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In any canonical Gaussian dynamic term structure model (GDTSM), the conditional fore-
casts of the pricing factors are invariant to the imposition of no-arbitrage restrictions. This
invariance is maintained even in the presence of a variety of restrictions on the factor
structure of bond yields. To establish these results, we develop a novel canonicalGDTSM
in which the pricing factors are observable portfolios of yields. For our normalization,
standard maximum likelihood algorithms converge to the global optimum almost instanta-
neously. We present empirical estimates and out-of-sample forecasts for severalGDTSMs
using data on U.S. Treasury bond yields. (JELE43, G12, C13)

Dynamicmodels of the term structure often posit a linear factor structure for a
collection of yields, with these yields related to underlying factorsP through
a no-arbitrage relationship. Does the imposition of no-arbitrage in a Gaussian
dynamic term structure model (GDTSM) improve the out-of-sample forecasts
of yields relative to those from the unconstrained factor model, or sharpen
model-implied estimates of expected excess returns? In practice, the answers
to these questions are obscured by the imposition of over-identifying restric-
tions on the risk-neutral (Q) or historical (P) distributions of the risk factors,
or on their market prices of risk, in addition to the cross-maturity restrictions
implied by no-arbitrage.1
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We show that,within any canonical GDTSM and for any sample of bond
yields, imposing no-arbitrage does not affect the conditionalP expectation of
P, EP[Pt |Pt−1]. GDTSM-implied forecasts ofP are thus identical to those
from the unrestricted vector-autoregressive (VAR) model forP. To establish
these results, we develop an all-encompassing canonical model in which the
pricing factorsP are linear combinations of the collection of yieldsy (such
as the firstN principal components (PCs))2 and in which these “yield fac-
tors” follow an unrestrictedVAR. Within our canonicalGDTSM, as long as
P is measured without error, unconstrained ordinary least squares (OLS) gives
the maximum likelihood (ML) estimates ofEP[Pt |Pt−1]. Therefore, enforcing
no-arbitrage has no effect on out-of-sample forecasts ofP. This result holds
for anyother canonicalGDTSM, owing to observational equivalence (Dai and
Singleton 2000) and, as such, is a generic feature ofGDTSMs.

Heuristically, under the assumption that the yield factorsP are observed
without error, these propositions follow from the factorization of the condi-
tional density ofy into the product of the conditionalP density ofP times the
conditional density of measurement errors.3 The density ofP is determined
by parameters controlling its conditional mean and its innovation covariance
matrix. The measurement error density is determined by the “no-arbitrage”
cross-sectional relationship among the yields. We show thatGDTSMs can be
parameterized so that the parameters governing theP forecasts ofP do not
appear in the measurement-error density. Given this separation, the only link
between the conditionalP density and the measurement density is the covari-
ance of the innovations. However, a classic result ofZellner(1962) implies that
theML estimates ofEP[Pt |Pt−1] are independent of this covariance. Conse-
quently,OLSrecovers theML estimates ofEP[Pt |Pt−1] and the no-arbitrage
restriction is irrelevant for the conditionalP forecast ofP.

Key to seeing this irrelevance is our choice of canonical form.4 For anyN-
factor model with portfolios of yieldsP as factors, bond prices depend on the
N(N+1) parameters governing the risk-neutral conditional mean ofP and the
(N + 1) parameters linking the short rate toP, for a total of(N + 1)2 parame-
ters.Not all of these parameters are free, however, because internal consistency
requires that the model-implied yields reproduce the yield-factorsP. We show
that, given theN yield factors, the entire time-t yield curve can be constructed
by specifying (a)rQ∞, the long-run mean of the short rate underQ; (b) λQ,
the speeds of mean reversion of the yield-factors underQ; and (c)ΣP , the

2 Althoughstandard formulations of affine term structure models use latent (unobservable) risk factors (e.g.,Dai
and Singleton 2000, Duffee 2002), byDuffie and Kan(1996) we are free to normalize a model so that the factors
are portfolios of yields on bonds and we choosePCs.

3 See,for example,Chen and Scott(1993) andPearson and Sun(1994).

4 To emphasize, our canonical form is key toseeingthe result; due to observational equivalence, the result holds
for anycanonical form.
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conditionalcovariance matrix of yields factors from theVAR. That is, given
ΣP , the entire cross-section of bond yields in anN-factorGDTSMis fully de-
termined by only theN + 1 parametersrQ∞ andλQ. Moreover,(rQ∞, λQ,ΣP )
canbe efficiently estimated independently of theP conditional mean ofPt ,
renderingno-arbitrage irrelevant for forecastingP.

With these results in place, we proceed to show that the conditional fore-
castEP[Pt |Pt−1] from a no-arbitrageGDTSMremains identical to its coun-
terpart from an unrestrictedVAR even in the presence of a large class of
over-identifying restrictions on the factor structure ofy. In particular,regard-
less of the constraints imposed on the risk-neutral distribution of the yield-
factors P, the GDTSM- and VAR-implied forecasts of these factors are
identical.Put differently,OLS recovers the conditional forecasts of the yield
factors even in the presence of further cross-sectional restrictions on the shape
of the yield curve beyond no-arbitrage.

When does the structure of aGDTSM improve out-of-sample forecasts of
P? We show that if constraints are imposed directly on theP distribution ofP
within a no-arbitrageGDTSM, then theML estimate ofEP[Pt |Pt−1] is more
efficient than itsOLScounterpart from aVAR. Thus, our theoretical results,
as well as subsequent empirical illustrations, show that gains from forecast-
ing using aGDTSM, if any, must come from auxiliary constraints on theP
distribution ofP, and not from the no-arbitrage restrictionper se.5

An important example of such auxiliary constraints is the number of risk
factors that determine risk premiums. Motivated by the descriptive analysis of
Cochrane and Piazzesi(2005,2008) andDuffee(2008), we develop methods
for restricting expected excess returns to lie in a space of dimensionL (< N),
without restricting a priori which of the N factorsPt represent priced risks.
If L < N, then there are necessarily restrictions linking the historical and
risk-neutral drifts ofPt . In this case, the forecasts of future yields implied by
a GDTSMare in principle different than those from an unrestrictedVAR, and
we investigate the empirical relevance of these constraints within three-factor
(N = 3) GDTSMs.

Additionally, we show that our canonical form allows for the computa-
tionally efficient estimation ofGDTSMs. The conditional density of observed
yields is fully characterized byrQ∞ and λQ, as well as the parameters con-
trolling any measurement errors in yields. Importantly,(rQ∞, λQ) constitutes
a low-dimensional, rotation-invariant (and thus economically meaningful) pa-
rameter space. Using standard search algorithms, we obtain near-instantaneous
convergence to the global optimum of the likelihood function. Convergence is

5 Thoughone might conclude from reading the recent literature that enforcing no-arbitrage improves out-of-
sample forecasts of bond yields, our theorems show that this is not the case. What underlies any documented
forecast gains in these studies from usingGDTSMs is the combined structure of no-arbitrageand the auxiliary
restrictions they impose on theP distribution ofy.
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fast regardless of the number of risk factors or bond yields used in estimation,
or whether the pricing factorsP are measured with error.6

Therapid convergence to global optima using our canonicalGDTSMmakes it
feasible to explore rolling out-of-sample forecasts. For a variety ofGDTSMs—
with and without measurement error in yield factors, and with and without
constraints on the dimensionalityL of risk premia—we compare the out-of-
sample forecasting performance relative to a benchmark unconstrainedVAR,
and confirm our theoretical predictions in the data.

1. A CanonicalGDTSM with ObservableRisk Factors

In this section, we develop our “JSZ” canonical representation ofGDTSMs.
Toward this end, we start with a generic representation of aGDTSM, in which
the discrete-time evolution of the risk factors (state vector)Xt ∈ RN is gov-
erned by the following equations:7

1Xt = KP0X + KP1X Xt−1 + ΣXεPt , (1)

1Xt = KQ0X + KQ1X Xt−1 + ΣXε
Q
t , (2)

rt = ρ0X + ρ1X ∙ Xt , (3)

wherert is the one-period spot interest rate,ΣXΣX ′ is the conditional covari-
ance matrix ofXt , andεPt , ε

Q
t ∼ N(0, IN). A canonicalGDTSM is one that

is maximally flexible in its parameterization of both theQ andP distributions
of Xt , subject only to normalizations that ensure econometric identification.
Before formally deriving our canonicalGDTSM, we briefly outline the basic
idea. Variations of our canonical form, as well as some of its key implications
for model specification and analysis, are discussed subsequently.

Suppose thatN zero-coupon bond yields orN linear combinations of such
yields,Pt , are priced perfectly by the model (subsequently we relax this as-
sumption). By a slight abuse of nomenclature, we will refer to these linear
combinations of yields as portfolios of yields. Applying invariant transforma-
tions,8 we show that (i) the pricing factorsXt in (3) can be replaced by the

6 To put this computational advantage into perspective, one needs to read no further thanDuffee and Stanton
(2007) andDuffee(2009), who highlight numerous computational challenges and multiple local optima associ-
ated with their likelihood functions. For example, Duffee reports that each optimization for his parametrization
of a three-factor model takes about two days. In contrast, for theGDTSM(3) models examined in this article,
convergence to the global optimum of the likelihood function was typically achieved in about ten seconds, even
though there are three times as many observations in our sample.

7 All of our results apply equally to a continuous-time Gaussian model. Also, we assume that the risk factors, and
hence the yield curveyt , are first-order Markov. See the supplement to this article (Joslin, Singleton, and Zhu
2010) andJoslin, Le, and Singleton(2010) for relaxations of this assumption.

8 Invariant transforms (Dai and Singleton 2000) involve rotating, scaling, and translating the state and parameter
vectors to keep the short rate and bond prices unchanged (invariant), usually by mappingYt = AXt + b, where
A is an invertible matrix. The transformed parameters are outlined in Appendix B.
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observablePt ; and (ii) theQ distribution ofPt canbe fully characterized by
the parametersΘQP ≡ (kQ∞, λQ,ΣP ), whereλQ is the vector of eigenvalues of

KQ1X andΣPΣ′
P is the covariance of innovations to the portfolios of yields.9

Whenthe model is stationary underQ, kQ∞ is proportional to the risk-neutral
long-run mean of the short raterQ∞ anda GDTSMcan be equivalently param-
eterized in terms of either parameter (see below).

The prices of all coupon bonds (as well as interest rate derivatives) are de-
termined as functions of these observable pricing factors through no-arbitrage.
Importantly, though the pricing factors are now observable, the underlying pa-
rameter space of theQ distribution ofP is still fully characterized byΘQP .
Moreover, the parameters of theP distribution of the (newly rotated and ob-
servable) state vectorPt are(KP0P , KP1P ) alongwith ΣP . The remainder of this
section fleshes out these ideas.

The model-implied yield on a zero-coupon bond of maturitym is an affine
function of the stateXt (Duffie and Kan 1996):

yt,m = Am(Θ
Q
X) + Bm(Θ

Q
X) ∙ Xt , (4)

where (Am, Bm) satisfy well-known Riccati difference equations (see
Appendix A for a summary), andΘQX = (KQ0X, KQ1X,ΣX, ρ0X, ρ1X) is the
vector of parameters from (2–3) relevant for pricing. We let(m1, m2, . . . , mJ)
bethe set of maturities (in years) of the bonds used in estimation of aGDTSM,
J > N, andy′

t = (yt,m1, . . . , yt,mJ ) ∈ RJ bethe corresponding set of model-
implied yields.

In general, (4) may be violated in the data due to market effects (e.g., bid-ask
spreads or repo specials), violations of no-arbitrage, or measurement errors.
We will collectively refer to all of these possibilities simply as measurement or
pricing errors. To distinguish between model-implied and observed yields in
the presence of pricing errors, we letyo

t,m denotethe yields that are observed
with measurement error. To be consistent with the data, we must impose aux-
iliary structure on aGDTSM, beyond no-arbitrage, in the form of a parametric
distributional assumption for the measurement errors. We let{Pθm}θm∈Θm de-
notethe family of measures that describe the conditional distribution ofyt −yo

t .

9 Duffie and Kan(1996) andCochrane and Piazzesi(2005) also propose to use an identification scheme where
the yields themselves are factors.Adrian and Moench(2008) explore a setting where the pricing factors are the
portfolios themselves; however, they do not impose the internal consistency condition to make the factors equal
to their no-arbitrage equivalents and instead focus on the measurement errors. Our formulation offers an analytic
parametrization and additionally makes transparent our subsequent results.
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For any full-rank, portfolio matrixW ∈ RN×J , we letPt ≡ Wyt denotethe
associatedN-dimensional set of portfolios of yields, where thei th portfolio
putsweightWi, j on the yield for maturitymj . Applying (4), we obtain

Pt = AW(Θ
Q
X) + BW(Θ

Q
X)′Xt , (5)

where AW = W[ Am1, . . . , AmJ ]′ and BW = [Bm1, . . . , BmJ ]W′. Note that

BW(KQ1X, ρ1) dependsonly on the subset(KQ1X, ρ1) of ΘQX (see (A3) in
Appendix A).

Initially, we assume that there exist portfolios for which the no-arbitrage
pricing relations hold exactly:

Case P:There areN portfolios of bond yieldsPt , constructed with weights
W, that are priced perfectly by theGDTSM: Po

t = Pt .
We refer to the case where each portfolio consists of a single bond, so thatN

yields are priced perfectly, as CaseY. We defer until Section6 the case where
all bonds are measured with errors and estimation is accomplished by Kalman
filtering.

We now state our main result for CaseP:

Theorem 1. Suppose that CaseP holds for given fixed portfolio weightsW.
Then, any canonicalGDTSMis observationally equivalent to a uniqueGDTSM
whose pricing factorsPt arethe portfolios of yieldsWyt = Wyo

t . Moreover,

theQ distribution ofPt is uniquely determined by(λQ, kQ∞,ΣP ), whereλQ is
ordered.10 Thatis,

1Pt = KP0P + KP1PPt−1 + ΣPεPt (6)

1Pt = KQ0P + KQ1PPt−1 + ΣPε
Q
t (7)

rt = ρ0P + ρ1P ∙ Pt (8)

is a canonicalGDTSM, whereKQ0P , KQ1P , ρ0P , andρ1P areexplicit functions

of (λQ, kQ∞,ΣP ). Our canonical form is parametrized byΘP = (λQ, kQ∞,
KP0P , KP1P ,ΣP ).

We refer to theGDTSM in Theorem1 as the JSZ canonical form parame-
trized byΘP . Before formally proving Theorem1, we outline the main steps.
First, we want to show that anyGDTSM is observationally equivalent to a
model where the states are the observed bond portfoliosPt (with correspond-
ing weightsW). Thus, forG = {(KQ0 , KQ1 , ρ0, ρ1, KP0 , KP1 ,Σ)}, the set of all

10 We fix an arbitrary ordering on the complex numbers such that 0 is the smallest number.
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possibleGDTSMs,11 we want to show that everyΘ ∈ G is observationally
equivalent to someΘP ∈ GW

P , where

GW
P = {(KQ0 , KQ1 , ρ0, ρ1, KP0 , KP1 ,Σ) : the factors are portfolios

with weightsW}.

This first step is easily established: For anyGDTSMwith latent stateXt , Pt

satisfies(5). FollowingDai and Singleton(2000) (DS), we can, by applying
the change of variables outlined in Appendix B, compute the dynamics (under
bothP andQ) of Pt andexpressrt asan affine function ofPt . The parameters
after this change of variables give an observationally equivalent model where
the states are the portfolios of yields.

Second, we establish uniqueness by showing that no twoGDTSMs in GW
P

are observationally equivalent. Clearly, if twoGDTSMs are observationally
equivalent and have the same observable factors, it must be that(KP0 , KP1 ,Σ)

arethe same. Intuitively, if the parameters(KQ0 , KQ1 , ρ0, ρ1) arenot the same,
the price of some bonds would depend differently on the factors, a contradic-
tion. In the second step, we formalize this intuition. Moreover, we show that
for givenλQ andkQ∞, there exists a unique(KQ0 , KQ1 , ρ0, ρ1) consistentwith
no-arbitrage and the states being the portfolios of yieldsPt . In the third and
final step, we reparamatrizeGW

P in terms of the free parameters(kQ∞, rQ∞,ΣP ).
In the second step of our proof of Theorem1, we will use the following

analogue of the canonical form inJoslin(2007), proved in Appendix C.

Proposition 1. Every canonicalGDTSMis observationally equivalent to the
canonicalGDTSMwith rt = ι ∙ Xt ,

1Xt = KQ0X + KQ1X Xt−1 + ΣXε
Q
t , (9)

1Xt = KP0X + KP1X Xt−1 + ΣXεPt , (10)

whereι is a vector of ones,ΣX is lower triangular (with positive diagonal),
KQ1X is in ordered real Jordan form,KQ0X,1 = kQ∞ andKQ0X,i = 0 for i 6= 1, and

ε
Q
t , εPt ∼ N(0, IN).

11 More formally, we think of the set ofGDTSMs as a set of stochastic processes for the yield curve rather than
as a set of parameters governing the stochastic process of the yield curve. To see the correspondence, we define
on some probability space(Ω,F ,P) (with associated filtration{Ft }) the processesy : Ω × N → RN+ . Here,
ym
t (ω) is the m-periodyield at timet whenthe state isω ∈ Ω. When our additional assumption thaty is a

Gaussian Markov process and no-arbitrage is maintained (with risk premia at timet dependingonly onFt ),
theseprocesses take the form of (1–3) and (4) for some parameters. In this way, we define a surjective map from

the set ofGDTSMparameters(KQ0 , KQ1 , ρ0, ρ1, KP0 , KP1 ,Σ) to the set ofGDTSMstochastic processes. With
this association, twoGDTSMs are observationally equivalent when the corresponding stochastic processes have
the same finite-dimensional distributions.
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Here,we specify the Jordan form with each eigenvalue associated with a
single Jordan block (that is, each eigenvalue has a geometric multiplicity of
one). Thus, when the eigenvalues are all real,KQ1X takes the form

KQ1X = J(λQ) ≡ diag(JQ1 , JQ2 , . . . , JQm ), whereeach

JQi =









λ
Q
i 1 ∙ ∙ ∙ 0

0 λ
Q
i ∙ ∙ ∙ 0

...
...

. . . 1

0 ∙ ∙ ∙ 0 λ
Q
i









,

and where the blocks are in order of the eigenvalues. (See Appendix C for
the real Jordan form when the eigenvalues are complex.) We refer to the set
of Jordan canonicalGDTSMsasGJ , and it is parametrized byΘJ = (λQ,
kQ∞, KP0X , KP1X , ΣX). The eigenvalues ofλQ may not be distinct and may be
complex. We explore these possibilities empirically in Section5.
Proof of Theorem1: Having already established that we can rotate any model
to one withPt asthe observed states, we proceed to prove the second step.
Suppose thatΘ1,Θ2 ∈ GW

P index two observationally equivalent canonical
models. By the existence result in Proposition1, eachΘi is observationally
equivalent to aGDTSM,ΘJ

i , which is in real ordered Jordan canonical form.
Since

Pt = AW(ΘJ
i ) + BW(Θi )

′XJ
ti , (11)

whereXJ
ti is the latent state for modelΘJ

i , it must be that

Θi = AW(ΘJ
i ) + BW(ΘJ

i )′ΘJ
i . (12)

Here, we use the notation that for aGDTSM with parameter vectorΘ and
stateXt , the observationally equivalentGDTSMwith latent stateX̂t = C +
DXt hasparameter vector̂Θ = C + DΘ, as computed in Appendix B. Since
observational equivalence is transitive,ΘJ

1 is observationally equivalent toΘJ
2 ;

theuniqueness result in Proposition1 implies thatΘJ
1 = ΘJ

2 . The equality in
(12) then givesΘ1 = Θ2, which establishes our second step.

To establish the reparametrization in the third step, we focus on (11) and
(12). The key is to show explicitly how given(λQ, kQ∞) (fromΘJ

i ) we can (i)
choose the parameters(KP0J, KP1J,ΣJ) to get any desired(KP0P , KP1P ,ΣP );

and(ii) construct the(KQ0 , KQ1 , ρ0, ρ1) consistentwith the factors beingPt .
Detailsare provided in Appendix D.
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For reference, we summarize the transformations computed in the last
step as follows.

Proposition 2. Any canonicalGDTSMwithQ parameters(λQ, kQ∞,ΣP ) has
theJSZ representation in Theorem1 with

KQ1P = BJ(λQ)B−1 (13)

KQ0P = kQ∞Bem1 − KQ1P A (14)

ρ1P = (B−1)′ι (15)

ρ0P = −A ∙ ρ1P , (16)

whereem1 is a vector with all zeros except in themth
1 entry, which is 1 (m1

is the multiplicity of λQ1 ) and B = BW(J(λQ), ι)′, A = AW(kQ
∞em1, J(λQ),

B−1ΣP, 0, ι), where(AW, BW) aredefined in (5) and (A2–A3).

Before proceeding, we discuss the interpretation of the parameterkQ∞. If X is
stationary underQ, thenkQ∞ andrQ∞ (thelong-runQmean of the short rate) are
related according torQ∞ = kQ∞

∑m1
i =1(−λ

Q
1 )−i , wherem1 is the dimension of

the first Jordon blockJQ1 of KQ1X . Thus, ifλQ1 is not a repeated root (m1 = 1),

rQ∞ is simply−kQ∞/λ
Q
1 in stationary models. This is the case in our subsequent

empirical illustrations, where we express our normalization in terms of the
parameterrQ∞ owing to its natural economic interpretation.

ThatkQ∞ andrQ∞ arenot always interchangeable in defining a proper canon-
ical form for the set of allGDTSMs of form (1–3) can be seen as follows. In
proceeding to the normalization of Proposition1, a model with the factors nor-
malized so thatrt = ρ0 + ι ∙ Xt is further normalized by a level translation
(Xt 7→ Xt − α). Such level translations can always be used to enforceρ0 = 0,
but they can be used to enforceKQ0X = 0 only in the case thatKQ1X is invertible
(i.e., there are no zero eigenvalues).12 Whenm1 = 1 and there are no zero
eigenvalues, the following two normalizations of(KQ0P , ρ0) areequivalent:

KQ0P =








0
0
...
0








andρ0 =
−kQ∞

λ
Q
1

or KQ0 =








kQ∞
0
...
0








andρ0 = 0. (17)

Theorem1 usesthe form withkQ∞, and always applies regardless of the eigen-
values ofKQ1X .

12 Oneimplication of this observation is that setting bothkQ∞ andrQ∞ to zero in the presence of aQ nonstationary
risk factor, as was done byChristensen, Diebold, and Rudebusch(2007,2009) in defining their arbitrage-free
Nelson-Siegel model, amounts to imposing an over-identifying restriction on the drift ofX1t .
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2. P Dynamicsand Maximum Likelihood Estimation

Rather than defining latent states indirectly through a normalization on param-
eters governing the dynamics (underP orQ) of latent states, the JSZ normal-
ization has instead prescribed observable yield portfoliosP and parametrized
theirQ distribution in a maximally flexible way consistent with no-arbitrage.
A distinctive feature of our normalization is that, in estimation, there is an in-
herent separation between the parameters of theP andQ distributions ofPt .
In contrast, when the risk factors are latent, estimates of the parameters gov-
erning theP distribution necessarily depend on those of theQ distribution of
the state, since the pricing model is required to either invert the model for the
fitted states (whenN bonds are priced perfectly) or filter for the unobserved
states (when all bonds are measured with errors). This section formalizes this
“separation property” of the JSZ normalization.

By Theorem1, we can, without loss of generality, useN portfolios of the
yields,Pt = Po

t ∈ RN , as observed factors. Suppose that the individual bond
yields, yt , are to be used in estimation and that their associated measurement
errors,yo

t − yt , have the conditional distributionPθm, for someθm ∈ Θm. We
require only that, for anyPθm, these errors are conditionally independent of
lagged values of the measurement errors and satisfy the consistency condition
P(W yo

t = Pt |Pt ) = 1.13 Then,the conditional likelihood function (underP)
of the observed data(yo

t ) is

f (yo
t |yo

t−1;Θ) = f (yo
t |Pt ; λQ, kQ∞,ΣP , Pθm)× f (Pt |Pt−1; KP1P , KP0P ,ΣP ).

(18)
Noticethe convenient separation of parameters in the likelihood function. The
conditional distribution of the yields measured with errors depends only on
(λQ, kQ∞,ΣP , Pθm) and not on (KP0P , KP1P ). In contrast, the conditionalP-
density of the pricing factorsPt dependsonly on(KP1P , KP0P ,ΣP ), and not on

(λQ, kQ∞). Using the assumption thatPt is conditionally Gaussian, the second
term in (18) can be expressed as

f (Pt |Pt−1; KP1P , KP0P ,ΣP ) = (2π)−N/2|ΣP |−1

× exp

(
−

1

2
‖Σ−1
P (Pt − Et−1[Pt ]) ‖2

)
, (19)

13 Implicit in this formulation is the possibility thatCov(yo
t |Pt ; λQ, kQ∞,ΣP ) is singular. This would be true in

CaseY, where some yields are measured without errors, or when certain portfolios ofyo
t arepriced perfectly,

as with the use of principal components as observable factors or as inChen and Scott(1995), who use different
portfolios of yields as their factors. This setup also accommodates the case where bothP and some of the
individual components ofyo

t arepriced perfectly by theGDTSM. Furthermore, the errors may be correlated,
non-normal, or have time-varying conditional moments depending onPt . In practice, it has typically been
assumed that the pricing errors are normally distributed.
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whereEt−1[Pt ] = KP0P + (I + KP1P )Pt−1 andwhere for a vectorx, ‖x‖2

denotesthe euclidean norm squared:
∑

x2
i . The parameters(KP0P , KP1P ) that

maximizethe likelihood functionf (conditional ont = 0 information), namely

(KP0P , KP1P ) = argmax
T∑

t=1

f (yo
t |yo

t−1; KP1P , KP0P ,ΣP )

= argmin
T∑

t=1

‖Σ−1
P

(
Po

t − Et−1[P o
t ]
)
‖2, (20)

are the sample ordinary least squares (OLS) estimates, independent ofΣP
(Zellner1962). Summarizing these observations:

Proposition 3. Under CaseP, theML estimates of theP parameters(KP0P ,
KP1P ) are given by the OLS estimates of the conditional mean ofPt .

Absentconstraints linking theP andQ dynamics, one can effectively sepa-
rate the time-series properties (P) of Pt from the cross-sectional constraints
imposed by no-arbitrage (Q). The parameters governingP forecasts distri-
bution thus can be estimated from time series alone, regardless of the cross-
sectional restrictions. Furthermore,independentof (λQ, kQ∞,ΣP ), the OLS
estimates of(KP0P , KP1P ) are by construction globally optimal. With(KP0P ,

KP1P ) at hand, we use the sample conditional variance ofPt , Σ̂P Σ̂′
P , com-

puted from theOLS innovations as the starting value for the population vari-
anceΣPΣ′

P . Given (λQ, kQ∞), this starting value forΣPΣ′
P is again by

construction close to the global optimum. Therefore, we have greatly reduced
the number of parameters to be estimated. For instance, in aGDTSM(3) model,
the maximum number of parameters, excluding those governingPθm, is 22 (3
for λQ, 1 for kQ∞, 6 for ΣP , 3 for KP0P and 9 for KP1P ). With our normal-

ization, one can focus on only the 4 parameters(λQ, kQ∞). This underlies the
substantial improvement in estimation speed for the JSZ normalization over
other canonical forms.

Key to our argument is the fact that we can parametrize of the conditional
distribution of the yields measured with error independently of the parameters
governing theP-conditional mean ofP in the sense of the factorization (18).
For any(KP0P , KP1P ,ΣP , λQ, kQ∞), we have

f (yo
t |Pt ; λQ, kQ∞,ΣP ) × f (Pt |Pt−1; KP1P , KP0P ,ΣP )

≤ f (yo
t |Pt ; λQ, kQ∞,ΣP ) × f (Pt |Pt−1; KP1P,OLS, KP0P,OLS,ΣP ),

(21)
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wherewe suppress the dependence onPθm. This inequality follows from the
observations that(KP0P , KP1P ) hasno effect onf (yo

t |Pt ) andthat, for anyΣP ,
replacing(KP0P , KP1P ) by its OLSestimate increasesf (Pt |Pt−1).14

It is instructive to compare (18) with the likelihood function that arises in
models with observable factors that parameterize theP distribution ofP and
the market prices of these risks. In this case, the parameters are(KP0P , KP1P )

and(ρ0, ρ1,Λ0,Λ1,ΣP ), whereEPt [Pt+1] = EQt [Pt+1] + ΣP (Λ0 + Λ1Pt ),
for state-dependent market prices of riskΛ0 + Λ1Pt . These parameters are
subject to the internal consistency constraintsAW = 0 andBW = IN thaten-
sure that the model replicates the portfolios of yieldsP. Moreover, analogous
to (18), the factorization of the likelihood function takes the form

f (yo
t |yo

t−1;Θ) = f (yo
t |Pt ; KP0P , KP1P ,ΣP , ρ0, ρ1,Λ0,Λ1)

× f (Pt |Pt−1; KP1P , KP0P ,ΣP ). (22)

Replacing(KP0P , KP1P ) with (KP0P,OLS, KP1P,OLS) again increases the second
term, but now the first term is affected as well. Thus, within this parameteriza-
tion, the fact thatOLSrecovers theML estimates is completely obscured.15

3. On the Relevance of No-arbitrage for Forecasting

The decomposition of the conditional likelihood function of the data in (18)
leads immediately to several important insights about the potential roles of no-
arbitrage restrictions for out-of-sample forecasting. First, Proposition3 gives
a general striking property ofGDTSMs under CaseP: The no-arbitrage fea-
ture of aGDTSMhas no effect on theML estimates ofKP0P and KP1P . This,
in turn, implies that forecasts of future values ofP are identical to those from
an unconstrainedVAR(1) model forPt .16 This result sharpensDuffee’s(2009)
finding that the restrictions on aVAR implied by an arbitrage-freeGDTSM
cannot be rejected against the alternative of an unrestrictedVAR.17 Whenfore-
casting theN portfolios of yieldsPt , Proposition3 showstheoreticallythat a
similar resultmusthold insofar as CaseP is (approximately) valid.

14 Thelast step requires observable factors, another important element of our argument. See Section3 and (23).

15 In fact, within a macro-GDTSMwith a similar parametrization of internally consistent market prices of risk
and observable factors,Ang, Piazzesi, and Wei(2003) report thatOLSestimates ofEP[Pt+1|Pt ] are(slightly)
different from theirML estimates. Our analysis generalizes to macro-GDTSMs (seeJoslin, Le, and Singleton
2010) and so, in fact, theOLSestimatesare the (conditional)ML estimates.

16 Notethat, in principle, enforcing no-arbitrage restrictions may be relevant for the construction of forecast confi-
dence intervals through the dependence onΣP . However, empirically this effect is likely to be small.

17 Duffee(2009) also shows theoretically that no-arbitrage iscross-sectionallyirrelevant in any affine model under
the stochastically singular condition of no measurement errors. That is, if the model exactly fits the data without
measurement errors, the cross-sectional loadings (A,B) of (4) are determined without reference to solving the
Ricatti difference equations (A2–A3). Duffee does not theoretically explore the time-series implications of the
no measurement error assumption. In this case, not only would Proposition3 apply (since CaseP is a weaker
assumption) so that the OLS estimates are theML estimates of(KP0P , KP1P), but alsoΣP could be inferred
from a sufficiently large cross-section of bond prices.
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The JSZ normalization makes these observations particularly transparent.
In contrast, in the (observationally equivalent) specification in (1–3), portfolio
yield forecasts are

Et [Pt+1] − Pt = BW(ΘQ) (Et [Xt+1] − Xt ) = BW(ΘQ)
(

KP0X + KP1X Xt

)

= BW(ΘQ)
(

KP0X + KP1X(BW P(ΘQ)−1
(
Pt − AW(ΘQ)

))
.

(23)

Thus,with latent states, the portfolio forecasts are expressed in terms of both
theP andQ parameters of the model. From (23), it is not obvious thatOLS
recovers theML estimates of(KP0P , KP1P ). The JSZ normalization makes the
implicit cancellations in (23) explicit.

Second, the structure of the likelihood function reveals that, in contrast to
the pricing factors, no-arbitrage restrictions are potentially relevant for fore-
casting individual yields that are measured with error. The conditional den-
sity of yo

t givenPt dependson the parameters of the risk-neutral distribution,
and these are revealed through the cross-maturity restrictions implied by no-
arbitrage. In addition, diffusion invariance implies thatΣP entersboth terms
of the likelihood function, so efficient estimation of these parameters comes
from imposing the structure of aGDTSM.

Finally, the structure of the densityf (yo
t |Pt ) alsoreveals the natural alterna-

tive model for assessing gains in forecast precision from imposing no-arbitrage
restrictions. The state-space representation of this unconstrained model reflects
the presumption that bond yields have a low-dimensional factor structure, but it
does not impose the restrictions implied by a no-arbitrageDTSM. Specifically,
under CaseP wherePt is priced perfectly by theGDTSM, the state equation is

1Xt+1 = K0X + K1X Xt + εt , εt ∼ N(0,ΣX) i .i .d., (24)

andthe observation equation

(
Pt

yo
t

)
= C + DXt +

(
0

emt

)
, emt ∼ Pθm i .i .d. (25)

Theparameter set isΘSS = {(K0X, K1X,ΣX, C, D, Pθm)}, wherePθm is an
observation error distribution that is consistent with CaseP.

No-arbitrage requires that the observation equation parameters(C, D) must
be of the form (4); that is, the dynamics are Gaussian underQ. Addition-
ally, no-arbitrage enforces a link between the possible(C, D) andΣX (dif-
fusion invariance). Since the parameters are not identified, one also imposes
normalizations to achieve a just-identified model. Importantly, the choice of
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normalizationswill in general affect theML estimates of the parameters,ΘSS,
but will not affect the distribution of bond yields implied from the state space
model (either in the cross-section or time series). For example, one could im-
pose the identification scheme inDai and Singleton(2000) under either theP
or theQ measure. The estimates of(K0X, K1X) and (C, D) will be choice-
specific, but these differences will be offset by changes in the latent states so
that the fits to bond yields will be identical.

Notably, the unconstrained state-space representation (24)-(25) with param-
eter setΘSS is not the unconstrainedJ-dimensionalVAR representation of
yt . The latter relaxes both the no-arbitrage (and any over-identifying restric-
tions) enforced in theGDTSM andthe assumed factor structure of bond yields
(the dimension ofXt is less than the dimension ofyo

t ). Consequently, gains
in forecasting an individual yield using aGDTSM, relative to the forecasts
from an unconstrainedVARmodel of yt , may be due to theVARbeing over-
parametrized relative to the unconstrained factor model, the imposition of
no-arbitrage restrictions within theGDTSM, or both. The role of no-arbitrage
restrictions is an empirical issue that can be addressed by comparing the
constrained and unconstrained versions of (24)–(25).

4. Irrelevance of Factor Structure for Forecasting

The DTSM literature considers a number of further constraints on the factor
structure of aGDTSM, beyond those implied by the absence of arbitrage. In
addition to making different identification assumptions, one can form a parsi-
monious model by restricting the distribution of certain variables (under either
P or Q) or by restricting the structure of risk premia. We first extend the re-
sults of Section3 to characterize when this irrelevancy result does (and does
not) hold in more generalGDTSMs, and then we discuss the connection of our
results to specific over-identifiedGDTSMs in the literature.

Within the state-space model (24–25), the parameters(C, D) control the
cross-sectional relationship among the yields, whilePθm controlsthe distribu-
tion of the measurement errors. The covariance matrix of the innovations of
the latent statesΣX is linked toΣP throughthe factor loadings(C, D). The
restriction of no-arbitrage, for example, says both that only certain types of
loadings(C, D) are feasible (those given by (4)) and that this feasible set de-
pends on the particular value ofΣX . Thus, no-arbitrage is a cross-parameter
restriction on the feasible set of(C, D,ΣX) in the general state-space model.
More generally, one might be interested in restrictions on a particular subset
of the parametersη ≡ (C, D, Pθ

m,ΣX), examples of which we discuss in sub-
sequent subsections. The following theorem says that even if restrictions are
imposed onη, as long as(K0X, K1X) areunrestricted,OLSwill recover the
ML estimates of(K0P , K1P ). (K0X, K1X) will change in general with the re-
strictions imposed onη, but only through an affine transformation of the latent
states.
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Theorem 2. Given the state-space model (24–25) and the portfolio matrixW
determining the factorsPt , letH be a subset of the admissible set ofη where,
for any (C, D,ΣX, Pθm) ∈ H, the N × N upper left block ofD is full rank.
Consider theML problem withη constrained to lie in the subspaceH:

(
KH0X, KH1X, ηH

)
∈ arg max

K0X ,K1X;η∈H
f (PT , yT , . . . ,P1, y1|P0, y0).

Then,(KH0X, KH1X, ηH) aresuch that

K0P = DHP KH0X − DHP KH1X(DHP )−1CHP , (26)

K1P = DHP KH1X(DHP )−1, (27)

whereCHP is the firstN elements ofCH, DHP is the upper leftN × N block of
DH, and(K0P , K1P ) arethe OLS estimates of the regression

1Pt = K0P + K1PPt + εPt .

The proof is similar, though notationally more abstract, to the proof of
Proposition3 and is presented in Appendix E.

Using this result, we first illustrate the estimation of the general state-space
model of (24–25) when the possibility of arbitrage is not precluded. We next
explore the implications of restrictions on theQ andP distributions, as well as
on risk premia, for the conditional distribution ofPt .

4.1 Factor Structure in Arbitrage Models
The factor model (24–25) is not necessarily consistent with the absence of
arbitrage. This is because the loadings in (25) may not come from the solution
of (4) for a given choice ofΘQX . Nevertheless, this model is still of interest as
it provides a baseline “factor structure” for the yield curve (cf.Duffee 2009).
Theorem2 implies that, under CaseP, theOLSestimates of the parameters
governing (24) are identical to their counterparts from systemML estimation
of (24–25) when the factorsPt areobserved portfolios of bond yields.

Additionally, when, in addition to CaseP, the state-space model has tem-
porally i.i.d. normal pricing errors in (25), and these errors are orthogonal to
the portfolio matrixW, the OLS regression of the observed yields onto the
factorsP give theML estimates of the unconstrained (“with arbitrage”) cross-
sectional loadings(C, D) in (25). In this case, theOLSregression estimates of
ΣP mustalso correspond (through the invariant transformation given in Theo-
rem2) to theML estimates ofΣX for the factor model. Taken together, these
procedures provide a simple prescription for constructing alternative reference
models (to arbitrage-freeGDTSMs) that maintain the factor structure but do
not impose no-arbitrage. In the empirical analysis in Section5, we focus on
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comparisonsof OLS forecasts ofPCs with their forecasts from a variety of
arbitrage-free models. These “with arbitrage” factor models provide a natural
reference model when one is interested in forecasting yields.

4.2 Irrelevance of Constraints on theQ Distribution of Yields
The JSZ normalization characterizes the state in terms of an observable port-
folio of zero coupon yields. The conditionalQ distribution ofPt+τ (asa func-
tion of Pt ) is expressed in (7), which we have shown can be parametrized by
(λQ, kQ∞,ΣP ). Within the model (that is, without measurement errors),P is in-
formative about the entire yield curve. Thus, one type of restriction a researcher
may be interested in imposing is on the conditionalQ distribution ofPt+τ (or
yt+τ ) as a function ofPt (or yt ).18 Suchconstraints further restrict (beyond
the no-arbitrage restrictions) the cross-sectional loadings(C, D) in the gen-
eral state-space model as well as which innovation covariances are possible.
Theorem2 shows that restrictions on theQ distribution ofyt+τ , as a function
of yt , are irrelevant for forecastingPt . Put differently, in the JSZ-normalized
GDTSM, restrictions that affect only the parameters of theQ distribution ofPt

(λQ, kQ∞, as well asΣP ) are irrelevant for forecasting the portfolios of yields
Pt . Though latent-factor representations like (23) suggest that theQ parame-
ters enter intoEPt [Pt+1], in fact absent restrictionsacrosstheP andQ param-
eters of the model, anyQ restrictions must affect(KP0X, KP1X) in a manner that
“cancels” their impact onEPt [Pt+1].

Oneexample of such a constraint in the literature is the arbitrage-free Nelson-
Siegel (AFNS) model ofChristensen, Diebold, and Rudebusch(2007). The
AFNS model allows for a dynamically consistentGDTSMwhere, except for
a convexity-induced intercept, the factor loadings correspond to those of
Nelson and Siegel(1987). Since the AFNS model is the constrained special
case of the JSZ normalization withλQ = (0,λ, λ) andkQ∞ = 0,19 an imme-
diate implication of this observation is thatforecasts ofP using an arbitrage-
free Nelson-Siegel (AFNS) model are equivalent to forecasts based on an
unconstrained VAR(1) representation ofP. Proposition3 implies that these
restrictions do not affect theML estimates ofKP0P andKP1P and,hence, they
cannotimprove the forecasts ofP relative to an unconstrained VAR(1). Thus,
the forecast gains thatChristensen, Diebold, and Rudebusch(2007) attribute
to the structure of their AFNS pricing model are, instead, a consequence of the
joint imposition of no-arbitrage and their constraints on theP distribution of
bond yields.

18 More precisely, underQ, yt+τ |Ft ∼ N(μτ
t ,Στ ). If we expressμτ

t = μτ (yt ), restrictions onΣτ or the

functional formμτ are irrelevant. More generally, sinceEPt [yt+s] ∈ Ft = σ(yt ), restrictions of the form

EQt [yt+τ ] = g(EPt [yt+τ ]) mayaffect forecasts.

19 We show this formally inJoslin, Singleton, and Zhu(2010).
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4.3 Conditions for Irrelevance of Constraints on Latent Factors
A conclusion of Section4.2 is that restrictions on the parameters governingQ
distribution of yield factors are irrelevant for forecasts. In this section, we ad-
dress the question if, more generally, a parameter constraint on “Q parameters”
within an identifiedGDTSMwith latent factors affects forecasts. For example,
a researcher may consider the following procedure. They begin with aGDTSM
model with the normalizations ofDai and Singleton(2000) (DS) applied un-
derQ: (KP0X, KP1X) arefree whileΣX = I , KQ0X = 0, and KQ1X is (ordered)
lower triangular (or real Schur to accommodate complex eigenvalues). After
estimation, a more parsimonious model is obtained by taking any coefficients
in KQ1X thatare insignificantly different from zero and setting them to zero (or
using an iterative AIC or BIC type procedure). A similar procedure is followed
in, for example,Dai and Singleton(2002).

When KP0X and KP1X are unconstrained, constraints such as these onQ-
identified parameters are joint constraints on the cross-sectional properties of
the yield curve and the covariance of innovations. To see this, one can invert the
latent factors into the observable factors and observe that non-linear constraints
within the JSZ normalization on(λQ, kQ∞,ΣP ) will hold. However, Theorem
2 directly shows that the resulting forecasts forPt will be identical whether
the constraints are imposed or not. The constraints in generalwill changethe
estimatedKP0X andKP1X , but they will also change the loadings and the latent
states so that the forecasts ofPt will not change.

Alternatively, one could first apply a normalization underP and then restrict
the parameters governing theQ-conditional distribution of the implied latent
states. For example, as above, one could apply the DS normalization underP
where(KP0X, KP1X) will be restricted while(KQ0X, KQ1X) arerestricted.Duffee
and Stanton(2007), for example, apply such a normalization. With this type
of P identification, Theorem2 no longer applies and it is easy to see that in
general restrictions on theQ parameters (i.e., theQ-conditional distribution of
the latent factors as a function of the latent factors) will affect the forecasts
of Pt .

4.4 Relevance of Constraints on the Structure of Excess Returns
Central to the preceding irrelevance results is the absence of restrictions across
the parameters of theP andQ distributions ofPt . Such constraints would arise
in practice if, for instance, theGDTSM-implied expected excess returns on
bonds of different maturities lie in a space of dimensionL less than dim(Pt ) =
N. Put another way, some risks in the economy may have either zero or con-
stant risk premia. WhenL < N, it also follows that time variation in risk pre-
mia depends only on anL-dimensional state variable.Cochrane and Piazzesi
(2005,2008) conclude thatL = 1 when conditioning risk premiums only on
yield curve information.Joslin, Priebsch, and Singleton(2010) find thatL is
at least two when expected excess returns are conditioned onPt , inflation,
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and output growth. We explore the relevance for forecasting bond yields of
imposing the constraintL within GDTSMs that condition risk premiums on
the pricing factorsP. When this constraint is (approximately) valid, improved
forecasts ofyt mayarise from the associated reduction in the dimensionality
of the parameter space.

To interpret this constraint, note fromCox and Huang(1989) andJoslin,
Priebsch, and Singleton(2010) that one-period, expected excess returns on
portfolios of bonds with payoffs that track the pricing factorsPt , sayxrPt , are
given by the components of

xrPt = KP0P − KQ0P + (KP1P − KQ1P )Pt . (28)

Thatis, thei th componentof (KP1P−KQ1P )Pt is the source of the risk premium
for pure exposures to thei th componentofPt . Therefore, the constraint that the
one-period expected excess returns on bond portfolios are driven byL linear
combinations of the pricing factorsP amounts to the constraint that the rank
of ARRP = KP1P − KQ1P isL.20

The reduced rank risk premiumGDTSMs can be estimated through a con-
centration of the likelihood in the same spirit as (18). Given(λQ, kQ∞, ΣP ,
Pθm), the ML estimates of(KP0P , KP1P ) can be computed as follows. First,
compute(α, β) from the regression

Pt+1 − (KQ0P + KQ1PPt ) = α + βPt + εPt , (29)

wherewe fix the volatility matrixΣP of errorsεPt andimpose the constraint
that β has rankL. We show in Appendix F how one can compute theML
estimates of this constrained regression in closed form. For a given(λQ, kQ∞,
ΣP , Pθm), theML estimates of theP parameters are then given by

KP0P = KQ0P + α̂, KP1P = KQ1P + β̂. (30)

In comparison to the setting underlying Proposition3 and Theorem2,
reduced-rank risk premia enforce constraints across the parameters of theP
andQ distributions. Consequently, theML estimates of theP parameters are
no longer given by theirOLScounterparts. This, in turn, means that the im-
plications of Proposition3 discussed in Section4.2will, in general, no longer
apply. Under the reduced-rank restrictions, any further assumptions on theQ
parameters (such as the constraints of the AFNS model) will directly affect
the estimatedP parameters as there is a link between the cross-section and

20 Alternatively, we could restrict the rank of[KP0P − KQ0P , KP1P − KQ1P ] toL. This would enforce the stronger
restriction that onlyL linear combination of the factors has non-zero expected excess return.
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time-seriesproperties of yields. We explore the empirical implications of these
observations in Section5.

4.5 Relevance of Constraints on theP Distribution of Yields
So far, we have demonstrated that neither the imposition of no-arbitrage nor
restrictions on theQ dynamics have any effect on theML estimates ofKP0P
and KP1P . However, restrictions on risk premia, such as the reduced-rank as-
sumption, linkP andQ and interact with no-arbitrage to affect estimates of
KP0P and KP1P . We now complete this discussion by examining whether no-
arbitrage affects the distribution of bond yields when one also imposes stand-
alone restrictions on theP distribution of yields that do not impinge on theQ
distribution, either directly or indirectly through risk premiums. Examples of
such restrictions are that the yield portfolios are cointegrated or that the con-
ditional mean of each portfolio yield does not depend on the other portfolio
yields.21 Onecan impose such restrictions without reference to a no-arbitrage
model.

In these examples,OLS no longer recovers theML estimates of the pa-
rameters; rather, to obtain efficient estimates givenΣP , one must implement
generalized least squares (GLS). Let

(
K c∗

0 (ΣP ), K c∗
1 (ΣP )

)
denotethe GLS

estimates of(KP0P , KP1P ) givenΣP :

(K c∗
0 (ΣP ), K c∗

1 (ΣP )) = arg max
KP0P,KP1P

T∑

t=1

f (Po
t |Po

t−1; KP1P , KP0P ,ΣP ), (31)

wherethe arg max is taken over(KP0P , KP1P ) satisfyingthe appropriate re-
striction on theP dynamics. In the presence of such restrictions, there is a
non-degenerate dependence of(K c∗

0 , K c∗
1 ) on ΣP . This dependence means

that no-arbitrage (which linksΣP acrossP andQ) affects theML estimates
of (KP0P , KP1P ).

We explore the empirical implications of two types of restrictions on theP
distribution of yields in Section5: (1) a model withKP1P constrainedto be
diagonal; and (2) a model in which thePt arecointegrated (with one unit root
and no trend).

4.6 Comparing the JSZ Normalization to Other Canonical Models
The normalizations adopted by DS andJoslin(2007) preserve the latent factor
structure in (9–10), in contrast to the rotation to observable pricing factors in
the JSZ normalization. To our knowledge, the only other normalization that has
an “observable” state vector is the one explored byCollin-Dufresne, Goldstein,

21 SeeCampbelland Shiller(1991) (among others) for empirical evidence on cointegration among bond yields.
Diebold and Li(2006) adopt an assumption very similar to the second example.
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andJones(2008) (CGJ). All three of these canonical models—DS, Joslin, and
CGJ—are observationally equivalent.22

In the constant volatility subcase of the CGJ setup, the state vectorXt is
completelydefined byrt andits first N − 1 moments underQ:

Xt = (rt , μ1t, μ2t, . . . , μN−1,t )
′, (32)

where

μ1t =
1

dt
EQ(drt ), μk+1,t =

1

dt
EQ(dμkt ), k = 1, . . . , N − 2. (33)

UnderQ, Xt follows

d Xt = (KQ0,CG J + KQ1,CG J Xt )dt + ΣXdZt , (34)

whereΣX is lower triangular,KQ0,CG J = (0,0, . . . , 0, γ )′, andZt is the stan-

dard Brownian motion. By construction, the matrixKQ1,CG J is the companion

matrix factorization of the feedback matrixKQ1X in (9).
The sense in whichXt is observable in the CGJ normalization is quite

different than in the JSZ normalization, and these differences may have prac-
tical relevance. First, it will not always be convenient to assume that the one-
period short-ratert is observable.Duffee (1996) highlights various liquidity
and “money-market” effects that might distort yields on short-term bond rela-
tive to what is implied by aGDTSM. Thetrue short rate—the one that implic-
itly underlies the pricing of long-term bonds—will not literally be observable
absent an explicit model of these money-market effects. Second, actions by
monetary authorities might necessitate the inclusion of additional risk factors
or jumps in these factors when explicitly including short rates in the analysis
of aDTSM(Piazzesi 2005). Within the JSZ normalization, one is free to define
the portfolio matrixW so as to focus on segments of the yield curve away from
the very short end, while preserving fully observableP.

22 Different choices of normalizations, associated with different, unique matrix factorizations of the feedback ma-

trix KQ1X , give rise to observationally equivalent models, through models with different structure to their param-
eter sets. The JSZ normalization is based on the real Jordan factorization used in Proposition1. CJG adopt the
companion factorization. For any monic polynomialp(x) = xn − μn−1xn−1 − ∙ ∙ ∙ − μ1x − μ0, the companion
matrix is

C(p) =














0 1 0 ∙ ∙ ∙ 0

0 0 1 ∙ ∙ ∙ 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 ∙ ∙ ∙ 1

μ0 μ1 μ2 ∙ ∙ ∙ μn−1














.

Given any matrixK , its monic characteristic polynomial is unique, and the matrixK is similar to its companion
matrixC(p(K )).

20

 at M
IT

 Libraries on June 7, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


A New Perspective on Gaussian Dynamic Term Structure Models

Moresubtly, the construction of the state vector in the CGJ normalization re-
quires the parameters of theQ distribution. Therefore, any change in the imple-
mentation of aGDTSMthat changes the impliedQ parameters will necessarily
change the observed pricing factors under the CGJ normalization. Fitting the
same model to two overlapping sample periods could, for example, give rise to
different values of the observed state variables during the overlapping period.
In contrast, under the JSZ normalization, we are led to identical values ofP
for all overlapping sample periods.

Full separation of theP andQ sides of the unrestricted model appears to be
a unique feature of the JSZ normalization. It is this separation that clarifies the
role of no-arbitrage restrictions inGDTSMs, and gives rise to the enormous
computational advantages of our normalization relative to the DS, Joslin, and
CGJ canonical models.

5. Empirical Results

We estimate the three-factorGDTSMs summarized in Table1 by ML using
the JSZ canonical form and the methods outlined in Section3.23 As all of
our estimated models are stationary underQ, we report our results in terms
of rQ∞ insteadof kQ∞. The data are end-of-month, Constant Maturity Treasury
(CMT) yields from release Fed H.15 over the period from January 1990 to
December 2007 (216 observations). The maturities considered are 6 months,
and 1, 2, 3, 5, 7, and 10 years. From these coupon yields we bootstrap a
zero-coupon curve assuming constant forward rates between maturities. Within
CaseP, we consider several subcases. With distinct real eigenvalues, we as-
sume the first three principal components (PCs) are measured without error
(RPC); or the 0.5-, 2-, and 10-year zero coupon yields are measured without
error (RY). Additionally, we estimate models that price the first threePCs of

Table 1
Summary of Model Specifications

ModelName Specification

RPC RealλQ′ = (λ
Q
1 , λ

Q
2 , λ

Q
3 ), PC1,PC2,PC3priced exactly

RY RealλQ′ = (λ
Q
1 , λ

Q
2 , λ

Q
3 ), 0.5-, 2-, and 10-year zeros priced exactly

CPC ComplexλQ′ = (λ
Q
1 , λ

Q
2 , λ̄

Q
2 ), PC1, PC2, PC3 priced exactly

JPC Real repeatedλQ′ = (λ
Q
1 , λ

Q
2 , λ

Q
2 ), PC1, PC2, PC3 priced exactly

RPC1 RPCand rank 1 risk premia
RY1 RY and rank 1 risk premia
RCMT1 RCMT and rank 1 risk premia
JPC1 JPCand rank 1 risk premia
RKF Real distinctλQ, and all yields are measured with error

RCMT RealλQ′ = (λ
Q
1 , λ

Q
2 , λ

Q
3 ), 0.5-, 2-, and 10-year CMTs priced exactly

23 λ̄
Q
i denotesthe complex conjugate of thei th elementof λQ. Also, we defer discussion of case RKF, in which all

yields are measured with error and Kalman filtering is applied, until Section6.
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thezero curve exactly under the constraints of repeated eigenvalues (JPC) and
complex eigenvalues (CPC). Model JPC imposes the eigenvalue constraint of
the AFNS model examined byChristensen, Diebold, and Rudebusch(2009).
Finally, a subscript of “1” indicates the case of reduced-rank risk premiums
(L = 1) with the one-period expected excess returns being perfectly correlated
across bonds. In all cases, except as noted, the component of measurement er-
rors orthogonal toW are assumed to be normally distributed.24 Althoughwe
derive portfolios from the principal components, one could also use portfo-
lio loadings from various parametric splines for yields such as Nelson-Siegel
loadings or polynomial loadings.

An alternative measurement error structure arises when one supposes that
coupon bonds are measured without error. In this case, portfolios of zero bond
yields will necessarily incorporate measurement error. To that end, we consider

Case C: N coupon bonds are priced exactly, andJ − N coupon bonds are
measured with normally distributed errors in theGDTSM.

In implementing CaseC with coupon-bond data, one can still selectN port-
folios of zero coupon yields and construct the rotation where these portfolios
comprise the state vector. Even though such yields may not be observed, this
rotation is still valuable because the portfolios of model-implied zero yieldsPt

canbe approximated from the observed data. For example, one could bootstrap
or spline an approximate zero coupon yield curve from the observed coupon
bond prices and, from an approximation ofPt , call it Pa

t . Importantly, the pro-
jection ofPa

t onto its own lag will recover reliable starting values forKP0P
andKP1P . However, because coupon bond yields are nonlinear functions ofP,
the irrelevance propositions discussed in Section3 do not apply to CaseC.
In our empirical implementation, we consider the case of the 0.5-, 2-, and
10-year CMT yields measured without error, and the 1-, 3-, 5-, 7-year par
coupon yields measured with errors (RCMT). Throughout, we report asymp-
totic standard errors for the maximum likelihood estimates that are computed
using the outer product of the first derivative of the likelihood function to
estimate the information matrix (seeBerndt et al. 1974).

24 In CaseY, this assumption amounts to yield measurement errors being distributed i.i.d.N(0,σ2
p). When W

comesfrom the principal components, the assumption is equivalent to the higher-orderPCs (n > N) being
distributedN(0,σ2

p). In both of these cases, we can concentrateσp from the likelihood (conditional ont = 1

information)throughσ̂2
p =

∑T
t=2,m(yo

t,m − yt,m)2/ ((T − 1) × (J − N)) , whereyt,m arethe model yields that

depend on all the other parameters. To be more precise about the error assumption, letW⊥ ∈ R(J−N)×J bea
basis for the orthogonal complement of the row span ofW. Then, sinceW hasorthonormal rows, we can express
yo
t in terms of its projection ontoW andthe orthogonal complement toW asyo

t = W′Wyo
t + (W⊥)′W⊥yo

t =

W′Pt + (W⊥)′W⊥yo
t . We assumeyo

t − yt |Pt hasthe degenerate distributionN(W′Pt , σ
2
p(W⊥)′W⊥) (which

is rotation invariant in the sense that the likelihood is the same for alternative choices of base for the orthogonal
complement toW). Equivalently, the projection ofyo

t ontoW⊥ expressed in the coordinatesW⊥ is i.id. normal:
W⊥yo

t ∼ N(0,σ2
p I J−N ). This distribution satisfiesP(Wyo

t = Pt |Pt ) = 1.
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Table 2
ML estimates of the risk-neutral parameters of the model-implied principalcomponents

ParameterEstimate

Model λ
Q
1 λ

Q
2 λ

Q
3 /im(λ

Q
2 ) rQ∞

RPC −0.0024 −0.0481 −0.0713 8.61
(0.000566) (0.0083) (0.0133) (0.73)

RY −0.00196 −0.0404 −0.0897 9.37
(0.000378) (0.00274) (0.0073) (0.789)

RKF −0.00245 −0.0472 −0.0739 8.45
(0.000567) (0.00724) (0.0125) (0.678)

RCMT −0.00178 −0.0372 −0.103 11.2
(7e-005) (0.000819) (0.0029) (0.346)

JPC −0.00225 −0.0582 −0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)

CPC −0.00225 −0.0582 −0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)

RPC1 −0.00241 −0.0477 −0.0721 8.61
(0.000559) (0.00766) (0.0126) (0.715)

RY1 −0.00197 −0.0403 −0.0902 9.37
(0.000373) (0.00269) (0.00723) (0.775)

RCMT1 −0.00178 −0.0371 −0.103 11.2
(6.92e−005) (0.000828) (0.003) (0.345)

JPC1 −0.00224 −0.0583 −0.0583 8.9
(0.000405) (0.00122) (0.00122) (0.54)

rQ∞ is normalized to percent per annum (by multiplying by12× 100). Asymptotic standard errors are given in
parentheses.

In order to facilitate comparison of the estimates across models with dif-
ferent pricing factors, all of our results are presented in terms of the implied
P distribution of the first threePCs of the zero yields.25 Table2 shows that
these parameters are largely invariant to (i) assumptions about the distribution
of measurement errors; (ii) restrictions on theQ dynamics through restrictions
on λQ; and (iii) restrictions on the relation between theQ andP dynamics
through the reduced-rank assumption. The only mild exception is that model
RCMT has a higherrQ∞, which is compensated for by slightly lowerλ

Q
1 and

λ
Q
2 . The close alignment of results shows that the cross-section of bond yields

provides a rich information set from which to extract the four relevantQ pa-
rameters,rQ∞ andλQ.

Anothernotable feature of these estimates is that the results for model CPC
are the same as those for model JPC. This is because, in the limit, as the com-
plex part of the eigenvalues approaches zero, the complex model approaches
the Jordan model (see Appendix C). Thus we see that, for our dataset, complex
eigenvalues are not preferred over real eigenvalues.

Tables3 and4 present the parameters of theP distribution ofP. The final
row presents parameters from aVAR (with no pricing involved) of thePCs.

25 Thatis, under CaseY or when the CMT yields are priced perfectly by theGDTSM, after estimation, we impose
the JSZ normalization based on thePCs of zero yields as the state variables.
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Table4 reveals that initializingΣP usingOLS residualsleads to very accu-
rate starting values. By way of contrast, if we had instead used theDai and
Singleton(2000) (DS) canonical form, an accurate initialization ofΣX would
require a reliable initial value forKQ1 . The JSZ canonical form allows us to

avoid this interplay between the values ofΣX andKQ1 by applying no-arbitrage

constraints to determineKQ1P independentlyof ΣP .
Acrossall specifications, the parameters are very comparable. Partly this is a

consequence of Proposition3: whetherλQ comprisesdistinct real eigenvalues
(RPC), complex eigenvalues (CPC), or repeated eigenvalues (JPC), the esti-
mates ofKP1P andKP0P areequal to each other and to theOLSestimates. How-
ever, stepping beyond this proposition, when we change whether it isPCs or
individual yields (e.g., RPC versus RY) that are priced perfectly by theGDTSM
under CaseP, the parameters of the correspondingP distributions remain very
similar. Imposing the reduced-rank risk premium constraintL = 1 leads to
generally similar results, although for some parameters there are measurable
differences in estimates across corresponding models, particularly for some of
the elements ofKP1P .

Regarding the computational efficiency obtained using the JSZ normaliza-
tion, we stress that the only parameters that need to be estimated are(rQ∞, λQ,
ΣP ) since,as discussed in Section3, (KP0,P , KP1P ) are determined by con-

centrating the likelihood and(KQ0,P , KQ1,P ) aredetermined by no-arbitrage.26

The models were estimated using sequential quadratic programming, as im-
plemented in Matlab’sfmincon. Estimation under CaseP using an informed
guess of theQ eigenvalues took approximately 1.2 seconds.27 Furthermore,
99%+of the searches converged to the same likelihood value (to within the tol-
erance) with very similar parameter estimates.28 Thesecomputational advan-
tages become even more important in the case where all yields are
measured with error, which we consider in Section6.

5.1 Statistical Inference Within the JSZ Canonical Form
There are two null hypotheses that are of particular interest given our observa-
tions in Section3. The first test addresses the algebraic multiplicity of eigen-
values in theGDTSM(3) model. As previously stated, the AFNS model of
Christensen, Diebold, and Rudebusch(2007) is equivalent to the JSZ canonical

26 Thestandard deviation of the pricing errors,σpricing, can be concentrated out as well, both whenL equals 1 and
when it equals 3.

27 Thecomputations were performed using a single-threaded application on a 2.4GHZ Intel Q6600 processor.

28 An exception here is the Jordan form, where typically there were two local extrema with either the smaller

or the larger eigenvalue repeated. Another general consideration is that one must either optimize overkQ∞ or

alternatively imposeQ stationarity on the model if one desires to userQ∞ in estimation. In fact, for estimation

purposes, the issue of usingkQ∞ versusrQ∞ is largely obviated by results inJoslin, Le, and Singleton(2010), who

show how one can concentrate outkQ∞ underCase P.
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form with three extra constraints, including a repeated eigenvalue ofKQ1 . To

assess the validity of the null hypothesisλ
Q
2 = λ

Q
3 , under the JSZ normaliza-

tion, we perform a Likelihood Ratio (LR) test against the alternative thatλQ

is unconstrained. With this one linear constraint, the LR test statistic has an
asymptoticχ2 distribution with one degree of freedom,χ2(1).

Thesecond test of interest is the dimensionality of the one-period risk pre-
mium which, as discussed in Section4.4, is captured by the rank ofARRP =
KP1P − KQ1P . To impose the constraint thatL = 1, we start with the singular
value decomposition ofARRP, UDV′, whereU andV areunitary matrices and
D is diagonal with the diagonal sorted in decreasing order. The null hypothesis
of interest—thatARRP hasrank 1—is therefore imposed by settingD22 and
D33 to zero. To translate this representation into constraints on the parameter
space, note that, for anN-factorGDTSMwith L = 1,

DV ′Pt = D11

N∑

j =1

Vj 1P j t . (35)

Therefore,the expected excess returnsxrPt (seeSection4.4) are given by

xrPt =
(

KP0P − KQ0P

)
+ U•1 ∙



D11

N∑

j =1

Vj 1P j t



 , (36)

whereU•1 is the first column ofU . The second term on the right-hand side
of (36) expresses the time-varying components ofxrPt in terms of a common
linear combinationV ′

•1Pt of the pricing factors. All of the parameters in (36)
are econometrically identified by virtue of the facts thatV ′

•1V•1 = 1 (which
identifiesD11) andU ′

•1U•1 (which identifies the weights onD11V ′
•1Pt ). Fur-

thermore, givenN, (36) implies(N − 1)2 cross-equationrestrictions on the
parameters of the conditional expectationxrPt . In our case,N = 3, so there
are 4 cross-equation restrictions.

Tests for the equality of two eigenvalues are reported in the top panel of
Table 5, where a leadingJ means that the model was estimated under the
constraint thatλQ2 = λ

Q
3 (consistentwith the specifications of AFNS models).

In the PC-based models, this null hypothesis is not rejected, while for the
yield-based models it is rejected at conventional significant levels. To interpret
this difference across choices of risk factors, we note from Table2 that the
estimated|λQ2 − λ

Q
3 | is larger in model RY than in model RPC, with most

of this difference being attributable to the larger value of|λQ3 | in model RY.

The eigenvalueλQ3 governs the relatively high-frequencyQ variation in yields
and, thus, is particularly relevant for the behavior of the short end of the yield
curve. Introducing the six-month yield directly as a pricing factor overweights
the short end of the yield curve relative to having thePCs as pricing factors, as
the latter are portfolios of yields along the entire maturity spectrum.
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Table 5
Likelihood ratio tests

H0 : λ
Q
2 = λ

Q
3

H0 log L0 Ha log La LR statsχ2(1) p-value

JPC 38.3912 RPC 38.3921 0.375 0.540
JPC1 38.3865 RPC1 38.3876 0.463 0.496
JY 38.1679 RY 38.1863 7.906 0.005
JY1 38.1638 RY1 38.183 8.266 0.004
JRCMT 39.0123 RCMT 39.0414 12.513 0.000

H0 : rank
(

KP1P − KQ1P

)
= 1

H0 log L0 Ha log La LR statsχ2(4) p-value

RPC1 38.3876 RPC 38.3921 1.9475 0.745
JPC1 38.3865 JPC 38.3912 2.0358 0.729
RY 38.1863 RY1 38.1830 1.4217 0.840
JY 38.1679 JY1 38.1638 1.7819 0.776
RCMT1 39.0387 RCMT 39.0414 1.161 0.884

The top panel reports tests for equality of two eigenvalues, and the bottom panel reports tests for rank-1 risk
premium. The likelihood-ratio statistics are computed asLR = −2(T − 1)(log L0 − log La), whereT = 216
is sample size andlog L0 and log La are the log-likelihoods under the null and alternative, respectively. All
log-likelihoods are conditional ont = 1 andare time-series averages across theT − 1 observations.

In the bottom panel, we report tests of the reduced-rank, risk premium hy-
pothesis thatL = 1. Under all model specifications, this hypothesis cannot be
rejected. This finding is consistent with the conclusions reached byCochrane
and Piazzesi(2005), though they effectively considered models withN = 5 as
they examinedPC1 throughPC5.

5.2 Empirical Relevance of Constraints onP Distribution of Yields
In Section4.5, we demonstrated that imposing no-arbitrage in addition to con-
straints onP distribution of yields affects the forecasts of yields. We now em-
pirically explore the magnitude of the effect of the interaction of no-arbitrage
with (i) imposing KP1P to be diagonal; and (ii) imposing thatPt arecointe-
grated (with one unit root and no trend). In both cases, we assume risk premia
have full rank and theQ distribution of yields is unconstrained.

Table6 presents the estimation results with the constraint thatKP1P is diag-
onal in both the referenceVARas well as asymptotic standard errors. When
the constraint of diagonalKP1P is imposed, no-arbitrage has almost no effect
on the parameters.29 Additionally, the differences not only are small in magni-
tude, but are also very small with respect to the standard errors.

Table7 presents the estimation results for theVARand no-arbitrage mod-
els when cointegration (without a trend) is imposed. Here, we present standard

29 The average log-likelihood (acrosst) for the unconstrained no-arbitrage model was 38.392, while for the
diagonal-constrained model it was 38.291. The corresponding likelihood ratio test statistic is 44.0, far exceeding
the 99% rejection region of 16.8, indicating a very strong rejection of this constraint.
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Table 6
The conditional mean parameters for the model withKP1P constrainedto be diagonal

With No Arbitrage Without NoArbitrage

KP0P KP1P KP0P KP1P

−0.0129 −0.151 −0.0129 −0.151
(0.0193) (0.135) (0.0188) (0.131)
0.00754 −0.286 0.00761 −0.289
(0.00636) (0.202) (0.00635) (0.201)
0.013 −1.97 0.0129 −1.95
(0.00292) (0.423) (0.00292) (0.421)

KP1P is annualized by multiplying by 12. The left panel imposed no-arbitrage and uses yield data for all matu-

rities. The right panel does not use no-arbitrage and simply computes the estimates of aVARof Pt with KP1P
constrainedto be diagonal throughGLS.

Table 7
The conditional mean parameters for the model with cointegration with no trend and one unit root
imposed

With No Arbitrage Without NoArbitrage

KP0P KP1P KP0P KP1P

−0.0644 −0.258 0.113 5.22 −0.0668 −0.24 0.266 5.29
(0.0602) (0.336) (0.733) (3.17) (0.218) (0.225) (0.792) (2.67)

−0.0189 0.0495 −0.112 4.32 −0.0172 0.0519 −0.168 4.32
(0.0236) (0.124) (0.288) (1.28) (0.0827) (0.0824) (0.31) (1.03)
0.007 −0.0241 0.0482 −1.73 0.00713 −0.0184 0.0632 −1.71

(0.0105) (0.0562) (0.117) (0.565) (0.0326) (0.0362) (0.126) (0.471)

The left panel imposed no-arbitrage and uses yield data for all maturities. The right panel does not use no-
arbitrage and simply computes the estimates of aVARof Pt with cointegration imposed so that[KP0P , KP1P ]
hasrank 2.

errorscomputed by a parametric bootstrap due to the well-known non-standard
asymptotics and small-sample bias associated with unit roots. The method that
we used to bootstrap the standard errors is as follows: We randomly choose
a datat ∈ {1,2, . . .216} and initialize the state as the value ofP on this
date. Then, using the maximum likelihood estimate of the parameters, we
simulate a path of the term structure for the sample size of 216 months and
estimate the model based on these simulated data. These steps are repeated
1000 times. Although the no-arbitrage assumption has a somewhat larger ef-
fect than the diagonal case, the differences are again generally small. Taken to-
gether, these results suggest that although theoretically the no-arbitrage model
may offer improved inference over the simpleVARmodel when stand-alone
P constraints are imposed, such differences may, evidently, be small in
practice.

5.3 Small-sample standard errors
Another feature of our normalization is that it facilitates the computation of
small-sample standard errors that can be compared to the asymptotic standard
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Table 8
The standard errors of the parameter estimates computed both by the asymptotic method and using a
bootstrap method

Parameter Estimate Asymptotic S.E. BootstrapS.E.

KP1,11 −0.2543 (0.1551) (0.2733)

KP1,12 0.1595 (0.5428) (0.8277)

KP1,13 5.235 (2.761) (3.1)

KP1,21 0.03235 (0.05425) (0.1057)

KP1,22 −0.3153 (0.2359) (0.3187)

KP1,23 4.239 (1.212) (1.233)

KP1,31 −0.03047 (0.02263) (0.04143)

KP1,32 −0.02772 (0.08759) (0.1314)

KP1,33 −1.755 (0.4638) (0.5337)

θP1 −0.1109 (0.02762) (0.02496)

θP2 0.02539 (0.007469) (0.00731)

θP3 0.00631 (0.0003512) (0.0003162)

λ
Q
1 −0.002403 (0.0005662) (0.0006167)

λ
Q
2 −0.04813 (0.008296) (0.007395)

λ
Q
3 −0.07127 (0.0133) (0.01162)

rQ∞ 0.08606 (0.007302) (0.01067)

σ1 0.02205 (0.00126) (0.001337)

σ2 0.008838 (0.0004084) (0.001508)

σ3 0.003735 (0.0001643) (0.0002803)

ρ21 −0.5694 (0.04155) (0.2268)

ρ31 0.5842 (0.0485) (0.1161)

ρ32 −0.4218 (0.06114) (0.156)

Here,θP = −(KP1 )−1KP0 andρi j is the conditional correlation between thei th and j th componentsof Pt .

errorsusing the outer product of the first derivative of the likelihood function.
We compare these results to bootstrapped standard errors computed with the
procedure given in Section5.2.

Table 8 presents the results for the model RPC. The asymptotic standard
errors tend to overstate the precision with which we measure the effect of the
levelPCon the conditional means of thePCs (KP1,11, KP1,21, KP1,31) by a factor

of about two. These effects on standard errors forKP1 andθP arenecessarily
due to the small sample properties ofOLSestimates in theVAR for P since,
by Proposition3, the full informationML estimates in theGDTSMagree with
theOLSestimates. Additionally, the precision with which we estimate theQ
parameters is overstated by the asymptotic method by a factor of about 50%.
Overall, though, the asymptotic standard errors line up rather well with the
bootsrapped standard errors.
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5.4 Out-of-sample Forecasting Results
An interesting question at this juncture is whether differences in parameter es-
timates translate into differences in the out-of-sample forecasting performance
of theseGDTSMs. We compute rolling re-estimation of each model using data
from monthst = 1, . . . ,T (T = 61, . . . ,215) and use the model to predict,
out of sample, the changes in the principal components over the next 1-, 3-,
6-, and 12-month periods. As a benchmark, we use the corresponding fore-
casts from an unconstrained VAR. As we noted in Section3, theoreticallythe
forecasts ofPt arethe same across all models that assume thesePCs are mea-
sured without error and that differ only in the constraints they impose on theQ
distribution ofPt . In particular, withL = 3, whether we assume distinct real
eigenvalues, complex eigenvalues, or repeated eigenvalues (as in the AFNS
model), the forecasts ofPt areall exactlythe same as those from an uncon-
strained VAR. This explains the rows of zeros in Table9.

Under the constraintL = 1 (constrained risk premiums), there is an implicit
constraint onKP1P and,hence, enforcing the no-arbitrage constraints may im-
prove forecasts. From Table9, we see that there is a moderate improvement
in forecasts forPC1 andPC2, particularly at longer horizons. Models RPC1
andJPC1 have different predictions (though only slightly). This is because the
differences underQ implied by the repeated root assumption now propagate to
theP dynamics through the restriction relating theP andQ drifts.

As further evidence on the empirical relevance of constraints on theP distri-
bution ofP for forecasting, we pursue the examples of Section5.2: constrain-
ing KP1P to be diagonal (Table6) or constrainingPt to have a common unit
root (the cointegration example of Table7).30 The last four rows of Table9
present the relative forecasting accuracy ofVARmodels with these constraints
imposed, as well as their no-arbitrage counterparts with RPC being the uncon-
strainedGDTSM. The constrained modelVAR+ diag(KP1P ) shows notable
improvements in out-of-sample forecast accuracy for the first and thirdPCs,
particularly over longer horizons, but interestingly there is a deterioration in
the forecast quality forPC2. This suggests that feedback from(PC1, PC3) to
PC2 is consequential for forecasting the slope of the yield curve. Imposing the
cointegration constraint improves the forecasts ofPC1 and, unlike in the prior
example, also the forecasts ofPC2.

Of most interest for our analysis is the finding that starting from either of the
constrainedVARs and then imposing the no-arbitrage restrictions has virtually
no incremental effect on forecast performance. Even though no-arbitrage re-
strictions can improve out-of-sample forecasts in these cases, in practice they
have virtually no effect on the results in our data. The improvements in fore-
casting with either model RPC +diag(KP1P ) or RPC + 1UR [KP0P , KP1P ] are
entirely a consequence of imposing restrictions on theVARmodel forP.

30 For the cointegration example, we enforce the constraint that[KP0P , KP1P ] hasa zero eigenvalue or, equivalently,
there is a common unit root and no trend.
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It is instructive to place the findings ofChristensen, Diebold, and Rude-
busch(2007) for the AFNS model in the context of these results. They com-
pare the forecast performance of an AFNS model with bothKP1X andΣX in
(1) constrained to be diagonal toDuffee’s (2002) canonicalGDTSMbased on
the DS normalization (which is equivalent to our RPC model).31 As with our
examples, forcingKP1X to be diagonal is a direct constraint on theP distribu-
tion of P and, as such, may lead to more reliable forecasts than those from
an unconstrainedVARmodel forP. In fact, they report that their constrained
AFNS model does outperform Duffee’s model in forecasting bond yields, also
with larger improvements over longer horizons. However, the results in Table9
suggest that this improvement comes from the restrictions they imposed on the
VARmodel forP and not to the use of an AFNS pricing model.

6. Observable Factors with Measurement Errors

Up to this point we have assumed thatN portfolios of yields are priced per-
fectly by theGDTSM. We turn next to the case where all of the zero-coupon
yields used in estimation equal theirGDTSM-implied values plus measurement
errors. Under the assumption that the measurement errors are jointly normal,
this is a Kalman filtering problem.

Case F:The yields onJ(> N) zero-coupon bonds equal theirGDTSM-implied
values plus mean zero, normally distributed errors,yo

t − yt .

A number of researchers (see, e.g.,Duffee and Stanton 2007and
Duffee 2009) have emphasized the computational challenges of estimation
under CaseF. Under the normalization ofDai and Singleton(2000) (DS), a
researcher must estimate(KQ1X, KP0X, KQ1X, ρ0, ρ1), whereKQ1X is lower trian-
gular. In this parametrization, a researcher would likely have a diffuse prior on
all of the parameters. Moreover, the states of the model depend on the param-
eters, so they too are unknown. We now show that our JSZ canonical repre-
sentation extends to the setting of CaseF and demonstrate its benefits both for
interpretation and estimation ofGDTSMs.

Theorem1 shows that anyGDTSMis observationally equivalent to a model
where the latent states are a given set of portfolios of yields, purged of measure-
ment errors. In CaseP, when the portfolios are assumed to be observed without
measurement errors, this means the states are simply these portfolios of yields.
In CaseF, we can maintain the interpretation that the latent states are portfo-
lios of yields with known portfolio matrixW, though now constructed with the
model-implied (measurement-error free) yieldsyt . Equivalently, under CaseF,

31 Christensen,Diebold, and Rudebusch(2007) assume that all yields are measured with additive measurement
errors, the case we turn to in Section6. However, three-factor models price bonds quite accurately over the
maturity range that they and we consider, so Theorem2 should be informative about their findings.
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onecan viewPt = Wyt asthe “true” values of the pricing factors and view
Po

t = Wyo
t asits observed counterpart.32

To set up the Kalman filtering problem for CaseF, we start with a given
set of portfolio weightsW ∈ RJ×N . FromW and(λQ, rQ∞,ΣP ), we construct
(KQ0 , KQ1 , ρ0, ρ1) asprescribed in Proposition2. From the no-arbitrage rela-
tion (A2–A3) we then constructA ∈ RJ andB ∈ RJ×N with yt = A + BPt

andthus the relations

1Pt = KP0P + KP1PPt + ΣPεPt , (37)

yo
t = A + BPt + ΣYεm

t , (38)

whereεPt ∼ N(0, IN) andεm
t ∼ N(0, IM ) arethe measurement errors. Re-

searchers have considered several parameterizations of the volatility matrix
ΣY for εm

t . In our subsequent empirical examples, we examine the cases of
independent (diagonalΣY) errors with distinct or common volatilities. These
relations give the usual observation and state equations of the Kalman filter,
and they fully characterize the conditional distribution of the yield curve in
terms of rotation-invariant parameters.

The computational benefits from using the JSZ normalization in CaseF
arise, in part, from the observation that the least-squares projection ofPo

t onto
Po

t−1 will nearly recover theML estimates ofKP0P andKP1P to the extent that
Po

t ≈ Pt (andwe can choose portfolios, such as the principal components, to
make these errors small).33 Additionally, although not exact, we have nearly
concentrated the likelihood in that the optimalP parameters will typically have
weak dependence on theQ parameters owing to the fact that, as theQ param-
eters vary, the filtered states largely do not change.34

With the JSZ normalization, the parameter estimates are directly compara-
ble across distributional assumptions on the measurement errors. That is, in
analogy to Section3, by fixing the yield portfolios, both measured with and
without error, theP parameters are now directly comparableregardless of the
Q structure. The parameters are also directly comparable across sample peri-
ods. When theP parameters are defined indirectly through aQ normalization,
such comparisons will in general not be possible.

6.1 Empirical Implication
To illustrate CaseF, we estimate model RKF in which allJ zero-coupon bonds
used in estimation are measured with errors, and the eigenvalues ofKQ1 areall

32 In fact, an equivalent characterization of the JSZ normalization is that, for a given portfolio matrixW,
AW(ΘQ) = 0 andBW(ΘQ) = IN .

33 Thisapproximation can be verified empirically by comparingPo
t to EPt [Pt ] or EPT [Pt ].

34 This is in contrast to, for example, the rotation of DS where, as the lower triangularKQ1 is changed, the latent
states vary as well. Thus, necessarily, so do the optimalP parameters given the specifiedQ parameters.
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real.From Table2, it is seen that the estimates of theQ parameters for model
RKF are similar to those for models RPC and RY that fit withN portfolios
of yields priced exactly by theGDTSM(3). Similarly, from Table3 and Table
4, we see that theP parameters also generally match up across the models
with and without filtering. An exception is theP distribution ofPC3: When
filtering, the volatility ofPC3 is reduced by about 10%, andPC3 has a larger
effect on the conditional mean of PC1 and PC2 (higherKP1,13, KP1,23). That is,
PC3 both becomes a bit smoother and the model attributes a slightly greater
affect ofPC3 on forecasts of changes in the level and slope of the yield curve.
For out-of-sample forecasts using model RKF, Table9 shows thatPC1 is better
predicted by a simple VAR, whilePC2 is predicted better than a VAR (though
the differences are modest).

Also of interest in the presence of filtering are comparisons of the model-
implied PCs with their corresponding sample estimates that, by assumption,
are contaminated by measurement errors. Figure1 plots the time series of the
PCs computed from data against those from models RCMT, RY, and RKF.
For model RKF, we plot the model-implied filteredPCi ft = Et [ PCit ]. For all
three models, thePCio arenearly identical to their model-implied counterparts.
This is not surprising: If the model is accurately pricing the cross-section of
bonds, then it is almost a necessity that it will accurately match level, slope,
and curvature.PC3f deviates slightly fromPC3o, and this is the source of the
small differences seen in Figure1.

A quite different picture emerges when we increase the number of pric-
ing factors to four or five using the JSZ normalization under CaseF. For
i = 1,2,3, PCi f lines up well with PCio, as before. However, from Fig-
ure 2, it is seen that(PC4 f , PC5 f ) appearsto be a smoothed version of
(PC4o, PC5o), with the differences being substantial during some periods.
To interpret these patterns, we note that the likelihood function, through the
Kalman filter, attempts to match both the cross-sectional pricing relationships
and the time-series variation in excess returns. The higher-orderPC4 andPC5
have only small impacts on pricing since a three-factor model already prices
the cross-section of bonds well, but they do contain information about time
variation in expected returns.35

Furtherinsight into howML addresses this dual objective is revealed by the
estimated half-lives of the pricing factors underQ (computed from the esti-
matedλQ). In the five-factorGDTSM, theQ half-lives ofPt are (in years)
(15,8.4,2.4,0.13,0.08), whereas they are(24,1.2,0.78) in the three-factor
model. The presence of a factor with a very low half-life induces large move-
ments in the short rate (the one-month rate in our discrete time formulation).

35 Cochraneand Piazzesi(2005,2008) find that a portfolio of smoothed forward rates, that is correlated withPC4,
predictsbond returns.Joslin, Priebsch, and Singleton(2010) find that smoothed growth in industrial production,
which is also correlated withPC4, is an important determinant of excess returns for level and slope portfolios.
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Figure 1

This figure plots thePCs implied by models RCMT, RY, and RKF against the estimatedPCs from the data.
All three models implyPC1 andPC2 that are almost indistinguishable from the data and from each other. The
models imply slightly differentPC3, but the difference is very small.

Moreover, the sample average short rate is 23%, which also results in large,
wildly oscillating Sharpe ratios.

It is not the need to filterper sethat gives rise to these fitting problems with
a 5-factor model. When the first fivePCs are priced perfectly by theGDTSM
(Model RPC), the properties of the short rate are now more plausible (see
Table10). However, the model-implied yields on bonds with maturities beyond
those included in estimation are now wildly implausible. Furthermore, impos-
ing the reduced rank restriction (Model RPC1) does not materially improve the
fit with five factors. For all of these error specifications with five factors, the
Sharpe ratios for the higher-orderPCs show substantial variation.36 In contrast,

36 SeeDuffee (2010) for a more extensive empirical evaluation of the properties of Sharpe ratios inGDTSMs.
Joslin, Priebsch, and Singleton(2010) also investigate maximal Sharpe ratio variation within the context of
macro-GDTSMs.
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Figure 2

This figure plots the model implied and sample principal components for the fourth and fifthPCs when allPCs
are assumed to be measured with normally distributed errors. High-orderPCs implied by the models are visibly
different from the data.

Table 10
Sample moments for three-factor and five-factorGDTSMs

3 Factor Models 5 FactorModels

RPC RPC1 RKF RPC RPC1 RKF

mean 1-month rate 4.2% 4.2% 4.2% 4.3% 4.3% 23%
mean 30-year rate 5.8% 5.8% 5.9% −31% −39% 0.63%
PC4 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC4 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25
PC5 Sharpe ratio mean 0.096 0.095 0.032 0.031 0.076 30
PC5 Sharpe ratio volatility 0.086 0.018 0.088 0.31 0.2 25

the 3-factor specifications produce plausible values for these moments. We in-
terpret this evidence as being symptomatic of over-fitting, of having too many
pricing factors.

Does the accommodation of filtering substantially increase the computa-
tional complexity of estimation using the JSZ normalization? The parameters
(KP0,P , KP1P ) and σpricing are now included as part of the parameter search.
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As we argued forΣP in CaseRP, we obtain very accurate starting points
for (KP0,P , KP1P ) irr espective of any inaccuracies in(rQ∞, λQ). The additional
cost of computing the Kalman filter as well as the lack of concentration of the
likelihood function results in estimation times of approximately 10.4 seconds
and, as without filtering, virtually all local optima are identical to within-set
tolerances. Using the results of the CaseP estimation as a starting point for the
CaseF estimation decreased the estimation time to approximately 8.7 seconds.
Thus, under the JSZ normalization, the estimation remains very fast even when
all yields are measured with errors.

7. Conclusion

We derive a new canonical form for Gaussian dynamic term structure models.
This canonical form allows for (essentially) arbitrary observable portfolios of
zero-coupon yields to serve as the state variable. This allows us to characterize
the properties of aGDTSM in terms of salient observables rather than latent
states. Additionally, the risk-neutral distribution is parsimoniously character-
ized by the eigenvalues,λQ, of the drift matrix and a constant that, underQ
stationarity, is proportional to the long-run mean of the short rate,rQ∞. Our
canonical form reveals that simpleOLSregression gives the maximum likeli-
hood estimates of the parameters governing the physical distribution of bond
yields. This result remains true even if additional restrictions of several types,
such as restrictions on the risk-neutral condtional distribution of yields, are
imposed. An immediate implication of this result is that constraints such as im-
posing the arbitrage-free Nelson Siegel model or imposing complexQ eigen-
values are irrelevant for forecasting bond yields. However, when one imposes
structure on risk premia, such as the reduced-rank risk premium, a wedge from
the unconstrainedOLSestimates arises. Our canonical form allows us to eas-
ily overcome the challenge of empirical estimation ofGDTSMs in the case
of filtering. The empirical results suggest that either some caution should be
exercised in interpreting a higher-dimensional model or, alternatively (perhaps
preferably), care should be taken to avoid highly overparametrized models with
implausible implications for either pricing or bond risk premia. Taken together,
our results shed new light on estimation and interpretation ofGDTSMs, and
the effects of different specifications of the risk premiums and the risk-neutral
distribution of bond yields on the observed dynamics of the yield curve.

Appendices

A. Bond Pricing in GDTSMs

Under(1–3), the price of anm-year zero-coupon bond is given by

Dt,m = EQt [e−
∑m−1

i =0 rt+i ] = eAm+Bm∙Xt , (A1)
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where(Am,Bm) solve the first-order difference equations

Am+1 −Am = KQ′
0 Bm +

1

2
B′

mH0Bm − ρ0 (A2)

Bm+1 − Bm = KQ′
1 Bm − ρ1 (A3)

subjectto the initial conditionsA0 = 0,B0 = 0. See, for example,Dai and Singleton(2003). The
loadings for the corresponding bond yield areAm = −Am/m andBm = −Bm/m.

B. Invariant Transformations of GDTSMs

As in DS, given theGDTSMwith parameters as in (1–3) and latent stateXt , if we may apply the
invariant transformation̂Xt = C+ DXt , we then have an observationally equivalentGDTSMwith
latent stateX̂t andparameters given by

KQ
0X̂

= DKQ0X − DKQ1X D−1C, (A4)

KQ
1X̂

= DKQ1X D−1, (A5)

ρ0X̂ = ρ0X − ρ′
1X D−1C, (A6)

ρ1X̂ = (D−1)′ρ1X , (A7)

KP
0X̂

= DKP0X − DKP1X D−1C, (A8)

KP
1X̂

= DKP1X D−1, (A9)

H0X̂ = DH0X D′. (A10)

Given a parameter vectorΘ, we denote the parameter vector ofX̂t asC + DΘ.

C. Proof of Proposition 1

We require a slight variation of the standard Jordan canonical form of a square matrix that main-
tains all real entries and bears a similar relation to the real Schur decomposition and the Schur
decomposition.

Definition 1. We refer to thereal ordered Jordan form of a square matrixA ∈ Rn×n with
eigenvalues(λ1, λ2, . . . , λm) with corresponding algebriac multiplicities(m1, m2, . . . , mm) as

A = J(λ) ≡ diag(J1, J2, . . . , Jm),

whereif λi is real, Ji is the(mi × mi ) matrix

Ji =










λi 1 ∙ ∙ ∙ 0

0 λi ∙ ∙ ∙ 0

.

.

.
.
.
.

. . . 1

0 ∙ ∙ ∙ 0 λi










,

39

 at M
IT

 Libraries on June 7, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


TheReview of Financial Studies / v 00 n 0 2010

andif |imag(λi )| > 0, Ji is the(2mi × 2mi ) matrix

Ji =











R I2 ∙ ∙ ∙ 0

0 R ∙ ∙ ∙ 0

.

.

.
.
.
.

. . . I2

0 ∙ ∙ ∙ 0 R











with R =

(
real(λi ) −|imag(λi )|

|imagl(λi )| real(λi )

)

andotherwise the block is empty. Additionally, we apply an arbitrary ordering onC to order the
blocks by their eigenvalues. In case there exist eigenvalues with a geometric multiplicity greater
than one, we also order the blocks by size.

Proof of Proposition1: We first prove the existence by showing that a latent factorXt with
arbitraryQ dynamics

1Xt = KQ0X + KQ1X Xt−1 + ΣXε
Q
t

canbe transformed to our desired form. By standard linear algebra, there exists matrixU so that

U KQ1XU−1 is in the standard Jordan normal form. By Lemma 1 of the supplement to this article
(seeJoslin, Singleton, and Zhu 2010), we can further transform to have the real ordered form of
Definition1. Note that by Joslin (2007), each eigenvalue has a geometric multiplicity one and thus
is associated with only one block due to the Markovian assumption. Now we separately consider
the cases of real and imaginary Jordan blocks and show that we may transform the latent state to
haveρ1 = ι.

1. A Jordan blockJi correspondsto real eigenvalues with algebraic multiplicitymi (mi
couldbe 1). Then,Ji is mi × mi matrix

Ji =










λi 1 ∙ ∙ ∙ 0

0 λi ∙ ∙ ∙ 0

.

.

.
.
.
.

. . . 1

0 ∙ ∙ ∙ 0 λi










.

Let ρ1i = (ρ
(1)
1i , . . . , ρ

(k)
1i ) bethe components ofρ1 thatcorrespond to the Jordan block

Ji . We observe thatρ(1)
1i 6= 0, for otherwise we can do without state variableX(1)

t i ,

contradictingour assumption of anN-factor model. One can check thatBi Ji B−1
i = Ji

if and only if Bi hasthe form

Bi =












b(1)
i b(2)

i ∙ ∙ ∙ b
(mi )
i

0 b(1)
i ∙ ∙ ∙ b

(mi −1)
i

.

.

.
.
.
.

. . .
.
.
.

0 0 ∙ ∙ ∙ b(1)
i












. (A11)

In particular, we can verify that the matrix

Bi =










ρ
(1)
1i ρ

(2)
1i − ρ

(1)
1i ∙ ∙ ∙ ρ

(mi )
1i − ρ

(mi −1)
1i

0 ρ
(1)
1i ∙ ∙ ∙ ρ

(mi −1)
1i − ρ

(mi −2)
1i

.

.

.
.
.
.

. . .
.
.
.

0 0 ∙ ∙ ∙ ρ
(1)
1i










satisfiesBi Ji B−1
i = Ji and(B−1

i )′ρ1i = ι.
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2. A Jordan blockJi correspondsto complex eigenvalues with multiplicitymi . Then,Ji is
the2mi × 2mi matrixdefined by

Ji =











R I2 ∙ ∙ ∙ 0

0 R ∙ ∙ ∙ 0

.

.

.
.
.
.

. . . I2

0 ∙ ∙ ∙ 0 R











with R =

(
real(λi ) −|imag(λi )|

|imagl(λi )| real(λi )

)

.

Theproof is analogous to the real case, as the individual steps are the same but require
lemmas to verify the intuitive steps hold with(2×2)block matrices replacing scalars. The
details of the proof and subsequent steps for this case are available inJoslin, Singleton,
and Zhu(2010).

We obtain the correct form ofKQ0X asfollows. We can demean the components ofX cor-

responding to non-singular Jordan blocks by transformingX̂b
t = Xb

t +
(

KQ,b
1X

)−1
KQ,b

0X . There

can be at most one block corresponding to a zero eigenvector (which by our ordering would be

the first), and the firstm1 − 1 entries ofKQ0X can then be set to zero by translating tôXb
t =

Xb
t − (KQ,b

0X,2, KQ,b
0X,3, , . . . , KQ,b

0X,m1−1, , 0)′. Finally, ρ0 canthen be set to zero by the translation

X̂m1,t = Xm1,t − ρ0.
Theuniqueness of the canonicalGDTSM stated in Proposition1 follows from the uniqueness

of an ordered Jordan decomposition and the fact that (i) the Jordan decomposition is maintained
only by a block matrix whereB has form (A11); and (ii) the only suchB that satisifiesB′ι = ι is
B = I . Furthermore, forθ ∈ ΘJSZ andany vector of parametersa 6= 0, either the translating bya

violates the form ofKQ0X (whichhappens if any state besides the last zero eigenvalue state (if one
exists) is translated) or the translating violatesρ0 = 0 (which happens if there is a zero eigenvalue
and only the last such state is translated). This establishes the uniqueness and completes the proof
of Proposition1.

D. Details of Step 3 in the Proof of Theorem1

We have established that everyGDTSMis observationally equivalent to a Jordan normalized model
and the transformation relating the two models is found by computing the associated portfolio
loadings:

GP
P = {AW(ΘJ ) + BW(ΘJ )′ΘJ : ΘJ ∈ GJ }. (A12)

Observe that sinceρ J
1 = ι, BW(ΘJ ) dependsonly on λQ; let us denoteBλQ ≡ BW(ΘJ )′.

Similarly, let us denoteAλQ,ρ0,Σ ≡ AW(ΘJ ). Since, for anyλQ, the mapsλQ (Σ) = B−1
λQ
Σ is a

bijection,37 wecan reparametrize the conditional volatility by

GP
P = {AΘJ + BΘJΘ

J : ΘJ = (kQ∞em1, J(λQ), 0, ι, KP0J , KP1J , sλQ (ΣP ))}. (A13)

Here, we useΣP to denote the parameterization since, forΘJ = (kQ∞em1, J(λQ), 0, ι, KP0J ,

KP1J , B−1
λQ
ΣP ), the transformed modelAΘJ + BΘJΘ

J (whichhasPt asthe factors since it is in

GP ) has innovation volatility ofBλQ B−1
λQ
ΣP = ΣP .

37 For simplicity, we denote the Cholesky factorization,Σ, but we have in mind the covarianceΣΣ′.
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Definethe bijective mapk onRN × RN×N by

k
λQ,kQ∞,ΣP

(K0, K1) =
(

BλQK0 − BλQK1B−1
λQ

A
λQ,kQ∞,ΣP

, BλQK1B−1
λQ

)
. (A14)

Thefunctionk maps(K0, K1) underthe change of variablesXt 7→ A
λQ,kQ∞,ΣP

+ BλQ Xt . Using

k, we further reparametrizeGP
P by

GP
P = {AΘJ + BΘJΘ

J : ΘJ = (kQ∞em1, J(λQ), 0, ι, k−1

λQ,kQ∞,ΣP
(KP0P , KP1P ), sλQ (ΣP ))}.

(A15)

This gives our desired reparameterization ofGP
P byΘJSZ = (λQ, kQ∞,ΣP , KP0P , KP1P ). This is

because, forΘJ =
(

kQ∞em1, J(λQ), 0, ι, k−1

λQ,kQ∞,ΣP
(KP0P , KP1P ), sλQ (ΣP )

)
,

ΘP = AΘJ + BΘJΘ
J

=
(

k
λQ,kQ∞,ΣP

(0, J(λQ)), r
λQ,kQ∞,ΣP

(kQ∞, ι), KP0P , KP1P ,ΣP

)
,

(A16)

wherer
λQ,kQ∞,ΣP

maps(ρ0, ρ1) underthe change of variablesXt 7→ A
λQ,kQ∞,ΣP

+ BλQ Xt :

r
λQ,kQ∞,ΣP

(ρ0, ρ1) =
(

ρ0 − ρ′
1B−1

λQ
A

λQ,kQ∞,ΣP
,
(

B−1
λQ

)′
ρ1

)
. (A17)

E. Proof of Theorem2

We first prove that (26–27) holds whenH0 = {η0 = (C0, D0,Σ0
X , Pθ0

m)}. Let

(K
η0
0X , K

η0
1X) = arg max

K0X ,K1X

f (PT , yT , . . . ,P1, y1|P0, y0; η0),

whichwe subsequently show is uniquely maximized.
Let (C0

P , D0
P ) denotethe firstN-element ofC0 andupper-leftN × N block of D0, respec-

tively. By our assumption of invertibility ofD0
P , we have thatXt = (D0

P )−1(Pt − C0
P ). Thus,

by our assumptions on the measurement errors,

f (PT , yT , . . . ,P1, y1|P0, y0; η0, K0X , K1X) = f (PT , . . . ,P1|P0; η0, K0X , K1X)

×
T∏

t=1

f (emt |Pt ; η0),

andso
(K

η0
0X , K

η0
1X) = arg max

K0X ,K1X

f (PT , . . . ,P1|P0; η0). (A18)

Furthermore,substituting into (24) we have

1Pt = D0,PK1X D−1
0,PPt +

(
D0,PK0X − D0

PK1X(D0,P )−1C0,P

)
+ Dεt , εt ∼ ΣX .

It follows that the maximum value in (A18) is at most equal to the value of the likelihood corre-
sponding to theOLSestimate. Note that although the value of the maximum likelihood depends
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on D, the argument that maximizes the value does not depend onD by the classicZellner(1962)
result. TheOLS likelihood value is achieved by choosing(K0X , K1X) to satisfy (26–27), which
is feasible by the assumption that(K0X , K1X) is unconstrained andD0

P is full rank.

This proves our result since(KH0X , KH1X) = (K
η0
0X , K

η0
1X) for someη0 andwe have shown

that (26–27) hold for anyη0. Note that in the case that the parameters are under-identified, there
will not be a unique maximum likelihood estimate in the sense that severalη0 maygive the same
likelihood, but (26–27) will hold for all possible choices. For someH, there may not exist a
maximizer, in which case the result holds vacuously. However, standard conditions and arguments,
such as compactness, provide for the existence of a maximizer.

F. ML Estimation of Reduced-rank Regressions

Considerthe regression as in (29) of the general formYt = α + βXt + εt subjectto the constraint
that β has rankr and whereεt ∼ N(0,Σ) i.i.d. with Σ known. That is, we wish to solve the
program

(α, β) = arg min
r ank(β)=r

∑

t

(Yt − (α + βXt )
′Σ−1(Yt − (α + βXt )).

It is easy to verify that by first de-meaing the variables we may assume without loss of generality
that α ≡ 0. Furthermore, by transforming the variables, we may assume again without loss of
generality thatΣ = I and

∑
t Xt X′

t = I . Under these assumptions, we wish to solve

β = arg min
r ank(β)=r

trace
(
(Y − Xβ ′)(Y − Xβ ′)′

)

= arg min
r ank(β)=r

trace
(
(Y − Xβ ′

OLS)(Y − Xβ ′
OLS)′

)
− 2trace

(
X′(Y − Xβ ′

OLS)(β − βOLS)
)

+ trace(
(
(X′X(β ′ − β ′

OLS))(β − βOLS)
)

= arg min
r ank(β)=r

‖β − βOLS‖F ,

whereY and X are (T × N) and (T × M) matriceswith the time series stacked vertically,
βOLS = (X′ X)−1X′Y, and F denotes the Frobenius norm:‖A‖2

F =
∑

i, j |Ai, j |
2. The above

equalities repeatedly use the identity trace(AB) = trace(B A). As in Keller (1962), this minimiza-
tion problem has solutionβ∗ = U D∗

r V ′, whereU DV ′ gives the singular value decomposition of
βOLS andD∗

r is the same asD except setting all of the singular values forn > r to 0. This same
proof applies again in the case whereβ is not square, which would be the case where one assumes

that only a single risk is priced (i.e., [KP0 , KP1 ] − [KQ0 , KQ1 ] has reduced rank) rather than only a
single risk hastime-varyingprice of risk, as we do here.
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