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WAITING TO PERSUADE

MUHAMET YlLDIZ*

MIT

Abstract. I analyze a sequential bargaining model in which players are

optimistic about their bargaining power (measmred as the probabihty of making

offers), but learn as they play the game. I show that there exists a uniquely

predetermined settlement date, such that in equilibrium the players always

reach an agreement at that date, but never reach one before it. Given any

discount rate, if the learning is sufficiently slow, the players agree immediately.

I show that, for any speed of learning, the agreement is delayed arbitrarily long,

provided that the players are sufficiently patient. Therefore, although excessive

optimism alone cannot cause delay, it can cause long delays if the players are

expected to learn.

KEYWORDS: Bargaining, Misperception, Optimism, Delay, Learning

1. Introduction

Bargaining delays are common, and frequently cause substantial losses to the bargain-

ing parties. Often, agreements in labor negotiations are reached only after strikes or

work slowdowns, and sometimes international conflicts last generations, costing lives

and causing lifelong misery. (This might happen while the parties are ofRcially ne-

gotiating a peace agreement, as in the case of Israeli-Palestinian conflict.) The usual

game-theoretical explanation for these delays is based on asymmetric information:

delay is a credible means for a player to communicate his private information that

he has a strong position in bargaining, or a screening device to understand whether

the other party is in a strong or weak position in bargaining (see Admati and Perry

(1987) and Kennan and Wilson (1993)).

There is, however, a sense among researchers that agreement may be delayed even

when the parties do not seem to have any asymmetric information about the payoffs.

As an alternative cause of bargaining delays, many authors have proposed excessive

*This paper is based on my dissertation, submitted to Stanford Graduate School of Business. I

am grateful to my advisor Robert Wilson for his guidance and continuous help. Many results in

this paper were also reported in the working paper Yildiz (2001). I thank Daron Acemoglu, Abhijit

Banerjee, Chaya Bhuvaneswar, Glenn Ellison, Yossi Feinberg, Casey Rothschild, and the seminar

participants at BU, Chicago, Harvard, MEDS, MIT, Princeton, Rochester, Stanford, UBC, USC,
Western Ontario, and Yale for helpful comments.
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optimism due to the lack of a common prior. ^ Based on surveys and experimental and

field data, they have concluded that optimism is very common, and have attributed

the bargaining delays to excessive optimism. Most of these authors do not have any

formal model, but their arguments appear to be based on the two-period negotiation

model by Landes (1971) and Posner (1972). Their reasoning seems to be the following.

When each pa v is excessively optimistic about the share he would get tomorrow,

there may not t st any settlement today that satisfies all parties' expectations. In

another paper {\ 'z (2002)), I have shown that this argiunent reUes critically on the

artificial assumptii a that there are only two-periods; in a long horizon model there

will be an immediate agreement whenever optimism is sufficiently persistent. The

reason is that, if optimism is persistent, then the scope of trade is necessarily small,

and thus the players cannot be very optimistic about their share in any agreement in

the near future.

This paper piovides a new rationale for delay when the parties are optimistic due

to the lack of a common prior. Now there is no private information to convey; a player

i simply believes that he has a strong position in bargaining, a belief the other player

j does not share. Being a Bayesian, i must also believe that the events are likely to

proceed in such a way that i wiU eventually be proven to be right. In that case, j

will plausibly be convinced that i is right and thereby be persuaded to agree to i's

terms. If j's initial beliefs are not too firm, this will happen so soon that i will find

it worth waiting to persuade j. Of course, at the begimiing, j does not believe that

the e.ents will proceed in that way; she probably thinks that i will be persuaded to

agree to her terms in the near future. This leads to costly delays that are inefficient

even under these optimistic beliefs.

As a formal model, I use the basic model of Yildiz (2002) but focus on the case

that the players' initial befiefs are not too firm, allowing them to update their behefs

without restriction. (Yildiz (2002) focuses on the case that the players do not change

their beliefs much as they play the game.) Using a canonical model of learning, I

show that there exists a (unique) predetermined date t* such that in equilibrium the

players will never agree before t* and reach an agreement at t*. (Moreover, they

would also have agreed at any date after t*, had they not agreed before.) Notice that

the settlement date t* is common knowledge at the beginning and does not depend

on what happens until then. This is surprising, because delay in usual bargaining

models—whether caused by signaling, screening, or ixiixed strategies—is only a pos-

'See Hicks (1932), Landes (1971), Posner (1972), Gould (1973), Priest and Klein (1984), Neale

and Bazerman (1985), Babcock et al (1995), Babcock and Loewenstein (1997). See also Farber and

Bazerman (1989), who showthat excessive optimism cannot explain the delay patterns in certain

labor negotiations with conventional and final offer arbitration. Some other terms, such as over-

confidence and self-serving biases, are also used for what can be called optimism in the present

context.
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sibility and there is immediate agreement with positive probabihty. Finding very

tight bounds for the settlement time t*, I further show that delay can be arbitrarily

long as long as the players are sufficiently patient. This is true for any initial level

of optimism and the firmness of beliefs. Therefore, although optimism alone cannot

cause any delay, it can cause delays when it is combined with learning.

The intuition is as above. As is typical in Bayesian learning models, each player

i updates Ms beliefs relatively quickly at the beginning of the process. When his

bargaining partner j is patient enough, tliis entices j to wait so that i will observe

the truth and hopefully agree to j's terms. After a while, having gained experience

through observing some of the data, the players' learning wiU slow down, and it

will no longer be worth waiting for them to change their minds. This is when they

reach an agreement. Of course, in the mean time, as the players observe the same

data, their beliefs become more similar and eventually optimism becomes negligible.

Nevertheless, the upper bound for t* implies that the players reach an agreement

when the learning slows down—and much before optimism becomes neghgible.

In the next section, I lay out the model and develop the main concepts. The main

results are presented in Section 3. Section 4 extend these results to a continuous-

time model, and Section 5 concludes. Most of the proofs are presented in a technical

appendix, where I develop the notions and the tools that are necessary for these

proofs.

2. Model
Take the set of all non-negative integers T = {0, 1, 2, . . .} as the time space. Take also

A'' = {1,2} to be the set of players, and U = {u e [0, l]^|u^ -I- u^ < 1} to be the set

of all feasible expected utility pairs. Designate dates t,s ^ T and players i ^ j & N
as generic members.

I will analyze the following perfect-information game. At each t E T, Nature

recognizes a player i E N; i offers a utility pair u = {u^,u^) G f/; if the other player

accepts the offer, then the game ends, yielding a payoff vector 6^u = {6*u^,6^u^) for

some S e (0, 1); otherwise, the game proceeds to date ^4-1. If the players never agree,

each gets 0. I assume that the players' beUefs have beta distributions, a tractable

distribution that is widely used in statistical learning models. Fixing any positive

integers fhi, fh2, and n with 1 < m2 < fhi < n — 2, I assume that, for any given dates

t and s with 5 > ^, at the beginning of date ^, if a player i observes that player 1 has

made m offers (and player 2 has made t — m offers), then he assigns probability

fhj+m . .

t + n ^
^

to the event that player 1 will make an offer at date s. This belief structure arises

when each player believes that recognition at different dates are identically and inde-

pendently distributed with some unknown parameter /i measuring the probability of
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player 1 making an offer at any date t, and // is distributed with a beta distribution

with parameters m, and n. I assume that everytliing described in tliis paragraph is

common knowledge.

As in Yildiz (2002), this model differs from the Rubinstein-StaW framework by

allowing different probability distributions for different players. This difference in

beliefs about the recognition process can be taken as the difference in beliefs about

each player's bargaining power. TMs is because in sequential bargaining models,

including the present one, a player's bargaining power is ultimately determined by

the recognition process, as the following two results suggest. First, Lemma 5 below

establishes that a player's equilibrium payoff is the present value of all rents he expects

to extract when he makes offers in the future. Second, under the assiunptions of this

paper, a player i becomes better off in equilibrium whenever each player comes to

believe that i has a higher probability of recognition in the future.

Measuring optimism. Towards measuring optimism, write A = fhi — fh2-

While n measures the firmness of the players' prior beliefs, A/n will be shown to

measure the initial level of optimism. Notice that the behefs about s at t depend

only on t —not s. Hence, optimism will be measiu'ed at the time the behefs are held

without distinguisliing which future recognition these beliefs are about. Write (m, i)

for the history (at the begimiing of date t) in which player 1 has ma,de m offers and

player 2 has made t — m offers. Write p\ (m) for the probabiUty player i assigns at

(m, t) to the event that he wiU be recognized at any fixed date s > t. By (2) below,

pj (m) +pj [rn] > 1, and hence each player thinks at {m,t) that the probabihty that

he will be recognized at date s is higher than what the other player assesses. As
explained above, this means that they are optimistic at {m,t). Write

yt {m) = p] {m) + pj {m) - 1

for the level of optimism at {m,t). By (1),

, , nil — 1^2 A „ .^
ytM = ' = 7—- > 0. 2

t + n t + n

Note that yt is deterministic^ i.e., yt does not depend on m; so m will be suppressed.

This determinism is due to the assmnption that the players' beliefs are equally firm,

i.e., n is same for both players. Tliis will simpUfy the analysis dramatically.

Negligible levels of optimism. Let us say that a level yt of optimism is negli-

gible if and only if yt can never cause a disagreement at t — 1. Now, the best a player

can expect at f — 1 from the future is to take the whole dollar at t if he is recognized

at t. Hence, he can expects at most p\ from the future. Thus, the players must

agree at i — 1 whenever 6 [p] +pf) = 6{1 + yt) < 1, i.e., whenever yt < (1 — 6) /S.
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Moreover, if the game were expected to end at t, the recognized player would take

the whole dollar at i. In that case, there would be disagreement at t — 1 whenever

yt > (1—5) /6. Therefore, I will say that optimism is negligible at t if and only if

t/t < (1 — 6) jb. Optimism becomes neghgible in this sense at

b ^
to
= tA - n,

i. —

and remains neghgible thereafter.

3. Agreement and Delay

In this section, I show that there exists a predetermined t* such that the players will

never agree before t* , and agree at t* (and thereafter if they had not yet agreed).

Finding very tight boimds for the settlement date t* , I show that (i) the agreement

can be delayed arbitrarily long, provided that the players are sufficiently patient, and

(ii) the agreement is reached when learning slows down, and much before optimism

becomes neghgible (i.e., t* < y/to ).

Towards this end, I first present two agreement results in the spirit of Yildiz

(2002), who proves similar results under the restrictive assumption that the players

do not learn. The first result states that there will be immediate agreement if the

optimism is expected to drop slowly.

Theorem 1. For any t with yt — yt+i < (1 — 5) /b, there is an agreement regime at

t- 1.

Proof. Most proofs are in the Appendix.

That is, in equilibrium there is an immediate agreement as long as it is known
that the level of optimism will not drop dramatically in the near future, i.e., the

learning will be slow. Theorem 1 imphes that the players will agree immediately

whenever y\ — y2 < [l — b) jb. As an immediate corollary, this further implies that

if the players' beliefs are sufficiently firm, they will reach an agreement immediately

— independent of the initial level of optimism, extending another agreement result

in Yildiz (2002):

CoroIIctry 1 . Let A = nyo so that the initial level of optimism remains constant

at yo- Then, there exists some integer n such that the players reach an agreement

immediately whenever n>n.

Proof. By (2), y\ — y2 =
(„+n°(n+2) ' which converges to zeros a n ^ oo.

Therefore, there exists some integer n such that, whenever n > n,yi—y2 < {1 — b) /b,

yielding an immediate agreement by Theorem 1.
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The main focus of the present paper is on the case that the players' initial beliefs

are not firm, and hence they update their beliefs substantially as they observe how

players are recognized. In that case, the players may delay the agreement for a while,

as the next theorem will imply.

Theorem 2. There exists a t* e T such that, at each t > t*, the players reach an

agreement immediately if they have not reached an agreement yet, and they do not

reach an agreement before t*.

Theorem 2 estabhshes that there exists a uniquely predetermined settlement date

t*. In a moment I will also provide bounds for t* and show that t* can be arbitrarily

large when players are siifRciently patient. Hence, Theorem 2 implies that, unless

the players' initial behefs are very fiirm, agreement wiU be delayed for a while. This

is because, typically, at the begimiing of a learning process players are more open

to new information, in the sense that they update their behefs substantially as they

observe which player gets a chance to make an offer. Knowing this, each player waits,

beMeving that the events are very likely to proceed in such a way that liis opponent will

change his mind. As time passes, they become experienced. In this way, two things

occur simultaneously, both facilitating agreement. Firstly, having similar experiences,

the discrepancy in their behefs diminishes. More importantly, each player i becomes

so closed minded that his opponent j loses her hope to convince i and thus becomes

more willing to agree to fs terms. Therefore, after a while, they reach an agreement.

It will be clear that in this process, the latter effect leads the players to an agreement

much before the former effect starts playing a role, i.e., yt — yt+i becomes smaller

than (1 — 8) /8 much before yt does (see the discussion after Lemma 1).

At the beginning of the game it is common knowledge that they will not reach an

agreement mitil t*, when they vnll reach an agreement no matter what happens up

to that point. ^ How they will share the pie at t* will depend on how many times each

player will have been recognized. Since they disagree about how many times each

player is likely to be recognized by t* , there is no consensus among the players on how
they can better each of them by agreeing on a decision at the beginning. Therefore,

they wait until t* even though there is a consensus among them that there is an

agreement at the begirming that would leave each player better off.

How long will they delay the agreement? To answer tliis question, the next result

provides tight bounds for t*.

Lemma 1. The settlement time t* satisfies

max{0, ti} <t* < max{0, i„} (3)

In contrast, typically, delay is only a possibility in models with asymmetric information, such

as Admati and Perry (1987).
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where

^ ^ IS ^

in = n (4)

and U is the highest integer t such that s = t + n satisfies the cubic inequaUty

f = {1 - 8) s {s + 1) {s + 2) - 2{s + 1) 6A + 6s6A + {SAf < 0. (5)

Lemma 1 provides tight boimds for delay. These bounds have two important

imphcations for this paper. Firstly, the upper bovind i^ implies that the players settle

much before to = f^ " '^' when optimism becomes negligible. This is stated in the

next result.

Theorem 3. The settlement time t* satisRes

t* < max{0,i„} < ^/t^

whenever to > 0.

Proof. If tu < 0, then the inequality is trivially true. Assume that tu > 0.

By definition, tu + n = ^Iq + n + 1/4 — 1/2 < ^JIq + n. Hence, (t„ + n) < t^ + n,

yielding t^<tQ- (2t„ + n - 1) n < fo-

That is, the agreement is reached when the learning slows down, not when opti-

mism becomes neghgible. This observation is also supported by the fact that there is

immediate agreement when optimism remains always high (cf. Section 4). Therefore,

in reaching an agreement, considerations about learning seem to be more important

than optimism itself.

Second, as the players become very patient, the lower bound goes to oo, yielding

arbitrarily long delays:

Theorem 4. For all [t, n, A), there exists 5 G (0, 1) such that t* > t whenever 6 > 6.

Proof. Given any {t,n, A), since n > A, we have

lim / = -A (t + n + 2 - A) < 0,
5—^1

where / is as defined in (5). Then, there exists 6 E (0, 1) such that, whenever 6 > 6,

we have / < 0, and thus, by Lemma 1, t < ti <t*.

Intuitively, as the players become patient, the efficiency loss due to delay becomes

negligible, wlule each player's individual gain from proving his bargaining power

remains substantial, enticing the players to wait arbitrarily long. To see this consider

the limiting case that y = 0. In that case, the per-period efficiency loss due to delay



WAITING TO PERSUADE , 8

is 1 — (5, approaching as 5 ^^ 1. On the other hand, by (9) in the Appendix, the

continuation value of a player i at any {m,t) is p] [m), and hence any increase in

p\ {m) is translated to the equihbrium payoff of i, without vanishing as 6 —;> 1.

As the players become very patient, although delay becomes arbitrarily long, the

efficiency loss due to delay becomes negligible—as Theorem 3 imphes:

Corollary 2. For all n and A, limg_i 6^ = I, where t* is as defirjed in Theorem 2.

Proof. By (4) , as 5 -> 1 , log 6^ = y^A/ (1 - 6) log <5 ^ 0. Hence, by Theorem

3, 1 > lim6_i 6'' > lim^^i 6^ = 1.

This corollary is due to the fact that when the players are patient, it costs arbi-

trarily little to wait until tu = \/to, when learning slows down. In contrast, for patient

players, the cost of waiting rmtil to (when optimism becomes neghgible) is bounded

away from zero.

4. Delay in a continuous-time limit

In this section, I take a continuum of real times r as the primitive, and approximate

it with a grid of index-times t. The players' time preferences and the level of opti-

mism are given by the real time, and do not depend on the grid. Using Lemma 1, I

find bounds for the real-time hmit r* of the settlement date i*as the grid approaches

continuum. I show that the results in the previous section extend to this model:

although there is immediate agreement when the optimism is very persistent or in-

stantaneously vanisliing, there is delay in between. As the players become sufficiently

patient, the real-time delay becomes arbitrarily long.

Taking a continuum of real times r, let the level of optimism at r be

1 -t-T/TT

where j/o is the initial level of optimism and tt > is a parameter measuring the

persistence of optimism. Given any r > 0, y (r) decreases to zero as tt approaches 0,

and increases to y^ as tt -^ oo. Each player's utility from getting x at r is e~'''"x where

r > is the real-time impatience. Now consider a grid of index times t where each

index t corresponds to a real time r (i, k) = t/k, and fc > measures the fineness of

the grid. The discount rate is 6 [k) = e"''/'^. Take also n = ixk and A = yoU so that

the level of optimism at a given real time r (f , k) is A/ (n + t) = yo/{^ + t {t, k) /n) =

y (r {t, k)) as in (6). Given any k, let t* {k) be the settlement time, defined in Theorem
2 for the parameters 6 = e"'"/'', n = nk and A = y^n. Write also r* for the limit of

T {t* {k) , /c) as fc —> oo. Building on Lemma 1, the next theorem provides bomids for

the real-time delay as the discrete-time grid approaches the continuum.
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Theorem 5. In the model of this section, the settlement time t* = limfc_»oo ''" {i* {k) , k)

in the continuous-time limit satisfies

r < T„ = max \ \j tt, (J

T > \ — TT.

Moreover, ifyoTfr < 4/27, then

3r

Finally, given any yo and any tt, t* -^ oo as r -^ 0.

Firstly, consistent with the agreement results, the upper botmd r^ imphes that

there is immediate agreement (i.e., r* = 0) whenever n > yo/r, i.e., when optimism

is very persistent. When < tt < yo/r, there may be delay, although delay must

become arbitrarily short as tt approaches 0. The lower bound implies that there will

be delay whenever < tt < yo/ (3r).

Second, both of the upper and the lower bounds for delay are weakly increasing

in yo/r. This is intuitive because yo scales the speed of learning as well as the

level of optimism, while r measures the players' impatience. The settlement time is

determined by when the learning slows down in terms of the players' patience. As r

decreases, the players become patient, increasing the length of delay. As r approaches

0, the discount rate approaches 1, and r* goes to infinity for any iryo > 0, extending

Theorem 4 to the present setup. Therefore, in the continuous-time limit, there will be

very long real-time delays if the players are patient, optimistic, and can learn about

their bargaining power in the process of bargaining.

5. Conclusion

This paper presents a new rationale for bargaining delays based on optimism and

learning. It observes that when two optimistic, Bayesian players negotiate, each player

i believes that the events are likely to proceed in such a way that i will eventually be

proven right. If the other player j's initial beliefs are not too firm, this will entice i

to wait in the hopes that j will quicky learn that i is right and thereby be persuaded

to agree to z's terms. This yields costly delays that may be arbitrarily long and are

inefficient even under these optimistic beliefs. In this reasoning the considerations

about learning seem to be more salient than optimism itself. In fact, the players

settle when the players' learning slows down, and much before optimism becomes

negligible. Moreover, they will settle immediately whenever the level of optimism is

expected to remain high for a long while. In conclusion, although excessive optimism

alone cannot cause delays, it can cause long delays when the players are expected to

learn in the future.
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A. Appendix: A more technical exposition

Notation. Designate a utility pair u = (u^,u^) e [/ as a generic member, and write

p = {pi)^^j- for the recognition process. Write P* {\m,i) for the probabihty assessment of

a player i at any history (m,t) and E^ {-Im^t) for the corresponding expectation operator.

A.l. Preliminary Results. This section contains certain results that are necessary

for the main results in the text. Here, I describe the subgame-perfect equilibria (henceforth,

simply equilibria), and I find simple expressions for the equilibrium payoffs. The first result

is taken from Yildiz (2002):

Lemma 2. Given any {m,t,i), there exists a unique V^ {m) G [0,1] sucii that, at any

subgame-perfect equilibrium, the continuation value ofi at {m,t) is Vf (m).

That is, there is a unique equilibrium payoff-vector. All equilibria yield the same out-

come, so the trivial multiplicity of equilibria will be ignored. Towards describing the equi-

librium behavior, write St = Vj^ + V^ for the perceived size of the pie at the beginning of

date t. The next lemma simplifies the analysis substantially.

Lemma 3. For each t, St is deterministic, i.e., St {m) = St (m') for all m and m.'.

Proof. {Sketch—see Yildiz (2001) for a complete hut tedious proof.) The infinite-

horizon game here can be truncated at some t, by assigning (0,0) as the payoff vector at i.

Moreover, it can be seen from Lemma 5 below that, if Ss is deterministic for each s > f , so

is St- By induction, St must be deterministic in the truncated game. Letting i —* oo, one

obtains the lemma.

Equilibrium behavior and bargaining power. Assume that 6St+i < 1. Now,

if the players agree at t, then the total gain from trade is 1, while it is only i55(+i if they

delay the agreement to the next date. Hence, the recognized player i has all the bargaining

power on realizing the gain of size l — 6St+i that they can get by not delaying the agreement.

He uses this temporal monopoly power to extract 1 — 6St+i as a rent. He gives the other

player j her continuation value SV^^^, and keeps the rent 1 — 6St+i plus his continuation

value 6Vl_^i for himself. His share sums up to 1 — ^Vj^j. When 6St+i > 1, there cannot

be any agreement at t that satisfies both players' expectations, hence they disagree at t.

There is no rent in that case. I will say that there is an agreement (resp., disagreement)

regime at t iff 8St+i < 1 (resp., 6St+i > 1).

Write

Rt = max { 1 - 6St+i , 0}

for the rent at t and
oo

At = J26'-'Rs (7)

s=t

for the present value of all future rents. Under this notation V satisfies the simple difference

equation in the next lemma. This lemma immediately follows from a result in Yildiz (2002);

a complete proof is provided, because the proof explains the equilibrium behavior in detail.
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Lemma 4. Given any (m,i) and i,

VI (m) = P' (p, = i\m, t) Rt + <5£' (V;Vi|m, t) . (8)

Proof. There are two cases. First consider the case that 6St+i > 1, when Rt = 0.

Assume that Player 1 is recognized. Now, both players are willing to agree on a division

u = (ti^,u^) onljf if u^ > i5V^t+i {m + 1) and u^ > SV^^ (m + 1), requiring that u^ + u^ >

^^+1 ("^ + 1) + ^^4+1 ("^ + 1) = SSt+i > 1, an impossibility. Therefore the players cannot

agree. Similarly, they cannot agree when Player 2 is recognized either. Hence, V^ (m) =
P' {pt = l\m,t)6V^\, (m + 1) + F' (ft = 2\m,t) SV^Vi (m) = 6E^ {V^i\m,t).

Now consider the case 6St+i < 1- Assume that Player 1 is recognized. Player 2 accepts

an offer w iff u^ > 6Vt\^ {m + 1). Since 1 - (JV^+i (m + 1) > ^V/^j (m + 1), Player 1 now

offers (l — SV^^-^ {m + 1) ,6V^-^ (m + 1)), and the offer is accepted. Likewise, if Player 2 is

recognized, he offers (^V^^i {m)
, 1 — 6V^_^_-^ ("^))i which is accepted. The continuation value

of Player 1 at {m, t) is

V/(m) := P'{p,^l\m.,t){l-6Vtl,{m + l))+PHp, = 2\m,t)6Vt\,{m)

= pi
(ft = l\m,t) (1 - 6St+i) + 6E' (V;Vi|m,i)

= pi(^j = l|m,i)Pt + 6P^(yt^+i|m,i).

Similarly, V^^ (to) = p2 (^^ ^ 2|m, i) Pt + ^^^ (Vt+i|m, t).

That is, the continuation value of a player i at the beginning of t is the rent he expects

to extract at t
,
plus the present value of his continuation value at the beginning of the next

date. The expectations are taken using his own beliefs. This leads to simple expressions

for V and 5 in terms of A:

Lemma 5. Given any {m,t) and i & N,

y/(m) = pi{m)At (9)

St = {l+yt)At. (10)

Proof. By the law of iterated expectations, the solution to the difference equation

(8) IS

CXD OO

s=t s=t

where the second and the third equalities are due to the definitions of p] {m) and A(,

respectively. Summing up (9) over the players, one can obtain (10). (See Yildiz (2000) for

details.)

Equation (9) establishes that a player's bargaining power is determined by the recogni-

tion process, justifying the modeling of optimism in this paper. It states that the continu-

ation value of a player at any {m,t) is the present value of the rents he expects to extract

when he is recognized in the future. Due to the specific belief structure assumed in (1),
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player i assigns the same probability p] (m) for his recognition at each date in the future.

Hence this present value is simply the probability pj (m) times the present value At of all

the future rents. This further implies (10), which states that the perceived size St of the

pie at (m, t) is the present value A( of the rents in the future, inflated by the optimism

parameter (1 + yt)- Note that V^ {m) depends on m, while St is deterministic.

Characterizing agreement. By (10), there is an agreement regime at any t— 1 e T
if and only if

At < TTT^ = A. (11)
o(i + yt)

Recall that there is an agreement regime at each t > tQ—1. Write PA = {t e T\As < L>s Vs > t}

for the interval of the dates t such that there is an agreement regime at each s > t. As

to - 1 G PA, PA is non-empty.

Bounds for equilibrium payoffs. Define

D- 1 A 0-1XD 1 - -^ (yt+i - yt+2)
Bt = ——z and Bf = 1 - 6ijt+iBt+i = ——

1 + oyt+i 1 + byt+2

In the rest of this subsection I will show that ^f < A( < Bt at each t e PA. This is the

main technical step in this paper. The bounds are plotted in Figure 1. Notice that the

bounds are very tight. This is generally true, as Bt-i < B_t < Bt- Moreover, the bounds

are valid only when t G PA, because the proof is based on the following recursive equation,

which holds only at agreement regimes.

Lemma 6. For any t, if 8St+\ < 1, then At = 1 — 5yt+iAt+i.

Proof. Assume 6St+i < 1- Then, Rt = I - 8St+i. Hence (10) yields Rt = I - 6{l +
yt+i)At+i- Hence, by (7), At = Rt + 6At+i = 1 - 6yt+iAt+i.

Define the sequences B and C by St = Bt-i and Ct = ^^^^yqij^— , respectively. Note

that Bt < Bi < Bt < Ct at each t. Using Lemma 6, one can easily prove the following

lemma.

Lemma 7. Given any t e PA, and 6, c G M, we have

At+i = Bt+i - b <=^ At = Bt + 6yt+ib, (12)

A(+i = C(+i + c <s=> At = Sf - 5yt+ic. (13)

By Lemma 7, At < Bt whenever At+i > Bt+i, and At > Bt whenever At+i < Ct+i-

Hence,

Lemma 8. Criven any t e PA, if Bt+i < At+i < Cj+i, then Bt < At < Bt.

Lemma 9. For any t e PA, Bt < At < Ct-
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10 12 14 16 18 20

Figure 1: Functions D, B, B, and A (5 = 0.99, n = 3, A = 1; i; = t* = 6, and

U. ^ 6.46.)

Proof. Take any t e PA, and define Of by setting 6'* = 1 and 6^ = 11^=4+1 i-^Vk) at

each s > t. Using Lemma 7 and mathematical induction on I, one can easily check that

At = Ct + f)t+2l
[At+2( - Ct+2l] - 2Z \ [Ct+2k — Bt+2k\ (14)

0<k<l-l

for each t 6 PA, and I > 0, where I use the convention that summation over the empty set

is zero.

Equation (14) implies that At < Ct when I is sufficiently large. To see this, note first

that, since |— <5yt| < 1, as 2
—

> 00, ^j"*"^' -^ 0. Since |At+2i — C't+2;| < 1 at each t,l, it follows

that, as Z ^ 00, ^j"*"^' {At+21 — Q+Zi] —^ 0. Second, 9^'^'^'' > for each k, as it consists of

multiplication of evenly many negative numbers. Since Ct+2k — -B(+2fc is always positive, it

follows that Ylo<k<l-i
^j"*"^*^

[Ct+2k — Bt+2k] is positive, increasing in I, and hence bounded

away from zero. Therefore, there exists a non-negative integer I' such that

0*+2i
[A,^2; - Ct+2i] - Y. ^t^''^ [^'+2^^ - ^'+2fc] < (15)

0<fc<Z-l

whenever / > Z', whence A( < Ct by (14).

On the other hand, using (14) at i + 1 and (13), one can also obtain

!^t — Bt- ($yt+i6'(^_j [Af+2/-i-i - Ct+2i+\] Sy,t+T. Y^
^t+l+2fc

jQ_^j_^2fc - Bt+l+2k]

(16)

0<k<l-l
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Of course, by (15), there exists some non-negative integer I" such that

-6yt+ie'+f+' [At+2/+i - Ct+2i+i] + Syt+i Y. ^ttf
""'

[Ct+2k+i - B/.+2fc+i] > (17)

0<fc</-l

whenever I > I", whence A( > Bt by (16). Therefore, for any I > max{l' ,1"], inequahties

(15) and (17) simultaneously hold. Hence, by (14) and (16), Bt < At < Ct-

Lemma 10. For all t G PA, Bt < At < Bt-

Proof. Take any t G PA. By Lemma 9, Bt+i < At+i < Ct+i, hence by Lemma 8,

Bt<At< Bf U

Lemma 11. For each t G PA, Bf < At < Bt-

Proof. For any t G PA, observe that i + 1 G PA, and hence, by the last lemma,

At+i < Bt+i, and therefore by Lemma 6, Af = 1 — 6yt+iAt+i > B_f "

A. 2. Proof of Theorem 1. First observe that, by definition,

Bt<Dt ^=^ yt- yt+i < ^^. (18)

Since yt —yt+i is decreasing in t and approaches as i —* oo, there exists some real number

tu such that Bt < Dt if and only if t > <„. Now, assume yt — yt+i < (1 — 5) /6. Then,

t > tu, and hence As < Bg < Dg for each s >t, showing that t — 1 G PA.

A. 3. Proof of Theorem 2. Take t* = rain PA. By definition, there is an agreement

regime at each t > t*, and hence it suffices to show that there is a disagreement regime

at each t < t* . If i* = 0, this is vacuously true, so assume that t* > 0. In that case,

t* — 1 < tu, and there is a disagreement regime at t* — 1. Now I will show that, whenever

there is a disagreement regime at any t < tu, there will also be a disagreement regime

at i — 1, showing by mathematical induction that there is a disagreement regime at each

s < t* — 1. To this end, take some t < t^ with a disagreement regime so that St+i > l/S.

Since i?t = 0, At = 6At+i. By (10), this yields

St = (1 + yt)oAt+i = -— St+i.
1 + yt+i

Hence, St > St+i whenever 6{l + yt) > l+yt+i, i.e., whenever yt — |'yt+i > ^-j^- But this is

true: yt+i > and t < tu, hence yt - |j/t+i > J/t
- yt+i > ^- Therefore, St > St+i > 1/5,

and hence there is a disagreement regime at t — 1.
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A.4. Proof ofLemma 1 . The upper bound tu is computed by setting a +n)(t +n+i)
~

(1 - 6) /6. Since yt - yt+i = (t+n)(f+n+i) ' (1^) yields t* < max{0,i„}. To compute ti, use

the lower bound Bt for Af . Check that Bf > Dt if and only if t satisfies (5). By Lemma 11,

s = t-\- n satisfies (5) only if i < <„, hence there exists the largest integer t; that satisfies

(5), and ti < tu- Clearly, At, >Bt, > L*t, ,
yielding disagreement at ti — 1. Hence, ti — l<t*

and therefore f/ <*t*.

A.5. ' Proof of Theorem 5. Given any A;, let t* (fc), f; (fc), and t„ (A:) be the settlement

time and its lower and upper bounds, respectively, defined in Lemma 1 for the parameters

6 = e~'^/^, n = irk and A = yc,n. Write r*, t;, and r^ for the limits of T{t*{k),k),

T [U (fc) , k), and r {t^ (fc) , k), respectively, as A: —> oo. Define uj = nyo/r.

Towards proving the first statement, note that 6 = e"''/*^ = 1 — r/k for large values of

k. Hence, by (4), tu {k) = (vT+icJfc^— l)/2 — -rrk so that t„ = lim^^oo tu (k) /k = y/uj — it

as claimed. To prove the second statement, for any given t, write s = t + n and a = s/k =
T {t, k) + TT. When k is large, we also have 6 = e"''!^ = 1 - r/k and [ka +\) /k = a =
{ka + 2) /k. Substituting these in (5), one can check that / = rfc^ [a^ — u)o + w^r] . Then,

by Theorem 1 , t* > ct — tt whenever

(j)
= a^ - u)a + u?r < 0.

Note that (p has a local minimum at o; = ywv/S. If j/oTrr < 4/27, then (j> is negative at ct,

showing that t* > a; — tt as desired.^ The last statement in the theorem follows from the

fact that as TT -^ 0, yoT^r —> and thus r* > ^/uJ/3 — n —^ oo.
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