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Consider a smooth vector field on the unit disk defined by x = f(x),

f :D -> r'^. If this vector field "points inward'' on the boundary of the

disk, then it is well known that there exists an equilibrium x where

f(x*) = 0.

Recently, Smale (1976) and Kellog, Li, and Yorke (1976) have suggested

algorithms to compute such an equilibrium. In particular, Smale has shown

that if the vector field satisfies some rather strong boundary conditions,

there is a differential equation whose solution tends to some equilibrium

x when one starts at almost any point on the boundary of d". The

differential equation is given implicitly by:

Df(x)
-^-J=

-Af(x)

where A is an arbitrary scalar function of t such that sign A = sign det

Df(x).

Smale' 8 boundary conditions are rather complicated to state and in

any practical problem they may be difficult to verify. The purpose of

this note is to show how these boundary conditions can be significantly

relaxed. In particular, I show that under the condition that f(x) points

inward on the boundary of D one can find an equilibrium by following the

above differential equation through the use of an appropriate trick.

The Method '

Let us suppose initially that the vector field meets the very strong

condition that it points radially inward on the boundary of D , that is,

f(x) = -X on the boundary of D . First, I will outline a description of

Smale' 9 method in this simple case, and then show how the general case may

be modified so as to fit into this framework.

Define M to be the unit disk excluding the set of equilibria. Then

the "gauss map" g: M -> S given by g(x) = f (x) /| |
f (x)

|
|

is well defined.
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n-1 -1, ^
Sard's theorem shows that for almost all e in S , g (e) is a one-dimensional

manifold; that is, a finite union of circles and line segments with the

boundaries of the segments coinciding with the boundary of M.

Now, since f(x) = -x on the boundary of D , there is one and only one

point X on this boundary in g~ (e) . But the other end of the line segment
e

starting at x must lead to a point on the boundary of M. Therefore it must
e

lead to an equilibrium.

Let us parameterize this path by x(t) ; by the definition of g, x(t) must

satisfy the identity:

f(x(t)) = e ||f(x(t)||

Differentiating this with respect to t gives

Df (x(t)) 4v = e a(t) = |i2L(tDa(tl „ f (x(t)) X(t)
^•^ ]lf(x(t))||

where a(t) and X(t) are some scalar functions; since they only indicate the

speed at which we move along the path, their magnitude is unimportant. How-

ever, the sign of X(t) is important. An orientation argument shows that the

appropriate sign is that of det Df (x) , Thus if we start at almost any point on

the boundary of D and follow the differential equation given above, we will be

led to an equilibrium.

This derivation is exactly the derivation used by Smale applied in the

special case where f(x) = -x on the boundary of D . Smale 's boundary assump-

tion was actually somewhat weaker than this ; it essentially implied that the

gauss map defined above is one-to-one on the boundary of the disk. This means

that there are no two points x and y on the boundary of the disk where f (x) and

f(y) point in the same direction. When stated in this way Smale 's boundary

assimption seems very restrictive.

It turns out that this boundary assumption can be relaxed significantly.

In fact, one only needs to assume that the vector field defined by f(x) never
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points radially outwards on the boundary of the disk:

Boundary Condition . At all x on boundary of D , there is no positive scalar

r such that f (x) = r x.

It is clear that this condition is compatible with the requirement that

n
f (x) points inward on the boundary of D .We now reduce this general boundary

condition to the previous case.

Let d"^ be a disk In R of radius 2. Let s = I Ixl 1-1 and define the
2

n
following vector field on D„:

g(x) - - s X 4- (l-s) f( X ) l<||x||<2

l|x|| llxll

- f(x) 0^ilx||<l

This field coincides with the original field on the unit disk and is a

continuous extension on D, \ D . In fact, a vector in this portion of D 1'2
2

s

simply a linear combination of the vector-x/| |x| | and f(x/||x||) with the

weights being given by the radial distance. The important thing to note is

* n k ^
that this extension Introduces no new equilibria. For suppose x in D \ D

were such that g(x ) " 0; then

=MIlL+ (1-8)
f( 7^ ) .0 <s <1

J? i
= S X

*

1^*11
I

(l-s) ||x*||

but this contradicts the assumption that no vector on the boundary of D points

radially outward. It is therefore clear that Smale's method can be applied

directly to the above system.

Some Remarks on the Method

(1) There is a slight problem which was pointed out to me by James Mirlees.

The extension defined above Is not differentiable In a radial direction at the
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boundary of D*^. However the path defined earlier is still well defined, and

the previous argument goes through with only slight changes.

(2) Note that boundary equilibria pose no problem for this method.

(3) The boundary condition described above is very natural from an

economic point of view. Nishimura (1976) has shown that if one has the

condition of free disposal and the assumption of no boundary equilibria, it

follows that the vector of excess demand can never point radially outward on

the boundary of the price simplex.

(4) Some geometrical insight into the method can be gained by examining

Figure 1. By construction, the vector f(x) points in the direction e at each

X along the path g (e) . If there are two points on the boundary of D where

f(x) points in the direction e they may be connected by a component of g (e)

.

However, orientation considerations shown that there must be some component of

g (e) that starts at the boundary of D and leads to an equilibrium. The

extension suggested here gives a way of finding such a path.
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Figure 1. The vectors along the path g (e) are all parallel to each other
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