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Abstract. We prove the exceptional zero conjecture is true for semistable ellip-
tic curves E,q over number fields of the form F(e2mi/a” Ai/qn, e Ai/qn)
where F' is a totally real field, and the split multiplicative prime p # 2 is inert
in F(e2™/4") N R.

In 1986 Mazur, Tate and Teitelbaum [9] attached a p-adic L-function to an
elliptic curve E,q with split multiplicative reduction at p. To their great surprise,
the corresponding p-adic object L,(E,s) vanished at s = 1 irrespective of how
the complex L-function L(E, s) behaves there. They conjectured a formula for the
derivative
log,(qr) y L(E,1)
ordy(¢g)  period

L;(E, 1) where E(Q,) = Q) /q% ,
and this was subsequently proven for p > 5 by Greenberg and Stevens [6] seven
years later.

In recent times there has been considerable progress made on generalising this
formula, both for elliptic curves over totally real fields [10, 15], and for their adjoint
L-functions [12]. In this note, we outline how the techniques in [3] can be used to
establish some new cases of the exceptional zero formula over solvable extensions
K/Q that are not totally real.

1. Constructing the p-adic L-function

Let E be an elliptic curve defined over Q, and p > 3 a prime of split multiplicative
reduction. First we fix a finite normal extension K/Q whose Galois group is a semi-
direct product

Gal(K/Q) = Tx H
where T',  are both abelian groups, with H = Gal(K/K N Q?®) and likewise T" =
Gal(K N Q*/Q). Secondly we choose a totally real number field F disjoint from
K, and in addition suppose:
(H1) the elliptic curve E is semistable over F;
(H2) the prime p is unramified in K;
(H3) the prime p is inert in the compositum F - kT for all CM fields k ¢ K N Q?P.
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Now consider an irreducible representation of dimension > 1 of the form
P = ndf () @

where k is a CM field inside of K NQ?", the character x : Gal(F . K/F . k) — C*
induces a self-dual representation, and v is cyclotomic of conductor coprime to p.
It is well known how to attach a bounded p-adic measure to the twisted motive
h(E/p)® pgz/j,z, as we shall describe below.

By work of Shimura [14], there exists a parallel weight one Hilbert modular form
g&w) with the same complex L-series as the representation Ind?g(x) QR Resp.p+ ()
over the field F - k™. The results of Hida and Panchiskin [7, 11] furnish us with
measures interpolating

Ltrogl”, ¢ 1)

(fe,fe) P+

/ go(x)dufE@gg(w) (x) =c¢p (pg{),z@cp) x (Euler factor at p)x
TELY

where the character ¢ has finite order, fr denotes the base-change to the totally
real field F'- k™ of the newform fg associated to E,q, and (—, —) p.,+ indicates the
Petersson inner product.

We now explain how to attach a p-adic L-function to F over the full compositum
F - K. Let us point out that by the representation theory of semi-direct products

[13, Proposition 25], every irreducible Gal(F - K/F)-representation p must either
be isomorphic to some pgﬁ above if dim(p) > 1, otherwise p = v for some finite

order character ¢ with prime-to-p conductor. For any normal extension N/Q, at
each character ¢ : Gal(N (pp)/N) — C* one defines

My(N,p) = H (e-factor of p ® <p)m(p)
o

where the product ranges over all the irreducible representations p of the group
Gal(N/Q), and m(p) counts the total number of copies of p inside the regular
representation.

Theorem 1. There exists a bounded measure dpg) defined on the p-adic Lie group
Gal (F . K(,upoo)/F . K) = 7, , interpolating the algebraic L-values
L(E/F-K, oL 1)

(@) "

[ @ auf@) = m(FKp) «
TELp

at almost all finite order characters @ # 1, while fer; dpg) () =0 when p =1

is trivial (here the transcendental numbers Q§ denote real and imaginary Néron
periods for E;7,).

To prove this result, we simply take a convolution of the measures d,ufE gl Over
X

the irreducible representations pgﬁ counted with multiplicity [k : Q], together with

a convolution of 1-twists of the p-adic Dabrowski [2] measure dji (¢, /r)gy for each
(tame) character ¢ of Gal(K N Q®"/Q). After scaling by an appropriate ratio of
automorphic periods [[(fg, fg) to Néron periods Q%, one duly obtains du(bf) above.

At almost all finite twists by ¢ the Euler factor at p is trivial, so Theorem 1

now follows. For the full details we refer the reader to [3, Sections 5 and 6] where
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a proof is given for the number field K = Q(ug, m!/9) with ¢ # p; the argument is
identical in the general case.

Definition 1. For every s € Z,, the p-adic L-function is given by the Mazur-Mellin
transform

L,(E/F-K,s) := /EZX exp ((s — 1) logpac) ~d,ug) .
T&Lp

Since dyu'?) (zy) =0, it follows that Ly, (E/F - K,s) must vanish at the critical
point s = 1. The p-adic Birch and Swinnerton-Dyer Conjecture then predicts

orderS:1<Lp (E/F K, s)) L e (E/F - K)+dimg (E(F K)® R)

where e,(E/F - K) equals the number of places of F' - K lying over p. Though its
proof is beyond the range of current methods, one might hope instead to establish
the weaker consequence

order,_, (L,,(E/F K, s)) > e,(E/F - K). (1)

2. The Order of Vanishing at s =1

Let d > 1 be an integer. We now restrict ourselves to studying the d-fold Kummer
extension

K= @(MQV,L,A}/Q",...,Aj/‘f) with pt Ap x -+ x Ag,

where g # p is an odd prime, and the A;’s are pairwise coprime g-power free positive
integers. Here Koy, := K NQ* = Q(u4n), and in our previous notation

I=(Z/q"Z)* and H = Gal(K/Q(ug)) = (Z/q"2)".

Note that the full Galois group is the semidirect product Gal(K/Q) = I' x H, where
I" acts on H through the cyclotomic character.

Recall that F' was a totally real field disjoint from K over which the curve E is
semistable. We now assume that p is inert in F' - K ;D and write p* to denote the
prime ideal p - OFKJL' In particular, conditions (H1)-(H3) hold. The strategy is
to employ the factorisation

L,(E/FK,s) = L,(E/F-K};,s)xL,(E20/F-K},s) x [[ Ly(E/F.p,s)""
dim(p)>1
(2)

where 6 is the quadratic character of the field K}, over its totally real subfield K : =
Q(ugn) ™, and the product ranges over the irreducible Gal(F -K/F ) -representations
p of dimension > 2 (we refer the reader to [13, Chapter 8] and [5, Section 2] for
more details on the structure of these (Z/q"Z)* x (Z/q"Z)®%-representations).

Case I - The prime p* is inert in F - K., /F - K :
[@(uam. 2" ) Qg ]

Qp (Hq"a Ai/qn)3(@p(ﬂq")]
K above p. The Artin representations p

, so that Hle g™t is the number of places of

;wg that produce an exceptional zero in

Let ns := ord, [



36 DANIEL DELBOURGO

h'(E F) ® p(w) at p are precisely those where ) = 1 and the character y factors
through the quotient group

H
n Z *
@t 1 q"tZ
Moreover m( a )) = dim(pgcl,)g) = ¢([H' : Ker(x)]), which equals the number of
generators for the image of x; therefore

Z m(p)-orders—; (LP(E,p, s)) > Z m(pilgc) = Z #{X T N ,uqr} = HHT 1.
r=1

dim(p)>1,
h1(E)®p exc’l

HT

daim(p()>1,
x:HT—CX*

We must also include the order of L, (E/F . K:b, 5) at s = 1 which is at least one,

hence
d

Orderszl(Lp(E/F-K,s)) > 1+ (#H -1) = [[a

=1
Case II - The prime p* splits in F - K., /F - K},
There are 2 x Hf 1 ¢ places of K above p The rest of the calculation is the same
as Case I except that both of LL (E/F ab, ) and L (E®9/F ab, ) have trivial
zeroes at s = 1, whilst orderszl( »(E/F,p,s)) > 2 by [3, Thm 6.3]. Consequently
we obtain the lower bound

order,—i (L (B/F - K,5)) = 1+1+2x (#H =1) = 2x[[a™.

Combining both cases together, we have shown
Theorem 2. If p is inert in F(pugn)", then
order,—1 (L,(E/F - K,s)) > e,(E/F - K).

In other words, the inequality in Equation (1) holds true for these number fields.

3. A Higher Derivative Formula

Henceforth we shall assume that p > 5 is inert in Ky, corresponding to Case I
mentioned on the previous page; this condition is equivalent to ensuring that p is a
primitive root modulo ¢%. Let us write £,(X) € Z[X] for the characteristic polyno-
mial of a geometric Frobenius element at p, acting on the regular representation of
Gal(F - K/Q), such that the highest power of X — 1 has already been divided out
of the polynomial (it is tautologically non-zero at X = 1).

Theorem 3. Ifp > 5 is inert in F(ugn), then

1 dL,(E/F-K,s)| ; "  V/dise(F-K) - L(E/F - K. 1)
el dser = Ly(E) x (o) PR

3)

where L,(E) =[], % denotes Jones’ L-invariant [8], with the product

taken over the primes of F - K lying above p.
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The proof follows identical lines to the d = 1 situation in [3, Section 6] — more
precisely:
o the special values L, (E®9/F-K;;3, 1) and L, (E/F, 0, 1) at the non-exceptional
p’s can be computed directly from their interpolation properties;
e the derivative L), (E/F - K} 1) is given by Mok’s formula [10, Thm 1.1] since
P25
e the derivatives L), (E/F, p,1) at those exceptional p’s are calculated using [3,
Thm 6.2].

Lastly the terms can then be multiplied together as in Equation (2), and the result
follows. Needless to say, the hard work is contained in [3, Thm 6.2] and requires us
to extend the deformation theory approach of Greenberg and Stevens to p-twisted
Hasse-Weil L-functions. The main ingredient is the construction of an “improved”
p-adic L-function & la [6, Prop 5.8] (a conjectural p-adic interpolation rule for such
an object can be found in [4, §§4.4]).

In fact Jones’ L-invariant is non-vanishing by [1] as the elliptic curve E is defined
over Q. Therefore if one considers Theorems 2 and 3 in tandem, one immediately
obtains the

Corollary 1. If the prime p > 5 is inert in F(ugn), then
L(E/F-K,1)#0 if and only if orders—1(L,(E/F -K,s))=e,(E/F - K).

More generally, one can replace the requirement that “E be an elliptic curve defined
over Q” with the statement that
“f is a primitive HMF over F' of parallel weight 2, that is Steinberg at the
primes p| p’
and everything works fine, except that there is no longer a nice description for the
L-invariant. Likewise one can accommodate weight two Hilbert modular forms with
non-trivial nebentypus, providing the primes above p do not divide its conductor.
Of particular interest in non-commutative Iwasawa theory is to extend Theo-
rems 2 and 3 to the situation where ¢ = p, i.e. for the p-ramified extensions
F(,upn,A}/pn, .. .,Alli/pn)/(@. The obstacles appear to be technical rather than
conceptual, and a higher derivative formula should certainly be possible in this
context (work in progress of Antonio Lei and the author).
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