ON TRIVIAL p-ADIC ZEROES FOR ELLIPTIC CURVES OVER KUMMER EXTENSIONS

Daniel Delbourgo

(Received 30 October, 2014)

Abstract

We prove the exceptional zero conjecture is true for semistable elliptic curves $E_{/ \mathbb{Q}}$ over number fields of the form $F\left(e^{2 \pi i / q^{n}}, \Delta_{1}^{1 / q^{n}}, \ldots, \Delta_{d}^{1 / q^{n}}\right)$ where F is a totally real field, and the split multiplicative prime $p \neq 2$ is inert in $F\left(e^{2 \pi i / q^{n}}\right) \cap \mathbb{R}$.

In 1986 Mazur, Tate and Teitelbaum [9] attached a p-adic L-function to an elliptic curve $E_{/ \mathbb{Q}}$ with split multiplicative reduction at p. To their great surprise, the corresponding p-adic object $L_{p}(E, s)$ vanished at $s=1$ irrespective of how the complex L-function $L(E, s)$ behaves there. They conjectured a formula for the derivative

$$
L_{p}^{\prime}(E, 1)=\frac{\log _{p}\left(q_{E}\right)}{\operatorname{ord}_{p}\left(q_{E}\right)} \times \frac{L(E, 1)}{\text { period }} \quad \text { where } E\left(\mathbb{Q}_{p}\right) \cong \mathbb{Q}_{p}^{\times} / q_{E}^{\mathbb{Z}}
$$

and this was subsequently proven for $p \geq 5$ by Greenberg and Stevens [6] seven years later.

In recent times there has been considerable progress made on generalising this formula, both for elliptic curves over totally real fields $[\mathbf{1 0}, \mathbf{1 5}]$, and for their adjoint L-functions [12]. In this note, we outline how the techniques in [3] can be used to establish some new cases of the exceptional zero formula over solvable extensions K / \mathbb{Q} that are not totally real.

1. Constructing the p-adic L-function

Let E be an elliptic curve defined over \mathbb{Q}, and $p \geq 3$ a prime of split multiplicative reduction. First we fix a finite normal extension K / \mathbb{Q} whose Galois group is a semidirect product

$$
\operatorname{Gal}(K / \mathbb{Q})=\Gamma \ltimes \mathcal{H}
$$

where Γ, \mathcal{H} are both abelian groups, with $\mathcal{H}=\operatorname{Gal}\left(K / K \cap \mathbb{Q}^{\text {ab }}\right)$ and likewise $\Gamma \cong$ $\operatorname{Gal}\left(K \cap \mathbb{Q}^{\text {ab }} / \mathbb{Q}\right)$. Secondly we choose a totally real number field F disjoint from K, and in addition suppose:
(H1) the elliptic curve E is semistable over F;
(H2) the prime p is unramified in K;
(H3) the prime p is inert in the compositum $F \cdot k^{+}$for all CM fields $k \subset K \cap \mathbb{Q}^{\text {ab }}$.

[^0]Now consider an irreducible representation of dimension >1 of the form

$$
\rho_{\chi, k}^{(\psi)}:=\operatorname{Ind}_{F \cdot k}^{F}(\chi) \otimes \psi
$$

where k is a CM field inside of $K \cap \mathbb{Q}^{\text {ab }}$, the character $\chi: \operatorname{Gal}(F \cdot K / F \cdot k) \longrightarrow \mathbb{C}^{\times}$ induces a self-dual representation, and ψ is cyclotomic of conductor coprime to p. It is well known how to attach a bounded p-adic measure to the twisted motive $h^{1}\left(E_{/ F}\right) \otimes \rho_{\chi, k}^{(\psi)}$, as we shall describe below.

By work of Shimura [14], there exists a parallel weight one Hilbert modular form $\mathbf{g}_{\chi}^{(\psi)}$ with the same complex L-series as the representation $\operatorname{Ind}_{F \cdot k}^{F \cdot k^{+}}(\chi) \otimes \operatorname{Res}_{F \cdot k^{+}}(\psi)$ over the field $F \cdot k^{+}$. The results of Hida and Panchiskin $[\mathbf{7}, \mathbf{1 1}]$ furnish us with measures interpolating
$\int_{x \in \mathbb{Z}_{p}^{\times}} \varphi(x) \cdot \mathrm{d} \mu_{\mathbf{f}_{E} \otimes \mathbf{g}_{\chi}^{(\psi)}}(x)=\varepsilon_{F}\left(\rho_{\chi, k}^{(\psi)} \otimes \varphi\right) \times($ Euler factor at $p) \times \frac{L\left(\mathbf{f}_{E} \otimes \mathbf{g}_{\chi}^{(\psi)}, \varphi^{-1}, 1\right)}{\left\langle\mathbf{f}_{E}, \mathbf{f}_{E}\right\rangle_{F \cdot k^{+}}}$ where the character φ has finite order, \mathbf{f}_{E} denotes the base-change to the totally real field $F \cdot k^{+}$of the newform f_{E} associated to $E_{/ \mathbb{Q}}$, and $\langle-,-\rangle_{F \cdot k^{+}}$indicates the Petersson inner product.

We now explain how to attach a p-adic L-function to E over the full compositum $F \cdot K$. Let us point out that by the representation theory of semi-direct products [13, Proposition 25], every irreducible $\operatorname{Gal}(F \cdot K / F)$-representation ρ must either be isomorphic to some $\rho_{\chi, k}^{(\psi)}$ above if $\operatorname{dim}(\rho)>1$, otherwise $\rho=\psi$ for some finite order character ψ with prime-to- p conductor. For any normal extension N / \mathbb{Q}, at each character $\varphi: \operatorname{Gal}\left(N\left(\mu_{p^{\infty}}\right) / N\right) \rightarrow \mathbb{C}^{\times}$one defines

$$
\mathfrak{M}_{p}(N, \varphi):=\prod_{\rho}(\varepsilon \text {-factor of } \rho \otimes \varphi)^{\mathfrak{m}(\rho)}
$$

where the product ranges over all the irreducible representations ρ of the group $\operatorname{Gal}(N / \mathbb{Q})$, and $\mathfrak{m}(\rho)$ counts the total number of copies of ρ inside the regular representation.

Theorem 1. There exists a bounded measure $\mathrm{d} \mu_{E}^{(p)}$ defined on the p-adic Lie group $\operatorname{Gal}\left(F \cdot K\left(\mu_{p^{\infty}}\right) / F \cdot K\right) \cong \mathbb{Z}_{p}^{\times}$, interpolating the algebraic L-values

$$
\int_{x \in \mathbb{Z}_{p}^{\times}} \varphi(x) \cdot \mathrm{d} \mu_{E}^{(p)}(x)=\mathfrak{M}_{p}(F \cdot K, \varphi) \times \frac{L\left(E / F \cdot K, \varphi^{-1}, 1\right)}{\left(\Omega_{E}^{+} \Omega_{E}^{-}\right)^{[F \cdot K: \mathbb{Q}] / 2}}
$$

at almost all finite order characters $\varphi \neq \mathbf{1}$, while $\int_{x \in \mathbb{Z}_{p}^{\times}} \mathrm{d} \mu_{E}^{(p)}(x)=0$ when $\varphi=\mathbf{1}$ is trivial (here the transcendental numbers $\Omega_{E}^{ \pm}$denote real and imaginary Néron periods for $E_{/ \mathbb{Z}}$).
To prove this result, we simply take a convolution of the measures $\mathrm{d} \mu_{\mathbf{f}_{E} \otimes \mathbf{g}_{\chi}^{(\psi)}}$ over the irreducible representations $\rho_{\chi, k}^{(\psi)}$ counted with multiplicity $[k: \mathbb{Q}]$, together with a convolution of ψ-twists of the p-adic Dabrowski [2] measure $\mathrm{d} \mu_{\left(\mathbf{f}_{E} / F\right) \otimes \psi}$ for each (tame) character ψ of $\operatorname{Gal}\left(K \cap \mathbb{Q}^{\text {ab }} / \mathbb{Q}\right)$. After scaling by an appropriate ratio of automorphic periods $\prod\left\langle\mathbf{f}_{E}, \mathbf{f}_{E}\right\rangle$ to Néron periods $\Omega_{E}^{ \pm}$, one duly obtains d $\mu_{E}^{(p)}$ above.

At almost all finite twists by φ the Euler factor at p is trivial, so Theorem 1 now follows. For the full details we refer the reader to [3, Sections 5 and 6] where
a proof is given for the number field $K=\mathbb{Q}\left(\mu_{q}, m^{1 / q}\right)$ with $q \neq p$; the argument is identical in the general case.

Definition 1. For every $s \in \mathbb{Z}_{p}$, the p-adic L-function is given by the Mazur-Mellin transform

$$
\mathbf{L}_{p}(E / F \cdot K, s):=\int_{x \in \mathbb{Z}_{p}^{\times}} \exp \left((s-1) \log _{p} x\right) \cdot \mathrm{d} \mu_{E}^{(p)}
$$

Since $\mathrm{d} \mu_{E}^{(p)}\left(\mathbb{Z}_{p}^{\times}\right)=0$, it follows that $\mathbf{L}_{p}(E / F \cdot K, s)$ must vanish at the critical point $s=1$. The p-adic Birch and Swinnerton-Dyer Conjecture then predicts

$$
\operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right) \stackrel{?}{=} \mathbf{e}_{p}(E / F \cdot K)+\operatorname{dim}_{\mathbb{R}}(E(F \cdot K) \otimes \mathbb{R})
$$

where $\mathbf{e}_{p}(E / F \cdot K)$ equals the number of places of $F \cdot K$ lying over p. Though its proof is beyond the range of current methods, one might hope instead to establish the weaker consequence

$$
\begin{equation*}
\operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right) \geq \mathbf{e}_{p}(E / F \cdot K) \tag{1}
\end{equation*}
$$

2. The Order of Vanishing at $s=1$

Let $d \geq 1$ be an integer. We now restrict ourselves to studying the d-fold Kummer extension

$$
K=\mathbb{Q}\left(\mu_{q^{n}}, \Delta_{1}^{1 / q^{n}}, \ldots, \Delta_{d}^{1 / q^{n}}\right) \quad \text { with } p \nmid \Delta_{1} \times \cdots \times \Delta_{d}
$$

where $q \neq p$ is an odd prime, and the Δ_{i} 's are pairwise coprime q-power free positive integers. Here $K_{\mathrm{ab}}:=K \cap \mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\mu_{q^{n}}\right)$, and in our previous notation

$$
\Gamma \cong\left(\mathbb{Z} / q^{n} \mathbb{Z}\right)^{\times} \quad \text { and } \quad \mathcal{H}=\operatorname{Gal}\left(K / \mathbb{Q}\left(\mu_{q^{n}}\right)\right) \cong\left(\mathbb{Z} / q^{n} \mathbb{Z}\right)^{\oplus d}
$$

Note that the full Galois group is the semidirect product $\operatorname{Gal}(K / \mathbb{Q})=\Gamma \ltimes \mathcal{H}$, where Γ acts on \mathcal{H} through the cyclotomic character.

Recall that F was a totally real field disjoint from K over which the curve E is semistable. We now assume that p is inert in $F \cdot K_{\mathrm{ab}}^{+}$and write \mathfrak{p}^{+}to denote the prime ideal $p \cdot \mathcal{O}_{F \cdot K_{\mathrm{ab}}^{+}}$. In particular, conditions (H1)-(H3) hold. The strategy is to employ the factorisation

$$
\begin{equation*}
\mathbf{L}_{p}(E / F \cdot K, s)=\mathbf{L}_{p}\left(E / F \cdot K_{\mathrm{ab}}^{+}, s\right) \times \mathbf{L}_{p}\left(E \otimes \theta / F \cdot K_{\mathrm{ab}}^{+}, s\right) \times \prod_{\operatorname{dim}(\rho)>1} \mathbf{L}_{p}(E / F, \rho, s)^{\mathfrak{m}(\rho)} \tag{2}
\end{equation*}
$$

where θ is the quadratic character of the field K_{ab} over its totally real subfield $K_{\mathrm{ab}}^{+}=$ $\mathbb{Q}\left(\mu_{q^{n}}\right)^{+}$, and the product ranges over the irreducible $\operatorname{Gal}(F \cdot K / F)$-representations ρ of dimension ≥ 2 (we refer the reader to [13, Chapter 8] and [5, Section 2] for more details on the structure of these $\left(\mathbb{Z} / q^{n} \mathbb{Z}\right)^{\times} \ltimes\left(\mathbb{Z} / q^{n} \mathbb{Z}\right)^{\oplus d}$-representations).

Case I - The prime \mathfrak{p}^{+}is inert in $F \cdot K_{\mathrm{ab}} / F \cdot K_{\mathrm{ab}}^{+}$:
Let $n_{t}:=\operatorname{ord}_{q} \frac{\left[\mathbb{Q}\left(\mu_{q^{n}}, \Delta_{t}^{1 / q^{n}}\right): \mathbb{Q}\left(\mu_{q^{n}}\right)\right]}{\left[\mathbb{Q}_{p}\left(\mu_{q^{n}}, \Delta_{t}^{1 / q^{n}}\right): \mathbb{Q}_{p}\left(\mu_{q^{n}}\right)\right]}$, so that $\prod_{t=1}^{d} q^{n_{t}}$ is the number of places of K above p. The Artin representations $\rho_{\chi, k}^{(\psi)}$ that produce an exceptional zero in
$h^{1}\left(E_{/ F}\right) \otimes \rho_{\chi, k}^{(\psi)}$ at p are precisely those where $\psi=\mathbf{1}$ and the character χ factors through the quotient group

$$
\mathcal{H}^{\dagger}=\frac{\mathcal{H}}{\bigoplus_{t=1}^{d} \frac{q^{n_{t}} q^{\mathbb{Z}}}{q^{\mathbb{Z}}}}
$$

Moreover $\mathfrak{m}\left(\rho_{\chi, k}^{(\mathbf{1})}\right)=\operatorname{dim}\left(\rho_{\chi, k}^{(\mathbf{1})}\right)=\phi\left(\left[\mathcal{H}^{\dagger}: \operatorname{Ker}(\chi)\right]\right)$, which equals the number of generators for the image of χ; therefore

$$
\sum_{\substack{\operatorname{dim}(\rho)>1, h^{1}(E) \otimes \rho \operatorname{exc} 1}} \mathfrak{m}(\rho) \cdot \operatorname{erder}_{s=1}\left(\mathbf{L}_{p}(E, \rho, s)\right) \geq \sum_{\substack{\operatorname{dim}\left(\rho^{(1)}\right)>1, \chi: \mathcal{H}^{\dagger} \rightarrow \mathbb{C}^{\times}}} \mathfrak{m}\left(\rho_{\chi, k}^{(\mathbf{1})}\right)=\sum_{r=1}^{n} \#\left\{\chi: \mathcal{H}^{\dagger} \rightarrow \mu_{q^{r}}\right\}=\# \mathcal{H}^{\dagger}-1
$$

We must also include the order of $\mathbf{L}_{p}\left(E / F \cdot K_{\mathrm{ab}}^{+}, s\right)$ at $s=1$ which is at least one, hence

$$
\operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right) \geq 1+\left(\# \mathcal{H}^{\dagger}-1\right)=\prod_{t=1}^{d} q^{n_{t}}
$$

Case II - The prime \mathfrak{p}^{+}splits in $F \cdot K_{\mathrm{ab}} / F \cdot K_{\mathrm{ab}}^{+}$:
There are $2 \times \prod_{t=1}^{d} q^{n_{t}}$ places of K above p. The rest of the calculation is the same as Case I except that both of $\mathbf{L}_{p}\left(E / F \cdot K_{\mathrm{ab}}^{+}, s\right)$ and $\mathbf{L}_{p}\left(E \otimes \theta / F \cdot K_{\mathrm{ab}}^{+}, s\right)$ have trivial zeroes at $s=1$, whilst order ${ }_{s=1}\left(\mathbf{L}_{p}(E / F, \rho, s)\right) \geq 2$ by [3, Thm 6.3]. Consequently we obtain the lower bound

$$
\operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right) \geq 1+1+2 \times\left(\# \mathcal{H}^{\dagger}-1\right)=2 \times \prod_{t=1}^{d} q^{n_{t}}
$$

Combining both cases together, we have shown
Theorem 2. If p is inert in $F\left(\mu_{q^{n}}\right)^{+}$, then

$$
\operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right) \geq \mathbf{e}_{p}(E / F \cdot K)
$$

In other words, the inequality in Equation (1) holds true for these number fields.

3. A Higher Derivative Formula

Henceforth we shall assume that $p \geq 5$ is inert in K_{ab}, corresponding to Case I mentioned on the previous page; this condition is equivalent to ensuring that p is a primitive root modulo q^{2}. Let us write $\mathcal{E}_{p}(X) \in \mathbb{Z}[X]$ for the characteristic polynomial of a geometric Frobenius element at p, acting on the regular representation of $\operatorname{Gal}(F \cdot K / \mathbb{Q})$, such that the highest power of $X-1$ has already been divided out of the polynomial (it is tautologically non-zero at $X=1$).

Theorem 3. If $p \geq 5$ is inert in $F\left(\mu_{q^{n}}\right)$, then

$$
\begin{equation*}
\left.\frac{1}{\mathbf{e}_{p}!} \cdot \frac{\mathrm{d}^{\mathbf{e}_{p}} \mathbf{L}_{p}(E / F \cdot K, s)}{\mathrm{d} s^{\mathbf{e}_{p}}}\right|_{s=1}=\mathcal{L}_{p}(E) \times \mathcal{E}_{p}(1) \times \frac{\sqrt{\operatorname{disc}(F \cdot K)} \cdot L(E / F \cdot K, 1)}{\left(\Omega_{E}^{+} \Omega_{E}^{-}\right)^{[F \cdot K: \mathbb{Q}] / 2}} \tag{3}
\end{equation*}
$$

where $\mathcal{L}_{p}(E):=\prod_{\wp \mid p} \frac{\log _{p}\left(q_{E, \wp}\right)}{\operatorname{ord}_{\wp}\left(q_{E, \wp}\right)}$ denotes Jones' \mathcal{L}-invariant $[\mathbf{8}]$, with the product taken over the primes of $F \cdot K$ lying above p.

The proof follows identical lines to the $d=1$ situation in [3, Section 6] - more precisely:

- the special values $\mathbf{L}_{p}\left(E \otimes \theta / F \cdot K_{\mathrm{ab}}^{+}, 1\right)$ and $\mathbf{L}_{p}(E / F, \rho, 1)$ at the non-exceptional ρ 's can be computed directly from their interpolation properties;
- the derivative $\mathbf{L}_{p}^{\prime}\left(E / F \cdot K_{\mathrm{ab}}^{+}, 1\right)$ is given by Mok's formula [10, Thm 1.1] since $p \geq 5$;
- the derivatives $\mathbf{L}_{p}^{\prime}(E / F, \rho, 1)$ at those exceptional ρ 's are calculated using [3, Thm 6.2].
Lastly the terms can then be multiplied together as in Equation (2), and the result follows. Needless to say, the hard work is contained in [3, Thm 6.2] and requires us to extend the deformation theory approach of Greenberg and Stevens to ρ-twisted Hasse-Weil L-functions. The main ingredient is the construction of an "improved" p-adic L-function à la [6, Prop 5.8] (a conjectural p-adic interpolation rule for such an object can be found in $[4, \S \S 4.4]$).

In fact Jones' \mathcal{L}-invariant is non-vanishing by $[\mathbf{1}]$ as the elliptic curve E is defined over \mathbb{Q}. Therefore if one considers Theorems 2 and 3 in tandem, one immediately obtains the

Corollary 1. If the prime $p \geq 5$ is inert in $F\left(\mu_{q^{n}}\right)$, then

$$
L(E / F \cdot K, 1) \neq 0 \quad \text { if and only if } \quad \operatorname{order}_{s=1}\left(\mathbf{L}_{p}(E / F \cdot K, s)\right)=\mathbf{e}_{p}(E / F \cdot K)
$$

More generally, one can replace the requirement that " E be an elliptic curve defined over \mathbb{Q} " with the statement that
" f is a primitive HMF over F of parallel weight 2 , that is Steinberg at the
primes $\mathfrak{p} \mid p^{\prime \prime}$
and everything works fine, except that there is no longer a nice description for the \mathcal{L}-invariant. Likewise one can accommodate weight two Hilbert modular forms with non-trivial nebentypus, providing the primes above p do not divide its conductor.

Of particular interest in non-commutative Iwasawa theory is to extend Theorems 2 and 3 to the situation where $q=p$, i.e. for the p-ramified extensions $F\left(\mu_{p^{n}}, \Delta_{1}^{1 / p^{n}}, \ldots, \Delta_{d}^{1 / p^{n}}\right) / \mathbb{Q}$. The obstacles appear to be technical rather than conceptual, and a higher derivative formula should certainly be possible in this context (work in progress of Antonio Lei and the author).

References

[1] K. Barré-Sireix, G. Diaz, F. Gramain and G. Philibert, Une preuve de la conjecture Mahler-Manin, Inventiones Math. 124 (1996), 1-9.
[2] A. Dabrowski, p-adic L-functions of Hilbert modular forms, Annales de l'Institut Fourier 44 (1994), 1025-1041.
[3] D. Delbourgo, Exceptional zeroes of p-adic L-functions over non-abelian field extensions, to appear in the Glasgow Journal of Mathematics.
[4] D. Delbourgo, Elliptic Curves and Big Galois Representations, LMS Lecture Notes in Mathematics 356, Cambridge University Press (2008).
[5] D. Delbourgo and L. Peters, Higher order congruences amongst Hasse-Weil Lvalues, Journal of the Australian Mathematical Society 98 (2015), 1-38.
[6] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Inventiones Math. 111 (1993), 401-447.
[7] H. Hida, On p-adic L-functions of $G L(2) \times G L(2)$ over totally real fields, Annales de l'Institut Fourier 41 (1991), 311-391.
[8] J. Jones, Iwasawa L-functions for multiplicative abelian varieties, Duke Mathematical Journal 59 (1989), 399-420.
[9] B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inventiones Math. 84 (1986), 1-48.
[10] C.P. Mok, The exceptional zero conjecture for Hilbert modular forms, Compositio Math. 145 (1) (2009), 1-55.
[11] A.A. Panchiskin, Non-Archimedean L-functions of Siegel and Hilbert Modular Forms, Lecture Notes in Mathematics 1471, Springer-Verlag (1991).
[12] G. Rosso, Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer, PhD Thesis, Université Paris XIII (2013).
[13] J.-P. Serre, Linear Representations of Finite Groups, Springer Verlag GTM vol. 42, first edition (1977).
[14] G. Shimura, Special values of the zeta functions associated with Hilbert modular forms, Duke Mathematical Journal 45 (1978), 637-679.
[15] M. Spieß, On special zeros of p-adic L-functions of Hilbert modular forms, Inventiones Math. 196 (2014), 69-138.

Daniel Delbourgo
Department of Mathematics, University of Waikato,
Private Bag 3105, Hamilton, New Zealand
delbourg@waikato.ac.nz

[^0]: 2010 Mathematics Subject Classification 11F33, 11F41, 11F67.
 Key words and phrases: p-adic L-functions, elliptic curves, Mazur-Tate-Teitelbaum conjecture.

