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Abstract 

The study of plant traits has great application for understanding plant distribution 

patterns and community assembly at a variety of scales. Roots are a vital 

component of plant water and nutrient uptake strategy, and yet root traits are not 

as well understood as leaf or stem traits. In this thesis I aimed to determine the 

relationships between seedling fine root, leaf, and stem traits of New Zealand tree 

species, and investigate whether these traits related to species‟ abundance along a 

soil fertility gradient. I also investigated how seedling traits compare with adult 

traits, and whether nutrient availability or method of fertiliser application affected 

seedling trait expression. To achieve these goals, I measured root, leaf, and stem 

traits on seedlings of 66 native tree species, and combined this with relative 

abundance data along a strong soil fertility gradient at Puketī forest. I used 

principle component analysis and ordination to assess the dimensionality of trait 

variation across species; and linear regressions to compare community-weighted 

mean (CWM) traits vs. a summarised axis of soil fertility. I also performed 

regression analysis between seedling traits and adult traits from the literature. To 

assess the effects of nutrient availability and application I grew four native tree 

species under three nutrient treatments: low, pulsed, and slow release. I used two-

way ANOVA and co-efficient of variation analyses to determine the strength of 

responses to nutrient treatments. 

Dry matter content was positively associated across leaves, roots, and stems, and 

negatively associated with root nitrogen concentration and relative growth rate, 

suggesting that at least as seedlings, traits associated with a fast or slow growth 

strategy are co-ordinated across organs. Root diameter and SRL were independent 

from this axis of fast-slow growth, suggesting that SRL does not have a direct 

effect on seedling growth rates and nutrient foraging. A third axis of variation was 

also identified, strongly influenced by root phosphorus and nitrogen 

concentrations, but was difficult to interpret. Regression of CWM traits vs. soil 

fertility showed that traits which comprised the fast-slow PCA axis co-varied 

strongly with soil fertility. Neither root diameter nor SRL were significantly 

related to soil fertility, supporting the conclusion that SRL is not adaptive to 

nutrient foraging ability. Seedling morphology traits are generally well correlated 

with adults, but tend to be oriented towards a more “acquisitive” growth strategy, 

suggesting that species may down-regulate their growth over ontogenetic 
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development. The absence of correlation between SRL and soil fertility suggests 

that alternative root traits may be more applicable for understanding species 

foraging strategy. 

Species‟ responses to the nutrient treatments differed for most traits. Root-to-

shoot ratio, growth rate, and root nutrient concentrations responded strongly to 

nutrient availability, and morphological traits did not respond as strongly. Slow 

release and pulse treatments were typically similar, and both significantly 

different to low nutrient treatment. These results suggest that it is practical to 

compare morphological trait data between studies, provided plants are raised in 

environments conducive to growth, but that nutrient concentrations and biomass 

allocation traits can be strongly influenced by soil fertility.  
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Chapter 1: Literature review 

Ecology and Humanity 
 

“The highest function of ecology is understanding consequences.” 

Planetary ecologist Pardot Kynes, from the novel “Dune” (Herbert, 1965) 

 

Never before has the understanding of consequences been of such importance as 

in the 21
st
 century. Across the globe, billions of people now live in relative 

comfort, enjoying access to food, clean water, education, modern medicine, and 

longer lifespans (World Health Organization, 2013). However the technological 

progress and prosperity of humanity has also enabled exponential population 

growth, and has come at the price of deforestation, collapse of fisheries, loss of 

biodiversity, widespread extinction of species, and the perturbation of Earth‟s 

physiochemical systems (Vitousek, 1994, Vitousek et al., 1997b, Worm et al., 

2009, Barnosky et al., 2011, Schneider et al., 2011, Rogelj et al., 2012, Cardinale 

et al., 2012). If humanity is to have a long term, sustainable future on this planet, 

the devastation of ecosystems must be halted, and progress must be made on 

restoring ecosystem functions and services (Hobbs and Harris, 2001, Sanderson, 

2013). 

One of the major tasks of modern ecology is to build on our understanding of the 

consequences of human activity on ecosystem structure and function. We need to 

refine our knowledge of how ecosystems are affected by climate, biogeochemical 

cycles, biodiversity, and distributions of species; and how ecosystems in turn 

affect these factors (Vitousek et al., 1997a, Chapin III et al., 2000). To understand 

the consequences of our collective actions on Earth‟s ecology, we must develop 

models of how ecosystems form, function, and respond to environmental 

variables, with the hope that such models will allow us to mitigate future 

ecologically detrimental effects, and to rehabilitate or reconstruct damaged or 

destroyed ecosystems. 

Ecological models 

It has long been established in ecology that abiotic gradients are major drivers of 

spatial changes to regional vegetation types (biomes) (Holdridge, 1947, 
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Whittaker, 1975). The dominant biome of a region can be predicted accurately 

from the combination of mean annual temperature (MAT) and mean annual 

precipitation (MAP) (Figure 1). This general principle has been refined over time 

(Box, 1996), but this model alone is not sophisticated enough to make predictions 

about the distributions of individual species, and how distributions may change 

with alterations to the environment. To better understand the factors which drive 

individual species‟ distributions, ecological models need to incorporate data about 

the properties of individual species, and how these properties are filtered by the 

environment. Additionally, as MAT and MAP vary over relatively large spatial 

scales, environmental gradients which vary over smaller scales (e.g. nutrient or 

light availability) are often more suited to the study of species-level distribution 

patterns and community assembly processes. 

 

Environmental filtering and limiting similarity 

Community assembly can be thought of as resulting from two antagonistic 

processes: Environmental filtering and limiting similarity (Laughlin et al. 2012). 

Environmental filtering is the result of differential fitness among species, due to 

 

Figure 1. The pattern of global biome types in relation to Mean Annual Temperature and 

Mean Annual Precipitation (adapted from Whittaker, 1975). 
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species‟ adaptations to the physical, chemical, and biological conditions of a site. 

For example, higher winds on convex ridges filter for shorter species, as they are 

better adapted to resist the mechanical and moisture stress on these sites (Lasky et 

al., 2013). Other environmental filters include disturbance regimes, topography, 

climate, and soil fertility (Freschet et al., 2011). Harsher and more stressful 

environments tend to have a stronger filtering effect and offer fewer viable niches, 

resulting in community clustering around adaptive attributes, with more similarity 

between species than would be expected by chance.  

Limiting similarity is an extension of the competitive exclusion principle, which 

states that “complete competitors cannot co-exist” (Gause, 1934, Hardin, 1960). 

As environmental filtering increases functional similarity between species, 

competition limits functional similarity between species within a community, 

acting to minimise niche overlap and maximise resource partition (MacArthur and 

Levins, 1967).  

These two processes rely on the concept of similarity or dissimilarity between 

species, and in order to understand how species‟ attributes relate to environmental 

filtering these differences need to be quantified and compared. Functional trait-

based ecology represents a method of measuring species‟ attributes, using these 

measurements to identify differences between species, and mechanistically 

linking these to differential fitness under given environments. 

Plant functional traits 

Traits are heritable features or characteristics of organisms (Darwin, 1859), and 

functional traits are the morphological, anatomical, biochemical, physiological, or 

phenological traits which indirectly impact an individual‟s fitness via their effects 

on establishment, survival, growth, and reproductive success (Violle et al., 2007, 

Reich et al., 2003). For ease of reference, both plant functional traits and the trait 

values measured on individuals will be hereafter referred to simply as „traits‟. 

Traits can be continuous variables, for instance height at maturity or leaf area; or 

categorical variables, such as evergreen or deciduous leaf habit (Violle et al., 

2007, Pérez-Harguindeguy et al., 2013). Intra-specific trait variation can reveal 

genotypic diversity within species, as well as species‟ capacity to adapt to 

environments via phenotypic plasticity (Hutchings and de Kroon, 1994, Sultan, 

2000, DeWitt and Scheiner, 2004). Inter-specific trait variation can be compared 
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with species‟ distributions along environmental gradients, to construct 

mechanistic hypotheses of how physical differences between species ultimately 

result in different patterns of distribution over environmental gradients (Diaz et 

al., 1998, Lavorel and Garnier, 2002, Shipley et al., 2006, Ordoñez et al., 2009, 

Laughlin et al., 2012).  

As a mechanistic framework, trait-based ecology may also have potential to 

predict shifts in vegetation distributions in response to modelled future 

environmental conditions, including changes to climate, disturbance regimes, and 

soil fertility (Diaz and Cabido, 1997, Chapin III, 2003, Wright et al., 2005, 

Swenson and Weiser, 2010). Additional, trait-based approaches may be of use in 

restoration ecology. By analysing the traits of likely invasive species, and 

deliberately selecting native species to fill empty niches, restoration planners may 

be able to construct native plant communities which are resistant to invasion 

(Pywell et al., 2003, Fukami and Lee, 2006, Funk et al., 2008, Laughlin, 2014a).  

Plant strategy 

Traits indirectly influence individual fitness by their adaptive value in the current 

environment, however natural selection does not operate on individuals traits, but 

rather on the whole organism. Therefore, traits are often considered in 

combination, as integral components of an overall survival and reproductive 

“strategy”. Craine (2009) defines an individual or species‟ strategy as “a set of 

interlinked adaptations that arose as a consequence of natural selection and that 

promote growth and successful reproduction in a given environment”.  

Grime (1979) described three major directions of plant strategy which have 

evolved in response to varying degrees of environmental stress and disturbance: 

competitors, stress-tolerators, and ruderals (CSR). Competitive species have traits 

which support an acquisitive growth strategy. Fast growth allows competitive 

species to rapidly proliferate into high resources patches, and exploit them before 

slower growing species. Competitors thrive in conditions of low stress and 

disturbance, but on unproductive or frequently disturbed sites their traits are not 

conducive to long term fitness. Stress-tolerating species are adapted to stressful 

and/or low productivity conditions. Stress in this sense refers to conditions which 

hinder growth, i.e. low availability of vital resources such as light, nutrients, and 

water. Stress-tolerators are able to survive in unproductive environments by 
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adopting a conservative growth strategy characterised by traits relating to slow 

growth and higher resource allocation to storage. Stress tolerators have sacrificed 

their ability to rapidly exploit resources, in exchange for robust, long-lived organs 

which are more able withstand damage from grazing or tolerate environmental 

extremes. Ruderal species are adapted to environments which frequently 

experience disturbance due to factors such as fire, flooding, landslides, trampling, 

or intensive animal grazing. To adapt to regularly disturbed habitats, ruderal 

species are typically small, herbaceous, short-lived and capable of completing 

their reproductive cycle in a short time period. Like all models, CSR theory is a 

simplification of reality, and most species fall somewhere in between the three 

“poles” of strategic directions (Pierce et al., 2013). Despite criticisms of its 

limitations (Loehle, 1988, Craine, 2005), CSR theory still serves as a valuable and 

influential model of plant strategy. It highlights the importance of analysing plant 

traits from a functional point of view, to determine how traits and strategies are 

environmentally filtered. Subsequent models have also been theoretically based in 

discussing dimensions of plant strategy, but have developed these strategies in a 

“bottom-up” approach by studying inter-specific trait variation and inherent trade-

offs in organ function (Westoby, 1998, Westoby et al., 2002). 

In leaves, there is strong and wide-spread evidence of a trade-off between traits 

relating to either acquisitive or conservative growth (Reich et al., 1991, Westoby, 

1998, Westoby et al., 2002, Wright et al., 2004). This “worldwide leaf economic 

spectrum” ranges from “cheaply” constructed leaves, characterised by high SLA, 

low tissue density and fast rates of photosynthesis. Cheap leaves are able to 

rapidly photosynthesise and return the carbon cost of their construction, but lack 

defences against damage and thus tend to be relatively short lived. At the other 

end of the spectrum are “expensive” leaves which tend to have low SLA, high 

tissue density, and low photosynthetic capacity, but are better adapted to defend 

against grazing and environmental damage, and therefore can provide 

photosynthetic returns over a longer time period.  

Evidence in support of the world-wide leaf economic spectrum has been 

documented at a range of scales, from within communities (Reich et al., 1991, 

Mediavilla et al., 2008, Laughlin et al., 2010, Jager et al., 2015) to across biomes 

(Reich et al., 1997, Reich et al., 1999, Wright et al., 2004). Leaf economic traits 

have been demonstrated to relate to multiple independent environmental variables, 
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including light availability, water availability, soil fertility, and mean annual 

temperature (Reich et al., 1997, Reich et al., 1998, Reich et al., 1999, Wright et 

al., 2002, Wright et al., 2004, Wright et al., 2005). 

There is some evidence that similar strategic trade-offs between competitive and 

stress-tolerating growth may be present in other organs. Low density stems cost 

less carbon to construct, and can therefore grow taller for a given amount of 

carbon expenditure (King et al., 2005). In contrast, denser stems are more able to 

withstand mechanical stress, and therefore can facilitate higher maximum growth 

or survival in environments prone to high winds. Denser stems can sustain higher 

negative water pressure in the xylem before failure and embolism, conferring 

drought tolerance, and facilitating increased maximum height (Domec et al., 2008, 

Tyree and Zimmermann, 2002, Chave et al., 2009). In seeds there is a trade-off 

between seed mass and seed output. Species which produce larger seeds provide 

each of their offspring with more energy to establish and grow, which may be 

advantageous in stressful environments such as shaded forest floors or nutrient-

poor soils. In contrast, species which produce smaller seeds can develop more 

offspring for a given amount of energy, but these offspring may be more reliant 

on finding canopy gaps or other resource rich sites in which to establish (Henery 

and Westoby, 2001, Westoby et al., 2002). Seed mass can also influence species‟ 

mode of dispersal, with larger seeds typically dispersed by animals, and smaller 

seeds dispersed by wind (Westoby et al., 1996). 

It has also been suggested that plants may coordinate their strategies across 

multiple organs (Reich, 2014). Some studies support this hypothesis, 

demonstrating correlations between analogous root and leaf traits such as SRL 

and SLA (Withington et al., 2006, Laughlin et al., 2010, Laughlin et al., 2011, 

Fort et al., 2012), root and leaf tissue density or dry matter content (Wahl and 

Ryser, 2000, Mokany and Ash, 2008, Freschet et al., 2010, Pérez-Ramos et al., 

2012, Craine et al., 2001), or root and leaf nutrient concentrations (Craine et al., 

2005, Kerkhoff et al., 2006, Freschet et al., 2010, Liu et al., 2010, Holdaway et 

al., 2011). Other studies have not found correlations between SRL and SLA 

(Craine et al., 2005, Tjoelker et al., 2005, Markesteijn and Poorter, 2009, Chen et 

al., 2013), root and leaf tissue density (Kembel and Cahill Jr, 2011), or root and 

leaf longevity (Withington et al., 2006). Leaf and stem tissue densities have also 

been demonstrated to be disconnected in woody species (Baraloto et al., 2010, 
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Fortunel et al., 2012, Richardson et al., 2013, Jager et al., 2015). Therefore it 

seems that evidence is mixed for above and below ground strategic coordination, 

and even disconnections between leaf and stem economic traits are common.  

The relevance of roots 

Roots are vital components of plant function, responsible for absorbing water and 

nutrients from the soil, and yet compared to leaf traits, the adaptive functionality 

of root traits is poorly understood. Roots are integral to many soil processes, 

including nutrient cycling and carbon sequestration (Jackson et al., 1996, 

Eissenstat et al., 2000, Aerts et al., 1992a). Fine roots represent considerable 

amounts of global plant biomass (Robinson, 2004), and therefore further 

investigation of traits relating to fine root lifespan, turnover, and decomposition 

may be crucial for improving global models of carbon release and sequestration. 

To date, universal patterns between root morphology and function have yet to be 

established. 

Although leaves and fine roots are both responsible for resource uptake, the air 

and soil environments in which they function are fundamentally different, as are 

the physiochemical processes involved in capturing light compared to absorbing 

water or soil nutrients. Due to these contrasts, the traits relevant to the leaf 

economic spectrum may not necessarily have analogues in root traits, and instead 

other traits may be relevant to root foraging strategy (e.g. root-to-shoot ratio, 

rooting depth, or root branching intensity). If root strategy is not correlated with 

leaf strategy, then it may represent an independent dimension of plant strategy, 

which could improve the predictive ability of trait-based models of community 

assembly (Laughlin, 2014b). 

Fine and coarse roots 

The root systems of woody plants are often divided into two functionally distinct 

categories, fine and coarse roots. Fine roots are generally defined as falling under 

a threshold of diameter, typically 2 mm. An alternative definition is offered by 

Eshel and Beeckman (2013), defining fine roots as those which break off from the 

root system during mechanical excavation. For the purposes of this thesis I will 

use the former definition, however in reality there is a continuum of root 

development and function, from young, absorptive fine roots, to older, lignified 
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and hardened roots (Hishi, 2007), which definitions based on branching order or 

diameter class can fail to appreciate (Guo et al., 2008). 

Fine roots function to absorb water and soil nutrients, as well as interface with 

mycorrhizal symbionts (Brundrett, 1991, Smith and Read, 1996, Ryser, 2006). 

Newly grown fine roots often have an epidermis with fine root hairs which 

function to increase absorptive area. Root hairs can account from 43% to 96% of 

total absorptive length and surface area of woody species, due to their high 

surface area to volume ratio (Persson et al., 2002, Guo et al., 2008). There are 

several distinct categories of mycorrhizal symbioses; the majority of land plants 

form vesicular-arbuscular mycorrhizal symbioses (VAM), and other categories 

include ectomycorrhizal (EM), ericoid, and orchid type mycorrhizas (Wang and 

Qiu, 2006). Broadly speaking, mycorrhizal symbioses involve the fungal partner 

efficiently capturing vital soil nutrients (particularly phosphorus), and providing 

these to the plant in exchange for photosynthetic carbon (Aerts and Chapin, 1999, 

Brundrett, 2002). Fine roots lack secondary thickening or other physical defence 

structures, and are therefore more susceptible to damage from soil pathogens, 

grazing invertebrates, or physical factors such as frost or water loss (Eissenstat 

and Yanai, 1997).  

Most fine roots do not undergo secondary thickening, but senesce and decay, 

making them more like leaves than twigs or branches (Eissenstat and Achor, 

1999). The fine roots that do undergo secondary thickening and lignification 

function as robust “pipes”, transporting nutrients and water from the fine 

absorptive roots to the main stem, and anchoring the plant in the soil (Gregory, 

2006). Due to these functional requirements, coarse roots typically resemble 

woody stems or branches, reflected in their functional traits (Fortunel et al., 2012, 

Fortunel et al., 2014).  

The absorptive functions and inherent susceptibilities of fine roots mirror those of 

leaves, and therefore there may be a similar economic spectrum in roots, relating 

to investment in root structural integrity and the resulting root longevity. 

However, research investigating root traits and strategies has lagged behind that of 

above ground organs, due to the fundamental differences and difficulties between 

sampling plant material from above vs. below ground. 
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Root sampling 

Studying root traits in the field poses several logistical and methodological 

difficulties when compared to sampling leaf or stem traits. The primary difficulty 

is that the surface soils of productive ecosystems are typically densely packed 

with inter-woven roots, which may originate from several individuals of as many 

species. Such a density of interwoven roots can make a definitive identification of 

species and individual plant of origin a tedious task. This can be avoided by 

sampling in mono-species stands, although these are more typical of herbaceous 

communities compared to woody communities. Forest root samples are typically 

taken near to a desired species, and traced back through the soil to confirm the 

individual of origin. Preparing root samples for analysis typically requires 

thorough washing in order to remove any attached soil. Depending on the 

remoteness of the study site, access to sufficient quantities of clean water may be 

unfeasible. In situations such as these, the best alternative is to store the samples 

in a cool, air-tight container, keeping them hydrated and fresh until washing can 

be performed. Trait measurements of fine roots may become unreliable if the 

sample has deteriorated or decomposed, and therefore fresh measurements are 

always preferable. The equipment used to measure root length (a digital scanner) 

is typically fairly bulky, and may be unsuitable for transporting to or operating in 

remote areas. Despite advances in engineered solutions to root sampling, field 

sampling equipment can be large and difficult to transport, and still faces 

difficulties such as cutting through rocky soils and tough, woody roots (Sochacki 

et al., 2007). 

As an alternative to field root sampling, several recent studies have utilised traits 

of glasshouse grown plants glasshouses (Cornelissen et al., 2003a, Mokany and 

Ash, 2008, Laughlin et al., 2011, Wishart et al., 2013, Birouste et al., 2014). 

Growing plants in a glasshouse allows researchers to control environmental 

factors, including light, water, and nutrient availability, as well as preventing 

herbivory and monitoring for disease. Glasshouse-based growth can also facilitate 

the root washing process by allowing the choice of an easily washed soil medium 

and providing easy access to root washing water, thereby avoiding damage to root 

systems and maximising the accuracy of root trait measurements. 
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Trait plasticity 

Plants are known to alter their trait expression to better adapt to the local 

environment, a phenomenon known as trait plasticity (Bradshaw, 1965). By 

controlling environment factors in the glasshouse environment, researchers can 

alter factors individually, and assess the plastic responses of species‟ traits.  

SLA has been well documented to respond to light availability (Meziane and 

Shipley, 1999, Valladares et al., 2000a, Valladares et al., 2000b, Meziane and 

Shipley, 2001, Rozendaal et al., 2006, Lusk et al., 2008), and leaf traits also 

respond to nutrient availability (Meziane and Shipley, 1999, Knops and Reinhart, 

2000, Navas and Garnier, 2002). SRL has been demonstrated to respond to 

nutrient availability in some studies (Clemensson-Lindell and Asp, 1995, Hill et 

al., 2006, Kalliokoski et al., 2010), but not in others (Boot and Mensink, 1990, 

Cromer and Jarvis, 1990, Borken et al., 2007, Kalliokoski et al., 2010). Root-to-

shoot ratio has been widely shown to respond to both light and nutrient limitation, 

as plants increase their relative biomass allocation to the organ responsible for up-

taking the limiting resource, forming a functional equilibrium and effectively co-

limiting resources (Brouwer, 1962, Aung, 1974, Chapin III, 1980, McGraw and 

Chapin, 1989, Cromer and Jarvis, 1990, Garnier, 1991, Schippers and Olff, 2000, 

Müller et al., 2000, Dyer et al., 2001, Hill et al., 2006, Louw-Gaume et al., 2010, 

Grassein et al., 2010). Recent research by Freschet et al. (2015) shows that plants 

typically respond to light limitation by adjusting morphological traits such as 

SLA, but that responses to nutrient limitation are typically in the form of 

increased root biomass allocation, rather than modification to SRL. 

Understanding and quantifying species‟ responses to limiting resources has 

applications for cross-study trait comparisons or pooling data, as it reveals which 

traits are relatively constant regardless of environmental factors, and which traits 

can be strongly affected by differences between experimental conditions.  
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1.1 Chapter overviews 

Chapter One: 

This chapter introduces the theoretical concepts around which the subsequent 

chapters are based, including root function, environmental filtering, plant 

functional traits, plant strategy, and phenotypic plasticity. 

Chapter Two: A multi-trait test of the whole-plant economics spectrum 

This chapter introduces further literature relevant to root traits and their 

relationships to plant foraging strategy. The objectives of this chapter involve 

investigating the relationships between seedling and juvenile traits of the same 

species, the dimensions of trait variation present across species, and how 

community weighted mean traits vary along a strong soil fertility gradient. I 

measured root, leaf, and stem traits measured on seedlings of 66 New Zealand 

native tree species, and combined this with data from the literature on adult traits 

and relative abundances along a measured soil fertility gradient at Puketī forest. I 

used linear regressions to compare seedling and adult traits, PCA and ordination 

to assess the dimensions of trait variation across species, and linear regressions of 

community-weighted mean (CWM) traits vs. the principal component of soil 

fertility attributes.  

My results showed that seedling morphology traits are generally well correlated 

with adults, but tend to be oriented towards a more “acquisitive” growth strategy, 

suggesting that species may down-regulate their growth as they develop into 

adults. PCA results showed that dry matter content was positively correlated 

across leaves, roots, and stems, and negatively associated with root nitrogen 

concentration and relative growth rate, suggesting that at least as seedlings, traits 

associated with a fast or slow growth strategy are co-ordinated across leaves, 

roots, and stems. Root diameter and SRL were independent from this first axis of 

fast-slow growth, suggesting that SRL does not have a direct effect on seedling 

growth rates and nutrient foraging. A third axis of variation was also identified, 

influenced strongly by root phosphorus and nitrogen concentrations, but this axis 

was difficult to interpret in the context of plant strategy. Regression analysis of 

CWM traits vs. soil fertility showed that the traits that made up the first 

“economic” PCA axis were strongly related to the soil fertility gradient, 

particularly stem dry matter content. Neither root diameter nor SRL were 
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significantly related to soil fertility, supporting the conclusion that SRL is not 

adaptive to nutrient foraging ability in these species. 

Chapter Three: The effects of soil fertility on intraspecific trait plasticity 

This chapter introduces further literature relevant to phenotypic plasticity of plant 

organs and functional traits in response to nutrient availability. The objectives of 

this chapter were to investigate whether the availability of nutrients in a potting 

medium affects trait expression in tree species, and similarly whether the method 

of fertiliser application affects trait expression. I grew four species representative 

of native New Zealand trees, under three nutrient availability treatments: low, 

monthly pulse, and slow release. My results showed that root-to-shoot ratio, 

relative growth rate, and root nutrient concentrations were the most affected traits, 

and that morphological traits were not strongly affected by nutrient availability. 

Slow release and pulse treatments were typically similar, and both were 

significantly different to low nutrient treatment. The few differences I observed 

between slow release and pulse were possibly due to differences in total nutrient 

availability, rather than mode of application. Together these results suggest that it 

is practical to compare or pool morphological trait data between and among 

studies, so long as plants were raised in environments conducive to growth. 

However, care should be taken when comparing organ nutrient concentrations, 

root-to-shoot ratios, or relative growth rates, as these can be strongly influenced 

by soil fertility. 

Chapter Four: Synthesis 

This chapter summarises the main observations of chapters two and three, 

suggests applications for these findings, and recommends further research to build 

upon and strengthen these conclusions. 
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Chapter Two: A multi-trait test of the whole-plant 

economics spectrum using fine root, leaf, and stem traits 

and community-level trait responses to soil fertility 

2.1 Abstract 

The worldwide leaf economic spectrum has proved to be useful in mechanistically 

linking community assembly along environmental gradients to the physical 

properties of individual species. Species with conservative traits are typically 

associated with low productivity environments, and acquisitive species are 

typically associated with high productivity sites. It has been hypothesised that root 

traits may also form an economic spectrum, where the ability to rapidly exploit 

soil nutrients trades off with defensive ability and root longevity. Previous 

research has suggested that above and below ground economic strategies may be 

co-ordinated, but results are inconclusive. As roots are responsible for nutrient 

and water uptake from the soil, traits relating to a root economic spectrum may be 

particularly evident along soil fertility gradients. Measuring root traits on 

glasshouse raised seedlings allows environmental variables to be controlled, and 

provides an easier method of removing and washing roots for analysis. This 

chapter has the following three objectives: 

(1)  Assess how closely species‟ seedling traits correlate with adult traits. 

(2)  Determine the multivariate relationships within and between the root, leaf, 

and stem organs of New Zealand tree species. 

(3)  Determine how community-level root traits vary along a strong soil 

fertility gradient.  

In this study I measured 14 fine root, stem, and leaf traits on individual seedlings 

of 66 native New Zealand forest trees grown under controlled conditions. Trait 

values of seedlings measured in this study were significantly and positively 

correlated with trait values of adults taken from the literature. However, SLA and 

SRL were consistently lower in adult individuals, reflecting a down-regulation of 

growth as trees mature.  

Using principal component analysis (PCA), three principle axes of variation were 

identified. The first axis represented a whole-plant economic spectrum, with high 
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relative growth rates associated with high specific leaf area (SLA), low tissue 

densities and low dry matter content in roots, leaves, and stems. This finding 

supports recent suggestions of a co-ordinated “slow-fast” strategy at the whole 

plant level. The second axis represented a spectrum of fine root diameter which 

was inversely related to specific root length (SRL), indicating that fine root 

diameter and SRL were unrelated to the whole plant “slow-fast” continuum. The 

third axis was complex, and was strongly influenced by root phosphorus and 

nitrogen concentration, with lesser influences from SRL, stem tissue density, and 

root porosity. 

Community-weighted mean trait values relating to the whole plant “slow-fast” 

continuum correlated strongly with soil fertility, particularly SLA, relative growth 

rate, and leaf, root, and stem dry matter content. This indicates that soil fertility 

filters for economic traits of leaves, roots, and stems simultaneously. Community- 

weighted mean SRL showed no significant relationship to soil fertility, 

contrasting with previous findings. My results suggest that SRL is not directly 

associated with species‟ ability to exploit or tolerate high or low nutrient 

availability. Other traits including root porosity, root branching intensity, and 

mycorrhizal association may be more adaptive to soil fertility and warrant more 

detailed investigation. 
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2.2 Introduction 

Understanding the patterns and processes which govern species‟ distributions has 

been a long-standing goal of ecology, and the importance of this science increases 

alongside humanity‟s impacts to Earth‟s biological and physiochemical systems. 

Accurate predictions of how species‟ distributions could change under future 

climate scenarios may allow pre-empting of such changes, with the aim of 

minimising extinctions and losses of biodiversity in natural ecosystems. To 

understand how species distributions may respond to changes in environmental 

variables, we must first understand the factors which have resulted in the current 

distribution of species.  

Functional trait-based ecology is a theoretical framework through which 

ecologists can understand how the characteristics of individuals and species relate 

to their biological fitness in a given environment. Traits are heritable 

characteristics of individuals and species (Darwin, 1859), and functional traits are 

those which indirectly impact an individual‟s fitness through their effects on 

establishment, survival, growth, and reproductive success (Violle et al., 2007, 

Reich et al., 2003). For ease of discussion, individual functional traits and the 

values measured on individuals or across species will both be hereafter referred to 

as simply “traits”. By comparing and contrasting species‟ traits and distributions 

across environmental gradients, plant ecologists can construct mechanistic 

hypotheses to link species‟ physical properties to how they are affected by the 

environment, how they in turn influence the environment, and how species‟ traits 

ultimately result in observed species distributions (Diaz et al., 1998, Lavorel and 

Garnier, 2002, Ordoñez et al., 2009, Shipley et al., 2006, Laughlin et al., 2012). 

As natural selection acts on the whole organism rather than individual traits, 

ecologists often consider how species‟ trait combinations are adaptive to the 

environment. Collections of an individual‟s traits can be thought of as a 

“strategy”, which Craine (2009) defines as “a set of interlinked adaptations that 

arose as a consequence of natural selection and that promotes growth and 

successful reproduction in a given environment”. Grime (1979) outlined three 

major plant strategies which have evolved in response to varying degrees of 

environmental stress and disturbance: ruderal species are adapted to frequently 

disturbed environments, are typically small, short-lived, and prioritise 

reproductive output over vegetative growth; stress-tolerating species are adapted 
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to high stress / low productivity conditions, and typically have a conservative 

growth strategy characterised by slow growth rates, high density tissues, and low 

specific leaf area (SLA); and competitive species, which thrive in conditions of 

low stress and disturbance, tend to have an acquisitive growth strategy 

characterised by lower density tissues, fast growth rates, and high SLA. 

Some dimensions of plant strategy can be viewed as “economic spectrums”, 

where photosynthetic carbon is „invested‟ in new tissue, with the goal of 

maximising future „returns‟, usually in the form of more photosynthetic carbon or 

soil nutrients, thereby increasing their fitness in a given environment. However, 

traits reflective of strategic dimensions tend to be mutually exclusive, and thus 

aligning to a particular strategy typically precludes the benefits of a different 

strategy (forming a “trade-off”). For instance, constructing thin, low density 

leaves allows rapid returns on carbon investment, but precludes long leaf lifespans 

and investment in defensive chemicals or structures. Tree species tend to be 

relatively long lived, and thus are not often characterised as having true “ruderal” 

strategies, instead the main trade-off observed in trees is between stress-tolerating 

(conservative growth) and competitiveness (acquisitive growth). The “world-wide 

leaf economic spectrum” (Wright et al., 2004) is the best documented example of 

this trade-off, in which leaf-lifespan is traded-off against SLA and thus rate of 

return on carbon investment. Acquisitive species tend to have high SLA leaves, 

which require relatively less carbon per unit of photosynthetic area, but as a 

consequence are more vulnerable to herbivory, frost, and mechanical damage, and 

therefore have a shorter average lifespan. Conversely, conservative species tend to 

have low SLA leaves, which are more “expensive” to produce, but will provide 

photosynthetic returns over a longer average lifespan. Evidence for the world-

wide leaf economic spectrum has been documented at a range of scales, from 

within communities (Reich et al., 1991, Mediavilla et al., 2008, Laughlin et al., 

2010) to across different biomes (Reich et al., 1999, Wright et al., 2004).  

The leaf economic spectrum has been demonstrated to correlate with nutrient 

availability gradients (Vitousek et al., 1992, Wright et al., 2002, Ordoñez et al., 

2009, Jager et al., 2015). Species associated with high fertility environments tend 

to have an acquisitive, competitive strategy, evidenced by fast growth, high SLA 

leaves, high leaf nitrogen concentration, and low leaf density; whereas species 

associated with low fertility environments tend to have the opposite traits. Stem 
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tissue density has also been linked to soil fertility, with species associated with 

low fertility soils typically having higher stem tissue densities (Muller‐Landau, 

2004, ter Steege et al., 2006, Gourlet‐Fleury et al., 2011, Jager et al., 2015). These 

studies have demonstrated the capability of trait-based research to reveal 

underlying dimensions of plant strategy, and relate them to environmental 

gradients. Despite the increasing clarity of the role of leaf traits in above-ground 

strategies, the role of root traits in below-ground and whole plant strategy is not as 

well understood. 

Research on root traits has lagged behind that of above-ground plant organs 

despite the multiple vital roles that roots perform in plant function, including 

absorption of both water and nutrients from the soil, physical anchoring, resource 

storage, and as the point of interface with symbiotic fungi and bacteria (Gregory, 

2006). The scarcity of root research is because of the relative difficulty of 

sampling roots in the field compared to sampling above-ground organs. Extracting 

roots from the soil without damage is an arduous task, particularly in forests 

where the soil is often an interwoven matrix of roots, and where woody roots or 

rocky soils can hinder digging progress. Species identification of root samples can 

require tracing roots back to the parent tree, particularly for species which lack 

distinguishing characteristics such as a distinct smell or colour (Holdaway et al., 

2011). In addition to the physical difficulties of root sampling, the amount of time 

between field sampling and laboratory trait analysis can be a logistical concern, 

particularly for traits which involve fresh weights or volumes. Sampling traits on 

glasshouse grown plants is a less time and resource consuming alternative to field 

sampling, and simultaneously offers controlled conditions with which to test 

hypotheses in the absence of confounding environmental variables. It has been 

suggested that traits of herbaceous plants raised in a glasshouse environment do 

not correlate particularly well with field trait data (Mokany and Ash, 2008). 

However, there is an absence of studies which have compared the traits of 

glasshouse raised seedlings to those of naturally occurring adult trees. Regardless 

of close correlations between seedling and adult traits, seedling traits have 

relevance to adult strategy and community assembly as all tree species must pass 

through the seedling phase of life, and therefore seedling traits must reflect a 

viable growth and survival strategy until transitioning to an adult reproductive 

phase.  
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Plant economic strategies may be co-ordinated between above and below ground 

organs. Multiple leaf traits are considered components of the leaf economic 

spectrum, but as they are aligned along a single axis of variation they can be 

largely summarised by SLA (Reich et al., 1999, Osnas et al., 2013). Specific root 

length (SRL) represents absorptive capability (root length) relative to carbon 

investment (root dry mass), and therefore may summarise root economic 

strategies, similar to SLA (Lambers et al., 1998, Eissenstat et al., 2000, 

Cornelissen et al., 2003b). Correlation between SLA and SRL has been 

investigated as an indicator of above and below ground strategy co-ordination, but 

results have been inconclusive. Some studies have found positive correlations 

between SLA and SRL (Withington et al., 2006, Laughlin et al., 2010, Laughlin et 

al., 2011, Fort et al., 2012), while other studies have found no correlations (Craine 

et al., 2005, Tjoelker et al., 2005, Markesteijn and Poorter, 2009, Chen et al., 

2013). Correlations between leaf and root tissue density or dry matter content 

have been reported by several studies, (Wahl and Ryser, 2000, Mokany and Ash, 

2008, Freschet et al., 2010, Pérez-Ramos et al., 2012, Craine et al., 2001) although 

these findings are not universal (Kembel and Cahill Jr, 2011). Leaf and root 

lifespan have also been observed to correlate with each other, as well as with other 

“economic” traits such as SLA and relative growth rate (Ryser, 1996, Kembel et 

al., 2008), although again results are not consistent (Withington et al., 2006). 

Correlations between root and leaf nitrogen and phosphorus concentrations have 

been observed by several studies (Craine et al., 2005, Kerkhoff et al., 2006, 

Freschet et al., 2010, Liu et al., 2010, Holdaway et al., 2011). These comparative 

studies of leaf and root traits suggest that there is some co-ordination of whole-

plant economic strategies across leaf and root organs, although evidence is mixed 

for co-ordination of SLA and SRL. 

Regardless of correlations with SLA, SRL may have an economic role in whole 

plant strategies, facilitating growth by increasing nutrient uptake relative to 

carbon investment. Studies have observed positive correlations between SRL and 

relative growth rates (Eissenstat, 1991, Reich et al., 1998, Wright and Westoby, 

1999, Comas et al., 2002, Comas and Eissenstat, 2004), and negative correlations 

between SRL and root lifespan (McCormack et al., 2012). As mentioned earlier, 

SLA tends to be lower on low fertility sites, facilitating a more conservative 

growth strategy. However, the relationship between SRL and soil fertility does not 
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appear to be universal or linear. Studies have found SRL to be highest on low 

fertility soils, (Fort et al., 2012), high on both fertile and infertile sites but lower 

on intermediate sites (Holdaway et al., 2011), or not directly correlated with soil 

fertility (Espeleta and Donovan, 2002). The lack of consistent evidence of a direct 

adaptive function of SRL in root economics may be due to phylogenetic 

constraints. SRL is a composite metric of both root tissue density and average fine 

root diameter, and a number of studies have identified fine root diameter as a 

highly phylogenetically conserved trait (Pregitzer et al., 2002, Comas and 

Eissenstat, 2004, Withington et al., 2006, Comas and Eissenstat, 2009, Kembel 

and Cahill Jr, 2011, Chen et al., 2013, Valverde-Barrantes et al., 2014). It is 

possible that any adaptive function of SRL may be both determined and limited 

by alterations to root tissue density, rather than fine root diameter. Also, numerous 

other root traits may have equal or greater influence on nutrient and water uptake 

compared to SRL, including root branching intensity, root to shoot ratio, total root 

biomass, root distribution throughout the soil profile, ability to proliferate into 

nutrient rich patches, root turnover, and type and extent of mycorrhizal symbiosis 

(Kembel et al., 2008, Hodge, 2009, Laughlin et al., 2010, Comas et al., 2014). 

Therefore, it appears that SRL alone cannot be a reliable predictor of root 

economic strategies.  

The overall aim of this study is to test whether a woody flora conforms to the 

recently proposed whole-plant „fast-slow‟ economics spectrum (Reich, 2014) and 

to test how community-level fine root traits respond to a strong gradient in soil 

fertility. This chapter has the following three objectives: (1) Assess how closely 

species‟ seedling traits correlate with adult traits, (2) determine the multivariate 

relationships within and between the root, leaf, and stem organs of New Zealand 

tree species, and (3) determine how community-level root traits vary along a 

strong soil fertility gradient. These objectives are accomplished by sampling root, 

leaf, and stem traits from 66 species of angiosperms, conifers, and tree ferns 

native to New Zealand, combined with data from the literature of species‟ adult 

traits and species‟ relative abundance along a strong soil fertility gradient. I 

hypothesise that seedling and adult traits will be strongly correlated, due to 

genotypic constraints on trait expression. I also hypothesise that SRL will be 

independent of leaf economic traits, due to the different environments and 

resources these acquisitive organs are adapted to. 
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2.3 Methods 

Species selection 

Species were selected from the New Zealand arborescent flora based on their 

relative abundance and frequency across the country. Based on an analysis of 990 

20×20 m plots located on an 8 km grid across all New Zealand islands, i.e., the 

LUCAS plots (Wiser et al., 2011), species were selected according to the 

following criteria: (i) the species must attain a diameter at breast height (dbh) of at 

least 10 cm, (ii) the species must contribute at least 10% to the total basal area of 

at least one plot, and (iii) the species occurs on at least 1% (9 of 990 plots) of all 

the plots. These criteria resulted in a list of 68 species, however, no nurseries 

could be found which stock in seedling size for ten of these species, including tree 

ferns and montane trees, which are difficult to propagate and have low 

commercial demand. Eight additional species were also selected due to their 

common use in restoration planting projects in the Waikato district. In total, trait 

data were collected from 590 individual seedlings from 66 species in this study. 

Sourcing and growing seedlings 

Seedlings were sourced from four nurseries across New Zealand: Forest Flora 

(Ngaruawahia, Waikato), Taupo Native Plant Nursery (Taupo, Waikato), Oratia 

Native Plant Nursery (Oratia, Auckland), and Pukerau Nursery (Gore, Southland). 

Whenever possible, plants were ordered at tube stock (~150 mL pot volume) or 

root trainer (~350 mL) size classes, in order to reduce transplant shock and 

expedite new growth. For species where smaller plants were unavailable, the 

largest plants ordered were PB8 size (~4.8 L). Sampled species, number of 

replicates, and specific abbreviations are presented in Table 2. 

Seedlings which were in tube stock or root trainer size were re-potted into 1.5 L 

pots, and seedlings which were in PB3 (~1.8 L) or larger size bags were re-potted 

into 9 L pots. The potting medium used was a custom blend made by Daltons 

(Matamata, New Zealand) consisting of a 5:1 mixture ratio of Daltons potting mix 

and propagation sand (Appendix Table 12). This mixture has been proven to be 

suitable for a wide variety of native species. The potting mix contained slow 

release fertiliser capsules which would ensure growth was not limited by low 

fertility, and the sand created a more freely draining soil and made washing of 

roots easier. Once per month, species were rearranged across different tables 
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within the glasshouse, in order to minimize the effects of any potential 

microclimatic gradients within the glasshouse. Plants were hand watered regularly 

in order to avoid drought stress and facilitate growth. The average daily 

temperature in the glasshouses was 15.5°C, and the average relative humidity was 

76.8%. 

Trait measurements 

Initial height measurements were taken two weeks after re-potting, to allow plants 

to re-establish fine roots and root hairs in their new pots. Height was measured 

from the soil surface to the tallest apical bud using a measuring tape. Height 

measurements were taken fortnightly from December 2013 to May 2014. 

Measurements from June 2014 to September 2014 were taken every four weeks, 

due to slower growth rates over winter. Once a seedling had grown sufficiently for 

fresh fine roots to be present, a final height measurement was recorded. Relative 

growth rate (RGR) of individual seedlings was calculated as RGR = ((final height 

– initial height)/initial height)/days of growth.  

Following final height measurements, roots were washed by gently massaging the 

root balls under water. Mesh sieves were not used for this washing process, as the 

consistency of the potting medium made root washing easy for most species, and 

damage to terminal root structure could generally be avoided. Trait measurements 

for leaves, roots, and stems were done according to protocols published by 

Cornelissen et al. (2003b) and Pérez-Harguindeguy et al. (2013). 

Secateurs were used to cut a short section (approximately 1 – 3 cm) of stem 

containing mature xylem. Tree ferns and palms did not have true wood tissue, so a 

section of stipe was removed from tree ferns, and a section of the herbaceous stem 

of the palm were sampled. Bark from woody species was removed by peeling or 

scraping. The remaining stem section was rolled in paper towels to remove any 

residual surface moisture or sap before recording its fresh mass. A Mettler-Toledo 

MS304S balance (Greifnesee, Switzerland) was used for all measurements of 

mass. The length and orthogonal diameter dimensions of the stem section were 

measured using digital Vernier callipers, and the approximate fresh volume was 

calculated using the standard equation for volume of a cylinder. The stem sections 

were then dried to constant mass at 60°C for at least 48 hours prior to measuring 

dry mass. Stem dry matter content (SDMC) was calculated as SDMC = stem dry 
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mass / stem fresh mass, and stem tissue density (Stem TD) was calculated as Stem 

TD = stem dry mass / fresh stem volume (Table 1). 

Between three to thirty leaves were sampled from each plant, depending on the 

size per individual leaf. Sufficient numbers of leaves were sampled to total at least 

4 cm
2
 leaf area per individual. In species with large compound leaves, three 

leaflets were measured. Phylloclades (i.e. photosynthetic structures on 

Phyllocladaceae) were treated as operational photosynthetic units and are 

hereafter referred to as „leaves‟. After cleaning and drying with paper towels, 

digital Vernier callipers were used to take thickness measurements of three 

separate leaves, avoiding any prominent leaf veins. Leaf area was measured on a 

LI-COR Biosciences LI-3100C (Lincoln, NE USA) leaf area meter. Fresh leaf 

mass was measured on tared scales, and leaves were then dried to constant mass at 

60°C for at least 48 hours prior to obtaining dry mass. SLA was calculated as SLA 

= leaf area / leaf dry mass, leaf dry matter content (LDMC) was calculated as 

LDMC = leaf dry mass / leaf fresh mass, and leaf tissue density (Leaf TD) was 

calculated as Leaf TD = leaf dry mass / fresh leaf volume (Table 1). 

Subsections of fine roots were removed from the main root ball, and placed into a 

plastic, water-filled tray for further washing. Once the sections were sufficiently 

clean, they were transferred into a clear acrylic tray on a flat-bed scanner. Two 

fine paintbrushes were used to spread the roots out to minimise overlap. Total root 

length, average root diameter, number of tips, and root volume were calculated 

using WinRhizo Pro software (Version 2012b, Regent Instruments Inc., Quebec 

City, Canada) and an Epson Expression 10000XL scanner (Tokyo, Japan). Fresh 

root mass of each sample was obtained after removing the surface water with 

paper towels. The root sections were then dried to constant mass at 60°C for at 

least 48 hours prior to obtaining dry mass. SRL was calculated as SRL = root 

length / root dry mass, root dry matter content (RDMC) was calculated as RDMC 

= root dry mass / root fresh mass, root tissue density (Root TD) was calculated as 

Root TD = root dry mass / fresh root volume, and root branching intensity (RBI 

was calculated as RBI = number of root tips / root length (Table 1). 

To measure root porosity, I used the microbalance method as described by Visser 

and Bögemann (2003). Ten short sections of fresh root were cut from the root ball 

using a sharp razor blade. The sections were typically between 5 to 10 mm in 

length, and were cut at least 10 mm back from the root tip. All sections were taken 
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only from healthy-looking parts of the root balls, with preference for fresh growth 

when sufficient suitable root material was available. Roots which appeared to 

have undergone secondary thickening were not sampled. Whenever possible, 

sections were taken from first order terminal roots. In species where the terminal 

roots were too small for this technique, sections were cut from second order roots 

where no secondary thickening could be visually identified. As each suitable 

section was identified and cut, they were gently washed with fine paintbrushes to 

remove any remaining surface dirt, and kept under water to minimise water loss 

while the remaining sections were cut. Once all 10 sections had been cut, they 

were transferred using fine paintbrushes onto a piece of dry tissue paper. The 

paintbrushes were used to gently roll the root sections on the tissue paper, 

removing any surface moisture. The tissue paper was then folded over to enclose 

the root sections, and gentle pressure was applied by hand over the root sections. 

Care was taken to avoid crushing or bursting the cells in the root tissue, 

effectively forcing out water from the root sections‟ internal porous spaces. 

The root sections were transferred to a weigh boat on a tared balance and 

weighed. This initial mass was recorded, and the root sections were transferred 

into a small glass vial which was then filled with water. The cap for this vial was 

secured loosely to avoid creating a pressure seal, yet tight enough to prevent the 

lid coming off during rapid pressure changes. The vial was then placed into a near 

vacuum chamber, which was run for three repetitions of five minutes each. At the 

end of each five minute period, the vacuum chamber was opened, causing a rapid 

re-pressurisation of the vial and forcing water into the aerenchyma of the root 

sections. After low pressure exposure periods were completed, the vial was 

removed and opened. The root sections were then gently removed from the vial 

using a fine paintbrush, placed on dry tissue paper, and briefly rolled to remove 

surface moisture. The root sections were then transferred onto a weigh boat on a 

tared balance, and had their final mass recorded. The method differed from that 

presented by Visser and Bögemann (2003) in that it did not use two-piece hard 

gelatin capsules to hold the root sections between blotting and weighing. This is 

due to the observation that if the surface moisture was properly blotted, the 

subsequent mass change from water evaporation was slow and could be negated 

by minimising the time between blotting and weighing. Root porosity was 

calculated as (final root mass – initial root mass) / final root mass * 100 (Table 1) 
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Analysis of root N and P concentration 

The remaining root ball from each plant was dried to constant mass at 60°C for at 

least 48 hours. Individually, the dried root balls were ground to a fine powder 

using a Retsch MM 2000 grinder (Haan, Germany). Three individual root balls 

per species were analysed. Most individual replicates had sufficient mass after 

grinding for chemical analysis (approximately 1 g dry powder mass); however for 

species where the mass of ground roots was too low per individual, powder from 

multiple individuals was pooled before analysis. As the data from individual 

replicates was averaged after analysis, it was assumed that pooling before analysis 

would not affect the results significantly. Root nitrogen and phosphorus 

concentration of ground roots was obtained using flow injection analysis on a 

Lachat QuikChem 8000 series (test number and protocol 206 Landcare Research 

Environmental Chemistry Laboratory, Palmerston North, New Zealand). 

Soil fertility gradient 

To investigate the relationships between root functional traits and soil fertility, I 

used a soil fertility gradient documented at Puketī forest that was recently shown 

to be correlated with multiple independent functional traits (Jager et al. 2015). 

Puketī forest is a warm temperate rain forest in Northland, New Zealand (35
o 

13´ 

S, 173
o
 42´ E), which contains mainly old growth forest (Powlesland, 1987, Best 

and Bellingham, 1991, Dowding and Murphy, 1994). Mean annual precipitation 

can be up to 2000 mm, and mean annual temperature is 14 °C. The soils are 

mostly gravelly silt and clay loams which developed from highly metamorphosed 

Late Paleozoic argillites, cherts, greywackes, and volcanics (Black, 1994). The 

dominant driver of compositional turnover at Puketī is topographically-mediated 

soil fertility, rather than climatic conditions (Jager et al., 2015). The study area 

features highly dissected topography, with permanent water courses separated by 

narrow ridges. Distances as small as 150 m between ridge crests and gulley floors 

can contain large differences in soil properties, such as soil total phosphorus (P) 

(range = 160–833 mg kg
-1

) and soil pH (range = 3.6–6.3). Thus, Puketī forest is a 

model system for testing relationships between soil properties and fine root 

functional traits. 

Community composition was determined using 40 permanent 400 m
2
 plots (20 m 

× 20 m) (Hurst and Allen, 2007) spanning a broad gradient in soil and topographic 
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variation, with plots located between 70 and 500 m above sea level. Trees within 

each plot were identified to species, and diameters were measured on all 

individual stems > 2.5 cm diameter at breast height (dbh; 135 cm). Four soil 

samples per plot were collected to a depth of 15 cm using a 3 cm diameter corer. 

Surface litter with botanically recognisable structures (the Oi and Oe layers) was 

scraped away before taking the cores. Organic and mineral horizons visible within 

the core were not separated. The four soil samples per plot were pooled for 

analysis. New Zealand trees are typically very shallow-rooted and have abundant 

surface roots (Wardle, 1991), thus most nutrients are likely to be acquired from 

surface litter. Soil samples to 15 cm depth do not comprehensively assess the total 

inventory of soil nutrients at greater depths, but surface concentrations are 

indicative of entire soil profile nutrient availability (Stevens, 1968). 

An assortment of soil properties were analysed at the Landcare Research Plant 

and Soil Laboratory in Palmerston North, New Zealand. Soil pH was measured in 

solution with a 1:2.5 soil-to-distilled water ratio using a Radiometer PHM210 pH 

meter equipped with a Radiometer pHC2401-8 electrode. Cation exchange 

capacity (CEC) was measured by pH drop (Brown, 1943), and base saturation was 

measured as the amount of basic cations that occupied the cation exchange sites 

divided by the total cation exchange capacity (Bases ÷ CEC × 100 = base 

saturation). Soil total nitrogen (N) and organic carbon (C) were measured using a 

Leco CNS 2000 Analyser which utilises the Dumas dry combustion principle 

(Metson et al., 1979). Total phosphorus (P) and organic P were determined using 

flow injection analysis on a Lachat QuikChem 8000 following ignition at 550 °C 

for 60 minutes and extraction with 0.5M H2S04 at a soil-to-extractant ratio of 

1:200 for 16 hours (Blakemore et al., 1987). Soluble P (i.e. the amount of 

inorganic P present in soil but not strongly occluded) was measured using flow 

injection analysis on a Lachat QuikChem 8000. Total K, Ca, Na, Mg were 

determined using atomic absorption spectroscopy using a Varian SpectrAA-

220FS following leaching with molar ammonium acetate buffered to pH 7. 

Following Jager et al. (2015), rather than selecting a single variable to reflect soil 

fertility, I used principal components analysis (PCA) to reduce three highly 

correlated soil properties (soil pH, soil C:N ratio, and soil total P) down to a single 

dimension (hereafter, „Puketī soil PC1‟) for use as a predictor in the regression 

analyses. These three soil variables were chosen because pH reflects the 



36 

 

availability of multiple nutrients, soil C:N ratio is widely regarded as a measure of 

relative N availability, total P is strongly correlated with both soluble P (r = 0.86) 

and organic P (r = 0.99) in this system, and these variables are widely used to 

assess relationships among vegetation structure and soil properties (Ordonez et al. 

2009). 

Statistical analyses 

First, linear regressions using R software were fit to determine the relationships 

between average seedling and adult trait values. No transformations were applied 

to the traits for these regression analyses. The following traits were compared 

between the seedling and adult life stages: SLA, leaf TD, SDMC, stem TD, SRL, 

root diameter, RBI, root N, and root P. Data for leaf and stem traits of adult tree 

species were extracted from Jager et al. (2015) and a national trait database that is 

currently under preparation (D.C. Laughlin, University of Waikato and S.J. 

Richardson, Landcare Research, Appendix Table 9). Data for root traits of adult 

tree species were extracted from Holdaway et al. (2011) (Appendix Table 10). 

Second, average values were calculated for each trait per species (leaf and stem 

traits, Table 2; root traits, Table 3). The distribution and skew of each trait was 

assessed using STATISTICA 12 (Statsoft Inc.). Prior to PCA and ordination, the 

following trait data were log10 transformed to reduce skew: SRL, root diameter, 

RDMC, root porosity, RBI, SLA, leaf TD, and RGR. 

Given that many functional traits are correlated, it is important to determine which 

traits represent independent axes of functional specialisation (Grime et al., 1997, 

Laughlin, 2014b). This PCA was focussed on root traits, and thus included only 

one leaf and one stem trait. SLA was excluded as it was positively correlated with 

both leaf dry matter content and tissue density, and LDMC has been shown to be a 

better predictor of leaf resource acquisition strategy (Wilson et al., 1999). Root, 

leaf and stem dry matter contents were used over tissue densities, as there were 

stronger positive correlations between seedling and adult dry matter contents 

(Figure 2), and root, leaf and stem tissue densities were strongly positively 

correlated with their respective dry matter contents (Table 4). Furthermore, 

RDMC has been demonstrated to be a better predictor of root TD as determined 

by Archimedes principle (i.e. displacement), when compared to root volume as 

determined by imaging software (Birouste et al., 2014). I used STATISTICA 12 
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to perform principal components analysis (PCA) and Kaiser‟s rule (i.e., the 

number of dimensions with eigenvalues > 1) to determine the intrinsic 

dimensionality of the plant trait matrix. This analysis of the correlation matrix 

determines the number of independent axes of functional variation among the 66 

tree species in the study. PC-ORD 6 (MjM Software Design) was used to visualise 

the PCA as a two dimensional ordination, with species grouped by phylogeny. As 

PCA and ordination require a complete data matrix, missing trait values for 

porosity, root nitrogen concentration, and root phosphorus concentration for 

Cyathea smithii, Elaeocarpus dentatus, Kunzea ericoides, Pittosporum 

tenuifolium, and Podocarpus totara were assigned the average value across all 

species for each trait, as this would allow the ordination to operate while also 

minimising the effects of the missing trait values. 

Third, I used the trait data for the 30 species which are present at Puketī forest. 

Using basal area data from Jager et al. (2015), community-weighted mean 

(CWM) traits in each plot were calculated as ∑   
 
     , where ti is the mean trait 

of species i across all plots, and pi is the relative basal area of species i, and S is 

the number of species in the plot. Basal area (m
2
 ha

-1
) was more appropriate than 

stem density (trees ha
-1

) as a measure of plant abundance in these forests where a 

few large individuals could comprise the majority of the stand biomass.  

Following Jager et al. (2015), rather than selecting a single variable to reflect soil 

fertility, PCA was used to reduce three highly correlated soil properties (soil pH, 

soil C:N ratio, and soil total P) down to a single dimension (hereafter, „Puketī  soil 

PC1‟) for use as a predictor in the regression analyses. These three soil variables 

were chosen because pH reflects the availability of multiple nutrients, soil C:N 

ratio is widely regarded as a measure of relative N availability, total P is strongly 

correlated with both soluble P (r = 0.86) and organic P (r = 0.99) in this system, 

and these variables are widely used to assess relationships among vegetation 

structure and soil properties (Ordoñez et al., 2009). Linear and second-order 

polynomial regression models were used to determine the relationships between 

CWM functional traits and the first principal component representing soil fertility 

(Puketī soil PC1).  
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Mycorrhizal associations 

Species‟ mycorrhizal associations were determined from the literature (McNabb, 

1958, McNabb, 1961, Baylis, 1969, Baylis, 1971, Johnson, 1973, Baylis, 1975, 

Cooper, 1975, Hall, 1975, Cooper, 1976, Baylis, 1980, St John, 1980, Russell et 

al., 2002, Dickie et al., 2012), and are presented in Appendix Figure 14. 

 

 

Table 1. Functional trait abbreviations and units. 

Trait Abbreviation Units 

Specific root length SRL m g
–1

 

Root diameter - mm 

Root tissue density Root TD mg mm
-3

 

Root dry matter content RDMC mg g
-1

  

Root porosity - % 

Root branching intensity RBI cm
-1

 

Root nitrogen conc. Root N % 

Root phosphorus conc. Root P % 

Specific leaf area SLA mm
2
 mg

-1
 

Leaf tissue density Leaf TD mg mm
-3

 

Leaf dry matter content LDMC mg g
-1

  

Stem tissue density Stem TD mg mm
-3

 

Stem dry matter content SDMC mg g
-1

  

Relative height growth rate RGR cm cm
-1

 day
-1

 



 

 

Table 2. Average leaf traits, stem traits, and relative growth rate values for species measured on seedlings grown in standard conditions 

   Number SLA LTD LDMC STD SDMC RGR 

Species Family Code sampled (mm
2
 mg

-1
) (mg mm

-3
) (mg g

-1
) (mg mm

-3
) (mg mm

-1
) (cm cm

-1
 day

-1
) 

Conifers          

Agathis australis Araucariaceae AGAAUS 14 9.1 0.21 311 0.59 544 0.0018 

Dacrydium cupressinum Podocarpaceae DACCUP 13 3.3 0.75 326 0.59 461 0.0037 

Dacrycarpus dacrydioides Podocarpaceae DACDAC 10 13.6 0.25 341 0.41 459 0.0045 

Halocarpus biformis Podocarpaceae HALBIF 5 4.9 0.3 377 0.77 620 0.0003 

Halocarpus kirkii Podocarpaceae HALKIR 5 7.6 0.28 310 0.69 587 0.001 

Phyllocladus alpinus Podocarpaceae PHYALP 6 5 0.36 449 0.76 627 0.0002 

Phyllocladus trichomanoides Podocarpaceae PHYTRI 10 9.4 0.25 347 0.74 539 0.005 

Podocarpus cunninghamii Podocarpaceae PODCUN 10 4.9 0.26 380 0.56 478 0.0009 

Podocarpus totara Podocarpaceae PODTOT 6 8.6 * 378 0.61 488 0.0013 

Prumnopitys ferruginea Podocarpaceae PRUFER 14 12.7 0.26 298 0.7 543 0.0045 

Prumnopitys taxifolia Podocarpaceae PRUTAX 6 12.1 0.26 376 0.67 586 0.0063 
          

Eudicot angiosperms          

Ackama rosaefolia Cunoniaceae ACKROS 12 22.6 0.18 290 0.48 413 0.0127 

Alectryon excelsus Sapindaceae ALEEXC 7 17 0.26 409 0.49 414 0.0036 

Aristotelia serrata Elaeocarpaceae ARISER 6 35.7 0.12 277 0.36 366 0.0155 

Carpodetus serratus Rousseaceae CARSER 6 19 0.2 329 0.52 445 0.0193 

Coprosma linariifolia Rubiaceae COPLIN 6 10 0.26 378 0.64 537 0.0008 

Corynocarpus laevigatus Corynocarpaceae CORLAE 9 13.3 0.2 209 0.43 358 0.0089 

Dracophyllum longifolium Ericaceae DRALON 5 5.8 0.49 440 0.49 499 0.001 

Dysoxylum spectabile Meliaceae DYSSPE 17 19.9 0.21 248 0.42 360 0.004 

Elaeocarpus dentatus Elaeocarpaceae ELADEN 12 11.2 * 397 0.53 426 0.0039 

Elaeocarpus hookerianus Elaeocarpaceae ELAHOO 5 15.7 0.28 397 0.42 438 0.0037 

Fuchsia excorticata Onagraceae FUCEXC 6 28.1 0.12 174 0.4 352 0.0199 

Fuscospora cliffortioides Nothofagaceae FUSCLI 9 14 0.3 407 0.59 499 0.0093 

Fuscospora fusca Nothofagaceae FUSFUS 6 13.6 0.29 417 0.56 488 0.0003 

Fuscospora solandri Nothofagaceae FUSSOL 9 13.4 0.29 434 0.53 462 0.007 

Fuscospora truncata Nothofagaceae FUSTRU 9 13.8 0.29 384 0.48 431 0.0071 

Griselinia littoralis Griseliniaceae GRILIT 10 9.9 0.17 258 0.52 459 0.0083 

Hoheria lyallii Malvaceae HOHLYA 6 33.8 0.1 190 0.57 493 0.0038 

Hoheria sexstylosa Malvaceae HOHSEX 5 26.2 0.13 233 0.49 434 0.0024 
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Table 2. continued          
   Number SLA LTD LDMC STD SDMC RGR 

Species Family Code sampled (mm
2
 mg

-1
) (mg mm

-3
) (mg g

-1
) (mg mm

-3
) (mg mm

-1
) (cm cm

-1
 day

-1
) 

Knightia excelsa Proteaceae KNIEXC 13 14.2 0.24 324 0.41 357 0.0064 

Kunzea ericoides Myrtaceae KUNERI 5 20.4 * 336 0.58 467 0.0183 

Leptospermum scoparium Myrtaceae LEPSCO 10 19.6 0.2 340 0.53 447 0.0115 

Lophozonia menziesii Nothofagaceae LOPMEN 12 7.6 0.37 455 0.57 524 0.0007 

Melicytus ramiflorus Violaceae MELRAM 16 28.9 0.15 224 0.37 307 0.0127 

Metrosideros excelsa Myrtaceae METEXC 5 6.5 0.29 311 0.55 476 0.0022 

Metrosideros robusta Myrtaceae METROB 13 9.6 0.29 305 0.55 467 0.0018 

Metrosideros umbellata Myrtaceae METUMB 10 7.5 0.22 301 0.48 424 0.0021 

Myrsine australis Primulaceae MYRAUS 6 13.9 0.28 357 0.49 468 0.0064 

Myrsine divaricata Primulaceae MYRDIV 4 15.5 0.25 338 0.63 487 0.0016 

Myrsine salicifolia Primulaceae MYRSAL 5 12.8 0.19 244 0.53 479 0.0184 

Nestegis lanceolata Oleaceae NESLAN 11 10.7 0.26 375 0.6 544 0.0025 

Olearia rani Asteraceae OLERAN 10 19.6 0.15 235 0.49 407 0.0364 

Pennantia corymbosa Pennantiaceae PENCOR 6 19.8 0.17 290 0.51 438 0.0188 

Pittosporum eugenioides Pittosporaceae PITEUG 8 17.6 0.26 313 0.42 377 0.0135 

Pittosporum tenuifolium Pittosporaceae PITTEN 6 21.1 * 346 0.48 424 0.0075 

Plagianthus regius Malvaceae PLAREG 5 28.6 0.14 241 0.55 483 0.0015 

Pseudopanax arboreus Araliaceae PSEARB 6 11.8 0.21 317 0.5 420 0.0114 

Pseudopanax crassifolius Araliaceae PSECRA 6 4.3 0.36 333 0.5 431 0.0029 

Pseudowintera colorata Winteraceae PSECOL 7 12.1 0.23 296 0.56 475 0.0065 

Quintinia serrata Paracryphiaceae QUISER 2 12.2 0.2 286 0.48 442 0.0023 

Schefflera digitata Araliaceae SCHDIG 6 24.4 0.12 196 0.25 230 0.0258 

Sophora microphylla Fabaceae SOPMIC 4 20.9 0.2 305 0.71 572 0.0016 

Syzygium maire Myrtaceae SYZMAI 4 13.9 0.22 320 0.39 351 0.0005 

Vitex lucens Lamiaceae VITLUC 17 25.3 0.15 237 0.39 333 0.0368 

Weinmannia racemosa Cunoniaceae WEIRAC 11 11.3 0.27 343 0.46 416 0.0047 

Weinmannia silvicola Cunoniaceae WEISIL 15 17 0.25 304 0.5 432 0.0016 
          

Magnoliid angiosperms          

Beilschmiedia tarairi Lauraceae BEITAR 14 12.3 0.26 324 0.5 444 0.003 

Beilschmiedia tawa Lauraceae BEITAW 16 12.5 0.4 420 0.54 479 0.002 

Hedycarya arborea Monimiaceae HEDARB 10 20.6 0.14 206 0.38 322 0.013 

Laurelia novae-zelandiae Atherospermataceae LAUNOV 13 18.7 0.16 236 0.41 384 0.006 

Litsea calicaris Lauraceae LITCAL 13 17.7 0.18 300 0.48 403 0.0065 
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Table 2. continued          
   Number SLA LTD LDMC STD SDMC RGR 

Species Family Code sampled (mm
2
 mg

-1
) (mg mm

-3
) (mg g

-1
) (mg mm

-3
) (mg mm

-1
) (cm cm

-1
 day

-1
) 

Monocot angiosperm          

Rhopalostylis sapida Arecaceae RHOSAP 10 13.7 0.29 282 0.19 148 0.0107 
          

Tree ferns          

Cyathea dealbata Cyatheaceae CYADEA 9 17.1 0.29 322 0.54 435 0.0025 

Cyathea medullaris Cyatheaceae CYAMED 7 29.8 0.13 228 0.22 174 0.0048 

Cyathea smithii Cyatheaceae CYASMI 5 17.8 * 383 0.32 278 0.0008 

Dicksonia squarrosa Dicksoniaceae DICSQU 10 19.9 0.22 318 0.43 328 0.001 

* Leaf tissue density data unavailable for some species. 
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Table 3. Average root trait values for sampled species measured on seedlings grown in standard conditions 

 SRL Diameter Root TD RDMC Porosity RBI Root N Root P 

Code (m g–1) (mm) (mg mm-3) (mg g-1) (%) (cm\1) (%) (%) 

Conifers         

AGAAUS 14 0.63 0.24 196 9.48 2.65 1.30 0.26 

DACCUP 27.8 0.51 0.21 172 10.41 2.7 1.42 0.63 

DACDAC 17.8 0.6 0.21 158 7.81 2.1 1.41 0.20 
HALBIF 11 0.64 0.3 254 10.84 2.05 1.21 0.24 

HALKIR 14.3 0.65 0.22 189 14.67 3.07 1.81 0.47 

PHYALP 12.4 0.6 0.27 262 19.21 2.48 1.42 0.20 

PHYTRI 16.5 0.76 0.15 153 13.55 2.76 1.45 0.29 
PODCUN 8.4 0.9 0.19 176 19.01 2.35 1.79 0.25 

PODTOT 11 0.88 0.15 129 * 1.32 * * 

PRUFER 6.7 0.93 0.23 205 8.08 3.34 1.13 0.44 

PRUTAX 11 0.75 0.21 201 12.48 4.67 1.38 0.22 
 

        

Eudicot angiosperms         

ACKROS 52 0.36 0.2 168 4.83 1.64 1.49 0.45 
ALEEXC 44.7 0.43 0.17 109 5.21 2.08 2.17 0.51 

ARISER 82.3 0.37 0.12 133 6.64 1.59 1.24 0.32 

CARSER 30.8 0.53 0.15 109 6.98 1.61 1.47 0.45 

COPLIN 22.3 0.56 0.2 141 6.8 1.9 1.39 0.20 
CORLAE 23.8 0.59 0.16 128 8.16 1.11 3.42 0.38 

DRALON 130.5 0.22 0.23 227 7.59 6.49 0.97 0.12 

DYSSPE 7.1 0.99 0.19 140 4.32 1.42 2.06 0.17 

ELADEN 38 0.52 0.15 125 * 1.38 * * 
ELAHOO 33.4 0.42 0.21 158 8.99 1.46 1.53 0.58 

FUCEXC 84 0.34 0.13 113 8.91 3.04 1.36 0.42 

FUSCLI 78 0.29 0.24 212 10.65 4.33 1.73 0.26 

FUSFUS 55.3 0.31 0.27 183 13.4 3.79 1.76 0.26 
FUSSOL 103.8 0.24 0.24 191 10.17 4.36 1.45 0.37 

FUSTRU 65.8 0.28 0.3 171 3.44 3.94 1.10 0.40 

GRILIT 6.7 1.25 0.13 96 8.42 1.76 3.02 0.29 

HOHLYA 38 0.54 0.12 95 13.58 1.83 2.51 0.27 
HOHSEX 23.9 0.78 0.09 75 15.56 1.33 2.54 0.37 
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Table 3. continued 
 SRL Diameter Root TD RDMC Porosity RBI Root N Root P 

Code (m g–1) (mm) (mg mm-3) (mg g-1) (%) (cm\1) (%) (%) 

KNIEXC 43.7 0.4 0.19 182 8.79 1.86 1.61 0.33 

KUNERI 39.5 0.54 0.13 110 * 1.39 * * 

LEPSCO 97.1 0.37 0.13 120 10.08 1.97 1.65 0.34 
LOPMEN 35.4 0.36 0.31 224 7.65 3.21 1.71 0.30 

MELRAM 48.9 0.54 0.1 101 3.21 1.87 1.82 0.47 

METEXC 24.3 0.49 0.24 133 11.45 2.81 1.15 0.13 

METROB 47.6 0.43 0.16 123 7.64 2.55 1.24 0.16 

METUMB 42.5 0.4 0.21 130 10.6 2.93 1.53 0.29 

MYRAUS 40.3 0.41 0.2 173 8.05 1.1 1.22 0.55 

MYRDIV 41.6 0.36 0.25 181 8.06 1.55 1.61 0.17 

MYRSAL 29.3 0.48 0.2 172 8.8 1.47 1.20 0.51 
NESLAN 11 0.75 0.22 194 10.34 2 1.46 0.50 

OLERAN 59.6 0.47 0.11 93 9 1.23 2.24 0.64 

PENCOR 34.4 0.5 0.15 120 5.72 1.91 2.06 0.32 

PITEUG 49.5 0.42 0.15 135 6.63 1.02 1.39 0.26 
PITTEN 51.2 0.43 0.14 134 * 1.42 * * 

PLAREG 58.3 0.44 0.12 94 13.8 1.87 2.32 0.55 

PSEARB 17.9 0.78 0.13 111 8.37 1.93 1.26 0.62 

PSECRA 10.7 0.93 0.15 119 3.74 1.72 2.85 0.77 
PSECOL 28 0.63 0.12 113 10.62 1.59 1.39 0.49 

QUISER 38 0.41 0.2 159 4.99 2.43 1.62 0.35 

SCHDIG 44.6 0.63 0.07 68 3.3 2.43 2.04 0.53 

SOPMIC 31.5 0.49 0.18 150 8.79 1.29 3.27 1.27 
SYZMAI 79.3 0.31 0.18 148 17.22 1.8 1.61 0.20 

VITLUC 35 0.56 0.13 108 5.42 1.61 2.25 0.25 

WEIRAC 44.7 0.37 0.24 149 8.13 1.78 1.43 0.37 

WEISIL 39.4 0.38 0.24 169 4.7 1.75 0.98 0.14 

Magnoliid angiosperms         

BEITAR 8 0.91 0.21 158 5.23 1.34 1.44 0.26 

BEITAW 9.1 0.74 0.27 200 6.75 1.6 1.76 0.21 

HEDARB 11.7 1.07 0.1 83 3.46 1.63 2.95 0.38 

LAUNOV 11.7 1.02 0.11 93 2.7 1.27 2.32 0.34 
LITCAL 11.4 1.02 0.13 85 6.01 1.58 2.95 1.04 
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Table 3. continued 
 SRL Diameter Root TD RDMC Porosity RBI Root N Root P 

Code (m g–1) mm (mg mm-3) (mg g-1) (%) (cm\1) (%) (%) 
         

Monocot angiosperm         

RHOSAP 22.3 0.51 0.26 131 6.35 3.41 1.51 0.17 
         

Tree ferns         
CYADEA 19.9 0.58 0.21 174 5.91 1.95 0.95 0.30 

CYAMED 28.3 0.47 0.21 172 8.49 1.67 1.00 0.14 

CYASMI 14.9 0.62 0.22 158 * 1.39 * * 

DICSQU 15.7 0.69 0.19 187 15.79 2.5 1.32 0.31 

* Root porosity and nutrient chemistry data unavailable for some species. 
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Table 4. Pearson's r correlation matrix derived from 14 traits measured on 66 species. 

 

SRL Root 

Diam. 
Root 

TD 
RDMC Root 

Poros. 
RBI Root N Root P SLA Leaf 

TD 
LDMC Stem 

TD 
SDMC 

Root Diam. -0.91 *             

Root TD -0.07 -0.33 *             

RDMC -0.07 -0.30 *  0.87 *           

Root Poros.  0.01 -0.12  0.20  0.34 *           

RBI  0.19 -0.34 *  0.46 *  0.43 *  0.23          

Root N -0.19  0.39 * -0.50 * -0.58 * -0.12 -0.37 *        

Root P  0.00  0.17 -0.40 * -0.35 * -0.13 -0.29 *  0.44 *       

SLA  0.28 * -0.06 -0.50 * -0.50 * -0.36 * -0.37 *  0.28 *  0.17       

Leaf TD -0.08 -0.19  0.68 *  0.67 *  0.21  0.40 * -0.43 * -0.20 -0.80 *      

LDMC  0.04 -0.31 *  0.69 *  0.70 *  0.29 *  0.44 * -0.38 * -0.19 -0.57 *  0.77 *     

Stem TD -0.28 *  0.11  0.35 *  0.46 *  0.44 *  0.22 -0.05  0.09 -0.50 *  0.40 *  0.47 *    

SDMC -0.22  0.04  0.38 *  0.49 *  0.42 *  0.23 -0.09  0.05 -0.51 *  0.42 *  0.54 *  0.95 *   

RGR  0.19  0.05 -0.55 * -0.54 * -0.49 * -0.25 *  0.19  0.34 *  0.52 * -0.48 * -0.53 * -0.50 * -0.52 * 

Asterisks indicate significant correlations at p <0.05. Root Diam. = Root Diameter; Root Poros. = Root Porosity; all other trait abbreviations as per Table 1. 
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2.4 Results 

2.4.1 Correlations between seedling and adult traits 

Across 54 species, leaf and stem traits of seedling and adult plants were 

significantly and positively correlated (Figure 1). Specific leaf area had the 

strongest relationship (Figure 2.e), but was typically higher in seedlings compared 

to adults. Leaf tissue density and LDMC were positively correlated between 

seedlings and adults, and both tended to be lower in seedlings (Figure 2.c and 

1.d). Stem dry matter content was also positively correlated between seedlings 

and adults (Figure 2.b), and also tended to be lower in seedlings. 

 

Root morphology traits were positively correlated between seedlings and adults 

across 19 species. Root diameter was the most strongly correlated trait between 

seedling and adult plants (Figure 3.b). Seedling and adult SRL were also 

significantly positively correlated (Figure 3.a), although a relatively high seedling 

SRL value for Aristotelia serrata (labelled on figure) pulled the regression line 

away from the 1:1 line. Root branching intensity was also positively correlated 

between seedling and adult plants (Figure 3.e). There was no significant 

relationship between either root N or root P of seedlings and adults (Figure 3.c, d). 

Root N was typically far higher in seedlings compared with adults (Figure 3.c). In 

some species root P was over an order of magnitude higher in seedlings compared 

to adults (Figure 3.d). 
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 Seedling leaf and stem traits 

Figure 2. Linear regression between seedling (x axis) and adult (y axis) traits for: a) stem 

tissue density; b) stem dry matter content; c) leaf tissue density; d) leaf dry matter 
content; e) specific leaf area. Each point represents a species. The solid line represents the 

fitted regression line and the dashed line illustrates the 1:1 line. 
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 Seedling root traits 

Figure 3. Linear regressions between seedling (x axis) and adult (y axis) traits for: a) 

specific root length; b) root diameter; c) root nitrogen concentration; d) root phosphorus 

concentration; e) root branching intensity (RBI). Each point represents a species. The 
black solid line represents the fitted regression line where significant (p>0.05), the thick 

grey dashed line (c, d) represents non-significant fits, and the thin dashed line illustrates 

the 1:1 line. Outlier point labelled on a): ARISER, Aristotelia serrata.  
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2.4.2 Plant trait dimensionality and the whole-plant economic spectrum 

Pearson‟s r correlations between pairs of traits (Table 4) revealed that SRL and 

SLA were only weakly positively correlated. SRL was strongly negatively 

correlated with root diameter. Within-organ correlations between tissue density 

and dry matter content were also very strong and positive, particularly in stems. 

The first three eigenvalues derived from the species-trait correlation matrix were 

>1, indicating that the trait matrix was at least three-dimensional (Table 5). These 

three dimensions accounted for 70% of the variation and correlation structure of 

the 10 functional traits including seven root traits, LDMC, SDMC, and RGR 

(Table 5). The first principle component represents covariation among dry matter 

content for leaves, stems and roots, root nitrogen concentration, root branching 

intensity, and relative growth rate. The second principle component represents 

covariation between specific root length and root diameter, and also suggests that 

species with larger root diameters tend to have higher stem dry matter content. 

The third principal component was more complex and was largely driven by root 

chemistry, with the strongest influence from root phosphorus concentration. Root 

nitrogen concentration, stem dry matter content, specific root length, and root 

porosity were also influential on this axis, and all traits on this axis positively 

correlated with each other. 

A two-dimensional ordination of the PCA results (Figure 4) reveals clear 

groupings of species by phylogeny, which were strongly influenced by SRL and 

root diameter. The 11 species of conifers measured in this study all grouped in the 

lower left quadrant of the figure, as they had slow growth rates, high tissue dry 

matter content, and large fine root diameters. The five Magnoliid species in this 

study grouped in the lower centre to lower right of the figure, owing to large root 

diameters, medium to high rates of growth, and medium to low tissue dry matter 

content. The four species of tree ferns were approximately centred on the figure, 

although tending towards the lower left quadrant. The one monocot species had 

low tissue dry matter content and relatively small diameter roots. Eudicot species 

were distributed across the figure, but tended to have smaller diameter roots and 

lower tissue dry matter content. 
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Table 5. Principal components analysis for 10 traits measured on 66 tree species. For 

each axis, the eigenvalues and proportion of variance explained are provided. 
Eigenvectors for each of the axes are listed below, and eigenvectors > |0.3| are in bold. 

The first three axes can be interpreted as dimensions representing variation in whole plant 

“fast-slow” economics, root diameter, and root chemistry. The fourth axis has an 

eigenvalue < 1 so is not interpreted (NA). 

 
PC1 PC2 PC3 PC4 

Eigenvalues 3.71 2.15 1.21 0.84 

Proportion of variance 37.11 21.48 12.05 8.43 

Cumulative proportion 37.11 58.59 70.64 79.07 
     

Interpretation of axis: 
Whole plant 

“fast-slow” 

Root 

diameter  

Root 

phosphorus 
NA 

SRL -0.07 -0.62  0.33 -0.14 

Root Diameter  0.24  0.56 -0.24 0.05 

RDMC -0.44  0.07 -0.11 0.25 

Root Porosity -0.28  0.16  0.31 -0.65 

RBI -0.33 -0.14 -0.05 0.12 

Root N  0.32  0.22  0.39 -0.20 

Root P  0.24  0.08  0.64 0.41 

LDMC -0.42  0.07  0.14 0.36 

SDMC -0.30  0.35  0.37 0.19 

RGR  0.36 -0.28 -0.03 0.32 
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Figure 4. Two-dimensional ordination of PCA results. Each species labelled with a six 

letter species code as per Table 2. Traits labelled in larger bold text and represented with 

blue lines. Trait abbreviations as per Table 1. 
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2.4.3 Community-level root traits along a soil fertility gradient  

Soil pH, C:N ratio, and total P were reduced to a single principal component 

(„Puketī soil PC1‟), which captured most of the variation (83%) in these collinear 

soil properties (Appendix Figure 13) .  

Community weighted mean SRL, root diameter, leaf tissue density, and root 

phosphorus concentration were not significantly correlated with soil fertility (i.e., 

Puketī soil PC1) (Figure 5.a, b, h; Figure 6.c). The following community-

weighted mean traits were negatively correlated with soil fertility: root, leaf, and 

stem dry matter content (Figure 5.d; Figure 6.d, f); root and stem tissue density 

(Figure 5.c; Figure 6.e); and root porosity (Figure 5.e). Community-weighted 

mean root branching intensity had a non-linear relationship with soil fertility, with 

lowest RBI on intermediate fertility sites, and highest RBI on the lowest fertility 

sites (Figure 5.f). Community-weighted mean SLA and RGR were strongly 

positively correlated with soil fertility (Figure 6.a, b), and CWM root nitrogen 

concentration had a weak positive relationship with soil fertility (Figure 5.g). 

Stem dry matter content had the strongest correlation with soil fertility of all traits 

measured (Figure 6.f) 
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 Soil fertility gradient PC1 

Figure 5. Regression analyses between community-weighted mean (CWM) 

seedling root traits and Puketī soil fertility PC1. Soil fertility increases from left to 

right along the x-axis as per Appendix Figure 13. a) specific root length; b) root 

diameter; c) root tissue density; d) root dry matter content; e) porosity; f) root 
branching intensity; g) root nitrogen concentration, h) root phosphorus 

concentration. Each point represents a plot. Y-axis plotted on log scale in all 

figures. 
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 Soil fertility gradient PC1 

Figure 6. Regression analyses between community-weighted mean (CWM) seedling 

leaf and stem traits and Puketī soil fertility PC1. Soil fertility increases from left to 
right along the x-axis as per Appendix Figure 13. a) specific leaf area; b) relative 

height growth rate; c) leaf tissue density; d) leaf dry matter content; e) stem tissue 

density; f) stem dry matter content. Y-axis plotted on log scale in all panels. 
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2.5 Discussion 

I found strong positive correlations between seedling and adult morphological 

traits, but not root nutrient traits. Seedling traits formed three principle component 

axes, the first is interpreted as a „whole plant‟ economic spectrum, indicating co-

ordination of plant growth between roots, leaves, and stems. The second axis is 

interpreted as a phylogenetically conserved root diameter/SRL continuum, which 

was orthogonal to the first axis. The third axis is complex, consisting primarily of 

root P, but also associated with root N, porosity, SDMC, and SRL. Traits relating 

to the whole plant economic spectrum were also strongly related to soil fertility, 

with “fast” growth traits associated with fertile soils, and more conservative traits 

associated with low fertility soils. Specific root length and root diameter were not 

related to soil fertility, but could possibly relate to the type and extent of 

mycorrhizal symbiosis which plant species form. Porosity was negatively 

correlated with soil fertility, and may assist species in low fertility soils to 

proliferate roots more efficiently. Root branching intensity had a non-linear 

relationship with soil fertility, suggesting that high branching intensity is adaptive 

at both high and low ends of the fertility gradient. 

2.5.1 Relationships between traits of seedling and adult plants 

My results demonstrate that morphological traits are strongly correlated between 

seedlings and adults, but that nutrient concentrations are not (Figure 2, Figure 3). 

Seedling traits were generally more oriented towards a “faster” or more 

acquisitive growth strategy than those of adults because seedlings had higher SLA 

and SRL, and lower leaf and stem dry matter contents. This is consistent with 

results from Rosenvald et al. (2013), who studied traits in various aged birch 

stands and found that younger trees tended to have higher SLA, SRL, and leaf 

nitrogen concentration, suggesting that trees down-regulate growth as they age. 

Decreases to SLA and SRL with age were observed in herbaceous species 

(Schippers and Olff, 2000), and decreases to SLA during ontogenetic 

development were observed in tree seedlings (Thomas and Bazzaz, 1999, 

Cavender-Bares and Bazzaz, 2000, Lusk, 2004, Niklas and Cobb, 2008). 

Decreases in SLA are possibly driven by increasing lamina area and/or thickness, 

requiring proportionally greater investment in supporting structures (Lusk and 

Warton, 2007). By adopting a “fast” growth strategy as seedlings, tree species 
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may be able to out-compete their neighbours for crucial light and soil resources. 

After becoming established on a site, and thus under less intense competition, a 

“slower” growth strategy may be conducive to long term survival via retention of 

nutrients and tolerance of stressful or resource limited environmental conditions. 

However, species vary in their degree of up or down-regulation of growth traits. 

For example Aristotelia serrata had almost two times higher SLA, and nearly four 

times higher SRL as a seedling than as an adult, whereas on average across all 

sampled species seedling SLA was only 1.6 times higher than adult SLA, and 

seedling SRL was on average only 1.5 times higher than adult SRL. This 

regulation of growth may reflect species‟ shade tolerance strategy as seedlings, 

with light demanding species such as Aristotelia serrata needing to intercept light 

gaps early in ontogeny, otherwise they will rapidly reach a negative carbon 

balance and thus energetically starve (Lusk, 2004). 

Field grown plants can also differ from glasshouse plants due to factors other than 

age. Studies by Poorter and De Jong (1999) and Mokany and Ash (2008) 

examined traits of herbaceous plants of similar ages grown in both field and 

glasshouse conditions. Both studies found that glasshouse grown plants had 

higher SLA than field grown plants. This is consistent with my finding of higher 

SLA in glasshouse seedlings compared with field adults. However, the lower SLA 

of herbaceous field grown plants in these studies probably does not reflect 

ontogenetic change, but is more likely a response to stress from environmental 

factors such as water scarcity, temperature extremes, wind exposure, competition, 

or herbivory.  

Discrepancies between adult and seedling traits may also arise due to the 

glasshouse conditions and potting medium that the seedlings were grown in. 

Roumet et al. (2008) suggest that potted plants may exhibit a higher SRL 

compared to field grown plants, due to the relative ease of extracting and washing 

the root system from potting mix compared to extraction of roots from natural 

soils, where the extraction process may result in the damage or loss of a 

significant proportion of fine roots. Additionally, in my study seedlings had ample 

access to light, water, nutrients, and were free from competition with other 

individuals, while the compared adult root trait data were drawn from a study over 

a strong phosphorus limitation gradient, where competition for soil resources 

would be intense. Chapter Three presents results from an experiment which 
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compared the effects of different nutrient treatments on trait expression for four 

native tree species. In this experiment, even the lowest nutrient treatment 

seedlings typically had far higher root nutrient concentrations than naturally 

grown adults. Although these results are far from conclusive, they suggest that the 

far lower nutrient concentration observed in adult roots may result from 

ontogenetic down-regulation of growth, rather than solely due to lower nutrient 

availability in natural soils.  

Therefore, I conclude that morphological traits measured on seedlings are strongly 

and significantly correlated with those of adults, although tend to be oriented 

towards a “faster” growth strategy than those of adults. The relationships between 

seedling and adult root nutrient concentrations are less clear, and require further 

research to clarify how interactions between soil nutrient availability and 

ontogenetic changes result in adult root nutrient concentrations. 

2.5.2 The whole-plant economics spectrum (PC1) 

I found strong evidence for a whole-plant economics spectrum exhibited by co-

ordination across above and below ground organ level traits, consistent with the 

whole-plant economic spectrum proposed by Reich (2014). The strongest axis of 

variation from my PCA represents a “fast-slow” or acquisitive-conservative 

spectrum for acquiring light and soil resources, where fast rates of growth are 

facilitated by low tissue dry matter content in leaves, roots, and stems, as well as 

low RBI and high root N. The correlation between above and below ground tissue 

density traits is consistent with results from multiple previous studies. In grasses 

LDMC was positively correlated with root TD, and both were negatively 

correlated with RGR (Wahl and Ryser, 2000). Correlations between leaf and root 

tissue density were observed in 78 grassland species along fertility and 

disturbance gradients (Craine et al., 2001). Leaf and root dry matter content were 

moderately correlated across 14 grassland species (Mokany and Ash, 2008). 

Across 40 species from aquatic, riparian and terrestrial environments, strong 

correlations were observed between above and below ground traits representing 

structural investment, including leaf and root dry matter, carbon, and lignin 

contents (Freschet et al., 2010). Strong correlation between leaf and root dry 

matter content, was observed in 14 Mediterranean rangeland species along a 

gradient of nitrogen limitation (Pérez-Ramos et al., 2012). In three New Zealand 

tree species positive correlations were observed between LDMC and RDMC, 
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which were both negatively correlated with SRL, SLA, and root and leaf N 

(Freschet et al., 2013). However, not all studies have observed strong correlations 

between leaf and root economic traits. Only weak correlations were observed 

between leaf and root tissue densities in grasses (Craine and Lee, 2003, Craine et 

al., 2005), and only within, but not between grassland communities (Kembel and 

Cahill Jr, 2011) . Altogether these results suggest that leaf and roots may co-

ordinate their strategies, but that environmental gradients may be important 

drivers of such co-ordination. Additionally, whether the comparisons are made 

within or between communities can affect the outcome. Many of these studies 

have only included grasses or other herbaceous species; therefore more research is 

required to determine the generality of above and below ground economic co-

ordination in woody species. 

Multiple studies have shown leaf and stem economic traits to be decoupled in 

adult trees. No correlations were found between leaf and stem tissue densities 

across hundreds of neotropical tree species (Baraloto et al., 2010, Fortunel et al., 

2012). In a study of New Zealand Nothofagaceae, no correlations were found 

between SLA and stem density, and only limited support for correlations between 

leaf and stem tissue density (Richardson et al., 2013). Both leaf and stem tissue 

densities have been found to negatively correlate with soil fertility, but ordinated 

on separate axes of principle component analysis (Jager et al., 2015). These 

results contrast with my findings of co-ordination across leaf, root, and stem 

economic traits, and may be due to the comparison of seedling versus adult traits. 

As discussed in objective one, compared to adults, seedling traits tend to be 

oriented to a “faster” growth strategy co-ordinated across leaves, roots and stems. 

This may arise due to intense competition over limited light and its strong effect 

on seedling survival, particularly in mature forests (Lusk, 2004). As trees grow, 

organ-level economic trait strategies may differentiate to reflect organ-specific 

responses to environmental stresses. For instance, denser stem tissues in adults 

will slow the rate of height growth, but allow trees to withstand greater 

mechanical stress and increase resistance to xylem embolism (Chave et al., 2009). 

Similarly, increased light interception by leaves typically results in different 

expression of leaf economic traits (Gratani et al., 2006, Lusk et al., 2008). Higher 

density roots in mature trees can produce higher tensile strength (Bischetti et al., 

2005), allowing sturdier anchoring in the soil to support the growing mass of 
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leaves and stems. Alternatively, roots may need to adopt a more acquisitive 

strategy in response to local depletion of nutrients (Chapin III, 1980). Complex 

responses to the selective pressures and interactions of multiple environmental 

factors could account for the commonly observed differentiation of organ-level 

economic traits in adult trees. 

Other traits have been found to correlate between leaves and roots, and may also 

be useful as indicators of coupled leaf and stem economics. In a meta-analysis of 

American grassland species, leaf and root longevity associated with each other, 

and were negatively associated with relative growth rate, SLA, and leaf and root 

nitrogen concentrations (Kembel et al., 2008) . In grasses both leaf and root tissue 

density were positively correlated with leaf and root lifespan respectively, and 

both leaf and root tissue density were negatively correlated with relative growth 

rate (Ryser, 1996). While I did not measure leaf chemistry or longevity of leaves 

and roots, these traits may also be useful for assessing co-ordination of above and 

below ground economic strategy in woody species.  

In conclusion, the use of leaf traits to infer root traits should be approached 

cautiously, due to the lack of consistent results and the low number of studies of 

tree root economics. Although my results suggest that there is a “whole-plant 

economic spectrum” present across species, it is not clear whether this economic 

spectrum is only present in seedlings, if it is maintained as trees mature, or 

whether it is a unique feature of the New Zealand flora. Further research would 

clarify how co-ordination of organ-level economic strategy differs between 

herbaceous and woody species, between adult and seedling trees, and between 

ecosystems and regional floras  

2.5.3 Root diameter and SRL (PC2) 

My results indicate that fine root diameter and SRL were independent from the 

whole-plant economics spectrum. This contrasts with the hypothesis that SRL can 

be viewed as a below ground analogue to SLA, with high SRL facilitating growth 

due to having more absorptive length per unit of dry mass, and thus a more 

efficient strategy for acquiring soil resources. Multiple studies have found SRL 

positively correlated with either SLA or relative growth rate (Eissenstat, 1991, 

Reich et al., 1998, Wright and Westoby, 1999, Comas et al., 2002, Comas and 

Eissenstat, 2004, Withington et al., 2006, Laughlin et al., 2010, Laughlin et al., 
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2011, Fort et al., 2012), although the correlation between SRL and SLA was often 

only weak, as was found in my study (Table 4). Several studies have reported no 

correlations between SRL and SLA (Craine et al., 2005, Tjoelker et al., 2005, 

Markesteijn and Poorter, 2009, Chen et al., 2013). Studies which have observed 

correlations between SRL and SLA have suggested that SRL is an adaptive, 

economic trait. However, my results are consistent with studies which 

demonstrated that SRL and root diameter are phylogenetically conserved 

(Pregitzer et al., 2002, Comas and Eissenstat, 2004, Withington et al., 2006, 

Comas and Eissenstat, 2009, Kembel and Cahill Jr, 2011, Chen et al., 2013, 

Valverde-Barrantes et al., 2014), and not directly related to plant growth strategy 

or soil nutrient availability (Alvarez-Uria and Körner, 2011, Kembel et al., 2008, 

Roumet et al., 2008, Boot and Mensink, 1990). In my study, magnoliid 

angiosperms and conifers both possessed low SRL and large diameter roots, and 

yet conifers were more aligned with the “slow growth” end of PC1 (Figure 2), 

probably due to higher tissue dry matter content. Eudicot angiosperms spanned 

the whole range of root diameters and had both the smallest and largest diameter 

roots in this study, and yet species with similar root diameters were dissimilar 

across the PC1 axis (e.g. compare Dracophyllum longifolium to Fuchsia 

excorticata).  

If SRL does not directly affect species‟ growth rates, species with low SRL must 

have some mechanism of effectively competing for soil resources, or else 

evolution surely would have resulted in an “arms race” of increasing SRL. Several 

studies have linked lower SRL and higher root diameter to longer root lifespan 

(McCormack et al., 2012, Tierney and Fahey, 2002, Strand et al., 2008), causing 

longer term nutrient retention within plant tissue, and thus potentially facilitating 

tolerance to low fertility soils. However, species with widely different SRL can 

compete and co-exist on a site (Guo et al., 2008), suggesting that SRL is not being 

strongly environmentally filtered. The leading hypothesis of how low SRL species 

compete with high SRL species is that larger root diameters offer mycorrhizal 

symbionts more root volume to colonize, thus low SRL species can obtain 

nutrients (particularly phosphorus) through the large surface area of mycorrhizal 

hyphae, in exchange for photosynthetic carbon (Baylis, 1975, Brundrett, 1991, 

Eissenstat, 1992, Newsham et al., 1995). By offering a larger root volume to 

colonize, low SRL species may increase the rate of exchange of resources 
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between themselves and their mycorrhizae. This hypothesis is supported by some 

studies, which found root diameter positively correlated with extent of 

mycorrhizal colonization (St John, 1980, Reinhardt and Miller, 1990, Collier et 

al., 2003, Comas et al., 2014) or benefit from VAM symbiosis (Graham and 

Syvertsen, 1985, Manjunath and Habte, 1991, Hetrick et al., 1992), but not by 

others which found root diameter unrelated to extent of mycorrhizal colonisation 

(Pregitzer et al., 2002, Zangaro et al., 2007, Roumet et al., 2008, Holdaway et al.,  

2011) or unrelated to benefit from mycorrhizal infection (Schweiger et al., 1995, 

Zangaro et al., 2005) 

The type of mycorrhizae with which a plant species forms a symbiosis may be as 

important as the extent of mycorrhizal colonisation for the understanding of the 

interplay between SRL, root diameter, and soil resource acquisition. Vesicular-

arbuscular mycorrhizal symbiosis (VAM) is believed to be the ancestral condition 

of mycorrhizal symbiosis (Brundrett, 2002), and modern basal angiosperms 

(particularly Magnoliidae) have retained high degrees of VAM dependency 

(Baylis, 1975). VAM is the most common category of mycorrhizal symbiosis, 

both worldwide and across the New Zealand flora (McNabb, 1958, Wang and 

Qiu, 2006), and the New Zealand Podocarpaceae and Agathis species produce 

specialised root nodules to house VAM fungi (Russell et al., 2002), which 

facilitate phosphorus uptake (Morrison and English, 1967). Fossil and geological 

evidence suggests that during the angiosperm radiation of the Cretaceous there 

was a general trend of more recently diverged lineages having higher SRL, and 

less dependence on mycorrhizal symbiosis, possibly driven by the prevalence of 

drier climate (Brundrett, 2002, Comas et al., 2014). This may explain the wide 

range of SRL/root diameters observed in eudicot species in this study. 

Ectomycorrhizal type symbioses (EM) also appeared in the Cretaceous (Comas et 

al., 2014). New Zealand has a small selection of species which form 

ectomycorrhizal symbioses (all native Nothofagaceae (Baylis, 1980) and 

Leptospermum scoparium (Moyersoen, 1999)), which tended to have highly 

branched, high SRL roots (Appendix Figure 14) consistent with Comas and 

Eissenstat (2009) and Comas et al. (2014), although these are not universal traits 

of all EM species (Pregitzer et al., 2002). Newsham et al. (1995) also theorised 

that the benefit of VAM symbioses would be greatest to species with low root 

branching intensity, therefore in plant families with high root branching intensity 
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it is logical that a transition to a different type of mycorrhizal association would 

be more likely to evolve. Interestingly, the species with highest branching 

intensity and SRL in my study was Dracophyllum traversii, which forms an 

ericoid type mycorrhizal symbiosis (McNabb, 1961). High SRL and branching 

intensity, as well as the absence of root hairs, appear to be characteristic of ericoid 

mycorrhizal plant roots (Read, 1996). Additionally, some EM and ericoid 

mycorrhizas have the ability to uptake organic nitrogen sources, which most 

VAM and non-mycorrhizal species lack (Smith and Read, 1996).  

It is apparent that SRL alone does not provide sufficient insight into root strategy. 

In order to improve the understanding of the relationships between morphological 

root traits and whole-plant economics, plant ecologists must also understand how 

root traits other than SRL influence below ground strategy, including branching 

intensity, porosity, the costs and benefits of different categories and extents of 

mycorrhizal symbiosis, how these traits scale under differing environmental 

conditions, and how mycorrhizal symbioses influence plant resource economics. 

2.5.4 Root phosphorus (PC3) 

The third principle component represents a complex association of traits. Root 

phosphorus concentration was the predominant driver of PC3, which positively 

associated with root nitrogen concentration, SRL, SDMC, and porosity. It is 

intriguing that SRL, but not root diameter, was associated with root phosphorus. 

This may be due to phenotypically plastic modification of root tissue density in 

response to phosphorus availability, which would affect SRL, but not root 

diameter. Paradoxically, PC3 had a positive association between SRL and SDMC, 

whereas PC2 had a negative association between these two traits. These 

conflicting associations are probably driven by the contrasting growth rates and 

tissue dry matter contents of the coniferous and magnoliid species in this study. 

Both conifers and magnoliids generally had low SRL; however magnoliids 

typically had fast growth rates and low tissue dry matter content, while in contrast 

conifers tended to have slow growth rates and high tissue dry matter content. 

Similarly, PC3 contained a positive association between root nitrogen and SDMC, 

while in PC1 these traits were negatively associated, although it is not clear which 

species or groups of species are driving this pair of conflicting associations.  
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Porosity, or amount of aerenchyma in roots, has been positively correlated with 

waterlogging tolerance, particularly in wetland plants (Jansen et al., 2005, Visser 

et al., 2000, Jackson and Armstrong, 1999). Aerenchyma tissue allows for 

aeration of roots by facilitating gas exchange between submerged roots and the 

atmosphere. The negative correlation between soil fertility and CWM porosity 

(Figure 5.e) at first seems counter-intuitive, as the soil fertility gradient in this 

study was strongly associated with altitude and topography (Jager, 2014) and I 

would have expected less waterlogging in the ridge-top soils compared with the 

wetter, high fertility gully soils. However, low fertility sites can also have poor 

drainage (Jane and Green, 1986, Lusk, 1996), and the higher average porosity 

values observed in low fertility conifers may represent adaptations to poorly 

drained, low fertility soils. Laurelia novae-zelandiae is a species which is 

associated with wet, high fertility soils (Jager et al., 2015), yet had particularly 

low porosity (Table 3); although, this may be explained by the ability of Laurelia 

novae-zelandiae to form pneumatophores (aerial roots), an alternative adaptation 

to waterlogged soils. However, Syzygium maire is also associated with water-

logged soils, also produces pneumatophores, and yet had relatively high porosity 

(Table 3), contrasting with Laurelia novae-zelandiae. 

In addition to adaptation to water logging, porosity may have other adaptive 

functions. Studies of aerenchyma formation in maize have suggested that higher 

porosity may be adaptive in situations other than flood tolerance. (Saengwilai et 

al., 2014) found that higher porosity is correlated with lower metabolic cost per 

unit of root length, and thus could be advantageous in soil nutrient acquisition. 

Zhu et al. (2010) also found higher porosity associated with lower metabolic cost 

per unit of root length, and demonstrated that plants with higher porosity were 

more tolerant to drought, due to their relatively lower metabolic cost of soil 

exploration. These results suggest that my observation of higher porosity in low 

fertility soils (Figure 5.e) may be an adaptive response which lowers the 

metabolic cost per unit of root length, therefore increasing the efficiency of soil 

exploration. Porosity was also moderately negatively correlated with relative 

growth rate and weakly negatively correlated with SLA, both of which negatively 

correlated with soil fertility. As gas filled cavities have a very low density, I 

would expect that that roots with higher porosity should also have lower overall 

root tissue density, however Pearson‟s r correlations between the two traits did 
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not support this (Table 4). There was a weak positive correlation between porosity 

and root dry matter content, therefore it is possible that higher porosity roots also 

have relatively high dry matter content in root cells (cortex, dermal layers, 

vascular tissue etc.), which would account for both the lack of correlation between 

porosity and overall root density, and the positive correlation with root dry matter 

content. These results suggest that the costs and benefits of differing extents of 

porosity may be worth investigating in relation to whole plant strategy. 

2.5.5 Root traits selection along a soil fertility gradient 

Regression analyses demonstrated that traits relating to the “whole-plant 

economic spectrum” were strongly correlated with the Puketī soil fertility gradient 

(Figure 5, Figure 6). Species with traits associated with an acquisitive growth 

strategy were more common on high fertility sites, and species with traits 

associated with a conservative growth strategy were more common on low 

fertility sites, consistent with CSR theory (Grime, 1979). These results are also 

consistent with previous studies which have observed high soil fertility filtering 

for species with acquisitive leaf and stem traits, and low fertility soils filtering for 

species with conservative leaf and stem traits (Muller‐Landau, 2004, ter Steege et 

al., 2006, Gourlet‐Fleury et al., 2011, Jager et al., 2015). The co-ordination of 

economic trait strategy across leaves, roots, and stems is consistent with results 

from Freschet et al. (2010), but to my knowledge this is the first time this “whole-

plant economic spectrum” has been demonstrated to correlate at the community 

level with a strong soil fertility gradient. 

The absence of correlation between soil fertility and community-level SRL 

(Figure 5.a) contrasts with results from multiple studies (Holdaway et al., 2011, 

Fort et al., 2012, Prieto et al., 2015), although the relationship between SRL and 

soil fertility in these studies was not always linear. Intra-specific SRL has been 

demonstrated to increase in response to nutrient limitation (Clemensson-Lindell 

and Asp, 1995, Hill et al., 2006, Kalliokoski et al., 2010), or to not respond to 

nutrient limitation (Boot and Mensink, 1990, Cromer and Jarvis, 1990, Borken et 

al., 2007, Kalliokoski et al., 2010); however, species‟ responses were influenced 

by their phylogeny and the particular limiting nutrient. Clearly these contrasting 

results illustrate the need for further research of how community level SRL relates 

to soil fertility gradients, and how the discrete components of SRL (fine root 

diameter and root tissue density) vary both within and between species across 
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such gradients. Determining how the resulting variation in SRL is driven by 

changes to either root diameter or root tissue density will help to test the 

hypothesis that fine root diameter is highly phylogenetically constrained. Under 

this hypothesis, any adaptive capacity of SRL is likely to be driven by and limited 

to alterations of root tissue density, rather than root diameter. 

Although SRL has been proposed as a below ground equivalent of SLA 

(Eissenstat et al., 2000) and thus hypothesised to correlate to soil fertility, other 

root traits may have equal or greater influence on nutrient and water uptake. I 

observed CWM root porosity to decrease with soil fertility (Figure 5.e), and as 

discussed earlier some studies have found that higher porosity decreases the 

metabolic and dry matter costs of root proliferation (Saengwilai et al., 2014, Zhu 

et al., 2010), and thus may be beneficial on water or nutrient limited sites. I also 

observed a non-linear relationship between soil fertility and CWM root branching 

intensity (Figure 5.f), with low fertility sites associated with species with high 

RBI, and intermediate fertility sites associated with species of lowest RBI. These 

results are somewhat consistent with those of Holdaway et al. (2011), who 

observed a linear negative relationship between RBI and phosphorus availability. 

As mentioned earlier, RBI may relate to species‟ mycorrhizal association, with 

EM species typically having high RBI compared to obligate VAM species 

(Comas and Eissenstat, 2009, Comas et al., 2014) (Appendix Figure 14). Other 

root traits which may be important to below ground strategy include root-to-shoot 

ratio, total root biomass, root distribution throughout the soil profile, ability to 

proliferate into nutrient rich patches, root turnover, and type of mycorrhizal 

symbiosis (Kembel et al., 2008, Hodge, 2009, Laughlin et al., 2010, Comas et al., 

2014). The importance of these traits in determining community assembly along 

soil fertility gradients could be clarified by their inclusion in future studies. For 

now, it appears that SRL alone cannot be a reliable predictor of below ground 

strategy or species‟ adaptations to nutrient availability. 

 

  



66 

 

2.6 Recommendations 

The conclusions I reached regarding the relationships between seedling and adult 

traits could be strengthened by measuring a wider range of species, particularly 

those which were not able to be sourced from nurseries due to their low 

commercial demand or propagation difficulties. These species were typically 

associated with low fertility soils, and while I was able to obtain some data for 

these species, more replicates would encompass a greater degree of natural 

variability and increase confidence in the trait averages for these species. My 

comparison between seedling and adult roots was also limited to less than 20 

species due to lack of adult field root data, and thus the relationships between 

adult and seedling root traits could be clarified by gathering adult root trait data 

for additional species. To improve the understanding of the relationships between 

seedling and adult root nutrient concentration traits, it would be valuable to gather 

adult root chemistry data for a representative sample of species, growing in a 

variety of soil conditions. This would improve our understanding of how local soil 

conditions influence species‟ root nutrient concentrations. It may also be valuable 

to sample both morphological and nutrient root traits within a narrow soil fertility 

gradient, from a range of tree ontogenetic stages, including seedlings, saplings, 

young adults, and mature canopy dominants. This would provide valuable data on 

how ontogeny influences trait expression over tree lifespans. 

Similarly, the use of seedlings to infer adult root traits is far more logistically 

convenient that field sampling and offers controlled conditions for hypothesis 

testing; however more experiments are needed to examine how trait expression is 

influenced by both abiotic and biotic factors. There is a call from the literature to 

conduct controlled experiments which investigate the effects of root competition 

on root foraging abilities, resource uptake, low fertility tolerance, and trait 

expression. In chapter three, I present result of an experiment which examined 

four species responses to differing nutrient treatments, although these experiments 

were performed on isolated plants rather than in competitive conditions, the 

results are still of relevance to seedling trait research. Interpretation of trait data 

from controlled conditions would be improved by comparative research between 

glasshouse grown plants and those from a variety of natural field conditions, 

particularly varying degrees of light, fertility, and competition. 
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SRL does not appear to be the below ground equivalent of SLA as has been 

theorised, correlating neither with growth related traits or soil fertility. However, 

SRL may still be an important factor in understanding species‟ distributions, 

possibly related to the category and extent of mycorrhizal associations, which 

represents a promising and relatively unexplored area of root trait research. There 

are a plethora of questions regarding mycorrhizal symbiosis that could be 

investigated. For example, do high SRL species have a greater degree of control 

over their mycorrhizal associations compared to low SRL species? How does the 

uptake of soil water by mycorrhizal hyphae compare to that of fine roots of either 

small or large diameter? Does total water uptake ability differ between a low SRL 

species with high mycorrhizal infection, and a high SRL species with low or no 

mycorrhizal infection? Are certain species of mycorrhizal fungi more effective at 

extracting soil nutrients than others? SRL has also been linked to root longevity 

by several recent studies, and despite the logistical difficulties of obtaining root 

lifespan data, it may be useful in understanding how SRL influences below-

ground competitive strategy. Both mycorrhizal associations and root lifespan data 

have great potential for improving models of soil carbon and nutrient cycling. 

Porosity and root branching intensity both had a weak relationship with soil 

fertility, and root branching intensity was associated with the “whole plant 

strategy” PC1, while porosity was associated with the “root phosphorus” PC3. 

These traits may have some potential in future root trait research, porosity 

particularly may be useful in wetland or regularly flooded ecosystems, while the 

relationships between root branching intensity, soil fertility, and SRL are not yet 

well understood.  

Objective three of this study investigated seedling traits and their relationship to a 

strong fertility gradient present in Puketī forest. It would be interesting to see if 

the relationships I found between whole plant-economic traits and soil fertility are 

consistent on a wider scale. Soil fertility and species‟ relative abundance data are 

available on a nationwide scale in New Zealand (LUCAS plots), and would be a 

perfect dataset to investigate how root traits vary along both soil fertility and 

climatic gradients at a national scale. 

  



68 

 

2.7 References: 

Alvarez-Uria, P. & Körner, C. (2011) Fine root traits in adult trees of evergreen 

and deciduous taxa from low and high elevation in the Alps. Alpine 

Botany, 121, 107-112. 

Baraloto, C., Timothy Paine, C., Poorter, L., Beauchene, J., Bonal, D., Domenach, 

A. M., Hérault, B., Patiño, S., Roggy, J. C. & Chave, J. (2010) Decoupled 

leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-

1347. 

Baylis, G. (1975) Magnolioid mycorrhiza and mycotrophy in root systems derived 

from it. Endomycorrhizas; Proceedings of a Symposium. 

Baylis, G. (1980) Mycorrhizas and the spread of beech. New Zealand journal of 

ecology, 3, 151-153. 

Best, H. A. & Bellingham, P. (1991) A detailed habitat study of North Island 

kokako in Puketi Forest, Northland. Head Office, Department of 

Conservation. 

Birouste, M., Zamora-Ledezma, E., Bossard, C., Pérez-Ramos, I. M. & Roumet, 

C. (2014) Measurement of fine root tissue density: a comparison of three 

methods reveals the potential of root dry matter content. Plant and soil, 

374, 299-313. 

Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P. 

& Zocco, A. (2005) Root strength and root area ratio of forest species in 

Lombardy (Northern Italy). Plant and soil, 278, 11-22. 

Black, P. M. (1994) The" Waipapa Terrane", North Island, New Zealand: 

subdivision and correlation. Geoscience Reports of Shizuoka University, 

20, 55-62. 

Blakemore, L. C., Searle, P. L. & Daly, B. K. (1987) Methods for chemical 

analysis of soils. New Zealand Soil Bureau Scientific Report 80. DSIR, 

Wellington. 

Boot, R. A. & Mensink, M. (1990) Size and morphology of root systems of 

perennial grasses from contrasting habitats as affected by nitrogen supply. 

Plant and Soil, 129, 291-299. 

Borken, W., Kossmann, G. & Matzner, E. (2007) Biomass, morphology and 

nutrient contents of fine roots in four Norway spruce stands. Plant and 

Soil, 292, 79-93. 

Brown, I. C. (1943) A rapid method of determining exchangeable hydrogen and 

total exchangeable bases of soils. Soil Science, 56, 353-358. 

Brundrett, M. C. (1991) Mycorrhizas in natural ecosystems. Academic Press. 

Brundrett, M. C. (2002) Coevolution of roots and mycorrhizas of land plants. New 

phytologist, 154, 275-304. 



69 

 

Cavender-Bares, J. & Bazzaz, F. (2000) Changes in drought response strategies 

with ontogeny in Quercus rubra: implications for scaling from seedlings to 

mature trees. Oecologia, 124, 8-18. 

Chapin III, F. S. (1980) The Mineral Nutrition of Wild Plants. Annual Review of 

Ecology and Systematics, 11, 233-260. 

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G. & Zanne, A. E. 

(2009) Towards a worldwide wood economics spectrum. Ecology Letters, 

12, 351-366. 

Chen, W., Zeng, H., Eissenstat, D. M. & Guo, D. (2013) Variation of first-order 

root traits across climatic gradients and evolutionary trends in geological 

time. Global Ecology and Biogeography, n/a-n/a. 

Clemensson-Lindell, A. & Asp, H. (1995) Fine-root morphology and uptake of 

32P and 35S in a Norway spruce (Picea abies (L.) Karst.) stand subjected 

to various nutrient and water supplies. Plant and soil, 173, 147-155. 

Collier, S. C., Yarnes, C. T. & Peter Herman, R. (2003) Mycorrhizal dependency 

of Chihuahuan Desert plants is influenced by life history strategy and root 

morphology. Journal of Arid Environments, 55, 223-229. 

Comas, L., Bouma, T. & Eissenstat, D. (2002) Linking root traits to potential 

growth rate in six temperate tree species. Oecologia, 132, 34-43. 

Comas, L. & Eissenstat, D. (2004) Linking fine root traits to maximum potential 

growth rate among 11 mature temperate tree species. Functional Ecology, 

18, 388-397. 

Comas, L. H., Callahan, H. S. & Midford, P. E. (2014) Patterns in root traits of 

woody species hosting arbuscular and ectomycorrhizas: implications for 

the evolution of belowground strategies. Ecology and Evolution, 4, 2979-

2990. 

Comas, L. H. & Eissenstat, D. M. (2009) Patterns in root trait variation among 25 

co-existing North American forest species. New Phytologist, 182, 919-928. 

Cornelissen, J., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D., 

Reich, P., Ter Steege, H., Morgan, H. & Van Der Heijden, M. (2003) A 

handbook of protocols for standardised and easy measurement of plant 

functional traits worldwide. Australian journal of Botany, 51, 335-380. 

Craine, J., Froehle, J., Tilman, D., Wedin, D. & Chapin, F. I. (2001) The 

relationships among root and leaf traits of 76 grassland species and 

relative abundance along fertility and disturbance gradients. Oikos, 93, 

274-285. 

Craine, J. M. (2009) Resource strategies of wild plants. Princeton University 

Press. 

Craine, J. M. & Lee, W. G. (2003) Covariation in leaf and root traits for native 

and non-native grasses along an altitudinal gradient in New Zealand. 

Oecologia, 134, 471-478. 



70 

 

Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. (2005) 

Environmental Constraints on a Global Relationship among Leaf and Root 

Traits of Grasses. Ecology, 86, 12-19. 

Cromer, R. & Jarvis, P. (1990) Growth and Biomass Partitioning in Eucalyptus 

grandis Seedlings in Response to Nitrogen Supply. Functional Plant 

Biology, 17, 503-515. 

Darwin, C. (1859) On the origin of species by means of natural selection J. 

Murray, London. 

Diaz, S., Cabido, M. & Casanoves, F. (1998) Plant functional traits and 

environmental filters at a regional scale. Journal of Vegetation Science, 9, 

113-122. 

Dowding, J. E. & Murphy, E. C. (1994) Ecology of ship rats (Rattus rattus) in a 

kauri (Agathis australis) forest in Northland, New Zealand. New Zealand 

Journal of Ecology, 18, 19-28. 

Eissenstat, D. M. (1991) On the relationship between specific root length and the 

rate of root proliferation: a field study using citrus rootstocks. New 

Phytologist, 118, 63-68. 

Eissenstat, D. M. (1992) Costs and benefits of constructing roots of small 

diameter. Journal of Plant Nutrition, 15, 763-782. 

Eissenstat, D. M., Wells, C. E., Yanai, R. D. & Whitbeck, J. L. (2000) Building 

roots in a changing environment: implications for root longevity. New 

Phytologist, 147, 33-42. 

Espeleta, J. & Donovan, L. (2002) Fine root demography and morphology in 

response to soil resources availability among xeric and mesic sandhill tree 

species. Functional Ecology, 16, 113-121. 

Fort, F., Jouany, C. & Cruz, P. (2012) Root and leaf functional trait relations in 

Poaceae species: implications of differing resource-acquisition strategies. 

Journal of Plant Ecology. 

Fortunel, C., Fine, P. V. A. & Baraloto, C. (2012) Leaf, stem and root tissue 

strategies across 758 Neotropical tree species. Functional Ecology, 26, 

1153-1161. 

Freschet, G. T., Bellingham, P. J., Lyver, P. O. B., Bonner, K. I. & Wardle, D. A. 

(2013) Plasticity in above‐and belowground resource acquisition traits in 

response to single and multiple environmental factors in three tree species. 

Ecology and evolution, 3, 1065-1078. 

Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. (2010) 

Evidence of the „plant economics spectrum‟ in a subarctic flora. Journal of 

Ecology, 98, 362-373. 

Gourlet‐Fleury, S., Rossi, V., Rejou‐Mechain, M., Freycon, V., Fayolle, A., Saint‐
André, L., Cornu, G., Gerard, J., Sarrailh, J. M. & Flores, O. (2011) 



71 

 

Environmental filtering of dense‐wooded species controls above‐ground 

biomass stored in African moist forests. Journal of Ecology, 99, 981-990. 

Graham, J. & Syvertsen, J. (1985) Host determinants of mycorrhizal dependency 

of citrus rootstock seedlings. New Phytologist, 101, 667-676. 

Gratani, L., Covone, F. & Larcher, W. (2006) Leaf plasticity in response to light 

of three evergreen species of the Mediterranean maquis. Trees, 20, 549-

558. 

Gregory, P. J. (2006) Plant roots: growth, activity and interaction with soils. 

Blackwell Pub, Oxford; Ames, Iowa. 

Grime, J. P. (1979) Plant strategies and vegetation processes. Wiley. 

Grime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., 

Rorison, I. H., Hendry, G. A. F., Ashenden, T. W., Askew, A. P., Band, S. 

R., Booth, R. E., Bossard, C. C., Campbell, B. D., Cooper, J. E. L., 

Davison, A. W., Gupta, P. L., Hall, W., Hand, D. W., Hannah, M. A., 

Hillier, S. H., Hodkinson, D. J., Jalili, A., Liu, Z., Mackey, J. M. L., 

Matthews, N., Mowforth, M. A., Neal, A. M., Reader, R. J., Reiling, K., 

Ross-Fraser, W., Spencer, R. E., Sutton, F., Tasker, D. E., Thorpe, P. C. & 

Whitehouse, J. (1997) Integrated Screening Validates Primary Axes of 

Specialisation in Plants. Oikos, 79, 259-281. 

Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y. & Wang, Z. (2008) Anatomical 

traits associated with absorption and mycorrhizal colonization are linked 

to root branch order in twenty‐three Chinese temperate tree species. New 

Phytologist, 180, 673-683. 

Hetrick, B., Wilson, G. & Todd, T. (1992) Relationships of mycorrhizal 

symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. 

Canadian Journal of Botany, 70, 1521-1528. 

Hill, J., Simpson, R., Moore, A. & Chapman, D. (2006) Morphology and response 

of roots of pasture species to phosphorus and nitrogen nutrition. Plant and 

Soil, 286, 7-19. 

Hodge, A. (2009) Root decisions. Plant, cell & environment, 32, 628-640. 

Holdaway, R. J., Richardson, S. J., Dickie, I. A., Peltzer, D. A. & Coomes, D. A. 

(2011) Species- and community-level patterns in fine root traits along a 

120 000-year soil chronosequence in temperate rain forest. Journal of 

Ecology, 99, 954-963. 

Hurst, J. M. & Allen, R. B. (2007) A permanent plot method for monitoring 

indigenous forests: field protocols. Landcare Research, Lincoln, New 

Zealand. 

Jackson, M. & Armstrong, W. (1999) Formation of aerenchyma and the processes 

of plant ventilation in relation to soil flooding and submergence. Plant 

Biology, 1, 274-287. 



72 

 

Jager, M. M. (2014) Plant traits and their role in determining forest community 

structure along a soil fertility gradient. Master of Science, University of 

Waikato, Hamilton, New Zealand. 

Jager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J. & Laughlin, 

D. C. (2015) Soil fertility induces coordinated responses of multiple 

independent functional traits. Journal of Ecology. 

Jansen, C., Steeg, H. M. & Kroon, H. (2005) Investigating a trade‐off in root 

morphological responses to a heterogeneous nutrient supply and to 

flooding. Functional Ecology, 19, 952-960. 

Kalliokoski, T., Pennanen, T., Nygren, P., Sievänen, R. & Helmisaari, H.-S. 

(2010) Belowground interspecific competition in mixed boreal forests: 

fine root and ectomycorrhiza characteristics along stand developmental 

stage and soil fertility gradients. Plant and soil, 330, 73-89. 

Kembel, S. W. & Cahill Jr, J. F. (2011) Independent evolution of leaf and root 

traits within and among temperate grassland plant communities. PloS one, 

6, e19992. 

Kembel, S. W., De Kroon, H., Cahill, J. F. & Mommer, L. (2008) Improving the 

Scale and Precision of Hypotheses to Explain Root Foraging Ability. 

Annals of Botany, 101, 1295-1301. 

Kerkhoff, Andrew J., Fagan, William F., Elser, James J. & Enquist, Brian J. 

(2006) Phylogenetic and Growth Form Variation in the Scaling of 

Nitrogen and Phosphorus in the Seed Plants. The American Naturalist, 

168, E103-E122. 

Lambers, H., Chapin III, F. & Pons, L. (1998) Plant physiological ecology. 

Springer Verlag, New York, New York, USA. 

Laughlin, D. C. (2014) The intrinsic dimensionality of plant traits and its 

relevance to community assembly. Journal of Ecology, 102, 186-193. 

Laughlin, D. C., Fule, P. Z., Huffman, D. W., Crouse, J. & Laliberte, E. (2011) 

Climatic constraints on trait‐based forest assembly. Journal of Ecology, 

99, 1489-1499. 

Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. 

(2012) A predictive model of community assembly that incorporates 

intraspecific trait variation. Ecology Letters, 15, 1291-1299. 

Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. (2010) A multi-trait 

test of the leaf-height-seed plant strategy scheme with 133 species from a 

pine forest flora. Functional Ecology, 24, 493-501. 

Lavorel, S. & Garnier, E. (2002) Predicting Changes in Community Composition 

and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. 

Functional Ecology, 16, 545-556. 



73 

 

Liu, G., Freschet, G. T., Pan, X., Cornelissen, J. H., Li, Y. & Dong, M. (2010) 

Coordinated variation in leaf and root traits across multiple spatial scales 

in Chinese semi‐arid and arid ecosystems. New Phytologist, 188, 543-553. 

Lusk, C. H. (2004) Leaf area and growth of juvenile temperate evergreens in low 

light: species of contrasting shade tolerance change rank during ontogeny. 

Functional Ecology, 18, 820-828. 

Lusk, C. H., Reich, P. B., Montgomery, R. A., Ackerly, D. D. & Cavender-Bares, 

J. (2008) Why are evergreen leaves so contrary about shade? Trends in 

Ecology & Evolution, 23, 299-303. 

Lusk, C. H. & Warton, D. I. (2007) Global meta‐analysis shows that relationships 

of leaf mass per area with species shade tolerance depend on leaf habit and 

ontogeny. New Phytologist, 176, 764-774. 

Manjunath, A. & Habte, M. (1991) Root morphological characteristics of host 

species having distinct mycorrhizal dependency. Canadian Journal of 

Botany, 69, 671-676. 

Markesteijn, L. & Poorter, L. (2009) Seedling root morphology and biomass 

allocation of 62 tropical tree species in relation to drought- and shade-

tolerance. Journal of Ecology, 97, 311-325. 

McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. 

(2012) Predicting fine root lifespan from plant functional traits in 

temperate trees. New Phytologist, 195, 823-831. 

McNabb, R. (1961) Mycorrhiza in the New Zealand Ericales. Australian journal 

of botany, 9, 57-61. 

McNabb, R. F. R. (1958) The Mycorrhizas of some New Zealand Plants. Thesis 

presented to the University of New Zealand for the Degree of Master of 

Science. University of Otago. 

Mediavilla, S., Garcia‐Ciudad, A., Garcia‐Criado, B. & Escudero, A. (2008) 

Testing the correlations between leaf life span and leaf structural 

reinforcement in 13 species of European Mediterranean woody plants. 

Functional ecology, 22, 787-793. 

Metson, A. J., Blakemore, L. C. & Rhoades, D. A. (1979) Methods for the 

determination of soil organic carbon: a review, and application to New 

Zealand soils. New Zealand Journal of Science, 22, 205-228. 

Mokany, K. & Ash, J. (2008) Are traits measured on pot grown plants 

representative of those in natural communities? Journal of Vegetation 

Science, 19, 119-126. 

Morrison, T. M. & English, D. A. (1967) The significance of mycorrhizal nodules 

of Agathis australis. New phytologist, 66, 245-250. 



74 

 

Moyersoen, B. & Fitter, A. H. (1999) Presence of arbuscular mycorrhizas in 

typically ectomycorrhizal host species from Cameroon and New Zealand. 

Mycorrhiza, 8, 247-253. 

Muller‐Landau, H. C. (2004) Interspecific and inter‐site variation in wood specific 

gravity of tropical trees. Biotropica, 36, 20-32. 

Newsham, K., Fitter, A. & Watkinson, A. (1995) Multi-functionality and 

biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution, 

10, 407-411. 

Niklas, K. J. & Cobb, E. D. (2008) Evidence for “diminishing returns” from the 

scaling of stem diameter and specific leaf area. American Journal of 

Botany, 95, 549-557. 

Ordoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B. & 

Aerts, R. (2009) A global study of relationships between leaf traits, 

climate and soil measures of nutrient fertility. Global Ecology and 

Biogeography, 18, 137-149. 

Osnas, J. L., Lichstein, J. W., Reich, P. B. & Pacala, S. W. (2013) Global leaf trait 

relationships: mass, area, and the leaf economics spectrum. Science, 340, 

741-744. 

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., 

Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., 

Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., 

Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, 

N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., 

ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, 

P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S. & Cornelissen, J. 

H. C. (2013) New handbook for standardised measurement of plant 

functional traits worldwide. Australian Journal of Botany, 61, 167-234. 

Pérez-Ramos, I. M., Roumet, C., Cruz, P., Blanchard, A., Autran, P. & Garnier, E. 

(2012) Evidence for a „plant community economics spectrum‟ driven by 

nutrient and water limitations in a Mediterranean rangeland of southern 

France. Journal of Ecology, 100, 1315-1327. 

Poorter, H. & De Jong, R. O. B. (1999) A comparison of specific leaf area, 

chemical composition and leaf construction costs of field plants from 15 

habitats differing in productivity. New Phytologist, 143, 163-176. 

Powlesland, R. (1987) The foods, foraging behaviour and habitat use of North 

Island kokako in Puketi State Forest, Northland. New Zealand journal of 

ecology, 10, 117-128. 

Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W. & 

Hendrick, R. L. (2002) Fine root architecture of nine North American 

trees. Ecological Monographs, 72, 293-309. 

Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J. H., Maeght, 

J. L., Mao, Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., 



75 

 

Stokes, A. & Cahill, J. (2015) Root functional parameters along a land‐use 

gradient: evidence of a community‐level economics spectrum. Journal of 

Ecology, 103, 361-373. 

Read, D. J. (1996) The Structure and Function of the Ericoid Mycorrhizal Root. 

Annals of Botany, 77, 365-374. 

Reich, P. B. (2014) The world‐wide „fast–slow‟plant economics spectrum: a traits 

manifesto. Journal of Ecology, 102, 275-301. 

Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. 

C. & Bowman, W. D. (1999) Generality of Leaf Trait Relationships: A 

Test across Six Biomes. Ecology, 80, 1955-1969. 

Reich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W. & Buschena, C. 

(1998) Close association of RGR, leaf and root morphology, seed mass 

and shade tolerance in seedlings of nine boreal tree species grown in high 

and low light. Functional Ecology, 12, 327-338. 

Reich, P. B., Uhl, C., Walters, M. B. & Ellsworth, D. S. (1991) Leaf lifespan as a 

determinant of leaf structure and function among 23 amazonian tree 

species. Oecologia, 86, 16-24. 

Reich, P. B., Wright, I. J., Cavender‐Bares, J., Craine, J. M., Oleksyn, J., 

Westoby, M. & Walters, M. B. (2003) The Evolution of Plant Functional 

Variation: Traits, Spectra, and Strategies. International Journal of Plant 

Sciences, 164, S143-S164. 

Reinhardt, D. & Miller, R. (1990) Size classes of root diameter and mycorrhizal 

fungal colonization in two temperate grassland communities. New 

phytologist, 116, 129-136. 

Richardson, S. J., Allen, R. B., Buxton, R. P., Easdale, T. A., Hurst, J. M., Morse, 

C. W., Smissen, R. D. & Peltzer, D. A. (2013) Intraspecific relationships 

among wood density, leaf structural traits and environment in four co-

occurring species of Nothofagus in New Zealand. PloS one, 8, e58878. 

Rosenvald, K., Ostonen, I., Uri, V., Varik, M., Tedersoo, L. & Lõhmus, K. (2013) 

Tree age effect on fine-root and leaf morphology in a silver birch forest 

chronosequence. European Journal of Forest Research, 132, 219-230. 

Roumet, C., Lafont, F., Sari, M., Warembourg, F. & Garnier, E. (2008) Root traits 

and taxonomic affiliation of nine herbaceous species grown in glasshouse 

conditions. Plant and Soil, 312, 69-83. 

Russell, A. J., Bidartondo, M. I. & Butterfield, B. G. (2002) The root nodules of 

the Podocarpaceae harbour arbuscular mycorrhizal fungi. New phytologist, 

156, 283-295. 

Ryser, P. (1996) The Importance of Tissue Density for Growth and Life Span of 

Leaves and Roots: A Comparison of Five Ecologically Contrasting 

Grasses. Functional Ecology, 10, 717-723. 



76 

 

Saengwilai, P., Nord, E. A., Chimungu, J. G., Brown, K. M. & Lynch, J. P. (2014) 

Root Cortical Aerenchyma Enhances Nitrogen Acquisition from Low-

Nitrogen Soils in Maize. Plant Physiology, 166, 726-735. 

Schippers, P. & Olff, H. (2000) Biomass partitioning, architecture and turnover of 

six herbaceous species from habitats with different nutrient supply. Plant 

Ecology, 149, 219-231. 

Schweiger, P. F., Robson, A. D. & Barrow, N. J. (1995) Root hair length 

determines beneficial effect of a Glomus species on shoot growth of some 

pasture species. New Phytologist, 131, 247-254. 

Shipley, B., Vile, D. & Garnier, É. (2006) From Plant Traits to Plant 

Communities: A Statistical Mechanistic Approach to Biodiversity. 

Science, 314, 812-814. 

Smith, S. E. & Read, D. J. (1996) Mycorrhizal symbiosis. Academic press. 

St John, T. (1980) Root size, root hairs and mycorrhizal infection: A re-

examination of Baylis's hypothesis with tropical trees. New Phytologist, 

84, 483-487. 

Stevens, P. R. (1968) A chronosequence of soils near the Franz Josef Glacier. 

PhD thesis, University of Canterbury, Christchurch. 

Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A. & Oren, R. 

(2008) Irreconcilable differences: fine-root life spans and soil carbon 

persistence. Science, 319, 456-458. 

ter Steege, H., Pitman, N. C., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., 

Molino, J.-F., Prévost, M.-F., Spichiger, R. & Castellanos, H. (2006) 

Continental-scale patterns of canopy tree composition and function across 

Amazonia. Nature, 443, 444-447. 

Thomas, S. & Bazzaz, F. (1999) Asymptotic height as a predictor of 

photosynthetic characteristics in Malaysian rain forest trees. Ecology, 80, 

1607-1622. 

Tierney, G. L. & Fahey, T. J. (2002) Fine root turnover in a northern hardwood 

forest: a direct comparison of the radiocarbon and minirhizotron methods. 

Canadian Journal of Forest Research, 32, 1692-1697. 

Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. (2005) 

Linking leaf and root trait syndromes among 39 grassland and savannah 

species. New Phytologist, 167, 493-508. 

Valverde-Barrantes, O. J., Smemo, K. A. & Blackwood, C. B. (2014) Fine root 

morphology is phylogenetically structured but nitrogen is related to the 

plant economics spectrum in temperate trees. Functional Ecology, n/a-n/a. 

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & 

Garnier, E. (2007) Let the concept of trait be functional! Oikos, 116, 882-

892. 



77 

 

Visser, E. J. & Bögemann, G. M. (2003) Measurement of porosity in very small 

samples of plant tissue. Plant and Soil, 253, 81-90. 

Visser, E. J. W., Bögemann, G. M., Van De Steeg, H. M., Pierik, R. & Blom, C. 

W. P. M. (2000) Flooding tolerance of Carex species in relation to field 

distribution and aerenchyma formation. New Phytologist, 148, 93-103. 

Vitousek, P. M., Aplet, G., Turner, D. & Lockwood, J. J. (1992) The Mauna Loa 

environmental matrix: foliar and soil nutrients. Oecologia, 89, 372-382. 

Wahl, S. & Ryser, P. (2000) Root tissue structure is linked to ecological strategies 

of grasses. New Phytologist, 148, 459-471. 

Wang, B. & Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of 

mycorrhizas in land plants. Mycorrhiza, 16, 299-363. 

Wardle, P. (1991) Vegetation of New Zealand. CUP Archive. 

Wilson, P. J., Thompson, K. E. N. & Hodgson, J. G. (1999) Specific leaf area and 

leaf dry matter content as alternative predictors of plant strategies. New 

Phytologist, 143, 155-162. 

Wiser, S. K., Hurst, J. M., Wright, E. F. & Allen, R. B. (2011) New Zealand's 

forest and shrubland communities: a quantitative classification based on a 

nationally representative plot network. Applied Vegetation Science, 14, 

506-523. 

Withington, J. M., Reich, P. B., Oleksyn, J. & Eissenstat, D. M. (2006) 

Comparisons of Structure and Life Span in Roots and Leaves among 

Temperate Trees. Ecological Monographs, 76, 381-397. 

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D. & et al. (2004) The 

worldwide leaf economics spectrum. Nature, 428, 821-7. 

Wright, I. J. & Westoby, M. (1999) Differences in seedling growth behaviour 

among species: trait correlations across species, and trait shifts along 

nutrient compared to rainfall gradients. Journal of Ecology, 87, 85-97. 

Wright, I. J., Westoby, M. & Reich, P. B. (2002) Convergence towards higher leaf 

mass per area in dry and nutrient-poor habitats has different consequences 

for leaf life span. Journal of Ecology, 90, 534-543. 

Zangaro, W., Nishidate, F. R., Camargo, F. R. S., Romagnoli, G. G. & 

Vandressen, J. (2005) Relationships among Arbuscular Mycorrhizas, Root 

Morphology and Seedling Growth of Tropical Native Woody Species in 

Southern Brazil. Journal of Tropical Ecology, 21, 529-540. 

Zangaro, W., Nishidate, F. R., Vandresen, J., Andrade, G. & Nogueira, M. A. 

(2007) Root mycorrhizal colonization and plant responsiveness are related 

to root plasticity, soil fertility and successional status of native woody 

species in southern Brazil. Journal of Tropical Ecology, 23, 53-62. 



78 

 

Zhu, J., Brown, K. M. & Lynch, J. P. (2010) Root cortical aerenchyma improves 

the drought tolerance of maize (Zea mays L.). Plant, cell & environment, 

33, 740-749. 

 

  



79 

 

Chapter Three: Intraspecific morphological root trait 

variation is less affected by soil fertility than biomass 

allocation or root nutrient concentrations 

3.1 Abstract 

Measuring traits on glasshouse grown seedlings allows researchers to provide 

standardised growing conditions, and is a less time and resource consuming 

alternative to field trait sampling, particularly for root traits. However, seedlings 

propagated in glasshouse conditions are also typically grown in a common high 

fertility potting medium, despite potential differences in species‟ natural soil 

fertility associations. As plants are known to alter their phenotypes in response to 

environmental variables (“phenotypic plasticity”), it is crucial to understand how 

traits are affected by environmental variables, particularly soil fertility. Previous 

research suggests that biomass allocation responds strongly to soil nutrient 

availability, although results from the literature are mixed regarding how soil 

nutrient availability affects morphological root traits such as tissue density or 

specific root length. In this study I investigated the effects of nutrient availability 

on trait expression in a selection of New Zealand native woody species. I also 

investigated whether the method of fertiliser application (liquid pulses vs. slow 

release granules) affected trait expression. Species were selected to represent a 

wide range of forest tree species, including two major phylogenies (conifers and 

angiosperms) and both high and low soil fertility associations. I measured fifteen 

traits on four species in response to three soil nutrient treatments. Plants received 

either zero fertiliser addition (“low”), monthly doses of liquid fertiliser (“pulse”), 

or slow release fertiliser granules (“slow release). Relative growth rate responded 

strongly to nutrient treatments, as did root-to-shoot ratio, root nitrogen 

concentration, and root phosphorus concentration. Morphological traits relating to 

the “whole-plant economic spectrum” were not strongly plastic in response to 

nutrient availability. Specific root length (SRL) had a weak response to the 

nutrient treatments, which was driven by alterations to root tissue density rather 

than root diameter. Across all species, the strongest differences to trait expression 

were between low and slow release treatments, and trait expression in pulse 

treatments were typically more similar to slow release than to low treatment trait 

expression. These results suggest that fertiliser application method does not 
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influence trait expression, and differences between slow release and pulse 

treatments may have been driven by differences in total nutrient availability. 

Species‟ plasticity may be influenced by phylogeny, as angiosperms were on 

average more plastic than conifers. Species‟ soil fertility preference did not appear 

to strongly affect phenotypic plasticity. However, these trends were strongly 

driven by individual species‟ responses and therefore further research on a wider 

range of species, soil fertilities, and phylogenetic groups is required to confirm 

these generalisations. Altogether, these results provide support for comparing and 

pooling morphological trait data between studies, provided that plants were raised 

in conditions conducive to growth. However, traits relating to organ-level 

chemistry, biomass allocation, and growth rates are more strongly affected by 

nutrient availability, and thus care should be taken when comparing these traits 

between studies. 
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3.2 Introduction 

The developing field of trait-based plant ecology has tended to focus on leaf, 

stem, and reproductive traits, but the role of root traits in plant strategy has not 

received comparable attention. Recent studies have measured root traits of plants 

grown in glasshouses (e.g. Cornelissen et al., 2003a, Mokany and Ash, 2008, 

Laughlin et al., 2011, Wishart et al., 2013, Birouste et al., 2014, Chapter Two of 

this thesis) as the glasshouse environment allows controlled and standardised 

conditions, and is a logistically simpler method compared to root sampling in the 

field. High fertility potting mix is used often as a growing medium in glasshouse 

studies, providing optimal nutritional conditions and expediting growth. In 

contrast, natural soils encompass a range of conditions, including concentrations 

of vital mineral nutrients such as nitrogen (N) and phosphorus (P), pH, and 

particle size. Plants are known to alter their morphology and physiology in 

response to varying environmental conditions, a phenomenon known as 

phenotypic plasticity (Bradshaw, 1965, Schlichting and Levin, 1986, Sultan, 

2000). Due to the contrast between natural and glasshouse conditions, it is 

important to clarify how soil variables affect trait expression, particularly nutrient 

availability. Quantifying trait plasticity in response to nutrient availability will 

also provide context for pooling trait data across studies, particularly where soil 

conditions are not identical. 

Some traits are more plastic than others (Schlichting and Levin, 1986), which may 

be related to species‟ overall growth strategy and soil fertility associations. 

Species from low fertility sites typically have slower growth rates and traits which 

are supportive of a conservative growth strategy, while species associated with 

high fertility sites typically have traits which support an acquisitive and 

competitive growth strategy (Figure 4) (Schläpfer and Ryser, 1996, Chapin III, 

1980, Aerts and Chapin, 1999). This is consistent with CSR theory (Grime, 1979), 

which also predicts that acquisitive species from high fertility soils will be more 

plastic in their phenotypic responses to nutrient enrichment than conservative 

species from low fertility soils (Grime et al., 1991). This prediction has been 

tested in several studies. Hodge (2004) reported that acquisitive species 

demonstrate more morphological plasticity, while conservative species exhibit 

greater physiological plasticity as it is “less expensive” than morphological 

plasticity. Grassein et al. (2010) observed higher phenotypic plasticity in 
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acquisitive versus conservative grass species, and Freschet et al. (2013) also 

observed that species with acquisitive growth traits responded more plastically 

than conservative species to resource limitation, primarily evident in leaf and root 

dry matter contents. Other morphological traits related to nutrient acquisition may 

also respond strongly to nutrient availability. 

Specific root length (SRL) is a measure of root length divided by root dry mass, 

and has been theorised to represent resource uptake potential relative to carbon 

investment in roots (Eissenstat, 1992). Some studies have supported this 

hypothesis, documenting phenotypic changes to SRL in response to soil fertility 

gradients. Berntson et al. (1995) observed higher SRL in response to nutrient 

limitation in Betula alleghanienis. Hill et al. (2006) studied responses of pasture 

species to low soil concentrations of N and P, and documented decreases to root 

diameter and increases to SRL under P- limited conditions, although not all 

species responded to N limitation in this way. Kalliokoski et al. (2010) 

documented that an angiosperm (Betula pendula) produced higher SRL on lower 

fertility sites, but also that over the same fertility gradient there was no trend in 

SRL for two species of conifers (Picea sp.). While studying the effects of fertility 

treatments on Picea abies, Clemensson-Lindell and Asp (1995) observed that 

SRL decreased in response to ammonium sulphate fertilisation, but increased in 

response to a complete nutrient fertiliser. These studies suggest that SRL may 

exhibit idiosyncratic responses to soil nutrient availability, with responses 

depending on both the limiting nutrient and species‟ phylogeny. 

However, not all studies have observed correlations between SRL and soil fertility 

or growth strategy. Boot and Mensink (1990) observed that both specific root 

length and fine root diameter were not affected significantly by alterations in soil 

nitrogen availability. Cromer and Jarvis (1990) did not observe an increase in 

SRL under low nitrogen availability in Eucalpytus grandis. Hetrick et al. (1991) 

observed no changes to SRL under P limitation for five species of cool-season 

grasses. Aerts et al. (1992b) reported no changes to SRL under differing N 

availabilities for four species of Carex. Both Borken et al. (2007) and Kalliokoski 

et al. (2010) did not observe changes to SRL of Picea sp. in response to soil 

fertility gradients. Furthermore, multiple studies have concluded that SRL and 

fine root diameter are strongly influenced by phylogeny (Withington et al., 2006, 

Kembel and Cahill Jr, 2011, Chen et al., 2013, Valverde-Barrantes et al., 2014, 
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Pregitzer et al., 2002, Comas and Eissenstat, 2004, Alvarez-Uria and Körner, 

2011), with conifers and magnoliid angiosperms typically having far lower SRL 

and larger fine root diameter compared to eudicot angiosperms. Therefore it is not 

clear exactly how SRL and root diameter relate to species‟ abilities to compete for 

and uptake nutrients.  

Relative biomass allocation to above and below ground organs (root-to-shoot 

ratio) has been repeatedly demonstrated to be highly plastic in response to nutrient 

availability, particularly in fast-growing species (Cromer and Jarvis, 1990, Dyer et 

al., 2001, Hill et al., 2006, Louw-Gaume et al., 2010, Grassein et al., 2010). In a 

review of biomass allocation studies, Poorter et al. (2012) found that relative root 

biomass is negatively correlated with soil fertility, while relative leaf biomass 

investment is positively correlated with soil fertility. Furthermore, phylogeny has 

a clear effect on biomass allocation; for example, gymnosperm seedlings allocate 

more biomass to leaves and stems and less to roots in comparison with 

angiosperm seedlings (Poorter et al., 2012). In contrast, Hodge (2004) found that 

neither SRL, root demography, or biomass allocation alone were definitive criteria 

for assessing plasticity among studies.  

In Chapter Two of this thesis, I measured trait data on seedlings grown in 

controlled glasshouse conditions and a potting mix containing slow release 

fertiliser granules. The glasshouse environment provides controlled growing 

conditions (cf. Integrated Screening Programme, Grime et al. 1997) and, 

compared to sampling roots from natural environments, is a less time consuming 

and overall easier method of obtaining root trait data. However, it is important to 

recognise that glasshouse grown seedlings can express different traits compared to 

natural field grown seedlings (Mokany and Ash, 2008). My comparisons between 

traits of glasshouse-grown seedlings and adults from natural soils revealed close 

correlations for morphological traits, but not for concentrations of root nitrogen or 

phosphorus (Figure 2, Figure 3). It is not clear whether the poor correlations 

between seedling and adult root nutrient concentrations were due to ontogenetic 

development, phenotypic plasticity, or the contrasting fertility of natural soils 

versus slow release potting mix. Also, as Chapter Two studied traits of species 

from across natural soil fertility spectrums, it is not clear whether the relatively 

high fertility of the potting mix which I used resulted in phenotypic plasticity of 

morphological traits, particularly in plants which are adapted to low fertility soils.  
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However, “high” and “low” fertility soils are simplified concepts of what are in 

reality highly dynamic soils, in which nutrients can be distributed heterogeneously 

in both space and time (Campbell and Grime, 1989, Campbell and Grime, 1992, 

Craine, 2009).  

The first objective of this chapter is to determine which traits are most affected by 

soil nutrient availability. I hypothesise that biomass allocation (root-to-shoot ratio) 

will be strongly affected by nutrient availability, where individual plants grown in 

low fertility will have the highest relative allocation to roots, consistent with 

Cromer and Jarvis (1990), Dyer et al. (2001), Hill et al. (2006), Louw-Gaume et 

al. (2010), and Grassein et al. (2010). Relative growth rate is also likely to be 

lowest in low fertility treatments, as low nutrient availability strongly limits 

growth (Epstein, 1972, Chapin III, 1980, Porter and Lawlor, 1991, Gregory, 2006, 

Aerts and Chapin, 1999). SRL and root diameter did not correlate with soil 

fertility at the community level (Figure 5.a, b) or at the species level (Cromer and 

Jarvis, 1990, Borken et al., 2007, Kalliokoski et al., 2010), and therefore I predict 

they will not respond plastically in my experiment. 

The second objective is to determine whether the method of nutrient application 

produces strong plasticity. Slow release fertiliser granules are common in 

commercial potting mixes and provide nutrients relatively homogenously across 

both space and time. However, applying pulses of liquid fertiliser to an otherwise 

infertile potting mix will make nutrient availability heterogeneous across time, 

more closely approximating the nutrient availability of some natural soils 

(Campbell and Grime, 1989, Campbell and Grime, 1992, Craine, 2009). In 

response to more heterogeneous soil fertility, species‟ may increase their soil 

foraging effort, which would be evident in increased SRL or root-to-shoot ratio. 

To meet these objectives, I grew four species representing a range of soil fertility 

associations and phylogenies under three soil nutrient treatments and measured 

the responses of 15 traits from leaf, stem, and root organs, as well as relative 

growth rate and biomass allocation. I used ANOVA and co-efficient of variation 

analyses to determine the significance and relative plasticity of traits and species 

in response to the three nutrient availability treatments. 
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3.3 Methods 

Selecting species 

This experiment was designed to observe the effects of soil nutrient availability on 

phenotypic expression. I selected four tree species that reflected a broad range of 

functional types and phylogenies within the New Zealand flora. To encompass a 

wide range of species‟ responses to nutrient availability I selected one conifer 

(Dacrycarpus dacrydioides (A.Rich.) de Laub.) and one angiosperm (Laurelia 

novae-zelandiae A.Cunn.) associated with high soil fertility, and I selected one 

conifer (Agathis australis (D.Don) Loudon) and one angiosperm (Knightia 

excelsa R.Br.) associated with low soil fertility (Jager et al., 2015). Species 

selection was also restricted by the commercial availability of the species in a 

small size class and in sufficient quantity for replication. All seedlings were 

sourced from Taupo Native Plant Nursery (Taupo, Waikato), with the exception 

of 20 seedlings of Knightia excelsa that were sourced from Oratia Native Plant 

Nursery (Oratia, Auckland). Plants were ordered at tube stock (~150 mL pot 

volume) or root trainer (~350 mL) size classes, as smaller root systems would 

suffer less damage from repotting, therefore reducing transplant shock and 

expediting new growth. From this point forward, the four species used in this 

experiment will be referred to by their genus (Agathis, Dacrycarpus, Knightia, 

and Laurelia).  

Nutrient treatments 

Seedlings were re-potted into 1.5 litre pots, and randomly assigned to one of three 

treatments. Replicates consisted of 15 or 16 seedlings per species per treatment, 

although some seedlings did not survive until the end of the experiment 

(Appendix Table 11). Plants assigned to the slow release nutrient treatment (SR) 

were grown in a standard commercial potting mix, blended in a 5:1 ratio with 

propagation sand (identical to the potting mix used for all plants in Chapter Two). 

This potting mix contained dolomite and lime additives and slow release fertiliser 

granules (Quantities of nutrient additives as per Table 12 , Everris Osmocote™ 

Exact Standard 3-4 Month, nutrient contents as per Appendix Table 13; Everris 

Osmoform™ NXT 22N, nutrient concentrations as per Appendix Table 14). The 

two other treatments were low nutrient (L) and pulsed nutrient (P). The potting 

mix for these two treatments was initially identical and was assembled from the 



86 

 

constituent components of the commercial potting mix, without the addition of 

additives or slow release fertiliser granules (Appendix Table 15). The low nutrient 

treatment did not receive any nutrient addition for the extent of the experiment. 

Pulse treatment plants were given a dose of dilute liquid fertiliser once every four 

weeks. The liquid fertiliser used was Yates Thrive™ Concentrate All-Purpose, 

diluted with tap water at a ratio of 1:400 (undiluted fertiliser nutrient 

concentrations in Appendix Table 16). I applied 250mL of dilute solution to the 

potting mix surface at each 4-weekly dosing. Yates Thrive™ Concentrate All-

Purpose was selected as it did not contain any plant growth hormones which may 

otherwise have affected trait expression and plant growth. 

Seedlings were randomly arranged on tables in a glasshouse, and were randomly 

re-arranged once per month in order to minimize the effects of any potential 

microclimatic gradients. Average daily glasshouse temperature was 16.1°C, and 

relative humidity averaged 76.8%. Plants were hand watered evenly to avoid 

drought stress and to facilitate growth. Timed halogen lamps were also used to 

promote growth. Lamps were initially on from 07:00 to 18:00 hrs, and gradually 

increased to 06:00 to 20:00 hrs over the course of a month. Pest insects were 

controlled using insecticide sprays (pyrethrum based and Imidacloprid), as well as 

hanging adhesive strips. An outbreak of thrips (Order Thysanoptera) occurred 

during the second month of the experiment, particularly affecting the smaller 

Knightia seedlings. Seedlings badly affected by thrip damage were excluded from 

the final data. 

Trait measurements 

Initial height measurements were taken two weeks after re-potting to allow plants 

to re-establish in their new pots. Height was measured from the soil surface to the 

tallest apical bud using a measuring tape. Height measurements were taken 

monthly from May to November 2014. Once a seedling had grown sufficiently for 

freshly grown fine roots to be present, a final height measurement was recorded. 

Relative growth rate (RGR) of individual seedlings was calculated as RGR = 

((final height – initial height)/initial height)/days of growth. Following final 

height measurements, roots were washed by gently massaging the root balls under 

water. Loose potting mix and wash water were passed through a 5 mm mesh. Fine 

roots were extracted from the sieve and retained with the main root ball, 
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permitting the vast majority of the root biomass to be utilised for total biomass 

measurement. Root-to-shoot ratio was calculated as total root dry mass divided by 

total shoot dry mass. Trait measurements for leaves, roots, and stems were 

conducted according to protocols published by Cornelissen et al. (2003b) and 

Pérez-Harguindeguy et al. (2013).  

Secateurs were used to cut a short section of stem (approximately 1 – 3 cm in 

length) containing mature xylem. Bark was removed by peeling or scraping. The 

remaining stem section was rolled in paper towels to remove any residual surface 

moisture or sap before recording its fresh mass. A Mettler-Toledo MS304S 

balance (Greifnesee, Switzerland) was used for all measurements of mass. The 

length and orthogonal diameter dimensions of the stem section were measured 

using digital Vernier calipers (Measuremax IP54, Peterborough, Canada) and the 

fresh volume of the stem was calculated using the standard equation for volume of 

a cylinder. The stem sections were then dried to constant mass at 60°C for at least 

48 hours prior to measuring dry mass. Stem dry matter content (SDMC) was 

calculated as SDMC = stem dry mass / stem fresh mass, and stem tissue density 

(Stem TD) was calculated as Stem TD = stem dry mass / fresh stem volume 

(Table 1). 

Three leaves were sampled from each plant. Instead of individual leaves of 

Dacrycarpus, I sampled three small non-woody branches with numerous leaves 

attached. After cleaning and patting dry, digital Vernier callipers were used to 

take thickness measurements of three separate leaves, avoiding any prominent leaf 

veins. Leaf area was measured on a LI-COR Biosciences LI-3100C (Lincoln, NE 

USA) leaf area meter. After measuring fresh mass, leaves were dried to constant 

mass at 60°C for at least 48 hours prior to obtaining dry mass. SLA was calculated 

as SLA = leaf area / leaf dry mass, leaf dry matter content (LDMC) was calculated 

as LDMC = leaf dry mass / leaf fresh mass, and leaf tissue density (Leaf TD) was 

calculated as Leaf TD = leaf dry mass / fresh leaf volume (Table 1). 

Subsections of fine roots were removed from the main root ball and transferred 

into a clear acrylic tray on a flat-bed scanner. Two fine paintbrushes were used to 

spread the roots out to minimise overlap. Total root length, average root diameter, 

number of tips, and root volume were calculated using WinRhizo Pro software 

(Version 2012b, Regent Instruments Inc., Quebec City, Canada) and an Epson 
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Expression 10000XL scanner (Tokyo, Japan). Fresh root mass of each sample was 

obtained after drying excess surface moisture with paper towels. The root sections 

were then dried to constant mass at 60°C for at least 48 hours prior to obtaining 

dry mass. SRL was calculated as SRL = root length / root dry mass, root dry 

matter content (RDMC) was calculated as RDMC = root dry mass / root fresh 

mass, root tissue density (Root TD) was calculated as Root TD = root dry mass / 

fresh root volume, and root branching intensity (RBI was calculated as RBI = 

number of root tips / root length (Comas and Eissenstat, 2009) (Table 1). 

To measure root porosity, I used the microbalance method as described by Visser 

and Bögemann (2003). Ten short sections of fresh root were cut from the root ball 

using a sharp razor blade. The sections were typically between 5 to 10 mm in 

length, and were cut at least 10 mm back from the root tip. Roots which appeared 

to have undergone secondary thickening were not sampled. Whenever possible, 

sections were taken from first order terminal roots. In species where the terminal 

roots were too fine for this technique, sections were cut from second order roots 

where no secondary thickening was apparent. As each suitable section was 

identified and cut, they were gently washed with fine paintbrushes to remove any 

remaining surface soil, and kept under water to minimise water loss while the 

remaining sections were cut. Once all ten sections had been cut, they were 

transferred using fine paintbrushes onto a piece of dry tissue paper. The 

paintbrushes were used to gently roll the root sections on the tissue paper, 

removing any surface moisture. The tissue paper was folded over to enclose the 

root sections and gentle pressure was applied by hand over the root sections. Care 

was taken to avoid crushing or bursting the cells in the root tissue, but effectively 

forcing out water from the root sections‟ internal porous spaces. 

The root sections were transferred to a weigh boat on a tared balance and 

weighed. This initial mass was recorded, and the root sections were transferred 

into a small glass vial which was then filled with water.  The cap for this vial was 

secured loosely to avoid creating a pressure seal, yet tight enough to prevent the 

lid coming off during rapid pressure changes. The vial was then placed into a near 

vacuum chamber, which was run for three repetitions of five minutes each. At the 

end of each five minute period, the vacuum chamber was opened, causing a rapid 

re-pressurisation of the vial and forcing water into the aerenchyma of the root 

sections. After the low pressure exposure periods were completed, the vial was 
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removed from the chamber and opened. The root sections were gently removed 

from the vial using a fine paintbrush, placed on dry tissue paper and briefly rolled 

to remove surface moisture. The root sections were transferred onto a weigh boat 

on a tared balance, and had their final mass recorded. The method differed from 

that presented by Visser and Bögemann (2003) in that it did not use two-piece 

hard gelatin capsules to hold the root sections between blotting and weighing. 

This is due to the observation that if the surface moisture was properly blotted, the 

subsequent mass change from water evaporation was slow and could be negated 

by minimising the time between blotting and weighing. Root porosity was 

calculated as (final root mass – initial root mass) / final root mass * 100 (Table 1). 

Knightia roots produced a unique response to the different nutrient treatments in 

the form of proteoid cluster root development (Dinkelaker et al., 1995, Skene, 

1998, Neumann and Martinoia, 2002). For each Knightia root ball, discrete 

clusters of proteoid roots were counted, with the total number then divided by 

total dry root mass. 

Species‟ average trait values under each nutrient treatment are presented in 

Appendix Table 17. 

Analysis of root N and P concentration 

The remaining root ball from each plant was dried to constant mass at 60°C for at 

least 48 hours. Individually, fine roots from the dried root balls were ground to a 

fine powder using a Retsch MM 2000 grinder (Haan, Germany).  Root nitrogen 

and phosphorus content of ground roots was obtained using flow injection 

analysis on a Lachat QuikChem 8000 series (test number and protocol 206 

Landcare Research Environmental Chemistry Laboratory, Palmerston North, New 

Zealand). 

Statistical Analysis 

Prior to ANOVA all traits were assessed for normal distribution using Statistica 

12 (© Statsoft Inc, 1984 – 2014). As there were insufficient replicates to test 

normality for each trait by species and treatment combination, normality was 

instead assessed for each trait for the entire species and treatment dataset. Log10 

transformations were applied to reduce skew on the following traits: SRL, Root 

diameter, SLA, Leaf TD, LDMC, Stem TD, and root-to-shoot ratio. Two-way 
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factorial ANOVA was performed in Statistica 12, using type III sum of squares. 

F-test statistics and associated significance levels were recorded. To determine 

whether treatment means were significantly different following a significant 

treatment effect, I used Tukey‟s procedure post-hoc analysis between treatment 

means for each species and trait. Knightia cluster roots were only comparable 

between Knightia treatments; therefore I used one-way ANOVA with type III sum 

of squares. 

Co-efficient of variation (CV) scores were used as a relative index of plasticity 

(Schlichting and Levin, 1986). For each trait, average CV scores were calculated 

by species using the formula: CV = standard deviation of treatment means ÷ grand 

mean of treatment means × 100. CV scores were calculated using raw trait data, as 

opposed to log10 transformations. All four species‟ CV scores were averaged for 

each trait, and then ranked to compare the relative plasticity. Comparisons of 

average CV values were also made between angiosperms and conifers, or „high 

fertility‟ and „low fertility‟ associated species (Appendix Table 18). 

Mycorrhizal associations 

Species‟ mycorrhizal associations were determined from the literature (McNabb, 

1958, McNabb, 1961, Baylis, 1969, Baylis, 1971, Johnson, 1973, Baylis, 1975, 

Cooper, 1975, Hall, 1975, Cooper, 1976, Baylis, 1980, St John, 1980, Russell et 

al., 2002, Dickie et al., 2012), and are presented in Appendix Figure 14. 
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Table 6. Functional trait abbreviations and units. 

Trait Abbreviation  Units 

Knightia cluster roots - clusters mg
-1

 

Relative growth rate RGR cm cm
-1

 day
-1

 

Root-to-shoot ratio R:S ratio 

Root phosphorus content Root P % 

Root nitrogen content Root N % 

Root branching intensity RBI cm
-1

 

Root porosity - % 

Root dry matter content RDMC mg g
-1

  

Root tissue density Root TD mg mm
-3

 

Specific root length SRL m g
–1

 

Specific leaf area SLA mm
2
 mg

-1
 

Leaf tissue density Leaf TD mg mm
-3

 

Stem dry matter content SDMC mg g
-1

  

Leaf dry matter content LDMC mg g
-1

  

Stem tissue density Stem TD mg mm
-3

 

Root diameter - mm 
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3.4 Results 

3.4.1 Trait plasticity in response to soil nutrients 

At the end of the experiment, soil N and P concentrations were highest in the slow 

release treatment and lowest in the low and pulse treatments, and final nutrient 

concentrations within each treatment did not differ significantly between species 

(Figure 7).  
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Figure 7. Mean and 95% confidence intervals for soil concentrations of nitrogen and 

phosphorus. a) Initial and average final soil nitrogen concentrations; b) final soil nitrogen 
concentration by species; c) Initial and average final soil phosphorus concentrations; d) 

final soil phosphorus concentration by species. Final concentrations in a) and c) are 

averages of all four species‟ final concentrations as per b) and d). Lower case letters 

above whiskers on b) and d) represent significant differences (p < 0.05) between 
treatment means as determined by Tukey‟s procedure post-hoc analysis. 
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All functional traits differed strongly among species, and the main effect of 

fertiliser treatment was significant for all traits except SLA (Table 7). There were 

also many significant species × treatment interactions indicating that the response 

of some traits to soil nutrients differed by species (Table 7). SRL, porosity, leaf 

tissue density, and stem tissue density did not exhibit significant species × 

treatment interactions (Table 7). 

Table 7. F statistics and significance levels for species, treatment, and species × 

treatment interaction for each functional trait. 

    

 

Species Treatment 

Species × 

Treatment 

interaction 

Trait (d.f. = 3) (d.f. = 2) (d.f. = 6) 

SRL 307.92 *** 3.19 * 2.12  

Root Diameter 560.83 *** 6.73 ** 3.24 ** 

Root TD 179.25 *** 19.44 *** 2.75 * 

RDMC 228.13 *** 19.89 *** 5.00 *** 

Porosity 26.4 *** 4.56 * 0.90  

RBI 35.82 *** 15.55 *** 3.26 ** 

Root N 215.57 *** 163.84 *** 4.64 *** 

Root P 64.87 *** 84.72 *** 11.32 *** 

SLA 76.44 *** 2.03  3.82 ** 

Leaf TD 151.38 *** 10.97 *** 1.53  

LDMC 103.74 *** 7.72 *** 2.23 * 

Stem TD 296.05 *** 14.25 *** 2.09  

SDMC 311.64 *** 25.63 *** 2.80 * 

RGR 38.95 *** 33.79 *** 3.87 ** 

R:S 58.94 *** 84.89 *** 7.55 *** 

Knightia cluster roots   7.20 **    
 

Significance level represent by asterisks. * < 0.05, ** < 0.01, *** < 0.001 

 

Across all species, relative growth rate was the most plastic trait, followed by 

root-to-shoot ratio, and root N and P concentrations (Table 8). The most plastic 

trait was cluster roots per dry mass, but this was only relevant to Knightia. All 

other traits exhibited much weaker plastic responses. Root branching intensity 

was the most plastic root morphology trait, while fine root diameter was the least 

plastic trait overall. Tissue densities and dry matter contents for leaves, roots, and 

stems had relatively low levels of plasticity, although of the three organs, root 

tissue density and root dry matter content had the most plastic response to the 

nutrient treatments. 
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Table 8. Co-efficient of variation (CV) scores by species and trait.  Traits 

sorted by descending average CV score. Trait abbreviations as per Table 6. 

Trait Agathis Dacrycarpus Knightia Laurelia Average 

Cluster roots - - 70.3 - 70.3 

RGR 52.8 53.5 58.8 36.3 50.4 

R:S 13.4 56.9 39.4 29.8 34.9 

Root P 44.6 12.8 52.4 24.6 33.6 

Root N 26.2 23.6 39.6 28.6 29.5 

RBI 6.7 20.5 22.3 16.6 16.5 

Porosity 4.3 15.0 11.5 11.3 10.5 

RDMC 2.6 9.6 19.5 10.1 10.5 

Root TD 2.7 9.4 17.8 11.5 10.3 

SRL 7.4 6.7 14.0 7.3 8.9 

SLA 10.3 7.2 9.3 8.7 8.9 

Leaf TD 1.4 13.2 10.2 7.0 8.0 

SDMC 2.4 9.5 3.2 10.6 6.4 

LDMC 3.3 7.3 6.7 8.0 6.3 

Stem TD 2.7 5.4 4.9 9.6 5.7 

Root diameter 2.6 1.7 8.3 9.1 5.4 

Species 

average 
12.2 16.8 21.2* 15.3  

* average CV value for Knightia excludes CV of cluster roots.  

 

Responses to nutrient treatments for each trait were generally similar between 

species, but the only trait where all four species did not exhibit any significant 

difference between treatments was porosity (Figure 9.a). For most traits, slow 

release treatment was significantly different to low treatment in at least one 

species (Figure 8.a-e; Figure 9.b, c, d, f; Figure 9.a, b, c, d). In instances where 

slow release and low treatments were significantly different, pulse treatment was 

typically also significantly different from low treatment (Figure 8.a-e; Figure 9.b, 

c, d, f; Figure 10.b, c, d). Also, in most instances pulse treatment was not 

significantly different from slow release treatment, except for three traits where a 

single species exhibited a significantly different response to each of the three 

treatments (Knightia root P (Figure 8.c); Dacrycarpus root N (Figure 8.d); and 

Knightia RDMC (Figure 9.d))  



95 

 

 

AGA DAC KNI LAU
-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

H
e
ig

h
t 

re
la

ti
v
e
 g

ro
w

th
 r

a
te

 (
c
m

 c
m

-1
 d

a
y

-1
)

Legend:
a

 Low

 Pulse

 Slow Release

 

 

AGA DAC KNI LAU
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
o
o
t-

to
-s

h
o
o
t 

ra
ti
o

 

AGA DAC KNI LAU

0.1

0.2

0.3

0.4

0.5

0.6

R
o
o
t 

p
h
o
s
p
h
o
ru

s
 c

o
n
c
e
n
tr

a
ti
o
n
 (

%
)

 

AGA DAC KNI LAU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
o
o
t 

n
it
ro

g
e
n
 c

o
n
c
e
n
tr

a
ti
o
n
 (

%
)

 

KNI
0

5

10

15

20

25

30

C
lu

s
te

r 
ro

o
ts

 p
e
r 

d
ry

 r
o
o
t 

m
a
s
s
 (

c
lu

s
te

rs
 g

-1
)

 

 

Figure 8. Mean and 95% confidence 
intervals of trait values by species and 

nutrient treatment. Lower-case letters 

above whiskers indicate significant 
differences (p < 0.05) between treatment 

means within each species as determined 

by Tukey‟s procedure post-hoc analysis. 

AGA, Agathis australis; DAC, 
Dacrycarpus dacrydioides; KNI, Knightia 

excelsa; LAU, Laurelia novae-zelandiae 
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Figure 9. Mean and 95% confidence intervals of trait values by species and nutrient. Lower-case 

letters above whiskers indicate significant differences (p < 0.05) between treatment means within 

each species as determined by Tukey‟s procedure post-hoc analysis. AGA, Agathis australis; 

DAC, Dacrycarpus dacrydioides; KNI, Knightia excelsa; LAU, Laurelia novae-zelandiae 
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Figure 10. Mean and 95% confidence 

intervals of trait values by species and 

nutrient. Lower-case letters above 

whiskers indicate significant differences 

(p < 0.05) between treatment means 

within each species as determined by 

Tukey‟s procedure post-hoc analysis. 

AGA, Agathis australis; DAC, 

Dacrycarpus dacrydioides; KNI, 

Knightia excelsa; LAU, Laurelia novae-

zelandiae 
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3.4.2 Species’ unique responses 

The two conifers exhibited very different responses to soil fertility. Agathis was 

the least plastic species on average across all traits (Table 8), and had the lowest 

total number of traits which responded to soil nutrient availability. For 13 out of 

15 traits, mean values for Agathis were not significantly different between 

treatments. The two traits which did show significant differences between 

treatments were both related to root chemistry rather than morphology, with low 

nutrient treatment resulting in significantly lower root nitrogen and phosphorus 

content compared with both pulse and slow release treatments (Figure 8.c,d). In 

contrast, Dacrycarpus was moderately plastic across all traits (Table 8), and had 

significantly different responses between nutrient treatments for nine traits (RGR, 

R:S, root N, RBI, root TD, RDMC, SDMC, leaf TD, and LDMC). In contrast with 

the other species, there were no significant differences between treatments for 

Dacrycarpus root phosphorus concentration (Figure 8.c). Dacrycarpus also had 

the largest difference in relative growth rate, with both pulse and slow release 

treatments resulting in a highly significant increase in growth (Figure 8.a). 

The two angiosperm species were on average more plastic than the two conifer 

species (appendix table). Knightia was the most plastic species overall (Table 8), 

and had significant differences between treatments for seven out of 15 traits (R:S, 

root P, root N, RBI, root TD, RDMC, and SRL). Knightia also exhibited a unique 

morphological response in the form of proteoid cluster roots, producing 

significantly more cluster roots per unit dry root mass under low nutrient 

treatment compared to both pulse or slow release nutrient treatments (Figure 8.e). 

Laurelia was also moderately plastic across all traits (Table 8), and had significant 

differences between treatments for eight out of 15 traits (RGR, R:S, root P, root 

N, root diameter, stem TD, SDMC, and SLA). Laurelia was the only species 

which had a significantly smaller root diameter under low treatment compared to 

pulse and slow release treatments (Figure 9.f), although this did not also result in a 

significant difference to SRL between treatments (Figure 9.e). 
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3.5 Discussion 

This experiment yielded two results that have broad implications for functional 

ecology. First, functional traits differ in their intraspecific response to soil nutrient 

treatments, but morphological traits related to the „whole-plant economic 

spectrum‟ are relatively stable among soil fertility gradients compared to traits 

such as biomass allocation and tissue nutrient concentrations. Second, the method 

of nutrient delivery (i.e. slow release or pulses) does not consistently affect trait 

expression. These results imply that morphological root traits can be justifiably be 

pooled among studies to examine broad scale global patterns. However, caution 

must be made when pooling data on biomass allocation or tissue nutrient 

concentrations given their plastic response to soil nutrient availability.  

3.5.1 Phenotypic plasticity of traits 

Relative growth rate, root-to-shoot ratio, and both root N and P concentrations 

were the most plastic traits that were measured on all four species (Table 8). It is 

no surprise that growth rate increased as a result of higher availability of soil 

nutrients, as nutrient limitation has a widely observed negative effect on growth 

(Epstein, 1972, Chapin III, 1980, Cromer and Jarvis, 1990, Porter and Lawlor, 

1991, Gregory, 2006). It is logical that root N and P concentrations were also 

strongly plastic in response to nutrient availability, as higher nutrient availability 

will result in faster rates of diffusion or active uptake of nutrient ions from the soil 

into the roots (Aerts and Chapin, 1999). Root-to-shoot ratio is perhaps the most 

interesting trait which responded strongly to soil fertility, as it represents a 

deliberate adjustment of growth by the plant, acting to maximize resource uptake 

in response to limiting resources. Root-to-shoot ratio is perhaps the most well 

documented and understood plastic response to resource limitation, with 

numerous previous studies observing adjustments to biomass allocation in 

response to limiting nutrients and/or light (Brouwer, 1962, Aung, 1974, Chapin 

III, 1980, McGraw and Chapin, 1989, Cromer and Jarvis, 1990, Garnier, 1991, 

Schippers and Olff, 2000, Müller et al., 2000, Dyer et al., 2001, Hill et al., 2006, 

Louw-Gaume et al., 2010, Grassein et al., 2010, Freschet et al., 2015). In 

resource-limited conditions, root-to-shoot ratio forms a “functional equilibrium” 

to maximise the uptake of growth-limiting resources, although light limitation 

tends to induce alterations of leaf morphology (i.e. SLA), while nutrient limitation 
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tends to induce higher relative biomass allocation to roots, rather than changes to 

root morphology (i.e. SRL) (Freschet et al., 2015). 

Neither root diameter nor SRL were strongly responsive to nutrient availability. 

While previous studies have shown SRL to respond to soil nutrient availability in 

some species (Clemensson-Lindell and Asp, 1995, Hill et al., 2006, Kalliokoski et 

al., 2010), my results agreed with other studies that have shown that intraspecific 

SRL does not universally respond to nutrient availability (Boot and Mensink, 

1990, Cromer and Jarvis, 1990, Borken et al., 2007, Kalliokoski et al., 2010). 

Furthermore, average fine root diameter was the least plastic trait in this study, 

and only differed among treatments within Laurelia. This supports previous 

conclusions that root diameter is strongly phylogenetically conserved (Pregitzer et 

al., 2002, Comas and Eissenstat, 2004, Withington et al., 2006, Kembel and Cahill 

Jr, 2011, Alvarez-Uria and Körner, 2011, Chen et al., 2013, Valverde-Barrantes et 

al., 2014). In contrast, Zobel et al. (2007) observed both increases and decreases 

to 12 species‟ root diameters in response to nutrient availabilities, but noted that 

the availability of different nutrients (including nitrate, phosphorus, aluminium, 

ammonium and tannic acid) triggered different responses, and that the interaction 

of species and nutrient was significant. Both root tissue density and root dry 

matter content were moderately plastic, increasing in the low nutrient treatments. 

Schläpfer and Ryser (1996) did not observe grass species‟ root tissue density 

significantly changing across three sites ranging in fertility, and few other studies 

have directly measured plasticity of root tissue density or dry matter content in 

response to soil fertility. However, higher tissue density and dry matter content 

are traits associated with slow growing species and low fertility sites (Jager et al., 

2015, Pérez-Ramos et al., 2012, Craine and Lee, 2003, Ryser, 1996). In my 

experiment, the single instance of SRL significantly differing between treatments 

(Figure 9.e) was accompanied by a significant difference in root tissue density 

(Figure 9.c), but not in root diameter (Figure 9.f). This is consistent with an 

interpretation by Craine et al. (2001), which suggests that plastic responses of 

SRL are due to modifications root tissue density and dry matter content, rather 

than root diameter. 

Root branching intensity, porosity, root tissue density, and root dry matter content 

were moderately plastic (Table 8). Root branching intensity in herbaceous species 

has been shown to increase in localised patches of soil nutrients (Drew et al., 
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1973, Drew, 1975, Gross et al., 1993, Hutchings and de Kroon, 1994, 

Larigauderie and Richards, 1994, de Kroon and Hutchings, 1995). In contrast, my 

results show root branching intensity was significantly higher in the low nutrient 

treatments for two species (Figure 9.b). It is not clear whether woody species 

generally respond to low nutrient availability by increasing RBI, however at the 

community level RBI has been shown to negatively correlate with phosphorus 

availability (Holdaway et al., 2011), and to have a non-linear relationship with 

soil fertility, highest on low fertility soils, and lowest on intermediate soil fertility 

(Chapter Two, Figure 5.f). Therefore, while RBI in woody species may correlate 

with soil fertility at the community level, more experimental research is required 

to determine if increased RBI in response to low nutrient availability is a common 

plastic response among woody species. Root branching intensity has also been 

demonstrated to be influenced by mycorrhizal association (Berta et al., 1995, 

Comas and Eissenstat, 2009, Comas et al., 2014) and phylogeny (Roumet et al., 

2006, Roumet et al., 2008). It is not apparent how interactions between soil 

nutrient availability, mycorrhizal associations, and species‟ phylogeny combine to 

influence the extent of phenotypic plasticity of root branching intensity. 

Porosity (or formation of aerenchyma) is typically associated with waterlogging 

and flood tolerance, as aerenchyma can facilitate gas exchange between roots and 

air spaces in the soil (Laan et al., 1989, Jackson and Armstrong, 1999, Visser et 

al., 2000). However, studies in crop species have demonstrated that higher 

porosity can be beneficial in both drought tolerance (Zhu et al., 2010, Jaramillo et 

al., 2013) and both nitrogen and phosphorus acquisition (Fan et al., 2003, 

Saengwilai et al., 2014). The trade-offs of increased porosity are unconfirmed, but 

may include reduced mycorrhizal colonisation, vulnerability to the longitudinal 

spread of pathogens, reduced storage capability, and decreased ability to transport 

water and nutrients (Fan et al., 2003). Whether porosity serves these functions in 

woody species has not been experimentally trialled. Interestingly, porosity was 

typically highest in the low and slow release nutrient treatments, and lowest in the 

pulsed treatments (Figure 9.a), although what drives this pattern is unknown. 

Porosity is not a commonly measured root trait, but my results suggest that further 

research into the advantages and disadvantages of porosity may help to 

understand its role in plant strategies. 



102 

 

Leaf traits were weakly responsive to nutrient availability. Most species are 

capable of altering leaf morphology under contrasting light availabilities (Meziane 

and Shipley, 1999, Valladares et al., 2000a, Valladares et al., 2000b, Meziane and 

Shipley, 2001, Rozendaal et al., 2006), although species‟ responses to shading are 

not universal (Lusk et al., 2008). SLA has been demonstrated to decrease under 

low nutrient availability conditions in herbaceous angiosperms (Meziane and 

Shipley, 1999, Navas and Garnier, 2002) and grasses (Knops and Reinhart, 2000), 

although other studies have not observed strong responses of SLA or LDMC to 

nutrient availability (Valladares et al., 2000a, Grassein et al., 2010). The effect of 

low soil N availability may be more pronounced on physiological or leaf 

chemistry traits such as net assimilation rate or leaf nitrogen content (Meziane and 

Shipley, 1999). In my experiment, SLA, leaf TD and LDMC were each only 

significantly different between treatments for one out of four species, suggesting 

that the leaf traits of woody seedlings do not respond strongly to nutrient 

limitation, although more data would help to confirm the generality of this 

observation. 

Stem tissue density and stem dry matter content are highly correlated (Table 4) 

and neither strongly responded to nutrient availability. It has been suggested that 

plastic responses may be limited for these traits due to high heritability and 

phylogenetic constraints (Chave et al., 2006, Swenson and Enquist, 2007). 

However, some degree of phenotypic plasticity is known to occur in stem tissue 

density, resulting from mechanical stress (Woodcock and Shier, 2003) or as a 

function of ontogenetic development and height (Chave et al., 2009, Hietz et al., 

2013). Stem tissue density is also strongly associated with water availability and 

drought tolerance, as denser stems are indicative of anatomical traits which confer 

cavitation resistance (Hacke et al., 2001, Pratt et al., 2007, Martinez-Meier et al., 

2008). There are few studies which have investigated the effects of soil nutrient 

availability on stem tissue density. Soil phosphorus availability was negatively 

correlated with stem tissue density for only one out of four Nothofagus species 

(Richardson et al., 2013). In contrast, studies of forestry trees have demonstrated 

that long-term nutrient addition can result in a 20% decrease to stem tissue density 

(Cown and McConchie, 1981, Mäkinen et al., 2002). Only long-term differences 

in nutrient concentrations are likely to result in plastic responses to tissue density, 

with year-to-year differences in stem tissue density forming radial gradients 
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(Hietz et al., 2013). As the plants in my experiment were only grown for three to 

four months under the differing nutrient treatments, it is unlikely that they 

produced enough new wood to result in plastic changes to stem density. 

Therefore, while leaf and stem traits can exhibit phenotypic plasticity in response 

to environmental variables, my experimental design controlled for the variables to 

which these traits respond strongly (i.e. light and water availability, ontogenetic 

development). The weak plasticity I observed in stem and leaf traits demonstrates 

that nutrient availability is not a strong driver of phenotypic plasticity in the 

leaves and stems of tree seedlings. 

Altogether, my results suggest that plant morphological traits are not strongly 

affected by nutrient availability, but that relative growth rate, biomass allocation, 

and root chemistry traits are more strongly affected nutrient availability. This has 

implications for pooling trait data among studies where plants were not grown in 

identical soil conditions, as is often done in large trait databases (Kattge et al., 

2011). Particularly, morphological traits relating to the whole-plant economic 

spectrum (as discussed in Chapter Two) are broadly transferable between studies, 

so long as the plants are raised in conditions conducive to growth. If resources 

such as nutrients, water, or light are limited, then phenotypic plasticity may result 

in altered trait expressions to optimize growth. However, as these resources are 

often limited in natural ecosystems, more studies are needed to compare the traits 

of natural sourced plants with those raised in glasshouses. Also, it was beyond the 

scope of this study to determine how traits respond to deficiencies of any 

particular nutrient, and as natural soils can vary widely in their availabilities of 

vital nutrients, these types of experiments could also have valuable application for 

comparisons of natural sourced versus glasshouse raised plants. 

3.5.2 Pulse vs. slow release treatments 

Despite the difference in final nutrient concentrations between the pulse and slow 

release treatments (Figure 7.a-d), traits responded similarly to these two different 

methods of nutrient delivery. Species typically exhibited significantly different 

responses to low and pulse nutrient treatments, but responded similarly to slow 

release and pulse nutrient treatments (Figure 8, Figure 9, Figure 10). I 

hypothesised that pulse treatment would be a better proxy for natural low fertility 

soils  than slow release treatment, as nutrient availabilities in natural soils can 

fluctuate as a result of natural processes including fire, freezing, nutrient 
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mobilisation after rain, and animal excretions (Hobbs et al., 1991, Smith et al., 

1998, Schimel and Bennett, 2004, Reynolds et al., 2004). In low fertility soils, 

pulses may be more crucial to plant productivity as they represent a short term 

flux of nutrients into an otherwise poor soil, facilitating the growth of species able 

to exploit them. Craine (2009) theorised that in many low fertility systems, pulses 

are of low importance to plant growth, as pulses tend to occur at low productivity 

times of the year, and low-fertility adapted species tend to lack root adaptations 

for rapid proliferation and exploitation of nutrient pulses. Species which are 

adapted to low fertility sites may have reduced or lost the sensory and regulatory 

mechanisms required to detect and exploit nutrient pulses, in order to reduce the 

energetic cost of growth and metabolism (DeWitt et al., 1998).  

However, these lines of reasoning are not consistent with observational or 

experimental evidence. Deserts are typically characterised by low productivity 

and low soil fertility; however, sporadic rainfall mobilises nutrients and results in 

dramatic increases to productivity due to species‟ exploitation of both water and 

nutrient resources (Austin et al., 2004). Furthermore, experimental results suggest 

that species with conservative growth are able to exploit short term nutrient pulses 

(<10 hours) more efficiently than faster growing species (Campbell and Grime, 

1989). Species adapted to low soil fertility have been demonstrated to have a 

relatively low capacity to absorb immobile ions such as phosphate (Raab et al., 

1999), but a relatively high capacity to absorb mobile ions such as potassium 

(Veerkamp and Kuiper, 1982). In my experiment, the only species which 

responded consistently with Craine‟s theory was Agathis, which did not respond 

strongly to either pulsed or slow release treatments for the majority of traits. 

Agathis was the species which exhibited the lowest average plasticity, and also the 

species most strongly associated with low fertility soils. Knightia is also 

associated with low fertility soils, although not as strongly as Agathis, and yet it 

responded to both pulse and slow release nutrient treatments. This may be due to 

the ability of Knightia to form cluster roots (Figure 11), which are highly efficient 

at phosphorus uptake and may also be an adaptation to exploit patches and pulses 

of nutrients (Dinkelaker et al., 1995, Skene et al., 1996, Skene, 1998).  

The general similarities between traits of both slow release and pulse treatment 

plants across all four species suggest that the method of fertiliser application does 

not significantly alter morphological trait expression. The differences in tissue 



105 

 

nutrient concentrations between slow release and pulse treatment were likely due 

to differences in the total amount of nutrients available in each treatment. Future 

experiments should examine the effects of different pulse regimes, varying both 

the amount of fertiliser applied and the length of time between pulses. This will 

reveal whether differences between pulse and slow release treatments are due to 

the pulse itself, or due to total nutrient availabilities. 

3.5.3 Group responses 

In contrast with predictions from CSR theory (Grime, 1979), I did not observe 

higher plasticity in high fertility associated species when compared to low fertility 

associated species (Appendix Table 17). This is at least partially due to my 

experimental design, which was limited to only four species, and also included a 

separate grouping by phylogenetic group. Phylogeny was a better predictor of 

species‟ plasticity, with conifer species being less plastic on average than 

angiosperm species (Appendix Table 17). However these results should be 

interpreted tentatively, as the phylogenetic trend was largely driven by two 

species: the conifer Agathis, which was the least plastic species in my experiment; 

and the angiosperm Knightia, which was the most plastic species. The other two 

species, Dacrycarpus and Laurelia, were both of similar intermediate plasticity 

despite their contrasting phylogenetic groupings. These phylogenetic groupings 

were perhaps too broad, as the four species were members of four different 

families, being Araucariaceae (Agathis), Podocarpaceae (Dacrycarpus), 

Proteaceae (Knightia), and Atherospermataceae (Laurelia). In particular, the 

pairing of both Laurelia and Knightia was not an ideal representation of 

angiosperms. As a magnoliid, Laurelia has large fine root diameter and a high 

dependence on mycorrhizal symbiosis (Baylis, 1975), while the eudicot Knightia 

is non-mycorrhizal (Tozer, 2006), and produced cluster roots in response to low 

nutrient availability (Figure 10.e). Ideally, future plasticity experiments should 

include multiple species from within a single family or genus, while also spanning 

a range of soil fertility associations. A good example of this would be the New 

Zealand Podocarpaceae, which span from low fertility associated Halocarpus 

kirkii to the high fertility associated Podocarpus totara, as well as including con-

generics such as the multiple Podocarpus, Halocarpus, and Prumnopitys species. 

By limiting the amount of phylogenetic variation in the experimental species pool, 

stronger conclusions could be reached about the influence of species‟ soil fertility 
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associations on phenotypic plasticity. Similarly, to more robustly test the effects 

of phylogeny on phenotypic plasticity a larger range of species should be 

included, ideally incorporating phylogenetically diverse species from within 

naturally occurring plant communities. In summary, my results show preliminary 

support for conifers being in general less plastic than angiosperms, and little 

difference in plasticity between high vs. low fertility associated species. However, 

due to low numbers of species sampled, and strong influence from individual 

species, additional data is needed in order to conclude upon the generality of these 

group plasticity trends. 

3.5.4 Cluster roots 

Knightia significantly increased its production of cluster roots in response to low 

nutrient availability (Figure 11). Cluster roots represent  “the third great 

adaptation for improved nutrient uptake in plants, the others being nitrogen 

fixation in root nodules and mycorrhizas” (Skene, 1998), and are phylogenetically 

restricted to members of two monocotyledonous and eight dicotyledonous 

families (Lambers et al., 2006). Cluster roots are “bottlebrush-like clusters of 

rootlets with limited growth” that form on lateral roots (Neumann and Martinoia, 

2002), and function to uptake phosphorus with high efficiency (Dinkelaker et al., 

1995). Across all traits which I measured in this experiment, cluster root 

formation was the most plastic in response to nutrient availability, with 

significantly more clusters formed in low treatment plants than either pulse or 

slow release treatments. Cluster root formation and lack of mycorrhizal symbiosis 

are characteristics of most Proteaceae, and therefore New Zealand‟s only other 

Proteaceae member, Toronia toru is also likely to possess these traits. Due to the 

high efficiency of phosphorus uptake by cluster roots, Proteaceae species can 

suffer from phosphorus toxicity in high fertility soils, with symptoms including 

leaf necrosis, chlorosis, and leaf rosetting (Hawkins et al., 2008). While some 

necrosis and chlorosis were observed in my experimental plants, these symptoms 

occurred in all three treatments, and both slow release and pulse plants generally 

looked „healthier‟ than pulse treatment plants (Figure 12, additional high 

resolution images on appendix DVD). Therefore while phosphorus toxicity does 

not appear to have negatively affected my experimental plants, care should be 

taken in future experiments to avoid supplying excessive phosphorus to 

Proteaceae species.  
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Figure 11. Scanned Knightia root section showing cluster root formation and normal 

lateral roots. Scale bar in centimeters. 

 

 

Figure 12. Comparison of Knightia seedlings in three nutrient treatments. Treatments 
indicated by capital letters: SR, slow release; P, pulse; L, low. Some necrosis is visible on 

both the slow release and pulse treatment plants, and severe chlorosis is visible on the low 

treatment plant. 

3.5.5 Mycorrhizal influence 

The presence or absence of mycorrhizal symbionts may also affect plant growth 

and responses to soil nutrient availability. Agathis and Dacrycarpus are known to 

form vesicular-arbuscular mycorrhizal symbioses (VAM) (McNabb, 1958, 

Morrison and English, 1967, Baylis, 1969, Russell et al., 2002), Laurelia is 

SR                      P                      L 
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suspected to be highly dependent on mycorrhizae as is typical of Magnoliidae 

species (Baylis, 1975), and Knightia is suspected to be non-mycorrhizal as is 

typical among Proteaceae species (Tozer, 2006). I did not examine the 

mycorrhizal infection status of my experimental plants, although this would have 

been valuable information. A study by Zangaro et al. (2007) measured the traits of 

12 species in response to combinations of high and low fertility soils and the 

presence or absence of mycorrhizal  colonisation. Their results show that in 

infertile soils, the absence of mycorrhizal infection can significantly alter trait  

expression, particularly in early successional species. Within each species, plants 

with mycorrhizal colonisation in low fertility soils displayed similar traits to 

plants which lacked mycorrhizal colonisation but were grown in high fertility soil. 

The combination of both mycorrhizal colonisation and high fertility soils altered 

the expression of some traits when compared to the three other treatment groups, 

particularly for total biomass, shoot phosphorus concentration, and root tissue 

density in early successional species. Hayman and Mosse (1971) observed similar 

responses in both onion (Allium cepa) and Coprosma robusta, where either 

phosphorus addition or VAM infection augmented growth of both species 

compared to un-inoculated control plants in low phosphorus availability soil. 

Mosse (1973) demonstrated that mycorrhizal colonisation can both help and 

hinder growth, depending on the soil nutrient availabilities. Mosse also observed 

VAM infection decreasing at very high availabilities of phosphorus, and 

disappearing altogether at the highest phosphorus dosage. Johnson (1976) 

demonstrated this hindrance effect in Fuchsia excorticata, where VAM 

inoculation augmented growth below 11 ppm of phosphorus, but negatively 

affected growth at and above 25 ppm of phosphorus. The role of mycorrhizae in 

plant nutrition may be more relevant in soils of highly heterogeneous fertility. 

Both Tibbett (2000) and Hodge (2006) suggest that proliferation of mycorrhizal 

hyphae into nutrient rich patches may be of equal or greater importance than root 

proliferation. Altogether, these studies suggest that while the absence of 

mycorrhizal symbiosis may negatively affect species in low fertility soils, these 

effects can be mitigated by nutrient addition. However, the role of mycorrhizae in 

exploiting nutrient patches and pulses requires further investigation. While it 

would still be useful to investigate mycorrhizal infection in experimental plants, 

phenotypic plasticity caused by the absence of mycorrhizal symbionts can 

therefore be mostly mitigated by providing plants with sufficient fertiliser. 
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3.5.6 Additional factors which may influence phenotypic plasticity 

Leaf traits such as SLA, leaf nitrogen content, and leaf area are known to be 

strongly influenced by light availability (Meziane and Shipley, 1999, Gratani et 

al., 2006, Valladares et al., 2000a, Rozendaal et al., 2006, Freschet et al., 2015). 

Shading also affects root-to-shoot ratio, prompting increased biomass allocation to 

leaves (Aerts and Chapin, 1999, Aikio and Mari Markkola, 2002, Poorter et al., 

2012). In my experiment, all species and treatments were grown in a common, 

high light environment, thereby minimizing plastic effects in response to low light 

availability. However, patterns of biomass allocation may be more complex when 

both light and nutrients are limited, and be more contrasted between species 

compared to single resource limitation (Freschet et al., 2013). Therefore there is 

still a need to study the responses of a wide range of species to combinations of 

light and soil nutrient availability, in order to understand whether such responses 

can be generalised across species.  

Competition may strongly influence root trait expression, although research on 

competitive effects on trait plasticity is limited. de Kroon (2007) observed greater 

proliferation of fine roots in proximity with competitor roots, and noted that plants 

seem to be able to differentiate between their own roots and those of a competitor. 

Semchenko et al. (2007) observed contrasting responses to competitor roots in 

two grass species, with one species consistently avoiding competitor roots, while 

the other species demonstrated both avoidance and attraction to competitor roots. 

Studying the effects of competition on experimental plants will provide much 

needed context for how trait data from glasshouse trials compares to field data. 

Soil moisture availability can cause phenotypic plasticity. Aspelmeier and 

Leuschner (2006) performed a glasshouse experiment on seedlings of European 

birch (Betula pendula), and observed that under drought conditions SRL did not 

significantly change, while root diameter increased and total root surface area 

decreased. A similar drought experiment on European birch saplings by Meier and 

Leuschner (2008) did not observe any significant changes to root morphology or 

relative root-to-shoot ratio in response to drought conditions, however drought 

treatment saplings had 30-40% less total fine root biomass, and had an increase in 

fine root turnover. Low soil water availability may not produce a particularly 

strong effect on trait expression in New Zealand forest species; however, plastic 



110 

 

response to drought may be far more important for species from arid or semi-arid 

biomes.  

Ontogenetic change may result in differences to trait expression as plants age. 

Over increasing mean-aged stands of Betula pendula, Rosenvald et al. (2013) 

observed decreased SLA, root nitrogen content, and SRL and increased fine root 

diameter and tissue density. The authors suggest that trait differences between 

young and old stands may result from higher physiological activity necessary for 

fast growth in younger trees. Stem tissue density also increases over ontogeny, as 

more mechanical strength is needed to support growing leaves and stems 

(Woodcock and Shier, 2003, Chave et al., 2009). Therefore, considerations of age 

and the potential effects on trait expression are important, and trait comparisons 

should be made between similar aged individuals wherever possible. 

Soil compaction has been shown to affect root traits in Fraxinus seedlings, with 

higher compaction resulting in a lower proportion of fine roots, lower SRL, and 

lower root xylem vessel proportion (Alameda and Villar, 2012). The authors 

suggest that Fraxinus angustifolia seedlings are more sensitive to physical 

properties of the soil than to chemical properties; however it is not clear if this is a 

general response in woody plants. The comparatively loose structure of potting 

mix compared to natural soils may influence trait expression, and therefore may 

be worth studying. 
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3.6 Conclusion 

My results suggest that plant traits such as root-to-shoot ratio, relative growth rate, 

and root nutrient concentrations respond strongly to differing nutrient 

availabilities, but that morphological traits, particularly those relating to the 

„whole-plant economic spectrum‟ are not strongly plastic in response to nutrient 

availability. These results justify the use of traits from glasshouse raised plants as 

a proxy for field measured traits, particularly for morphological traits. Plant traits 

under pulse and slow release treatments were typically not significantly different, 

and the few differences I observed may be due to total nutrient availability rather 

than method of fertiliser application. The combination of these two observations 

has great utility for pooling trait data from multiple studies, provided that 

environmental conditions were conducive to growth. Preliminary comparisons 

suggest that in general, conifers may be less plastic in response to soil fertility 

than angiosperms; however the responses of a wider range of species need to be 

studied before these generalisations can be concluded upon. My experiment only 

examined trait responses to a complete nutrient solution, and more research is 

needed to determine how deficiencies of individual nutrients can affect trait 

expression. Other variables such as presence of mycorrhizae, shading, 

competition, water availability, plant age, and soil compaction can also alter trait 

expression, and inferences from glasshouse trait data to natural ecosystems will be 

strengthened by studying the effects of these variables both individually and in 

combination. 
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Chapter Four: Synthesis 

4.1 Conclusions 

The primary objectives of this study were to determine the relationships between 

the leaf, stem, and fine root traits of New Zealand tree species, and to assess how 

these traits vary at the community level over a strong soil fertility gradient. I also 

aimed to assess how traits of glasshouse grown seedlings relate to those of adults, 

and whether the growth medium or fertilisation method used in the glasshouse 

environment would affect trait expression. 

In Chapter One, I demonstrated that in seedlings there is a strategic dimension 

coordinated across multiple organs, relating to growth rate and the acquisitive-

conservative strategic dimension which has been well documented in leaves. 

Independent from this growth strategy dimension was a second strong axis of 

variation, which was strongly influenced by root diameter and specific root length 

(SRL). This finding casts doubt on the notion that SRL is a below ground-

analogue of specific leaf area (SLA), and is consistent with studies which propose 

that fine root diameter is a strongly phylogenetically conserved trait. When 

community-weighted mean traits were assessed across a strong fertility gradient, 

traits related to the conservative-acquisitive strategic dimension were strongly 

related to soil fertility, particularly SLA, and leaf, stem, and root dry matter 

content. Both SRL and root diameter were not significantly related to soil fertility, 

further reinforcing the notion that SRL does not mirror the adaptive function of 

SLA. Comparison of glasshouse grown seedling traits to those of field surveyed 

adults revealed moderate correlations for morphological traits, which tended to be 

skewed towards an acquisitive growth strategy in seedlings. Root nutrient 

concentrations were not significantly correlated between seedlings and adults.  

In Chapter Two I assessed the variation of seedling traits in response to soil 

nutrient availability, and found that in general, the expression of morphological 

traits was not strongly affected by soil nutrient availability. This suggests that 

these traits may be broadly comparable among studies, despite differences in soil 

nutrient availability. However, root-to-shoot ratio, growth rate, and root nutrient 

concentrations were strongly influenced by nutrient availability, suggesting that 

care should be taken when comparing these traits among studies. Trait expression 
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was typically not significantly different between pulse and slow release 

treatments, but both were typically significantly different compared to low 

nutrient treatment in traits which responded strongly to nutrient availability. These 

results suggest that as long as adequate nutrients are provided, there is little 

difference on trait expression between pulsed or slow release fertiliser 

applications.  

4.2 Applications and recommendations 

Despite the correlations observed in this study, the inference of adult traits from 

seedling traits should be approached with caution until a larger range of species 

from diverse floras have been compared. Similarly, the co-ordination of growth 

strategy across multiple organs may appear suitable for inferring root traits from 

leaves or stems; this should also be approached cautiously until research from 

diverse floras can confirm the generality of this multi-organ coordination of 

strategy.  

In the absence of trait correlations between seedling and adults, seedling traits are 

still be relevant to community assembly processes, as they reflect the selective 

pressures of environmental filtering during the seedling phase of regeneration. My 

observation that nutrient availability does not strongly affect species‟ trait 

expression suggests that there may also be strong correlations between glasshouse 

raised seedlings and those from natural soils. However, factors other than soil 

fertility can differ between the glasshouse and natural environments, and therefore 

may also affect trait expression. By comparing trait data between glasshouse 

grown and field sourced seedlings, stronger conclusions could be drawn about the 

relationships between the two. If glasshouse grown and field sourced seedlings are 

found to be strongly correlated, glasshouse grown seedlings may have great 

application as substitutes for natural seedling trait data. This would allow 

researchers to carefully control growth conditions and thereby minimise trait 

variation caused by unmeasured and uncontrolled factors.  

SRL appears to have no direct functional effects on plant growth strategy or 

environmental filtering along a soil fertility gradient. This may be explained by a 

potential role of root diameter in facilitating mycorrhizal symbiosis, effectively 

allowing highly mycorrhizal species with low SRL to effectively compete for 

nutrients with less mycorrhizal species with higher SRL. While some evidence 
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exists to suggest that fine root diameter may be linked to benefit from mycorrhizal 

symbiosis or degree of infection, more research into the benefits and extents of 

mycorrhizal infection in naturally grown plants would provide data needed to test 

this hypothesis.  

This study investigated community-weighted mean traits along a soil fertility 

gradient in a single forest. It would be valuable to see if my observations of strong 

correlations between soil fertility and growth rate traits, and the non-significance 

relationship of SRL to soil fertility are upheld over a nationwide scale of soil 

fertility, as this would confirm the generality of my observations. 

At the community level, both porosity and root branching intensity were 

moderately correlated with soil fertility. High porosity is traditionally associated 

with waterlogging tolerance, but may also function to reduce root construction 

and metabolic costs. Root branching intensity may represent species‟ ability to 

proliferate roots into nutrient rich patches, and may also be influenced by 

mycorrhizal associations and infection rates. These traits may be valuable for 

understanding root foraging strategy, and warrant further study. 
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Appendix: 

This appendix contains figures and tables not included in the main body of the 

text. Additional high resolution images of washed root balls and scanned root 

sections are available on the attached DVD. 

 

 

 
Figure 13. 40 vegetation plots from Puketī forest ordinated by soil fertility principle 
component 1, consisting of carbon to nitrogen ratio negatively correlated with pH and 

total available phosphorus 

 



 

 

Table 9. Seedling and adult stem and leaf traits for 54 species. Adult traits sourced from Jager et al. (2015). 

 SLA (mm
2
 mg

-1
) Leaf TD (mg mm

-3
) LDMC (mg g

-1
) Stem TD (mg mm

-3
) SDMC (mg g

-1
) 

Species Adult Seedling Adult Seedling Adult Seedling Adult Seedling Adult Seedling 

Conifers 
          

AGAAUS 4.6 9.1 0.436 0.208 411 311 0.472 0.587 649 544 

DACCUP 3.9 3.3 
  

421 326 0.481 0.591 565 461 

DACDAC 4.3 13.6 0.748 0.252 434 341 0.386 0.406 560 459 

HALBIF 1.4 4.9 0.408 0.297 486 377 0.593 0.771 
 

620 

PHYALP 4.4 5.0 0.428 0.364 474 449 0.543 0.760 
 

627 

PHYTRI 5.9 9.4 0.555 0.253 472 347 0.574 0.735 524 539 

PODHAL 4.5 4.9 0.451 0.258 468 380 0.486 
 

658 478 

PODTOT 5.6 8.6 0.416 
 

437 378 0.446 0.611 624 488 

PRUFER 6.7 12.7 0.457 0.261 399 298 0.547 0.699 593 543 

PRUTAX 6.9 12.1 0.454 0.258 446 376 0.564 0.672 503 586 
           

Eudicot angiosperms 
          

ARISER 19.4 35.7 0.231 0.122 281 277 0.348 0.364 
 

366 

CARSER 15.2 19.0 0.319 0.196 326 329 0.519 0.521 497 445 

COPLIN 9.9 10.0 0.349 0.264 369 378 0.607 0.641 
 

537 

DRALON 3.7 5.8 0.675 0.486 525 440 0.504 0.491 
 

499 

DYSSPE 15.3 19.9 0.314 0.211 254 248 0.490 0.416 550 360 

ELADEN 7.1 11.2 0.582 
 

459 397 0.489 0.530 550 426 

ELAHOO 7.9 15.7 0.469 0.285 438 397 0.487 0.422 
 

438 

FUCEXC 18.6 28.1 0.201 0.120 215 174 0.476 0.395 450 352 

GRILIT 8.6 9.9 0.241 0.171 288 258 0.604 0.524 
 

459 

KNIEXC 5.4 14.2 0.547 0.245 493 324 0.548 0.415 566 357 

KUNERI 7.2 20.4 0.593 
 

489 336 0.704 0.585 586 467 

LEPSCO 6.8 19.6 0.498 0.195 490 340 0.695 0.530 659 447 

MELRAM 17.9 28.9 0.264 0.147 257 224 0.436 0.372 405 307 

METROB 5.6 9.6 0.618 0.295 503 305 0.706 0.549 588 467 

METUMB 5.7 7.5 0.387 0.221 421 301 0.780 0.476 
 

424 

MYRAUS 12.1 13.9 0.394 0.285 364 357 0.679 0.494 
 

468 

MYRDIV 13.9 15.5 0.387 0.254 322 338 0.605 0.629 
 

487 
           

1
3
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Table 9. continued           

 SLA (mm
2
 mg

-1
) Leaf TD (mg mm

-3
) LDMC (mg g

-1
) Stem TD (mg mm

-3
) SDMC (mg g

-1
) 

Species Adult Seedling Adult Seedling Adult Seedling Adult Seedling Adult Seedling 

MYRSAL 9.1 12.8 0.388 0.194 351 244 0.655 0.527 576 479 

NESLAN 7.2 10.7 0.528 0.258 511 375 0.698 0.601 669 544 

NOTCLI 6.5 14.0 0.533 0.301 505 407 0.532 0.591 
 

499 

NOTFUS 12.0 13.6 0.398 0.286 430 417 0.542 0.565 
 

488 

NOTMEN 7.0 7.6 0.493 0.367 485 455 0.499 0.574 
 

524 

NOTSOL 8.4 13.4 0.507 0.293 483 434 0.559 0.530 
 

462 

NOTTRU 8.2 13.8 0.504 0.289 478 384 0.629 0.485 
 

431 

OLERAN 13.2 19.6 0.272 0.153 327 235 0.538 0.487 478 407 

PENCOR 14.5 19.8 0.298 0.170 295 290 0.452 0.511 
 

438 

PITEUG 10.1 17.6 0.444 0.257 392 313 0.609 0.420 
 

377 

PITTEN 9.0 21.1 0.460 
 

409 346 0.614 0.479 
 

424 

PSEARB 8.9 11.8 0.321 0.209 324 317 0.507 0.504 602 420 

PSECOL 10.4 12.1 0.343 0.230 362 296 0.505 0.563 
 

475 

PSECRA 4.4 4.3 0.379 0.356 378 333 0.565 0.495 599 431 

QUISER 10.0 12.2 0.489 0.199 349 286 0.516 0.482 488 442 

SCHDIG 18.5 24.4 0.244 0.122 241 196 0.408 0.252 
 

230 

WEIRAC 6.6 11.3 0.450 0.266 412 343 0.512 0.455 466 416 

WEISIL 9.7 17.0 0.489 0.249 383 304 0.525 0.503 510 432 
           

Magnoliid angiosperms 
         

BEITAR 8.0 12.3 0.495 0.263 404 324 0.544 0.505 612 444 

BEITAW 9.9 12.5 0.607 0.396 447 420 0.572 0.536 623 479 

HEDARB 12.9 20.6 0.300 0.143 279 206 0.547 0.378 535 322 

LAUNOV 12.9 18.7 0.265 0.157 260 236 0.387 0.408 482 384 
           

Monocot angiosperm 
         

RHOSAP 7.4 13.7 0.570 0.292 381 282 0.140 0.194 176 148 
           

Tree ferns 
          

CYADEA 12.6 17.1 0.498 0.291 413 322 0.213 0.541 190 435 

CYAMED 11.5 29.8 0.369 0.133 330 228 0.132 0.216 178 174 

CYASMI 19.2 17.8 0.343 
 

324 383 0.169 0.316 180 278 

DICSQU 12.1 19.9 0.451 0.225 400 318 0.226 0.427 238 328 

1
3
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Table 10. Seedling and adult root traits for 20 species. Adult traits sourced from Holdaway et al. (2011) 

 SRL (m g
=1

) Root diameter (mm) RBI Root N (%) Root P (%) 

Species Adult Seedling Adult Seedling Adult Seedling Adult Seedling Adult Seedling 

Conifers 
          

DACCUP 11.3 27.8 0.49 0.51 3.16 2.70 0.66 1.42 0.034 0.634 

PHYALP 19.1 12.4 0.36 0.60 2.58 2.48 0.70 1.42 0.028 0.200 

PODCUN 10.3 8.4 0.61 0.90 2.85 2.35 0.93 1.79 0.073 0.246 

PRUFER 5.9 6.7 0.69 0.93 3.74 3.34 0.90 1.13 0.080 0.441 
           

Eudicot angiosperms 
          

ARISER 23.8 82.3 0.31 0.37 2.81 1.59 1.30 1.24 0.092 0.321 

CARSER 35.1 30.8 0.44 0.53 1.79 1.61 1.79 1.47 0.144 0.453 

GRILIT 5.4 6.7 1.26 1.25 2.13 1.76 1.19 3.02 0.121 0.294 

LEPSCO 91.3 97.1 0.21 0.37 2.53 1.97 0.57 1.65 0.018 0.343 

MELRAM 29.0 48.9 0.34 0.54 2.58 1.87 1.68 1.82 0.110 0.470 

METROB 21.5 42.5 0.31 0.40 2.58 2.93 0.38 1.53 0.028 0.292 

MYRAUS 23.6 40.3 0.39 0.41 1.62 1.10 0.51 1.22 0.039 0.554 

MYRDIV 22.9 41.6 0.48 0.36 1.24 1.55 1.01 1.61 0.074 0.169 

PSECOL 14.1 10.7 0.66 0.93 1.54 1.72 0.50 2.85 0.068 0.771 

PSECRA 6.2 28.0 0.98 0.63 1.15 1.59 1.03 1.39 0.096 0.490 

QUISER 33.7 38.0 0.27 0.41 1.56 2.43 0.50 1.62 0.032 0.350 

SCHDIG 50.3 44.6 0.33 0.63 2.38 2.43 1.93 2.04 0.143 0.526 

WEIRAC 41.5 44.7 0.23 0.37 2.49 1.78 0.41 1.43 0.030 0.373 
           

Magnoliid angiosperm 
          

HEDARB 9.9 11.7 1.00 1.07 0.84 1.63 2.09 2.95 0.128 0.379 
           

Tree ferns 
          

CYASMI 30.1 14.9 0.31 0.62 2.10 1.39 0.53 
 

0.039 
 

DICSQU 25.8 15.7 0.36 0.69 2.12 2.50 0.49 1.32 0.029 0.310 

1
3
9
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Axis 2  

Figure 14. Two-dimensional ordination of PCA results as per Table 5. Species are 
grouped by mycorrhizal association. Trait abbreviations as per Table 1. Traits labelled 

in larger bold text and represented with blue lines. Each species labelled with a six 

letter species code as per Table 2. 
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Table 11. Number of replicates by species and treatment in Chapter Three. 

Species Treatment Replicates 

Agathis Low 14 

Agathis Pulse 15 

Agathis Slow Release 14 

Dacrycarpus Low 16 

Dacrycarpus Pulse 16 

Dacrycarpus Slow Release 14 

Knightia Low 12 

Knightia Pulse 15 

Knightia Slow Release 8 

Laurelia Low 15 

Laurelia Pulse 14 

Laurelia Slow Release 13 

 

Table 12. Quantities of nutrient additives in slow release potting mix. 

Additives kg/m³ 

Dolomite 2.00 

Growers Choice Granular Wetting Agent 0.75 

Gypsum Fine 2.00 

Lime – Agricultural Grade 2.00 

Everris Osmocote Exact Standard 3-4 Month 3.00 

Everris Osmoform NXT 22N 0.65 
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Table 13. Nutrient concentrations for Everris Osmocote 

Exact Standard 3-4 Month slow release granules. 

Nutrient Percentage 

Nitrogen Total (N) 16.0% 

Phosphorus pentoxide (P2O5) 9.0% 

Potassium oxide (K2O) 12.0% 

Magnesium oxide (MgO) 2.0% 

Iron (Fe) 0.45% 

Manganese (Mn) 0.06% 

Boron (B) 0.03% 

Copper (Cu) 0.050% 

Molybdenum (Mo) 0.020% 

Zinc (Zn) 0.015% 

  

Table 14. Nutrient concentrations for Everris Osmoform 
NXT 22N slow release granules. 

Nutrient Percentage 

Nitrogen total (N) 22.0% 

Phosphorus pentoxide (P2O5) 5.0% 

Potassium oxide (K2O) 11.0% 

Magnesium oxide (MgO) 2.0% 

Iron (Fe) 0.50% 

Manganese (Mn) 0.10% 

Copper (Cu) 0.020% 

Molybdenum (Mo) 0.001% 

Zinc (Zn) 0.020% 
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Table 15. Coarse structural components of low and pulse treatment potting mixes. 

Basic Structural Ingredients Percentage 

Bark Fibre 30% 

Daltons C.A.N Fines A Grade 55% 

Daltons Propagation (No 2) Sand 15% 

 

 

Table 16. Nutrient concentrations of Yates Thrive™ Concentrate All Purpose. 

Nutrient Percentage 

Nitrogen 12.4% 

Phosphorus 3.0% 

Potassium 6.2% 

Magnesium 0.01% 

Iron 0.008% 

Manganese 0.008% 



 

 

Table 17. Average trait values by species and nutrient treatment.  

Species Treatment SRL 

Root 

Diameter 

Root 

TD RDMC Porosity RBI 

Root 

N 

Root 

P SLA 

Leaf 

TD LDMC 

Stem 

TD SDMC RGR R:S 

Cluster 

roots 
        

  
        

AGA L 13.7 0.68 0.212 182 10.2 2.41 0.89 0.12 13.98 0.156 225 0.719 683 0.0004 2.88  

AGA P 15.3 0.65 0.201 176 9.5 2.56 1.42 0.24 11.82 0.158 239 0.685 653 0.0013 3.62  

AGA SR 13.3 0.69 0.209 186 9.4 2.24 1.50 0.31 11.71 0.154 227 0.689 659 0.0010 3.22  

DAC L 29.4 0.48 0.199 162 11.1 2.76 1.11 0.22 11.53 0.289 331 0.437 466 0.0017 1.87  

DAC P 33.6 0.48 0.169 138 8.3 1.86 1.42 0.21 12.96 0.227 301 0.392 397 0.0058 3.96  

DAC SR 31.4 0.50 0.171 140 9.1 2.14 1.79 0.26 13.17 0.232 288 0.413 394 0.0062 5.09  

KNI L 41.8 0.39 0.246 202 12.6 2.68 0.56 0.14 10.66 0.335 382 0.509 476 0.0007 1.67 38.1 

KNI P 56.6 0.38 0.164 156 10.5 1.87 1.18 0.29 13.72 0.249 310 0.467 432 0.0027 2.97 21.1 

KNI SR 46.9 0.45 0.141 114 12.2 1.73 1.31 0.45 11.80 0.251 317 0.444 433 0.0032 4.01 9.4 

LAU L 13.2 0.99 0.101 83 5.8 1.56 1.80 0.36 18.23 0.150 234 0.413 426 0.0023 1.21  

LAU P 11.5 1.17 0.083 70 5.3 1.28 3.12 0.39 21.59 0.132 202 0.345 352 0.0038 1.91  

LAU SR 12.0 1.16 0.083 71 6.6 1.12 3.15 0.56 20.83 0.136 208 0.361 362 0.0049 2.17  

Treatment codes: L, Low; P, Pulse; SR, Slow Release.  

Species codes: AGA, Agathis australis; DAC, Dacrycarpus dacrydioides; KNI, Knightia excelsa; LAU, Laurelia novae-zelandiae 

1
4
4
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Table 18. Co-efficient of variation (CV) averages for groupings by phylogeny and soil 

fertility associations. 

Trait 
High 

fertility 
vs. Low fertility Conifers vs. Angiosperms 

Cluster roots -  - -  - 

RGR 44.9 < 55.8 53.2 > 47.6 

Root : Shoot 43.4 > 26.4 35.2 ≈ 34.6 

Root P 18.7 < 48.5 28.7 < 38.5 

Root N 26.1 < 32.9 24.9 < 34.1 

RBI 18.6 > 14.5 13.6 < 19.5 

Porosity 13.2 > 7.9 9.7 < 11.4 

RDMC 9.9 ≈ 11.1 6.1 < 14.8 

Root TD 10.5 ≈ 10.3 6.1 < 14.7 

SRL 7 < 10.7 7.05 < 10.7 

SLA 8.0 ≈ 9.8 8.8 ≈ 9 

Leaf TD 10.1 > 5.8 7.3 ≈ 8.6 

SDMC 10.1 > 2.8 6.0 ≈ 6.9 

LDMC 7.7 > 5 5.3 < 7.4 

Stem TD 7.5 > 3.8 4.1 < 7.3 

Root diameter 5.4 ≈ 5.45 2.2 < 8.7 

Species average 16.1 ≈ 16.7 14.5 < 18.2 

CV values considered ≈ where the difference between the compared values was < 2. 

 

 


