
BUILDING COMPUTATIONAL THINKING THROUGH
PROGRAMMING IN K-6 EDUCATION: A NEW ZEALAND

EXPERIENCE

Garry Falloon
The Faculty of Education, University of Waikato (NEW ZEALAND)

Abstract
The recent inclusion of computational skills in core curriculum by governments in the UK and
Australia, has been linked to industry calls for schools to better equip young people with capabilities
and dispositions aligned with needs of future high-tech industries and rapidly changing workplaces.
This move has stimulated much interest in New Zealand, and while lacking any compulsory curriculum
mandate, many teachers in K-12 classrooms are exploring the potential of coding tasks for developing
computational skills as part of their mathematics, science and technology curricula.

This paper reports findings from a study that used a unique data capture app embedded in iPads to
record 9&10 year old students while they used two apps of very different designs for coding tasks.
Using Studiocode video analysis software, data were analysed using a framework developed from
Brennan and Resnick’s [1] three dimensions of computational thinking, to learn more about how these
apps constituted useful environments for developing computational thinking. Results suggest that
coding apps of a ‘teaching’ design complement apps where computational concepts and practices are
applied to project creation, and indeed may be more efficient if the desired outcome specifically
targets the learning of concepts. Implications for teachers exploring coding apps for computational
thinking development are drawn.

Keywords: computational, coding, thinking, practice, programming.

1 INTRODUCTION AND BACKGROUND
Back in 1970, education visionary Seymour Papert, at a symposium held at MIT entitled ‘Teaching
Children Thinking’, presented arguments for young children using computers as thinking tools – that
is, learning to programme computers “rather than being programmed by it” [2, p. 2). Supporting this
vision, Papert and his team at MIT developed the LOGO programming language that was used
extensively for nearly twenty years by schools across the globe. LOGO was designed to teach young
children the basics of computational thinking, through engagement in programming tasks that allowed
them to create simulations and projects (Microworlds) using programmable spites. LOGO’s design
was one of a “low threshold and no ceiling” [3, p. 1], being flexible enough to be used by very young
children, while offering enough challenge for more sophisticated and experienced users. However,
despite LOGO’s early success and inclusion at curriculum level in England in the late 1980s, it, and
Papert’s original vision for children teaching computers, never gained universal acceptance. Criticism
of LOGO’s complexity, low levels of teacher capability and poor access to computers in schools, at the
time conspired against its visionary ideals becoming part of mainstream education.

Fast-forward 30 years. In March 2006, Jeannette Wing from Carnegie Mellon, in a Viewpoint article
published in CACM, rekindled some of Papert’s original vision for computational thinking, describing it
as “a fundamental skill for everyone, not just computer scientists. To reading, writing and arithmetic,
we should add computational thinking to every child’s analytical capability” [4, p. 33]. Her arguments
did not promote teaching humans to think like computers, but were broadly based, focusing on
building the capacity of human cleverness when combined with computer capabilities to “tackle
problems we would not dare take on before the age of computing” [4, p. 35]. Wing emphasised the
importance of abstraction and conceptualisation, commenting that computational thinking is more than
merely learning to programme to produce software artefacts. She saw it as a complex intellectual
endeavour drawing on many disciplines – one that builds human capacity to organise, evaluate and
solve problems, to manage our lives, and effectively interact with others. Wing’s ideas are timely, and
coincide with calls from technology industries for schools to play a greater role in seeding interest in
computational activities in students from a young age, with the hope that they will continue later into
technology-related careers, helping to address dire shortages of skilled workers in this area.

Proceedings of EDULEARN15 Conference
6th-8th July 2015, Barcelona, Spain

ISBN: 978-84-606-8243-1
0882

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/44289393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting such moves, education authorities in a number of countries have implemented standalone
compulsory digital technologies curricula, incorporating significant components focused on the
development of computational thinking, represented mainly through student engagement in basic
coding activities. These countries include England, Australia, Israel, Denmark and some German
states, with others, such as the United States and New Zealand, looking to do likewise. Significant
technological improvements and the greater ubiquity of digital devices in schools capable of being
used to advance the goals of such curricula, mean that, in many cases, earlier barriers affecting
schools’ engagement with coding and other computational activities have been diminished. In many
countries, initiatives such as BYOD (Bring Your Own Device) and digital tablet-supported classrooms,
have provided teachers with more options for pursuing a wider range of learning activities involving
technology. Affordable tablet devices and their huge array of supporting apps, means it is now viable
to explore the potential of including computational thinking in K-6 education.

1.1 Defining computational thinking
According to Brennan and Resnick, “there is little agreement about what computational thinking
encompasses, and even less agreement about assessing the development of computational thinking
in young people” [1, p. 1]. However, a review of recent literature suggests that computational thinking
is an intellectual process involving the development and exercise of a range of cognitive and applied
knowledge and skills, including problem formulation, definition, analysis, abstraction, and logic, in the
creation of solutions “that can be effectively carried out by an information-processing agent [5, p. 1].
Bers, Flannery, Kazakoff and Sullivan argue that instead of attempting to define computational
thinking, it is more useful to conceptualise it as a set of capabilities and dispositions, “encompassing a
broad and somewhat debated range of analytical and problem-solving skills, dispositions, habits and
approaches used in computer science” [6, p. 145].

While historically learning to think computationally has been almost exclusively associated with coding
or programming, researchers such as Howland, Good and Nicholson argue that its usefulness is much
broader than that, commenting that many computational skills “easily translate to non-computing
contexts” [7, p. 148]. They illustrate this by listing four generic skills that can be developed through
computational activities. Briefly, these are an ability to: define clear and specific instructions for
carrying out a process; design systems made of components each with a specific responsibility;
design systems where components only reveal information or action related to their purpose; and
understand that complex systems can result from the simple interactions of many components.
Howland et al. [7] suggest such skills can be valuable in everyday life and work, such as generating
accurate instructions for completing specialised tasks, or understanding the responsibilities of each
department of a large business, and how these contribute to the functioning of the organisation. Lu
and Fletcher adopt a similar stance, commenting that learning to think computationally should be seen
as a valuable life skill, and that “we need to start teaching computational thinking early and often” [8, p.
261].

1.2 Learning and evaluating computational thinking
With improved access to digital devices and curriculum imperatives, teachers are increasingly
exploring how computational thinking skills can be developed in their students through project-based
programming tasks. Challenges exist, however, in assessing and evaluating this learning – that is,
collecting and evaluating data that indicates what is being learnt, and what progress in computational
thinking skill development looks like. Brennan and Resnick [1] propose a three-dimensional
computational thinking framework, that they suggest provides guidance for what we should be looking
for when evaluating student development in this area. The framework comprises student learning of
computational concepts (concepts used when programming or developing code, such as sequences,
parallelism, conditionals etc.); computational practices (strategies and techniques applied when
developing code, such as debugging, reusing or sharing code etc.); and computational perspectives
(views formed when and from building programmes, such as self expression, collaborating and
connecting with others, and questioning). Their framework was developed from research on students’
interaction with Scratch, “a programming environment that enables young people to create their own
interactive stories, games and simulations, and then share their creations in an online community with
other young programmers from around the world” [1, p.1].

	

0883

They argue that when engaged in computational tasks, students iteratively and interactively draw upon
and develop conceptual knowledge through adopting practices aligned with the work of programme
designers. In the process, they also develop greater appreciation of the nature of the work as a form of
self-expression, and the value of working with others when generating solutions. However, they
comment challenges exist in unpacking the relationship between the three computational dimensions,
and identifying how each contributes to and interacts with the others during the students’ work [1].
Their evaluation of three approaches to this (project portfolio analysis using the Scrape analytical tool;
artefact-based student interviews; and premade design scenarios students reviewed, debugged and
offered suggestions for improvement) suggests this is indeed complex, with each method providing
only part of the picture. Regardless, what Brennan and Resnick’s [1] framework does provide, are
some very useful descriptors that signal the sort of concepts and practices students engage with when
completing computational tasks. These dimensions have been used in this study to evaluate student
interaction with two different iPad apps, selected by their teachers to help build computational thinking.

2 RESEARCH GOAL AND QUESTION
The research goal was to evaluate two iPad apps of very different designs, in terms of their efficacy as
environments for young students to develop and exercise computational thinking.

The question guiding data collection was:

To what extent do the iPad apps CargoBot and Pyonkee provide young students with environments
within which to build and exercise computational thinking?

3 RESEARCH CONTEXT
Data were collected in a K-6 primary (elementary) school in a small semi-rural town in the Waikato
region of New Zealand. The researcher had been working in the school for over 3 years, exploring its
development of iPad-supported and BYOD classrooms since 2011. Outcomes from these earlier
studies have been published extensively elsewhere (9, 10, 11, 12, 13, 14) with the innovative data
method used in the earlier research being refined and adapted for this study. The student group
comprised 63 nine and ten year olds (30 boys and 33 girls). They were not learning in single
classrooms, but were part of the school’s movement towards government-supported modern learning
environments1 (MLEs), where multiple classes work collaboratively together in a common space,
supported by a number of teachers. Two teachers worked with the students in the MLE - they were
Leesa who was a year 15 teacher, and Margaret who had been teaching for 35 years. The school had
a BYOD policy operating in the MLE, where it was mandatory for students to have personal access to
a digital tablet (in this case an Apple iPad). While most students used personally-owned devices, the
school made available a number of loan devices for those who were unable to afford or bring their
own. The spacious physical environment, furniture, and supporting technical infrastructure (wifi, large
visual displays, Apple TV) had been specifically designed for student collaboration, and to optimise
benefits from ubiquitous access to large numbers of mobile devices (Fig. 1).

The curriculum in the MLE was strongly student-focused, and included a mixture of more conventional
learning tasks designed to build foundational competencies in numeracy and literacy, and topic-based,
thematic studies designed around problem and inquiry-based learning models. Across all activities the
emphasis was on building student learning independence and higher order and critical thinking
capabilities, with both teachers being suitably skilled in appropriate pedagogy and questioning to
support these goals. Data were collected over a total of 8 hour-long (approx.) sessions comprising part
of the students’ numeracy programme, but this was the first time they had engaged in tasks of this
nature. The teachers had linked learning objectives to the geometry and measurement strand of New
Zealand’s National Curriculum in numeracy.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 See http://www.minedu.govt.nz/NZEducation/EducationPolicies/Schools/PropertyToolBox/StateSchools/Design/
ModernLearningEnvironment.aspx

0884

Fig. 1 The Modern Learning Environment (MLE)

3.1 The apps and their introduction
Two apps of very different designs were selected. These were CargoBot and Pyonkee, both being free
apps available on Apple’s App Store. Using CargoBot, students learn and apply a range of
computational concepts including abstraction, conditionals, loops and subroutines to develop scripts
that programme a robotic crane to move coloured crates to different arrangements on palettes, as
specified by goals set by the app (Fig. 2). The goals and complexity of programming get progressively
more difficult as the challenges progress. Points (stars) are allocated according to successful
completion of each challenge, and are factored against the ‘efficiency’ of the programme’s design.

Fig. 2 The apps used: Cargobot (left) & Pyonkee (right)

Pyonkee is based on the popular PC application Scratch, and is built from Scratch 1.4 open source
code. It was selected due to its compatibility with iPads, and because it presented a very different
approach to CargoBot for developing computational concepts and practices. In Pyonkee, students use
pre-made blocks of visual code to create and animate scenes comprising characters and props.
Students can opt to use characters, backgrounds, sounds etc. from the built in libraries, or import their
own using the iPad’s camera and microphone. Unlike CargoBot, students start with a ‘blank canvas’
(stage) upon which to build their environments using a wide range of code blocks to programme
characters and props. These include motion, control, variables, sound, looks, operators, pen and
sensing (Fig. 2).

0885

Prior to commencing independent work, the teachers introduced each app separately to the students.
CargoBot was introduced first, with learning goals shared and basic instructions provided about to how
work the app (eg., drag and drop), what the various programme blocks did, and how to test and run
procedures. Students were also introduced to and encouraged to access the built in tutorials. The
introductory session was approximately 30 minutes in duration and supported by visuals delivered to
large screen televisions using Apple TV. Following the introduction, students worked independently in
pairs on the challenges in three hour-long sessions, over the course of a week. Debriefing and sharing
took place at the end of each session. A similar process was used for Pyonkee, although the
introduction was more comprehensive and focused on drawing parallels between computational
concepts and practices used in CargoBot, and their ‘adaptation’ to Pyonkee. The students worked in
pairs with Pyonkee for 5 hour-long (approx.) sessions over the course of 2 weeks. The first two
sessions were exploratory, where students experimented with code blocks and other features building
procedures of their own design, while in the remaining sessions they worked to a teacher-specified
brief to build a learning game for younger students.

4 DATA COLLECTION AND SELECTION
Data were collected using a specially-developed recording app that ran in the background on the
iPads, while students worked. Although the classrooms were BYOD, a set of 10 iPad Airs with the
recording app pre-installed were provided by the university for data collection purposes, due to issues
installing the recording system on personally owned devices. The app recorded as .mov files the
display, finger placement (indicated as a white dot) and audio via the device’s microphone. Although
students had been informed of its use and ethical clearance had been gained via normal informed
consent and assent processes, once activated, no visible indication of the operation of the recorder
was available to the students. Using this system enabled the collection of very natural data - not
influenced by researcher presence, from a large number of students engaged in the same task, over a
relatively brief period. Recordings were stored on each iPad, and later extracted to the researcher’s
laptop using iExplorer.

Due to the exceedingly large volume of data produced by the recorder, files were selected for analysis
based on the following criteria:

1. They totalled five hours of recordings of students using each app (10 hours in total);
2. They represented a balance of students’ interactions from across the sessions (ie., early work,

later work);
3. They were reflective of the gender balance of the classes;
4. They included a balance of year 5 and year 6 students’ interactions.

4.1 Coding
A coding system based on Brennan and Resnick’s [1] evaluation framework was developed into a
template built in Studiocode video analysis software, and was applied to the selected data (Fig. 3).
Studiocode supports analysis of events contained in video data according to user-generated codes,
presenting them as timelines from which statistical data such as average and total duration, event
counts, and percentages of total time (etc.) can be calculated. Fig. 3 shows part of the coding
template, timeline and recorded video for two students (R&M). The coloured arrows in the template
are activation, deactivation and dependency links that enable concurrent event coding against
different codes. These were important for mapping relationships between events, such as students
collaborating (purple) when engaged in building or testing procedures (orange and green) or
conceptualising the task (blue); or using experimentation (yellow) as a strategy when building
procedures (orange).

The coding template was adjusted many times before finalising, responding to behaviours, strategies
and occurrences revealed in data. To assist with this, a post-doctoral research assistant was
employed to blind review data, in addition to the researcher. The ensuing discussion led to five main
code categories being agreed upon, each comprising a range of sub codes against which data were
coded. These are outlined and colour linked to the code template in Table 1. Some of Brennan and
Resnick’s [1] original dimensions were not included in the template as little or no evidence of them
could be found, while others were added that reflected or described the actual strategies and practices
used by these students (eg., stringing, problem conceptualisation/analysis and different ways this
occurred).

0886

Fig. 3 The coding template (right), video (left) and event timeline (bottom)

Data were then double blind coded in Studiocode by the researcher and the assistant, following which
a selection of 200 occurrences were subjected to a Kappa rater-agreement calculation. While these
occurrences were selected at random, care was taken to ensure all codes were represented, and that
at least some data aligned with each selection criterion were chosen. Only data both coders had
identified were used, to avoid underestimation of agreement probability through inclusion of missing
data [15]. The calculation yielded agreement across 168 occurrences with a Kappa of ĸ=.671
(SE=0.053; CI=.95 from 0.567-0.665). This rated as ‘good’ on Landis and Koch’s scale [16].

Table 1. Code categories, descriptors and codes

Category Description Codes (generated from data)
Concept/Practice

Building
procedures

Selecting and assembling
code elements or blocks into
sequences

Stringing (separate or linearly-linked code elements)
Modularisation (grouping elements into modules and
linking modules to form procedures)
Reuse, recycle, remix within or between pairs (R,R&R)

Testing and
debugging
procedures

Evaluating the performance
of sequences by running
procedure
Detecting & rectifying
programming errors

Run full procedure, reflect (or not) on result and revise
Incremental (test procedure by element or line using
stepper or similar function), reflect (or not) on result
and revise

Conceptualisation Explain, analyse, critically
reflect on requirements,
problems, actions or
responses

Conceptualise to self (thinking aloud)
Conceptualise with other students
(interacting/conversing)
Conceptualise with teacher

Collaboration Sharing, teaching,
explaining, giving & getting
advice

Collaboration between members of pairs and/or
between pairs

Experimentation/
trialling

Strategy used mainly when
testing & debugging
procedures

Evidence of analysis and reflection on outcome used
when debugging (deliberate/considered)
No evidence of analysis and reflection on outcome
used when debugging (random/guessing)

0887

5 RESULTS
Statistical summaries for the sample data against each code were generated in Studiocode and
exported to Excel for further analysis (see example in Table 2). These contained total count times,
total time spent, percentage of overall task time, and the mean time per code for each pair. In most
cases the percentage of task time exceeds 100%, as events often triggered multiple codes. This was
particularly the case with data coded as ‘experimentation’ and ‘collaboration’, where these were linked
as practices students applied to other computational activities, such as debugging, conceptualising or
building procedures. Table 2 contains data summaries for four different pairs, two from CargoBot and
two from Pyonkee. The far right columns separated from the pair data contain average count and
percentage summaries for all coded data.

Table 3 provides illustrative data that were coded under some of the categories. It contains the
category and code, an explanation of the scenario surround the event, a thumbnail from the display
video, and a transcription of the dialogue recorded at the time. Due to space constraints not all
categories and their codes have been included, but the table demonstrates the nature of data coded
and illustrates how coding decisions were made.

Table 2. Example of summary data for four pairs. Averages for all groups at right

6 DISCUSSION
When considering these results and reflecting on the research goal, it is important to remember the
purpose of this study was not to rate one app as being better or worse than the other, but rather to
evaluate their usefulness for developing computational thinking in young students. To that end these
results suggest both apps are useful, but for building different dimensions of computational thinking.
Specifically, they tentatively suggest that where the main learning objective is to develop a more
technical understanding of computational concepts, such as coding procedures or scripting, and some
practices such as testing and debugging, a more structured environment such as that offered by apps
like CargoBot, may be more efficient.

Examining the averages across all pairs, significantly more time was spent applying computational
concepts including stringing and building code modules, and some practices such as reworking or
reusing code, analysing, testing and debugging etc. in CargoBot (approx. 34%), than in Pynokee
(approx.18.5%). This also applied to strategies students used when engaged in these practices,
particularly experimentation involving analysis and reflection on action or outcome (CargoBot approx.

0888

17.2%; Pyonkee, approx. 9.9%). However, when evaluating other practice dimensions such as
conceptualisation and levels of collaboration, Pyonkee (approx. 49% & 46% respectively) appeared to
hold some advantages over CargoBot (approx. 29% & 24.5%).

Table 3. Data samples: Scenario, thumbnail and dialogue coded by category

Category Code Scenario description Thumbnail Recorded dialogue
Building
procedures

Sequencing/
Stringing

Students G&J required to
sort coloured crates
according to goal. They
had built multiple single
code lines (PROGs 1-3)
for each movement stage,
linking lines using the
appropriate PROG block.

I think we are going to run
out of space… (long
pause)… that’ll give us
three piles… but we’ve still
got to move the last 2
across (to the right-end pile)
(J).
Ummm... this is really
hard... Why have they cut
off the bottom one? (PROG
4). It should have the same
spaces as the others
(laughing)…. (L)
We could do it easy then!
(J).

Conceptualisation Conceptualise
with other
students

Students G&J required to
sort coloured crates
according to goal. They
had developed two string
sequences (PROGs 1&2)
and tested them, They
were creating a third
sequence (PROG 3)
following the same
pattern, but had realised
doing this would not allow
them to move all crates in
the available code space.
J is building sequence.

 It’s not going to work (G)….
(pause) you can’t do that….
Do what? (J)…
Make it like that… in rows
like that… and it’s
wrong…anyway…. (G).
Why? (J)
‘Cos it won’t do it… see…
what’s it going to do after
PROG 1? Think about it
stupid (sic)… it’s going to go
to PROG 2 and then pick it
up and go off the end… ‘cos
you’ve told it to go across
(to the right)… (G) (pause)
OK… I get it… (pause)… it
needs to go back and do it
again… (J) Yeah, you have
to repeat the same thing
four times… (G).

Experimentation Experimentation –
evidence of
analysis or
reflection on
action or result

Students R&M were
building their shape
drawing game. They were
trying to get their spite to
draw a square, and had
trialled sequence as per
thumbnail. They were
discussing the result.

Ummm… it didn’t do 10
steps (R)…
Yes it did… see the line… it
drew that… (M).
That’s not big enough… you
can hardly see it!… OK…
so we need to make it
bigger… what number
should we try? (R).
Let’s make it 100… we’ll try
100 and see how far it
goes… (M).
Do you think that’ll be
enough? See how little 10
is… and it’ll only be 10 lots
of that… so it’ll still be pretty
tiny… (R).
Go for 200 then… (M).

0889

Testing &
debugging

Incremental –
step by step

N&M are finalising their
shape game and had
scripted the chipmunk
sprites. They were
testing the length of
‘wait’ time before each
sprite began to draw its
shape. They had set this
initially to 4 seconds and
had run the relevant part
of the script and were
discussing the result.

I think 4’s too long for the
juniors… they’ll think
nothing’s happening (N)…
But we need to give them
a bit of time to look… and
you know… they muck
around a bit (M)... (they
test 4 seconds again)
(pause)….
OK… it’s probably too
long… umm… 2?
(pause)… shall we give 2
a try? (M)… (they test 2
seconds)… (pause)…
That might be a bit quick…
do 3… (N).

The recorded display and audio data offered insights into possible reasons for these differences.
Although both apps were developed to promote computational thinking, their designs approached and
structured this in fundamentally different ways. First, CargoBot presented the students with fewer
distractive options that could draw their attention away from the core task of programming the robotic
crane. Unlike Pyonkee, there was no capacity to change any elements of the task, its appearance, or
the environment, and apart from different difficulty levels, students had few customisable options. In
Pyonkee, however, the students were able to develop and programme environments of their own
design. They were confronted with multiple options for sprites, backgrounds, costumes, props and so
on that they could use for this purpose, and then even customise content once selected, using the
app’s built in art tools. Alternatively, they could choose to import and manipulate their own content
from the iPad’s visual media tools. Display data indicated considerable time was spent by some pairs
negotiating and conceptualising their project’s content, and while this is an important part of building a
project, in this limited trial it appeared to take time away from more formal coding activities.

Second, Pyonkee’s design appeared to stimulate higher levels of collaborative interaction than
CargoBot. While some of this linked to the students’ decision-making when conceptualising their
projects and deciding how to go about it, there were also differences revealed by recordings that
appeared related to what they were required to do, and the extent of expertise each could contribute
to completing parts of the task. There was a tendency in some CargoBot data for one pair member to
lead the problem solving, while the other served more as an observer or checker, less often offering
input to coding decisions. This observation is supported by the significantly higher average percentage
of data coded as conceptualise to self-thinking aloud in CargoBot, where one student was recorded
verbalising problems or planning next steps quietly to themselves, with no obvious engagement or
participation from the other. Display data also indicated limited passing of the device between pair
members, suggesting that the process of building code sequences was physically less collaborative.
While reasons for this are yet to be explored, it may have been that one of the pair was judged to
posses higher levels of ‘computational capability’ that could be applied to the challenge, or simply it
could be that one didn’t find as much motivation in solving the challenge as the other did, thus
choosing to minimally engage at times. On the other hand, Pyonkee offered a much more diverse
array of options of a less specialised or technically-complex nature, that potentially both students
could contribute to. Designing stage layouts, deciding on sprites and costumes and developing
procedures to animate characters appeared highly engaging for all students, who displayed high
levels of intra-pair collaboration whilst doing so. The open, ‘blank canvas’ nature of Pyonkee
undoubtedly contributed to this, as students were unconstrained by the pre-programmed structures
and parameters of CargoBot, which limited their choices.

Third, notably higher average percentages of time spent testing, debugging and editing procedures in
CargoBot, appeared also to be related to the demands of the task and the app’s design and
functionality. While both apps employed ‘drag and drop’ to build and edit sequences, students
appeared to find debugging easier in CargoBot due to its single-screen layout, and the presence of an
easy to use ‘stepper’ tool that supported command-by-command testing and debugging of sequences.
While this was possible in Pyonkee it was more difficult to carry out, and the need to navigate through
multiple code windows (control, sensing, motion etc.) to debug issues on a sprite-by-sprite basis, was
more challenging. To a large extent these design influences could be expected, given the different
nature of the task requirement and challenges presented in each case, and the openness (or not) of
how students could go about achieving them.

0890

Fourth, it was encouraging to note across students’ interaction with both apps exceptionally low levels
of random experimentation or trial and error based on guesswork. Unlike earlier studies by the author
evaluating student interaction with learning game apps [14], recordings revealed almost no
occurrences of this in CargoBot (0.75%) and none at all in Pyonkee, suggesting problem solving and
debugging was a far more deliberate and reflective process. This conclusion finds support in the oral
exchanges coded as conceptualise with other students and conceptualise with teacher, where
substantial evidence exists of students using higher order thinking (reflection, analysis, evaluation) to
develop sequences and revise them after trialling. Table 3 provides one illustration of this in sample
data coded as Experimentation. Recordings also provide some evidence of computational concept
and practice transfer between the apps, although the exact number of occurrences of this was not
logged. Evidence that transfer of computational concepts such as repeats, loops and conditionals had
taken place, was recorded in the oral exchanges between some students. Although relatively
infrequent, comments such as “remember, you need to repeat it... like we did with the crane… you
know how we did it with PROG2 and stuff… don’t just pile them up…use the repeat block…” (students
BJ&R, 21.05) indicated at least some conceptual transfer. While this finding appears promising, further
research is needed to determine the extent of this, and if and how it might translate to other
computational activities based on coding.

7 SUMMARY AND CONCLUSION
Recognising the obvious limitations of this study, results suggest that there is a place for apps of both
teaching and creative designs in the development of computational thinking in students. They signal
the likely value of students learning basic computational concepts and practices in more structured
environments as provided by apps like CargoBot and LightBot, and for the very young, Kodable and
Daisy the Dinosaur, before their creative application in project building using apps such as Pyonkee,
Scratch and Scratch Jnr. Restrictions in the array of options and greater emphasis on learning
technical concepts and dimensions of coding in more structured, challenge-based apps, appeared to
support efficient acquisition of computational concepts and practices useful for project building. The
emerging evidence of concept and practice transfer revealed in this study, provides some support for
this position.

Using display and audio capture to gather data provided fascinating insights into the unsupervised
work of students on their computational tasks. As evidenced by the recorded dialogue, it was apparent
most pairs either forgot about or disregarded the operation of the recorder while engrossed in their
challenges. There was no evidence of ‘staged’ performances that may have resulted from other data
collection methods such as observation or external video, and the method was highly efficient,
enabling collection of a substantial volume of data within a relatively defined timeframe. An interesting
side benefit from using this data method, was that it drew attention to how engaged these students
were in their work. While formal on/off task analysis was not the purpose of this research, data
strongly indicated exceedingly high levels of task application, with minimal time wastage or
unconnected activity. Although some expressed their frustration and annoyance at not being able to
solve problems or easily debug scripts (leading to temporary disengagement in a few cases), this was
the exception, not the rule. The vast majority displayed much tenacity and perseverance as they
confronted challenges, applying at times quite sophisticated thinking and collaboration skills to solving
them. Reflecting on this in relation to evaluating computational thinking performance, an expansion to
Brennan and Resnick’s [1] framework could acknowledge the application of higher order thinking, the
importance of dispositional characteristics, and the role of collaboration in developing computational
thinking capability. While understanding computational concepts and practices is important, these
alone may be of limited use in the absence of cognitive strategies and dispositional characteristics that
support their effective application to tasks. Using display captures to gather data for evaluating
computational thinking development could be a useful means of unpacking the relationship between
these dimensions.

Future research as part of this project will adopt a similar methodology to investigate the nature and
type of thinking 5 and 6 year olds engage in when working in pairs with basic coding apps. It will
combine a thinking types framework from an earlier study by the author [9] with ideas from a
computational thinking analysis model developed by Selby [17], to explore the nature of student
thinking when engaged in the different dimensions of computational tasks. It is hoped these studies
will shed light on if and how computational tasks may act as vehicles for developing a range of higher-
order thinking capabilities.

0891

ACKNOWLEDGEMENT
The author gratefully acknowledges the assistance of the wonderful teachers and students who took
part in this study. He is also very appreciative of the support and financial backing of the Teaching and
Learning Research Initiative (TLRI).

REFERENCES
[1] Brennan, K. & Resnick, M. 2012. New frameworks for studying and assessing the development

of computational thinking. Paper presented at the American Educational Research Association
(AERA) meeting. Vancouver, BC, Canada.

[2] Blikstein, P. 2013. Seymour Papert’s Legacy: Thinking about learning, and learning about
thinking. Seymour Papert Tribute at IDC 2013. Available:
https://tltl.stanford.edu/content/seymour-papert-s-legacy-thinking-about-learning-and-learning-
about-thinking

[3] Logo Foundation. 2013. What is Logo? Available: http://el.media.mit.edu/logo-foundation/logo/
[4] Wing, J. 2006. Computational Thinking. Communications of the ACM, CACM, vol. 49, no. 3, pp.

33-35.
[5] Cuny, J., Snyder, L. & Wing, J. 2010. Demystifying computational thinking for non-computer

scientists. Unpublished manuscript, referenced in
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

[6] Bers, M., Flannery, L., Kazakoff, E. & Sullivan, A. 2014. Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum. Computers & Education, vol. 72, pp. 145-
157.

[7] Howland, K., Good, J. & Nicholson, K. 2009. Language-based support for computational
thinking. In 2009 IEEE Symposium on Visual Languages and Human-Centric Computing.
Corvallis, OR, USA, pp. 147-150.

[8] Lu, J. & Fletcher, G. 2009. Thinking about computational thinking. Paper presented at SIGCSE
’09, Chattanooga, Tennessee, USA.

[9] Falloon, G.W. in press. iPads, apps and student thinking skill development. Educational
Technology & Society.

[10] Falloon, G.W. 2015. What’s the difference? Learning collaboratively using iPads in conventional
classrooms. Computers & Education, vol. 84, pp. 62-77.

[11] Falloon, G. & Khoo, E. 2014. Exploring young students' talk in iPad-supported collaborative
learning environments. Computers & Education, vol. 77, pp. 13-28.

[12] Falloon, G.W. 2013. Creating content: Building literacy skills in year 1 students using open
format apps. Computers in New Zealand Schools: Learning, Teaching, Technology, vol. 25, no.
1-3, pp. 77-95.

[13] Falloon, G.W. 2013. What's going on behind the screens? Researching young students'
learning pathways using iPads. Journal of Computer-Assisted Learning, vol. 30, no. 4, pp. 318-
336.

[14] Falloon, G.W. 2013. Young students using iPads: App design and content influences on their
learning. Computers & Education, vol. 68, pp. 505-521.

[15] Gwet, K. L. 2012. Handbook of inter-rater reliability (3rd ed.). Gaithersburg: Advanced Analytics.
[16] Landis, J. R. & Koch, G. G. 1977. The measurement of observer agreement for categorical

data. Biometrics, vol. 33. no. 1, pp. 159–174.
[17] Selby, C. 2012. Promoting computational thinking with programming. Proceedings of the 7th

Workshop in Primary and Secondary Computing, pp. 74-77. Available:
http://dl.acm.org/citation.cfm?id=2481466

0892

