2 |    -    |  sin    |  1

---------------|--------|---------|-------

Classifier 3 |    -    |  null   |  x

---------------|--------|---------|-------

Classifier 4 |    +   |  sin    |  1

---------------|--------|---------|-------

......

Predictions

Prediction                | Labeling Information

                              | DVNT | SVNT | T

---------------------------|---------|--------|------

P1 from Classifier 1 |     +   |  null   | x

---------------------------|---------|--------|------

P2 from Classifier 2 |     -     |  sin   | 1

---------------------------|---------|--------|------

P3 from Classifier 3 |     -     |  null  | x

---------------------------|---------|--------|------

P4 from Classifier 4 |     +   |  sin    | 1

--------------------------|---------|--------|------

......

Predictions Grouped with Labeling Info

DVNT

SVNT

T

+ | P1, P4, ......

---|---------------

-  | P2, P3, ......

---|----------------

......

null | P1, P3, ......

-----|----------------

sin  | P2, P4, ......

-----|----------------

......

x | P1, P3, ......

--|----------------

1 | P2, P4, ......

--|----------------

......

Suggestion Sets

Suggested

DVNT set

Suggested

SVNT set

Suggested

T set
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of one classifier instead of the predictions from a group of classifiers as in Type I 

structure.
1
 The workflow of Type II structure is shown in Figure 4.6. 

 

Figure 4.6 Workflow of Type II structure 

In this study, because the trained classifiers are underfit in real situations
2
, we 

cannot rely on one classifier to decide which gene component is the best one in its 

type, as the predictions of the classifiers may not be accurate. To overcome the 

low accuracy of a single classifier, collections of classifiers are used. In Type I 

structure, a single collection of classifiers is used to provide the predictions 

needed. In Type II structure, for each gene component type, a collection of 

classifiers is used to provide predictions, each classifier in it responds to give 

prediction for one gene component. In this way, instead of predicting which gene 

component is the best one directly from the sample, the suggestion sets are created 

by considering the collected predictions from classifiers. To make the suitable 

candidates can be chosen by the mutation operator while rejecting the candidates 

with low confidence values, a strategy of only minimizing the false negative rate 

                                                 
1
 In SM with Type II structure, training multiple classifiers for one gene component is not 

necessary. This is because only one training set can be acquired. Training multiple classifiers with 

the same training set while using same settings for ML algorithm usually will not give 

significantly different classifiers. 
2
 The number of math function segments of the signatures used in this study is two. The number of 

math function segments of the benchmark problems in benchmark set I (see section 5.1) are larger 

than three. We can see this difference makes the classifiers trained with the training sets underfit in 

real situations.  

Sample

Classifiers

Classifiers for DVNTs

Classifiers for SVNTs

Classifiers for Ts

Classifier used to predict +

Classifier used to predict -

......

Classifier used to predict null

Classifier used to predict sin

......

Classifier used to predict x

Classifier used to predict 1

......

Predictions

Predictions on DVNTs

Predictions on SVNTs

Predictions on Ts

Prediction on +

Prediction on -

......

Prediction on null

Prediction on sin

......

Predictoin on x

Prediction on 1

......

Suggestion sets

Suggested

DVNT set

Suggested

SVNT set

Suggetsed

T set
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is adopted. This is because when the false negative rate is low, the suitable 

candidates have high chances to be included into the suggestion sets.  

The two structures of SM have different abilities in reducing the false negative 

rate. For the first type, SM with Type I structure, when a gene component needs to 

be decided on whether it should be included into a suggestion set, all the 

predictions from the classifiers with labeling information that contain this gene 

component will be considered. If any prediction has higher value than the minimal 

acceptable value, this gene component will be included. However, this type of 

structure cannot adapt to the situations when many variables are needed. In order 

to make a SM able to work in a situation when many terminals are used, the SM 

with Type II structure is designed. In it, whether one gene component can be 

added into the suggestion set is decided by only one classifier. Therefore, its risk 

on having a false negative is higher than the Type I structure. 

4.1.6 Static Model in Mutation Operator 

The SM, in this study, is only used for increase action of the mutation operator. In 

the modified increase action, instead of inserting randomly, new genes will be 

added to the last of chromosomes. When an individual needs a new gene, a 

sample will be created with the standardized differences between the target values 

and its values at the training cases of the benchmark problem. Then, the SM will 

give suggestion sets for gene component types of DVNT, SVNT, and T based on 

this sample. For a gene component, if it has at least one prediction with value 

higher than the minimal acceptable value, the SM will add it to its corresponding 

suggestion set. For the new gene, its DVNT, SVNT, and T component will be 

chosen randomly from these sets. Its RB component will be the index of the new 

gene and LB component will be sampled from [0, 𝑅𝐵]. Figure 4.7 shows the 

usage of a SM in a mutation operator. 

It is possible to have empty suggestion sets returned by a SM.
1
 When this 

situation happens, the corresponding full set of that gene component type will be 

used. To reduce the number of empty suggestion sets returned by the SM and to 

minimize the false negative rate, the minimal acceptable prediction value is set to 

0.1. 

                                                 
1
 This might happen, as it is possible that no prediction has a value higher than the minimal 

acceptable value. 
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Figure 4.7 Workflow of increase action with SM 

4.2 Dynamic Model 

 

The function of a DM in a mutation operator is to change the uniform distribution 

used in the change action into a distribution that can reflect the effect of having a 

gene component on the overall fitness. In the distributions generated by a DM, the 

gene components that usually in individuals with better fitness have higher chance 

to be selected and vice versa.  

If we consider the evolution of LGP as a stream of data, we can see this data 

stream is composed of chunks of fitness (one chunk of fitness contains the fitness 

of all individuals in one generation) and the associated chromosome information. 

In a DM, the information it records is the relationships between gene components 

and the overall fitness at all existing chromosome indexes. In this study, this 

relationship takes the form of ratios between accumulated fitness of all individuals 

that have a particular gene component at a particular chromosome index and the 

total occurrences of that gene component at that chromosome index. For each 

chunk (or a generation), the contents of the DM will be updated. The abstracted 

workflow of the usage of a DM is shown in Figure 4.8. 

Acquire the differences as sample S between the target values  
and the values of the candidate at the training cases of the benchmark problem 

Predict S with classifiers 

Standardize S to [-1, 1] 

Generate suggestion sets for DVNT, SVNT and T 

Create a new gene: 
    LB     : sample from [0, new gene index] 
    RB     : new gene index 
    SVNT : select randomly from suggested SVNT set 
    DVNT : select randomly from suggested DVNT set 
    T       : select randomly from suggested T set  

Add new gene to the candidate 
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As in SM, any ML algorithm can be used to create the ML model used for DM. 

The requirements are: 1) the algorithm can give outputs that can be seen as 

distribution
1
; 2) the trained model can be updated at runtime

2
.  

 

Figure 4.8 Abstracted workflow of the usage of DM 

4.2.1 The Generation of Knowledge 

In LGP runs, fluctuation of fitnesses, change of genetic contents, and change in 

chromosome lengths happens along the evolution. They are the source of 

knowledge that will be used to train classifiers used in the DM.  

During the evolution of LGP, it is common that the fitness of an individual goes 

up or down just because the change of one gene component. If the change of only 

one gene component can lead to the change of the fitness, then when a 

chromosome needs to be changed it is beneficial to choose the gene component 

that might lead to a fitness increase.  

We can know which gene component in a gene component type has higher 

possibility to make a fitness increase for an individual at chromosome index 𝑖 by 

comparing ratio 𝑟𝑖
𝑡 between all gene components in that gene component type. 

This ratio is shown in Equation (4.4):  

𝑟𝑖
𝑡 =

∑ 𝑓𝑖
𝑡

𝑐𝑖
𝑡⁄ ,                                                                                                       (4.4) 

where 𝑓𝑖
𝑡  is the fitness of an individual that has gene component 𝑡 at chromosome 

index 𝑖, ∑ 𝑓𝑖
𝑡is the accumulated fitness of all individuals in all generations that 

have gene component 𝑡 at chromosome index 𝑖, 𝑐𝑖
𝑡is the accumulated total 

occurrences of 𝑡 at index 𝑖.  

                                                 
1
 This is because the change action has to select gene components based on them. 

2
 This is because the ML model needs to learn from the population. 

Request for distribution D of a particular gene component type 
at a particular chromosome index  

Dynamic Model 

Distribution D for the request 
<<Mutation Operator>> 
Change Action 

2. Give 

1. Send 

The gene waiting to be modified 

Modified Gene 
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This thought is naive. However, if a gene component at a particular chromosome 

index is good for fitness in general, the confidence to predict that it can give a 

fitness increase for an individual can be higher than the one not as good as it.  

In this study, instead of giving prediction on which gene component should be 

used, the DM is used to change the distributions of different gene component 

types used in the change action of the mutation operator. For each gene 

component of each gene component type at every chromosome index, the DM 

records the accumulated fitness of every individual that has it and the total 

occurrences of it. In the modified change action, the selection on gene 

components is based on the distributions given by DM.  

4.2.2 Distributions from Dynamic Model 

In this study, the ratio 𝑟𝑖
𝑡shown in Equation (4.4) is used to form new distributions 

that are used in change action. To form the new distribution of a gene component 

type at index 𝑖, we should combine all the ratios of the gene components of the 

required gene component type, and then normalize them to form a proper 

distribution. The new formed distribution 𝐷𝑖
𝑇is acquired by using Equation (4.5) :  

𝐷𝑖
𝑇 = ⋃

𝑟𝑖
𝑡

∑ 𝑟𝑖
𝑡

𝑡
𝑡 ,                                                                                                       (4.5) 

where 𝐷𝑖
𝑇 represents the distribution used to influence the choice of the gene 

component of gene component type 𝑇 at chromosome index 𝑖.  

4.2.3 Structure of Dynamic Model
1
 

Based on Equation (4.4), the structure shown in Figure 4.9 is used in DM to 

record the accumulated fitness and the total occurrences of one gene component. 

 
Figure 4.9 DM storage cell 

                                                 
1
 In this study, the ML algorithm used in DM is built directly into the DM, therefore, it become a 

part of the DM. In other situations, the chosen ML model can replace the algorithm described in 

this section directly. That is, in update process, population is the input of DM and will be 

converted into training set for ML models; in usage phase, the outputs of ML models should be 

grouped into one distribution and then output by DM. 

Storage cell for gene component 𝑡 

Accumulated fitness 

Total occurrences 
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If we combine the storage cells of every gene component of all gene component 

types at a chromosome index, we can have the storage structure used to generate 

the modified distribution for all gene component types at that chromosome index. 

This structure is shown in Figure 4.10. 

 

Figure 4.10 DM Storage structure used to generate modified distribution for one index 

We can have a DM when the storage structure shown in Figure 4.10 is created for 

every chromosome index. The structure of DM is shown in Figure 4.11. 

 

Figure 4.11 Structure of DM 

4.2.4 Usage of Dynamic Model 

In this study, the DM is used only for change action of a mutation operator. The 

only purpose of using DM in a mutation operator is to generate distributions for 

change action to influence the choices on gene components. A DM needs to be 

updated to reflect the changes in the current population. The workflow of DM is a 

two-step process. The first step is to update a DM with the current population. The 

second step is to use the DM to generate distributions for the change action.  

During the update process, every individual in the current population will be used 

for update. For an individual, if its gene components have corresponding storage 

cells, then these corresponding storage cells will add the fitness of this individual 

Storage structure for one index 
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...... 
Storage cell for largest known chromosome index 

Storage cell for index 0 
Storage cell for index 1 
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to their accumulated fitness and add one to their total occurrences. When one gene 

component cannot find corresponding storage cell in the storage structure at a 

chromosome index, the DM will create a new storage cell for it and add the new 

storage cell into the storage structure at that chromosome index. The DM will 

initialize the new storage cell with accumulated fitness as the fitness of this 

individual, and the total occurrences as one. If any individual has chromosome 

length longer than the recorded longest chromosome length, the longest 

chromosome length will be refreshed. The update process is shown in Figure 4.12. 

 

Figure 4.12 Update process of DM 

When a distribution 𝐷𝑖
𝑇is needed, a DM will first generate the ratio 𝑟𝑖

𝑡 for every 

recorded gene component of the required gene component type at the required 

chromosome index. Then these ratios will be normalized to form a proper 

distribution. If this distribution can represent all the gene components of the 

required gene component type, it will be used in change action directly. If not, this 

distribution will be completed by using a reduced probability of half the average 

possibility of the known gene components as the probability for the gene 

components that do not exist.
1
 Then, as the sum of all probability in the 

distribution is larger than 1, this distribution will be normalized again to become 

                                                 
1
 A penalty for non-existing items is necessary. First, non-existing items need to be included as 

they may be suitable. Second, it is too strong to give too much credit to non-existing items, as they 

may not be suitable. Therefore, a penalty for non-existing items should be seen as a compromise. 

Current population

Is every individual

has been used?
Update finished

Get next individual I

Is every

gene in chromosome

of I has been

used?

Get the chromosome length L of I

Is L > known longest chromosome length? Let known longest chromosome length = L

Is storage structure exists

for current index?

Create new storage structure for current index

Is every gene component t

of the gene at index i

has been used?

Does t's correspond

 storage cell C exists?

Let the accumulated fitness of C += the fitness of the current individual

Let the total occurrence of C += 1

Create a new storage cell C' for t

Let the accumulated fitness of C' = the fitness of the current individual

Let the total occurrence of C' = 1

Add C' to storage structure at index i

Y

N

Y

Y

N

N

N

Y

N

Y Y

N



39 

 

proper. Then, it will be used in change action. The workflow of creating a 

distribution is shown in Figure 4.13.  

The recorded largest chromosome length is used to generate new distributions for 

LB and RB. The number of valid gene components (chromosome indexes) in 

these gene component types increases as the known longest chromosome length 

increases. When not all the indexes are recorded, a DM will set the unrecorded 

indexes with the reduced probability as stated above. 

 

Figure 4.13 The process of generating distributions with a DM  
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5. Evaluation 

5.1 Benchmark Problems 

In this study, two benchmark sets are used. The first is benchmark set I, it is the 

benchmark set introduced in Uy et al. (2011). The functions in this set are shown 

in Table 5.1 with training cases and test cases. In this study, uniform interval is 

used instead of random interval used in Uy et al. (2011). The test cases are created 

for comparison purposes for this study. The second set is benchmark set II, this 

benchmark problem is the concrete dataset introduced in Yeh (1998). In this study, 

this set is first standardized column-wise to reduce the value range of the 

attributes, then randomly separated into two parts, training cases (75% of all 

instances) and test cases (25% of all instances). 

Table 5.1 Benchmark set I 

 Functions Training Cases Test cases 

1 𝑥3 + 𝑥2 + 𝑥 20 points ⊆ [-1,1], 

interval 0.1 with 

exception of (0,0) 

20 points ⊆[-2,-1)∪(1,2]  

with interval 0.1 2 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 

3 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 

4 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 

5 sin(𝑥2)𝑐𝑜𝑠(𝑥) − 1 

6 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑥 + 𝑥2) 

7 𝑙𝑜𝑔(𝑥 + 1) + log (𝑥2 + 1) 20 points ⊆(0,2] with 

interval 0.1 

20 points ⊆(2,4] with 

interval 0.1 

8 √𝑥 20 points ⊆(0,4] with 

interval 0.2 

20 points ⊆(4,8] with 

interval 0.2 

9 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑦2) 100 points ⊆[-1,1]x 

[-1,1], interval 0.2 

with exception of 

x=0 and y=0 

100 points ⊆ 

[-2,-1)∪(1,2]x[-2,-1)∪(1,2] 

with interval 0.2 
10 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦) 

 

Table 5.2 Data Characteristics of benchmark set II 

Number of Instances 1030 

Number of Attributes 9  

Attribute Type Numeric 

Missing Attribute Values 0 

Class Attribute The last attribute 

 

5.2 Algorithm Implementations 

This study uses Java to implement all the algorithms described in Chapter 2 to 4. 

Two types of non-terminal and terminal settings are used. The first type is the 
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minimal setting that is shown in Table 5.3. In the minimal setting, only 𝑛𝑢𝑙𝑙 will 

be included in the SVNT set and no constants will be included in the terminal set. 

The second type is the full setting as used in Uy et al. (2011). The full setting is 

shown in Table 5.4.  

 Table 5.3 Minimal setting for non-terminal set and terminal set  

Terminal 𝑥 for function 1 to 8 in benchmark set I 

𝑥 and 𝑦 for function 9 and 10 in benchmark set I 

8 variables for benchmark set II 

Single Variable Non-Terminal 𝑛𝑢𝑙𝑙 
Double Variable Non-Terminal +, −,×,÷ 

 

Table 5.4 Full setting for non-terminal set and terminal set 

Terminal 𝑥 and 1 for function 1 to 8 in benchmark set I 

𝑥 and 𝑦 for function 9 and 10 in benchmark set I 

8 variables for benchmark set II 

Single Variable Non-Terminal 𝑛𝑢𝑙𝑙, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔 

Double Variable Non-Terminal +, −,×,÷ 

 

5.2.1 Machine Learning Algorithm for Static Model 

In this study, WEKA version 3.7.11 (Hall et al., 2009) is the underlying ML 

framework. The MLPRegressor algorithm is used to create the classifiers for SM. 

It is downloadable through the package manager within WEKA. MLPRegressor 

(Pentaho, n.d.) is an ANN algorithm that is a multilayer perceptron
1
 (MLP) with 

one hidden layer. It is designed to handle numeric attributes and can output 

numeric predictions. Detailed information of it can be found in the WEKA 

software. The parameters of MLPRegressor for training are 60 for numFunctions, 

8 for numThreads and poolSize, 1 × 10−10 for ridge and tolerance, true for 

useCGD. The target accuracy on training set is 0.95. To acquire the best accuracy, 

for each training set, 100 classifiers will be trained with it, if any classifier reaches 

the target accuracy, it will be used; otherwise, the classifier with highest accuracy 

will be used.  

                                                 
1
 Multilayer perceptron is a feedforward network model of ANN. 
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5.2.2 Variances of Static Model 

In this study, SM with Type I structure does not give suggestion set for terminal.
1
 

When LGP uses a SM with Type I structure, terminals for new genes will be 

chosen randomly from terminal set as in the unmodified increase action. 

5.2.3 Method to Acquire Fitnesses and Values at Training Cases 

In this study, Java reflection is used for both tasks. After converting a 

chromosome into a mathematical function, the mathematical function is translated 

into the Java expression with functions in java.lang.Math. For each function 

translated, a pair of brackets is added for it to keep the priority in translated Java 

expression. For example, if the math function is sin(𝑥 + (𝑥)) + 𝑥, the translated 

Java expression will be 𝑀𝑎𝑡ℎ. 𝑠𝑖𝑛((𝑥 + (𝑥))) + 𝑥. Then the translated Java 

expression will be inserted into a template to create a Java file for compilation. 

The compiled Java object is created though reflection and is used to acquire 

fitness and the value of that individual at the training cases. The template is shown 

in Figure 5.1. The “Hashcode” is the hashcode of the string that store the 

mathematical function. Two error situations are considered in the template. The 

first situation is arithmetic exception, as a divide by zero exception, it means the 

function is wrong in mathematical means, therefore, the positive infinity is 

returned. As we can see from Equations (3.2), this will make the fitness of that 

individual become zero. The second situation is the calculated values are not real 

numbers. To make the individual can survive from such situation (the function 

might have correct values at other training cases), 0 is returned.  

 

Figure 5.1 Compile file template 

                                                 
1
 SM with Type I structure will not be used on benchmark set II. As the chances are 50% to have 

the suitable terminal selected in benchmark set I, not predicting terminals can simple the design of 

SM with Type I structure. 

public class _Hashcode_of_INSERTED_FUNCTION{

     public static double Get(double x){

         try{

             double value = INSERTED_FUNCTION;

             // Protect Mode

             if(Double.isNaN(value) || Double.isInfinite(value)) {

                 return 0;

             }

             else{

                 return value;

             }

         }

         catch(ArithmeticException ex){

             return Double.POSITIVE_INFINITY;

         }

     }

}
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5.3 Experiments 

5.3.1 Experiment Settings 

Two settings of LGP are used in this study. In Type I setting, the LGP uses single-

point uniform crossover operator and single-action mutation operator. In Type II 

setting, the LGP uses multi-point uniform crossover operator and multi-action 

mutation operator. SM with Type I structure only used in Type I setting, SM with 

Type II structure used only in Type II setting. Because of the complexness of the 

solution space, experiments on benchmark set II only use Type II setting.
1
 For 

both settings of LGP, experiments are performed with minimal and full setting of 

non-terminal and terminal sets. Therefore, there are four experiment settings for 

benchmark set I. They are Type I setting with the minimal setting, Type I setting 

with the full setting, Type II setting with the minimal setting, and Type II setting 

with the full setting. There are two experiment settings for benchmark set II, Type 

II setting with the minimal setting, and Type II setting with the full setting. The 

parameters for LGP are shown in Table 5.5. 

Table 5.5 Parameters for LGP 

Population Size 500 

Maximum Generations 2000 

Initial Chromosome Length 1 

Maximum Chromosome Length  150 

Selection Roulette Wheel Select 

Crossover and Mutation Operators Type I setting : Single-Point Uniform Crossover and  

                         Single-Action Mutation; 

Type II setting: Multi-Point Uniform Crossover and  

                          Multi-Action Mutation 

Crossover Rate 0.9 

Mutate Rate 0.1 

Crossover Percentage in 

Multi-Point Uniform Crossover 

0.2 

Maximum Mutate Action Times in 

Multi-Action Mutation Operator 

4 

Hit Condition Fitness ≥ 0.99 

Total Runs 100 (random number generated by  

java.util.random with seed 12345) 

Use Elitism Yes 

                                                 
1
 The reason for only using Type II setting on benchmark set II is SM with Type I structure is not 

suitable for large amounts of variables. For benchmark set I, under the full setting, SM with Type I 

structure only uses several hundreds of classifiers. However, for benchmark set II, this number will 

be increased to several thousands. The creation of classifiers will become a dominant factor for 

LGP uses a SM with Type I structure.  
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5.3.2 Experiment Results  

For all experiments, Wilcoxon test is used for significant tests with 𝑝 < 0.05.
1
  

1. Experiment Results on Benchmark Set 1 

Figure 5.2 – 5.5 are the boxplots of mean generations needed to have a hit of 100 

runs on four experiment settings. The horizontal line in the graph is the median 

and the diamond is the mean. Table 5.6 – 5.9 show the mean generations needed 

to have a hit of 100 runs on four experiment settings. A value of 2000 in these 

tables means there are no hits happening in any single run. Table 5.10 – 5.13 are 

the mean best fitness of 100 runs of four experiment settings on training cases. 

Table 5.14 – 5.17 are the mean best fitness of the last turn of 100 runs of four 

experiment settings on test cases.  

In Table 5.6 – 5.17, if a block is marked with superscript L, D, S, or H, this means 

the value of that LGP type is significant in compare to the value of the LGP type 

marked by the superscript of the same row. L means LGP, D means LGP with 

DM, S means LGP with SM, and H means LGP with HM. In Table 5.6 – 5.9, a 

value with a superscript means fewer generations needed to have a hit than the 

marked type. In Table 5.10 – 5.17, a value with a superscript means higher mean 

best fitness than the marked type.  

 

 

 

 

                                                 
1
 The reason for using Wilcoxon test instead of using student t-test is because the shape of 

histograms. In nearly all cases, the shapes of them are not bell shaped. They usually have shapes of 

several spikes or have heavy left tail with no right side. 
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Figure 5.2 Boxplot of the generations needed to have a hit on Type I setting with the 

minimal setting for non-terminal and terminal sets on benchmark set I 
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Figure 5.3 Boxplot of the generations needed to have a hit on Type I setting with the full 

setting for non-terminal and terminal sets on benchmark set I 
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Figure 5.4 Boxplot of the generations needed to have a hit on Type II setting with the 

minimal setting for non-terminal and terminal sets on benchmark set I 
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Figure 5.5 Boxplot of the generations needed to have a hit on Type II setting with the full 

setting for non-terminal and terminal sets on benchmark set I 
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From Figure 5.2 – 5.5 and Table 5.6 – 5.9, we can see that, for LGP, with the 

minimal setting, usually, fewer generations are needed to have a hit under Type II 

setting than Type I setting. With the full setting, this only happens in function 5 to 

7. For other LGP types, in experiments with the minimal setting, the same 

performance increases like LGP can be observed. For LGP with SM, the 

performance increases in some cases are far greater than LGP. For example, in 

function 4, the mean generations needed is reduced about 50% in compare to 

about 17% in LGP. In experiments with the full setting, the performance between 

LGP types is not obvious. However, some LGP types tend to receive more benefit 

from Type II setting than LGP. For example, in function 1, the mean generations 

needed for LGP with SM are decreased about 16% in contrast to about 30% 

increasing in LGP. If we compare the performance on having a hit between four 

LGP types, we can see that, in experiments with minimal settings, this 

performance increases when more powerful recombination operators are used. In 

experiments with full settings, this performance decreases. However, LGP with 

SM and LGP with HM are less affected, and sometimes can have performance 

increase. We can also see that, in experiments with minimal setting, LGP with SM 

and LGP with HM are nearly always need less mean generations to have a hit than 

LGP and LGP with DM. In experiments with full setting, under Type I setting, 

LGP can frequently perform better than LGP with SM and LGP with HM. LGP 

with DM can perform better than LGP with SM and LGP with HM on function 5 

and 7. Under Type II setting, on function 1, LGP with SM performs better than 

other LGP types. On function 2 and 5, LGP performs better than LGP with SM. 

On function 8, it is better than LGP with DM. LGP with DM performs better than 

LGP with SM. Overall, under Type II setting with full setting, the performance 

differences between LGP types are less significant than the difference in Type I 

setting with full setting.  

From Table 5.10 – 5.13, we can see that, by using multi-point crossover operator 

and multi-action mutation operator, the mean best fitness are increasing for all 

LGP types on nearly all functions. With the minimal setting, on function 1 to 4, 

four LGP types can always have perfect hit except the experiment on function 4 of 

LGP under Type I setting. Under Type I setting with the minimal setting, LGP 

with SM and LGP with HM are better than LGP and LGP with DM on function 7 

to 10. LGP and LGP with DM have higher mean best fitness than LGP with SM 
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and LGP with DM on function 5 and 6. Under Type II setting with the minimal 

setting, same situation appeared on function 5 to 8. On function 9, the differences 

between four LGP types become not obvious. On function 10, the situation is 

reversed. LGP and LGP with DM have higher mean best fitness than LGP with 

SM and LGP with HM. Under the full setting, the differences on mean best fitness 

between four LGP types become less distinctive as minimal setting. With Type I 

setting, LGP with DM have higher mean best fitness than LGP with SM and LGP 

with HM on function 5 and 7. LGP have higher mean best fitness than LGP with 

SM and LGP with HM on function 5, and is better than LGP with HM on function 

7. On function 3, LGP with SM and LGP with HM have better mean best fitness 

than LGP and LGP with DM. LGP with SM has better performance than LGP 

with DM on function 1 and show higher mean best fitness than LGP with HM on 

function 2. With Type II setting, LGP has better mean fitness than LGP with SM 

and LGP with HM on function 2. It also show better performance than LGP with 

SM on function 5 and 10, and has better mean best fitness than LGP with HM on 

function 8. LGP with DM has better mean best fitness than LGP with SM and 

LGP with HM on function 10. LGP with SM has better mean best fitness than all 

other LGP types on function 1, it also show better mean best fitness than LGP on 

function 7. It and LGP with HM show better mean best fitness than LGP and LGP 

with DM on function 9. 

Table 5.6 Mean generations needed to have a hit on Type I setting with the minimal 

setting for non-terminal and terminal sets on benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 39.71 38.56 33.39 
L,D

 34.15 
L,D

 

2 75.69 75.3 55.88 
L,D

 53.58 
L,D

 

3 138.83 139.95 107.04 
L,D

 121.41 
L,D

 

4 210.19 
D
 232.24 170.25 

L,D,H
 199.3 

5 2000 2000 2000 2000 

6 2000 2000 2000 2000 

7 2000 2000 1921.41 
L,D

 1830.08 
L,D

 

8 2000 2000 2000 2000 

9 2000 2000 2000 2000 

10 2000 2000 2000 2000 
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Table 5.7 Mean generations needed to have a hit on Type I setting with the full setting 

for non-terminal and terminal sets on benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 340.07 
S
 416.75 365.35 

D
 483.62 

2 1502.22 1463.09 1464.86 1588.75 

3 1968.02 
H
 1994.62 1970.82 2000 

4 1998.84 2000 2000 2000 

5 361.43 
S,H

 375.02 
S,H

 740.6 759.88 

6 337.27 398.46 230.15 302.28 
L
 

7 1328.46 
S,H

 1284.15 
S,H

 1558.59 1674.98 

8 1238.23 1425.69 1344.16 1352.85 

9 2000 2000 2000 2000 

10 2000 2000 2000 2000 

 

Table 5.8 Mean generations needed to have a hit on Type II setting with the minimal 

setting for non-terminal and terminal sets on benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 12.78 11.61 9.89 
L,D

 10.63 
L
 

2 36.47 37.34 24.08 
L,D

 22.38 
L,D

 

3 84.66 93.45 51.8 
L,D

 51.52 
L,D

 

4 199.01 169.92 92.82 
L,D

 102.04 
L,D

 

5 1994.68 2000 2000 2000 

6 2000 2000 2000 2000 

7 1665.46 1730.48 1320.6 
L,D

 1238.82 
L,D

 

8 2000 2000 2000 2000 

9 2000 2000 2000 2000 

10 2000 2000 2000 2000 

 

Table 5.9 Mean generations needed to have a hit on Type II setting with the full setting 

for non-terminal and terminal sets on benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 439.51 397.3 304.89 
L,D,H

 617.39 

2 1568.89 
S
 1686.32 1774.54 1694.67 

3 1978.26 1990.55 1967.49 1981.11 

4 2000 1993.74 2000 2000 

5 220.33 
S
 342.73 376.99 303.35 

6 138.86 82.21 
S
 121.71 62.23 

7 1181.82 1111.47 1191.24 1186.13 

8 1359.57 
D
 1575.21 1356.94 1492.81 

9 2000 2000 2000 2000 

10 2000 2000 2000 2000 
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Table 5.10 Mean best fitness on Type I setting with the minimal setting for non-terminal 

and terminal sets on training cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 0.9995 1 1 1 

5 0.9253 
H
 0.9355 

S,H
 0.9164 0.907 

6 0.9454 
S,H

 0.9461 
S,H

 0.9307 0.9303 

7 0.7388 0.7457 0.8391 
L,D

 0.8626 
L,D

 

8 0.9037 0.9067 0.9206 
L,D

 0.9278 
L,D

 

9 0.5672 0.5668 0.5693 
L,D

 0.5687 
L,D

 

10 0.6454 0.6443 0.6454 
L,D

 0.6463 
L
 

 

Table 5.11 Mean best fitness on Type I setting with the full setting for non-terminal and 

terminal sets on training cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 0.9969 0.9964 0.9964 
D
 0.9956 

2 0.9783 0.9808 0.983 
H
 0.9777 

3 0.966 0.9654 0.9706 
L,D

 0.9694 
L,D

 

4 0.9662 0.9659 0.9654 0.9668 

5 0.9938 
S,H

 0.9934 
S,H

 0.9922 0.9916 

6 0.9993 0.9989 0.9989 0.9989 

7 0.9879 
H
 0.9882 

S,H
 0.987 0.9865 

8 0.9885 0.9876 0.9881 0.9885 

9 0.5778 0.5768 0.578 0.5779 

10 0.6376 0.6376 0.6328 0.6329 

 

Table 5.12 Mean best fitness on Type II setting with the minimal setting for non-terminal 

and terminal sets on training cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 0.9867 
D,S,H

 0.9849 
S,H

 0.9803 0.982 

6 0.9511 
S,H

 0.9492 
S,H

 0.9418 0.943 

7 0.9841 0.9843 0.9867 
L,D

 0.9869 
L,D

 

8 0.9168 0.9181 0.9417 
L,D

 0.942 
L,D

 

9 0.5682 0.5677 0.5687 
D
 0.5684 

10 0.6483 
S,H

 0.648 
S,H

 0.6474 0.6473 
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Table 5.13 Mean best fitness on Type II setting with the full setting for non-terminal and 

terminal sets on training cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 0.9962 0.9968 0.9981 
L,D,H

 0.9958 

2 0.9802 
S,H

 0.977 0.9731 0.9755 

3 0.9683 0.9689 0.9695 0.97 

4 0.9639 0.9655 0.9655 0.9646 

5 0.9944 
S
 0.9941 0.9935 0.9941 

6 0.9997 0.9999 0.9996 0.9996 

7 0.9896 0.9894 0.9906 
L
 0.9907 

8 0.9879 
H
 0.9865 0.9877 0.9866 

9 0.5752 0.576 0.5829 
L,D

 0.5822 
L,D

 

10 0.6368 
S
 0.6359 

S,H
 0.6288 0.6308 

 

From Table 5.14 – 5.17, we can see that, the mean best fitness is lower at test 

cases for all LGP types. Only differences are the polynomials, as exact solution 

can usually be found, the mean best fitness on these benchmark problems are not 

drop. We can also see that, the differences on mean best fitness on all benchmark 

problems are less significant as the difference in Table 5.10 – 5.13. If compare the 

times of having significant mean best fitness to other LGP types between mean 

best fitness under training cases and test cases, we can see that, LGP with SM and 

LGP with HM keep more significant mean best fitness under test cases than LGP 

and LGP with DM. This may mean the solutions given by these two types are 

more stable. 

Table 5.14 Mean best fitness on Type I setting with the minimal setting for non-terminal 

and terminal sets on test cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 0.9929 1 1 1 

5 0.8537 
H
 0.8544 

S,H
 0.8513 

H
 0.8489 

6 0.685 
S,H

 0.6726 0.6627 0.6675 

7 0.6357 0.6446 0.7606 
L,D

 0.7914 
L,D

 

8 0.8141 0.8159 0.8081 0.835 
S
 

9 0.5509 0.5541 0.5501 0.5483 

10 0.6435 0.6426 0.6453 0.6439 
D
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Table 5.15 Mean best fitness on Type I setting with the full setting for non-terminal and 

terminal sets on test cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 0.8721 0.8307 0.8771 0.8364 

2 0.5098 0.5576 0.5616 
L,H

 0.5034 

3 0.214 0.1944 0.192 0.1928 

4 0.1051 0.1033 0.1089 0.1088 

5 0.8688 0.8848 
L
 0.8998 

L,D
 0.9095 

L,D
 

6 0.9885 0.9811 0.9773 0.9801 

7 0.9074 0.9169 0.9129 0.9089 

8 0.9687 0.968 0.9676 0.9673 

9 0.5597 0.5606 0.5611 
L
 0.5614 

L
 

10 0.6049 0.6016 0.6014 0.6038 

 

Table 5.16 Mean best fitness on Type II setting with the minimal setting for non-terminal 

and terminal sets on test cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 1 1 1 
L
 1 

2 1 1 1 
L,D

 1 
L,D

 

3 1 1 1 1 

4 1 1 1 1 

5 0.858 0.8612 
S
 0.8537 0.8542 

6 0.7083 0.7117 0.7055 0.7084 

7 0.9231 0.9224 0.9185 0.9168 

8 0.8092 0.8224 0.8498 
L,D

 0.8566 
L,D

 

9 0.5541 0.551 0.5553 0.5553 

10 0.6445 0.6469 0.6469 
L
 0.6473 

L
 

 

Table 5.17 Mean best fitness on Type II setting with the full setting for non-terminal and 

terminal sets on test cases of benchmark set I 

Function Index LGP LGP with DM LGP with SM LGP with HM 

1 0.8363 0.8419 0.9328 
L,D

 0.8581 

2 0.5264 
S,H

 0.4626 0.4501 0.4606 

3 0.2138 0.1942 0.2061 0.2074 

4 0.1067 0.1047 0.1041 0.1069 

5 0.8925 
D
 0.8813 0.8943 

D
 0.9013 

L,D
 

6 0.994 0.998 0.9908 0.9906 

7 0.9075 0.9229 
L,H

 0.9205 0.9134 

8 0.9656 0.9665 0.9678 0.9675 

9 0.5597 0.5599 0.5616 
L,D

 0.5614 
L,D

 

10 0.6043 0.6043 0.6034 0.6016 
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From the experiment results, we can see that, under the minimal setting, LGP with 

SM usually converge significantly faster and tend to have significantly higher 

mean best fitness; under the full setting, LGP usually has faster convergence 

speed and higher mean best fitness. However, under the full setting, four LGP 

types usually do not show significant performance differences.  

LGP with DM usually has similar performace on both convergence speed and 

mean best fitness as LGP. LGP with HM usually has similar performance on both 

convergence speed and mean best fitness as LGP with SM. 

From the experiment results, we can also see that with the minimal setting, the 

exact solutions for polynomials (function 1 to 4) in the benchmark set I can 

always be found. Under this setting, the exact solution of other functions cannot 

be found because of the insufficient of expression power. With the full setting, the 

exact solution of the simpler polynomials, like function 1 to 3, can usually be 

found. However, with the increase of expression power, the exact solution of other 

benchmark problems, like function 5 to 8, can also be found occasionally. The 

best solutions of all runs under benchmark set I can be found in Table A.1.3 to 

A.1.6 at Appendix 1.  

For the overall performance of the crossover operators used in this study, because 

of their aggressiveness on introducing changes in chromosome is low, their 

performance cannot be compared with any crossover operators described in Uy et 

al. (2011).  

If we consider the mean best fitness in the experiment results of this study, we can 

see the LGP with gene representation used in this study cannot have good results 

on function 9 and 10, the algorithm in Uy et al. (2011) also cannot always achieve 

high mean fitness on these functions, so this can be seen as a common issue. 

LGPs used in this study usually cannot have the same amount of hits as the GP 

algorithm introduced in Uy et al.(2011). The reason for this can be thought as they 

are designed for different purposes. In this study, the gene representation is 

designed for the direct usage of EM, the crossover and mutation operators are 

designed to have minimized ability to let the performance analysis be more 

straightforward. 
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From the experiment results, we cannot see obvious performance improvements to 

an LGP by using a DM. The reason of this can be seen from Figure 5.6 and 5.7. 

These figures show the typical changes on the probability of DVNTs given by the 

DM during the evolution. Figure 5.6 shows the changes on the probability of 

DVNTs at chromosome index 1. Figure 5.7 shows the changes on the probability 

of DVNTs at chromosome index 2. The training cases for LGP is from function 8 

in benchmark set I. In Figure 5.6 and 5.7, legend “*” means ×, “/” means ÷. 

 

 Figure 5.6 The changes of the probability of DVNTs at chromosome index 1 

 

  Figure 5.7 The changes of the probability of DVNTs at chromosome index 2 

From these figures, we can see the probability of DVNTs changes as the DM gets 

more and more information and they eventually become stable. The problem is 

when the changes stop, the differences between them are not large enough. We 

can see that the values of these probabilities are very near to 0.25, which is the 

probability of the DVNTs in uniform distribution. This suggests that the DM 



57 

 

algorithm suggested is not able to create the necessary differences between the 

probability of DVNTs. 

Table 5.18 shows the mean values of the amount of full sets in the suggested 

DVNT sets returned by SMs, and the amount of appearances of +, −, × and ÷ in 

these suggested DVNT sets. These sets are acquired by using SMs giving 

suggested DVNT sets for all individuals in the generation before the last 

generation. The values are the average value of 100 LGP runs. For each SM type, 

a SM only gives suggestion sets on the individuals evolved with the experiment 

setting that uses it. The target function of these LGP runs is the function 2 in 

benchmark set I. The type of LGP is LGP with SM. 

From Table 5.18, we can see that under the minimal setting, SM with both types 

of structure usually do not give full sets. This may suggest that the prediction 

accurracy is acceptable under the condition of only minimizing the false negative 

rate. Under the full setting, the accurracy of the classifiers in SM with Type I 

structure drops greatly, as nearly all the suggested DVNT sets are full sets. This 

makes LGP with SM usually uses the same DVNT set in increase action as LGP.  

For SM with Type II structure, under the full setting, the amount of full sets 

returned is not increased as greatly as SM with Type I structure. However, if we 

also consider the amount of DVNTs appeared in the suggested DVNT set, we can 

see average appearance times of + and × decreased, at the same time, the average 

appearance times of – and ÷ increased. We can also see increased conflict 

situations (return both + and – or × and ÷). This suggests that the predict 

accuracy of the classifiers used in SM decreases under the full setting.  

Table 5.18 Mean times of suggested DVNT sets given by different types of SM 

 Type I Setting Type II setting 

Minimal Setting Full Setting Minimal Setting Full Setting 

T
o
ta

l 
A

p
p

ea
re

an
ce

s 
 

Full Sets 15.68 480.41 16.48 35.35 

+ 421.65 487.15 423.94 281.77 

− 173.71 495.78 147.57 297.8 

× 316.24 495.5 367 131.22 

÷ 173.97 499.29 147.57 202.16 

T
o

ta
l 

T
im

es
 

A
p

p
ea

re
d

 

T
o

g
et

h
e
r 

+ and × 268.99 483.55 320.45 97.02 

− and ÷ 173.6 495.27 147.57 111.53 

+ and − 121.97 483.51 97.99 124.98 

× and ÷ 36.32 494.94 36.55 60.86 
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2. Experiment results on Benchmark Set II 

For benchmark set II, no hit can be made for runs of all LGP types. From Table 

5.19 and 5.20, we can see that under the minimal setting, LGP has significantly 

higher mean best fitness on training cases than LGP with SM and LGP with HM. 

LGP with DM has significantly higher mean best fitness on training cases than 

other LGP types. Under the full setting, four LGP types do not show significant 

differences on mean best fitness at training cases. From Table 5.21 and 5.22, we 

can see that, under the minimal setting, LGP and LGP with DM have significantly 

higher mean best fitness on test cases than LGP with SM and LGP with HM. 

Under the full setting, at the test cases, the differences between four LGP types 

are not significant.  

From all four tables, we can see that, under the minimal setting, LGP with DM 

has the best performance; under the full setting, all LGP types have similar 

performances. If compared with the experiment results in Yeh (1998), the 

accuracy acquired by four LGP types is lower than the accuracy given by an ANN 

(about 0.8 versus over 0.9). 

The best solutions of all runs on benchmark set II can be found in Table A.1.1 and 

A.1.2 in Appendix 1. 

Table 5.19 Mean best fitness of Type II setting with the minimal setting for non-terminal 

and terminal sets on training cases of benchmark set II 

LGP LGP with DM LGP with SM LGP with HM 

0.8091 
S,H

 0.8103 
L,S,H

 0.8047 0.8054 

 

Table 5.20 Mean best fitness of Type II setting with the full setting for non-terminal and 

terminal sets on training cases of benchmark set II 

LGP LGP with DM LGP with SM LGP with HM 

0.8225 0.822 0.8209 0.8207 

 

Table 5.21 Mean best fitness of Type II setting with the minimal setting for non-terminal 

and terminal sets on test cases of benchmark set II  

LGP LGP with DM LGP with SM LGP with HM 

0.8187 
S,H

 0.8172 
S,H

 0.8075 0.8107 
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Table 5.22 Mean best fitness of Type II setting with the full setting for non-terminal and 

terminal sets on test cases of benchmark set II 

LGP LGP with DM LGP with SM LGP with HM 

0.8165 0.817 0.8145 0.8133 
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6. Conclusion 

6.1 Summary of The Work 

In this study, EMs are used to improve the performance of LGP. EMs use trained 

ML models to generate suggestions for different mutate actions to influence the 

course of evolution. Two types of EMs are designed. The first type is SM. The 

source of knowledge of a SM is the pre-existing knowledge of symbolic 

regression. It is the knowledge about the effect of adding one math function to the 

end of another math function. In this study, these effects are called as signatures. 

The ML models used in SM are trained with training sets created from the values 

of signatures at the training cases of the benchmark problem. The output of a SM 

is the suggestion set on different gene component types. They are based on the 

predictions given by the ML models. To increase the chance of including the 

suitable candidates into the candidate sets, a SM only tries to minimize the false 

negative rate when making the decisions on whether to include a candidate in a 

candidate set or not. The second type is DM. Its source of knowledge is the fitness 

and chromosome of all individuals of all generations of an LGP run. The ML 

models in a DM are used to capture the effect of using a particular gene 

component at a particular chromosome index on the overall fitness, and they 

update at each generation. The output of a DM is the distribution of different gene 

component types. A third model HM is also used. The purpose of using it is to test 

the performance improvements when both SM and DM are used. In this study, all 

types of EM are used only in mutation operator. The SM is used only for increase 

action, the DM is used only for change action.  

The gene representation used in this study works fine on nearly all benchmark 

problems. It does not work well on function 9 and 10 in benchmark set I. This 

suggests that the gene representation might need further improvements. However, 

if we consider the experiment results on the same functions in Uy et al. (2011), we 

can find that these functions also have low mean best fitness under GP. This 

suggests that the gene representation may not be the sole source of this 

performance issue. 
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In this study, two sets of recombination operators are used. The first set contains 

roulette wheel selection, single-point uniform crossover, and single-action 

mutation. The second set contains roulette wheel selection, multi-point uniform 

crossover, and multi-action mutation. From experiment results, we can see that an 

LGP using the second set of recombination operators usually have higher mean 

best fitness than an LGP using the first set of recombination operators. This may 

suggest that, by using more powerful recombination operators, the performance of 

the LGP can be improved. However, when using the second set of recombination 

operators, an LGP usually needs more generations to have a hit. On this aspect, 

when using with an EM, especially using with a SM, the performance of an LGP 

tends to be less affected. This may suggest that, when using a SM, an LGP can 

acquire more performance improvements from using more powerful 

recombination operators. 

When compared with the LGP, the LGP with DM usually do not show significant 

performance improvements in both benchmark sets. However, if we consider the 

experiment results under the minimal setting on benchmark set II, we can see that 

using DM can make LGP have higher mean best fitness than other LGP types. 

The reason of why DM does not always do this might be the design of DM cannot 

create necessary differences between the probabilities of different gene 

components.  

On the other hand, when used with a SM, an LGP can have significant 

performance improvements on convergence speed. When compared with an LGP, 

an LGP with a SM usually needs significantly fewer generations to have a hit 

under the minimal setting. Under the full setting, an LGP with a SM usually has 

similar convergence speed as an LGP. Under the minimal setting, an LGP with 

SM can have higher mean best fitness than an LGP at benchmark set I. Under the 

full setting, LGP with SM and LGP tend to have similar mean best fitness. With 

the test cases, we can see LGP and LGP with SM usually do not show significant 

differences on the mean best fitness. The reason for LGP with SM cannot have 

better performance than LGP under the full setting should be the drop of accuracy 

of the classifiers. The cause of it might be the insufficient training sets. 

Two different types of SM did not show distinctive performance differences when 

used with LGP on benchmark set I. There are performance differences between 
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them; however, if we also consider the performance differences of LGP under 

different sets of recombination operators, we can see that the trend of the 

performance differences between LGP with different SM types are similar to the 

performance differences between LGPs. Therefore, the differences between 

different SM types might be caused by the recombination operators. 

For HM, its effects on LGP are similar to the SM. When an LGP with SM 

performs significantly better than an LGP, an LGP with HM also tends to perform 

significantly better than an LGP and vice versa. The inability of DM might be the 

cause of this.  

6.2 Contributions and Future Research Directions 

In this thesis, EM is studied. It is a general framework. In EM, different ML 

algorithms can be used to model the same knowledge, if they can learn the dataset 

(generated from the knowledge) and give same type of output. In this study, SM 

needs ML models with outputs that can be seen as confident values and can learn 

from data set with numeric attributes; DM needs ML models with outputs that can 

be seen as distributions and can be updated at runtime.  

New recombination operators are adopted for LGP in this study. The crossover 

operator adopted cannot make change to the length of a chromosome. This 

function is moved to the mutation operator, which now have three functions, 

increase the length of a chromosome (increase action), decrease the length of a 

chromosome (decrease action), and change the genetic contents of a chromosome 

(change action). The benefit to have this design is it is easier to make control on 

the course of evolution. If we use old style crossover-mutation operator 

combination, the change in chromosome is often have multiple effects, that is the 

length of a chromosome can be increased or decreased while the genetic contents 

of two chromosome exchange. When using the combination adopted in this thesis, 

a chromosome can only be changed one effect a time. That is, crossover operator 

only do exchange, in mutation operator, increase action only add new genes to a 

chromosome, decrease action only delete existing genes from a chromosome, 

change action only changes genetic content of a gene. 

The future research should be focused on 1) explore better interactions between 

SM and DM; 2) expend EM into other recombination operators and the 
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initialization phase; 3) find better ML algorithms for EM on symbolic regression 

task. The reason to have 1) and 2) is the basic idea behind EM is to control the 

evolution, which can be thought like human selection for plants and animals.   
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Appendix 

Appendix 1 Best Solutions 

Table A.1.1 and A.1.2 show the best solutions of different LGP types of 100 runs 

under benchmark set II. Table A.1.3-A.1.6 show the best solutions of 100 runs of 

the four LGP types under different experiment settings under benchmark set I. In 

these tables, “*” means ×, “/” means÷. To save space, “Math.” is removed to 

save space. In Table A.1.1 and A.1.2, variables are represented with array notation 

a[i], where i means attribute 𝑖 in the data set, 𝑖 ∈ (0,1,2, … ,7). 

Table A.1.1 Solutions with highest fitness of 100 runs on Type II setting with the 

minimal setting for non-terminal and terminal sets of benchmark set II 

Type Solution Fitness 

LGP (((((a[7]*(((((((((((((((((a[7]))))))))))))))-a[3]*a[7]-a[3]))*a[7])*a[7]*a[7]-

a[0]))*a[4]*a[7]*a[7]*a[7]*a[7]*a[7]*a[7]))*a[7]*a[7]-

a[0]*a[7]*a[7])*a[7] 

0.8200 

LGP with 

DM 

((((((((a[7]*a[7]))*a[7]-(((a[3]/a[7]/(a[7])))-

a[0]))))))*a[7]/(a[7]+a[7])*(a[7])*a[7]*a[7]*a[7]) 

0.8254 

LGP with 

SM 

((((((a[3]+a[4])))))*((a[7])*(a[7])*(a[0]+((a[1])*a[1])*a[7]*a[7]*a[7])-

a[3]))*a[7] 

0.8169 

LGP with 

HM 

a[7]*(((((((((((((a[7]))))))))))*a[7]*(a[4])-

a[0])*a[7]*a[7]*a[7]*a[7]*a[7]*a[7]*a[7]-a[0]))*a[7]*a[7] 

0.8151 

 

Table A.1.2 Solutions with highest fitness of 100 runs on Type II setting with the full 

setting for non-terminal and terminal sets of benchmark set II 

Type Solution Fitness 

LGP sin(((a[7])))*cos((((((a[7])+cos(a[7]))+cos(a[7]))*cos(a[1])+cos(a[7])+sin(a[

0]))*cos(a[4])+cos(a[7]))) 

0.8534 

LGP 

with DM 

sin((a[7]-cos((((((a[4]))))))))*sin(((a[0]*sin(a[7])-

cos(a[4]))*cos(a[1])+a[7]*sin(a[7]))) 

0.8493 

LGP 

with SM 

(a[7]*((((a[7]*(a[7])))))-cos(a[4])*(a[7]*cos(a[1])*exp(a[0]))) 0.8462 

LGP 

with HM 

sin((a[7]-

cos(a[3])*sin(a[0])*sin((a[7]))))+cos(a[4])*sin(((a[7]*sin(a[7])*cos(a[6])-

a[7]-((((a[7]))))))) 

0.8469 
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Table A.1.3 Solutions with highest fitness of 100 runs on Type I setting with the minimal 

setting for non-terminal and terminal sets of benchmark set I 

Type Index Solution Fitness 
L

G
P

 
1 ((x))+((x)+x*x)*x 1.0 

2 ((x))+(((x*x)+x)*x+x)*x 1.0 

3 ((x)*(((x)))+(x))*(x+x*x*x)+x 1.0 

4 (((x)))+((x)+(((x*x)*x+x))*(x+x*x))*x 1.0 

5 ((x-((((((x))))))/((x+x))*x*x*x))*x-x/x  0.9888 

6 x+(((x)+(x)*x))/((((x*((x)*x)))+x)*x*x*x*x+x)*x 0.9709 

7 x/(((((x)/(x+x)+(((x)))/x)))/x+x)+x 0.9895 

8 (x)/(((((((((x+x+x+x)))))))))+x/((x+x+x+x)/x)+x/(((x+x/x))) 0.9872 

9 (x*((((y+x)))))/((y+((x+x+(x)))/y/y))/y 0.5767 

10 ((((((x*(((y)))))-((((x))-y/((((y)-x)))*x))))*(x/x-y*y)*x))*y*(x*x-y*x)-

y/y 

0.6537 

L
G

P
 w

it
h

 D
M

 

1 (x)*((x)+x*x)+x 1.0 

2 ((x))+x*(((x*x)+x)*x+x) 1.0 

3 (((x*((x))+x)))*((x*x*x)+x)+x 1.0 

4 (x)*((x))*((((x*x+x)*x+x)*x+x))+x*x+x 1.0 

5 x*((((((((((x))*(x*(x))))))))-x-x/((x)+x)*(((x))))*x)*x*x*x+x*x-x/x 0.9895 

6 (x+(((((((((x))))))))))+(x*x)-x*x/(((x/x-(x+x)))/x+x+x)*x*x 0.9694 

7 (x)/((((((x/x/(x+x)))+x/x/x)))+x)+x 0.9895 

8 x/(((((x+((x+x+(x))))))/x))+(x)/(x/(((x+x))+x/x/x)/x+x) 0.9760 

9 x*(((((((((((((x)))*y*y))))))))))*y/(y-

(x+(y*x*y*y)*x*x*x*x)*x*(x*x)*x*x*x) 

0.5739 

10 ((((((y))))))*(((((x-(y)))/y/y/(y*y-

(((y))*x))*y/(((x)+x))*(y*x*y))*x*y))/y-y/y 

0.6522 

L
G

P
 w

it
h

 S
M

 

1 (x)+((x)+x*x)*x 1.0 

2 x+(((x)*(((x+x*x)))+x)*x) 1.0 

3 ((x+(((((x)))*x))))*(x+x*x*x)+x 1.0 

4 (((((x*(x*(x)))+x)*(((x)+x*x)))+x)*x+x) 1.0 

5 (((x-(x))))-x/(((x)*x*x)+x) 0.9842 

6 x+(((((((((x))+x*x)))))))*(x/(x*x*x*x*(x+x)+x)) 0.9651 

7 ((x))+((x))/(((x/(x+(x)/x/(x+x))/x+x/x)/x)+x) 0.9917 

8 x/((((x/((x)))+x)))+x/((((x+x+x+x)))/(x+x/x)) 0.9872 

9 (y)*((y))*(((y*((x-

x*y*x))*((((y+x))))*((((y*(((((x+x)))))+x*(x))+x*y)*y)*y-

y*y)*y)*y)*y) 

0.5738 

10 ((y-(x)))/(x-y) 0.6477 

L
G

P
 w

it
h

 H
M

 

1 (x)+(((x))+x*x)*x 1.0 

2 (x)+(((x))+(x+(x*x))*x)*x 1.0 

3 ((x)+(((x)*(x))*(x)))*(x+x*x)+x 1.0 

4 x*((((((x)))*(x)+x))*((x*x*x+x))+x)+(x) 1.0 

5 ((((x-(x)))))-x/((x)*x*x+x) 0.9842 

6 x+((((((((x))))))+(x/x)))/((((x/x)/(x*(x*x)))+x*x*x+x)*x*x) 0.9709 

7 x+((((x))))/(((((x+x+(x/(x)))/((x+(x+x+x))+x)))/x+x/x/x+x)) 0.9952 

8 x/(((((x/(x))+x))))+x/(x*((((x+(x))+x+x)/(x+x/x)/(x)))) 0.9872 

9 (((y-x*y*y)))*(((((((((y+((x)))))))))*x*((x+x))-

x))*y*((y*(y+y)*y*y))*y*y*(x+y) 

0.5769 

10 (((x)-y))/(y-x) 0.6477 
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Table A.1.4 Solutions with highest fitness of 100 runs on Type I setting with the full 

setting for non-terminal and terminal sets of benchmark set I 

Type Index Solution Fitness 
L

G
P

 
1 (((x)))*((x)*x+x)+x 1.0 

2 x*(x*(x)+((1)))*((x+1)) 1.0 

3 (((x*((((x))))+x)))*(x*x*x+x)+x 1.0 

4 (((1+x)*exp(((x)*sin(x)))/cos((x))/(((x))))*sin(x)*sin(x))*1 0.9923 

5 cos((x*(((x)))))-cos(x)-cos(x) 0.9965 

6 sin(x)+sin((((x))+(x)*x)) 1.0 

7 sin((1))*sin(((((x*sin((1*sin(1)))))*sin(((1)*sin(x))))*sin(1)))+x 0.9957 

8 exp(((1)*log((x))/(1+1))) 1.0 

9 sin(((y/sin(((((y*sin((y*(y+sin(x)))))))*sin((x*(y)))*sin((y*y/sin(y))))))

))*y 

0.6059 

10 sin(((((y*cos((((x/sin((((y)-x)*exp(x)))))/y)))*exp(x))-

cos(x)*sin(y))*sin(y)))-cos((x)) 

0.6713 

L
G

P
 w

it
h

 D
M

 

1 x+((x))*(x+x*x) 1.0 

2 x*(((x)))+x+x*((x+x*x))*x 1.0 

3 ((x)+((((1)))))*(x*x*x+x)*x+x 1.0 

4 (((((x))))/cos((((((x))))))+exp(x)/exp(1))/exp(1)*(((x)*x))/cos((x/exp(1)

*sin(1)))*x+exp(x)*x/cos(x) 

0.9894 

5 cos((((x))*x))-cos(x)-cos((x)) 0.9965 

6 sin(((x+((x))*x)))+sin(x) 1.0 

7 sin((((1*sin(((1)+sin(x))))*((((((x))*sin(1)*sin(1))))))*sin(1)))*sin(1)*

x/sin(1)+sin(x) 

0.9967 

8 log((x))*log(((((x)))+exp(1)+log(x)/exp(1)))/exp(((1)))+1 0.9924 

9 cos(((x*x/cos(((((y*exp(y)))/cos((y))*exp(x)))))/sin(y)))*x*(x) 0.5927 

10 cos(((((y/sin((((((x/x-cos(y)))))))))/sin((x-y))/sin(x))-

sin((y))*y))*cos(y)-cos(y) 

0.6851 

L
G

P
 w

it
h

 S
M

 

1 (1+(((x))*x+x))*(x) 1.0 

2 x+x*(((1+((((x))))*x+x)))*x 1.0 

3 ((((((x))))))+(((x)))*x*(x*x+x*x*x+x+1) 1.0 

4 ((x*((x)))+(x))/cos(x)*exp(((x*sin(x)/exp((1*cos(1)))))) 0.9875 

5 cos((x*(((x)))))-cos(x)-cos(x) 0.9965 

6 sin(x)+sin(((((x)))+x*x)) 1.0 

7 log(((1+((x)))*(x*x+1))) 1.0 

8 exp(((1+1/exp(1))*log(x)/exp((((1)))))) 0.9960 

9 sin((y/cos(((y)))/log((y*sin(y)-sin((x))))-exp(((((y)))))*exp(y)-

exp(y)*cos(x))) 

0.6027 

10 cos(((((y/sin(((((((x-y))*sin(y)/sin(x)))))))))+sin((y))))*sin(y)*sin(y)-

cos(y)-(y*cos(y))*sin(y) 

0.6685 

L
G

P
 w

it
h

 H
M

 

1 ((((x*((x))+x)*1*x)))+x 1.0 

2 ((x+(((1)))))*(x*x*x+x) 1.0 

3 sin(x)*exp((((((((x))))))))+x*((x+sin(1)+sin(1)*x*x))*x*(x) 0.9862 

4 exp((((x))))*((((x)))/cos(x)*sin(x))+x+(x-

sin(x))+x*sin(x)*sin((x*x*x))*sin(((((x))))) 

0.9890 

5 sin(((x*(x))))*cos(x)-cos(((x-sin(x)))) 0.9974 

6 sin(((x)+((x))*x))+sin(x) 1.0 

7 exp(((1+cos(x))/exp(((x)))/exp(1)))*x/exp(1)*sin((x))+((x)) 0.9951 

8 exp((1*log((x))/((1+1)))) 1.0 

9 sin((((((y*cos((((y)))))/cos(x)/sin(y))/sin(y)/sin(((y)))))))*cos(y)*cos(((

y/sin((x)))*cos((y+cos(x)*cos(x)))/cos(y)*exp(x)))*exp(x) 

0.5921 

10 sin((((((y-x))))/(y-x)))*sin(((y-x)))-cos((x*y*exp(((x-sin(y)*exp(x)))))) 0.6689 
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Table A.1.5 Solutions with highest fitness of 100 runs on Type II setting with the 

minimal setting for non-terminal and terminal sets of benchmark set I 

Type Index Solution Fitness 
L

G
P

 
1 (((x))*((x))+x)*x+x 1.0 

2 x+((((((x)))))*x+x+x*x*x)*x 1.0 

3 (x+((((x)))*x))*(x*(x*x)+x)+(x) 1.0 

4 (((((x*(((x)))))+x)*((x)*x*x+x)+x)*x)+x 1.0 

5 (((((x))))*((((x)))))/(x-((x*x*x-x-x)*x)*x*x*x)*x-x/x 0.9921 

6 ((x))*(x+(((x)*(x+x))+x))/((x)/(((x))+x*x*x)*((((x))))+x*x*x)*((x/x)

)-(x)*x 

0.9743 

7 x/((((((((x))+((x)))))/x/(x*x+x+x)))+x+x/x/x)+x 0.9924 

8 x/(((x+(x+x)/(((x)/((x+x))+(x))/x)))/(((x-x/x))))+x/x 0.9721 

9 y/((((y/x+(x+x+x)/((((((((y*x))))))))/(y)))))*y*(y+x)*y/y/y 0.5759 

10 (((((((((x)))))))*x))/(y*y-x-((x-x))/x/((y-x))-x-(x))*y-x/x 0.6557 

L
G

P
 w

it
h

 D
M

 

1 (((x))+x*(x))*(x)+x 1.0 

2 ((((x*(((x)))))+x)*x+x)*x+x 1.0 

3 (x+(((x)))*x)*((x*(x))*x+x)+x 1.0 

4 ((x+(((x)))*x)*((x+x*((x))*(x)))+x)*x+x 1.0 

5 ((x))*(((((((x)))))))-x/(x+x)*x*(x)*x*x-x/x 0.9888 

6 (x)-((((((((x))))))/((x+x)*x+(((x))+x)+x)+x)*x)*x*x+x+x*(x) 0.9652 

7 (x)/(((((x+x/x))/((((x+(x)))+x/x)))+x/x)/x+x)+x 0.9923 

8 x/((((x))+(x)+((((((x+x))/x+(x)+x))))))*(x+x+x*x+((x))+x+x)/x 0.9855 

9 x*((((((y))))))*y/(y+(((x+(x+x*y))))/y+x)/y*y*y*y 0.5742 

10 ((((y-((x)))*x/(((x))+(((x)-y))-y)*x/x)+(x*y*y)))-x/(x) 0.6530 

L
G

P
 w

it
h

 S
M

 

1 (x*(x*((x))+(x))+x) 1.0 

2 x+((x)+(x)*((x)+((x))*x))*x 1.0 

3 (((((x*((x)))+x)))*(x+x*x*x)+x) 1.0 

4 ((((x+(x*((x)))*(x))*(x+x*x))+(x))*x)+x 1.0 

5 ((((x)*x-(((x)))/x)))-x*x*x/(((x/(x/x)+x)/x)/x) 0.9888 

6 (x+((x*((x)+x*(((x))))))/(x*(x*x)*x*((x)+x)+x)) 0.9651 

7 (x)+x/((x+(((x))+x)/((x)+((((x+x))))/x))/x/x+x) 0.9924 

8 (((x+x)))*((((((((x)+x))+x/x)))/((((x+x+x*x+x)+x+x)))+x)-x) 0.9845 

9 (y/((((((((((y)))))))))*(((y)))/y/(y*(y)*y*y)+(y+y+y)*x*y*y*y)*x*(y*

(y))*y) 

0.5771 

10 ((((x)))/(((x)-(y))/x/(((y-x)))-x)*(x)*y*x-x)/x 0.6525 

L
G

P
 w

it
h

 H
M

 

1 ((x*(x)+(x))*x)+(x) 1.0 

2 ((x+((((x)*x))))*(x)+x)*x+x 1.0 

3 ((((x*(x))+x)*((x*(x*x))+x)+x)) 1.0 

4 ((((x+((((x)))*(x))*x)*(x*x+x)+x)))*x+x 1.0 

5 (((((x*(x))))))-(((x)/x))-x*x*x*x*x/(x+x) 0.9888 

6 x+((x))*((((x))*x+x))/((x+((((x*x*x+x))))*((x*x))*x*x)) 0.9709 

7 x+(((((((x)))))))/((((x)/x)+x/(x))/x+x/(x+x/x/(x)/x)*x) 0.9928 

8 ((((((x+x))))))/((x/x+x/((x/x/x/x+x+(x))/(x+((x+x))/x)))) 0.9752 

9 ((x-(((x)))*y*((x))*((y*(y)))))*((x+y))*y*y*(y*(((y+(y)+y)*x)*y-y)-

x) 

0.5744 

10 ((y)-x)/((x)-y) 0.6477 
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Table A.1.6 Solutions with highest fitness of 100 runs on Type II setting with the full 

setting for non-terminal and terminal sets of benchmark set I 

Type Index Solution Fitness 
L

G
P

 
1 x*((((((x))))))+x+x*x*x 1.0 

2 ((1+x))*(x*(((x*x)))+x) 1.0 

3 x+(((x)))*(x*((((1+(x)*x+x)*x)))+x) 1.0 

4 (((((((x)))))/cos(x)+((x))*sin((x))+cos(1)))*x*x*x+exp(x)*x 0.9867 

5 sin(((x*((x)))))*cos(x)-1 1.0 

6 sin((x))+sin((x*(x)+x)) 1.0 

7 ((x/exp((x))/exp((((1))-cos((x))))+x)*sin((x)))/exp(1)+x 0.9953 

8 exp(((1+cos((1))/((1-1-cos(1))-cos((1))))*log((x)))) 1.0 

9 cos((((x*sin(((y))))*exp(((x))))))*cos(((x*x/sin(y))))/exp(y)*x*x 0.5886 

10 sin((((y))-cos(y)/((y)-x)))*sin(((x)-cos(((y)/sin(y)))*cos(x)))-cos(y) 0.6669 

L
G

P
 w

it
h

 D
M

 

1 ((((x*x))))*x+x+x*x 1.0 

2 x*(((x))*(1+x+((x)*x))+sin(x)/sin((x))) 1.0 

3 sin(((((((((((((x)))))))-cos(x)*sin(x)))))*sin(((x*((x))+log(1)-

cos(x)+exp(x))))))*x*sin(x)+log(1)*x*x+exp(x)/cos(x)*x 

0.9944 

4 cos((((((((((1)))))))*sin((1+exp(x))))))*sin(x)/cos(x)*sin(x)*sin((((1))))

/cos(x)*sin(1)*sin(x)*sin(x)+exp(x)/cos(x)*(x) 

0.9906 

5 cos(((x)*((x))))-cos(x)-cos(x) 0.9965 

6 sin(x)+sin(((x*x)+x)) 1.0 

7 log(((((1)))+((x+x*x))*x+x)) 1.0 

8 exp((x/((((x))/log(x)+1/log(x)*(x))))) 1.0 

9 cos((((x/y)-cos((x)))/sin(y)/y/sin((y+sin(y)))))*((x)*((x))) 0.5899 

10 cos((y/sin((((((y-x))))))/sin(((y)))*sin((y-cos(y)-x))))*cos(y)-

sin(y)/sin(y) 

0.6733 

L
G

P
 w

it
h

 S
M

 

1 ((x)+(((x)))*x)*x+x 1.0 

2 ((x+(((x*x+(x)+x*((x*x)))))*x)) 1.0 

3 (((((1)/cos(x))))+x)*((((((x*x))))))*x+x*x-sin(x)+x+x 0.9912 

4 x*(((((((1)))))+x*(((x*sin(x)*exp(x)+x))))+x*x*sin(x)*x*sin(x)+x) 0.9892 

5 cos((x))*sin((((x)*x)))-1 1.0 

6 sin((x*((x))+(x)))+sin(x) 1.0 

7 sin(1)*sin((x*sin(1)*sin(((((1*sin((((1)*sin(x)))))))))*sin(1)))+x 0.9970 

8 exp((((1*log(x))/(1+1)))) 1.0 

9 sin((y/sin(y)-log((((y/sin(((y/cos(y)/sin(((x-

sin(y)))))/exp((((((x/sin(x)))/y/sin(y)))))))))*sin(x)))/cos(y))) 

0.6025 

10 sin(((y*((x)*(y)))*sin(((y*sin(y)/(y-x))/y))))-y/((y)) 0.6607 

L
G

P
 w

it
h

 H
M

 

1 x+((((x))))*(x+x*x) 1.0 

2 x*(((((((x)))))))+x+x*x*(x*x+x) 1.0 

3 ((((x+x*(((x)*x))))*(x+1)*x))+x 1.0 

4 (((x+1)))*x*exp((((x+(x))*cos(1))*x)) 0.9813 

5 sin(((x)*((x))))*cos(x)-1 1.0 

6 sin(x)+sin((((((1))))*x*x+x)) 1.0 

7 x+((x))/exp(((((x))/exp(1)*cos(1)*sin(x))))*cos(((1)))*sin(x) 0.9949 

8 exp(((1*sin((1)))*log(x)/exp(((((1)/exp(1))/sin(1)/sin(1)))))) 0.9994 

9 sin(((((x*x*cos((x*(x/sin(y)/cos(((y/cos(((y)*cos(x))))/cos((y)))))*x))))

/cos((y)))/exp(y))) 

0.5936 

10 sin((y*sin((y))/y*sin(((((x*sin(y))))/x-sin(y)/(((x)-y))))))-

cos((((((y*sin(x)*sin(x)))*sin(x)*sin(x)))*sin(x))) 

0.6664 
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