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Abstract

Members of different social groups often hold widely divergent public beliefs regarding the

nature of the world in which they live. We develop a model that can accommodate such public

disagreement, and use it to explore questions concerning the aggregation of distributed infor-

mation and the consequences of social integration. The model involves heterogeneous priors,

private information, and repeated communication until beliefs become public information. We
show that when priors are correlated, all private information is eventually aggregated and public

beliefs are identical to those arising under observable priors. When priors are independently dis-

tributed, however, some private information is never revealed and the expected value of public

disagreement is greater when priors are unobservable than when they are observable. If the num-

ber of individuals is large, communication breaks down entirely in the sense that disagreement

in public beliefs is approximately equal to disagreement in prior beliefs. Interpreting integration

in terms of the observability of priors, we show how increases in social integration can give rise to

less divergent public beliefs on average. Communication in segregated societes can cause initial

biases to be amplified, and new biases to emerge where none previously existed. Even though

all announcements are public and all signals equally precise, minority groups members face a

disadvantage in the interpretation of public information that results in medium run beliefs that

are less closely aligned with the true state,
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1 Introduction

Members of different social groups often hold widely divergent beliefs regarding the nature of the

world in which they live. In many instances such beliefs are not openly expressed, and hence

knowledge of the disparity remains confined to a relatively small set. of observers. There are times,

however, when a high profile event triggers public reactions that make knowledge of the divergence

inescapable. A dramatic example of this occurred on October 3, 1995, when a nation transfixed by

the criminal trial of O.J. Simpson tuned in to hear the announcement of the verdict. The following

report describes the scene in New York's Times Square (Allen et al., 1995):

"In the moments before the O.J. Simpson verdict was announced, the crowd moved as

one, heads all tilted upwards, eyes trained on the giant video screen. But when the

verdict was delivered, the crowd split into two distinct camps one predominantly black,

the other white and each with a vastly different response. Many blacks... reacted with

jubilation. Many whites wore faces of shock and anger directed not only at the verdict,

but at the reaction from blacks... Throughout the country, the scene was similar. In

Wall Street offices, college campuses, stores, train stations and outside the Los Angeles

County Courthouse, the Simpson verdict drew reactions that split along racial lines."

Differences in reaction to the verdict reflected substantial racial differences in beliefs regarding

the likelihood that Simpson was guilty. Brigham and Wasserman (1999) tracked such beliefs over

the course of a year, starting with the period of jury selection in 1994 and ending three weeks after

the announcement of the verdict. During jury selection 54% of whites and 10% of blacks in their

sample thought that Simpson was "guilty" or "probably guilty". By the time closing arguments

were concluded these numbers had risen to 70% for whites and 12% for blacks, reflecting an even

larger racial gap. The final round of the survey, taken several days after the verdict and initial

reaction had been made public, showed modest convergence but a significant remaining disparity,

with 63%) of whites and 15% of blacks declaring a belief in probable or certain guilt.

While reactions to the Simpson verdict may be the most visible manifestation of racial differences

in beliefs, there are a number of other dimensions on which stark differences are a matter of public

record. A 1990 survey by the New York Times and WCBS found that 29% of black respondents

(as compared with 5% of whites) considered it to be true or possibly true that the AIDS virus was

"deliberately created in a laboratory in order to infect black people." Almost 60% of blacks believed

that it was true or possibly true that the government "deliberately makes sure that drugs are easily

available in poor black neighborhoods," and 77% gave credence to the claim that "the government

deliberately singles out and investigates black elected officials in order to discredit them in a way it

doesn't do with white officials." The corresponding numbers for white respondents were 16% and

34% respectively. These differences cannot be attributed to differences in socioeconomic status or

demographic characteristics (Crocker et al., 1999). To take a more recent example, a June 2008



survey found that while 5% of black respondents believed that Barack Obama was a Muslim, the

corresponding figure was 12% for white respondents, and 19% for white evangelical protestants (Pew

Research Center, 2008). And in a poll conducted just a few days after the presidential election,

38% of black respondents but only 8% of whites stated that racial discrimination against blacks in

the United States continues to be "a very serious problem" (CNN/Opinion Research 2008).

The persistence of such public disagreement appears to conflict with the standard hypothesis

in economic theory that differences across individuals in beliefs are due solely to differences in

information. If this view were correct, then disagreement itself would be informative and lead to

revised beliefs and eventual convergence (Geanakoplos and Polemarchakis, 1982). This is the insight

underlying Aumann's (1976) theorem, which states that two individuals who have common priors

and are commonly known to be rational must have identical posterior beliefs if these beliefs are

themselves common knowledge, no matter how different their information may be. As suggested by

Aumann (1976), the widespread public disagreement that one observes in practice can be attributed

either to differences of priors on the underlying parameter that is being estimated or to systematic

biases in computing probabilities, i.e., to differences of priors on the broader state space in which

individuals update their beliefs.

In this paper, we develop a tractable framework which allows for public disagreement and

can be used to explore questions concerning the aggregation of distributed information and the

consequences of social integration. We consider a finite population of individuals who differ with

respect to both their priors and their information about the state of the world. All priors and

signals are assumed to be normally distributed; priors may or may not be correlated, and signals

are independent. The profile of priors in the population may or may not itself be commonly known;

we consider both cases. Given their priors and their information, individuals form beliefs and these

beliefs are publicly and truthfully announced. The announcements are informative, and individuals

update their beliefs based on them. This results in a further round of announcements, which may

also be informative. The sequence of announcements continues until no further belief revision

occurs. At the end of the process, all beliefs become public information; we call these public beliefs.

We are interested in whether or not all distributed information is incorporated into public beliefs

through the process of communication, and the manner in which the extent of disagreement in

public beliefs is affected by patterns of social integration.

Given the heterogeneity of priors, public beliefs would involve some level of disagreement even

if priors were observable, so that each person's signal could be deduced from his announcement.

When priors are unobservable, the possibility arises that the process of communication may fail

to aggregate all distributed information, resulting in different levels of disagreement relative to the

case of observable priors. This happens because unobservability of priors gives rise to a natural

signal-jamming problem. An individual's first announcement is a convex combination of his prior

and his signal. Since other individuals observe neither the prior nor the signal, they can only

extract partial information about each of these from the announcement. At the end of the first

round of communication, therefore, beliefs do not reflect all distributed information. We show that



when priors are uncorrelated, none of the subsequent announcements has any informational value.

As a result, some distributed information remains uncommunicated, despite potentially unlimited

rounds of communication. Public disagreement now stems not only from heterogeneous priors but

also from informational differences that are induced by the fact that priors are privately observed.

The problem becomes especially acute in a large society. We show that when a fixed amount

of information is distributed among a large number of individuals, unobservability of priors leads

to a breakdown in communication: the difference between the public beliefs of any two individ-

uals is approximately equal to the difference in their prior beliefs, as though no information had

been received and communicated. Hence, in a large society, public disagreement is greater under

unobservable priors than under observable priors at almost all realizations of priors and signals.

On the other hand, in small groups, unobservability of priors can lead to smaller levels of public

disagreement at some realizations, simply because a more optimistic person may receive a more

pessimistic signal and cannot communicate his information fully. Even in this case, however, we

show that the expected value of public disagreement must be larger when priors are unobservable

and uncorrelated.

With correlated priors the situation is more complex. As long as each individual's prior is

correlated with that of at least one other individual, we show that (subject to a regularity condition

that is generically satisfied) all distributed information is fully incorporated into public beliefs even

if priors are unobservable. While individuals may agree to disagree, their eventual beliefs are

precisely what they would be if they had been able to observe each other's signals. This happens

because the manner in which an individual responds to the announced beliefs of others reveals

his beliefs about the priors of others, which in turn reveals his own prior. As a consequence,

public beliefs in the case of unobserved (but correlated) priors are identical to those resulting from

observable priors. However, convergence to public beliefs takes longer when priors are unobserved,

and involves levels of statistical sophistication that far exceed those required for convergence under

observable priors. Hence, we view this result as a benchmark, suggesting that the beliefs that

emerge in the long run are invariant to the manner in which information is distributed in society

and the pattern of observability of priors. The beliefs held before convergence has been attained,

which we interpret as medium run beliefs, exhibit all of the properties of public beliefs under

independently distributed priors.

One interpretation of the assumption that priors are observable is that individuals understand

the thought processes and perspectives of others, even if they do not share them. Such under-

standing could arise through social integration and mutual understanding that goes beyond the

announcement of posterior beliefs. Under this interpretation, our results enable us to investigate

the relationship between social integration and public disagreement. We do this by exploring a

variant of the model with uncorrelated priors, two social groups and three possible information

structures. We say that society is fragmented if no priors are observable, segregated if each indi-

vidual observes only the priors of those within his own social group, and integrated if all priors

are observed. Our earlier results imply that expected disagreement is greater under fragmentation



than under integration. A segregated society with uncorrelated priors behaves in a manner similar

to a fragmented society with correlated priors: all distributed information is aggregated in the long

run. In the medium run, however, some novel effects arise. We show that the ex-ante expectation

of public disagreement held by individuals in a minority group is smaller than the same expectation

held by members of a majority group. Furthermore, the expected magnitude of public disagree-

ment in the medium run is greater under segregation than under integration, and greater under

fragmentation than under segregation.

When the population size is large, medium run beliefs under segregation exhibit a number of

intriguing characteristics. First,- the bias is state dependent, and can be much larger than the ex-ante

difference across groups in prior beliefs. Hence differences in priors can become amplified through

communication under segregation. In fact, even if there is no ex-ante difference in prior beliefs,

there will be a difference in beliefs after the first round of communication. Second, individuals

belonging to a minority group face a disadvantage under segregation even though all individuals

receive equally precise signals and have access to the same belief announcements. The disadvantage

arises in the interpretation of public announcements. Since minorities (by definition) observe the

priors of a smaller segment of the total population, their inability to extract full information from

the announcements of others can be very costly. As a result, medium run beliefs of majority group

members are more closely aligned with reality (interpreted as the true state) than are the beliefs

of minority group members.

Our work contributes to a growing literature that allows for heterogeneity in prior beliefs.
1

In

particular, Banerjee and Somanathan (2001) and Che and Kartik (2008) explore strategic commu-

nication under observable heterogeneous priors. Since heterogeneous priors lead to heterogeneous

preferences, some information cannot be communicated (as in Crawford and Sobel, 1982). Our work

differs in allowing priors not only to be heterogeneous, but also to be unobserved. Furthermore,

communication in our model is truthful, non-strategic and two-sided. We consider non-strategic

communication in order to focus on the role of unobservability of priors in communication. (More-

over, in the applications we have in mind, individuals do not face strong incentives to misrepresent

their opinions.) In this we follow Geanakoplos and Polemarchakis (1982), who show how the agree-

ment predicted by Aumann (1976) could arise through a sequence of truthful belief announcements.

We adopt, the same model of sequential announcement introduced there, but apply it to the case of

heterogeneous and possibly unobserved priors. Our work is also related to the literature on learning

with heterogeneous priors (e.g. Freedman 1965; Acemoglu et al. 2008), which focuses on learning

from external sources rather than from communication.

Our work may also be seen as part of a literature dating back to Loury (1977) on the economic

effects of social integration; see Chaudhuri and Sethi (2008) and Bowles et al. (2009) for recent

Heterogeneous priors play a role in many applications, including work on asset pricing (Harrison and Kreps 1978;

Morris 1994; Scheinkman and Xiong 2003), political economy (Harrington 1993), bargaining (Yildiz 2003, 2004),

organizational performance (Van den Steen 2005), and mechanism design (Morris 1994; Eliaz and Spiegler 2007;

Adrian and Westerfield 2007).



contributions. While this literature examines the effects of integration on income differences, our

focus here is on disparities in beliefs. Such disparities can have significant welfare consequences. As

Crocker et al. (1999) note, blacks and whites "exist in very different subjective worlds" and "a chasm

remains... in the ways they understand and think about racial issues and events." Such differences

in beliefs can make "communication and interaction across racial lines painful and difficult", as

blacks find "their construal of reality flatly denied" and whites feel hurt or outraged that blacks

give credence to conspiracy theories that they find bizarre or outlandish. In addition, beliefs affect

responses to government policies such as public health initiatives aimed at reducing the spread of

communicable diseases or the promotion of birth control. Most fundamentally, differences in beliefs

about the fairness of the justice system or the extent, of racial discrimination in daily life can have

corrosive effects on the functioning of a democracy and erode confidence and participation in the

political process. While a serious analysis of such welfare effects is beyond the scope of this paper,

our analysis is motivated in part by the sense that persistent public disagreement can be welfare

reducing in subtle but substantial respects.

The remainder of the paper is structured as follows. We introduce the model in Section 2, and

explore a special two-person case in Section 3. When there are just two individuals, correlated

priors result in the same limiting beliefs (and hence the same levels of expected disagreement) as

commonly known priors. The general case is examined in Section 4, where it is shown that the

irrelevance of observability result continues to hold as long as the primitives of the model satisfy

a genericity condition. The case of uncorrelated priors (which fails this condition) is explored

in Section 5, where we identify conditions under which observability of priors lowers expected

disagreement relative to unobservability. Section 6 uses our results to explore the relationship

between social integration and public disagreement, and Section 7 concludes.

2 The Model

There are n individuals i E N = {1,2, ... ,n} and an unknown real-valued parameter 9, which

we call the state of the world. Individuals differ with respect to both their prior beliefs and their

private information about the state of the world. Before the receipt of any information, individual

i believes that 9 is normally distributed with mean fa and unit variance:

9~,N(fi,,l).

Given these (possibly heterogeneous and privately observed) prior beliefs, each individual i observes

a private signal X{ that is informative about 9 with additive idiosyncratic noise e^.

x l
- 9 + e,.

"We use the subscript i to denote the belief of i. For example, E, and £t [-|-] denote the ex-ante- and the

conditional- expectation operators under i's beliefs. We omit the subscript when all individuals agree. For example,

X ~ /V (0, 1) means that all individuals agree that A' has the standard normal distribution. Likewise, E denotes the

expectation operator when all individuals agree; e.g., E [X] means that E{ [X] = Ej [X] = E [X] for all i,j 6 N.
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All individuals agree that 6, e\,:..,en are independently distributed, and that

s 1 ~N{0,t 2
).

Observing x z ,
individual i updates3

his belief about 9 to a normal distribution with mean

A'i
t
i
= am + (1 - a)xi (2)

and variance

° = TT^- 0)

Hence, one can think of \i\ as the manner in which individual i processes his information X{, about

which other individuals are uncertain. One can also think of x l as the component of the belief of i

that is perceived to be informative about 9 by other individuals, and ]i x as the residual component,

which is perceived by others to contain no information about 9. We refer to the pair (/ij,x,) as i's

type, assuming that {(i l ,x l )
is privately known by i unless we explicitly specify that m is observable,

in which case m will be common knowledge.

The priors (/^j, . . .
,
/in ) are distributed normally with mean (fi\, . .

. , p,n ) and variance-covariance

matrix £ with entries a
XJ for i,j £ N. A crucial assumption is that conditional on /tt ,

individual

i believes that the state 9, the others' priors /z^ 2
= (f-ij)j^i, and the noise terms ej, j £ N, are all

stochastically independent. That is, player i thinks that there is some uncertainty about how each

individual j processes his information Xj, but does not think that the manner in which j updates

his beliefs reflects any information about 9.

Within this framework, we consider a model of deliberation involving truthful communication

of beliefs in a sequence of stages, as in Geanakoplos and Polemarchakis (1982). Once signals are

received, beliefs are made public in period 1 by simultaneous (and truthful) announcements A h \,

i £ N, where A
lt \ denotes player i's expectation of 9 conditional on the prior /i, and the signal %{.

After observing all announcements, individuals update their beliefs and simultaneously announce

these updated beliefs A^-, i £ N, in period 2. Here A
lt2 denotes i's expectation of 9 conditional

on his own prior /ij, his own signal x lt and the others' initial announcements A-^i = (^4?, 1)7/1-

Individuals continue to update and announce their beliefs indefinitely. The limiting values of

the sequence of announcements is denoted A l
^
ca for i £ N . We call A l}00 the public belief of i,

emphasizing the fact that this belief becomes public information (i.e. common knowledge) at the

end of the communication process. We assume that everything we have described to this point is

common knowledge.

Remark 1. Since (^1, . . .
,

/J. n ) may be correlated,' i may think that p, x is correlated with both /i_j

and 9, but /i_
;
and 9 are independent conditional on pt,. Such seemingly inconsistent beliefs arise

''Throughout the paper, we use the following well-known formula. If 9 ~ N(fi,o~) and e ~ N(0,v ), then

conditional on signal s = 8 + e, is normally distributed with mean

£[0| s ]
= -j£_^ -I- -^—^s (1)

and variance a2
v
2
/ (a

2 + v2
\.



naturally as follows. Suppose that all potentially relevant historical facts are represented by a

family {Xm }m(-M of random variables. Each individual i considers a set {Xm \
m 6 R t } of random

variables to be relevant for understanding 9 for some R^ C M; he considers the remaining random

variables Xm with m $ Rl
irrelevant. His conditional expectation of 8 given {Xm |

m e R,} is m,
which is all the relevant information about 9 in {Xm } m€M according to i. Consequently, conditional

on fi t ,
/Li_i does not affect his beliefs about 8; i.e., he considers /i^, and 9 to be independent. On

the other hand, at the ex-ante stage, if i assigns positive probability to R
t
DRj ^ for some j ^ i,

then i considers /i, and p.j to be stochastically dependent.

Remark 2. Our model of deliberation presumes that individuals cannot directly communicate their

information, or the manner in which they have incorporated their information into their beliefs,

although they can fully communicate their resulting beliefs. This is because we think of information

as a complex object consisting of many small bits and pieces, and the manner in which these are

incorporated into one's final opinion is itself a complex process that involves interpretation in light of

one's upbringing and experience. For simplicity, we represent this process using two real numbers:

Xi, which incorporates everything that others find relevant, and /i,, which represents everything

that others find irrelevant.

We conclude this section by describing the two environments that we will investigate. We say

that priors are observable if (/ij, . . . ,/in )
is common knowledge (although drawn from an ex-ante

distribution). We say that priors are unobservable if /i, is privately known by i for each i. We

use superscripts ck and u to denote variables in the observable and unobservable priors cases,

respectively. For example, we write A^kk or Afk
for the announcement of i at round k, depending

on whether priors are observable or unobservable, respectively.

3 Examples

Before proceeding to more general results, we consider the case of two individuals, i and j, starting

with the simplest environment in which priors are common knowledge. We assume without loss of

generality that m > fij.

3.1 Observable Priors

Consider the case in which the priors ^ and fij are common knowledge. Denote the announcement

of i at round k by Afi. In the first round, each individual announces his expectation of 9 conditional

on x L :

A$ =am + (l -a)x,.

Since i knows fij, he correctly infers from j's first announcement that j must have observed the

signal

{Afl -a l
x
j
)={l + r-

i)Af1
-r2H .

1 -a



Hence player i, whose first round belief was given by 6 ~; N(A^,a), receives an additional signal

(1 + t2
) Afx

- r 2
fj,j

which has expected value 8 and variance r2
. From (1) and (3), he therefore

updates his belief to a normal distribution with mean

a + T*
l

'
1 a + T*\ y i^' rJ

J 2 + t3 :^' 1 J,1/ 2 + r

and variance

Vh2 ~ oTT2 ~ JT^2
'

Note that i puts as much weight on j's announcement as he puts on his own, since he can extract

the exact information that led to j's announcement. 4 The updated beliefs of the two individuals

still differ because each also adjusts for the other's "bias".

Since both individuals can predict what each will announce in the second round, they do not

update their beliefs after hearing the second round announcements. Likewise, all subsequent an-

nouncements are foreseen ahead of time and do not provide any further information; the updating

process stops at round 2:

A&o== A* = A* = i±l!
{Ai,i + AjA )

- t^-sH-,

^ - AfTC = -—j (m-n). (4)

This is simply because each individual's private information becomes common knowledge at the end

of the first round. That is, all distributed information is aggregated in one round of communication.

The difference in public beliefs is

r
2

Note that although each individual's public belief depends on the other's initial announcement, the

difference in beliefs is independent of both initial announcements, and the individuals agree on the

distribution of this difference.

3.2 Unobservable Independent Priors

Next consider the case in which the priors \i{ and jXj are not observed, and are independently

distributed, each with variance a 2
. We write A*

k
for the announcement of i at round k. First

round beliefs and announcements are exactly as in the case of observable priors:

i4J|i =oim + (1 -a)xi.

Observing A^j, all i can infer is that a/ij + (1 — oi) Xj is equal to Aj„ and cannot know the specific

values of each variable. Hence, he attributes some of the variation in A"
x
to variation in \ij and

some to variation in xj. More precisely, he observes an additional signal

(1 + r
2
) Al, - r2ft = 6 + t

2
(N -

ft) + e, (5)

4 The resulting beliefs are precisely what they would have been if each player had observed a normal signal

(x\ + 12) /2 = 9 + (e\ + £2) /2 with normal noise having mean zero and'variance r
2
/2.



with additive noise r 2
(fij - fij) + £j. The noise term has mean and variance o 2t a + r2

. He then

updates his beliefs to a normal distribution with mean

CT
2 r4 j. ^2

M
ci + cr

2 T4 +T 2 u a + CT
2r4 +r2U ; •? '

1 ^Jy

1

1 + (1+<7 2 T2
)(1 + T 2

)

((l + a^)(l + r2
)Artl + (l + r

2
)Al 1 -r%)

Here, the first equality is obtained by updating according to (1) starting from 9 ~ TVfyl^j, or) and

using the signal in (5), and the second equality is by (3). Note that i puts greater weight on his

own announcement than on that of j. This is because i does not know j's prior. When j announces

a higher expectation AJi, i believes that with some probability j has obtained a higher value of

the signal Xj, motivating i to increase his own expectation of 9 too. He also thinks that, with some

probability, the high announcement may be due to a bias towards higher values (i.e. larger fij), in

which case i would not want to increase his expectation of 9. Consequently, each player's beliefs

become less sensitive to the other's announcement than in the case of commonly known priors.

Even after the second round announcements, i does not know Xj, so there remains some relevant

asymmetric information. In other words, some of the distributed information is not aggregated at

the first round. One might hope that further announcements communicate more private informa-

tion, resulting in the aggregation of the remaining distributed information. This is not the case,

however. Since A^
Y
and A^j are sufficient statistics for Af 2

and A%, the second round announce-

ments provide no additional information, and

AU _ AU _ - A u
^1,2 — ^z.3

— • —
^i.oo-

The difference in public beliefs is

Atoo - A? = -

; „ ,

*

W1 , 2 , K2
r
2

(1 + t
2

)
(Aitl - Ajtl ) + T

2
(ft -

ft))J,oo
JL ~[~

I J- | U

T

l + (l+a 2 r2)(l4
2

1 + (1 + U 2 T 2
) (1 + T 2

)

[(lM - Hj) + a t {ft-fij) + a (ei-Ej)). (6)

The difference of opinion has three sources: the difference in the means of the distributions from

which priors are drawn (/2; — ftj) , the difference in the realized values of the priors (/i, — fij) ,
and the

difference in information (e ;
— Ej) . Since communication never completely eliminates informational

differences, these differences affect public beliefs. Communication does, however, decrease the role

of differential information as the coefficient of (A,j — Ajj) is strictly less than 1. That is, differences

in information play a larger role in affecting initial announcements than in affecting public beliefs.

As in the common knowledge case, all individuals agree on the distribution of the difference in

public beliefs.

Note from (6) that the two individuals will generally agree to disagree even if they have identical

priors (m = fij) , since they cannot deduce from the announcements that their priors are in fact

identical. This makes transparent the obvious but sometimes overlooked fact that the standard

10



common prior assumption requires not only that the players have the same prior, but also that this

fact is itself commonly known.

In conclusion, uncertainty about the manner in which other individuals process information

hinders the communication of relevant private information through the announcement of beliefs.

Consequently, individuals hold different beliefs both because they have (possibly) different priors

and because of different information.

3.3 A Comparison of Belief Differences

Note that Ai >00 — Aj tOC measures the amount that i overestimates 9 relative to j at the end of

deliberation. Hence we call Ai >00
— Aj t00

public bias of i relative to j. Since uncertainty regarding

priors leads to less communication of information, one may think that it also leads to greater public

bias. This is not the case. It may so happen that the individuals have very different priors, and

knowledge of this may lead to a very large difference of opinion. Indeed, when the priors are not

observed, by (6), any amount of public bias is possible, including no bias at all. In contrast, when

the priors are common knowledge, by (4), the amount of public bias is constant, depending only

on the difference in realized priors.

Public Bias with Observable Priors

Figure 1. Public Bias with Observable and Unobsevable Priors

Figure 1 plots the values of public bias under observed and unobserved priors, respectively, for

a set of randomly drawn type realizations. Here, for each realization, the horizontal coordinate

5 The figure is based on 500 realizations of type profiles for parameter values a = r = 1, \h = 1, and \ij = -1.

11



is A
t°°

~ Afoo and the vertical coordinate is Af^ - A
<̂00

. In the realizations that lie below the

diagonal, public beliefs differ more when the priors are observable. Hence the figure demonstrates

that making priors observable may lead to greater disagreement in many cases.

While observability of priors can result in greater public bias for particular type realizations,

observability always lowers the ex-ante expected value of public bias, E \Al>OQ
- Aj t00 \. To see this,

note that when priors are observable, by (4), the expected bias in public beliefs is

r
2

E
[
Ai%> ~ Afoo] =

,

o (^ ~ H)

On the other hand, when the priors are not observable, by (6), the expected public bias is

E\A± -A- I

^(1+qV)

If jii = Jij then the expected public bias is zero in both cases. If fa > fij, however, then a2 >

implies

E[Ai,co ~ Aloo\ > E[A?oo ~ A<jU > 0.

That is, the expected public bias is higher when priors are not observable than when they are

observable. This is intuitive because unobservability of priors impedes the full aggregation of the

distributed information through deliberation. This result is useful in comparing the difference

between the average opinions of various groups. For example, it implies that differences across

groups in beliefs about the incidence of police brutality or racial profiling would narrow on average

if members of each group were to observe each other's priors and therefore understand how their

information is incorporated into beliefs. We return to this point in Section 6.

3.4 Unobservable Correlated Priors

Under the assumption that the priors are uncorrelated, we have so far illustrated that unobservabil-

ity of priors may impede the aggregation of distributed information through deliberation and affect

the amount of public disagreement. We now show that when priors are correlated, all distributed

information is aggregated and hence the observability of priors has no effect on public beliefs.

Assume that \x
r
and ji

3
are correlated:

"

1 P

to j p i

where p ^ 0. Observing /i,, i believes that [i
3

is distributed normally with mean

Eiltolto] = to +P(t* ~ M»)

and variance

12



That is, Ei[(j.j\m} is a one-to-one function of m. Let Afk
denote the announcement of player i at

round k. As before, we have A^ = A(jl and AVj = AjA . Now, for i, the announcement A]1

, of j

in the first round yields an additional noisy signal

(1 + r
2
)
AVj - T-

2^^!^] = r
2
(^ - £,[Mj |^]) + x

3
= 9 + r

2

(H - £,[/;>,]) + £j . (7)

The additive noise r 2
(fj,j

- E^fi^p,^) + e3 has mean and variance a 2
(l - p

2
) r A + r 2

. Updating

his belief, in the second round i announces

Al2 = KAl1 + LAl 1
-aLEi [H \^i},

where K and L are known strictly positive constants. 6 The crucial observation here is that A"2

is strictly decreasing in Ei{/j,j\fii\, which is i's expectation of j's prior once i has observed his own

prior. Player j, having observed Af^ and Aj
X
from the previous round, can therefore use A l

{2 to

deduce that

Ei[N \m\ = (aLy 1 {KA?
A
+ LAI, " AW

Moreover, since Ei[fj,j\fj,i] — Jij + p(j.i
t
— pi) and p ^ 0, there is a one-to-one mapping between p t

and El [p,j\p,i\. Hence j correctly infers that

fH = Pi + P'
1 ((aLy 1

{KAl, + LAI, ~ Ab

That is, at the end of second round, all prior beliefs are revealed. Hence, the announcements in all

subsequent rounds are precisely the same as in the common knowledge case:

,-2 Ji
,<* =

1+T r
-

2 + t 2 '"'-'
'

"
J '"

2 + 7-2A,3 - ^t,oo " A'.oo — o , ^2 (^'• 1 "*' ^J' 1 )
~ o i. ^2^J'

Accordingly, when priors are correlated, both individuals can infer each other's prior beliefs from the

manner in which they react to the initial announcements. All distributed information is therefore

aggregated through communication, and the resulting public bias is fully attributable to differences

in prior beliefs:

r 2

A,oo ~~ Aj,oo ~~ + T 2
~

'

We show next that this is true under broad conditions.

4 Aggregation of Distributed Information

We now return to the general model with unobservable priors, and provide a near-characterization of

the cases in which the private information of an individual is revealed through deliberation. We show

'One applies (1), starting from 9'~ N (A"i,q) and using the signal in (7), to obtain

-fi fi „2\ _4 . 2

^.,2 = ;

YTl 2\ 4 i

2'4 '.' + 1

2Tl 2» 4| 2
J + T

I
A

J,1 ~ T E* Mj Mi J
.

a + a*- (1 - p
2

) r4 + t 2 a + a 2
(1 - p

2
) t

4
-f t 2

The desired equation is obtained by letting K and L respectively denote the coefficients of A?tl
and .4"i.
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that, roughly speaking, if an individual's prior is correlated with the prior of any other individual,

his private information is revealed by the end of the second round; otherwise his information is never

revealed. Hence, except for certain knife-edge cases (as in the example of independent priors), the

process of sequential belief announcements leads to the aggregation of all distributed information.

The idea that an individual's private information is revealed through communication is formal-

ized as follows.

Definition 1. We say that the private information of individual i is revealed by (the end of) round

k if {(J.i,Xi) is measurable with respect to Mj,m}yeAfm<f If tlie private information of individual

i is not revealed by round k for any fc, we say that his private information is never revealed.

That is, the private information of i is revealed by the end of round k if, by observing all announce-

ments up to and including those in round k, one can compute his prior belief ^, and signal x
x

. In

that, case, his private information will be common knowledge at any round m > k:

Aj,m — Ej 9
\
fXi,Xi,flj,Xj,

{
j/^',//

[
' e /v\{,;, 7 },/< r

(Vj e N)

To present our characterization, we introduce the following notation. For any i € N, we define

column vectors ^_; = {p.] ) J^ l
and (7_M = (ct^j) • ,

x
and write £_;,_; = (o^t) , lk ,

x

for the variance

covariance matrix of /U_j. We write lfc x ; for the k x /-dimensional matrix with entries 1 and / for

the identity matrix. Finally, we define the row vector Mi as follows:

Mi= llxn-l (al rl_ixn-l +T 2
I + T

4 (E. a- £7_,:.;cr_ „•

Note that M% depends only on the primitives of the model and is therefore independent of all type

realizations. The next definition provides the terminology of the characterization.

Definition 2. We say that i is isolated if o--
t i
= 0. We say that i is regular under (r

2 ,S) if

MiO-i^ ^ 0. We say that (r2
, S) is regular if every i is regular under (t 2

, S).

Note that i is isolated if and only if fi, is independent of all other priors fij. In this case, i

cannot infer any information about the priors of others from his own prior. Consequently, others

cannot learn about i's prior from the way he reacts to their announcements, and it is not possible

to uncover all of his private information. The regularity condition rules out this knife-edge case

and some other knife-edge cases in which MjCT-,,, = (without, requiring that o~^
lt ,

= 0). Note

that Afjcr_j
i
i
= is a non-trivial linear equality restriction on the variances (r

2 ,E), and hence is

satisfied only on a lower-dimensional subspace of the space of all variances (r , E). In particular,

the set of regular parameters (t
2

, E) has full Lebesgue measure and is open and dense.

Our characterization establishes that whether the private information of an individual is revealed

depends on whether he is regular or isolated.

Proposition 1. Assume that the priors are not observable. If i is regular, then his private infor-

mation is revealed by the end of round 2. Conversely, if i is isolated, then his private information

is never revealed.
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An immediate implication of this is:

Corollary 1. If (r
2 ,E) is regular, then all private information is revealed by the end of round 2.

This result establishes the irrelevance of observability: public beliefs under unobservable priors

are identical to public beliefs under common knowledge of priors as long as (r 2
, E) is regular. All

information is aggregated no matter how little individuals know about each other's way of thinking.

Moreover, as in the two person case, this process requires just two rounds of communication.

In order to prove Proposition 1, in the Appendix, we compute the announcements (see Lemma

2). After the first round, the announcement of an individual i is an afhne function of the first round

announcements of all individuals, the priors of the individuals whose information has been revealed,

and the prior /Xj of i himself. In the second round announcement, the coefficient of \i{ is proportional

to MiCT-ij. Hence, when Mjcr-^i ^ 0, other individuals can compute yn using the publicly available

information and Ai
t

2- In that case, the private information of i is revealed by the end of the second

round. Moreover, in any round after the first, the coefficient of /i2 is proportional to ct_
Zi,. Hence,

when ct-i_i — 0, the announcement of i does not contain any new information because it is a function

of publicly available information, namely the first round announcements and the priors that have

already been revealed. In that case, i's private information is never revealed.

Another direct implication of Proposition 1 is that public beliefs are identical under observability

and unobservability of priors provided that (r 2
, E) is regular:

Corollary 2. If (r
2

, E) is regular, then A"
fc

= Af^ for all i and k > 3.

These beliefs have a particularly simple form. Under observable priors, each individual i can

deduce the signal Xj of any other individual from her first round announcement. (Specifically, from

(2), we have Xj = (l + t 2
) A]t \

- r 2
[ij.) Hence, individuals extract the entire relevant signal

(xi H h xn )
jn - 9 + (ei H he„) /n,

where the noise has variance

f
2 = r

2
/n. (8)

Using this signal, they form their public beliefs as follows:

2 n
/tck Ack T n V^ Xj

n + r A n + r* ^-^ n

The difference between the public beliefs of any' two individuals i,j € N is therefore simply

r 2r

C~-^ =^2 (W -Mi)- 0)

If (t
2

, E) is regular, then by Corollary 2, the difference in public beliefs with unobservable priors

is also given by (9). Note that holding constant f 2
, this difference is independent of n. That

is, under the regularity assumption, regardless of whether priors are observable or unobservable,
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differences in public beliefs are due only to differences in priors, which are scaled down according

to the precision 1/f2
of the distributed information.

The regularity assumption is weaker than genericity and contains many interesting "non-

generic" cases, as the following example illustrates.

Example 1. Take N = B U W consisting of two groups B = {1,2} and W = {3,4}. For each i,

an = a2 and for all distinct individuals i and j, ov, > if i and j are in the same group and a
tJ
=

otherwise. That is, from his own prior, an individual can learn about the other individual's prior

in his own group, but he cannot learn anything about the other group. Nevertheless, (r2
, £) is

regular. One can check that, for any i 6 N,

Mi<T-ij oc 1 + t
2 + a 2

r
2 + a 2

r
4 + a 2

r
2
p + a 2

r
4
p ± 0.

This example illustrates that even in a segregated society with no correlation in priors across groups,

all distributed information is incorporated into public beliefs. We analyze this special case of the

model in some detail below.

Proposition 1 implies that public beliefs are discontinuous with respect to the correlation of

priors. When the priors are correlated, no matter how small the correlation may be, public beliefs

incorporate all private information. When priors are independent, however, a substantial amount

of private information remains private. This is true even for the third round announcements. The

discontinuity stems from our assumption that individuals can communicate their beliefs precisely.

In reality, individuals have only noisy information about the beliefs of others. For example, public

polls reveal only partial information about the beliefs of a few randomly selected individuals. With

imperfect observability, beliefs at any round will be continuous with respect to the correlation

parameter. Accordingly, for sufficiently low levels of correlation between priors, a substantial

amount of private information will remain uncommunicated at each round.

Full aggregation after only two rounds is an artifact of the two-dimensional model we use

for tractability. Geanakoplos and Polemarchakis (1982) show that even under the common prior

assumption beliefs may take arbitrarily long to stabilize. Hence the complete aggregation of dis-

tributed information could take an arbitrarily large number of communication rounds in a more

general setting. Accordingly, we view Proposition 1 to be demonstrating that in the long run all

information is aggregated under correlated priors. That is, we interpret third round announcements

as corresponding to the long run.

Complete aggregation of distributed information in the long run relies on the assumption that

all individuals have high levels of statistical sophistication. Not only are they able to make rational

inferences based on the initial beliefs of others, they are also able to make rational inferences

based on the manner in which others adjust their beliefs after hearing each successive round of

announcements. This requires that individuals assume that beliefs are as described in the model,

and assume that all individuals assume that beliefs are as described in the model, and update

their beliefs accordingly. . . up to high orders. When such strong assumptions fail, individuals may

fail to aggregate distributed information fully, and long-run behavior may resemble the case of
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independent priors, where individuals do not make inferences based on the manner in which others

react to information. Furthermore, the case of independent priors is interesting in its own right,

and we explore this environment in detail next.

5 Public Biases

In this section we explore the impact of observability of priors on the degree of bias in public

beliefs. As we have seen in the previous section, when priors are correlated, all of the information

is aggregated, and observability of priors does not play any role in the long run. Here we consider

only the case of uncorrected priors:

Assumption 1. The variance- covariance matrix for priors is £ = <j
2
/.

That is, for all distinct pairs i and j, the priors /i.4 and fj,j
are independent (i.e. arj = 0) and the

variances of priors are equal (i.e. ou — a2
for all i).

Consider two individuals, i and j. At the end of deliberation, j thinks that the expected value

of 9 is Aj i<x> . He also knows that i thinks that the expected value of 9 is A,oo- Therefore, j thinks

that i overestimates 9 by an amount j4j ]00
— Ajt00 . This leads to our notion of public bias.

Definition 3. For any i,j S A'', the public bias of i relative to j is A l<oc — Aj i00 .

Similarly, the ex-ante bias of i relative to j is /i, - p,j. The bias after i and j have observed their

own priors but before they observe any information is /ij — /j,j, which we call the prior bias of i

relative to j. Note that the ex-ante bias is known to all players, and the public bias comes to be

known through communication, but the prior bias may never be revealed.

We know from (9) that when priors are common knowledge, the only source of public bias is the

difference in realized priors, ft; — fij, which is scaled down through communication. The following

lemma identifies the amount of public bias when priors are unobservable, generalizing the analysis

of Section 3 to n individuals.

Lemma 1. Under Assumption 1, for any i andj, the public bias ofi relative to j under unobservable

priors is

2 4 2 2 2

^oo - 4",oo = - (w - ih) +— (w - h) +— te - O -
(io)

' J i ^y r^j j*V

where 7 = (l + t 2

)
(l + t2

ct
2
) + n — 1.

Under unobservable priors, public bias has 'three sources: ex-ante bias (ju l
— flj), prior bias

(fij — fij), and informational difference (e z —£j)- The informational difference contributes to public

bias because unobservability of priors impedes the full aggregation of information. Ex-ante bias

affects public bias because, without full aggregation, individuals use ex-ante information on priors

to estimate the information of others.

By Lemma 1, the magnitude of public biases does not depend on 9. Hence all individuals agree

on the distribution of these biases (although they disagree on the distribution of public beliefs).
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Our next result establishes that, if the priors are drawn from distinct distributions, the expected

bias is necessarily larger under unobservable priors. (The expected bias is always zero when priors

are drawn from the same distribution.)

Proposition 2. Under Assumption 1, if p^ > p,j, then

E[Af
i00

- AU > E[Af% - A<;%} > 0.

Proof. Note from (9) and (10) that

EIA&.-Afc,) = _?f_(fc- Ai )

FM" 4" 1

T 2
(l + r 2q 2

)

ElAf^-Af^] is independent of a 2 while E\A^^~ Au
hO0 \ is increasing in a 2

. Since E^^-

A

u
joo ]

=

E[A1% - AfJ for a 2 = 0, we have E[A?
<eo

- A^) > £[#;% - AfJ for a 2 > 0. D

Consider two individuals i and j. Suppose that fL L
> p,j so that at the ex-ante stage i overesti-

mates 9 relative to j, although the actual prior /i2 of? may or may not turn out to be larger than fij.

After each player k forms his prior and receives his information, all individuals deliberate, commu-

nicating their beliefs as in our model. At the end of the deliberation, their beliefs become public.

Proposition 2 establishes that all individuals expect that, at the end of the deliberation, i overes-

timates 6 less vis-a-vis j when priors are observable. That is, U/J/l^ — A^} < E^Af^ — A^^}

according to each k £ N. Therefore, making priors observable decreases public biases on average.

This suggests that social integration, interpreted as an increased understanding of the manner in

which other people think, should result in lower levels of public disagreement on average. We

explore these issues further in Section 6.

We conclude this section with a discussion of the manner in which increases in population size

affect the aggregation of distributed information. When information is distributed among a large

number of individuals, unobservability of priors becomes detrimental for communication, so much

so that the bias at the end of the deliberation process is approximately the same as the bias before

deliberation begins. Towards establishing this, recall from (8) that the distributed information

in society has variance f 2 = r 2
/n. If one fixes r and varies n, as n gets large, the distributed

information becomes very precise. Consequently, the individuals approximately learn 9 from each

other. In order to disentangle the effect of group size n from the effect of the information available

to the group, we now fix the precision of the distributed information and let n vary.

In particular, we consider a family of models (T
2 .a 2

,jln ,
n), indexed by the number of individuals

?i, where Jln = (/li, . . .

,
jln ) is the vector of means for the priors; /iz ~ N (/i,, <7

2
) for each i < n.

We assume that the variance T 2/n approaches some positive value f 2
as n —> oo. A special case of

this arises if the variance of distributed information is independent of n, in which case t 2 = nf2

for some fixed f > 0. Our next result shows that, under unobservable priors, when the number n

18



of individuals is large, the public bias of i relative to j is approximately equal to the prior bias of

i relative to j:

Proposition 3. Under Assumption 1, for any family (r 2
,er

2
,
/}„, n) of models, for any distinct

individuals i and j, and for any (£,-,£,-),

T*/n->f2 >0

Proof. By Lemma 1,

At,oo - ^",00 = Tn^V {fM - Mi) + V {{Pi - P-j) + V 2
(£i - 6j-)) •

where

n(r2/n)
2
a2 + (r2/n)(l+a2

) + l

As n —
> oo and r%/n —» f 2 > 0, n goes to 0, while T^a 2n goes to 1. Hence A^ - A"^ goes to

Mi - Mi-

Under observable priors, individuals use all distributed information efficiently. Hence, their

public beliefs and the bias in those beliefs do not depend on how information is distributed. When

priors are unobservable, however, even if individuals have very precise information as a group and

announce their beliefs sincerely, they cannot communicate any significant information: at the end

of the deliberation process, their beliefs are as they were at the outset. The intuition is that each

individual has such a small amount of information that their announcements reveal little more than

their priors. Recall from (9) that

f2

^,oo ~ Aj'.oo
= -1,-2 (^ l ~ W/

so the difference in beliefs under observable priors is independent of n holding f fixed. An immediate

implication of Proposition 3 is therefore the following: as the population size becomes large, so that

a given amount of information is distributed among an increasingly large number of individuals,

public bias under unobservability is greater not only in expectation but also for almost all type

realizations. In contrast, as is clear from Figure 1, in a small group of well-informed individuals

observability of priors may increase the amount of public bias in some instances.

6 Social Structure

As an illustration of the theory developed in the previous sections, we now analyze the amount

of expected bias between two groups under three alternative social structures, which we call frag-

mentation, integration, and segregation. Fragmentation corresponds to a structure in which no

individual observes the prior of any other. Under integration, each individual observes the prior
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of every other individual. And under segregation, each individual observes the priors of all those

belonging to the same group, but none of the priors of those in the other group.

More formally, let N = B U W, where B and W are disjoint sets with nb > 2 and nw > 2

members, respectively. We maintain the assumption that S = er
2
/, so priors are independently

distributed, and we assume that for some fit, > p. w ,

JH = ji b and jLj = fiw (Vi G B,j G W)

.

That is, ex-ante, members of B overestimate relative to members of W J An individual member

of B, of course, may turn out to have a higher expectation than an individual member of W
once each observes his own prior. We assume that opinions are communicated by successive belief

announcement as before. In this example, it suffices to announce the average opinion of each group,

namely
I

nb ' " £l"

A b,k = — Y] Aitk and A w<k = - ) A]M .

" ieB j£W

We use the same superscript to denote other group averages as well, so jib = — X^es Al i

— X^jgvv eJ' e^c ' ^e are interested in the extent to which average opinion in B exceeds that in W
at any given round k, defined as follows:

Pk = Ab,k - AWtk-

We let
[}F

, Pj. and /3j? denote the values of this difference under fragmentation, integration and

segregation respectively.

For reasons discussed at the end of Section 4, we regard k = 2 as the medium run and k = 3 as

the long run. From the previous section, recall that in both fragmented and integrated societies,

Ai^k = A{
:
2 for all k > 2, and the distinction between the medium and long run is not meaningful.

However, the distinction is meaningful in a segregated society, in which individuals behave as in

the correlated priors case (although the priors are in fact independent).

6.1 Fragmentation

In a fragmented society, individuals obtain information, form beliefs, communicate these beliefs to

pollsters, and observe the aggregate belief distribution. No individual observes the prior belief of

any other individual. Instead, he uses his prior belief about the thinking of the others in order to

extract the information revealed in the polls. This is the case of unobservable priors.

From Lemma 1, for any round k > 2, the difference in average opinions across groups is

T 2 T A 2 T2
CT
2

Pk = iV-b -flw)+ (A& -M "^
(£fc - Ew) ( 1 1

)

7 7 7

'This assumption is without loss of generality even if the groups are of unequal size, because if fib < p-w, then we

can simply reverse the order on 9 by considering —8. Simply put, we are measuring the biases in the direction that,

ex ante, members of B overestimate with respect to the members of W

.
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Hence, the bias has three sources: the ex-ante bias between groups (fit,
-

p.w ) , the average prior

bias between groups (p.b - p.w ), and the average informational difference between groups (ib - iw ).

Recalling the definition of 7 from Lemma 1, the expected value of the between-group bias is therefore

E lPk] = n T 2W1 , 2 2/ 7 {fib - fiw) (12)
(1 + T l

) (1 + T lG l
) + n - 1

v ;

6.2 Integration

In an integrated society, each individual observes the priors of every other individual. They commu-

nicate directly, understanding the manner in which information is incorporated into beliefs. This

is the case of observable priors.

From (9), for any round k > 2, the difference in average opinions across groups is

T 2

H = -jrr—{h-M- (13)

Hence, the difference across groups in average opinion is the difference between their respective

average priors, scaled down by a factor that uses all of the distributed information efficiently. The

expected value of this is

EW = -rirr (w. - fr») (
14

)
t z + n.

and hence, from Proposition 2,

Effi] < E\pl].

6.3 Segregation

Now we consider a segregated society partitioned into two components, one for each group. Each

component is like an integrated society that is closed to members of the other component; individ-

uals in different groups receive information about each other only through opinion polls. Formally,

we assume that the prior of an individual is observable to the members of his own group and

unobservable to the members of other group. That is, for each i 6 B and j 6 W, [n is common

knowledge among B and fij is common knowledge among W.

Now, when any i £ B observes the first round announcement A^i, he extracts all of the relevant

information the other members of B have, concluding correctly that

x b = — Vii = (1 + t
2
) i 6 ,i

- r 2
li b . (15)

rib-'—'

On the other hand, he can extract only limited 'information from the announcement Aw j. The

only relevant information for him is (l + r 2
) Aw< \ = x w + T jlw , where he knows neither xw nor

fiw . Combining these two pieces of information, he updates his belief, and in the second round, he

announces

Af:2 = cb {a b fj.i + (1 - a b ) x b ) + (1 - cb ) ((1 + t
2 )AWi1 - r2 p,w )

(i G B)
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where
r2

otb = -s- (16)

and
(r

2 + n
fc
)(l+r 2a2

)
C6

(l + r2a 2 )(r2 + n
fc
)+n lu

- (17)

Hence the average opinion in B at this stage is

As
b2 = cb {a b jib + {\ -a b)x b ) + (l - cb ) ((1 + r

2)^ - r 2
^). (18)

It turns out that, together with the first round announcements, the second round announcements

reveal all relevant information. To see this, consider any j e W . From the average first round

announcements of the other group, j deduces that (l + r 2
) Ab^ = x b + T 2

jlb , and in the second

round deduces (18). Since nb > 1, j can solve these two independent linear equations, thereby

computing £b and /}(,. That is, j does not need to know how members of B think: knowing that

members of B know how each other thinks, j can infer all relevant information from the manner

in which members of the B react to each others' announcements. As a result, by the end of the

second round, all distributed information is aggregated and a segregated society is identical to one

that is integrated in the long run:

Proposition 4. For each i G TV and k > 3, Afk
— A[

k
and /3k

= l3[.

This illustrates the power of the argument behind Proposition 1. When some individuals have

information about other individuals (through correlation in Proposition 1 and observation here),

third parties can extract that information from the manner in which these individuals react to each

other's announcements.

We now turn to the medium run beliefs in a segregated society. From (15) and (18), we obtain

A-b,2 = (1 - a b cb ) 6 + ab cb fl b + (1 - cb )r
2

(fiw - p,w ) + (1 - a b )cb i b + (1 - cb )iw . (19)

Similarly,

^S,2 = (1 _ ctwCw) 6 + aw cw fiw + (1 - cw ) t
2

(fi b - fi b ) + (1 - a w ) cwiw + (1 - cw ) ib (20)

where aw and cw are defined analogously to (16) and (17).

If nt, = nw then ab cb = aw cw . In that case, the medium-run bias, /3f
= Ab2 - A^ 2 > does not

depend on 6, and all individuals have the same expectation:

E [Pi] =
Mi. 2 2W 2 i /ON_L 10 ^b ~^ '

L J
(1 + r^a^j (t z + n/2) + n/2

It is easily verified that for any n > 2,

E\p'2 \
< E[0$] < E\$).
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That is, when groups are of equal size, they agree about the value of the medium-run bias under all

three information structures, and the bias is greatest under fragmentation, least under integration,

and intermediate under segregation.

When groups are of unequal size, however, the medium run bias does depend on 9, and hence the

members of different groups will have different expectations about it. Our next result establishes

that, in a segregated society, ex ante, members of a minority group will expect a smaller medium-

run bias than the members of a majority group. Despite this, it further establishes that they all

agree that the expected medium-run bias under segregation is higher than that under integration,

and lower than that under fragmentation:

Proposition 5. If rib < nw , then

E{/3.{} < E^l] < Ej\p$) < E[f3[] {Mi £B,je W)

.

Proof. For any i e B, E
L [fib] = Ei [9] = fib and EL [jj,w ]

= p,w . Hence, by (19) and (20),

Ei [/8f]
= aw ciu {Jj.b

- fin)

.

(21)

Similarly, for any j G W,

Now,

Ej[p$] =ab cb (flb-fiw)- (22)

CVfcCfa =
t 2

1 + Tza2 ^.2 \

t 2
(1 + t 2

<7
2
) + nbT 2a2

T 2
(l + r2a 2

)

r 2 (l + r 2
cr
2

) + n LU T
2a 2 +n'

Since rib < nw ,
we have CbQ-b > cwaw ,

showing that Ei [P2] < Ej [P2] ^ see tna^ E\i3f
2 ) < £',,

[/5^],

observe that (14) can be obtained from (21) by setting a2 = 0, and aw Cu, is increasing in a 2
. To

see that EjlP^) < Elfy], observe that (12) can be obtained from (22) by setting nb = 1, and ctbCb

is decreasing in rib. CI

In summary, expected biases are always highest under fragmentation. Expected biases are

higher under segregation than under integration in the medium run, but the two social structures

are identical in the long run. This is intuitive, since individuals have the least ability to process

information under fragmentation and the greatest ability to process information under integration.

6.4 Large Societies

We have so far compared the expected value of biases under three social structures for arbitrary

values of the population size n. In large societies idiosyncratic differences cancel each other out.

and we can compare the magnitudes of actual biases under various social structures state by state.

Doing so reveals that our analysis of expectations misses an interesting and potentially disturbing
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fact about medium-run beliefs: segregation puts minorities at a disadvantage in processing public

information and consequently results in biases even when groups are formed from ex-ante identical

individuals.

In order to compare biases in large societies, we consider a family of models, indexed by n, such

that

as n —> oo, T
2/n —> f

2 and n^/n —> r (23)

for some f2 > and r e (0, \). That is, we adopt the convention that B is the minority group. In

a large fragmented society, by (11). the bias is approximately as great as the ex-ante bias:

lim Pk = fib — fiw almost surely, for all k > 2.
n—>oo

By (13), in a large integrated society, the bias is smaller, to a degree that depends on the precision

of the distributed information:

lim f3k = 35 (fib — fiw )
almost surely, for all k > 2.

71—»00 T + 1

In a large segregated society, the bias is identical to that under integration in the long run, as we

have seen above:

o r _
lim j3k = — (fib — fi w )

almost surely, for all k > 3.
n—>oo T + 1

In the long run, both segregated and integrated societies use all available information efficiently.

In the medium run, under segregation, information is not fully aggregated. This does not,

however, mean that the magnitude of the bias lies strictly between the corresponding magnitudes

under fragmentation and integration respectively. To see this, note from (19) and (20) that average

group beliefs in the medium-run are given by:

-2

lim A^ 2
= rj-

—

fi bn—»oo "'* T z + r

'

T^ + r

V AS f2 l

hm A 2
= -j— -fi u

1 — r t z + 1 — r

Notice that neither group processes information as efficiently as in an integrated society. In effect,

a representative member of the minority group faces a noisy signal with variance f /r, and a

representative member of the majority group faces a noisy signal with variance f2
/ (1 — r). Under

integration, each individual obtains a noisy signal with variance f , which is clearly smaller than both

f2/r and f2
/ (1 — r). Furthermore, under segregation, minorities are disadvantaged in processing

public information, since f2 /r > f2 /(l — r). As a result, the majority view is more closely aligned

with reality. This disadvantage becomes more pronounced as group sizes become more unequal.

Since the majority view is more closely aligned with the reality, the medium-run bias depends on

9:

f2 f 2
/ f 2 f 2 \

lim 2
= 35 fl b ~ 35 fw -

\ T5 5 ^ almost surely.
n-.oo t~ + r rA + 1 — r \t z + r t z + I — r I
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Because of this dependence on 9, the bias can take any value. In particular, in the medium run,

the difference in beliefs under segregation may increase (relative to the ex-ante belief difference)

and therefore exceed the difference under fragmentation. This will occur if 9 turns out to be very

different from ex-ante expectations of it. More interestingly, under segregation, there may be large

medium run biases even if the groups have identical ex-ante beliefs, fa = p,w = p,. With identical

ex-ante beliefs, the medium-run bias is

?s i r
-2

lim /32 = —5 ^ ) lu — 9) almost surely.n-^ 1 \f 2 +r f 2 + 1 -rj J

Hence there are differences in opinion across groups in the medium run despite the fact that the

groups are formed from ex-ante identical individuals. In contrast, with ex-ante identical beliefs,

the medium and long run bias is negligible under fragmentation and integration: limn_oo f3[ =

limn-.oo Pk
= almost surely. Since the dependence of the bias on 9 is caused by the disadvantage

faced by minorities in the processing of public information, it increases as group sizes become more

unequal. 8

7 Conclusions

If a group of individuals share a common prior and are commonly known to be Bayesian rational

(in the sense that each member of the group forms beliefs using Bayes' rule according to the

common prior) then public disagreement cannot arise. Accounting for such disagreement therefore

requires a departure from one or both of these hypotheses. We have chosen here to explore the

implications of heterogeneous priors, while maintaining highly stringent assumptions regarding

Bayesian rationality. Two main results follow from this. First, we find that for generic values of the

model's primitives, the extent of public disagreement is independent of whether or not priors are

observable, and public beliefs involve the aggregation of all distributed information in the long run.

Second, we find that when priors are uncorrelated, the expected value of public bias is lower in an

integrated society than in a fragmented one. For large societies, a stronger result holds: public bias

is greater in a fragmented society relative to an integrated one under almost all realizations of priors

and information. This suggests that social integration (in the sense of better understanding of the

priors of others) should result in diminished public disagreement, especially in large populations.

Our results depend on the ability of individuals to make highly sophisticated statistical in-

ferences, based not only on the initial beliefs of others but also on the manner in which these

beliefs are adjusted over time on the basis of earlier announcements. If cognitive limitations pre-

vent individuals from making inferences based on the manner in which one person responds to

another's announcement, then our medium run analysis applies, and expected bias across social

8
Individuals belonging to a minority within any population tend to have a smaller number of affiliates in friendship

networks (Currarini et al., 2008), which should reinforce this effect. On the other hand, segregation itself tends to

be endogenously increasing in the size of the minority group (Sethi and Somanathan, 2004), which suggests that the

extent of public disagreement may not vary monotonically with the size of the minority group.
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groups depend systematically on the extent of social integration. Expected public bias is smallest

in integrated societies (where priors are observable both within and between social groups) and

largest in fragmented societies (where priors are unobservable even within social groups). Inter-

mediate levels of expected bias arise under segregation, when priors are observable within but not

across groups. Hence integration both within and across social groups tends to reduce expected

levels of bias.

Communication in segregated societies can cause initial biases to be amplified, and new biases

to emerge where none previously existed. Despite the fact that all announcements are public and all

signals equally precise, minority groups members face a disadvantage in the interpretation of public

information that results in beliefs that are less closely aligned with the true state. If majority group

members (or outside observers) fail to appreciate this effect, they may regard the views of minorities

as "bizarre" or "outlandish", attributing them to failures in reasoning rather than to structural

factors such as the demographic composition and the constraints on information exchange induced

by the heterogeneity and unobservability of prior beliefs.
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A Appendix—Proofs

A.l Aggregation of Distributed Information

In this subsection, we prove Proposition 1. The proof requires the use of the following well-known

formula. For any two random vectors X and Y, if

\ Y / IUk J'Uv..y Ek ))'

then conditional on Y, X is distributed with N (E [X\Y] , Var (X\Y)) where

E \X\Y\ = px + XxyZy 1 (Y - fiy) (24)

Var(X\Y) = Ex - ExyVyEy*-

We also need to introduce some more notation. For any subset N' C N, we use subscript N' to

denote the column vector obtained by stacking up all the values for j G N'. For example, we

write /.iN > = ((Mj)j^n', AN >
tk
=

(A^k)^Ni-, and aW ',i = (oj,,)j€/v ,. For any subsets iV and N" of

A'' and any matrix X = {x{
ij) i eJV ,

we write A'yv'.iV" for the submatrix with entries from N' and

N", i.e., Xn'^ii = {xij)l&N f jefjii- We use subscript — i instead of 7V\ {i}, e.g., /z_,- = (fJ.j)j^i and

E_i,_i = (cr^fc) ., iWJ . We write lfcx / for the k x /-dimensional matrix with entries 1 and I for the

identity matrix. We write

Jx-i = E [fJ.-i\fM.] = p—i + a^a-ij {/m - £k) (25)

£_,_, = Var ((J.-i\lH) = S_,,_i - o-~
1
(7_ 1

,
1 ctI !|1

.

Using the definitions of R and H in Lemma 2 below, we also write

v = r
2
/ (r

2 + 1 + \R\)
,

a = r
2 /(r 2 + l),

Wfl = llx|//| f^l|//|x|//| + r2/ + t4 ^H,H ~ T
4 tHtR£~^RtRjH )

Afi = llxn-l fQl„_l x „_l + f
2
/ + T

4 S.lrl - tV'm/,,) (26)

We compute the announcements in the following lemma.

Lemma 2. ylsswne that the priors are not observable. For any i £ N and any round k, let

R Q. N\ {i} be the set of other individuals whose private information is revealed by the end of

round k — 1, and let H = N\ (R U {i}). Then,

Ah =
T2

T
^\R ,

^-yMRlmxl ) Y, AjA + (\ + t
2)vMrA h ,,

j£RU{i]

T 2
/_ \

'

2 , ! i

\R\
llx

\

R
\

(lR ~ r2{iM« (AW ~ ^H,R^R (VR ~ Aft)
J

- t
2o~}vMr [aH ,i

- tH,Rt R
l^aRtl j {m - fi t ) (27)
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when R ^ and

A%k = (1 - aAfiln-lxl) AiA + r 2MtA- hl - T
2aMl fi_ l

- T 2o^aMto^i (W -
fi t ) (28)

w/ien R = 0.

Proo/. We will use mathematical induction on A;. We first compute Af2 , showing that the statement

is true for k = 2. For each j, since A
J:

\ = a/ij + (1 - a) Xj,

(\ + t
2
)Aji = e + £

: + T
2
^lj.

Hence,

E, [(l +r 2
) A,-,i

|

^x;] = A,,, + T
2
Ei[^\in].

Substituting (25) in this equality, we obtain

Ei [(1 + r
2

) A_i,i
| W ,Si] = ln-ixl^,! + r

2
^., +r 2a- 1

CT_
!

,
2 (/x, - ft,) . (29)

Now, the first round of announcements provides i a new vector (l + t 2
) A- lt \ = #l n _i x i + e_, +

T")j,-j of signals with additive normal noise. Notice that, conditional on (Xj,/i,), the variance of

91 n -\x\ +£-, + T 2
^_j is

q1„_i x „_i + t
2
I + t

4
(£__> - a~ l a^ hlal

Hence, updating his belief according to (24), in the second round i announces

Al 2
= E

l
[9\^xu {l + T

2)A^ l
}

= Ahl + aMi ((1 + r
2
) A_i,i - Ei [(1 + r

2
) A^, A \^,x,])

= (1 - aMT„_ lxl ) Aj,! + r
2
^/^,,,! - Qr2M^_i - rV^aMjCr-^

(w - ft) (30)

where the second equality is by (24) and the definition of Mu and the last equality is by (29). Now

suppose that the proposition is true for rounds k' < k — 1 and for all j. Then, if

Mr [crHj ~ £//,fl£fl,
1

tf
crflj) =

for R defined for k! and j , no new information is revealed by the announcement A\, because it is

measurable with respect to the public information at the end of round k! — 1. On the other hand,

if

Mr (cr/y,j - EH,R^fi
l

R IJ
R,jJ / 0,

then we can solve for /ij from (27) for k' and j. That is, either the private information of j is

revealed by the end of round k — 1, i.e., j 6 R, or i knows only that Aj
t
\ = afij + (1 — a) Xj. Now,

if R = 0, i has not learned any new information after the first round. In that case, Afk
= A™

2 , and

(28) is equivalent to (30). Now suppose that R ^ 0. Individual i knows (m,Xi), {(Xj,Xj) for j 6 R
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and that A
Jt \ = a/i-j + (1 - a) Xj for j £ R. We compute conditional distributions sequentially, first

conditioning on (jit , x{), then on ((i,r, xr), and finally on AH ,\ = a/j.H + (1 - a) xH , i.e.,

(1 + r
2
) AH,i = l\ H \xiS + eH + r

2
Nl . (31)

Conditional on (fii,X{), (9, /i_,-,e_i) are independently and normally distributed with 9 ~ N (A
1t
\,a),

M-i ~ N(/i_j, E_, _i), and e_ 2 ~ N (0,t 2
I). Then, from {^r,xr), he obtains a new signal

x /?
= l|fl|xi# + £fl about 6> and also potentially new information about hh from /j,r. Conditioning

on xr = l\R\ x \9 + £/{, he updates his belief about 9 to N(p,i,v) where

t2 + 1 1

*
T2 + 1 + 1^1^.1 + r 2 + 1 +

|
jR

|

1
1 x| fi|^

r2 + 1 ^ r2

2 + l + |i?| .

5Z A'M -
r2 + 1 + |^.|

1 lx|/?|^T

r 2

T2 + l+j/?|'

Conditioning on fi/?, he updates his belief about fipj to N(jj,[{, E//) where

/I// = /ttf + Etf./jE^ {ftR - A/?)

E// = E//,// - E//^E^
fl Sfl,//.

Now, i conditions on (31) starting from 9 ~ N(fii,v). Given the conditionings so far, by (31),

(1 + t
2 )A ha ~'JV(/2il|H|xi +r2

^//,i)l|W
|

X
|

W|+T
4
E/y + r

2
/) .

Using (24), he therefore obtains

A 2|fc = E [9\/j, l ,x l ,idR ,xR , (1 + r
2
) ^4//,! = l|//| x i^ + ff/ + -r>//]

Ai +wlix|/f| (ul|ff|x|ff| + t
4
E/, + 7-

2

/J ((1 + t
2
)^h ,i - Ail|//|xi - T

2
fiH )

= (1 - fiMfll^ixi) Ai '+ (1 + t2
) vMrAha - r

2vMR fiH

T 2 + 1 T 2

1

jeKu{*}

+ (l + T
2
)i)M,R 4//,i

- r2vAffi (/i// + a~>aH,i (Mz - Ai) + ^h.r^r (pr - A/? - ^^R,i (fM - pi))) ,

where the second equality is by (24); the third is by arrangement of terms using the definition of

Mr, and the last by substituting the values of
fj, z

and /}#. By rearranging terms, we obtain the

equality in the proposition.

Using Lemma 2, we can now prove Proposition 1.
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Proof of Proposition 1. Assume first that i is regular, i.e., MxO- x ^ ^ 0. Then, since no individual's

private information is revealed by the end of round 2, by (28),

,
(1 - aA/jln-xxiMi.i + T 2

MjA-i,i - T^aMip-i - Aii2
ft, — m H _ ,

i.e., /Lij is measurable with respect to Aj,i, /l_i,i, and /1 2 ,2- Moreover, since j4 2 ,i
= a/i, + (1 - a,) x,,

we can further compute that

z, = (1 + r
) A,i - t ^ +

, _llf
: -

showing that x x
is measurable with respect to A

lt \, A-i,\-, and A x %- Therefore, the private informa-

tion of i is revealed by round 2. Conversely, suppose that i is isolated, i.e., a^ X]l
= 0. (Note that,

in that case, /i_j = (l-j and £_;,_, = E-^-j.) Hence, by Lemma 2, for any /c > 1, if R ^= 0, then

the coefficient of fi, is

-T 2a~ lvMR [o Hj - Ehm^r^Hj) '=

because o~n,% = and or %1
=0. If /? = 0, the coefficient is again r 2a~ laMx a^i A = 0. Thus, A;^ is

measurable with respect to the information at the end of round k — 1, revealing no new information.

On the other hand, since o"_ JiZ
= 0, (xR,fj.f>) does not provide any information about /i x , either.

It only reduces the variance of x x without revealing it. Hence, the private information of i is not

revealed at any round.

A.2 Public Bias

Proof of Lemma 1. By Proposition 1, since the priors are independent, no information is revealed.

Hence, by Lemma 2, Af^ = A?2 , and Af 2
satisfies (28). To compute Af 2

from (28), first define

and note that

^=(l + T
2)(l+T 2 2

)

Mi = lixn-i (al n _i xn _! + (t
2 + tV2

)/)

= a" llxn-1 (ln-lxn-1 + <pl)

— lixn-1 ((p + n - 1) / - ln-lxn-1

)

a<p(<p + n - 1)

1

a(ip + n - 1)
llxn-1- (3'-

Here, the first equality is obtained by substituting £ = a 2
I in (26), and the second equality is by

simple algebra. In the third equality, we invert the matrix ln _i xn_i + <pl. It can be easily verified

that

(l„_lxn-l +¥3^)^
1 = —

} 1

7T((V3 + "- !) - ln-lxn-1^),
ip [ip + n — 1)
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yielding the third line. Finally, by adding up the rows of the matrix ((ip + n - 1) I - ln-ixn-i),

we obtain (32). Substituting (32) in (28), we then obtain

K2 = (1 - QM,ln_ lxl ) A,,! + -r
2Mt/U,i - dr^Mifl-i

_ f, llxn-lln-lxl ^ A
T T 2

\ tp + n-1 J a(<p + n-l) ip + n - 1

1 . 1 + r
2 ^ t2 ^ '

p + n~l
A

'
1% +n-l^' 1 -p + n -l^ A^-

Here, the first equality is simply (28) for o"-^, = 0, and the second equality is just by the substitution

of the value of Mz from (32). The last equality is by straightforward algebra. By adding and

subtracting new terms with j4j,i and m, we obtain

A^- A^~ y + n-1 A
'
1 +

if + n-l^ A
"' 1 +

tp + n-l^ p + „.-l2^-

Terms with summations do not depend on i, and hence are cancelled out in the difference, yielding

<z>-(l+r2
) r 2

T2a 2
(l + T 2

) t
2

= L (A.l - Aj,l) + — (ft - ft)
7 7

T2
CT
2 T 2

(r
2

(//, - ^) + (ii - Xj)) + — (jM - fij)

T
4a 2 T

2a 2 r 2

(lU - fij) + {e, - Ej) + — (m - fij)

7 7 7

Here the second equality is by substitution of the definitions p> = (l + r 2

)
(l + t2

ct
2
) and 7 =

if + n - 1; the third equality is by (l + r 2
) A,i = t 2^ + x % and the last is by x l

- Xj — e x
- ej. D

:;i
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