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Abstract. We prove the exceptional zero conjecture is true for semistable ellip-

tic curves E/Q over number fields of the form F
(
e2πi/q

n
,∆

1/qn

1 , . . . ,∆
1/qn

d

)
where F is a totally real field, and the split multiplicative prime p 6= 2 is inert

in F (e2πi/q
n

) ∩ R.

In 1986 Mazur, Tate and Teitelbaum [9] attached a p-adic L-function to an
elliptic curve E/Q with split multiplicative reduction at p. To their great surprise,
the corresponding p-adic object Lp(E, s) vanished at s = 1 irrespective of how
the complex L-function L(E, s) behaves there. They conjectured a formula for the
derivative

L′p(E, 1) =
logp(qE)

ordp(qE)
× L(E, 1)

period
where E(Qp) ∼= Q×p

/
qZE ,

and this was subsequently proven for p ≥ 5 by Greenberg and Stevens [6] seven
years later.

In recent times there has been considerable progress made on generalising this
formula, both for elliptic curves over totally real fields [10, 15], and for their adjoint
L-functions [12]. In this note, we outline how the techniques in [3] can be used to
establish some new cases of the exceptional zero formula over solvable extensions
K/Q that are not totally real.

1. Constructing the p-adic L-function

Let E be an elliptic curve defined over Q, and p ≥ 3 a prime of split multiplicative
reduction. First we fix a finite normal extension K/Q whose Galois group is a semi-
direct product

Gal(K/Q) = Γ nH
where Γ,H are both abelian groups, with H = Gal(K/K ∩ Qab) and likewise Γ ∼=
Gal(K ∩ Qab/Q). Secondly we choose a totally real number field F disjoint from
K, and in addition suppose:

(H1) the elliptic curve E is semistable over F ;

(H2) the prime p is unramified in K;

(H3) the prime p is inert in the compositum F · k+ for all CM fields k ⊂ K ∩Qab.
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Now consider an irreducible representation of dimension > 1 of the form

ρ
(ψ)
χ,k := IndFF ·k(χ)⊗ ψ

where k is a CM field inside of K ∩Qab, the character χ : Gal
(
F ·K

/
F · k

)
−→ C×

induces a self-dual representation, and ψ is cyclotomic of conductor coprime to p.
It is well known how to attach a bounded p-adic measure to the twisted motive

h1(E/F )⊗ ρ(ψ)
χ,k, as we shall describe below.

By work of Shimura [14], there exists a parallel weight one Hilbert modular form

g
(ψ)
χ with the same complex L-series as the representation IndF ·k

+

F ·k (χ)⊗ResF ·k+(ψ)
over the field F · k+. The results of Hida and Panchiskin [7, 11] furnish us with
measures interpolating∫
x∈Z×p

ϕ(x)·dµ
fE⊗g(ψ)

χ
(x) = εF

(
ρ

(ψ)
χ,k⊗ϕ

)
×(Euler factor at p)×

L
(
fE ⊗ g

(ψ)
χ , ϕ−1, 1

)
〈fE , fE〉F ·k+

where the character ϕ has finite order, fE denotes the base-change to the totally
real field F · k+ of the newform fE associated to E/Q, and 〈−,−〉F ·k+ indicates the
Petersson inner product.

We now explain how to attach a p-adic L-function to E over the full compositum
F ·K. Let us point out that by the representation theory of semi-direct products
[13, Proposition 25], every irreducible Gal(F ·K/F )-representation ρ must either

be isomorphic to some ρ
(ψ)
χ,k above if dim(ρ) > 1, otherwise ρ = ψ for some finite

order character ψ with prime-to-p conductor. For any normal extension N/Q, at
each character ϕ : Gal

(
N(µp∞)/N

)
→ C× one defines

Mp(N,ϕ) :=
∏
ρ

(
ε-factor of ρ⊗ ϕ

)m(ρ)

where the product ranges over all the irreducible representations ρ of the group
Gal(N/Q), and m(ρ) counts the total number of copies of ρ inside the regular
representation.

Theorem 1. There exists a bounded measure dµ
(p)
E defined on the p-adic Lie group

Gal
(
F ·K(µp∞)

/
F ·K

) ∼= Z×p , interpolating the algebraic L-values∫
x∈Z×p

ϕ(x) · dµ(p)
E (x) = Mp

(
F ·K,ϕ

)
×

L
(
E
/
F ·K, ϕ−1, 1

)(
Ω+
EΩ−E

)[F ·K:Q]/2

at almost all finite order characters ϕ 6= 1, while
∫
x∈Z×p dµ

(p)
E (x) = 0 when ϕ = 1

is trivial (here the transcendental numbers Ω±E denote real and imaginary Néron
periods for E/Z).

To prove this result, we simply take a convolution of the measures dµ
fE⊗g(ψ)

χ
over

the irreducible representations ρ
(ψ)
χ,k counted with multiplicity [k : Q], together with

a convolution of ψ-twists of the p-adic Dabrowski [2] measure dµ(fE/F )⊗ψ for each

(tame) character ψ of Gal(K ∩ Qab/Q). After scaling by an appropriate ratio of

automorphic periods
∏
〈fE , fE〉 to Néron periods Ω±E , one duly obtains dµ

(p)
E above.

At almost all finite twists by ϕ the Euler factor at p is trivial, so Theorem 1
now follows. For the full details we refer the reader to [3, Sections 5 and 6] where
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a proof is given for the number field K = Q(µq,m
1/q) with q 6= p; the argument is

identical in the general case.

Definition 1. For every s ∈ Zp, the p-adic L-function is given by the Mazur-Mellin
transform

Lp
(
E/F ·K, s

)
:=

∫
x∈Z×p

exp
(
(s− 1) logp x

)
· dµ(p)

E .

Since dµ
(p)
E

(
Z×p
)

= 0, it follows that Lp
(
E/F · K, s

)
must vanish at the critical

point s = 1. The p-adic Birch and Swinnerton-Dyer Conjecture then predicts

orders=1

(
Lp
(
E/F ·K, s

)) ?
= ep(E/F ·K) + dimR

(
E(F ·K)⊗ R

)
where ep(E/F ·K) equals the number of places of F ·K lying over p. Though its
proof is beyond the range of current methods, one might hope instead to establish
the weaker consequence

orders=1

(
Lp
(
E/F ·K, s

))
≥ ep(E/F ·K). (1)

2. The Order of Vanishing at s = 1

Let d ≥ 1 be an integer. We now restrict ourselves to studying the d-fold Kummer
extension

K = Q
(
µqn ,∆

1/qn

1 , . . . ,∆
1/qn

d

)
with p - ∆1 × · · · ×∆d,

where q 6= p is an odd prime, and the ∆i’s are pairwise coprime q-power free positive
integers. Here Kab := K ∩Qab = Q(µqn), and in our previous notation

Γ ∼= (Z/qnZ)× and H = Gal
(
K/Q(µqn)

) ∼= (Z/qnZ)⊕d.

Note that the full Galois group is the semidirect product Gal(K/Q) = ΓnH, where
Γ acts on H through the cyclotomic character.

Recall that F was a totally real field disjoint from K over which the curve E is
semistable. We now assume that p is inert in F ·K+

ab and write p+ to denote the
prime ideal p · OF ·K+

ab
. In particular, conditions (H1)-(H3) hold. The strategy is

to employ the factorisation

Lp
(
E/F ·K, s

)
= Lp

(
E/F ·K+

ab, s
)
×Lp

(
E⊗θ

/
F ·K+

ab, s
)
×

∏
dim(ρ)>1

Lp
(
E/F, ρ, s

)m(ρ)

(2)
where θ is the quadratic character of the fieldKab over its totally real subfieldK+

ab =

Q(µqn)+, and the product ranges over the irreducible Gal
(
F ·K/F

)
-representations

ρ of dimension ≥ 2 (we refer the reader to [13, Chapter 8] and [5, Section 2] for
more details on the structure of these (Z/qnZ)× n (Z/qnZ)⊕d-representations).

Case I - The prime p+ is inert in F ·Kab

/
F ·K+

ab:

Let nt := ordq

[
Q
(
µqn , ∆

1/qn

t

)
:Q(µqn )

][
Qp
(
µqn , ∆

1/qn

t

)
:Qp(µqn )

] , so that
∏d
t=1 q

nt is the number of places of

K above p. The Artin representations ρ
(ψ)
χ,k that produce an exceptional zero in
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h1(E/F )⊗ ρ(ψ)
χ,k at p are precisely those where ψ = 1 and the character χ factors

through the quotient group

H† =
H⊕d

t=1
qntZ
qnZ

.

Moreover m
(
ρ

(1)
χ,k

)
= dim

(
ρ

(1)
χ,k

)
= φ

(
[H† : Ker(χ)]

)
, which equals the number of

generators for the image of χ; therefore∑
dim(ρ)>1,

h1(E)⊗ρ exc’l

m(ρ)·orders=1

(
Lp
(
E, ρ, s

))
≥

∑
dim(ρ

(1)
χ,k

)>1,

χ:H†→C×

m
(
ρ

(1)
χ,k

)
=

n∑
r=1

#
{
χ : H† � µqr

}
= #H†−1.

We must also include the order of Lp
(
E/F ·K+

ab, s
)

at s = 1 which is at least one,
hence

orders=1

(
Lp
(
E/F ·K, s

))
≥ 1 +

(
#H† − 1

)
=

d∏
t=1

qnt .

Case II - The prime p+ splits in F ·Kab

/
F ·K+

ab:

There are 2×
∏d
t=1 q

nt places of K above p. The rest of the calculation is the same

as Case I except that both of Lp
(
E/F ·K+

ab, s
)

and Lp
(
E⊗θ

/
F ·K+

ab, s
)

have trivial

zeroes at s = 1, whilst orders=1

(
Lp(E/F, ρ, s)

)
≥ 2 by [3, Thm 6.3]. Consequently

we obtain the lower bound

orders=1

(
Lp
(
E/F ·K, s

))
≥ 1 + 1 + 2×

(
#H† − 1

)
= 2×

d∏
t=1

qnt .

Combining both cases together, we have shown

Theorem 2. If p is inert in F (µqn)+, then

orders=1

(
Lp(E/F ·K, s)

)
≥ ep(E/F ·K).

In other words, the inequality in Equation (1) holds true for these number fields.

3. A Higher Derivative Formula

Henceforth we shall assume that p ≥ 5 is inert in Kab, corresponding to Case I
mentioned on the previous page; this condition is equivalent to ensuring that p is a
primitive root modulo q2. Let us write Ep(X) ∈ Z[X] for the characteristic polyno-
mial of a geometric Frobenius element at p, acting on the regular representation of
Gal(F ·K/Q), such that the highest power of X − 1 has already been divided out
of the polynomial (it is tautologically non-zero at X = 1).

Theorem 3. If p ≥ 5 is inert in F (µqn), then

1

ep!
·

depLp
(
E/F ·K, s

)
dsep

∣∣∣∣∣
s=1

= Lp(E)× Ep(1)×
√

disc(F ·K) · L
(
E/F ·K, 1

)(
Ω+
EΩ−E

)[F ·K:Q]/2
.

(3)

where Lp(E) :=
∏
℘|p

logp(qE,℘)

ord℘(qE,℘) denotes Jones’ L-invariant [8], with the product

taken over the primes of F ·K lying above p.
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The proof follows identical lines to the d = 1 situation in [3, Section 6] – more
precisely:

• the special values Lp
(
E⊗θ

/
F ·K+

ab, 1
)

and Lp
(
E/F, ρ, 1

)
at the non-exceptional

ρ’s can be computed directly from their interpolation properties;

• the derivative L′p
(
E/F ·K+

ab, 1
)

is given by Mok’s formula [10, Thm 1.1] since
p ≥ 5;

• the derivatives L′p
(
E/F, ρ, 1

)
at those exceptional ρ’s are calculated using [3,

Thm 6.2].

Lastly the terms can then be multiplied together as in Equation (2), and the result
follows. Needless to say, the hard work is contained in [3, Thm 6.2] and requires us
to extend the deformation theory approach of Greenberg and Stevens to ρ-twisted
Hasse-Weil L-functions. The main ingredient is the construction of an “improved”
p-adic L-function à la [6, Prop 5.8] (a conjectural p-adic interpolation rule for such
an object can be found in [4, §§4.4]).

In fact Jones’ L-invariant is non-vanishing by [1] as the elliptic curve E is defined
over Q. Therefore if one considers Theorems 2 and 3 in tandem, one immediately
obtains the

Corollary 1. If the prime p ≥ 5 is inert in F (µqn), then

L(E/F ·K, 1) 6= 0 if and only if orders=1

(
Lp(E/F ·K, s)

)
= ep(E/F ·K).

More generally, one can replace the requirement that “E be an elliptic curve defined
over Q” with the statement that

“f is a primitive HMF over F of parallel weight 2, that is Steinberg at the
primes p

∣∣p”
and everything works fine, except that there is no longer a nice description for the
L-invariant. Likewise one can accommodate weight two Hilbert modular forms with
non-trivial nebentypus, providing the primes above p do not divide its conductor.

Of particular interest in non-commutative Iwasawa theory is to extend Theo-
rems 2 and 3 to the situation where q = p, i.e. for the p-ramified extensions

F
(
µpn ,∆

1/pn

1 , . . . ,∆
1/pn

d

)/
Q. The obstacles appear to be technical rather than

conceptual, and a higher derivative formula should certainly be possible in this
context (work in progress of Antonio Lei and the author).
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