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Abstract 
The recent inclusion of computational skills in core curriculum by governments in the UK and 
Australia, has been linked to industry calls for schools to better equip young people with capabilities 
and dispositions aligned with needs of future high-tech industries and rapidly changing workplaces. 
This move has stimulated much interest in New Zealand, and while lacking any compulsory curriculum 
mandate, many teachers in K-12 classrooms are exploring the potential of coding tasks for developing 
computational skills as part of their mathematics, science and technology curricula. 

This paper reports findings from a study that used a unique data capture app embedded in iPads to 
record 9&10 year old students while they used two apps of very different designs for coding tasks. 
Using Studiocode video analysis software, data were analysed using a framework developed from 
Brennan and Resnick’s [1] three dimensions of computational thinking, to learn more about how these 
apps constituted useful environments for developing computational thinking. Results suggest that 
coding apps of a ‘teaching’ design complement apps where computational concepts and practices are 
applied to project creation, and indeed may be more efficient if the desired outcome specifically 
targets the learning of concepts. Implications for teachers exploring coding apps for computational 
thinking development are drawn. 
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1 INTRODUCTION AND BACKGROUND 
Back in 1970, education visionary Seymour Papert, at a symposium held at MIT entitled ‘Teaching 
Children Thinking’, presented arguments for young children using computers as thinking tools – that 
is, learning to programme computers “rather than being programmed by it” [2, p. 2). Supporting this 
vision, Papert and his team at MIT developed the LOGO programming language that was used 
extensively for nearly twenty years by schools across the globe. LOGO was designed to teach young 
children the basics of computational thinking, through engagement in programming tasks that allowed 
them to create simulations and projects (Microworlds) using programmable spites. LOGO’s design 
was one of a “low threshold and no ceiling” [3, p. 1], being flexible enough to be used by very young 
children, while offering enough challenge for more sophisticated and experienced users. However, 
despite LOGO’s early success and inclusion at curriculum level in England in the late 1980s, it, and 
Papert’s original vision for children teaching computers, never gained universal acceptance. Criticism 
of LOGO’s complexity, low levels of teacher capability and poor access to computers in schools, at the 
time conspired against its visionary ideals becoming part of mainstream education. 

Fast-forward 30 years. In March 2006, Jeannette Wing from Carnegie Mellon, in a Viewpoint article 
published in CACM, rekindled some of Papert’s original vision for computational thinking, describing it 
as “a fundamental skill for everyone, not just computer scientists. To reading, writing and arithmetic, 
we should add computational thinking to every child’s analytical capability” [4, p. 33]. Her arguments 
did not promote teaching humans to think like computers, but were broadly based, focusing on 
building the capacity of human cleverness when combined with computer capabilities to “tackle 
problems we would not dare take on before the age of computing” [4, p. 35]. Wing emphasised the 
importance of abstraction and conceptualisation, commenting that computational thinking is more than 
merely learning to programme to produce software artefacts. She saw it as a complex intellectual 
endeavour drawing on many disciplines – one that builds human capacity to organise, evaluate and 
solve problems, to manage our lives, and effectively interact with others. Wing’s ideas are timely, and 
coincide with calls from technology industries for schools to play a greater role in seeding interest in 
computational activities in students from a young age, with the hope that they will continue later into 
technology-related careers, helping to address dire shortages of skilled workers in this area. 
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Supporting such moves, education authorities in a number of countries have implemented standalone 
compulsory digital technologies curricula, incorporating significant components focused on the 
development of computational thinking, represented mainly through student engagement in basic 
coding activities. These countries include England, Australia, Israel, Denmark and some German 
states, with others, such as the United States and New Zealand, looking to do likewise. Significant 
technological improvements and the greater ubiquity of digital devices in schools capable of being 
used to advance the goals of such curricula, mean that, in many cases, earlier barriers affecting 
schools’ engagement with coding and other computational activities have been diminished. In many 
countries, initiatives such as BYOD (Bring Your Own Device) and digital tablet-supported classrooms, 
have provided teachers with more options for pursuing a wider range of learning activities involving 
technology. Affordable tablet devices and their huge array of supporting apps, means it is now viable 
to explore the potential of including computational thinking in K-6 education.  

1.1 Defining computational thinking 
According to Brennan and Resnick, “there is little agreement about what computational thinking 
encompasses, and even less agreement about assessing the development of computational thinking 
in young people” [1, p. 1]. However, a review of recent literature suggests that computational thinking 
is an intellectual process involving the development and exercise of a range of cognitive and applied 
knowledge and skills, including problem formulation, definition, analysis, abstraction, and logic, in the 
creation of solutions “that can be effectively carried out by an information-processing agent [5, p. 1]. 
Bers, Flannery, Kazakoff and Sullivan argue that instead of attempting to define computational 
thinking, it is more useful to conceptualise it as a set of capabilities and dispositions, “encompassing a 
broad and somewhat debated range of analytical and problem-solving skills, dispositions, habits and 
approaches used in computer science” [6, p. 145].  

While historically learning to think computationally has been almost exclusively associated with coding 
or programming, researchers such as Howland, Good and Nicholson argue that its usefulness is much 
broader than that, commenting that many computational skills “easily translate to non-computing 
contexts” [7, p. 148]. They illustrate this by listing four generic skills that can be developed through 
computational activities. Briefly, these are an ability to: define clear and specific instructions for 
carrying out a process; design systems made of components each with a specific responsibility; 
design systems where components only reveal information or action related to their purpose; and 
understand that complex systems can result from the simple interactions of many components. 
Howland et al. [7] suggest such skills can be valuable in everyday life and work, such as generating 
accurate instructions for completing specialised tasks, or understanding the responsibilities of each 
department of a large business, and how these contribute to the functioning of the organisation. Lu 
and Fletcher adopt a similar stance, commenting that learning to think computationally should be seen 
as a valuable life skill, and that “we need to start teaching computational thinking early and often” [8, p. 
261].  

1.2 Learning and evaluating computational thinking 
With improved access to digital devices and curriculum imperatives, teachers are increasingly 
exploring how computational thinking skills can be developed in their students through project-based 
programming tasks. Challenges exist, however, in assessing and evaluating this learning – that is, 
collecting and evaluating data that indicates what is being learnt, and what progress in computational 
thinking skill development looks like. Brennan and Resnick [1] propose a three-dimensional 
computational thinking framework, that they suggest provides guidance for what we should be looking 
for when evaluating student development in this area. The framework comprises student learning of 
computational concepts (concepts used when programming or developing code, such as sequences, 
parallelism, conditionals etc.); computational practices (strategies and techniques applied when 
developing code, such as debugging, reusing or sharing code etc.); and computational perspectives 
(views formed when and from building programmes, such as self expression, collaborating and 
connecting with others, and questioning). Their framework was developed from research on students’ 
interaction with Scratch, “a programming environment that enables young people to create their own 
interactive stories, games and simulations, and then share their creations in an online community with 
other young programmers from around the world” [1, p.1].  
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They argue that when engaged in computational tasks, students iteratively and interactively draw upon 
and develop conceptual knowledge through adopting practices aligned with the work of programme 
designers. In the process, they also develop greater appreciation of the nature of the work as a form of 
self-expression, and the value of working with others when generating solutions. However, they 
comment challenges exist in unpacking the relationship between the three computational dimensions, 
and identifying how each contributes to and interacts with the others during the students’ work [1]. 
Their evaluation of three approaches to this (project portfolio analysis using the Scrape analytical tool; 
artefact-based student interviews; and premade design scenarios students reviewed, debugged and 
offered suggestions for improvement) suggests this is indeed complex, with each method providing 
only part of the picture. Regardless, what Brennan and Resnick’s [1] framework does provide, are 
some very useful descriptors that signal the sort of concepts and practices students engage with when 
completing computational tasks. These dimensions have been used in this study to evaluate student 
interaction with two different iPad apps, selected by their teachers to help build computational thinking.  

2 RESEARCH GOAL AND QUESTION 
The research goal was to evaluate two iPad apps of very different designs, in terms of their efficacy as 
environments for young students to develop and exercise computational thinking.  

The question guiding data collection was: 

To what extent do the iPad apps CargoBot and Pyonkee provide young students with environments 
within which to build and exercise computational thinking?  

3 RESEARCH CONTEXT 
Data were collected in a K-6 primary (elementary) school in a small semi-rural town in the Waikato 
region of New Zealand. The researcher had been working in the school for over 3 years, exploring its 
development of iPad-supported and BYOD classrooms since 2011. Outcomes from these earlier 
studies have been published extensively elsewhere (9, 10, 11, 12, 13, 14) with the innovative data 
method used in the earlier research being refined and adapted for this study. The student group 
comprised 63 nine and ten year olds (30 boys and 33 girls). They were not learning in single 
classrooms, but were part of the school’s movement towards government-supported modern learning 
environments1 (MLEs), where multiple classes work collaboratively together in a common space, 
supported by a number of teachers. Two teachers worked with the students in the MLE - they were 
Leesa who was a year 15 teacher, and Margaret who had been teaching for 35 years. The school had 
a BYOD policy operating in the MLE, where it was mandatory for students to have personal access to 
a digital tablet (in this case an Apple iPad). While most students used personally-owned devices, the 
school made available a number of loan devices for those who were unable to afford or bring their 
own. The spacious physical environment, furniture, and supporting technical infrastructure (wifi, large 
visual displays, Apple TV) had been specifically designed for student collaboration, and to optimise 
benefits from ubiquitous access to large numbers of mobile devices (Fig. 1).  

The curriculum in the MLE was strongly student-focused, and included a mixture of more conventional 
learning tasks designed to build foundational competencies in numeracy and literacy, and topic-based, 
thematic studies designed around problem and inquiry-based learning models. Across all activities the 
emphasis was on building student learning independence and higher order and critical thinking 
capabilities, with both teachers being suitably skilled in appropriate pedagogy and questioning to 
support these goals. Data were collected over a total of 8 hour-long (approx.) sessions comprising part 
of the students’ numeracy programme, but this was the first time they had engaged in tasks of this 
nature. The teachers had linked learning objectives to the geometry and measurement strand of New 
Zealand’s National Curriculum in numeracy. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 See http://www.minedu.govt.nz/NZEducation/EducationPolicies/Schools/PropertyToolBox/StateSchools/Design/ 
ModernLearningEnvironment.aspx 
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Fig. 1 The Modern Learning Environment (MLE) 

3.1 The apps and their introduction 
Two apps of very different designs were selected. These were CargoBot and Pyonkee, both being free 
apps available on Apple’s App Store. Using CargoBot, students learn and apply a range of 
computational concepts including abstraction, conditionals, loops and subroutines to develop scripts 
that programme a robotic crane to move coloured crates to different arrangements on palettes, as 
specified by goals set by the app (Fig. 2). The goals and complexity of programming get progressively 
more difficult as the challenges progress. Points (stars) are allocated according to successful 
completion of each challenge, and are factored against the ‘efficiency’ of the programme’s design.  

 
Fig. 2 The apps used: Cargobot (left) & Pyonkee (right) 

Pyonkee is based on the popular PC application Scratch, and is built from Scratch 1.4 open source 
code. It was selected due to its compatibility with iPads, and because it presented a very different 
approach to CargoBot for developing computational concepts and practices. In Pyonkee, students use 
pre-made blocks of visual code to create and animate scenes comprising characters and props. 
Students can opt to use characters, backgrounds, sounds etc. from the built in libraries, or import their 
own using the iPad’s camera and microphone. Unlike CargoBot, students start with a ‘blank canvas’ 
(stage) upon which to build their environments using a wide range of code blocks to programme 
characters and props. These include motion, control, variables, sound, looks, operators, pen and 
sensing (Fig. 2).  
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Prior to commencing independent work, the teachers introduced each app separately to the students. 
CargoBot was introduced first, with learning goals shared and basic instructions provided about to how 
work the app (eg., drag and drop), what the various programme blocks did, and how to test and run 
procedures. Students were also introduced to and encouraged to access the built in tutorials. The 
introductory session was approximately 30 minutes in duration and supported by visuals delivered to 
large screen televisions using Apple TV. Following the introduction, students worked independently in 
pairs on the challenges in three hour-long sessions, over the course of a week. Debriefing and sharing 
took place at the end of each session. A similar process was used for Pyonkee, although the 
introduction was more comprehensive and focused on drawing parallels between computational 
concepts and practices used in CargoBot, and their ‘adaptation’ to Pyonkee. The students worked in 
pairs with Pyonkee for 5 hour-long (approx.) sessions over the course of 2 weeks. The first two 
sessions were exploratory, where students experimented with code blocks and other features building 
procedures of their own design, while in the remaining sessions they worked to a teacher-specified 
brief to build a learning game for younger students.  

4 DATA COLLECTION AND SELECTION 
Data were collected using a specially-developed recording app that ran in the background on the 
iPads, while students worked. Although the classrooms were BYOD, a set of 10 iPad Airs with the 
recording app pre-installed were provided by the university for data collection purposes, due to issues 
installing the recording system on personally owned devices. The app recorded as .mov files the 
display, finger placement (indicated as a white dot) and audio via the device’s microphone. Although 
students had been informed of its use and ethical clearance had been gained via normal informed 
consent and assent processes, once activated, no visible indication of the operation of the recorder 
was available to the students. Using this system enabled the collection of very natural data - not 
influenced by researcher presence, from a large number of students engaged in the same task, over a 
relatively brief period. Recordings were stored on each iPad, and later extracted to the researcher’s 
laptop using iExplorer. 

Due to the exceedingly large volume of data produced by the recorder, files were selected for analysis 
based on the following criteria: 

1. They totalled five hours of recordings of students using each app (10 hours in total); 
2. They represented a balance of students’ interactions from across the sessions (ie., early work, 

later work); 
3. They were reflective of the gender balance of the classes; 
4. They included a balance of year 5 and year 6 students’ interactions. 

4.1 Coding 
A coding system based on Brennan and Resnick’s [1] evaluation framework was developed into a 
template built in Studiocode video analysis software, and was applied to the selected data (Fig. 3). 
Studiocode supports analysis of events contained in video data according to user-generated codes, 
presenting them as timelines from which statistical data such as average and total duration, event 
counts, and percentages of total time (etc.) can be calculated. Fig. 3 shows part of the coding 
template, timeline and recorded video for two students (R&M). The coloured arrows in the template 
are activation, deactivation and dependency links that enable concurrent event coding against 
different codes. These were important for mapping relationships between events, such as students 
collaborating (purple) when engaged in building or testing procedures (orange and green) or 
conceptualising the task (blue); or using experimentation (yellow) as a strategy when building 
procedures (orange). 

The coding template was adjusted many times before finalising, responding to behaviours, strategies 
and occurrences revealed in data. To assist with this, a post-doctoral research assistant was 
employed to blind review data, in addition to the researcher. The ensuing discussion led to five main 
code categories being agreed upon, each comprising a range of sub codes against which data were 
coded. These are outlined and colour linked to the code template in Table 1. Some of Brennan and 
Resnick’s [1] original dimensions were not included in the template as little or no evidence of them 
could be found, while others were added that reflected or described the actual strategies and practices 
used by these students (eg., stringing, problem conceptualisation/analysis and different ways this 
occurred). 
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Fig. 3 The coding template (right), video (left) and event timeline (bottom) 

Data were then double blind coded in Studiocode by the researcher and the assistant, following which 
a selection of 200 occurrences were subjected to a Kappa rater-agreement calculation. While these 
occurrences were selected at random, care was taken to ensure all codes were represented, and that 
at least some data aligned with each selection criterion were chosen. Only data both coders had 
identified were used, to avoid underestimation of agreement probability through inclusion of missing 
data [15]. The calculation yielded agreement across 168 occurrences with a Kappa of ĸ=.671 
(SE=0.053; CI=.95 from 0.567-0.665). This rated as ‘good’ on Landis and Koch’s scale [16]. 

Table 1. Code categories, descriptors and codes 

Category Description Codes (generated from data) 
Concept/Practice   

Building 
procedures  

Selecting and assembling 
code elements or blocks into 
sequences  

Stringing (separate or linearly-linked code elements) 
Modularisation (grouping elements into modules and 
linking modules to form procedures) 
Reuse, recycle, remix within or between pairs (R,R&R) 

Testing and 
debugging 
procedures 

Evaluating the performance 
of sequences by running 
procedure  
Detecting & rectifying 
programming errors 

Run full procedure, reflect (or not) on result and revise 
Incremental (test procedure by element or line using 
stepper or similar function), reflect (or not) on result 
and revise  

Conceptualisation Explain, analyse, critically 
reflect on requirements, 
problems, actions or 
responses 

Conceptualise to self (thinking aloud) 
Conceptualise with other students 
(interacting/conversing) 
Conceptualise with teacher 

Collaboration Sharing, teaching, 
explaining, giving & getting 
advice 

Collaboration between members of pairs and/or 
between pairs 

Experimentation/ 
trialling 

Strategy used mainly when 
testing & debugging 
procedures 

Evidence of analysis and reflection on outcome used 
when debugging (deliberate/considered) 
No evidence of analysis and reflection on outcome 
used when debugging (random/guessing) 
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5 RESULTS 
Statistical summaries for the sample data against each code were generated in Studiocode and 
exported to Excel for further analysis (see example in Table 2). These contained total count times, 
total time spent, percentage of overall task time, and the mean time per code for each pair. In most 
cases the percentage of task time exceeds 100%, as events often triggered multiple codes. This was 
particularly the case with data coded as ‘experimentation’ and ‘collaboration’, where these were linked 
as practices students applied to other computational activities, such as debugging, conceptualising or 
building procedures. Table 2 contains data summaries for four different pairs, two from CargoBot and 
two from Pyonkee. The far right columns separated from the pair data contain average count and 
percentage summaries for all coded data.  

Table 3 provides illustrative data that were coded under some of the categories. It contains the 
category and code, an explanation of the scenario surround the event, a thumbnail from the display 
video, and a transcription of the dialogue recorded at the time. Due to space constraints not all 
categories and their codes have been included, but the table demonstrates the nature of data coded 
and illustrates how coding decisions were made. 

Table 2. Example of summary data for four pairs. Averages for all groups at right 

 

6 DISCUSSION 
When considering these results and reflecting on the research goal, it is important to remember the 
purpose of this study was not to rate one app as being better or worse than the other, but rather to 
evaluate their usefulness for developing computational thinking in young students. To that end these 
results suggest both apps are useful, but for building different dimensions of computational thinking. 
Specifically, they tentatively suggest that where the main learning objective is to develop a more 
technical understanding of computational concepts, such as coding procedures or scripting, and some 
practices such as testing and debugging, a more structured environment such as that offered by apps 
like CargoBot, may be more efficient. 

Examining the averages across all pairs, significantly more time was spent applying computational 
concepts including stringing and building code modules, and some practices such as reworking or 
reusing code, analysing, testing and debugging etc. in CargoBot (approx. 34%), than in Pynokee 
(approx.18.5%). This also applied to strategies students used when engaged in these practices, 
particularly experimentation involving analysis and reflection on action or outcome (CargoBot approx. 
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17.2%; Pyonkee, approx. 9.9%). However, when evaluating other practice dimensions such as 
conceptualisation and levels of collaboration, Pyonkee (approx. 49% & 46% respectively) appeared to 
hold some advantages over CargoBot (approx. 29% & 24.5%).  

Table 3. Data samples: Scenario, thumbnail and dialogue coded by category  

Category Code Scenario description Thumbnail Recorded dialogue 
Building 
procedures 

Sequencing/ 
Stringing 

Students G&J required to 
sort coloured crates 
according to goal. They 
had built multiple single 
code lines (PROGs 1-3) 
for each movement stage, 
linking lines using the 
appropriate PROG block.  

 

I think we are going to run 
out of space… (long 
pause)… that’ll give us 
three piles… but we’ve still 
got to move the last 2 
across (to the right-end pile) 
(J). 
Ummm... this is really 
hard... Why have they cut 
off the bottom one? (PROG 
4). It should have the same 
spaces as the others 
(laughing)…. (L) 
We could do it easy then! 
(J). 
 

Conceptualisation Conceptualise 
with other 
students 

Students G&J required to 
sort coloured crates 
according to goal. They 
had developed two string 
sequences (PROGs 1&2) 
and tested them, They 
were creating a third 
sequence (PROG 3) 
following the same 
pattern, but had realised 
doing this would not allow 
them to move all crates in 
the available code space. 
J is building sequence. 

 

 It’s not going to work (G)…. 
(pause) you can’t do that…. 
Do what? (J)… 
Make it like that… in rows 
like that… and it’s 
wrong…anyway…. (G). 
Why? (J) 
‘Cos it won’t do it… see… 
what’s it going to do after 
PROG 1? Think about it 
stupid (sic)… it’s going to go 
to PROG 2 and then pick it 
up and go off the end… ‘cos 
you’ve told it to go across 
(to the right)… (G) (pause) 
OK… I get it… (pause)… it 
needs to go back and do it 
again… (J) Yeah, you have 
to repeat the same thing 
four times… (G). 

Experimentation Experimentation – 
evidence of 
analysis or 
reflection on 
action or result 

Students R&M were 
building their shape 
drawing game. They were 
trying to get their spite to 
draw a square, and had 
trialled sequence as per 
thumbnail. They were 
discussing the result. 

 

Ummm… it didn’t do 10 
steps (R)… 
Yes it did… see the line… it 
drew that… (M).  
That’s not big enough… you 
can hardly see it!… OK… 
so we need to make it 
bigger… what number 
should we try? (R). 
Let’s make it 100… we’ll try 
100 and see how far it 
goes… (M). 
Do you think that’ll be 
enough? See how little 10 
is… and it’ll only be 10 lots 
of that… so it’ll still be pretty 
tiny… (R). 
Go for 200 then… (M). 
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Testing & 
debugging 

Incremental – 
step by step 

N&M are finalising their 
shape game and had 
scripted the chipmunk 
sprites. They were 
testing the length of 
‘wait’ time before each 
sprite began to draw its 
shape. They had set this 
initially to 4 seconds and 
had run the relevant part 
of the script and were 
discussing the result. 

 

I think 4’s too long for the 
juniors… they’ll think 
nothing’s happening (N)… 
But we need to give them 
a bit of time to look… and 
you know… they muck 
around a bit (M)... (they 
test 4 seconds again) 
(pause)…. 
OK… it’s probably too 
long… umm… 2? 
(pause)… shall we give 2 
a try? (M)… (they test 2 
seconds)… (pause)… 
That might be a bit quick… 
do 3… (N). 

The recorded display and audio data offered insights into possible reasons for these differences. 
Although both apps were developed to promote computational thinking, their designs approached and 
structured this in fundamentally different ways. First, CargoBot presented the students with fewer 
distractive options that could draw their attention away from the core task of programming the robotic 
crane. Unlike Pyonkee, there was no capacity to change any elements of the task, its appearance, or 
the environment, and apart from different difficulty levels, students had few customisable options. In 
Pyonkee, however, the students were able to develop and programme environments of their own 
design. They were confronted with multiple options for sprites, backgrounds, costumes, props and so 
on that they could use for this purpose, and then even customise content once selected, using the 
app’s built in art tools. Alternatively, they could choose to import and manipulate their own content 
from the iPad’s visual media tools. Display data indicated considerable time was spent by some pairs 
negotiating and conceptualising their project’s content, and while this is an important part of building a 
project, in this limited trial it appeared to take time away from more formal coding activities.  

Second, Pyonkee’s design appeared to stimulate higher levels of collaborative interaction than 
CargoBot. While some of this linked to the students’ decision-making when conceptualising their 
projects and deciding how to go about it, there were also differences revealed by recordings that 
appeared related to what they were required to do, and the extent of expertise each could contribute 
to completing parts of the task. There was a tendency in some CargoBot data for one pair member to 
lead the problem solving, while the other served more as an observer or checker, less often offering 
input to coding decisions. This observation is supported by the significantly higher average percentage 
of data coded as conceptualise to self-thinking aloud in CargoBot, where one student was recorded 
verbalising problems or planning next steps quietly to themselves, with no obvious engagement or 
participation from the other. Display data also indicated limited passing of the device between pair 
members, suggesting that the process of building code sequences was physically less collaborative. 
While reasons for this are yet to be explored, it may have been that one of the pair was judged to 
posses higher levels of ‘computational capability’ that could be applied to the challenge, or simply it 
could be that one didn’t find as much motivation in solving the challenge as the other did, thus 
choosing to minimally engage at times. On the other hand, Pyonkee offered a much more diverse 
array of options of a less specialised or technically-complex nature, that potentially both students 
could contribute to. Designing stage layouts, deciding on sprites and costumes and developing 
procedures to animate characters appeared highly engaging for all students, who displayed high 
levels of intra-pair collaboration whilst doing so. The open, ‘blank canvas’ nature of Pyonkee 
undoubtedly contributed to this, as students were unconstrained by the pre-programmed structures 
and parameters of CargoBot, which limited their choices.  

Third, notably higher average percentages of time spent testing, debugging and editing procedures in 
CargoBot, appeared also to be related to the demands of the task and the app’s design and 
functionality. While both apps employed ‘drag and drop’ to build and edit sequences, students 
appeared to find debugging easier in CargoBot due to its single-screen layout, and the presence of an 
easy to use ‘stepper’ tool that supported command-by-command testing and debugging of sequences. 
While this was possible in Pyonkee it was more difficult to carry out, and the need to navigate through 
multiple code windows (control, sensing, motion etc.) to debug issues on a sprite-by-sprite basis, was 
more challenging. To a large extent these design influences could be expected, given the different 
nature of the task requirement and challenges presented in each case, and the openness (or not) of 
how students could go about achieving them. 
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Fourth, it was encouraging to note across students’ interaction with both apps exceptionally low levels 
of random experimentation or trial and error based on guesswork. Unlike earlier studies by the author 
evaluating student interaction with learning game apps [14], recordings revealed almost no 
occurrences of this in CargoBot (0.75%) and none at all in Pyonkee, suggesting problem solving and 
debugging was a far more deliberate and reflective process. This conclusion finds support in the oral 
exchanges coded as conceptualise with other students and conceptualise with teacher, where 
substantial evidence exists of students using higher order thinking (reflection, analysis, evaluation) to 
develop sequences and revise them after trialling. Table 3 provides one illustration of this in sample 
data coded as Experimentation. Recordings also provide some evidence of computational concept 
and practice transfer between the apps, although the exact number of occurrences of this was not 
logged. Evidence that transfer of computational concepts such as repeats, loops and conditionals had 
taken place, was recorded in the oral exchanges between some students. Although relatively 
infrequent, comments such as “remember, you need to repeat it... like we did with the crane… you 
know how we did it with PROG2 and stuff… don’t just pile them up…use the repeat block…” (students 
BJ&R, 21.05) indicated at least some conceptual transfer. While this finding appears promising, further 
research is needed to determine the extent of this, and if and how it might translate to other 
computational activities based on coding.  

7 SUMMARY AND CONCLUSION 
Recognising the obvious limitations of this study, results suggest that there is a place for apps of both 
teaching and creative designs in the development of computational thinking in students. They signal 
the likely value of students learning basic computational concepts and practices in more structured 
environments as provided by apps like CargoBot and LightBot, and for the very young, Kodable and 
Daisy the Dinosaur, before their creative application in project building using apps such as Pyonkee, 
Scratch and Scratch Jnr. Restrictions in the array of options and greater emphasis on learning 
technical concepts and dimensions of coding in more structured, challenge-based apps, appeared to 
support efficient acquisition of computational concepts and practices useful for project building. The 
emerging evidence of concept and practice transfer revealed in this study, provides some support for 
this position.  

Using display and audio capture to gather data provided fascinating insights into the unsupervised 
work of students on their computational tasks. As evidenced by the recorded dialogue, it was apparent 
most pairs either forgot about or disregarded the operation of the recorder while engrossed in their 
challenges. There was no evidence of ‘staged’ performances that may have resulted from other data 
collection methods such as observation or external video, and the method was highly efficient, 
enabling collection of a substantial volume of data within a relatively defined timeframe. An interesting 
side benefit from using this data method, was that it drew attention to how engaged these students 
were in their work. While formal on/off task analysis was not the purpose of this research, data 
strongly indicated exceedingly high levels of task application, with minimal time wastage or 
unconnected activity. Although some expressed their frustration and annoyance at not being able to 
solve problems or easily debug scripts (leading to temporary disengagement in a few cases), this was 
the exception, not the rule. The vast majority displayed much tenacity and perseverance as they 
confronted challenges, applying at times quite sophisticated thinking and collaboration skills to solving 
them. Reflecting on this in relation to evaluating computational thinking performance, an expansion to 
Brennan and Resnick’s [1] framework could acknowledge the application of higher order thinking, the 
importance of dispositional characteristics, and the role of collaboration in developing computational 
thinking capability. While understanding computational concepts and practices is important, these 
alone may be of limited use in the absence of cognitive strategies and dispositional characteristics that 
support their effective application to tasks. Using display captures to gather data for evaluating 
computational thinking development could be a useful means of unpacking the relationship between 
these dimensions. 

Future research as part of this project will adopt a similar methodology to investigate the nature and 
type of thinking 5 and 6 year olds engage in when working in pairs with basic coding apps. It will 
combine a thinking types framework from an earlier study by the author [9] with ideas from a 
computational thinking analysis model developed by Selby [17], to explore the nature of student 
thinking when engaged in the different dimensions of computational tasks. It is hoped these studies 
will shed light on if and how computational tasks may act as vehicles for developing a range of higher-
order thinking capabilities.  
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