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Abstract 

Novatein Thermoplastic (NTP) is a bloodmeal based plastic developed by the 

University of Waikato by mixing bloodmeal with water, additives and tri-ethylene 

glycol (TEG - a plasticiser and petroleum based product) so it can be extruded and 

injection moulded. The aim of this research was to produce a bloodmeal hydrolysate 

that could be used in NTP as a substitute for TEG, and also used to treat sodium 

bentonite clay to improve its properties as a filler in NTP. 

Bloodmeal was hydrolysed with pepsin and alcalase to determine the reaction rate, 

degree of hydrolysis and optimum conditions.  Bloodmeal could be readily hydrolysed 

giving up to 80% hydrolysis yield with 25-40% degree of hydrolysis, with average 

peptide molecular weight ranging between 2-12 kDa for alcalase, and 20-25% degree of 

hydrolysis and average molecular weights of 20-80 kDa for pepsin.  Large scale 

hydrolysis with alcalase, trypsin and then pepsin gave 80% hydrolysis yield, and 

peptide average molecular weights at 8.9 kDa for alcalase, to 5.5 for trypsin. 

Adsorption of hydrolysate on to sodium bentonite gave 127 mg/g clay adsorption for 

alcalase, but was low for trypsin, and no adsorption occurred for pepsin hydrolysate. 

Specific mechanical energy required to extrude NTP increased with increasing 

hydrolysate content but only slightly increased with clay content, but in both cases 

increased with extent of hydrolysis, i.e. trypsin hydrolysate gave greater SME than 

alcalase, and pepsin hydrolysate gave greater SME than trypsin, which could be due to 

the increasing salt content in the hydrolysate. 

Tensile strength, secant modulus, crystallinity, thermostability and glass transition 

temperature decreased with increasing hydrolysate content in NTP, likely due to the 

shorter average protein chain length, indicative of some plasticisation.  Glass transition 

temperature did not change for NTP with alcalase hydrolysate.  Toughness, strain at 

break, and impact strength were low indicating a very brittle material. 

Highly variable results were obtained for the NTP with treated and untreated clay as a 

filler, but generally gave lower mechanical properties than conventional NTP.  Alcalase 

treated clay was particularly detrimental on NTP composite strain at break and 

toughness.  Thermostability of the composites increased within the 450-600
o
C region 

with increasing clay concentration for all treated clays, but showed a much more rapid 

decrease in mass loss. 
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1.1 Introduction 

Plastic has dramatically changed human lifestyle, providing a material which is used 

from packaging to fabricating new tools, household appliances and even as 

replacements for broken limbs and hip joints.(Greenemeier 2007) 

Plastic comes from Greek word ‘plastikos’ meaning able to be moulded in different 

shapes (Shah, Hasan et al. 2008). They are man-made materials manufactured from 

long polymeric chains of molecules. In the 1970’s, plastic materials started to replace 

natural materials in almost every area (Shah, Hasan et al. 2008) due to their exceptional 

properties and performance over metals and wood (Shimao 2001). The plastic we use 

today comes from inorganic and organic raw materials manufactured by petrochemical 

industries. This consumes 270 million tons of oil and gas worldwide (Slater 2000) to 

produce 140 million tons of plastic (Shimao 2001, Ren 2003), with a per capita 

consumption of 80-100 kg a year in developed countries (Ren 2003), which is 

increasing at 12% per annum (Shah, Hasan et al. 2008). 

These synthetic polymers are highly stable, have a large volume to weight ratio, and are 

resistant to microbial degradation.  They do not degrade easily, polluting water, cause 

“White Pollution”, i.e. white plastic material accumulating on land, and increase 

landfill depletion (Shimao 2001, Ren 2003).  Accumulation of plastic residues in soil 

can decrease crop yields. Plastic bags floating on the water are also a threat to fish, 

birds and animals and can cause navigation issues as well (Ren 2003). 

Plastic biodegradation has been a much studied subject in last three decades (Luengo, 

Gar   a et al. 2003). Bio-based plastics are considered to be an alternative for petroleum 

based plastics, reducing the pressure on landfills and help preserve non-renewable 

resources (Shimao 2001, Ren 2003, Olsen 2013). 

Bio-based plasti s are “ ommer ial or industrial goods, (other than feed or food), 

composed in whole or in significant part of biological products, forestry material or 

renewable domesti  agri ultural materials in luding plant, animal or marine materials” 

as defined by Department of Agriculture (US).  The American Society for Testing and 

Materials (ASTM) defines a bioplastic as “an organi  material in whi h  arbon is 

derived from a renewable resource via a biologi al pro ess” (Olsen 2013). Bio-based 

materials are inclusive of all animal and plant mass derived from CO2 via 

photosynthesis as per the definition of renewable resources (Ren 2003). 
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With the increase in the fossil fuel prices, pollution and drive to decrease dumping 

plastics in landfills (Iles and Martin 2013), and new legislature for developing 

environmentally and economically viable manufacturing (Soroudi and Jakubowicz 

2013) for reuse and recycling (Iles and Martin 2013), the bioplastics and biopolymers 

industry is growing rapidly. The production of European bioplastics is expected to 

exponentially increase from 700,000 tonnes in 2010 to 1.7M tonnes in 2015 (Soroudi 

and Jakubowicz 2013). 

Bio-based plastic production started in the 1970’s, with investment in research into 

starch based biopolymers (Mohanty, Misra et al. 2002). These biopolymers are called 

agro-based biopolymers, because the raw material comes from plants and animals 

(Gaspar, Benkő et al. 2005). Biodegradable plastics can also be produced from 

transgenic plants and microorganisms (Scheller and Conrad 2005). Some examples of 

bio-degradable plastic are polyhydroxyalkanoates (PHAs), polylactic acid (PLA), 

thermoplastic starch (TPS), bio-urethanes (BURs), cellulose and lignin, corn zein and 

soy protein (Cuq, Gontard et al. 1998, Shimao 2001). These are called “first 

generation” bio-products, derived directly from edible biomass especially corn and 

soybeans. This raises crop demand, raising the price of animal feed and food. 

“Second generation” bio-products are produced from waste materials, for example  

cellulose from plant waste to produce biofuels, which could later be used to produce 

plastics which are bio degradable. Proteins available as a by-product or wastes from the 

agricultural, horticulture (wheat, soy, sunflower) and animals (gelatins, keratin and 

whey) are being used to produce plastics (Cuq, Gontard et al. 1998, Wang, Auty et al. 

2010).(Le Tien, Letendre et al. 2000). 

The principal driving force of the New Zealand economy is the red meat industry with 

exports worth $8 billion a year (MIA 2013).  The meat processing industry produces 

by-products such as connective tissue and skin, bone, tallow, and blood.  Edible by-

products comprise almost 10 to 30 percent of the live weight of cattle and sheep 

(Ockerman and Hansen 1999). Two to five per ent of a  attle’s live weight is blood 

(Ockerman and Hansen 1999).  Blood has the potential for producing food ingredients, 

emulsifying agents and colorants (Parés, Saguer et al. 2011), but because of aesthetic 

values of society and the taste and dark color of blood, blood is commonly dried and 
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processed as a low value but nitrogen rich bloodmeal for fertilizer (Ciavatta, Govi et al. 

1997). 

At the University of Waikato, bloodmeal has been successfully converted into a 

thermoplastic  (Verbeek and van den Berg 2011), called Novatein Thermoplastic (NTP) 

with comparable mechanical properties to low density polyethylene.  This involves 

mixing bloodmeal with water, urea, sodium sulphite, sodium dodecylsulphate and tri-

ethylene glycol (TEG) to reduce protein-protein interactions so it can be extruded and 

injection moulded at temperatures that do not degrade the protein chains. NTP is in the 

process of being commercialized by the University spin-off company Aduro 

Biopolymers. Potential applications include render able plastic components for the meat 

processing industry and biodegradable pot plant containers.  It is compostable and will 

lose half its mass within 12 weeks in a compost (Verbeek, Hicks et al. 2012).  Current 

and past research is on improving NTP properties for broader commercial applications, 

creating NTP blends with other polymers, making films and foams, making composites 

by including nano-clays and fiber reinforcement.   Research has also examined making 

a decoloured NTP (Low, Verbeek et al. 2014), and assessing NTP environmental 

impact by life cycle assessment (Verbeek and van den Berg 2011, Verbeek, Hicks et al. 

2011, Bier, Verbeek et al. 2012, Verbeek and Koppel 2012, Bier, Verbeek et al. 2013). 

1.2 Problem Statement 

Plasticization of NTP with TEG and water is necessary as, while unplasticized NTP can 

be extruded and injection moulded, the resulting product is very brittle.  This is due to 

poor protein chain mobility due to weak bonding, disulphite bonding and hydrophilic 

and hydrophobic interactions between proteins (Sothornvit and Krochta 2001). To 

reduce these interactions water and tri ethylene glycol (TEG) are added to bloodmeal 

based bioplastics (Verbeek and Koppel 2012), reducing protein-protein interactions and 

increasing space between protein chains resulting in more flexibility (Lawton 2004, 

Vieira, da Silva et al. 2011, Wihodo and Moraru 2013).  TEG as a plasticizer is costly 

and is a petroleum product, so the aim of this thesis was to produce NTP using peptides 

from enzyme hydrolyzed bloodmeal as an alternative to TEG.  This would help reduce 

cost and potentially reduce the environmental impact (Bier, Verbeek et al. 2012).  

Bloodmeal was chosen as a feedstock for hydrolysis as it can be sold internationally 
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because the blood proteins have undergone thermal denaturation.  Any potential 

pathogens should have been destroyed during bloodmeal manufacture. 

Previous research has also shown NTP mechanical properties can be improved by 

treating sodium bentonite clay with protein (gelatin peptides) from meat rendering plant 

stick water and including it as a filler in NTP, while treating clay with food grade 

gelatin was either detrimental or not as effective (Shamsuddin 2013). Therefore the 

second aim of this thesis was to treat sodium bentonite clay with peptides from 

bloodmeal hydrolysate and incorporate the clay as a filler in NTP. 

1.3 Research Objectives and Thesis Structure 

The research objectives of this study are: 

 Assess the effectiveness of pepsin, alcalase and acid and optimal conditions in 

producing peptides from bloodmeal.  This will be quantified by measuring 

reaction rates, degree of hydrolysis, hydrolysis yields and peptide size. 

 Produce large quantities of hydrolysate of varying size distribution by 

sequentially treating bloodmeal with alcalase, trypsin and pepsin and recovering 

some of the hydrolysate at each step.   

 Absorb some of the hydrolysate from each step to treat sodium bentonite clay 

for use as a filler in NTP. 

 Assess the effect of hydrolysate as a substitute for TEG in NTP, and the effect 

of the hydrolysate treated bentonite as a filler in NTP.  This would be 

determined by producing tensile specimens and impact bars containing different 

concentrations of each type of hydrolysate and hydrolysate treated bentonite, 

and measuring tensile strength, modulus, impact strength, toughness, strain at 

break, glass transition temperature, thermal stability, and crystallinity.  Effect on 

plastic processability and morphology will also be examined. 

 

This thesis will follow a conventional layout.  Coverage of relevant literature to this 

research will be provided in Chapter Two, methods used in the research in Chapter 

Three, results and discussion presented in Chapter Four, and conclusions and 

recommendations will be given in Chapter Five.  
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2.1 Introduction 

The aim of this thesis was to produce NTP using peptides from enzyme hydrolyzed 

bloodmeal as an alternative to TEG and to treat sodium bentonite clay with peptides 

from bloodmeal hydrolysate and incorporate the clay as a filler in NTP.  Therefore this 

literature review will briefly cover blood and its conversion into bloodmeal, amino 

acids and proteins, and conversion of proteins into plastics, the role and use of 

plasticizers in protein plastics, and the role and use of fillers and modified fillers in 

plastics.  It will also cover enzymes and enzyme hydrolysis and provide some 

applications of enzyme hydrolysates in materials.  Finally it will briefly cover some of 

the previous research on NTP. 

2.2 Blood 

Two to eight percent of a live weight of an animal is blood.  Blood is the main carrier 

of nutrients and the engine of various functions in the body. It transfers nutrients and 

distributes heat throughout the body and carries waste products to the kidneys.  It 

transports oxygen from the lungs to every organ of the body and returns CO2 to the 

lungs for exhalation (Hyun and Shin 1998, Mandal, Rao et al. 1999, Ockerman and 

Hansen 1999).  Blood is also responsible for carrying hormonal and chemical signals 

from one part of the body. Blood consists of many types of cells ranging for those for 

circulating oxygen to producing antibodies. These can be classified into three types 

(Stryer 2007, Cox 2008, Grisham 2010) (Table 1). 

 Erythrocytes: (red cells), filled with hemoglobin and specialized for carrying O2 

and CO2. 

 Leukocytes:  (white cells), helps in the fighting of the infections especially 

lymphocytes. 

 Platelets: helps in clotting. 

18-19% of blood is protein and the remainder is water (Mandal, Rao et al. 1999).  

Approximately 45% by volume is red blood cells and the remainder plasma.  The red 

blood cell fraction contain 34-38% solids, the majority of which is protein, while 

plasma contains 7-8% protein. 
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Table 1: Blood and its components (Cox 2008) 

Type of cell Main functions 

Typical 

concentration 

in blood per 

litre 

Red blood cells (erythrocytes) Transport O2 and CO2 5x10^12 

White blood cells (leucocytes)   

 Neutrophils     

(polymorphonuclear  

leucocytes) 

Phagocytose and destroy invading 

bacteria 

5x10^9 

 Eosinophils Destroy larger parasites and modulate 

allergic inflammatory responses 

2x10^8 

 Basophils Release histamine (and in some 

species serotonin) in certain immune 

reactions 

4x10^7 

 Monocytes Become tissue macrophages, which 

phagocytose and digest invading 

microorganisms and forgein bodies as 

well as damaged senescent cells 

4x10^8 

 Lymphocytes   

      B cells Make antibodies 2x10^9 

      T cells Kill virus infected cells and regulate 

activities of other leucocytes 

1x10^9 

      Natural killer cells Kill virus infected cells and regulate 

activities of tumour cells 

1x10^8 

Platelets   (cell fragments arising from 

megakaryocytes in bone marrow) 

Initiate blood clotting 3x10^11 

 

 

Figure 1 Blood component fractionation (Duarte, Carvalho Simões et al. 1998) 
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Table 2: Quantity of raw and dried blood in various species (Fernando 1992) 

Species 

Raw blood 

(kg/animal) 

Dried blood 

(kg/animal) 

Lamb 1.17 0.193 

Sheep 1.76 0.266 

Ox 23 3.5 

Bull 16.52 2.51 

Cow 18.41 2.8 

Pig 2.84 0.432 

 

2.3 Bloodmeal 

A large amount of blood is produced in abattoirs when slaughtering animals. This is 

very rich source of nutrients and amino acids such as lysine (Waibel, Cuperlovic et al. 

1977), and can be used  as feed for animals such as weaning pigs (Hansen, Nelssen et 

al. 1993, DeRouchey, Tokach et al. 2002). Blood collected in abattoirs is dried to 

produce bloodmeal.  Bloodmeal is a dark brown and odorous powder with a moisture 

content of 5-10% and protein concentration of 75-85% (Ockerman and Hansen 1999, 

Low 2012).  It contains high amounts of hydrophobic amino acids such as valine, 

methionine, isoleucine and leucine.  Bloodmeal has a low solubility in water due to 

disulphite and non-disulphide crosslinks formed during coagulation and drying (Finley, 

Wheeler et al. 1982, van den Berg 2009, Low 2012). 

Bloodmeal can be produced using the following methods:  

Direct drying: This method is used for smaller plants, where the number of animals 

killed per day is small, and gives almost 100 percent recovery of collected blood. 

Normally blood is diluted to 85 percent water content and dried in large batch cookers 

at a constant temperature 100 to 140
o
C for up to 10-15 hours. Bones are also introduced 

in the cooker to scour the surface and decrease drying time (Kramer, Waibel et al. 

1978, Fernando 1984).  

Batch coagulation followed drying: Blood is coagulated in a tank using injected 

steam. The coagulum is drained of water. Product losses can occur from incomplete 

coagulation and drainage. In addition attaining a optimum coagulation temperature of 

90
o
C is not easy and the steam does not distribute uniformly through the tank resulting 

in low product quality and yield (Fernando 1984). 
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Continuous coagulation and mechanical dewatering before drying: This method is 

the most common method of drying blood. Blood is preheated to 60
o
C in a stainless 

steel holding tank with slow agitation for almost an hour. It is then passed through a 

tube with orifices for steam injection for rapid heating up to 90
o
C, the optimum 

temperature for coagulation. The coagulum is separated using a decanter centrifuge and 

sent to a dryer (Kramer, Waibel et al. 1978). 

Spray drying:  Blood is first dried to 40-50 % solids by evaporators with a lower 

heating temperature of 49
0
C and then spray dried with hot air at 316

0
C (L 1954, 

Kramer, Waibel et al. 1978, Teixeira, Castro et al. 1995). 

 

Figure 2 Diagram depicting continuous coagulation and mechanical dewatering process (Fernando 1984) 

 

The different methods for drying blood results in slightly different amino acid profiles 

(Table 3). 

2.4 Amino acids, proteins and peptide bonds 

“The word Protein that I propose to you….. I would wish to derive from proteios, 

be ause it appears to be primitive or prin ipal substan e of animal nutrition that’s 

plants prepare for the herbivores, and whi h the latter furnish to  arnivores.” –J.J. 

Berzelius, letter to G.J. Mulder, 1838 (Cox 2008). 
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Table 3 Amino acids present in differently produced bloodmeal (Kramer, Waibel et al. 1978, Low 2012) 

Amino Acids Dried Bloodmeal Coagulated bloodmeal 

Spray dried 

bloodmeal 

Lysine 7.55 9.52 10.37 

Histidine 3.76 44.23 6.38 

Arginine 3.89 4.12 2.07 

Aspartic acid 9.58 11.04 11.03 

Theonine 3.36 5 5.11 

serine 3.36 4.78 5.47 

Glutamic acid 8.7 10.11 8.09 

Proline 4.02 4.16 3.24 

Glycine 4.91 4.48 4.51 

Alanine 7.17 8.74 9.47 

Cysteine 0.57 1.02 - 

Valine 7.78 9.76 8.5 

Methionine 0.62 0.95 0.36 

Isoleucine 1.01 0.92 - 

leucine 11.25 13.82 13.92 

Tyrosine 2.22 3.1 2.39 

Phenylalanine 6.06 7.9 8.19 

Tryptophan - - - 

    

All the mechanisms taking place in biological organisms are mediated by proteins 

(Cox, 2008).  All proteins are constructed from combinations of 20 different amino 

acids, linked covalently together by a condensation reaction to form a linear  sequence 

(Figure 3). 

 

Figure 3 Formation of a peptide bond (Grisham, 2010) 
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2.4.1 Amino Acids 

The general structure of an amino acid is shown in Figure 4. An amino acid consists of 

an alpha (α)  arbon (Cα), covalently linked to the amino group (NH3
+
) and carboxyl 

group (COO
-
). The central carbon atom (Cα) is also attached to a hydrogen atom and a 

variable side chain, called the R group, which differs for each amino acid, giving amino 

acid its identity. At neutral pH the amino acid is present as a neutral molecule called a 

Zwitterion, containing one positive and negative charge. All the amino acids are chiral 

molecules. 

 

Figure 4  Various models of amino acids (Grisham, 2010) 

The ability of the amino acids to polymerize to form peptides and proteins is due to the 

presence of the amino and carboxyl group. These groups react in a head to tail 

fashion(Stryer 2007, Cox 2008), with the removal of a water molecule and formation of 

a covalent amide link which is called a peptide bond. 

The peptide bond has partial double bond character (Cox 2008), which restricts free 

rotation around peptide bond and leaves backbone of peptide with two degrees of 

freedom of movement per amino acid group. 

There are commonly 20 amino acids present the proteins, with their molecular mass 

shown in Table 4.  
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Table 4 List of amino acids and their molecular weight (Hernandez-Izquierdo and Krochta 2008) 

Name Abbreviations 

Molecular 

Weight (Da) 

Neutral   

Alaline Ala 89 

Asparagine Asn 132 

Cysteine Cis 121 

Glutamine Gln 146 

Glycine Gly 75 

Isoleucine Ile 131 

Leucine Leu 131 

Methionine Met 149 

Phenylalanine Phe 165 

Proline Pro 115 

Serine Ser 105 

Threonine Thr 119 

Tryphtophan Try 204 

Tyrosine Tyr 181 

Valine Val 117 

Basic   

Arginine Arg 174 

Histidine His 155 

Lysine Lys 146 

Acidic   

Aspartic acid Asp 133 

Glutamic acid Glu 147 

 

All the amino acids have free carboxyl and amino groups, except proline. The amino 

acids are classified into different categories, but the best way to categorize them is 

based on the polarity of the side chains. 

Nonpolar amino acids, are important in “folding” the protein chains. In this category 

are alanine, valine, leucine, methonine, tryptophan, phenylalanine, isoleucine and 

proline. These amino acids cluster together within proteins and stabilize the protein 

structure by hydrophobic interaction. 

Polar, uncharged amino acids, form hydrogen bonds and are more soluble in water. 

This class of amino acids includes glycine, serine, asparagine, glutamine, threonine, 

cysteine and tyrosine. 

Polar, acidic amino acids, aspartic acid, glutamic acid have a net negative charge at 

neutral pH. 
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Polar, basic amino acids, histidine, arginine and lysine have a net positive charge at 

neutral pH. 

There are a few other classifications of amino acids based on interaction with water: 

Hydrophobic amino acids: Alanine, glycine, isoleucine, leucine, phenylalanine, 

proline and valine. 

Hydrophilic amino acids: Arginine, asparagine, aspartic acid, cysteine, glutamic acid, 

glutamine, histidine, serine and threonine. 

Amphipathic: Lysine, methionine, tryptophan and tyrosine. 

Another classification is based on the R groups: 

Nonpolar, aliphatic R groups: Alanine, glycine, isoleucine, leucine, methionine and 

proline. 

Aromatic R Groups: Phenylalanine, tryptophan and tyrosine. 

Amphipathic amino acids tend to form micelles, which contain molecules in the form 

of a sphere causing it to form very stable structure. The nonpolar regions of the 

molecules are stabilized with hydrophobic interactions. These hydrophobic interactions 

are very important for stabilizing the molecule and helps determines the structure of the 

biological molecules. Another kind of weak interaction are Van der Waals interactions 

also called the London forces. These forces come into interaction when the electron 

cloud of molecules come close enough so they start repelling.(Stryer 2007, Cox 2008, 

Grisham 2010). The different structures of amino acids are shown in Figure 5 and 

Figure 6. 
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Figure 5 Twenty amino acids, which form proteins and polypeptides (continued on next page) (Grisham, 

2010) 
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Figure 6 Continued from Figure 5 

 

There are a few more amino acids, commonly derivatives, which perform important 

functions. 4-hydroxyproline and 5-hydroxylysine are found in collagen, the fibrous 

protein in connective tissue. 6-N-Methyllysine is in myosin, a contractible protein in 

muscle. ϒ-carboxyglutamate is found in prothrombin, a blood clotting protein. 

Desmosine is found in elastin in connective tissue (Figure 7). 
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Figure 7 Uncommon amino acids (a) Selenocysteine, pyrrolysine (b) 5-Hydroxylsine, 4-Hydroyproline y-

Carboxyglutamic acid, Pyroglutamic acid (c) y-Aminobutyric acid (GABA), Epinenphrine, Histamine, 

Serotonin(Grisham, 2010) 

 

Almost 300 additional amino acids are found in cells, each having different functions, 

but all of them are not constituents of proteins (Cox 2008). 

Amino acids behave as weak acid and bases, when an amino acid is dissolved in a 

solution at neutral pH, it remains as a dipolar ion or Zwitterion (Figure 8), acting as 

acid or base. These kind of substances are called amphoteric or ampholytes. 

 

Figure 8 Amino acid shuffling between a zwitterion (Generalic 2014) 

Amino acids are also chiral molecules, and have two possible configurations for α 

carbon atom, which are non-superimposable mirror images or enantiomers. These 

molecules have a special property called optical property, to rotate the plane of 

polarization of plane polarized light. Clockwise rotation of incident light is referred as 

dextrorotary and counter clockwise rotation is called levorotatory. All the amino acids 
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are L-configuration with some dextrorotary and levorotatory at a given pH (Cox 2008, 

Grisham 2010). 

Amino acids with aromatic rings absorb light at 280 nm. Measurement of light 

absorption using a spectrophotometer is commonly used to measure protein 

concentration in solution. The relation is defined by Lambert-Beer law,  

log (I0/I)= ɛcl 

where I0 is the intensity of the incident radiation, I is the intensity of the light 

transmitted and ratio ((I0/I) is called transmittance, ɛ is the molar extinction coefficient, 

c is the concentration of the absorbing species and l is the length of the light absorbing 

sample. 

 

Figure 9 Depiction of Beer Lambert law (PharmaXChange) 

2.4.2 Proteins 

Proteins are long polypeptides of 100 to thousands of amino acid residues linked in 

series with peptide bonds.  They consist of primary, secondary, tertiary and sometimes 

quaternary structures (Figure 10). 

The primary structure of a protein is the amino acids joined together by peptide bonds.  

Regions of this may coil or fold to form secondary structures called α-helixes and β-

sheets, which are stabilized by hydrogen bonds.  Hydrophobic and ionic interactions 

fold the primary and secondary structures into the individual protein final shape, the 

tertiary structure, which may be globular, and will act to reduce contact between 

hydrophobic regions and polar regions of the protein or the surrounding environment 

(Figure 10 and Figure 11).  Covalent cross links such as disulphide bonds between 

cysteine amino acids that are close to each other may form and add strength to the 

tertiary structure.  This protein may then join with other proteins of the same or 

different type to form a quaternary structure (Figure 10) (Stryer 2007, Cox 2008, 

Grisham 2010). 
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Figure 10 Representation of primary, secondary, tertiary and quandary structure of proteins 

 

 

 

Figure 11 A depiction of a protein structure in conformational form (Cox 2008) 

 

The end result is a protein conformation which is energetically stable (Stryer 2007, Cox 

2008, Grisham 2010, Verbeek and van den Berg 2010) for the environment it exists in.  

These proteins can be classified into: 

 Fibrous proteins: contain simple, regular structures and serve in structural roles 

in and outside the cells. 

 Globular proteins: spherical in nature, consisting of hydrophilic and 

hydrophobic regions inside the molecule, and are readily soluble in water. 

 Membrane proteins: consist of hydrophobic residues on the outside and are  

soluble in detergents rather than in water. 
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These proteins are very sensitive to temperature, pH and ionic changes, and the 

presence of organic solvents or surfactants that may reduce the polarity of the 

environment.  An increase in temperature may overcome the interactions that hold a 

protein in its native shape, cause it to unfold or denature exposing hydrophobic regions, 

which may then interact with hydrophobic regions of other nearby proteins to produce a 

new stable structure.  This will result in a loss of the original function (denaturation) 

and may give rise to aggregated and insoluble proteins (e.g. in bloodmeal production) 

(Adler-Nissen 1976).  Heating can also give rise to more β-sheet structures in the 

protein or aggregate (Somero 1995). 

pH changes can result in individual polar, acidic or basic amino acid side groups  

changing their charge from uncharged to a positive or negative charge or vice versa.  

This may also cause a change in protein tertiary structure resulting in unfolding and 

protein aggregation, particularly when the pH is taken past the protein isoelectric point 

or point of overall neutral charge.  Increase in ionic strength by adding salt will increase 

hydrophobic interactions between proteins and may cause salting out, while adding 

non-polar organic solvents will reduce ionic strength and may also result in the protein 

unfolding (Cox 2008). 

2.5 Proteins as Plastics 

Plastics consist of long polymeric molecules that are entangled together.  The polymers 

consist of repeating units manufactured from petroleum products that are joined 

together by condensation, poly-addition and cross linking reactions (Young and Lovell 

2011).   

Plastics can be classified into thermoplastics and thermosets.  Thermoplastics do not 

undergo chemical change when heated and can be melted and reformed into new shapes 

repeatedly. Examples include polyethylene, polypropylene, polystyrene, and polyvinyl 

chloride (Elias 1993, Young and Lovell 2011).   

Thermosets form crosslinks when heated that holds the plastic in its final shape.  They 

cannot be remolded.  Examples include rubber, that is formed from vulcanized 

polyisoprenes, and polyurethanes. 

Plastics have amorphous (areas of disorder) and crystalline (areas of ordered structure) 

regions.  They have a glass transition temperature (Tg) where the amorphous region 
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changes from a glassy state that is brittle to a molten or rubber like state, where the 

polymer chains in the amorphous region can move relative to each other when a force is 

applied.  They may also have a melting temperature (Tm) where even the crystalline 

regions melt.  Side groups on polymers such as benzene will interfere with polymer 

chain movement raising the Tg of the plastic.  As a thermoplastic is heated, its viscosity 

reduces, and it more readily flows when force is applied (Nicholson 2012).  Examples 

of material Tg are shown in Table 5. 

Table 5. Glass transition temperatures of some plastics (Caprio, Fino et al. 2001, Wilkes, Summers et al. 

2005, Ibeh 2011, Nicholson 2012) 

Material Tg (°C) 

Low-density polyethylene (LDPE) −125 

Tire rubber −70 

Polyvinylidene fluoride (PVDF) −35 

Polypropylene (atactic) −20 

Polyvinyl fluoride (PVF) -20 

Polypropylene (isotactic) 0 

Poly-3-hydroxybutyrate (PHB) 15 

Poly(vinyl acetate) (PVAc) 30 

Polychlorotrifluoroethylene (PCTFE) 45 

Polyethylene terephthalate (PET) 70 

Poly(vinyl chloride) (PVC) 80 

Poly(vinyl alcohol) (PVA) 85 

Polystyrene 95 

Poly(methyl methacrylate) (atactic) 105 

Acrylonitrile butadiene styrene (ABS) 105 

Polytetrafluoroethylene (PTFE) 115 

 

Proteins behave in similar way to thermoplastics.  When they are heated beyond their 

ability to maintain their overall shape, their tertiary structure destabilizes and “melts”. 

For most proteins this melting temperature depends on the number of stabilizing 

interactions within the protein, and is close to the body temperature from which the 

protein came.  For example human haemoglobin has partial unfolding temperatures of 

37.2
o
C compared to 34

o
C for a duckbilled platypus and 42

o
C for a spotted nutcracker 

(Stadler, Garvey et al. 2012). Generally heating beyond this will result in a denatured 

protein, leading to an insoluble precipitate or aggregate of proteins. With appropriate 

additives to control inter and intra-protein interactions, proteins can be formed into 

thermoplastics.  For example, bloodmeal has a glass transition temperature of 220
o
C.  

Additives can include water to hydrate and plasticize the protein, urea to reduce 
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hydrogen bonding between and within proteins, sodium sulphite or other reducing 

agents to break disulphide bonds,  surfactants to reduce hydrophobic interaction 

(Verbeek and van den Berg 2011), and plasticizers (e.g. glycerol, sorbitol and tri 

ethylene glycol (TEG)) (Pommet, Redl et al. 2003, Verbeek and van den Berg 2011, 

Vieira, da Silva et al. 2011), which results in the glass transition temperature of the 

material dropping to 75
o
C. 

Proteins that have been successfully converted into plastics include soy, whey, wheat, 

egg white, and bloodmeal (Scheller and Conrad 2005, Zhao, Torley et al. 2008, van den 

Berg 2009, Verbeek and van den Berg 2011, Verbeek, Lay et al. 2013).  Two methods 

to process proteineous materials are dry processing and wet processing (Cuq, Gontard 

et al. 1998, Hernandez-Izquierdo and Krochta 2008). Wet processing involving 

dispersing the protein in a solvent and then removing the solvent to form the product, 

for example in thin films (Cuq, Gontard et al. 1998).  Dry processing involves the 

addition of additives and plasticizers to the material and mechanical shaping using 

injection moulding, extrusion and or compression moulding into the final shape (Cuq, 

Gontard et al. 1998). Mechanical processes such as extrusion, injection moulding and 

addition of surfactants and plasticizers results in denaturation of proteins (if they are in 

their native state) (Verbeek and van den Berg 2010). 

2.5.1 Compression moulding 

Compression moulding involves placing preheated material into an open heated mould, 

which is then closed with a plug that forces the material into its final shape.  This is 

commonly used for thermosets or fibre reinforced thermoplastics.  It is a low cost 

method and intricate or large parts are able to be formed (Gällstedt, Hedenqvist et al. 

2011). 

2.5.2 Extrusion and Injection Moulding 

An extruder consists of one or two rotating screws in a heated barrel, with a hopper and 

feeder at one end, and a die at the other.  Powder or pellets are fed through feeder into 

the barrel, heated and pushed by the screw to the end out through the die. The 

temperature profile, screw speed and feed rate can be manipulated to get the desired 

extrudate. The shearing and mixing caused by the screw reduces the heat required to 

make the material less viscose and flow.  In addition, kneading blocks on the screw 
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improve mixing of materials, allowing plastics made from combinations of materials to 

be extruded (Gällstedt, Hedenqvist et al. 2011, Verbeek and van den Berg 2011).  

 The injection moulder operates on a similar principle, but instead of going through a 

die, a “shot” of the material is forced into a temperature controlled mould where it 

cools and hardens in the final shape, after which the mould opens and the part ejected 

from the mould (Gällstedt, Hedenqvist et al. 2011).  

2.5.3 Plasticizers  

A plasticizer is a low molecular weight compound used as an additive in polymers  to 

improve flexibility and processing of polymers by lowering the glass transition 

temperature of the mixture (Altenhofen da Silva, Adeodato Vieira et al. 2011, Vieira, 

da Silva et al. 2011). They typically have a cyclic or linear chain consisting of carbon 

atoms.  They have a high boiling point making them ideal for injection moulding and 

extrusion at high temperatures.  Plasticizers work by fitting in between polymer chains 

increasing the space between chains, and reducing the interactions between chains, 

allowing the chains to move more easily, lowering the temperature at which the 

polymer can be processed (Vieira, da Silva et al. 2011).   

Plasticizers need to be compatible with or soluble in the material, so for protein based 

plastics, they typically have one or more -OH groups, e.g. TEG, glycerol, ethylene 

glycol, that allows hydrogen bonding and hydrophobic interaction with the protein 

(Bier, Verbeek et al. 2014).  Where the plasticizer is not compatible, it may be mixed 

with another plasticizer which is compatible with the material, making it a secondary 

plasticizer (Table 6).   

Table 6 Plasticizer classification (Vieira, da Silva et al. 2011) 

Plasticizer Classification 

Primary Are soluble in the material at high concentrations 

Secondary Have low solubility in the material, but are soluble in the 

primary plasticsizer 

Water soluble e.g. glycerol, glycols 

Water insoluble e.g. fatty acids 

 

Examples of plasticizers are listed in  and plasticizers for protein based films in Table 

8.  
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Table 7 Plasticizers and their molecular weight (Prescott and Dunn 1949, Wang, Zhuge et al. 2001, Teo, 

Suzuki et al. 2006, Verbeek and van den Berg 2010). 

Plasticizer 

Molecular 

mass (g/mol) Origin 

Water 18 Water 

Sorbitol 182 Sugar alcohol (biological) 

Lactic acid 90 Lactic acid bacteria (biological) 

Glycerol (GLY) 92 Triglycerides (biological) or propylene 

Ethylene glycol (EG) 62 Ethylene 

Diethylene glycol (DG) 106 Ethylene 

Propylene glycol (PG) 76 Propylene or glycerol (biological) 

TEG 150 Ethylene 

1, 4-butanediol 90 

Acetylene and formaldehyde, propylene, 

maleic anhydride, butadiene (petroleum or 

biological), allyl acetate, succinic acid 

(petroleum or biological) or 4-

hydroxybutyrate (biological) 

Dibutyl tartrate 262  

Dibutyl phthalate 278 

n-butanol (from propylene) and phthalic 

anhydride 

Octanic or caprylic acid 144 

1-octanol (from ethylene) or mammalian 

milk (biological) 

Palmitic acid 256 Palm tree oil (biological) 

 

Table 8 Plasticizers used in protein based films (Vieira, da Silva et al. 2011) 

Protein based film Plasticiser 

Zein  Oleic and linoleic acids 

Caseinate-pullulan  Water and sorbitol 

Whey protein  GLY and sorbitol 

b-Lactoglobulin  Sorbitol, EG, TEG, DEG, Polyethylene 

glycol (PEG), glycerol, sucrose, propylene 

glycol 

Sunflower protein  Saturated fatty acids 

Peanut protein  Glycerin, sorbitol, PEG, PG 

Wheat gluten  Glycerin 

Feather keratin  GLY 

Fish mince from Atlantic sardines (Sardina 

pilchardus)  

Sorbitol, GLY, sucrose 

Fish skin protein  Fatty acids and sucrose esters 

Water-soluble fish proteins  GLY, EG, PEG, sucrose and sorbitol 

Fish muscle proteins  GLY, PG, DEG and EG 

Fish myofibrilar protein  Glycerin and water 

Gelatin GLY, sorbitol, mannitol, sucrose, oleic acid, 

citric acid, tartaric acid, malic acid, EG, 

DEG, TEG, PEG, diethanolamine 

Pigskin gelatin  GLY, sorbitol 

Bovine gelatin  Fatty acids, sorbitol, GLY 
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Hydrolysis products from enzymatic treatment of proteins could also be potentially 

used as plasticizers.  However it appears that only soy hydrolysate has been attempted 

as a plasticizer in soy isolate plastics (Vlad, Jane et al. 2006) (Section 2.6.2.5) and 

ovoalbumin hydrolysates as plasticizers in suspensions of alumina powders (Schilling, 

Tomasik et al. 2002).  Enzymes, hydrolysis and applications of hydrolysates are 

discussed in Section 2.6. 

2.5.4 Fillers 

Another method to manipulate plastic properties is to add fillers such as talc, mica, 

clays (e.g. kaolin, bentonite, montmorrilonite), carbon nanotubes, cellulose 

nanowhiskers, and synthetic and natural fibres (Zhao, Torley et al. 2008, Verbeek and 

Christopher 2012, Shamsuddin 2013).  These can be used as bulk extenders to reduce 

the overall cost of the plastic, or as functional fillers to improve mechanical properties 

such as impact strength, tensile strength, and modulus (Croce, Persi et al. 2001).  Filler 

addition can also change toughness, reduce gas and liquid permeability, increase 

thermal stability, and change electrical conductivity (depending on filler and matrix).  

The fillers have a much larger tensile strength than the polymer matrix.  The matrix 

binds to the filler improve overall tensile strength of the composite.  The fillers increase 

modulus by obstructing polymer chain movement.  They also increase impact strength 

by stopping crack propagation in the matrix, because the fractures will stop at the filler 

surface.  The fillers are also more impermeable to liquids and gas diffusion, forcing 

liquid or gas to diffuse around the filler, reducing overall permeability of the composite 

(Verbeek and Christopher 2012) 

Nano-composites are plastics containing nano-sized organic or inorganic fillers.  Clays 

for example are made up of platelets with high aspect ratios and high surface areas that 

can exfoliate in the plastic.  Exfoliation is thought to proceed by the polymer 

intercalating between the platelets, forcing the platelets apart resulting in exfoliation 

(Figure 12).  Nano-composites have improved strength and stiffness, but decrease in 

toughness (Shamsuddin 2013). 

Nano-fillers are used to produce nano composites using three techniques (Shamsuddin 

2013): 

1. Solution blending produces nano-composites by mixing the polymer and filler 

in a solvent and then removing the nano-composite from the solvent. 
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2. Polymerization, where clay is mixed with monomers, the monomers polymerise 

and exfoliated nano-composites are produced.  

3. Melt processing, where high temperature and shear pressure is used to exfoliate 

clay into the mixture. 

 

Figure 12 Schematic diagrams of different type of composites arising from the mode of nanoclay-

polymer interaction (Shamsuddin 2013) 

Exfoliation is dependent on the compatibility of the filler material with the polymer.  If 

the filler is incompatible with the polymer, the polymer will not adhere to the surface, 

and the filler and polymer will phase separate.  For example, clay surfaces are 

negatively charged while the polymer may be non-polar or hydrophobic.  In the case of 

protein plastics, proteins contain a mixture of hydrophobic and hydrophilic regions.  

Polymer/filler compatibility can be increased by adding compatibilisers such as maleic 

anhydride which interact both with the clay surface and polymer.  In the case of protein 

plastics, the clay surface can be modified by adsorbing octodecylamine to the surface 

(Verbeek and Klunker 2013), or suspending the clay in solution and adsorbing soluble 

protein on to the surface (e.g. gelatin or stickwater) (Shamsuddin 2013). 

2.6 Enzymes 

To sustain life, two important functions are required, reproduction and catalysis of a 

chemical reaction within stipulated time frame to sustain life. Enzymes are proteins 

which help catalyse and accelerate a reaction.  Enzyme and catalyst promoted reactions 

reduce the free energy (ΔG) required for a reaction to proceed (Figure 13).  Enzymes 

have a high specificity for their substrates and normally work under mild pH and 

temperature (Stryer 2007, Cox 2008, Grisham 2010). 
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Figure 13 Transition state and activation energy with and without enzyme (Activation energy is also said 

as free energy in some cases as detailed in paragraph above). 

 

Biologi al  atalysis was re ognized in late 1700’s and early 1800’s, but a major 

breakthrough  ame when Louis Pasteur’s  on lusion that fermentation of sugar to 

alcohol was not possible without yeast. This idea was known as Vitalism, but in 19
th

 

century Eduard Buchner concluded that sugar can be fermented without yeast if the 

molecules responsible for fermentation are present. The molecules detected by Buchner 

were named enzymes by Friedrick W. Kuhne. Haldane made a suggestion that weak 

interactions between substrate and enzyme catalyses the reaction at an accelerated rate. 

Almost all enzymes are proteins with an exception of RNA molecules, their weight 

ranging from 12000 to more than a million Daltons. Enzymes often contain an 

additional chemical component called a cofactor or an organometallic molecule called a 

coenzyme which aid in the attachment of the enzyme to substrate. 

Enzymes have been classified with various terminologies, but international community 

designates them with the type of reaction catalyzed by enzymes (Table 9). 

 

An example of simple enzymatic reaction could be written as 

E + S ESEPE + P 
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Table 9 International Classification of Enzymes (Cox 2008) 

Class no. Class Name Type of reaction catalysed 

1 Oxidoreductases Transfer of electrons (hydride ions or H atoms 

2 Transferases Group transfer reactions 

3 Hydrolases Hydrolysis reaction (transfer of functional to water) 

4 Lyases Addition of groups to double bonds, or formation 

  of double bonds by removal of bonds 

5 Isomerases Transfers of groups within molecules to yield 

  isomeric forms 

6 Ligases Formation of C-C, C-S, C-O and C-N bonds by 

  condensation reaction coupled with cleavage 

  of ATP or similar cofactor 

 

According to recent theory enzymes work on the principle of a stick model, where the 

substrate (stick) is bent by the enzyme rendering it more susceptible to reaction.  The 

substrate enters the active site of the enzyme, which is specific for the substrate, and 

reaches a transition state between substrate and product. The enzyme active site can be 

subdivided into two categories: enzyme complementary to substrate and enzyme 

complementary to the transition state.  An enzyme complementary to substrate (stick) 

delays the bending of the stick, stabilizing the substrate, but increases interactions that 

increase free energy and increases rate of reaction. Whereas enzymes complementary to 

the transition state destabilize the substrate (stick) resulting in catalysis of reaction (Cox 

2008). 

2.6.1 Enzyme hydrolysis 

Native protein tends to be resistant to hydrolysis by enzymes, but denatured or partially 

denatured proteins are more prone to cleavage (Adler-Nissen 1976). The Linderstrom-

Lang model of attack by enzymes on globular and denatured protein subdivides 

hydrolysis into the one by one type and zipper attack.  In this model, the protein 

oscillates between the native and denatured state, the rate of oscillation may be fast or 

slow (Figure 14).  When it is in the denatured state it is more susceptible to hydrolysis.  

The cleavage of one or more peptide bonds may result in the protein irreversibly 

unfolding exposing more peptide bonds to enzymatic attack, resulting in extensive 

degradation into peptides.  If the initial rate of oscillation is slow, it will appear that 

“one by one” ea h protein is broken down into peptides with little or no intermediates.  

If the initial rate of oscillation is fast, it will appear that all of the protein has denatured 
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and unfolded at the start of hydrolysis (i.e. unzipped), and subsequent cleavage of the 

protein into peptides will be slow with the appearance of a large number of 

intermediates (Adler-Nissen 1976, Panyam and Kilara 1996). 

 

Figure 14 Linderstrom-Lang hydrolysis model (globular proteins are shown by circles, rectangles 

represent denatured proteins and small rectangles shows polypeptide chains of varied length) (Adler-

Nissen 1976) 

 

Figure 15 Hydrolysis of denatured proteins (a) one by one method (b) Zipper method.  The triangle 

represents the insoluble residue (Adler-Nissen 1976) 

 

The extent and rate of hydrolysis can be measured by the pH stat method, where 

hydrolysis is measured by the amount of base or acid added to keep the pH constant 

(Panyam and Kilara 1996, Spellman, McEvoy et al. 2003).  The amount of acid or base 

added can be converted into degree of hydrolysis by: 

DH%=((BxM)MP)x(1/α)x(1/H)x100 

where B is amount of base added (ml); M molarity of the base; MP is mass of protein 

(g), H been amount of peptide bonds present in the molecule and α the degree of 

dissociation of the -amino group calculated by  
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α=(10
pH-pKα

)/(1+10
pH-pKα

) 

Alternatively degree of hydrolysis can be calculated by (Ruan, Chi et al. 2010): 

DH= (h/Htot) x100 

Where h is the equivalent of peptide bonds broken, calculated from addition of acid of 

base, assuming 1 mol of bond broken is equal to 1 mol of H
+
 or OH

-
 ions added. 

Other approaches include measuring the amount of liberated amino groups using the 

photometric ninhydrin method, or by measuring the increase in solubility of proteins 

after trichloroacetic acid precipitation.  While the different approaches are not 

comparable to each other, base consumption methods are easy to perform (Panyam and 

Kilara 1996). 

2.6.2 Applications of Enzyme Hydrolysis 

Enzymes have been used to modify the structure and functional properties of proteins to 

improve solubility, digestibility, and foaming, or produce hydrolysates from various 

feed stocks including blood, soy protein, egg white, fish proteins, chicken heads and 

other animal parts, casein and whey (Piot, Guillochon et al. 1988, Surowka and Fik 

1994)(Chobert, Bertrand-Harb et al. 1988, Achouri, Zhang et al. 1998, Kim, Ki et al. 

2007).  Protein hydrolysates have been used in animal feeds for centuries (Clemente 

2000), and their antioxidant properties and use in human nutrition have been studied 

(Clemente 2000, Peña-Ramos and Xiong 2001). Enzymes used for producing 

hydrolysates include pepsin, alcalase, and trypsin (Kim, Ki et al. 2007, Ruan, Chi et al. 

2010). 

2.6.2.1 Pepsin 

Pepsin is a gastric acid protease present in the stomach.  It was the first enzyme 

discovered and named in 1823 by T. Schwann (Northrop 1920, Antonov, Ginodman et 

al. 1978, Fruton 2006).  Pepsin is an endopeptidase with broad specificity, with 

optimum pH 3.5 (Lin, Fusek et al. 1992).   

Pepsin preferentially hydrolyses peptide bonds formed by tyrosine, phenylalanine, 

alanine, leucine, cysteine, cysteine and glutamic acid (Hirs 1967), but has been found to 

cleave almost all peptide bonds except proline and isoleucine. A mechanism of pepsin 

action consists of: 
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(1) RCO-NHR' + Pepsin-OH ± RCOOH + Pepsin-NHR' 

(2) Pepsin-NHR' + H20 + H+ -- R'NH3+ + Pepsin-OH (Hydrolysis) 

(3) Pepsin-NHR' + R"COOH >. R"CO-NHR' + Pepsin-OH (Transfer)(Fruton, Fujii et 

al. 1961) 

There are differences in literature (Schlamowitz and Peterson 1959) as to pepsin’s 

optimal pH, with pH cited ranging from 1.5 to 3.  Certain books suggest the highest rate 

of pepsin reaction is at pH 3 (Cox 2008).but according to Ruan et al who used pepsin to 

hydrolyse egg white, the optimum pH which gave the best degree of hydrolysis was pH 

1.5 (Ruan, Chi et al. 2010). Peptide hydrolysis rate decreases with increasing peptide 

length (Pohl and Dunn 1988). 

Examples of pepsin use include preparing hydrolysates from egg white (Ruan, Chi et al. 

2010), whey protein (Kananen, Savolainen et al. 2000), milk protein and soybean whey 

proteins (Terada, Kato et al. 1975, Peñas, Préstamo et al. 2004), and chicken heads 

(Surowka and Fik 1994) 

2.6.2.2 Alcalase 

Alcalase (also called subtilisin) is produced from bacillus subtilis (Hirs 1967). It 

belongs to a class of serine proteases that use the catalytic triad of Asp32, His64 and 

Ser221 in its active site to hydrolyse proteins. The enzyme is specific for the amide 

group of serine, asparagine, alanine, and tryptophan (Hirs 1967).  The rate limiting step 

is acylation for amide bond hydrolysis and deacylation of the ester bond. Alcalase 

optimal hydrolysis reaction pH is 8 to 8.5 (Adamson and Reynolds 1996, Kristinsson 

and Rasco 2000) and temperatures ranging from 60 to 90
o
C.  

Examples of alcalase use include producing hydrolysates from food proteins, soy 

protein, whey protein, sunflower proteins and porcine haemoglobin (Adler-Nissen 

1977, Villanueva, Vioque et al. 1999, Sousa Jr, Lopes et al. 2004, Chang, Wu et al. 

2007). 

2.6.2.3 Trypsin 

Trypsin is considered as a prototype of the serine endo-peptidases of family S1, which 

hydrolyses peptide bonds between the COOH group of lysine or arginine and the 

adjacent NH2 group of the next amino acid. Cleavage is slow when lysine or arginine is 

adjacent to an acidic amino acid such as aspartic acid or glutamic acid, and stops if 

proline is an adjacent amino acid on either the N or C terminal side (Hirs 1967). The 
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optimum pH for trypsin hydrolysis to occur is between 7.0 to 9.0 and at a temperature 

of 39
o
C (Jost and Monti 1977, Pintado, Pintado et al. 1999, Galvão, Souza Silva et al. 

2001, Yin, Tang et al. 2008). 

Trypsin has been used to hydrolyse whey protein (Kananen, Savolainen et al. 2000), 

oak leaves and cannabis (Feeny 1969, Yin, Tang et al. 2008). 

2.6.2.4 Examples of protein hydrolysates in materials 

Ovoalbumin hydrolysates have been investigated as a plasticiser in micrometric and 

nanometric ceramics (Schilling, Tomasik et al. 2002). Egg white hydrolysate was used 

as a low cost binder in ceramics (Dhara and Bhargava 2001)(Lyckfeldt, Brandt et al. 

2000, Sigmund, Bell et al. 2000).  Collagen and soy protein hydrolysates are used in 

producing biodegradable films and packing materials (Surowka and Fik 1994, Swain, 

Biswal et al. 2004, Langmaier, Mokrejs et al. 2008, Bressler 2010, Song, Tang et al. 

2011) and hydrolysates of bloodmeal for fire-fighting foams (Bressler 2010). 

2.6.2.5 Soy protein hydrolysates as a plasticizer 

In Vlad et al (2006) paper, soy protein isolate (SPI) were mixed with soy protein 

hydrolysates as plasticizers.  The hydrolysates were produced by two types of alkali 

hydrolysis and added in concentrations up to 30 parts per 100 (pph) of SPI along with 

water at 80 pph.  Compression moulded samples had tensile strengths ranging between 

9-11 MPa with strain at break between 2-2.5%.  Injection moulded samples tensile 

strength ranged between 5.5 to 10 MPa, with strain at break between 1.4 to 2.5% (Vlad, 

Jane et al. 2006).  The tensile strengths did not decrease as would be expected with 

increasing hydrolysate, and strain at break decreased for the compression moulded 

samples, while only one of the injection moulded samples with 30 pph hydrolysate 

increased in strain at break to 2.5%. 

2.7 Previous work done on NTP 

Bloodmeal was first converted into a thermoplastic in 2008 (van den Berg 2009, 

Verbeek and van den Berg 2011).  Bloodmeal has a glass transition temperature of 

220
o
C, which is too high for it to be melted and extruded as a plastic without degrading 

the protein. It is also crystalline in nature with about 30-40% crystallinity.  To reduce 

the glass transition temperature, a combination of urea (which interferes with H-

bonding within and between proteins and also acts as a plasticiser), sodium sulphate 
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(with breaks disulphide bonds), sodium dodecyl sulphate (a surfactant that reduces 

hydrophobic interactions), and tri-ethylene glycol and water (both form H-bonds with 

proteins and act as plasticisers) is mixed with bloodmeal.  This reduces the glass 

transition temperature of the mixture to 61
o
C enabling it to be extruded and injection 

moulded as a thermoplastic.  NTP has similar mechanical properties to low density 

polyethylene and is currently being commercialized as NTP by Aduro Biopolymers, a 

University of Waikato spin-off company. 

Currently, TEG in NTP makes up 13% by weight of the final product. TEG retails at 

NZ$4.5 per litre and contributes NZ$0.17 to the material cost per kg of NTP, about 

10% of the total material cost.  TEG is a petroleum product which increases the 

environmental impact of the material.  A cradle to gate life cycle assessment carried out 

by Bier et al (2010) showed that omitting TEG would reduce non-renewable process 

energy required for NTP by 55% and reduce greenhouse gas emissions by 45% (Bier, 

Verbeek et al. 2012). 

Various studies have examined decolouring bloodmeal and the effect of decolouring on 

protein properties, plastic processability and mechanical properties (Verbeek and van 

den Berg 2010, Verbeek and van den Berg 2011, Verbeek and van den Berg 2011, 

Verbeek, Hicks et al. 2011, Verbeek and Koppel 2012).  Other studies have looked at 

the effect of the additives used in NTP and processing on protein structure, transition 

temperatures and mechanical properties.  Other studies have examined blending NTP 

with other plastics and using fillers to improve NTP mechanical properties, while others 

have looked at the environmental impact, UV degradation and compostibility of NTP 

(Low, Verbeek et al. 2014, Marsilla and Verbeek 2013, Verbeek and Klunker 2013, 

Verbeek, Hicks et al. 2011, Bier, Verbeek et al. 2013, Bier, Verbeek et al. 2012). 

2.7.1 Water adsorption, biodegradation and UV degradation 

NTP will readily adsorb moisture and is biodegradable.  Tensile specimens of NTP 

were mixed in compost at a green waste composting facility to examine 

biodegradability.  Specimens plasticized with TEG lost half their weight over 12 weeks 

while unplasticized samples lost one third their mass (specimens shown in Figure 16a).  

The samples increased into water content from 10% up to 60% by weight within four 

weeks, and Fourier Transform Infra-Red analysis showed that significant hydrolysis of 

protein chains had occurred (Verbeek, Hicks et al. 2012). Accelerated weathering tests 
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by exposing the samples to UV testing showed that there was little chemical change, 

but that the samples became brittle due to moisture loss, with an increase in modulus, 

and decrease in tensile strength and strain at break (Verbeek, Hicks et al. 2011) 

a  b  

Figure 16 NTP samples with and without plasticizer (top and bottom rows respectively) over 12 weeks of 

a) composting and b) accelerated weathering by UV exposure.  

 

NTP will also readily equilibrate with the water in the atmosphere.  Experiments 

carried out on NTP with different plasticizer contents exposed to different relative 

humidities showed that NTP would gain moisture up to 23% at high relative humidities 

and lose moisture at low humidities (Verbeek and Koppel 2012). The rate and amount 

of water adsorbed was dependent on the amount of TEG added with high 

concentrations of TEG slowing water adsorption, but increasing the amount of water 

adsorbed (Verbeek and Koppel 2012, Lay, Verbeek et al. 2013) . NTP mechanical 

properties are dependent on water content, with tensile strength and modulus 

decreasing with increasing water content (Verbeek and Koppel 2012).   
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2.7.2 NTP blends 

To improve NTP mechanical properties and reduce water adsorption, NTP was  

blended with polybutylene succinate (PBS) (Marsilla and Verbeek 2013) and linear low 

density polyethylene (LLDPE) (Marsilla and Verbeek 2013).  Poly (phenylisocynate) 

co-formaldehyde (pMDI) and poly-2-ethyl-2oxazoline (PEOX) were added to 

compatibilise PBS with NTP at different amounts (Table 10).  Polyethylene with 

grafted maleic anhydride was used to compatibilise LLDPE with NTP. 

Compatibilisation allows mixing of the two phases and produces a strong mechanical 

interface  (Utracki 1990).  When immersed in water for five days, the PBS blends 

reduced water adsorption from 90% for NTP to 7% for the blend (Table 11).  The 

compatibilised blend also improved tensile strength compared to normal NTP (Figure 

17) while glass transition temperature did not change (Figure 18). 

 

Table 10 Formulations of NTP with PBS and compatiblizer pMDI and PEOX (Marsilla and Verbeek 

2013). 

 

 

Table 11 Water absorption in various blends over five days (Marsilla and Verbeek 2013). 
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Figure 17 Tensile strength, percentage elongation and secant modulus of NTP/PBS blends [A:PBS; 

B:NP0/0; C:NP7/0; D:NP7/3; E:NP7/3*; F:NTP(Marsilla and Verbeek 2013) 

 

 

Figure 18  Glass transition temperatures of various blends [a: PBS; b: NP0/0; c: NP7/0; d: NP7/3; e: 

NP7/3*](Marsilla and Verbeek 2013) 

NTP blended with LLDPE with the compatibiliser did not improve tensile strength until 

NTP content was 40% by weight or lower but did increase elongation at break (Figure 

19)(Marsilla and Verbeek 2013). 
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Figure 19 Mechanical properties of blends a. Tensile strength b.Elongation at break (%) c.Modulus 

 

2.7.3 Decolouring bloodmeal and manufacturing decoloured NTP 

Bloodmeal has been treated with peracetic acid (PAA), a strong oxidizing agent used in 

sanitisers, to produce a decolourised NTP (Figure 20) and reduce odour (Low, Verbeek 

et al. 2014). 3 wt % PAA solution was enough to remove the odour and decolour 

bloodmeal (Figure 21). With PAA treatment, molecular mass of the bloodmeal 

increased slightly (Figure 22) and XRD analysis showed that crystallinity decreased to 

27-31% from 35%. Glass transition temperature was reduced 50
0
C from 225

0
C (Error! 

Reference source not found.), and solubility also increased in SDS and sodium 

sulphite and phosphate buffer solution (Figure 24). 
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Figure 20 Sample of peracetic acid treated bloodmeal bioplasctic (Low, Verbeek et al. 2014) 

 

 

Figure 21 Percentage whiteness of bloodmeal treated with 1-5% PAA (Low, Verbeek et al. 2014) 

 

 

Figure 22 Elution profile of bloodmeal treatment with 1-5wt%PAA (Low, Verbeek et al. 2014) 
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Figure 23 Comparison of peaks for tan δ from DMA(Low, Verbeek et al. 2014) 

 

 

Figure 24 Solubility of treated bloodmeal in different solutes at 100
0
C (Low, Verbeek et al. 2014) 

 

2.7.3.1 nano-composites using bentonite as a filler 

In Verbeek and Klunker’s (2013) paper, NTP was mixed with untreated and 

octadecylamine treated bentonite clay and extruded at different specific mechanical 

energy (SME).  Octadecylamine treatment increased clay basal spacing from 13.5 to 31 

Å (Figure 25), and gave an increase in tensile strength from 7.69 to 9.26 MPa with the 

addition of 2 pph clay, while Young’s Modulus generally in reased when  lay was 

added (Table 12).  Composites with 2 pph clay showed complete exfoliation while 7 

pph showed two distinct XRD peaks between the position of unmodified clay and 

octadecylamine clay (Figure 26). 
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Figure 25 XRD pattern for modified and unmodified clay (Verbeek and Klunker 2013) 

 

Table 12 Mechanical properties of modified and unmodified bentonite based composites at high and low 

SMExRT  (Verbeek and Klunker 2013) 

 

 

 

Figure 26 XRD patterns (basal spacing) of modified composites, (H-High SMExRT, L-Low SMExRT) 

(Verbeek and Klunker 2013) 
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NTP was also reinforced with sodium and calcium bentonite treated with stickwater, a 

meat rendering plant by-product (Shamsuddin 2013). Stickwater increased the 

compatibility of the clay with NTP, resulting in an improvement in tensile strength of 

the composite by 23% and modulus by 17%. while untreated clay addition reduced or 

had little effect on mechanical properties (Figure 27). 

 

Figure 27 Graphs for A). Tensile strength B) Young's modulus with comparision of standard NTP and 

addition of different doses of clay (Shamsuddin 2013) 

 

2.8 Conclusion 

NTP was developed in 2008 and is in the process of being commercialized.  It has been 

well researched with regard to mechanical and thermal properties, protein structural 

behavior, and incorporating bentonite clay that had been treated with gelatin, stickwater 

and octodecylamine.  It has also been blended with LLDPE with and without 

compatibiliser.  Other research is examining the production of NTP with decoloured 

bloodmeal to increase its commercial applications.  

Currently, TEG is used in NTP as a plasticizer and makes up 13% by weight of the 

final product and about 10% of the total material cost.  TEG is a petroleum product 

which increases the environmental impact of the material.  One avenue which has not 

been explored is to use bloodmeal hydrolysate produced by enzymatic hydrolysis as an 
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alternative plasticizer in NTP.  Another area which has also not been explored is 

surface modification of bentonite clay with bloodmeal hydrolysate to improve NTP 

mechanical properties. In terms of material applications, bloodmeal hydrolysate has 

only been used for producing foams used in fire retardants (Bressler 2010). Protein 

hydrolysates in general have not been used as plasticizers in plastics with the exception 

of soy protein isolate hydrolysate in soy protein plastics (Vlad, Jane et al. 2006) and 

ovalbumin hydrolysates as plasticizers in suspensions of alumina powder (Schilling, 

Tomasik et al. 2002). 

The aim of this thesis is to produce bloodmeal hydrolysates and incorporate them into 

clay and NTP and explore the effect of using hydrolysates and hydrolysate modified 

clay on NTP mechanical properties.  

 



 

44 

 

3 Chapter 3 Methodology 

 

 

 

 

Chapter 3  Methodology 

 

 



Chapter 3 Methodology 

 

45 

 

3.1 Introduction 

The research objectives of this research are: 

 Assess the effectiveness of pepsin, alcalase and acid and optimal conditions in 

producing peptides from bloodmeal.  This will be quantified by measuring 

reaction rates, degree of hydrolysis, hydrolysis yields and peptide size. 

 Produce large quantities of hydrolysate of varying size distribution by 

sequentially treating bloodmeal with alcalase, trypsin and pepsin and recovering 

some of the hydrolysate at each step.   

 Absorb some of the hydrolysate from each step to treat sodium bentonite clay 

for use as a filler in NTP. 

 Assess the effect of hydrolysate as a substitute for TEG in NTP, and the effect 

of the hydrolysate treated bentonite as a filler in NTP.  This would be 

determined by producing tensile specimens and impact bars containing different 

concentrations of each type of hydrolysate and hydrolysate treated bentonite, 

and measuring tensile strength, modulus, impact strength, toughness, strain at 

break, glass transition temperature, thermal stability, and crystallinity.  Effect on 

plastic processability and morphology will also be examined. 

Experimental methods were divided into five parts. 

1. Enzymatic and acidic hydrolysis of bloodmeal to explore the effect of acid and 

enzyme type and concentration and bloodmeal concentration on hydrolysis rate and 

conversion. 

2. Large scale production of bloodmeal hydrolysate. 

3. Adsorption of bloodmeal hydrolysate onto bentonite clay.  

4. Production of NTP plastics with hydrolysate as a replacement for TEG as a 

plasticizer. 

5. Production of NTP plastics using hydrolysate treated clay as a filler. 

NTP plastics were produced using extrusion and injection moulding, and plastic 

properties, such as tensile strength, modulus, toughness, glass transition temperature, 

thermostability, crystallinity and fracture surface morphology were examined using 
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tensile and impact testing, dynamic mechanical analysis, thermogravimetric analysis, x-

ray diffraction, and scanning electron microscopy. 

Equipment and materials used are shown in Table 13 and Table 14. 
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Table 13 List of instrument used 

Equipment Manufacturer and model 

  

Glass beakers (250ml) Duran 

Centrifuges Sigma Centrifuges 

 Eppendorf Minispin Plus 

Conditioning chamber Lloyd Instruments 

Dynamic mechanical analyser Perkin-Elmer-DMA 8000 

Oven Contherm-Thermoter 2000 

FE-SEM Hitachi-S- 4700 

Electronic balance Sartorius -CP225D 

Food processor, blender Kenwood Multipro 

Injection moulder BOY-35A 

Magnetic stirrer Chiltern Scientific-MM31 

pH meter Eutech Intsruments- Cyberscan 100 

Tensile tester Instron-33R-4204 

Notch maker T-Verter 

Impact tester Rayran 

Tri-blade granulator Castin Machinery 

Twin screw extruder Thermo Prism-TSE-16-TC 

UV spectrophotometer Shimadzu UV-Pharma Spec 

Water bath Global Science 

AKTA FPLC Pharmacia Biotech 

Filters Sartorius Stedim Biotech 

Syringes BD 

Water pump  

X ray diffraction Panalytical Empyrean 

3 ml graduated pasteur pipettes Raylab 

Micropipettes Eppendorf Research 
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Table 14 List of materials used 

Materials Grade Supplier 

Bloodmeal (Bovine origin) Industrial Wallace Corporation Ltd 

   

Alcalase Analytical Novozymes 

Pepsin Analytical Sigma Life Sciences 

Trypsin Analytical Sigma Life Sciences 

   

Sodium bentonite Industrial Transform Minerals, New Zealand 

   

Sodium phosphate (dibasic) Analytical Ajax Finechem 

Sodium dihydrogen phosphate Analytical Ajax Finechem 

Hydrochloric acid Analytical Merck 

Sodium hydroxide Analytical Scharlau 

Urea Analytical Ajax Finechem 

Sodium dodecyl sulphate Technical Merck 

Sodium sulphite Technical BDH Lab 

Tri-ethylene glycol (TEG) Technical Orica Chemnet 
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3.2 Hydrolysis 

3.2.1 Small scale hydrolysis 

The aim of the small scale hydrolysis experiments was to determine which out of 

alcalase, pepsin and nitric acid gave the best hydrolysis of bloodmeal, and to explore 

the effect of enzyme/acid and bloodmeal concentration on hydrolysis kinetics.   

Each set of small scale hydrolysis experiments were carried out in five 250 ml glass 

beakers, agitated at 120 rpm using a Boltac overhead stirrer unit (Figure 28).  The 

beakers were covered using plastic petri dish lids.  Each lid had a hole in the centre for 

the agitator shaft.  The beakers were placed in a water bath to control temperature.  The 

water bath consisted of a lined plastic tray filled with warm water circulated from a hot 

water bath using a peristaltic pump.  The water overflowed from the tray through a 

drainage port back into the hot water bath.  Temperature in the tray and beakers was 

monitored using a temperature probe.   

 

Figure 28 Apparatus setup for enzymatic and acidic hydrolysis 

Bloodmeal masses used for each experiment were 5, 10, 15, and 20 g per 200 ml of 

distilled water.  The solutions were allowed to reach the required temperature, before 

pH adjustment and enzyme or acid addition.  Hydrolysis was carried out using pepsin, 

alcalase and nitric acid.   

Pepsin hydrolysis for each bloodmeal concentration was carried out at pH 1.5 and 3, 

37.5
o
C, and at 0 (pH 1.5 only), 60, 120, 180, 240 and 300 (pH 3 only) mg enzyme per 

200 ml.   
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Alcalase hydrolysis was carried out at pH 8, 60
o
C, and at 0, 0.5, 1.0, 1.5, and 2.0 ml of 

enzyme per 200 ml. 

Solution pH for enzyme hydrolysis was monitored and adjusted as needed by titrating 

with 1M NaOH for alcalase or 1M HCl for pepsin using an auto-pipette.  Reaction rate 

was measured with time by noting the amount of NaOH or HCl added to keep the pH 

constant.  pH was adjusted every 15 to 30 minutes for the first two hours, and once each 

hour thereafter.  The total reaction time for each run for alcalase was 12 hours and 36 

hours for pepsin.  Alcalase hydrolysis was halted by cooling the solution to room 

temperature and pepsin hydrolysis halted by raising the pH to 8 by adding 1M NaOH.       

For acid hydrolysis, nitric acid was added to make the solution up to 0, 0.1, 0.5, 1 and 

2M nitric acid, and it was carried out at 37
o
C.  Reaction rate was measured by 

collecting and centrifuging three 1 ml samples of solution every hour, diluting the 

samples by adding 100 l of sample to 900 l of distilled water, placing the sample in a 

quartz cuvette and measuring UV/Vis absorbance at 280 nm, 540 nm and 580 nm.  The 

UV/Vis absorbences were converted to concentration by comparing the absorbences 

against a calibration curve constructed from solutions of known hydrolysate 

concentration (Figure 64).  Total reaction for each run was seven hours.  Acid 

hydrolysis was halted by raising the solution pH to 7 by adding 1M NaOH.  

After each hydrolysis experiment, the solution was centrifuged (Section 3.3) to separate 

the unhydrolysed bloodmeal, weight of supernatant and pellet noted, and samples of 

each dried to determine solids content for hydrolysis yield calculations (3.4).  Samples 

of the supernatant were also taken for protein molecular weight determination (3.5).  

3.2.2 Large scale hydrolysis 

The aim of the large scale hydrolysis experiments was to produce three sets of 

hydrolysate of sequentially smaller peptides by reacting bloodmeal with alcalase, then 

trypsin, and then pepsin.  These hydrolysates after each run were later divided into two 

fractions, the first being adsorbed onto sodium bentonite, and the bentonite added as a 

filler in NTP, and the second concentrated and incorporated into NTP as a substitute for 

TEG.  

For large scale hydrolysis, two 20 L buckets were each filled with 15 litres of distilled 

water, 1125 g of bloodmeal, the pH adjusted to 8, and the solution heated to 60
o
C using 

copper coils connected to a hot water bath and a peristaltic pump.  The solutions were 
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agitated using overhead stirrers at 160 rpm.  125 ml of alcalase was added to each 

bucket, the reaction allowed to run for 8 hours, and the pH maintained at 8 by adding 

1M NaOH.  The buckets were covered with aluminium foil to reduce evaporation.  10 

litres of solution was removed for centrifuging (Section 3.3).  10.8 g of trypsin was 

added to the remaining 20 L of solution, pH maintained at 8 and the reaction allowed to 

proceed for another 8 hours.  10 litres again was removed for centrifuging.  With the 

final 10 litres, pH was adjusted to 1.5, temperature lowered to 37.5
o
C, 150 g pepsin was 

added and the reaction allowed to proceed for another 8 hours. 

Each batch of hydrolysate after being centrifuged was divided into two fractions, one 

for concentrating (SectionPreparation of clay and hydrolysate based NTP3.7) and 

incorporation into NTP (Section 3.7), and the other for adsorption onto bentonite clay 

(Section 3.6.3). 

3.3 Centrifugation 

The bloodmeal hydrolysate from each hydrolysis experiment was centrifuged in 400 ml 

centrifuge bottles at 4000 rpm for 20 minutes in a Sigma Laboratories Centrifuge.  The 

weight of the bottles, hydrolysate added, pellet and supernatant were noted.  Where 

needed, distilled water was added to the bottles prior to centrifugation so the weight of 

each bottle was the same.  In each case, the mass of water added was noted.  Samples of 

supernatant and pellet from each bottle were taken for dry weight and moisture content 

determination (Section 3.4).  The supernatant was also analysed for molecular weight 

distribution (Section 3.5).  

 

Figure 29 Samples in centrifugation bottles with labels 
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3.4 Dry weight calculations 

Samples of pellet and hydrolysate were added to pre-weighed 50 ml plastic sample 

containers, and total weight noted.  These were placed in a Contherm 2000 series oven 

for three days at 65
o
C, after which the dry mass was checked. All weights were 

measured using a Sartorius fine balance series P225D.  Moisture content was calculated 

using the formula given below. 

                 
    (   )      (   )

    (   )
 

3.5 Molecular weight distribution 

Molecular weight distribution of proteins in each hydrolysate sample were analysed 

using gel filtration chromatography. A Superdex 200 10:300 column (GE Healthcare) 

was connected to an AKTA FPLC (GE Healthcare) and 50 L of pre-filtered (using a 

0.45 m Minisart syringe filter) sample loaded and passed through the column at 0.5 

ml/min.  The running buffer was 0.02M phosphate buffer at pH 7.  Protein 

concentration and conductivity in the effluent was recorded using an in-line UV 

spectrophotometer at 280 nm and an in-line conductivity meter.  Average molecular 

weight for each hydrolysate was calculated converting volume to molecular weight 

using calibration data, multiplying molecular weight by the UV absorbance to obtain a 

weighted molecular weight that was summed, which was then divided by the sum of the 

UV absorbance. 

3.6 Rate Calculation 

Rate of reaction was calculated using underlined formula 

(  (     )    )  (  )     

Where Cs and Ct are concentration at final time and time taken respectively, k is a 

constant and t is time, k provides the slope of the straight line giving the rate of 

reaction. 

3.6.1 Preparation of phosphate buffer 

Phosphate buffer stock solution (PBS) was prepared at 0.1 M concentration by adding 

3.2 g of NaH2PO4 and 10.9 g of Na2HPO4 to one litre of distilled water. Solution pH 
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was adjusted to 7 using 1M HCl or 1M NaOH solution.  The stock solution was diluted 

to 0.02M and pH adjusted as required 

3.6.2 Hydrolysate concentration 

The supernatants from the large scale hydrolysis experiments were placed into 5 L 

beakers and heated to 65oC on a hot plate while being mixed using a magnetic stirrer, 

and concentrated until about 50% solids (about a 10 fold reduction in volume assuming 

a starting concentration of 5% solids).  The final solids content was then calculated 

using the method in Section 3.4.  The concentrates were then refrigerated or frozen 

until needed for incorporation into NTP (Section 3.7).  

 

Figure 30 Depicting reduction to 50 percent solids 

3.6.3 Intercalation of hydrolysate with sodium bentonite (NaBt) 

The remaining fractions of hydrolysate from the large scale hydrolysis experiments 

were mixed for 24 hours with sodium bentonite at 3 g bentonite per 100 ml of 

hydrolysate at pH 7.  Solutions were stirred using a magnetic stirrer.  The mixture was 

centrifuged at 4000 rpm for 15 minutes, masses of pellets and supernatant noted, 

samples retained for dry weight calculations.  The pellet was stored in the freezer 

before use as a filler in NTP. 
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a                                   b  

Figure 31 Depicting intercalation a) Alcalase intercalation b) Trypsin intercalation 

 

3.7 Preparation of clay and hydrolysate based NTP 

3.7.1 Formulation of NTP composites 

Urea, sodium sulphite and sodium dodecyl sulphate were added to water in a beaker 

according to the recipe in Table 4, and heated to 50-60
o
C on a hot plate for 15 minutes 

while being mixed.  Bloodmeal and clay was mixed together in a blender, the dissolved 

mixture added, mixed for 5 minutes, TEG added and the mixture mixed again for 5 

minutes using a combination of the blender and manual mixing using a spatula.  The 

actual mass of clay and water used was adjusted to account for the water content in the 

clay.  Four types of clay were used: untreated, alcalase, typsin and pepsin hydrolysate 

modified clay, at three concentrations ranging from 1 to 3 g of clay per mixture. The 

resulting mixtures were double bagged in zip-lock bags and refrigerated until used for 

extrusion. 

Table 15 Standard recipe for NTP composites with untreated and treated clay as a filler 

  Amount 

Ingredient Mass (g) pph(BM) 

Bloodmeal 300 100 

Urea 30 10 

Sodium sulphite (SS) 9 3 

Sodium dodecyl sulphate (SDS) 9 3 

Tri ethylene glycol (TEG) 60 20 

Water 120 40 

   

Clay addition (dry weight) 1 0.33 

 2 0.67 

  3 1.00 
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3.7.2 Formulation of NTP with hydrolysate as a plasticiser 

NTP was prepared using the same method as in Section 3.7.1 according to the recipe in 

Table 5, but using alcalase, trypsin and pepsin hydrolysate at four different 

concentrations (20, 40, 60 and 80 g per batch)  in the NTP as a substitute for TEG.  The 

actual mass of water and hydrolysate added was adjusted to account for the water 

content in the hydrolysate.   The resulting mixtures were double bagged in zip-lock 

bags and refrigerated until used for extrusion. 

Table 16 Standard recipe for NTP and variability of ingredients with different specimens 

  Amount 

Ingredient Mass (g) pph(BM) 

Bloodmeal 300 100 

Urea 30 10 

Sodium sulphite (SS) 9 3 

Sodium dodecyl sulphate (SDS) 9 3 

Water 120 40 

   

Hydrolysate addition (dry weight) 20 6.7 

 40 13.3 

 60 20.0 

  80 26.7 

 

 

Figure 32 Material in blender after being blended 
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3.7.3 Extrusion of blended formulations 

A twin screw Thermoprism TSE-16-TC extruder was used to extrude each NTP 

formulation.  The temperature profile from the feeder to the die was 70, 100, 100, 100 

and 120
o
C for each zone respectively (Figure 33).  Extruder screw speed was 150 rpm 

and feed rate from the hopper to the extruder was 60 Hz. The torque depended on the 

amount of material present in extruder tubing, but normally ranged from 50 percent to 

80 percent of maximum (12 Nm per screw).  Bridging in the hopper occurred for some 

of the samples and was remedied by using a push rod to break the bridge. 

 

Figure 33 Extruder screw configuration 

Extruder torque and pressure, hopper feed rate and mass flow of extrudate were noted 

each minute.  Mass flow was measured by breaking the extrudate at the die and 

weighing the length extruded on an electronic balance.  Extrudate quality and 

processability were also noted.  Samples of extrudate from each formulation were oven 

dried for three days at 70
o
C to determine moisture content 

 

Figure 34 Material coming out of extruder 
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3.7.4 Granulation of extruded blends 

Extruded material from each formulation was then passed through a tri blade granulator 

(Castin Machinery) and a 4 mm mesh screen to produce pellets which were double 

bagged in zip lock bags before being put in the freezer for injection moulding the next 

day. 

3.7.5 Injection moulding of granulated blends 

Each pelletised formulation was injection moulded into ASTM D638-03 standard dog 

bone specimens and impact bars using a BOY-35A injection moulder.  The 

temperatures for the zones from the feed to the nozzle were 100, 115, 120, 120, and 

120
o
C. The mould temperature was set at 60

o
C. Injection moulder screw speed was 200 

rpm with an injection pressure of 150 bar, and a residence time of 40 seconds in the 

mould.  The injection moulder was operated in a semi-automatic mode and material 

was removed from the mould manually as required.  Injection moulded samples were 

labelled and the length, width, thickness and weight of each specimen were taken 

before and after conditioning for seven days at 50% relative humidity and 23
o
C.  

Shrinkage after conditioning was calculated by dividing the conditioned length, width 

and thickness by the original dimension value for the sample. 

 

 

Figure 35 BOY 35A Injection Moulder 
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Figure 36 Specimen for injection moulded material 

3.7.6 Composites Tensile and impact testing 

3.7.6.1 Tensile testing 

After conditioning, tensile specimens were analysed according to the ASTM D638-86 

method for tensile strength, Young’s modulus and elongation at break. An Instron 33R-

4204 tensile tester was used, fitted with a 5 kN load cell, operating with a cross head 

speed of 5 mm per minute. A 50 mm extensometer attached to the middle of the 

specimen to measure strain.  Five measurements were carried out for each formulation 

and average values and standard deviations obtained.  Broken specimens were then 

oven dried to obtain moisture content. 

3.7.6.2 Impact testing 

After conditioning, impact specimens were notched and impact tested on impact tester. 

Specimen width and thickness near the notch, and notch size were measured for each 

specimen before testing.   The specimen was placed on the impact tester with notch 

facing the hammer which was placed at a set distance from specimen. Impact 

acceleration was set at 2.90 m per second. Energy required to break the specimen in 

kJ/m
2
 was noted and recalculated with the sample dimensions. 

3.7.7 X ray diffraction 

X ray diffraction (XRD) was used to find out basal spacing (d) of clay samples treated 

with hydrolysed bloodmeal and percentage crystallinity of tensile specimens.  A 

Panalytical Empyrean XRD was used for powdered samples with the parameters shown 

in Table 17 Paramenters for XRD.  Powdered clay samples were mounted on rotating 

sample holders while tensile specimens were mounted on a fixed sample holder.  Scan 

time ranged between 15 to 20 minutes.   
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Bragg’s law was used to find the basal spa ing: 

          

Where, where n is an integer, λ is wavlength of incident wave, d is the spacing between 

the planes in the atomic lattice, and θ is the angle between the incident ray and the 

scattering planes 

 

Figure 37 Calculation of d (basal spacing) 

 

Table 17 Paramenters for XRD 

Parameters Value 

    

Scan type Single scan 

Wavelength (A
o
) 1.541 

X ray tube Empyrean Cu LFF HR 

Anode material Cu 

Voltage 45 

Current 40 

Soller slits (rad) 0.04 

Mask (mm) 6.6 

Movement Rotating at 1 rps for powders, 0 for solid samples  

Filter Large beta filter-Nickel 

Scan mode Continuous 

Scan range 4-60 

    

 

XRD graphs obtained (Figure 12) were baseline corrected between angles of 5 and 35 

2-theta, a Gaussian curve fitted under the amorphous halo region between 10 and 35 2-

theta, crystallinity obtained by subtracting the curve area from total peak area, and 

percentage crystallinity by dividing crystalline area by total peak area (Figure 39).  

Duplicates were done for each specimen. 
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Figure 38 A typical XRD graph for NTP. 

 

Figure 39 XRD graph that has been baseline corrected and a Gaussian curve fitted under the halo. 

3.8 Surface morphology using Scanning electron microscopy 

SEM (Scanning electron microscope) was used to examine surface morphology of 

fracture surfaces for both impact bars and tensile test specimens.   Specimens were cut 

with a hacksaw blade and placed on double sided adhesive carbon tape on aluminium 

stubs.  The samples were then sputter coated with platinum under vacuum and the stub 

sides coated with carbon to increase electron conductivity.  SEM images were taken on 

the 50 µm, 100 µm and 500 µm scale with the SEM operating at 3kV (Figure 40).  

Extra images were taken if any unusual or notable surface features were found.  

 

Figure 40  An example of SEM image at 500µm 



Chapter 3 Methodology 

 

61 

 

3.9 Thermogravimetric analysis (TGA) 

TGA was carried out on samples by placing 5 mg-20 mg sample of specimen in an 

aluminium crucible, placing the sample in a DTA-TGA analyser along with an empty 

reference crucible. Temperature was raised at 10
o
C per minute from 20

o
C to 800

o
C 

with air flow of 150 ml per minute for complete combustion of samples.  

3.10 Dynamic mechanical analysis  

A Perkin Elmer Dynamic Mechanical Analyser was used to obtain glass transition 

temperatures of injection moulded samples.  Impact bars of approximately 12.8 x 6.0 x 

3.4 mm were mounted in the DMA in a single cantilever bending system, enclosed by 

ceramic heater heated incrementally to 150
o
C from room temperature at a rate of 

2
o
C/minute. Data was collected for 1Hz, 10Hz and 30Hz for dynamic displacement of 

0.03mm. The storage modulus (E), loss modulus (E’’) and loss factor (tan δ) were 

recorded by machine program interface. A peak in tan δ represented a transition 

temperature. 
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4 Chapter 4 Results and Discussion 
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4.1 Hydrolysis experiments 

4.1.1 Pepsin 

For each pepsin hydrolysis experiment, the initial rate of reaction was fast for pH 1.5 

and plateaued after 100-300 minutes (Figure 41 and Figure 42). The amount of acid 

required for maintaining pH increased with both increasing enzyme concentration and 

bloodmeal concentration, with the exception of 20 g, where the amount of acid required 

for constant pH was slightly less than that for 15 g of bloodmeal. Pepsin hydrolysis at 

pH 3 was much slower than pH 1.5, showed an initial fast hydrolysis which slowed 

after 100 minutes to a constant rate, and continued to proceed after 42 hours (Figure 43 

and Figure 44), whereas the reaction for pepsin at pH 1.5 had completed within 10 

hours. 
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a   

b  

Figure 41 Bloodmeal hydrolysis with for a) 5 g bloodmeal and b) 10 g bloodmeal, at pH 1.5 and 37
o
C for 

different amounts of pepsin in 200 ml. 

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800

C
u

m
u

la
ti

ve
 a

m
o

u
n

t 
o

f 
H

C
l a

d
d

ed
 (

m
l)

 

Time (min) 

0 mgs Pepsin 60 mgs Pepsin 120 mgs Pepsin 180 mgs Pepsin 240 mgs Pepsin

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800

C
u

m
u

la
ti

ve
 a

m
o

u
n

t 
o

f 
H

C
l a

d
d

ed
 (

m
l)

 

Time (Min) 

0 mgs Pepsin 60 mgs Pepsin 120 mgs Pepsin 180 mgs Pepsin 240 mgs Pepsin



Chapter 4 Results and Discussion 

 

65 

 

a  

b  

Figure 42 Bloodmeal hydrolysis with for a) 15 g bloodmeal and b) 20 g bloodmeal, at pH 1.5 and 37
o
C 

for different amounts of pepsin in 200 ml. 
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a  

b  

Figure 43 Bloodmeal hydrolysis with for a) 5 g bloodmeal and b) 10 g bloodmeal, at pH 3 and 37
o
C for 

different amounts of pepsin in 200 ml. 
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a  

b.  

Figure 44 Bloodmeal hydrolysis with for a) 15 g bloodmeal and b) 20 g bloodmeal, at pH 3 and  37
o
C for 

different amounts of pepsin in 200 ml. 
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Figure 45 Pepsin rate of reaction at pH 1.5 vs pepsin concentration at different bloodmeal concentrations. 

 

Figure 46 Pepsin rate of reaction at pH 1.5 vs bloodmeal concentration at different pepsin concentrations. 

For pH 1.5, pepsin reaction rate increased with bloodmeal concentration except for the 

solutions with 60 mg of pepsin where it appeared to be constant (Figure 45 and Figure 

46). For the lower concentrations of bloodmeal, reaction rate appeared to be 

independent of pepsin concentration.  This suggests that bloodmeal concentration was 

limiting reaction rate, i.e. there were more pepsin molecules than places to react on 

bloodmeal, with the exception of the lower concentration of pepsin. 

For pH 3, pepsin reaction rates were up to 4-5 times lower than rates at pH 1.5 for the 

higher bloodmeal concentrations and appeared to be independent of bloodmeal 

concentration and pepsin concentration (Figure 47 and Figure 48). 
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Figure 47 Pepsin rate of reaction at pH 3 vs bloodmeal concentration at different pepsin concentrations. 

 

Figure 48 Pepsin rate of reaction at pH 3 vs pepsin concentration at different bloodmeal concentrations. 

For both pH 1.5 and pH 3, degree of hydrolysis increased with increasing pepsin 

concentration, but decreased with increasing bloodmeal concentration for pH 1.5 from 

20-25% of peptide bonds broken to 10-15% (Figure 49). For pH 3, it increased with 
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50).  This can be explained by the length of time the reactions for pH 3 were allowed to 
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the hydrolysis reaction was very slow) (Figure 43 and Figure 44).  For pH 1.5, all 
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For example, for 20 g bloodmeal at pH 3 at 700 minutes would be between 2-2.1% 

compared to 5-7.5% at 5000 minutes. 

 

Figure 49 Degree of hydrolysis (%) for different concentrations of pepsin at pH 1.5 for different amounts 

of bloodmeal. 

 

Figure 50 Degree of hydrolysis (%) for different concentrations of pepsin at pH 1.5 for different amounts 

of bloodmeal. 
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experiments should be repeated), while for 5 and 20 g it increased, which was expected, 

but what was unexpected was that the amount solubilized increased with the amount of 

bloodmeal used (Figure 52). 

 

Figure 51 Percentage mass of bloodmeal solubilized for different concentrations of pepsin at pH 1.5 for 

different amounts of bloodmeal. 

 

 

Figure 52 Percentage mass of bloodmeal solubilized for different concentrations of pepsin at pH 3 for 

different amounts of bloodmeal. 
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A decrease in mass solubilized and degree of hydrolysis with increasing bloodmeal can 

be expected as there are more peptide bonds to cleave with the higher bloodmeal 

concentrations.  In addition, there might be hydrolysis products that inhibit further 

enzyme hydrolysis such as formation of insoluble aggregates, e.g. the haem group 

which is no longer protected by the hydrophobic pocket in which it normally sits, will 

aggregate and may take peptides bound to the haem group with it.  A similar trend was 

also observed by Ruan et al (2010) who used pepsin to hydrolyse egg white, where 

product inhibition was found at higher egg white concentrations.  Pepsin preferentially 

cleaves tyrosine, phenylalanine, leucine, alanine, cysteine and glutamic acid (See 

section 2.6.2.1), which make up about 45% of the amino acids in bloodmeal (Kramer, 

Waibel et al. 1978). Under the best conditions (low bloodmeal and high pepsin) and pH 

1.5, the degree of hydrolysis was 20%, so potentially, if product inhibition is not 

present, the degree of hydrolysis could go up to 45%. 

Samples of hydrolysate from pepsin experiments at pH 1.5 were examined for average 

molecular weight using gel filtration chromatography. Peptides ranged between ~20 

kDa to 60-70 kDa (Haemoglobin is a 64 kDa tetramer) (Figure 53).  No definite trends 

could be observed with regard to peptide size with pepsin concentration with the 

exception that it appeared that peptide size decreased slightly.  Some issues were 

encountered using the AKTA FPLC with the baseline shifting on the inline UV 

spectrophotometer, as well as air bubbles becoming entrained in the detector for some 

samples which impacted on the quality of the results.  

 

Figure 53 Average molecular weight of pepsin hydrolysate vs pepsin concentration. 
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4.1.2 Alcalase 

Similar to pepsin, the amount of base required to maintain pH at 8 during the alcalase 

hydrolysis experiments increased with bloodmeal and enzyme concentrations (Figure 

54 and Figure 55).  Unlike pepsin, however, was that rate of reaction increased with 

enzyme concentration but decreased slightly with bloodmeal concentration (Figure 56 

and Figure 57), whereas pepsin rate of reaction was constant with enzyme 

concentration and increased with bloodmeal concentration (Figure 45 and Figure 46). 

a  

b  

Figure 54 Bloodmeal hydrolysis with for a) 5 g bloodmeal and b) 10 g bloodmeal, at pH 8 and 60
o
C for 

different amounts of alcalase in 200 ml. 
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a  

b  

Figure 55 Bloodmeal hydrolysis with for a) 15 g bloodmeal and b) 20 g bloodmeal, at pH 8 and 60
o
C for 

different amounts of alcalase in 200 ml. 
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Figure 56 Change in rate of reaction with increase in alcalase concentration  

 

Figure 57 Change in rate of reaction with increasing bloodmeal concentration 
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Similarly to pepsin, degree of hydrolysis increased with increasing alcalase 

concentration, but decreased with increasing bloodmeal concentration (Figure 58).  The 

degree of hydrolysis obtained with alcalase was much higher at between 35-40% at 5 g 

of bloodmeal to 25-30% at 20 g of bloodmeal, compared to 25-10% for pepsin at pH 

1.5.  Mass of bloodmeal solubilized was slightly less than that of pepsin at between 57 

to 75% (Figure 59), compared to 60-80% for pepsin (Figure 51), and decreased with 

increasing bloodmeal, but appeared to remain constant with increasing alcalase 

addition. 

 

Figure 58 Degree of hydrolysis for alcalase with varying concentration of bloodmeal and enzyme 

 

Figure 59 Mass of bloodmeal solubilized (%) vs. volume of alcalase added at different bloodmeal 

concentrations. 
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Average molecular weight of the hydrolysate obtained from alcalase was much lower 

than that from pepsin, at between 2 to 12 kDa for alcalase compared to 20 kDa to 60-70 

kDa for pepsin.   

 

Figure 60 Average molecular weight for alcalase treated hydrolysate at different concentrations of 

alcalase and bloodmeal concentration. 
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hydrolysis was implemented in a rendering plant, as alcalase could be added straight 
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o
C (or with minimal cooling – 
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o
C), and before the 
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4.1.3 Crystallinity of unhydrolysed bloodmeal and hydrolysate 

4.1.3.1 Unhydrolysed bloodmeal 

XRD was carried out on unhydrolysed bloodmeal that had been recovered and dried 

from each hydrolysis experiment for alcalase and pepsin at pH 1.5.  This was to see if 

the hydrolysis reaction caused any structural change to bloodmeal.  Percentage 

crystallinity was calculated and compared with untreated bloodmeal. 

Bloodmeal has an average crystallinity of 26% (Table 18), and showed a little 

variability between samples with crystallinities ranging between 25 and 27%.  The 

unhydrolysed bloodmeal from each alcalase experiment had a slight decrease in 

crystallinity with increasing alcalase, but a slight increase in crystallinity with 

increasing bloodmeal (Figure 61).  This follows the same trend as observed for degree 

of hydrolysis (Figure 58), suggesting the change in crystallinity is related to the degree 

of hydrolysis, i.e. the greater the degree of hydrolysis the greater the reduction in 

crystallinity (Figure 62).  Similar behaviour was also seen with pepsin treated 

bloodmeal, but to a lesser extent, presumably because the degree of hydrolysis for 

pepsin was lower (Figure 49). 

Table 18 Average crystallinity of untreateed bloodmeal 

Sample Crystallinity 

BM 1 25.7 

BM 2 26.8 

BM 3 27.3 

BM 4 26.3 

BM 5 25.6 

BM 6 25.6 

BM 7 25.0 

BM 8 25.8 

BM 9 25.5 

  BM 10 26.5 

Average 26.0 

Std. Dev. 0.65 
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Figure 61 Crystallinity of unhydrolysed bloodmeal from the alcalase experiments (missing data point due 

to insufficient material). 

 

Figure 62 Crystallinity of unhydrolysed bloodmeal from the pepsin experiments (missing data point due 

to insufficient material). 
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Further studies could be carried out on the unhydrolysed bloodmeal using conventional 

FTIR spectroscopy, and look for any changes in α-helices and β sheets within the 

material.  If there were significant changes, this could be examined further for spatial 

variation using Synchrotron light source (Bier, Verbeek et al. 2013) (if funding could 

be obtained). 

When the XRD traces were examined, a slight change in the intensity of the XRD plots 

could be seen (Figure 63) with a reduction in the peak at 10 2 and the sharp peak at 20 

2 with unhydrolysed bloodmeal from the 0.5 ml alcalase experiment.  This could 

suggest some physical change in the bloodmeal structure, resulting in lower peaks, or it 

also could be an artifact of the powdered unhydrolysed bloodmeal, which appeared to 

be not as fine as bloodmeal itself. 

 

Figure 63 XRD trace for treated and untreated bloodmeal 

The very sharp peak in Figure 63 pointed out with an arrow is salt, which was formed 

from neutralising the samples and adjusting pH during the hydrolysis reaction. 

4.1.3.2 Hydrolysate 

The crystallinity of the hydrolysate was unable to be found.  The hydrolysate formed a 

film when it was dried which was highly hygroscopic.  When it was brought out from 

oven to be ground into a powder for XRD, it formed a paste. Liquid hydrolysate 

samples were also tried on the XRD, but no results were able to be obtained, possibly 

because the protein concentration was not high enough in the liquid.  Another approach 

taken involved drying the hydrolysate in the XRD sample holder, but this resulted in 
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leakage of the hydrolysate, and what was left formed too thin a layer for XRD to be 

successfully carried out. 

In future, the hydrolysate samples could be dried in custom made containers, directly in 

the XRD under heating, and track the changes in the XRD trace with evaporation of 

water, until a film is formed. 

Alternatively freeze drying the hydrolysate could also be helpful, but as the hydrolysate 

is highly hygroscopic, it would still adsorb water, unless kept within a humidity 

controlled environment. 

4.1.4 Acid hydrolysis 

Acid hydrolysis of bloodmeal was carried out using different strengths of nitric acid.  In 

this case, solubilisation was measured by UV absorbence of centrifuged samples at 280 

nm (for protein) and 580 nm (for the haem group).  This was compared to a calibration 

curve made from protein hydrolysate of known solids content.  2M nitric acid gave the 

highest protein concentrations in solution with about 92% of the bloodmeal being 

solubilised at 5 g bloodmeal concentrations and 36% of the bloodmeal being solubilsed 

at 20 g bloodmeal concentrations.  Solubilisation occurred relatively quickly within 

100-200 minutes. 

 

Figure 64 Calibration curve for Protein concentration 
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Figure 65 Protein Concentration in solution with varied amount of acid with 5gms BM 

 

Figure 66Protein Concentration in solution with varied amount of acid with 10gms BM 
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Figure 67 Protein Concentration in solution with varied amount of acid with 15gms BM 

 

Figure 68 Protein Concentration in solution with varied amount of acid with 20gms BM 
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issue was the amount of base required to neutralize the acid, resulting in the production 

of high amounts of salt in the hydrolysate, which would be detrimental for using as the 

hydrolysate in NTP or for adsorption to the bentonite clay. The salt would interfere 

with protein-protein ionic interactions in NTP or increase the hydrophobic interaction 

in NTP, and would reduce protein adsorption onto the bentonite clay.  Enzyme 

hydrolysis, while taking longer, gave greater hydrolysis yields, with less salt 

production.  Therefore, no further investigation was carried out for acid hydrolysis. 

4.2 Large scale hydrolysis 

The large scale hydrolysis experiments were carried out by first treating bloodmeal 

with alcalase.  The solution was centrifuged and the pellet recovered and dried.  

Bloodmeal hydrolysed was calculated to be 78% (Table 19) which was better than that 

obtained for the small scale hydrolysis experiments which ranged between 57 to 78% 

(Figure 59). The pellet had a solids content of 19%, while the supernatant containing 

the hydrolysate was calculated by mass balance and oven drying to have a solids 

content of 6.5%.  There was some loss of water due to evaporation during the 

hydrolysis which took place over 8 hours, but some of this was made up by water added 

when adding base to maintain pH at 8 during the reaction.  

Table 19 Results from large scale alcalase hydrolysis 

Starting water (g) 30000 

Bloodmeal added (total) (g dry weight) 2250 

Wet pellet weight (g) 2590 

Pellet solids content (%) 18.9 

Unhydrolysed bloodmeal (g dry weight) 489 

Bloodmeal hydrolysed (%) 78.3 

  

Supernatent mass (g) 27177.7 

Solids in supernatant (g) 1760.6 

Solids content (%) 6.5 

 

10 L of hydrolysate was removed (Alcalase hydrolysate) and trypsin added to the 

remaining 20 L.  This was allowed to run for 8 hours before the solution was split into 

two, one half retained (Trypsin hydrolysate), pH adjusted to 1.5 and pepsin added to the 

other half.  The reaction was allowed to run for another 8 hours before being 

neutralised (Pepsin hydrolysate).   
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Bloodmeal hydrolysate molecular weights ranged between 80 kDa down to very small 

sized peptides, with characteristic peaks around 15-18 ml (45 kDa to 12.5 kDa), major 

peak at 20 ml (4.3 kDa) for alcalase hydrolysate and 20.8 ml (2.8 kDa) for trypsin and 

pepsin hydrolysates, 24-25 ml (0.5 to 0.4 kDa) for alcalase and trypsin and 26.7 ml 

(0.170 kDa) for pepsin (Figure 69).  Alcalase hydrolysate had an average molecular 

weight of 8.9 kDa, trypsin hydrolysate 5.5 kDa and pepsin hydrolysate went back up to 

8.8 kDa.  This could be due to the pepsin added; the peak at 15 ml on the pepsin 

hydrolysate chromatogram corresponds to 35 kDa which is close to the molecular 

weight for pepsin (34.5 kDa). The resulting molecular weights are lower than 

haemoglobin (64 kDa) and bovine serum albumin (66 kDa), which makes up the 

majority of protein in bovine blood. 

The Superdex 200 column used has a column volume of 24 ml, therefore there may 

have been some hydrophobic interaction between the column and some of the peptides 

retarding their passage through the column, resulting in them exiting between 25 and 40 

ml. 

 

Figure 69 Gel filtration chromatography of large scale hydrolysis using alcalase, trypsin and pepsin 

 

Table 20 Average molecular weight of hydrolysate for large scale hydrolysis using alcalase, trypsin and 

pepsin. 

Hydrolysate 

Average molecular 

distribution (KDa) 

Alcalase 8.9 

Trypsin 5.5 

Pepsin 8.8 
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Solids contents of the hydrolysates ranged between 2.8% for trypsin and 6.5% for 

alcalase (Table 21).  The trypsin hydrolysate % solids was very low, which could be 

due to some of the hydrolysate precipitating out, or an error in the measurement.  An 

error in the measurement could be more likely because the UV absorbance measured 

for each hydrolysate showed only a slight change, suggesting the concentrations were 

similar.  To verify these results, a total nitrogen measurement on the hydrolysates 

would be useful.  

Table 21 Hydrolysate solids content 

Hydrolysate 

Unconcentrated Concentrated 

% solids 

UV absorbance 

(280nm) (1/5 

dilution) % solids 

Alcalase 6.45 2.24 45.5 

Trypsin 2.80 2.17 60.5 

Pepsin 5.00 2.12 46.6 

 

Half of the hydrolysate from each was used for intercalation with sodium bentonite and 

the other half was concentrated to give a final % solids shown in Table 21.  The 

concentrated hydrolysate was used in NTP.        

4.3 Sodium bentonite clay adsorption 

Each of the unconcentrated hydrolysates from the previous section were mixed with 

sodium bentonite clay and left for absorption to occur overnight.  UV absorbance was 

measured before and after absorption.  There was only a slight change absorbance for 

alcalase and trypsin hydrolysates, and no change in absorbance for pepsin hydrolysate 

(Table 22).  This amounted to 127 mg hydrolysate per g clay for alcalase hydrolysate, 

and 46 for trypsin and no adsorption for pepsin.  Because the UV absorbance for the 

starting hydrolysate solutions did not show much change, but the % solids from Table 

21 was quite different, the % solids used for trypsin before adsorption was calculated 

based on UV absorbance.  If the measured % solids was used from Table 21 was used, 

the adsorption for trypsin would be even lower at 18.5 mg per g clay.  From previous 

research using meat rendering plant stickwater and gelatin, sodium bentonite could 

adsorb between 180 to 240 mg per g clay (Shamsuddin 2013), which is comparable to 

the alcalase hydrolysate adsorption of 127 mg per g clay.  Increasing concentrations of 

salt in the hydrolysate from pH maintenance and pH adjustment (especially for pepsin 
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which involved lowering the solution pH to 1.5 for the reaction and neutralising it 

afterwards) would reduce protein adsorption, explaining the low adsorption for trypsin, 

and no adsorption for pepsin hydrolysate.               

Table 22 Absorption results 

 Alcalase Trypsin Pepsin 

Solution (g) 5126 4260 4316 

Sodium bentonite (g) 144 117 120 

UV absorbance before (280nm) (1/5 dilution) 2.24 2.17 2.12 

UV absorbance after (280nm) (1/5 dilution) 2.11 2.12 2.12 

Solids before (%) 6.45 6.23 6.11 

Calculated solids after (%) 6.07 6.11 6.11 

Change in mass (g) 18.34 5.40 0.00 

Absorption (mg/g clay) 127.34 46.13 0.00 

 

XRD analysis of the alcalase and trypsin hydrolysate treated bentonite clays showed a 

peak at around 6.3 2Ɵ close to the peak for sodium bentonite (Figure 70).  This peak 

was very slight for trypsin clay, but this could be due to the XRD result showing a 

baseline shift and overall intensity not being high compared to the other XRDs.  The 

bentonite peak for alcalase showed a shift to the left (Figure 70) and a corresponding 

decrease in basal spacing (Table 23) compared to sodium bentonite, indicating that 

protein intercalation between the clay layers had occurred.  Trypsin treated bentonite 

showed only a slight increase basal spacing, so protein adsorption was likely to have 

been around the clay particle only with no intercalation.             

 

Figure 70 XRD graph showing the sodium benonite peak around 6.3 2Ɵ for untreated and alcalase and 

trypsin hydrolysate treated bentonite  
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Table 23 Comparison of hydrolysate molecular weight, sodium bentonite adsorption, and basal spacing 

calculated from XRD 

 Sodium bentonite 

  Hydrolysate 

 Untreated Alcalase Trypsin Pepsin 

Hydrolysate molecular weight (kDa) - 8.9 5.5 8.8 

Adsorption (mg/g clay) - 127.34 46.13 0.00 

Basal spacing (A) 13.2 14.2 13.6 - 

 

Only the alcalase adsorption on to sodium bentonite was successful, while high salt 

concentrations in the trypsin and pepsin hydrolysates reduced or prevented adsorption. 

If enzyme hydrolysis was used in future experiments to produce peptides for clay 

modification, the hydrolysate solution would need to be desalted, for example using 

dialysis or ultrafiltration or nanofiltration with a low molecular weight cut-off (e.g. 1-2 

kDa) so the peptides could be retained, or the hydrolysis carried out to reduce salt 

concentration.  One possible method of hydrolysis that could be explored is using high 

pressure and heat (Bressler 2010), for example in an autoclave. 

Future bentonite adsorption experiments would also need to explore the effect of 

solution pH and hydrolysate concentration on adsorption, to try and increase peptide 

adsorption. 

4.4 NTP with hydrolysate and NTP composites 

4.4.1 Extrusion and injection moulding 

4.4.1.1 NTP and hydrolysate 

In the initial preparation of NTP and hydrolysate mixtures for extrusion, there was an 

issue of foaming within the blender when the additives were mixed in with the 

hydrolysate with increasing hydrolysate concentrations (This also happens sometimes 

when TEG is added). This might be due to some interactions of the additives with the 

hydrolysate, e.g. between the sodium dodecyl sulphate and the hydrolysate, causing 

foaming. The foams were not stable because when the foamed material was packed and 

sealed in zip lock bags and kept in the freezer overnight, the foam had collapsed and the 

samples appeared to be normal.  

With increasing hydrolysate and the material was increasingly harder to extrude with 

the extrudate coming out in small lengths. This might be due to evaporation of water 
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resulting in material coming out in chunks.  This was supported by the specific 

mechanical energy (SME) results (Figure 71) which increased with increasing 

hydrolysate.  Pepsin and trypsin hydrolysates gave higher SME than alcalase at the 

higher hydrolysate levels. 

The higher SME could be caused by the slight reduction in water content in the 

extrudate (Figure 72) due to the higher protein content in the pre-extruded mixture 

compared to water and other additives (although water content for NTP extrudate with 

pepsin and trypsin hydrolysate at 80 g per batch was similar to the 20 g batch 

extrudate).  Water also acts as a plasticiser and would explain the increase in SME.  In 

addition, bloodmeal was added after the hydrolysate and other reagents had been 

mixed, so there could have been preferential interaction of the urea, sodium sulphite 

and sodium dodecyl sulphate with the proteins in the hydrolysate, the reducing their 

interaction with bloodmeal, also causing an increase in SME.  Another possibility is the 

increased salt content in the hydrolysate from maintaining the pH during the hydrolysis 

reaction increasing the protein hydrophobic interaction in the material. 

 

Figure 71 Specific mechanical energy required to extrude NTP with different amounts of alcalase, pepsin 

and trypsin hydrolysate. 
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Figure 72 Moisture content (% by weight) of the extrudate. of NTP with different amounts of alcalase, 

pepsin and trypsin hydrolysate. 

 

4.4.1.2 NTP and hydrolysate treated bentonite clay 

No issues were encountered with preparing and extruding the NTP and bentonite clay 

mixtures.  SME showed small change with increasing clay content, but treating the clay 

with hydrolysate increased the SME, with the biggest increase for pepsin treated clay, 

followed by trypsin, then alcalase (Figure 73).  Water content in the extrudate increased 

with extent of hydrolysis (alcalase, followed by trypsin and pepsin) and only showed a 

marginal increase with clay content (Figure 20).  Seeing as protein adsorption for 

trypsin and pepsin treated clay, this could be due to the increased salt content in the 

hydrolysate, some of which would have been carried over into the clay pellet when the 

clay was recovered from the hydrolysate. 

0

5

10

15

20

25

30

20 40 60 80

M
o

is
tu

re
 c

o
n

te
n

t 
(%

) 

Hydrolysate (g/batch) 

Alcalase Pepsin Trypsin



Chapter 4 Results and Discussion 

 

91 

 

 

Figure 73 Specific mechanical energy required to extrude NTP with different amounts of treated 

bentonite clay 

 

 

Figure 74 Moisture content (% by weight) of the extrudate of NTP with different amounts of treated 

bentonite clay. 
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water and other reagent ratios constant and also explore the effect of order of reagent 

mixing in NTP/hydrolysate production. 

4.4.1.3 Injection moulding 

All the extrudates were able to be injection moulded easily with the exception of NTP 

with 20 g alcalase hydrolysate.  On this sample, the injection moulder blocked and only 

one partial tensile specimen was produced. 

4.4.2 NTP/hydrolysate mechanical properties 

Increasing hydrolysate concentration in NTP lowered tensile strength and secant 

modulus (Figure 75 and Figure 76), with the alcalase hydrolysate giving the higher 

tensile strength and modulus, followed by trypsin and pepsin (The result for alcalase at 

20 g per batch should be ignored as the batch blocked the injection moulder and only 

one specimen could be produced for testing).  This is consistent with the overall 

reduction in average protein molecular weight in the NTP/hydrolysate causing a 

reduction in mechanical properties.  Conventional NTP in comparison has a tensile 

strength of around 9 MPa, a modulus of 620 MPa, toughness of 3.2 MPa and a strain at 

break of 0.7 (Shamsuddin 2013).  Toughness (Figure 78) and impact strength (Figure 

79) marginally decreased with increasing hydrolysate while strain at break was 0.01 

(Figure 77) indicating an extremely brittle material. 

 

Figure 75  Secant modulus for tensile specimens of NTP with varying hydrolysate  
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Figure 76 Tensile stress at maximum load for tensile specimens of NTP with varying hydrolysate 

 

Figure 77 Strain at break at maximum load for tensile specimens of NTP with varying hydrolysate 
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Figure 78 Toughness for tensile specimens of NTP with varying hydrolysate 

 

 

Figure 79 Impact strength for tensile specimens of NTP with varying hydrolysate 
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average protein chain length with hydrolysate addition, with the exception of alcalase 

where little change was observed. With decreasing glass transition temperature, the 

material should show a decrease in viscosity and be easier to extrude, but an increase in 

SME was observed which suggests other interactions, such as salt, were important in 

SME, rather than average protein chain length. 

 

Figure 80 Glass transition temperature in NTP with varying hydrolysate 

 

Figure 81 Glass transition temperature with varying pepsin hydrolysate in NTP 
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hydrolysate, NTP with pepsin and trypsin increased initially and plateaued for tensile 

strength, suggesting that beyond a certain Tg, tensile strength becomes independent of 

Tg. Secant modulus formed a linear relationship with glass transition temperature for 

trypsin and pepsin. 

 

a  

b  

Figure 82 A plot of a) tensile strength and b) secant modulus against glass transition temperatures for 

NTP the different hydrolysates 
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4.4.3.2 Thermostability 

The thermal degradation of samples were taking place in six stages, first from 20 to 

150
o
C where bound water evaporates, 150 to 230

o
C where the low molecular weight 

peptides and urea are vaporized, 230 to 400
o
C which could correspond to cleavage of 

S-S, O-N and O-O bonds, after from 400
o
C to 800

o
C with removal of high molecular 

weight compounds, leaving the ash (Shamsuddin 2013).  Increasing hydrolysate 

reduced thermal stability of NTP in the 450 to 800
o
C region for types of hydrolysate.  

NTP with pepsin hydrolysate also appeared less thermo stable than NTP with alcalase, 

which would be consistent with the reduced protein chain length of pepsin.  Ash was 

consistent at about 5%. 

a  

b  

Figure 83 TGA of NTP with alcalase hydrolysate.a) over the full temperature range and b) zoomed in on 

the 500 to 800
o
C range 
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a  

b  

Figure 84 TGA of NTP with trypsin hydrolysate.a) over the full temperature range and b) zoomed in on 

the 500 to 800
o
C range 
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a  

b  

Figure 85 TGA of NTP with pepsin hydrolysate.a) over the full temperature range and b) zoomed in on 

the 500 to 800
o
C range 
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4.4.4 NTP/hydrolysate crystallinity 

From XRD of solid NTP samples, NTP crystallinity decreased with increasing 

hydrolysate (Figure 86). Normal NTP typically has a crystallinity of around 26% (Bier 

et al 2014). This reduction in crystallinity could be attributed to the peptides present in 

the hydrolysate, which could be disrupting or diluting the crystalline regions by 

increasing the amount of amorphous material in NTP.  This reduction in crystallinity 

could also contribute to the reduction in secant modulus and tensile strength of the NTP 

samples. 

 

Figure 86 Crystallinity of NTP samples with varying amounts of hydrolysate 
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4.4.5 NTP/clay mechanical properties 

NTP composites with alcalase treated bentonite generally had the highest modulus 

compared to NTP with other untreat or treated clay (Figure 87).  NTP with pepsin and 

trypsin treated clay showed a higher modulus at 3 g clay, and NTP with trypsin treated 

clay generally had the lowest modulus.  Tensile strength marginally increased with 

increasing clay with pepsin treated clay at 3 g giving the highest tensile strength (Figure 

88).  While alcalase treated clay had the most protein adsorbed, and showed some 

evidence of intercalation, modifying the bentonite surface with peptides from 

hydrolysis had a catastrophic effect on toughness (Figure 90) and strain at break (Figure 

89) making what appeared to be a very brittle material, but which inexplicably had 

similar or higher impact strength than than NTP with the untreated or other treated 

clays (Figure 91).  Conventional NTP in comparison has a tensile strength of around 9 

MPa, a modulus of, toughness of 3.2 MPa and a strain at break of 0.7 (Shamsuddin 

2013).  The trypsin and pepsin treated clays which had little or no adsorption would 

have been expected to have a similar effect on composite mechanical properties as the 

untreated bentonite clay.  There was some variability which could be due to salt content 

in the clay from the hydrolysate solution. 

 

Figure 87  Secant modulus for tensile specimens of NTP with varying clay  
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Figure 88 Tensile stress at maximum load for tensile specimens of NTP with varying clay 

 

Figure 89 Strain at break at maximum load for tensile specimens of NTP with varying clay 
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Figure 90 Toughness for tensile specimens of NTP with varying clay 

 

Figure 91 Impact strength for tensile specimens of NTP with varying clay 
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4.4.6 NTP/hydrolysate thermal properties 

4.4.6.1 Glass transition temperature 

Glass transition temperature remained constant with increasing clay for all clay types at 

around 70
0
C, except for trypsin treated clay, which had the highest Tg at around 83

0
C. 

All of the samples had a higher glass transition temperature (Tg) than NTP (61
o
C) 

(Shamsuddin 2013) (Figure 92).  Clay addition probably was not high enough to make 

a significant change.  A similar trend was reported with bentonite clay treated with 

stickwater, with little or no difference observed between untreated and treated clay. 

 

Figure 92 Glass transition temperature in NTP with varying clay 
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a  

b  

Figure 93 A plot of a) tensile strength and b) secant modulus against glass transition temperatures for 

NTP the different hydrolysates 
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a   

b   

Figure 94 TGA of NTP with Normal clay a) over the full temperature range and b) zoomed in on the 500 

to 800
o
C range 
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a  

b  

Figure 95 TGA of NTP with Alcalase clay.a) over the full temperature range and b) zoomed in on the 

500 to 800
o
C range 
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a  

b  

Figure 96 TGA of NTP with trypsin clay.a) over the full temperature range and b) zoomed in on the 500 

to 800
o
C range 
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b.  

Figure 97 TGA of NTP with pepsin clay.a) over the full temperature range and b) zoomed in on the 500 

to 800
o
C range 
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4.4.6.3 NTP/clay crystallinity 

NTP with treated clay generally had a lower crystallinity than NTP with untreated clay 

(Figure 98), except for 3 g clay per batch where alcalase and trypsin treated clay had a 

higher crystallinity.  All NTP composites had a lower crystallinity compared to normal 

NTP which has a crystallinity of 26% (Bier et al 2014).  This was contrary to what was 

observed with NTP composites with stickwater and gelatin treated clay where 

crystallinity in all samples increased (Shamsuddin 2013). 

 

Figure 98 Crystallinity of NTP composites with different clay content and clay type 

 

 

 

 

0

5

10

15

20

25

30

35

40

1 2 3

C
ry

st
al

lin
it

y 
(%

) 

Clay (g/batch) 

Normal Clay Alcalase Clay Pepsin Clay Trypsin Clay



Chapter 4 Results and Discussion 

 

111 

 

4.4.7 SEM Analysis 

a.  

b.  

c.  

Figure 99 Examples for SEM pics (a. A sample from clay hydrolysate; (b Sample with trypsin clay; (c. 

Sample with hydrolysate 

The SEM images for all samples looked the same, and no information could be deduced 

from the images, except hydrolysate samples showing brittle fractures as seen in Figure 

99. All other images for samples were put in the Appendix. 
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5.1 Conclusions 

The aim of this research was to produce a bloodmeal hydrolysate that could be used in 

NTP as a substitute for TEG, and also used to treat sodium bentonite clay to improve its 

properties as a filler in NTP. 

Initial enzymatic hydrolysis trials were carried out on bloodmeal using pepsin, alcalase 

and nitric acid.  The following was found: 

 Bloodmeal could be readily hydrolysed. 

 Pepsin hydrolysis was faster at pH 1.5 than pH 3, taking 12 hours to complete 

compared to 36 hours for pH 3.  Pepsin rate of reaction increased with increase 

in bloodmeal concentration, but only slightly with increasing pepsin 

concentration, suggesting pepsin was not saturated with substrate.  Degree of 

hydrolysis was around 20-25% for pH 1.5 and 7-10% for pH 3, hydrolysis yield 

was between 60-83% for pH 1.5 and average molecular weight of the peptides 

between 20 to 80 kDa. 

 Alcalase hydrolysis was slower than pepsin hydrolysis (at pH 1.5), but degree of 

hydrolysis was higher at 25-40%, hydrolysis yield between 70-80%, and 

average molecular weight of the peptides was 2 to 12 kDa. 

 Degree of hydrolysis for both pepsin and alcalase increased with increasing 

enzyme concentration but decreased with increasing bloodmeal concentration. 

 XRD analysis on the unhydrolysed bloodmeal showed that crystallinity 

decreased slightly with increasing enzyme concentration.  XRD could not be 

carried out on the hydrolysates as they were hygroscopic. 

 Acid hydrolysis was rapid and completed within 100 to 200 minutes, mass 

solubilised was around 90% for lower concentrations of bloodmeal down to 

40% for higher concentrations of bloodmeal.  The resulting hydrolysate could 

not be easily separated from the unhydrolysed bloodmeal, and required large 

amounts of base to neutralise. 

Large scale hydrolysis was carried out on bloodmeal first with alcalase, then with 

trypsin and then with pepsin. 

 80% of the bloodmeal was hydrolysed with alcalase giving a hydrolysate solids 

content of 6.5%, and an average molecular weight of 8.9 kDa for alcalase. 
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 Trypsin hydrolysate gave a molecular weight of 5.5 kDa while pepsin 

hydrolysate molecular weight went back up to 8.8 kDa, likely due to the 

molecular weight of the pepsin added.  

Half of each hydrolysate was used for protein adsorption onto sodium bentonite clay at 

pH 7. 

 Alcalase hydrolysate gave the best adsorption at 127 mg protein per g clay and 

basal spacing of the sodium bentonite increased from 13.2 Å to 14.2 Å.  

 Trypsin hydrolysate only gave and adsorption of 46 mg per g clay while pepsin 

hydrolysate did not adsorb.  There was only a slight increase of 0.4 Å in basal 

spacing for sodium bentonite treated with trypsin hydrolysate. 

 The poor adsorption for trypsin and pepsin was due to the salt formed during pH 

maintenance during hydrolysis and pH adjustment afterwards by adding acid or 

base. 

 Salt would need to be removed from the hydrolysate to improve adsorption onto 

clay. 

NTP was made with hydrolysate as a plasticiser and hydrolysate treated clay as a filler. 

 Specific mechanical energy required to extrude NTP with hydrolysate increased 

with increasing hydrolysate content, and also increased with extent of 

hydrolysis, i.e. trypsin hydrolysate gave greater SME than alcalase, and pepsin 

hydrolysate gave greater SME than trypsin, which could be due to the 

increasing salt content in the hydrolysate. 

 Specific mechanical energy required to extrude NTP with modified clay was 

independent of clay concentration, but increased with extent of hydrolysis, 

again possibly due to increasing salt content. 

 Tensile strength, secant modulus, crystallinity, thermostability and glass 

transition temperature decreased with increasing hydrolysate content in NTP, 

likely due to the shorter average protein chain length, indicative of some 

plasticisation.  Glass transition temperature did not change for NTP with 

alcalase hydrolysate.  Toughness, strain at break, and impact strength were low 

indicating a very brittle material. 

 Highly variable results were obtained for the NTP with treated and untreated 

clay as a filler, but generally gave lower mechanical properties than 
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conventional NTP.  Alcalase treated clay was particularly detrimental on NTP 

composite strain at break and toughness.  Thermostability of the composites 

increased within the 450-600
o
C with increasing clay concentration for all 

treated clays, but showed a much more rapid decrease in mass loss. 

5.2 Recommendations for future work 

The effect of salt in the hydrolysate on NTP and NTP composite processability and 

mechanical properties would need to be assessed to determine if it was the salt or 

protein peptides that contributed to the changes in mechanical properties.  The 

hydrolysate could be desalted using dialysis or nano-filtration and then used in NTP.  

Alternative hydrolysis techniques could be used such as high pressure and heat, such as 

using an autoclave. 

While hydrolysis gave average molecular weights of peptides around 8 kDa or smaller, 

the peptides would need to be made much smaller to be of equivalent size to common 

plasticisers.  Hydrolysates could be fractionated to isolate to the smaller molecular 

weight peptides for use.  The order in which hydrolysis is carried out (currently 

alcalase, trypsin, then pepsin) could be examined as well to see if this would reduce 

peptide size. 

While pH monitoring and adjustment is useful for following the rate of hydrolysis, it 

contributes to increased salt concentration in the hydrolysate.  A strongly buffered 

solution might help in keeping pH constant while reducing salt formation. 

If alcalase hydrolysis is continued on the large scale, hydrolysis could be carried out in 

the rendering plant after the blood has been coagulated and before it has been 

centrifuged, as alcalase can operate at 90
o
C, the same temperature of the coagulated 

blood solution. 
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Appendices 

Please see the CD attached in the pocket. 
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