working paper department of economics

Economic Equilibriun with Costly :Aarketing
ivy
C,
iuncan K. Foley

Number 52 February 1970

massachusetts

 institute of technology50 memorial drive cambridge, mass. 02139

Economic Equilibriua with Costly :Aarketing

```
    by
c,3
    juncan K. Foley
Number 52 February 1970
This paper was supported by the National Science Foundation (grant number GS 1585). The views expressed in this paper are the author's sole responsibility, and do not reflect those of the National Science Foundation, the Department of Economics, nor of the Massachusetts Institute of Technology.
```


Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium Member Libraries

1. Introduction

The traditional theory of general market equilibrium, the most famous rigorous presentation of which can be found in Debreu [1], remains the deepest scientific resource of economists, and is the basis of the most sophisticated attempts to study a wide range of economic problems. It is therefore disturbing that this theory, when applied to the complete problem of economic interaction over time, space and in the presence of chance, predicts the formation of numerous markets in timedated, place-tagged, contingent commodities which do not actually exist. Corollary to this embarrassment is the prediction by the theory that economic agents will choose one plan of action good for all time and all contingencies, which they clearly do not.

The embarrassment does not come from the fact that the theory is too weak, but because it is too strong. Its assumptions are general and unexceptional but its conclusions awesonely specific. Confronted by this

* While writing this paper, I was a Ford Faculty Research Fellow. I would like to thank Ross Starr for numerous helpful conversations on this subject. Frank Hahn has independently developed a model very similar in structure to the one presented here.
problem, which has become acute only as an aftermath of the rigorous nathematical formulation of the theory, economists have tried to find weak links in tine underlying assumptions. One such wealiness is the absence from the theory of any real resource costs in information gathering and processing, or in the operation of "markets".

It is my purpose here to outline a very simple modification of the traditional model in which it is possible to analyze the consequences of costs in the operation of "markets". I believe this modification sacrifices none of the generality and rigor which make the theory of general equilibrium so splendid. The modification does, however, drastically alter the stylized picture the theory yields. In particular, markets will not generally exist in unlikely contingencies or for deliveries in the uistant future, nor will economic agents find it useful or even possible to bind themselves to a single unchanging plan.

The key aspect of the modification I propose is an alteration in the notion of "price". In the present model there are two prices in each market: a buyer's price and a lower seller's price. The difference between these yields an income which compensates the real resources used up in the operation of the markets.
2. Consumers and Demands

Each of n consumers has a consumption set $X^{i} \subset E^{m}$ (since there are m comodities) winich defines the consumer's biologically and technically feasible consumption plans. A point $x^{i} \varepsilon X^{i}$ includes provision of services
and resources which the consumer owns as negative numbers. On the set x^{i} there is a preference ordering $\stackrel{\rightharpoonup}{r}_{i}$.

Whe set $x=\sum_{i} x^{i}$ is the agresgate consumption set. \hat{X}^{i} is the "attainable" consumption set for each consumer, the set of consumption plans for the consumer that the whole economy has resources and technical knowledge to provide.

I will make the following assumptions about X^{i} and \succ_{i} :
a.1) The aggregate consumption set X has a lower bound. (This implies that each X^{i} also has a lover bound).
a.2) For each i, X^{i} is closed and convex.
b.1) For every consumption $\hat{x^{i}} \varepsilon \hat{x}^{i}$ there exists $x^{i} \varepsilon x^{i}$ with $\mathrm{x}^{i}>\hat{\mathrm{x}^{i}}$. (This assumption asserts that the full productive capacity of the economy is not sufficient to satiate any consumer completely).
b.2) For every $x^{i} \varepsilon X^{i}$ the sets
 are closed in X^{i}.
b.3) For every $x^{i} \varepsilon X^{i}$ the set $\left\{\overline{\mathrm{X}}^{\mathbf{i}} \varepsilon \mathrm{X}^{\mathbf{i}} \mid \overline{\mathrm{X}}^{\mathbf{i}} \underset{\mathrm{i}}{\vec{j}} \mathrm{x}^{\mathbf{i}}\right\} \quad$ is convex. c.1) $0 \varepsilon \mathrm{X}^{\mathrm{i}}$ for alli.

The consumer faces two sets of prices, p^{S} and p^{i}. (I will very often write $\pi=p^{B}-p^{S}$ to denote the difference between these). The
cost of any consumption plan x^{i} will depend on the two vectors $x^{i l j}$ and $x^{i S}$ defincd by:

$$
\begin{aligned}
& x_{j}^{i B}=\max \left[x_{j}^{i}, 0\right] \\
& x_{j}^{i S}=\min \left[x_{j}^{i}, 0\right]
\end{aligned}
$$

$x^{i j}$ is the vector of purchases and $x^{i S}$ the vector of sales. The value of a plan x^{i} is $p^{B} x^{i B}+p^{S} x^{i S}$.

For any wealth w^{i}, the consumer is restricted to the set $\dot{L}^{i}\left(p^{S}, p^{B}, w^{i}\right)=\left\{x^{i} \varepsilon x^{i} / x^{i}=x^{i B}+x^{i S}\right.$ where $\left.p^{j B} x^{i B}+p^{S} x^{i S} \leq w^{i}\right\}$

It is easy to see that if $\mathrm{P}_{j}^{\mathrm{B}}<\mathrm{p}_{j}^{\mathrm{S}}$ for some commodity j the set I^{i} is unbounded because any consurier can buy and sell commocity jat a profit. In what follows I assune always that $p^{B} \geqq p^{S}$, that is, $\pi \geqq 0$, and that $p^{s} \geq 0$.

In two dimensions, the consumer's budget set is the intersection of two price lines (see Fig. 1).

If every consumer has $w^{i}=0$ and chooses a point x^{i} with $p^{i} x^{i i}+p^{S} x^{i S}=0$, then in the aggregate, $p^{B} x^{B}+p^{S} x^{S}=0$ where $x^{L}=\sum x^{i B}$ and $x^{S}=\sum x^{i S}$, or writing $z=x^{B}+x^{S},\left(p^{B}-p^{S}\right) x^{B}=-p^{S} z$. i i

This observation is analogous to Walras' Law, but has an interesting interpretation. The vector z is a vector of net consumer supplies and demands to producers. At any p^{B}, p^{S} pair, consumers are willing to release resources just equal in value to the total premium they pay through higher buying prices. In a pure exchange economy without production, the vector z represents resources usec up in the operation of the narkets. It is possible to show that the budget set $\mathrm{B}^{\mathbf{i}}$ is convex and then go on to prove that consumer demands in the two-price environment have the same continuity and convexity properties that hold in the one-price environment. I prefer to proceed by a shortcut, and to show that the consumer I have described is mathematically equivalent to another consumer in a one-price econony wio satisfies the assunptions made above.

This useful way of describing consumer c'aoice in the two-price enviroment is suggested by writing the budget constraint as

$$
r^{S} \cdot x+\left(p^{B}-p^{S}\right) x^{K}=p^{S} \cdot x+\pi \cdot x^{B} \leq w .
$$

Tie selling prices are applied to the entire bundle, with a premium for transactions at the buying prices. In fact, it is possible to define a new consumption set $\bar{X}^{i} \subset E^{2 m}$ and new preferences on this set \gtrless_{i} by the relations:
a) $\overline{\mathrm{X}}^{\mathrm{i}}=\left\{(\mathrm{x}, \mathrm{z}) \mid \mathrm{x} \varepsilon \mathrm{x}^{\mathrm{i}}, \mathrm{z}_{\mathrm{j}} \geq \max \left[\mathrm{x}_{\mathrm{j}}, 0\right]\right.$ for $\left.\mathrm{j}=1, \ldots, \mathrm{~m}\right\}$
b) if (x, z) and $(\bar{x}, \bar{z}) \in \vec{x}^{i}$, then $(x, z){\underset{i}{i}}_{\lambda_{i}}^{(\bar{x}, \bar{z})}$

It is easy to verify that if ${\underset{i}{i}}_{i}$ and $\stackrel{\rightharpoonup}{r}_{i}$ satisfy assumptions ar), a.2), b.1), b.2), and b.3), then \dddot{x}^{i} and $\frac{r_{i}}{i}$ will as well. The indifference curves in \bar{x} will be thick, since the commodities z do not make the consumer any better off. Fortunately equilibrium analysis is sophisticated enougin to handle this situation (cf. Debreu [2]).

The key to proving that \bar{X}^{i} and ${\underset{\sim}{i}}_{i}^{\prime}$ satisfy the other assumptions made above is to show that $\overline{X^{i}}$ is convex and closed if K^{i} is.

Theorem 2.1: If x^{i} is convex and closed, then \bar{X}^{-i} is convex and closed. proof: First, take closure. Let $\left\{\left(x^{q}, z^{q}\right)\right\} \rightarrow(\hat{x}, \hat{z})$ be a sequence of points such that $\left(x^{q}, z^{q}\right) \varepsilon \bar{X}^{-1}$ for all q. Since X^{i} is closed, $\hat{x} \varepsilon X^{i}$, being the limit of a sequence contained in X^{i}. The only the:: condition is that $\hat{z}_{j} \geq \max \left\{\hat{x}_{j}, 0\right]$. Suppose for some $j, \max \left[\hat{x}_{j}, 0\right]-\hat{z}_{j}>\in$. For $\operatorname{largeq} q,\left|x_{j}^{q}-\hat{x}_{j}\right|<\frac{\epsilon}{4}, \quad\left|z_{j}^{q}-\hat{z}_{j}\right|<\frac{\epsilon}{4}$, so that $\max \left[x_{j}^{q}, 0\right]-z_{j}^{q}>\frac{\epsilon}{2}$. winch contradicts the assumption that $\left(x^{q}, z^{q}\right) \varepsilon \bar{X}^{-i}$.

Next consider convexity. If (\bar{x}, \bar{z}) and $(\hat{x}, \hat{z}) \varepsilon \bar{X}^{i}$, and $(\tilde{x}, \tilde{z})=\alpha(\bar{x}, \bar{z})+(1-\alpha)(\hat{x}, \hat{z})(0<\alpha<1)$, convexity of x^{i} implies that $x \in \dddot{i}^{i}$. The problem is to check that $\tilde{z}_{j} \geq \max \left[\mathrm{x}_{j}, 0\right]$ for $j=1, \ldots \ldots, \mathrm{~m}$.

$$
\begin{aligned}
\tilde{z}_{j} & =\alpha \bar{z}_{j}+(1-\alpha) \hat{z}_{j} \geq \alpha \max \left[\bar{x}_{j}, 0\right]+(1-\alpha) \max \left[\hat{x}_{j}, 0\right] \\
& =\max \left[\alpha \bar{x}_{j}, 0\right]+\max \left[(1-\alpha) \hat{x}_{j}, 0\right] \\
& \geq \max \left[\alpha \bar{x}_{j}+(1-\alpha) \hat{x}_{j}, 0\right] \\
& \geq \tilde{x}_{j} \quad \text { Q.L.D. }
\end{aligned}
$$

The proofs that tine \bar{X}^{i} and $\underset{i}{d}$, also satisfy the other assunptions follow easily from this theorem.

It is also true that if the new consumer chooses $\left(x^{i *}, z^{*}\right)$ and prices $\left(p^{S *}, \pi^{*}\right)$ then the old consumer will choose $x^{i *}$ at $p^{S^{*}}$ and $\mathrm{p}^{\mathrm{L}^{*}}=\mathrm{p}^{S^{*}}+\pi^{*}$. Theorer 2.2: Suppose $\left(x^{i *}, z^{*}\right) \varepsilon \bar{i}^{i}$ satisfies for $p^{S^{*}}, p^{L^{*}} \geq 0$, $\pi^{*}=p^{i \dot{3}}-p^{S \dot{x}} \geq 0$.
a) $\mathrm{p}^{\mathrm{S}^{*}} \mathrm{x}^{\mathrm{i}^{*}}+\pi^{*} \mathrm{z}^{*} \leq \mathrm{w}^{\mathrm{i}}$

c) $\mathrm{X}^{i *} \varepsilon \hat{\mathrm{X}}^{i}$

Then $x^{i *}$ ع \underbrace{i} will satisíy

$$
\begin{aligned}
& \left.a^{1}\right) p^{S^{*}} x^{i * S}+p^{E^{*}} x^{i * B} \leq w^{i} \\
& \left.b^{1}\right) x^{i *}{\underset{r}{i}}^{\frac{1}{i}} x^{i} \text { for all } x^{i} \varepsilon x^{i} \text { vith } p^{S^{*}} x^{i S}+p^{B^{*}} x^{i B} \leq w^{i}
\end{aligned}
$$

Proof: Since $z_{j}^{*} \geq x_{j}^{i * B}=\max \left[x_{j}^{i *}, 0\right]$ and $p_{j}^{B} \geq 0$, part a^{1}) follows immediately from a).

Suppose there existed $\hat{x}^{i} \varepsilon X^{i}$ with $p^{S *} \hat{x}^{i S}+p^{E^{*}} \hat{x^{i B}} \leq w^{i}$ and $\hat{x}^{i} \lambda_{i} x^{i}=$. Then $\left(\hat{x}^{i}, \hat{x}^{i E}\right) \varepsilon \bar{x}^{i}$ by definition of $\bar{X}^{i}, p^{S *} \hat{x}^{i}+\pi^{*} \hat{x^{i B}} \leq N^{i}$, and $\left(\hat{x}^{i}, \hat{x}^{i b}\right) \stackrel{\rightharpoonup}{i}_{i},\left(x^{i *}, z^{*}\right)$, which is a contradiction. O.E.D.

All the usual results of demand theory based on the assumptions a.1), a .2$), \mathrm{b} .1), \mathrm{b} .2), \mathrm{b} .3$, and c .1 can be applied to the consumer with consumption set \bar{X}^{i} and preferences ${\underset{F}{i}}^{\frac{1}{i}}$, and through him to an
oruinary consuner in a two-price environment.
If the consuner's preferences can be represented by a utility function $u(x)$, his demand problen is the constrained maximization problem:

$$
\begin{aligned}
& \max u(x) \\
& \text { subj to } \rho^{i} x^{B}+p^{S} x^{S} \leq w
\end{aligned}
$$

lue first order conditions are:

$$
\begin{aligned}
& \partial u / \partial x_{j}-\lambda p_{j}^{L}=0 \text { if } x_{j}>0 \\
& \partial u / \partial x_{j}-\lambda p_{j}^{S}=0 \text { if } x_{j}<0
\end{aligned}
$$

where λ is the LdGrangean shadow price corresponding to the wealth constraint, whicn depends on the prices.

Since $P_{j}^{B} \geq P_{j}^{S}$, these conditions can be written
$p_{j}^{S} \leq(1 / \lambda)\left(\partial u / \partial x_{j}\right) \leq p_{j}^{B}, j=1, \ldots$, m where the left-hand equality holds for $x_{j}<0$ and the right-hand equality for $x_{j}>0$.
3. Production and Marlieting
wilile consumers have no choice but to buy at the buying price and sell at the selling price in a market, at least some producers can involve thenselves in marleting activities, at a cost in real resources. The production plan of a prociucer can be written $\left(y^{j}, y^{b j}\right)$, where y^{j} is tine total net transaction the producer makes, and y bj the vector of purchases and sales subject to the premium ouying price. The profit
arising from such a plan at prices ($\mathrm{p}^{\mathrm{S}}, \mathrm{p}^{\mathrm{B}}$) will be:
$\pi^{j}\left(p^{S}, \pi\right)=p^{S} y^{j}+\pi y^{B j}$ where $\pi=p^{B}-p^{S}$.
Some producers will do no marketing of their own, hiring resources at the buying prices and selling their product at the selling price. Uther producers may do all their marketing in all markets, hiring resources at the selling price and selling their output at the Luying price. The second procedure, of course, will require more resources than the first, even if the total output is the same, if marketing is costly. Other producers riay do some transactions at buying prices and others at selling prices.

What deteraines how much marketing a producer does for himself? The producer will narket if the spread between buying and selling prices is large enougn to make it profitable for him. If the spread is small a producer will prefer to leave the marketing to other producers.

If marketing activities were costless, there would be no spread between juying and selling prices and the economy would be the same as in the traditional models.

What are the costs involved in marketing, activities? They include the effort required to inform buyers or sellers of the existence of a supply or demand for a conmodity, and of the price. This nav include advertising, costs of holding stocks for wide distribution, spoilage, breaking down commodities for retail sale, and product standardization and certification. The important feature of these costs is that they expend real resources without altering the characteristics of the de-
livered product. ${ }^{1}$
$1_{\text {This }}$ is a copout.

I assume that the set of feasible production plans for cach producer, Y^{j}, has the following properties:
d.1) $0 \varepsilon Y^{j}$ for all j. (This assumption, together with (c.l) assures that there are feasible allocations for the economy.)
d.2) There is no $\left(y^{j}, y^{j B}\right) \varepsilon Y^{j}$ with $\left(y^{j}, y^{j B}\right)>0$. (This rules out the possibility of free production or free marketing.)
d.3) Y^{j} is a convex cone for all j.
(If $\left(\bar{y}^{j}, \bar{y}^{-L}\right) \in Y^{j}$ and $\left(\hat{y}^{j}, \hat{Y}^{j B}\right) \in Y^{j}$ then $\left(\alpha \widetilde{y}^{j}+\varepsilon \hat{y}^{j}, \alpha \vec{y}^{-j B}+\hat{\beta} \hat{\mathrm{y}}^{j B}\right) \varepsilon Y^{j}$ for $\left.\alpha, B \geq 0\right)$.

The last assumption rules out any set-up costs or indivisibilities in marketing activities. Many economists have argued that indivisibilities are characteristic of marketing activities.
4. Equiliorium

It is easy to generalize the notion of general competitive equilibrium to an economy with marketing costs.

Definition: A market equilibriun is a vector of prices $\left(p^{S *}, \pi^{*}\right)$, a vector $\mathrm{x}^{\mathrm{i} *} \varepsilon \mathrm{X}^{\mathrm{i}}$ for each consumer and a vector $\left(\mathrm{y}^{\mathrm{j} *}, \mathrm{y}^{\mathrm{j} \mathrm{s}^{*}}\right) \varepsilon Y^{j}$ for each producer sucil tilat:
a) $x^{i *}$ is maximal with respect to $\underset{i}{\succ}$ in $E^{i}\left(p^{S *}, \pi^{*}, 0\right)$
b) $p^{S *} y^{j *}+\pi^{*} y^{j B^{*}} \geq p^{S^{*}} y^{j}+\pi^{*} y^{j B}$ for all $\left(y^{j}, y^{j B}\right) \varepsilon Y^{j}$, $j=1, \ldots, k$.
c) $\sum_{i}\left(x^{i *}, x^{i * B}\right)-\sum_{j}\left(y^{j *}, y^{j b^{*}}\right)=0$
d) $\mathrm{p}^{\mathrm{S}^{*}} \neq 0, \pi^{*} \geq 0$.

In equilibrium, consumers are maximizing according to their preferences subject to the budget constraint, producers are maximizing profit both in ordinary production and in marketing activity, and all warkets clear.

The easiest way to show the existence of such an equilibrium is to study an extended economy witn 2 m commodities, and apply to the extended economy known existence theorems. The best such theorem for my purpose is contained in iJebreu [2]. I paraphrase that result here.

Theorem 4.1 [Existence of Quasi-Equilibrium]
in economy \mathcal{E} defined by consumption sets X^{i}, preferences \succcurlyeq_{i}, production sets Y^{j}, and a vector $\left\{O_{i j}\right\}$ indicating the $i^{\text {th }}$ consumer's share of the profits of the $j^{\text {til }}$ producer (if any) which satisfies assumptions a.l), a.2), b.1), b.2), b.3), c.1), (.1), d.2), and (i.3) has a quasi-equilibriun; that is, there exists $\left(\left(x^{i *}\right),\left(y^{j *}\right), p^{*}\right) \subset\left(\left(X^{i}\right),\left(Y^{j}\right), L^{m}\right)$ sucil that:
a) $x^{i *}$ is maximal with respect to ${\underset{i}{i}}^{i n}$

$$
\begin{aligned}
& \left\{x^{i} \varepsilon x^{i} \mid p^{*} x^{i *} \leq \sum \sum_{j} p^{*} y^{j *}\right\} \text { or } \\
& p^{*} x^{i *}=\operatorname{Hin} p^{*} X^{i}, \text { for every } i .
\end{aligned}
$$

ن) $p^{*} y^{j *}=i \operatorname{iax} p^{*} Y^{j}$ for every j.
c) $\sum x^{i *}-\sum y^{j *}=0$
a) $p^{*} \neq 0$.

I want to apply this theoreli to the economy with consuription sets $\stackrel{-}{i}^{i}$, preferences \rangle_{i}^{\prime}, production sets Y^{j} and an arbitrary vector ($\theta_{i j}$) with $U_{i j} \geq 0, \sum_{i j} \sum_{i j}=1$.

This yields a set of consumption and production plans $\left(\left(x^{i *}, z^{i j}\right),\left(y^{j *}, y^{B j *}\right),\left(S^{S^{*}}, \pi^{*}\right)\right)$ with the properties:
a) $\left(x^{i *}, z^{i *}\right) \varepsilon \bar{X}^{i}$ is maximal with respect to $\underset{i}{\vec{i}}$ in

$$
\begin{aligned}
& \left\{\left(x^{i}, z^{i}\right) \varepsilon x^{i} \mid p^{S} x^{i}+\pi z^{i} \leq \sum_{j} \Theta_{i j}\left(p^{S *} y^{j *}+\pi^{*} y^{B j *}\right)\right\} \text { or } \\
& F^{S *} x^{i *}+\pi^{*} z^{i *}=\operatorname{Min}\left(p^{S *}, \pi^{*}\right) \bar{x}^{i} .
\end{aligned}
$$

b) $P^{S *} y^{j *}+\pi^{*} y^{B j *}=\operatorname{tax}\left(p^{S *}, \pi^{*}\right) Y^{j}$
c) $\Sigma\left(x^{i *}, z^{i *}\right)-\Sigma\left(y^{j *}, y^{l i j *}\right)=0$
i j
d) $\left(p^{5 *}, \pi^{*}\right) \neq 0$.
'His is fractically equivalent to the definition of marlect equilibriua Biven aiove. To estanlisa complete equivalence 1 need to shos that $\pi^{*} \geq 0$, and that the profits of all producers are zero. The latter proposition follows from profit naximization and the assumption that production scts are cones. $\pi^{*} \geq 0$ follows from the unboundedness of \bar{X}^{i} in the z^{i}-components and assumption b.1), since if $\pi_{j}^{*}<0$, a consumer could increase z_{j}^{i} witnout linit anu acinieve a consunption outside \hat{X}^{i} and preferred to $x^{i *}$

This argunent proves that a quasi-equilibrium exists with market costs under the assuriptions of traditional equilibrium analysis. The most important restriction involving market costs is the assumption tilat marketing, iife other prouctive activitics, is not subjcct lo increasing returns to scale or incivisiuilities.
lhe difficulty that some consumers may in fact be at a minmur wealth point in their consumption set and not at a preferencemaximizing point remains. Debreu [3] notes that existence of a true equiliuriwn, in which this situation occurs for no consuner, can be assured by requiring that (a) the production set intersect tine interior of tinc aggregate consumption set and that (b) if any consumer is at the minimum-wealth point in a quasi-equilibriun, all are. This tineorem carries over to the conomy with marketing costs, because this mocicl is matnematically identical to the model studied by Lebreu.

In some situations there may be difficulties in showing that the requirement (b) above is met, because of the existence of the new artificial retail comodities. For example, Debreu defines an "always desired" comodity as one suci that every consumer can reach a preferred moint in his consumption set by increasing inis consumption of that comadity only. 'lnis will not be possible for bought commodities in the marketing. costs model because increasing only that component of the consumption bundle takes tne consuner out of his consumption set, unless the corresponcing retail component is also increased.

With tine assumptions that each consuner can dispose of a finite amount of all commodities, and that there are production activities which produce every commodity retail using only wholesale inputs it is possible to siow that a quasi-equilibrium is a true equilibrium. If any conswner is at the minimum wealth point in quasi-equililjrium, all sclling prices must be zero. but at least one buying premium is
therefore positive. Lut this situation contradicts the property of profit-maximization in quasi-equilibriun, because there exists an activity with positive retail output of the commodity with a positive buying premium, and wholesale inputs, which would give positive profits. Because I assume production and marketing sets to be cones, a positive profit in any activity is not compatible with profit maximization.

A stronger result than this is desirable and presumably discoverable. ${ }^{1}$
$1_{\text {Frank }}$ lainn brought this difficulty to my attention.

5. Fareto Optimum and the Core

In a formal sense the traditional analysis of Pareto optina and the core ${ }^{2}$ can be applied to the extended economy used above to study

[^0]the existence problen. Lut I think to do this would be to travel too fast.
The essential notion in studies of lareto optinal and core allocations is the set of allocations achievable in some purely technolorical sense by a group of econonic agents. In a pure exchange economy, for example, feasible allocations for any coalition (or for the cconomy) are those which sun to the total endownent of the coalition (zero in the present model since I measure all trades from the endowment point). The
introciuction of market cost is intended to reflect information costs involved in sustaining an allocation, but the assurtions made implicitly refer to the institutional cnvironment, i.e. to marliets. It is not ouvious tat radically different organizations of exchange rould nave the sant type or nagnituie of resource costs in the exchange process. A deeper ami more satisfactory study of the core and Pareto optina would béin from a fundamental account of information costs of exchange without references to institutions and derive "markets as one of a rumber of possible organizatious of exchange. Only in such a theory could the 'efficiency': of tae equilibrium mroposed here be studieu otaer tan trivially.
6. Hine Lxistence of iarkets

Lucior what circunstances vill there be trade in a given market at equilibriur with market costs? Put another way, when will the addition or elimination of a given market make no difference to equilibrium prices or to any couswat's deand in any other market?

I will trat this problen for a market in a conadity which is not an input or output of prouuction. l'rocucers are not either buyers or sellers of the conmodity, but provide market services in the market if it pays them.

In cescribing consuner equilibrium in section 2, I showed tiat at the equilibriun trade to each consumer there corresponded a number λ^{i} (in the case where consumer's preferences can be describell bv a
differentiaiole utilitv function) such tnat:

$$
p_{j}^{i j} \leq\left(I / \lambda^{i}\right)\left(\hat{o} u^{i} / \partial x_{j}\right) \leq p_{j}^{j} \quad j=1, \ldots, m .
$$

If another narket opens in a good not previously traded (but represented in utility functions) an individual will not trade if the prices $0_{i}^{s}+1, p_{i n}^{i}+1$ in the new market satisey
(1) $\mathrm{p}_{\mathrm{T}}^{\mathrm{S}}+1 \leq\left(1 / \lambda^{\mathrm{i}}\right)\left(\hat{\mathrm{u}} \mathrm{u}^{\mathrm{i}} / \mathrm{dx} \mathrm{x}_{\mathrm{m}}+1\right) \leq \mathrm{p}_{\mathrm{n}}^{\mathrm{j}}+1$
at the original equilibriun iemands. is large spread between buying and selling prices ensures that no consumer will trade.

Froaucers, on the other hand, will we inducec by a large spread between prices to expend real resources in provicing market services in the ($n+i$) st market. Suppose that is the marginal cost at equilibrium prices of expanding trading in the ($n+1$)st market. Producers will be content with the previous equilioriun caly if
(2) $P_{\mathrm{i}}^{\mathrm{J}}+1 \leq \mathrm{P}_{\mathrm{m}}^{\mathrm{S}}+1+4$

If (1) inolcis sirmitaneously for all consumers, then
(3) $D_{m}^{S}+1 \leq \min _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial u^{i} / \hat{a} m+1\right)\right]$
(4) $p_{m}^{\mathrm{B}}+1 \geq \max _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial^{u^{i}} / \partial^{x} m+1\right)\right]$

It will be possible to find $\mathrm{F}_{\mathrm{m}}^{\mathrm{S}}+1$ and $\mathrm{p}_{\mathrm{r}}^{\mathrm{B}}+1$ satisfying (2), (3)
anci (4) if anc only if
(5) $4 \geq \max _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial u^{i} / \partial x_{m}+1\right)\right]-\min _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial u^{i} / \partial x_{m}+1\right)\right]$

This, put in colmonsense language, means that the difference between the inghest price at which any consumer would be willing to ouy and the lovest price at which any consumer would be willing to sell is snaller tian the cost of bringing about the transaction. If the $(\mathrm{r} .1+1)$ st comodity were an input or output in production these conditions :rould be modified to exclue producers' trade as well. The inghest price at whicn a producer is willing to buy the comodity is tine maxinum of the values of its marginal product to the producers; the lowest price at whicil a prouncer will sell is the minimul of the marginal costs of production.

In the case winere tice (in +1)st comadity is traded only by conswars, a sufficieat condition for 110 trate is
(6) $i \geq \max _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial u^{i} / \partial x_{n}+1\right)\right]$

If the (n +1)st market is in a comodity dated in the far dis
tant futurc or a coriadity in a contingency rith low provability, its marginal utility will be small because of time preference in one case, and the snall contribution it makes to expected utility in the other. The important idea here is that current actual resources are required to set up a market in futures or contingent comouities. If the consuners value these connodities little in relation to current actual resources, it will not pay anyone to set up a market to trade them.
7. in ixample

A simple numerical example may help to clarify the notion of equilioriun proposed above. Suppose an economy exists in wich the only
goods are consunption dated at successive future dates, and that there are two types of consuners with similar utility functions who discount utility 100% per period:

$$
u^{i}\left(c_{u}, c_{1}, \ldots, c_{m}\right)=\sum_{j=0}^{m}\left[\ln _{n}\left(c_{j}+w_{j}^{i}\right)\right] / 2^{j} \quad \text { where }
$$

${ }^{w}{ }_{j}^{i}$ is the endownent of the $i^{t n}$ consumer in the period j, and c_{j} is his net purchase or sale of consumption in period j.

The demand functions for this utility function are woll !:nown. The problem is to

$$
\max \sum_{j}^{m}\left[\ln \left(c_{j}+w_{j}\right)\right] / 2^{j}
$$

subj to $\sum_{j}^{m} p_{j} c_{j}=0$
The first order concitions are:

$$
1 /\left[2^{j}\left(c_{j}+w_{j}\right)\right]-\lambda p_{j}=0 \quad j=\phi, \ldots, m
$$

or

$$
1 /\left[\lambda\left(2^{j}\right)\right]=\left(p_{j} c_{j}+p_{j} w_{j}\right) \quad j=0, \ldots, m
$$

Adding these for all j :

$$
\left.\left.\sum_{j=0}^{m}\left(1 / 2^{j}\right)\right][1 / \lambda]=\sum_{j=0}^{m} p_{j} w_{j}, \quad \text { or } \quad 1 / \lambda=\sum_{j=0}^{m} p_{j} w_{j}\right] /\left[\sum_{j=0}^{m}\left(1 / 2^{j}\right)\right]
$$

This gives the demand functions:

$$
c_{j^{\prime}}=\left[\left(1 / 2^{j^{\prime}}\right) / \sum_{j}\left(1 / 2^{j}\right)\right] \sum_{j=0}^{m} p_{j} w_{j} J / p_{j^{\prime}}-w_{j^{\prime}} \quad j^{\prime}=0, \ldots, m
$$

For the case of two markets ($m=1$) the equilibrium price vector
$p=(1,1 / 2)$, and the equiliorium demands are:

$$
c_{0}^{1}=1 / 3 \quad c_{1}^{1}=-2 / 3 \quad w^{1}=(1,2)
$$

when
$c_{0}^{2}=-1 / 3 \quad c_{1}^{2}=2 / 3$

$$
w^{2}=(2,1)
$$

If a market in period 2 is added the equilibrium price vector is $(1,1 / 2,1 / 4)$ and if $w^{1}=(1,2,1.4)$ and $w^{2}=(1,2,1.6)$ then equilibrium demancis are

$$
\begin{array}{lll}
c_{0}^{1}=.34 & c_{1}^{1}=-.66 & c_{2}^{1}=-.06 \\
c_{0}^{2}=-.34 & c_{1}^{2}=.66 & c_{2}^{2}=.06
\end{array}
$$

'the existence of the extra market changes each type of consumer's demand for goods in other periods.

Suppose now that trading a unit of any good costs . 1 units of consumption in period 0 , 'i'he production set is a cone containing the vectors $(-.1,0 ; 1,0)$ and $(-.1,0 ; 0,1)$. In the case $m=2$, the cone contains the three vectors: $(-.1,0,0 ; 1,0,0),(-.1,0,0 ; 0,1,0)$ and $(-.1,0,0 ; 0,0,1)$.

Tne consuner problem becones

$$
\max _{j=0}^{\sum_{j}}\left[\ln \left(c_{j}+w_{j}\right)\right] / 2^{j}
$$

$$
\text { subj to } \sum_{j=0}^{m} p_{j}^{S} c_{j}^{S}+\sum_{j=0}^{m} p_{j}^{B} c_{j}^{E}=0 \quad c_{j}^{S}=\min \left[c_{j}, 0\right]
$$

$$
c_{j}^{b}=\max \left[c_{j}, 0\right]
$$

The first order conditions become
$1 /\left[2^{j}\left(c_{j}+w_{j}\right)\right]-\lambda p_{j}^{S}=0$
if
$c_{j}<0$
$1 /\left\lfloor 2^{j}\left(c_{j}+w_{j}\right)\right\rfloor-\lambda p_{j}^{b}=0$
if
$c_{j}>0$

These can be written
$\left(1 / 2^{j}\right)(1 / \lambda)=p_{j}^{S} c_{j}+p_{j}^{S} w_{j} \quad$ if $\quad c_{j}<0$
$\left(1 / 2^{j}\right)(1 / \lambda)=p_{j}^{L} c_{j}+p_{j}^{B} w_{j} \quad$ if $\quad c_{j}>0$

Add up line terms which apply:
$(1 / \lambda) \underset{j}{i}\left(1 / 2^{j}\right)=\sum_{j=0}^{m} p_{j}^{S} c_{j}^{S}+\sum_{j=0}^{m} p_{j}^{L} c_{j}^{L}+\sum_{j=0}^{m}\left(\sum_{j}^{\Gamma_{j}^{E}}\right) w_{j}$
where $\binom{p_{j}^{b}}{p_{j}^{b}}$ is $p_{j}^{1 j}$ or p_{j}^{S} depending on whether $c_{j} \geqslant 0$.
The demand functions can be written:

$$
\begin{aligned}
& \left.c_{j}=\left[\left(1 / 2^{j^{\prime}}\right) / L_{j}^{\left.\left(1 / 2^{j}\right)\right]} \underset{j}{\left[\sum \left(p_{j}^{B}\right.\right.}\right) w_{j}^{B}\right] / p_{j}^{B},-w_{j}, \quad c_{j},>0 \\
& \left.=\left[\left(1 / 2^{j^{\prime}}\right) / \underset{j}{\left.\left(1 / 2^{j}\right)\right]} \underset{j}{\left[\sum _ { j } \left(p_{j}^{b}\right.\right.}\right) w_{j}\right] / p_{j}^{S}{ }^{\prime}-w_{j}, \quad c_{j},<0 .
\end{aligned}
$$

In searching for an equilibrium with marketing costs I assume that it will be sufficiently near the regular equilibrium that type 1 will be a buyer in period U and a seller in period 1 and vice versa for type 2.

The problem is to clear the two markets. Clearly the relation between buying and selling price in each market must be $p_{j}^{L}=p_{j}^{S}+.1 p_{0}^{S}$. Taking, $p_{U}^{\dot{U}}=1, p_{U}^{D}=1.1, p_{1}^{\dot{L}}=p_{0}^{S}+.1$, and the problem reduces to finding p_{0}^{S} that will clear the period 1 market. Adding the demand functions where $w^{1}=(1,2)$ and $w^{2}=(2,1)$:
$c_{1}^{1}+c_{1}^{2}=\left[1 / 3\left(1.1+2 p_{1}^{S} / p_{1}^{S}\right]-2+\left[1 / 3\left[2+\left(p_{1}^{S}+.1\right)\right] / p_{1}^{S}+.1\right]-1=0\right.$
Tuis gives a quadratic equation in $\mathrm{p}_{1}^{\mathrm{S}}$:
$6 P_{1}^{S^{2}}-2.5 p_{1}^{S}-.11=0$ with a positive root $p_{1}^{S}=.457$, implying $p_{1}^{B}=.557$.

The demands are
$c_{0}^{1}=.22$

$$
c_{1}^{1}=-.53
$$

$c_{0}^{2}=-.30 \quad c_{0}^{2}=.53$
It is instructive to compare this equilibriun with the one where there was no trading cost. In the usual case the interest rate for both borrowers and lenders implied by the prices is 100%. With transaction costs type 1 people, who are borrowers, face an interest rate equal to

$$
\left(p_{U}^{i} / p_{1}^{S}\right)-1=(1.1 / .457)-1=1.41
$$

i.e. 141%. The type 2 lenders, on the other hand, are receiving an interest rate of only $\left(p_{U}^{S} / p_{1}^{L}\right)-1=1 / .557-1=.79$, i.e. 79%.

To illustrate the point made in section 6, consider adding another market in period 2 consumption, with $: w^{1}=(1,2,1.4)$ and $w^{2}=(2,1,1.6)$.

The λ multipliers implied by the previous equilibriun are $\lambda^{\prime}=.745$, $\lambda^{2}=.530$, and $\left(1 / \lambda^{\prime}\right)\left(\partial u^{\prime} / \partial c_{2}\right)=.242,\left(1 / \lambda^{2}\right)\left(\partial u^{2} / \partial c_{2}\right)=.251$. In this
case $\Delta=.1$, obviously, and the condition
$\Delta \geq \max _{i}\left[\left(1 / \lambda^{i}\right)\left(\partial u^{i} / \partial x_{m}+1\right)\right]-\min _{i}\left[\left(1 / \lambda^{i}\right)\left(\lambda u^{i} / \partial x_{m}+1\right)\right]$ is met since $\Delta=.1 \geq .251-.242=.009$.

If in the new market the selling price is established at .2 and tine buying price at .3 neither consumer will want to trade and the price differential will not be sufficient to draw resources into setting up a market.

The implied two-period borrowing and lending rates can be found by solving $\left(1+r_{B}\right)^{2}=\left(p_{0}^{S} / p_{2}^{B}\right)$ and $\left(1+r_{2}\right)^{2}=\left(p_{0}^{B} / p_{2}^{S}\right)$.

For the prices suggested above, the borrowing rate is 144% and the lending rate 63%, in contrast to the equilibrium without market costs where both rates are equal to 100%.

8. Conclusions

Although the model described above is logically consistent, it is not as satisfactory in one important respect as the traditional model of equilibrium wita futures and contingency markets. Consumers and producers in the traditional model have all the information they need to make once and for all a complete consumption plan. There is no reason why they should not simply exploit to the limit their trading opportunities at equilibrium prices, then rest content and simply carry out their predetermined plan. If markets were reopened no tradc would take place; the equilibrium price system would remain the same. Given the environnent of the traditional model with full contingency and futures markets, there
is no reason why a sensible consuner should not behave as the nodel predicts.

In the present mocicl, however, prices will change when markets reopen and consuners know it. ine reason is that the production sets change with tine in a particular way: it is not possible to use period in resources in setting up markets until period in actually arrives. In the next period, new markets will open and price spreads in other markets will change. The consuner, then, has reason not to behave in the way I have postulated. iie may choose not to exploit fully his tracini oportunities at this moment, but to defer some trades to the future when other markets will exist and price spreads may be more favorable to him. ${ }^{1}$
$I_{\text {Another }}$ reason for changing prices is that some contingency which everyone judged very unlikely may come to pass. Sirce no trade was done in that contingency or any subset of it, the price spreads will be large, initially. A somewhat similar problem of reopened markets arises in Radner [4] where the problem is that new information chanfes some consumption sets.

Thus consideration of marketing costs in this simple model leads directly to the study of sequential trading. In these models there will be both futures and spot markets, and the interaction of prices in these various markets becones the focus of interest.
[1] Debreu, Gerard, Theory of Value, New York: John Wiley \& Sons, 1959.
[2] \qquad , "New Concepts and Techniques for Equilibrium Analysis," International Lcononic lieview, 3 (September, 1962), pp. 257-273.
[3] Debreu, Geraru and lierbert Scarf, "A Limit Theorem on the Core of an kconomy," International Economic ieview, 4 (September, 1963), pp. 235-246.
[4] Kadner, Koy, "Cohpetitive Lquilibriun under Uncertainty," Econometrica, 36 (January, 1968), pp. 31-53.

Foney
Date Due

\% =

[^0]: ${ }^{2}$ See jebreu [1], Jeibreu and Scarf [3].

