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Abstract
The violin has long been admired as one of the most beautiful, complex, and challeng-

ing musical instruments. With its capacity for nuance, richness of tone, and flexibility of
range, its expressive qualities have been surpassed by none, despite the fact that its con-
struction has not been changed for hundreds of years. It is the form and function of the
traditional violin that inspired the work detailed in this thesis. Here, the design and con-
struction of a new violin interface, the Hyperbow, is discussed.

The motivation driving the research of this instrument was the desire to create a violin
bow capable of measuring the most intricate aspects of violin technique, the subtle elements
of physical gesture that immediately and directly impact the sound of the instrument while
playing. In order to provide this insight into the subtleties of bow articulation, a sensing
system was implemented to measure changes in position, acceleration, and the downward
and lateral strains on the bow stick. These sensors were fashioned using an electromagnetic
field sensing technique, commercial MEMS accelerometers, and foil strain gauges.

Because the forces and stresses applied to the bow are immediately connected to a
violinist's experience while playing, the implementation of a new music controller that uti-
lizes these intimate aspects of physical interaction between a player and an instrument may
inspire altogether new methods of expression. The measurement techniques used in this
work were found to be quite sensitive and yielded sensors that were easily controllable by
a player using traditional right hand bowing technique. In addition, the Hyperbow proved
to be helpful in recognizing and analyzing the physical parameters of common bowstrokes.

Thesis Supervisor: Tod Machover
Professor of Media Arts and Sciences
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Chapter 1

Introduction

The goal of this work is to develop a sensing system for a violin bow that captures as

much information as possible concerning the forces applied to it by a violinist during play.

The hypothesis is that the data signals collected from our bow will yield unique results for

different bow strokes and associated articulations. Additionally, this information can be

useful for controlling real-time modifications of amplified sound, providing new ways of

exploring violin bowing technique, and developing altogether new styles of bowing.

The problem considered here is the same as that of earlier projects at the MIT Media

Lab. That is, how to enhance a traditional string instrument with the incorporation of

various technologies so that an experienced player can explore completely new methods of

musical expression. One of the first attempts to create such an interface, and indeed the

most well-known at MIT, was the Hypercello project, initiated by Tod Machover in 1990

[Mac92]. Machover collaborated with fellow researchers Neil Gershenfeld and Joseph

Paradiso to enhance an electric cello. The instrument chosen for this project was a RAAD

cello, designed and built by instrument maker Richard Armin of Toronto, Canada. The

RAAD is an electric cello, principally made of wood, that also possesses the feature of

a floating top plate (see 53.3). That is, the wooden plate is free to vibrate unhindered by

adhesive. The un-amplified sound of this instrument resembles that of a muted acoustic

violin of professional quality.



The cello was fitted with custom sensors designed to track such physical gestures as the

right hand wrist movement and the changing speed and position of the bow with respect to

the bridge [PG97]. These gestures were used to communicate to various synthesizers and

computers, granting soloist Yo-Yo Ma control over his own accompaniment and amplified

musical effects. For instance, in certain sections of the piece composed for him by Tod

Machover, Begin Again, Again, he could cue different instruments, control their volume

levels, and determine the manner in which the sound from his instrument blended with the

sounds of the electronic orchestra. This performance was premiered at the Tanglewood

Festival in August 1991. At this time, the idea to provide a virtuoso with a new kind of

instrument that she could play with traditional technique to achieve wholly untraditional

musical results, was new [Mac92]. (In addition to the Hypercello project, a Hyperviola and

Hyperviolin were created, each sporting similar sensing systems to that described above.)

These early Hyperinstruments projects were extremely successful not only in perfor-

mance, but also in initiating dialogues concerning physical measurement of expressive ges-

ture, playability of new interfaces, and possibilities for acoustic and digital instruments to

converge. Because these instruments were also developed in conjunction with the compo-

sition of pieces intended for specific players, the foundations of these projects were strong.

Still yet to be explored at this time were questions concerning the possibilities of creat-

ing instruments especially suited for improvisation, and those of musical intent and under-

lying musical expression manifested in gesture, and that of allowing an audience to more

readily understand the physical gestures and technique of a fine musician. Also, there re-

mained the ever present question of how to improve the physical measurements without

impinging on the performer's ability to play. Consideration of all of these issues lead to the

pursuit of more intimate descriptions and measurements of musical gesture and technique.

This thesis project signifies the beginning of a new level of inspection of the physical

gestures demanded of bowed string instrument players. This work aims to capture the

details of violin bowing technique that are hidden from audience members, or indeed from

non-players. In other words, the motivation is to illuminate those aspects of bowing most



intimately connected with the experience of the player and that most immediately affect

the sound of the violin strings.

The relationship between an instrument and its player is extremely complex, as the

player relies on instant physical and aural feedback from the instrument during performance

to adjust the sound produced. There is great interest in the field of acoustics to understand

as much as possible about the nature of violin sound and the interaction between the hair of

the bow and the strings of the violin. Similarly, there is a large body of work that seeks to

create analysis systems capable of recognizing and characterizing different violin sounds

and new synthesis engines robust enough to reconstruct violin sounds based on physical

gesture data.

However, though this research holds a great amount of interest, if it were to become

so advanced as to be able to detect most of the physical actions of a violinist through

the sound created, the product would still be lacking in its description of the performance

itself. The importance of the physical instrument to a performer is almost indescribable,

and it is true that people still desire to witness performances in which the emphasis and

focus truly is placed on a real performer. Therefore, the importance of developing new

kinds of instruments rather than just new types of audio analysis and synthesis is real.

Even among those who agree that there is a definite need for new instruments, there is

some contention as to what types of instruments should be built. That is, whether they are

simple or complex, easy or difficult to master. Often, technology is seen as appropriate for

use in the development of simple interfaces for novices, or music toys for children. In these

cases, technology allows for simpler physical control and less musical experience. So that

everyone can enjoy learning and making music, these instruments are important, especially

when one takes into account the extreme difficulty of learning a traditional classical instru-

ment. There is often not the same support for enhancing, altering, and evolving traditional

instruments. Even among those who believe that it is possible to develop instruments of

great sophistication, the approval for working with violins is sometimes absent. As there

is great esteem and appreciation for this instrument, unique in its capacity for expressivity



and nuance, it is understandable why many would choose to resist altering the instrument

in any way.

The assertion put forth in this thesis is not that the violin, or any member of its family,

should be replaced by a newer model touched with technology. Rather, the belief embraced

here is that traditional instruments should continue to inspire and inform research into new

musical instruments, as there are few instruments that possess physical interfaces as rich

and compelling as those of acoustic instruments, and as much should be learned about the

experience they offer a player as possible. An important priority maintained throughout the

progress of this project is that all experimentation was performed on modern, commercial

carbon fiber bows and the limited adjustments made to the single electric violin used for

the position sensor testing were temporary. Therefore, the work outlined here in no way

harmed or detracted from the work of other instrument makers.

The task of learning to play a bowed string instrument is one of the hardest to do, even

from the perspective of simple physicality. Not only is special care required of the left

hand to correct pitch and provide appropriate vibrato, but one must also master the art of

bowing to control the amplitude, tone color, rhythm, and attack of the pitch provided by the

opposite hand. Moreover, in order to begin to evaluate one's progress on the instrument in

the technique of either hand, considerable ability in both is required. It is well understood

that problems in the technique of one hand often arise due to failures of the other.

It can be easily argued that the problem of learning to play the violin is even greater

than learning to play another instrument of the same family-viola, cello, or double bass. As

the violin requires its player to grasp it between the chin and left shoulder while operating

the fingerboard with the left hand fingers and the bow with the right hand, and as it is the

smallest instrument in its family, the physical interface of the violin is inarguably awkward.

The difficulty in teaching a novice how to play such an instrument is clear. Part of this is

due to the inability of many teachers to describe quantitatively a student's problems. There

are very few tools available to help describe and enable communication about physical

technique. It is possible that research in the area of physical interaction and investigation



of bowing technique could help to create such tools.

The research in this thesis differs from previous research in this area at the Media Lab in

that it broadens the data field to include a focus on the forces applied to the instrument by its

player, rather than simply the position of the player's hands and that of the bow. Ultimately,

the work continued beyond the scope of this document aims to incorporate entirely within

the form of the violin's standard physical interface the sensors used to enhance it.

To accomplish these goals, we developed the Hyperbow-an enhanced violin bow capa-

ble of measuring all of the forces applied to it by the violinist during play.

The Hyperbow project also aimed to enhance the capabilities of an acoustic violin while

preserving the nature of its original acoustic function and the essence of natural string

sound, as well as the range of movement required and the sophistication of expression

made possible by the physical interface and traditional violin techniques. The Hyperbow

may be played with an electric violin that produces amplified sound when the strings are

excited and then alters that sound with the use of the enhanced bow; or the same may occur

using an acoustic violin with an electronic pickup.

The task of building a new violin interface was first posed for the purpose of creating

a new instrument for virtuoso Joshua Bell, who is a participant and contributor to the Toy

Symphony project, conceived of and designed by Tod Machover.

In the work described by this thesis, several violin bows were augmented with strain

gauges, accelerometers, and position sensors. Position of the bow relative to the bridge of

the violin, the accelerations of the bow along all three axes in space, and downward and

lateral strain in the bow stick were measured. Therefore, all of the information considered

relevant by acoustic scientists to the interactions between the bow and the strings of a violin

can be inferred from this data-with the notable exception of the distance to the bridge

[Ask86, Ask89, Sch73]. In addition, measurements of torsional forces were explored.

The interface described here is one that reflects the physical relationship between a

player and the instrument and illustrates the tactile component of playing, as the forces ap-

plied to the instrument, rather than simply the large physical position changes correspond-



ing to pitch and bow movement that were seen in the Hypercello project [Mac92, PG97],

are explored.

In the author's opinion, a great violinist is not one who knows or remembers exactly

where her fingers should be to play different pitches, or how to move the bow in order

to produce the same sound as she has played before. Rather, a great violinist is a player

who is able to constantly adjust her playing technique in small ways in reaction to the

sound produced immediately before. A precise coordination between the ear and muscles

is extremely important, and muscle memory plays a key role as a player learns by physical

feedback from the instrument. The ability to execute quick and subtle real-time adjustments

in physical gestures and in the forces applied to a violin and bow is crucial to fine playing.

As stated by virtuoso and pedagogue Ivan Galamian,

I would like to point to the one-sided overemphasis on the purely physical

and mechanical aspects of violin technique, the ignoring of the fact that what

is paramount in importance is not the physical movements as such but the

mental control over them. The key to facility and accuracy and, ultimately, to

complete mastery of violin technique is to be found in the relationship of mind

to muscles, that is, in the ability to make the sequence of mental command and

physical response as quick and as precise as possible.'

The intricacies of these physical responses are the focus of this project, as they are funda-

mental to a player's musical expression.

The sensing system for the Hyperviolin described in this document was designed to

give a violinist fine control over a vast new realm of sounds as well as provide the ability

to affect the acoustic signal from the instrument itself in ways yet unheard. Further, it was

a priority to grant these opportunities in a manner still idiomatic to the violin and violin

playing technique.

In the following pages of this text, relevant background and related work in the fields of

acoustics, audio synthesis, and physical measurement of violins and bows will be reviewed.

'[Ga162]



Also, in the Background section of this document, violin controllers and similar music

interfaces will be discussed. The Implementation chapter contains all relevant details of

the design and construction of the Hyperbow sensing systems, including descriptions of the

sensors themselves and the electronics, the instruments altered through this development,

and the results of the experiment. Next follows the Evaluation chapter, in which data will

be shown that illuminates the value of the interface created, as well as user feedback. The

Applications chapter discusses various possibilities for the use of the data capture and a

description of a simple introductory music demonstration. In the section entitled Future

Works, a series of tasks are outlined to continue the progress of the work begun for this

thesis project. Specifically, further suggestions for analysis of the data produced by the

Hyperbow, as well as possibilities for music controllers related to this one are introduced.

Finally, the Conclusion chapter of this thesis summarizes the progress made thus far in

terms of new instrument design and the collection of rich physical gesture data.



Chapter 2

Background and Related Work

So as to better understand the work documented by this thesis, it is helpful to consider the

project within several different contexts. The Hyperbow, developed out of an interest in

the classic violin and bow and the scientific study of each, was influenced by the research

of many other new music controllers. Here, some effort is made to equip the reader with

some limited background concerning these influences.

In reading this document, it is necessary to have the benefit of some knowledge con-

cerning the traditional acoustic violin and bow and the complex and difficult problems they

pose for musicians. Therefore, contained within this chapter is a brief review of the con-

struction of the violin and bow, a description of how they function together to produce

sound, and a description of both the left and right hand playing techniques.

Also within this section, the reader will find discussions of research related to this

project. Work in violin acoustics, physical measurement of violins and bows, synthesis of

violin sound, and violin controllers and similar music interfaces is reviewed.

2.1 Fundamentals of the Violin

The violin family of instruments finds its origin among early European musical instruments

that produce sound by means of a bowed or plucked string, but the earliest appearance of a

violin occurred in the sixteenth century. Remarkably, the art of making violins has changed



little in the past four hundred years and that of making bows has remained almost the same

for about two hundred years [Sto92]. Here, the fundamental design and construction of the

violin and the bow are summarized and the principles underlying the manner in which they

generate sound are briefly discussed.

2.1.1 Violin

The violin has four strings-G, D, A, and E-all tuned a perfect fifth apart from each other.

Roughly, when the string of a violin is plucked or struck by a violin bow, the string is

set into a periodic oscillation. These vibrations are transmitted by the bridge of the violin

(which experiences its own sympathetic oscillations) to the top plate of the violin. The

vibrations are then coupled to the back plate by means of the sound post, located under the

foot of the bridge nearest the E string. (The sound post stands in the cavity of the violin in

contact with both plates.) The oscillations of the string are amplified inside the body of the

violin (see Fig. 2.1).

2.1.2 Bow

As with the violin, the construction of the violin bow is fairly standardized. The stick is

carved of pernambuco wood, chosen for its robust strength and flexibility. The circumfer-

ence of the bow decreases from frog to tip. The tension in the bow is altered by adjusting

the screw at the end of the bow stick, which has the effect of sliding the frog along the stick,

pulling the bow hair (see Fig. 2.4). The frog is generally made of ebony. Horse hair is still

the only material suitable for the bow hair. Its color is almost always white, though black

horse hair is sometimes used. The approximate weight of a bow is 60g, while the length is

around 74cm [Sto92].

In recent years, there has been some experimentation to find new materials with which

to construct bows. Carbon fiber, or graphite, bows are the most successful of these inno-

vations. They are not only widely available, but are common and highly regarded by some



Figure 2.1: An overview of the parts of the violin and the terminology used to refer to them
(from [Sto92]).
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bowing direction

Figure 2.2: The bridge aids the sound production of the violin differently depending on the
vibration frequency of the string. In the lower frequency range, the bridge acts as a rigid
body and creates a node in the area of the treble bridge foot. The sound post then acts as
a fulcrum and the bridge itself moves as a lever causing the bass bridge foot to move up
and down on the top plate of the violin. This action effectively converts the lateral motion
of the vibrating string into motion normal to the to the plates of the violin, thus increasing
the strength of the body vibrations. In the middle frequency range, the top and bottom
plates resonate with the string vibrations more readily and the sound post moves up and
down. When the strings vibrate at high frequencies, as seen in the figure on the right, the
bridge has strong resonant behaviors independent of the sound post that serve to increase
the amplitude of the sound (from [Sto92]).



professional players.

The strings of a violin are excited by their interactions with the bow, or, more specifi-

cally, the bow hair. A violinist holds the bow at the frog with the right hand and passes the

bow back and forth across the strings, causing the strings to vibrate. As will be discussed

later, the characteristics of a given bowstroke that affect the oscillations of a violin string

are the velocity of the bow motion, the friction between the bow hair and the string of the

violin (as evidenced by the pressure inflicted on the bow), and the point along its length

where the string is struck by the bow hair (the location between the bridge of the violin and

the nut).

The features of the bow hair alone do not provide sufficient friction to create the res-

onance desired of the violin. The application of rosin-pine tree resin-to the bow hair

increases the friction between the bow and strings, thereby facilitating their interaction

widely known as "stick-slip" motion.

When a violin bow is drawn across a string, the string appears to swing back and forth.

However, a closer inspection reveals that this envelope of motion is actually described by a

"kink" that divides the string into two straight halves and moves in a cyclic path traveling

from the bridge to the nut and returning. When this "kink" is in the part of its journey

between the bow and the nut, the string moves with the bow and is said to be "sticking" to

the bow. When the "kink" is between the bow and the bridge, the string slips rapidly in the

direction opposite that of the bow movement and is said to be "slipping". The period of the

string motion is the time it takes for the "stick-slip" cycle occur once. The frequency of the

perceived pitch of the string is the inverse of this value.

2.2 Violin Technique

The violin is an especially expressive instrument, affording its player the ability to alter the

dynamic level or timbre of the notes gradually or abruptly, to play as many as four pitches

at any one time, to adjust the attack and decay characteristics of each sound, vary the space
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Figure 2.3: The friction between the bow hair and the string is essential to the tone produced
by the violin. The string experiences two types of movement while vibrating. The first
occurs as the string sticks to the bow hair and is displaced at the same rate as the bow
moves. After a period of traveling slowly with the bow the string slips rapidly in the
direction opposite the bow movement and then reverses direction again as it swings back
into contact with the hair. The time that it takes the string to complete one stick-slip cycle
determines the period of the string vibration and therefore the pitch sounded. At any given
time the string is subdivided into two straight sections, and the point that divides these two
parts moves in a cyclic pattern between the bridge and the nut. The sticking and slipping
states of the string correspond to the position of this point with respect to the bow. When
the dividing point is between the bow and the nut, the string sticks to the bow hair; when
the point is between the bow and bridge, the string slips away from the hair.
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Figure 2.4: The modem bow is constructed from pernambuco wood for the stick, ebony for
the frog, and metal for the mechanical components that act together to adjust the tension of
the bow hair (white horse hair). The other end of the bow, not pictured here, is referred to
as the tip (from [Sto92]).
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and nature of the connections between every set of notes, and a large frequency range over

which to voice these notes. A violinist is granted control over every aspect of the sound

produced by her instrument and throughout any playing period may recreate the character

and tone continually. It is due to the possibility, the flexibility, and the versatility of the

violin that the instrument is such an enigmatic and compelling vehicle of expression. It is

because of this capacity for expression that it remains perhaps the most challenging of all

instruments.

It can be easily argued that the violin has one of the most difficult physical interfaces

of any musical instrument. The violin is a small instrument and for its operation requires

movements that are quite unnatural and awkward. These performance gestures range in size

from extremely small to large, but it is also the number of simultaneous movements coupled

with the fine precision demanded in executing them that make the violin so complicated to

master.

A violinist creates and controls the sound of the instrument through great physical skill

acquired by both the right and left hands. Violin technique is difficult to learn and maintain

not only because the movements required of the player are so demanding, but because the

tasks assigned to each hand are so different from each other. The problem presented by the

vastly different physical skill sets for the right and left hands of a violinist is one not faced

by many other musicians. For instance, piano technique requires the right and left hands to

be capable of performing identical movements and to gain equal strength and coordination.

In contrast, musicians who study the violin must achieve completely different kinds of

strength and coordination in each hand. This is not to say that an instrument such as the

piano does not have its own great obstacles in the path of success, but it is true that the

physical interface of the violin presents a much more difficult starting point.

What is attempted here is only the most general and brief of descriptions of left and right

hand violin techniques. Methods of teaching and playing are highly personal and must

always be customized for the individual in order to accommodate each player's physical

differences (e.g., size and length of fingers, hands, and arms, etc.). It is always the goal



of any player to make the movements required when playing as natural and comfortable as

possible, for tension and tightness of any sort are detriments to the sound and easily cause

physical injury. Through this discussion of technique, our goal is to illuminate the many

intricacies and interdependencies over which a violinist must have strong command. Only

with this information can we begin an investigation focused on creating new violinistic

music controllers.

The following discussions of left and right hand technique follow those of Galamian in

[Gal62].

2.2.1 Left Hand

For the purpose of easily indicating the positions of the left hand fingers, the fingers are

numbered one, two, three, and four. These numbers represent the index, middle, ring, and

small fingers, respectively. The body of the violin rests between the left shoulder and chin,

and the neck of the violin is gently held between the thumb and side of the first finger. It is

important not to clutch the instrument with the hand, as the purpose in this contact between

the neck of the violin and the hand is not as much to support the instrument but rather to

help guide the hand as it fingers the strings. The hand is generally oriented such that the

outside edge of the fourth finger faces the body of the violinist. Even this starting posture

is awkward to maintain for the inexperienced player.

With respect to even this simple starting position, there is a great deal of consideration

to be made concerning possible adjustments to accommodate a player's individual physical

characteristics. For instance, different types of shoulder pads to help support the violin and

create a comfortable position for the neck are often employed. Similarly, adjustments of

the elbow position-how far it is away from the player (how high the violin is held) and how

far to the right the elbow is stationed-must be made to suit each player.

The posture of the left hand fingers with respect to the fingerboard is also a source of

debate. How straight and how high above the strings the fingers should be, and how close

the hand is to the scroll of the violin are questions that must be addressed. Every slight



alteration in the position of the fingers, thumb, and hand has a direct impact on the ease

and ability to finger the strings of the violin, for a violinist must be able to finger multiple

strings, shift positions of the hand along the length of the fingerboard, and execute rapid

position and pressure changes. It is also worth noting that a violinist must take into account

the width of her fingertips when finding the correct default hand position.

When playing the violin, it is the left hand that governs intonation (though faulty bow-

ing may also contribute to its deterioration). In order to produce proper intonation at all

times, a violinist must mindfully alter the position of her fingers on the fingerboard of the

violin so as to determine the fundamental pitches of the notes played. While doing so,

she must also adapt the character of the vibrato-the rapid and subtle variation of pitch-to

produce the appropriate tone color.

Pitch Selection

The act of stopping a string against the surface of the fingerboard effectively shortens the

length of that string. This reduction in length increases the frequency, or pitch, of the string.

A six percent decrease in the length of a given string increases its fundamental pitch by a

semi-tone. The mass and the tension of the string also affect its pitch-as mass increases

pitch decreases, and as tension increases pitch increases. (Violin strings increase in mass,

or thickness, from the E string to the G string in order to maintain consistency in the tension

of the strings.)

There are several fundamental movements used for pitch selection that must be within

the control of any violinist in order to be successful. These movements consist of: 1) the

vertical motion required to stop and release the strings; 2) the sliding movement of the

fingers while the hand remains stationary; 3) the complex motion required to cross strings,

which is a combination of vertical and horizontal motion; and 4) the sliding movement of

the fingers and hand from one hand position to another (with fingers either depressed or

not).

When playing a string instrument like the guitar, the problem of intonation is rather



simple provided that the instrument has been properly tuned, for the fingerboard of the

guitar possesses frets. Frets serve to stop the string at a consistent point as long as the

left hand finger is depressed anywhere within the space delineated by the corresponding

fret and the next one below it. In order to remain in control of the intonation of a violin,

the player must find the appropriate pitch by carefully correlating physical feedback from

the left hand with the audio information received by the ear. This means that a violinist

rely strongly on the sense of touch while using the judgment of her ear. It is often said

that a good violinist should be able to play an out of tune violin in tune. That is, the

coordination between the hand, fingers, and ear should be so refined that the violinist is

able to dynamically adapt her technique to accommodate an inferior instrument. Galamian

articulates this necessity as follows:

Lastly, in this discussion of intonation, it is necessary to consider what type

of intonation ought to be used: the "tempered" or the "natural." This is not the

place to go into the technicalities of the two systems. No violinist can play

according to a mathematical formula; he can only follow the judgment of her

own ear. Be this as it may, no one system of intonation will suffice alone. A

performer has to constantly adjust her intonation to match her accompanying

medium.

The artist must be extremely sensitive and should have the ability to make

instantaneous adjustments in her intonation. (The best and easiest way to make

such adjustments is by means of vibrato.) An intonation adjustable to the

means of the moment is the only safe answer to the big question of playing

in tune.

The most important part in all of this is assigned, obviously, to the ear,

which has to catch immediately the slightest discrepancy between the pitch

desired and the pitch produced and then demand an instant reaction from the

fingers.'

[Ga162]



The importance of the instantaneous reactions of the left hand fingers to the observations

of the ear cannot be overemphasized.

Vibrato

Vibrato is the effect achieved by altering the position of the finger or fingers on the finger

board such that the pitch or pitches are varied. This serves to alter the tone color and is

an invaluable tool of expression for any violinist. Because listeners are more sensitive to

higher pitches, all instances of vibrato should begin with the sound in tune, on the pitch

that would be indicated by a music score, and alternate between this position and a position

on the flatted side of the pitch. The ear is much more forgiving of this kind of alteration

in frequency than it would be of an occurrence of vibrato that tended toward the sharp side

of the pitch as the resultant sound would be perceived as sharp. It is also usually impor

tant to begin the vibrato motion at the start of the pitched sound and to vibrate the pitch

continuously.

There are also three main methods of executing vibrato. The first is known as arm

vibrato and is accomplished by moving the forearm back and forth while the left hand

follows the impulse generated at the elbow. The vibrato finger bends and straightens in

response to the arm movement and consequently flattens the pitch once every vibrato cycle

as the pressure of the fingertip shifts backward. The second type of vibrato is hand vibrato,

but the impulse driving the motion of the finger is supplied by the hand as it rocks back and

forth from the wrist joint. The finger experiences the same change in its posture, from a

curved shape to a straightened shape when the pitch is lowered. The last kind of vibrato is

finger vibrato and is performed by the vibrating finger itself, moving from the base knuckle,

and it much harder to achieve than the first two vibrato techniques described. The width of

vibrato possible with this method is also smaller.

The parameters that describe the character of a player's vibrato are the speed (i.e., how

quickly the transitions between the notated pitch and the flatted pitch occur), the width (i.e.,

how flat is the second pitch, or the great is the distance between the two finger positions),
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and the intensity (i.e., a combination of how great is the pressure of the vibrating finger on

the string and the angle of the fingers with respect to the string). A fine violinist can vary

all three of these elements independently and in conjunction with each other as the occa-

sion demands. The careful cultivation of vibrato technique greatly personalizes a player's

individual violin sound.

It should be noted that although vibrato may be used to quickly and easily correct pitch

(or at least the perception of it), or enhance the tone of that pitch, the option of employing

vibrato does not eliminate the need to nurture the other left hand skills that determine the

quality of intonation. The substitution of vibrato in place of proper pitch adjustment is

often the focus of criticism by many violin teachers, as expressed by Leopold Auer:

No, the vibrato is an effect, an embellishment; it can lend a touch of divine

pathos to the climax of a phrase or the course of a passage, but only if the

player has cultivated a delicate sense of proportion in the use of it.2

The careful administration of vibrato and use of all other left hand movements required

for pitch selection must be appropriately coordinated with the bowstrokes to actually sound

the notes. Most problems stem from this difficulty in coordination between the two hands,

or from the bowing technique itself [Gal62].

2.2.2 Right Hand

Though the left hand must control intonation and vibrato, all other issues relating to the

sound quality of the violin are addressed by the right hand. Certain comparisons may be

made between fingering notes on an instrument of the violin family and the physical actions

necessary to play other instruments, such as selecting pitches on the trumpet, clarinet, or

flute. In contrast, bowing a string instrument is unlike any other musical activity. It is also

well understood within the violin community that these physical actions required of the

right hand fingers, hand, and arm are more challenging than those demanded of the left

2[Aue8O]



hand [Ga162]. A player must learn to work with the bow as an extension of the right arm,

hand, and fingers.

The bowing of string instruments is not only incredibly complicated, but it is very little

understood by non-players. Because there are so many degrees of freedom and the response

time required to correct any deficiencies in the sound of the violin is so small, violin bowing

technique is one of the most difficult physical pursuits of all.

Through various articulations of the bow, the right hand must control the amplitude of

the sound, the rhythm (also controlled in coordination with the left hand), the attack and

decay of notes, and the fullness of tone. Poor bowing does not just result in tone that is

unsatisfactory, but may also add a great deal of noise to the sound of the violin-sometimes

even producing scratching sounds.

As in the terminology relating to the left hand, the fingers of the right hand are referred

to as numbers one, two, three and four, corresponding to the index, middle, ring, and small

fingers. When the right hand grasps the bow in the manner required to play, the tip of the

thumb should be placed in the gap between the stick and the bow hair so that it touches the

end of the frog. The second finger should meet the thumb on the side of the bow furthest

from the player. The third finger arches over the top of the stick and is placed against the

outside of the frog, while the tip of the fourth finger is positioned roughly on the top of

the stick (it is actually a little closer to the body of the player, slightly on the inside of the

stick). The index finger rests on the stick at the middle joint, whose knuckle points toward

the tip of the bow.

In order to draw the bow across the strings and produce a fine resonant sound, one must

develop the ability to perform many different physical actions with the fingers, the hand,

and the arm. Without the hand and the arm held stationary, the fingers of the right hand

should be capable of lifting the bow off the strings and replacing it, and moving the bow

in a horizontal direction, performing small strokes. The fingers must also be able to rotate

the bow in such as way as to be able to alter the angle of the bow so that it is tilted slightly

away from the player. Using a similar technique, one can also change the amount of bow



hair that contacts the strings.

The last type of motion necessary to train the finger is the vertical rotation produced

when force is applied to the bow stick by either the fourth finger or the index finger. In the

first case, the tip of the bow swings upward, and in the second it is the frog that is raised. It

is helpful in understanding this motion to view the system of the fingers and the bow as a

lever, in which coupling between the thumb and second finger acts as a fulcrum. The ability

to balance the bow and shift its weight from tip to frog is crucial to master passages that

instruct a violinist to cross the bow from one string to another, as it is in every bowstroke

to manage the changing pressure applied to the bow throughout its motions. In general, the

fingers of the right hand are responsible for the most subtle changes in a given bowstroke.

Correspondingly, the hand and the arm achieve larger, broader effects.

The critical motions of the right hand, independent from those of the fingers and arm,

are the vertical and horizontal movements from the wrist joint. Used together, a violinist

can move the right hand in any direction as demanded by different bowstrokes. The upper

arm should easily have the same horizontal and vertical freedom from the shoulder joint

and also readily combine movements of this type. In almost every type of standard bowing,

the forearm hinges at the elbow, bending and straightening as the player performs up-bow

and down-bow strokes. In addition, the forearm must also twist independently from the

upper arm.

The interdependence of the postures of the fingers, hand, forearm, and upper arm can

be seen in the simplest of bowstrokes: the long, straight stroke. Beginning with the bow set

on the string at the frog, the object is to draw the bow downward until the tip is reached so

that the bow hair maintains a more or less constant distance from the bridge. (It is true that

in this "straight" stroke, the bow usually does travel back and forth with the tip end slightly

further from the bridge, causing the bow to be slightly slanted with respect to the bridge.)

In order to accomplish the task, the player must straighten the forearm while pushing the

upper arm forward. This motion is a difficult one, as the natural tendency is to pull the

upper arm backward toward the player. The hand must also gradually move its weight to



the left in order to compensate for the increasing lightness of the bow (from the perspective

of the string) as the tip is approached. It is helpful to view the straight motion achieved

in this bowstroke as a combination of movements in the arm, hand, and fingers that are

essentially circular in nature-that is, their movements describe arcs [Gal62].

The bow is largely responsible for the quality and character of the tone produced by

the violin. There are many types of bowstrokes, defined by how much of the bow length

they require and the motions required to produce them. The sounds created by them-

their amplitudes, attack and decay profiles, their durations, their timbres-are determined

by three basic factors particular to the bowstrokes. As mentioned before, these are bow

velocity, pressure, and how far from the bridge the bow is when it makes contact with

the string. In order to achieve a given sound on the violin, a player must be capable of

assessing the contribution of each to the sound produced in real-time. A change in one of

these parameters necessitates a change in at least one of the others. It is a source of great

interest that a given effect may be achieved to satisfaction with more than one method.

When the speed of the bow motion increases, the volume of the sound produced in-

creases as well, as more energy is transmitted to the vibrating string. Obviously, a decrease

in bow velocity has the opposite effect. Therefore, a violinist must budget the length of the

bow not only in consideration of the duration of the notes she is to play, but also with a

keen understanding of their relative dynamics.

The amount of pressure the bow applies to the string of a violin is directly proportional

to the amplitude of the sound produced. Applying pressure to the bow in fashion appropri-

ate to the desired sound is complicated, as a player must work with the pressure produced

by the weight of the arm and hand on the bow, the change in the weight distribution of the

bow itself along its length, and the force applied through the action of the fingers, hand,

and arm. As discussed previously, it is actually quite difficult to produce a constant volume

of sound (with constant speed), for this result requires a non-constant amount of pressure

so as to compensate for the changes in the weight of the bow.

As a consequence of the speed and pressure applied to the string, the proper point



at which the bow should make contact with the string-the distance from the bridge-is

determined. This point is also dependent upon the length, thickness, and tension of the

violin string bowed, and so must also be altered with each change from one string to another

and in each change of hand position. In general, the location of this point moves closer

to the bridge as the bow moves from the lowest string (G) to the highest (E) and as the

hand moves from first position (hand closest to the scroll) to the positions higher on the

fingerboard.

It is also well understood that these physical actions required of the right hand fingers,

hand, and arm are more challenging than those demanded of the left hand. (Part of the

challenge is in learning to exploit the elasticity of the bow, whose form is a wonderful ex-

ample of both strength and flexibility.) But these actions are so difficult due to the extreme

range of expression made possible by the bow. With well-cultivated left and right hand

techniques and fine coordination between the two, a violinist is capable of creating and

shaping every aspect of sound that emanates from the instrument.

It is because of the difficulty of bowing, the underlying expressivity of each movement

required, and the creative power sourced from these physical actions that bowing technique

is so compelling a research topic.

2.3 Related Research

The primary concern addressed by this thesis was to enhance and illuminate the relationship

between the violin and its player. Previous to this work, many researchers in the fields

of physics and acoustics have considered the violin from a physical perspective through

analysis, synthesis, and measurement of the physical attributes and characteristics of the

violin, whereas others of the computer music and engineering communities have explored

the violin as a musical interface and have developed novel instruments and controllers

related to its physical interface.



2.3.1 Analysis/Synthesis/Measurement

The field of computer music is said to have begun in 1957, when Max Mathews, an engineer

at AT&T Bell Telephone Laboratories, wrote the first sound synthesis program, known as

Music I [Roa98]. Mathews was the first to demonstrate that a computer could be used to

generate sound and might be viewed as a musical instrument.

Mathews focused much of his early work specifically on the violin, and in 1972 de-

signed with J. Kohut a kind of electric violin lacking a wooden resonance chamber, replac-

ing this functionality with a setup of electrical oscillators whose output amplitudes were

controlled by magnetic pickups near the strings [MK73]. Even at such an early date, re-

searchers were not only interested in the analysis and synthesis of violin sounds but the use

of this understanding to create new instruments.

Advances in the research field of acoustics have coincided with progress in computer

music. In particular, a great deal of research has been done in the fields of physics and

acoustics to understand the science of violin sound production. Indeed, there is a huge

amount of interest in discovering the mysteries of the great violins of Stradivarius and

Guarneri [Lip94, Wei93]. Just as the violin's structure and physical properties are studied,

mathematicians and computer scientists specializing in acoustic modeling seek to success-

fully analyze and model violin sound.

As might be expected there have been two basic approaches to understanding the dy-

namics between string and bow. Researchers have worked on developing ever more com-

plex string models deduced from an understanding of physical laws and from numerical

and computer simulation. This approach appears to be the more theoretical, in contrast to

the more experimental approach in which the focus is on understanding string behaviour

through ever more precise measurements and physical experiments.

Researcher James Woodhouse has long been interested in understanding the physics of

how contact forces between a violin's strings and the bow hair produce the excitations in

the strings that are ultimately responsible for the produced sound. Woodhouse's apparatus

deduced the bow-string contact force by measuring the force on a string at the ends, and



applied these forces to detailed physical simulations of mathematical bowed string mod-

els [WSGOO, Woo92]. Gabriel Weinreich has also written numerous papers on computer

simulations of string motion under various types of excitation [WC91, Wei93].

Julius Smith and Chris Chafe, collaborators of Woodhouse, have also designed com-

plex software models of bowed string dynamics, have done extensive work to simulate

performance on bowed stringed instruments, and have done work to develop mathematical

models as well [Cha88, SSIW99, OSCSI00]. By finding software models that support good

playability, this research works to increase understanding of how violin strings behave.

Anders Askenfelt has done a great deal of research in the measurement of the bowing

parameters of bow velocity, bow force, and bow-bridge distance. He is interested in bowing

gesture, and recorded a wide set of strain gauge sensor readings from different players

bowing in different styles [Ask86, Ask89]. His research is an example of a use of foil

strain gauges to measure bowing parameters. However, he was not interested in the overall

usability of the final instrument and focused only on measurement accuracy.

2.3.2 Novel Instruments and Controllers

With the emergence of such modem means of making music, the possibility of including

both traditional acoustic instruments and novel electronic instruments in performance has

held a great deal of interest for musicians and composers. Artists such as Pierre Boulez

of IRCAM began to investigate how live acoustic instruments may be used in conjunction

with sounds generated by computers, as exemplified by his piece, Ripons (1981). Interest

in combining both acoustic and electronic elements in the creation of new instruments has

also grown.

Teresa Marrin, a former researcher at the MIT Media Lab, designed the Digital Baton,

a conductor's baton augmented with 11 different sensors for detecting position, orientation

and pressure. Used in the Brain Opera, this device is an example of a complex musical

controller based on pressure and motion through space. Marrin also designed the Conduc-

tor's Jacket, an article of clothing created with sensors to act as a physiological monitoring



device, worn by a conductor, capable of sensing her heart rate, respiration, skin conduc-

tance, etc., such that a conductor could arrange for her internal emotional and physical

states to augment her conducting performance [NakOO]. The bearing of Marrin's research

on this project is that it shares the philosophy of taking traditional musical devices out of

their standard contexts in an attempt to create new instruments founded upon traditional

technique.

Special efforts have been made to design new music controllers with violin interfaces.

At the MIT Media Lab, this research followed two projects of related aims: the Hypercello

project [MC89, PG97, Par97] and the Digital Stradivarius project [SchOO].

The Digital Stradivarius project was a descendent of the Hypercello project. With a

sensing system very similar to that of the Hypercello built onto a traditional violin, the

Digital Stradivarius project aims to model the sound of a Stradivarius violin using physical

gesture data as criteria. Once this feat is successfully performed, a violin controller may

eventually be built (from which no acoustic sound would emit) that will use sensor data to

play the Stradivarius model.

The BoSSA project [TC99] produced several innovations that captured aspects of mu-

sical gesture so as to control electronic sounds. This system incorporated commercial ac-

celerometers onto the stick of the bow and a force-sensitive resistor placed under the hair

at the tip of the bow. Also integral to the BoSSA was the introduction of new amplification

techniques by means of specialized array of speakers that approximated the natural sound

quality of a violin by imitating the manner in which violin sound radiates and diffuses in

an acoustic space. Interestingly, the BoSSA possesses the basic components of a violin's

physical interface, while lacking both a resonant cavity and strings.

Charles Nichols has designed a haptic force-feedback bow-a device superficially sim-

ilar to a violin bow, permanently mounted to a base through a set of servos. As the user

moves the bow about, back and forth, the user's bowing parameters are delivered to a com-

puter. In addition, the computer's simulation of the expected force feedback is delivered

back to the user [NicOO]. This is an example of a novel instrument which feels somewhat



like a violin and detects some bowing parameters.

Sile O'Modhrain designed experiments to examine the extent to which haptic feedback

improves the playability of virtual musical instruments. She designed a controller, known

as the Moose, which is gripped in a user's hand and moved back and forth in a bowing mo-

tion. This controller was connected to force-feedback system which simulated the feeling

of friction between a bow and violin string [O'M00].

The field of electronic/computer music research has produced many tools and interfaces

for the composition and performance of new music. New techniques for audio processing

grant musicians a much larger domain of sounds to manipulate than given by traditional

acoustic instruments, and current audio systems provide the ability to control such musical

events. Despite such progress in the realm of new sound generation, comparatively little

work has been done to understand, exploit, and enhance the interaction between a fine

musical instrument and the musician who plays it. As this interaction is of key importance

to any musical performance, research into ways to evolve standard musical instruments and

to create new music controllers is crucial.



Chapter 3

Implementation

The goal of this project was to provide a new violin bow interface. This interface measured

aspects of the physical performance that describe the interaction of the player with the

instrument. To achieve this goal we focused on three separate sensory inputs. Together,

these measurements provided adequate data to extract more information provided by the

player through the instrument than had been collected previously [Mac92, PG97, SchOO].

Although some information describing physical performance can be interpreted from audio

analysis alone, the data provided in this thesis offered a richer picture of the performance

as a whole.

The three sensory inputs explored in this work were position of the bow with respect

to the bridge of the violin, acceleration of the bow, and strain in the bow stick. The ac-

celerometers served to generate data corresponding to the movement of the bow in the

bowing direction, in the direction parallel to the neck of the violin, and in the direction

normal to the strings. The strain measurements helped to illuminate the influence of the

bow hair on the strings by reporting the amplitude of the strain exerted on the bow stick.

Together these measurements provide a characterization of the forces applied to the bow in

all directions within 3-dimensional space. (In addition to the force information collected,

the position sensor was built in order to provide velocity information in the future, as any

velocity values extrapolated from the acceleration data would only be unique only up to an



additive constant of integration.)

3.1 System Overview

Though we were interested in creating a violin bow with capabilities unlike any other and

expect the form of the bow to differ from the traditional as a result, we wanted to maintain

certain traits of the physical interface so as to enable a player to use the same posture of

the right hand wrist and fingers on the bow. Therefore, the hardware implementation of

the Hyperbow measurement subsystems was designed so as to provide the performer with

an instrument as similar to a traditional bow in size, weight, and weight distribution as

possible.

In addition to the requirements of the physical interface of the bow itself, there were

several basic requirements for the architecture of the sensing system (see Fig. 3.1). Though

the printed circuit board on the bow performed the functions necessary to attain and send

strain and acceleration data, it acted as only part of the position sensor. The second part

of the position sensor was the tailpiece-mounted antenna described below. Because the

progress of the position sensing subsystem was separate from that of the rest of the project

and the subsystem was designed for use in musical applications different from those of

the strain and acceleration sensing subsystems, the hardware to receive position data was

isolated from the other subsystems. Ultimately, the data from the bow sensors was meant to

be viewable by both a workstation running a Microsoft Windows variant for the purposes of

analysis, and a Macintosh workstation for the development of music applications. A serial

protocol was used to carry the combined strain/acceleration data stream and the position

data stream to an external computer.

A crucial design objective was that the bow remain wireless, without power or data

cables. The small electronics board that was mounted to the bow was powered by a lithium

battery and sent the sensor data from its transmitter to a receiver on a separate electronics

board (see Fig. 3.2). This data transfer was performed via a Linx HP-Seriesll RF module,
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Figure 3.1: The measurement system of the Hyperbow was composed of three individual
subsystems for position, acceleration, and strain sensing. However, the data for these three
measurements was collected in two separate data streams. The position sensor signal was
sent through a cable attached to the antenna mounted on the violin. This signal was received
by a custom printed circuit board that sent the position data encoded in a serial format to
a PC workstation where it was interpreted. The acceleration and strain sensor information
was transmitted wirelessly to a receive board that sent the related data to a PC via a serial
cable as well. The acceleration and strain of the bow could be measured on any violin, or
indeed without a violin. However, the position measurement relied on the inclusion of the
Hyperbow to provide one half of its sensor.



Figure 3.2: The printed circuit board designed to receive the accelerometer and strain data
from the Hyperbow was very simple, containing only the Linx 1/4 wave whip antenna
(ANT-916-CW-QW), the Linx RXM-900-HP-II receiver, a MAX233 RS-232 level con-
verter, and a serial port. (Note: The three green wires depicted here were included to
correct an error in the implementation of the MAX233 chip.)



manufactured by Linx Technologies, Inc. of Grants Pass, OR. This module operates in

the 902-928MHz band, is capable of transmitting data for distances up to 1000ft, and has

eight selectable channels (making it possible to adapt this sensing system for use in several

instruments simultaneously). The antenna for the transmitter was a simple wave whip

antenna made from a piece of solid conductor wire cut to the appropriate length. The

wavelength for the desired frequency band is given by

A = - (3.1)
f

where A is the wavelength in meters, c is the speed of light in meters per second, and f is

the frequency in Hertz. For frequency 903MHz, and converting to feet, the (3.1) evaluates

to

A = 984 x ~6ft/s 1.09ft = 13.08in. (3.2)
903MHz

For the !-wavelength antenna, Lig = A/4 = 3.27in.

3.1.1 Position Sensing Subsystem

Though the first two prototypes of the Hyperbow were not capable of capturing position

data, the measurement system for the third experimental bow included an additional po-

sition sensor. The method of sensing the position of the bow relative to the bridge of the

violin used in this thesis was an adaptation of the system used in the development of the

Hypercello [PG97] and later in the Digital Stradivarius project [SchOO].

In this method, two square wave signals of different frequencies were employed, one

originating from the tip of the bow and one from the frog-end of the bow. The signals were

connected to opposite ends of a resistive strip that ran along the length of the bow. A simple

electrode antenna was placed behind the bridge of the violin. This antenna was connected

to a circuit that amplified the combined signal and sent it to a remotely mounted board,

whose task it was to separate the two signals from each other and measure their varying

strengths via a cable. Bow position could then be determined from this data in software on

a computer connected to the output of the board.
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Figure 3.3: The electrode antenna received a signal that was a combination of the two sig-
nals sent from the bow. The individual strengths of these signals varied with the position
of the bow, as the signals themselves originated from opposite ends of the bow. Because
this signal was naturally weak, an amplifier was crucial to the design. The amplifier cir-
cuit included on the position sensing antenna consisted of one operational amplifier with
the necessary passive components. The gain of this amplifier is approximately 23 in our
frequency range (50-100KHz).

Figure 3.4: The printed circuit board antenna was designed to be secured to a threaded rod
mounted to the tailpiece of a violin so that it was suspended just behind the bridge, with
its large electrode facing toward the scroll of the instrument. The electronics on this board
consisted only of the small circuit used to amplify the signal from the electrode (which is
0.859in long and 0.575in wide), and three LEDs so as to provide the option of indicating
power and the varying strengths of the two signals transmitted from the Hyperbow.
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Figure 3.5: The amplified signal from the antenna board on the violin was a combination
of the two signals sent from the bow. In order to determine the position of the bow, the
combined signal first had to be separated into two signals once again. This function was
performed by directing the combined signal into two bandpass filters, one designed to pass
50KHz signals and one for 100KHz signals. The outputs of these filters were then converted
into DC voltages by two peak detectors and sent to the PIC16F877 microprocessor. The
PIC encoded these values in a serial format, and the data was sent to the PC workstation
via a serial cable.

Figure 3.6: The printed circuit board used to receive the signal from the position sensing
antenna housed one PIC16F877 microprocessor, two LTC1562-2 filter chips, two OPA2350
operational amplifier chips (used to make the peak detectors), and a MAX233 RS-232
level converter in addition to the passive components. The PCB itself contained 4 layers
corresponding to the front, back, power, and ground planes and was 2.75in long and 1.22in
wide. (Note: the green wires depicted here were added in order to correct an error made in
the implementation of the MAX233 chip.)



In this project, the implementation of the position sensor was completed with as little

alteration to the rest of the existing sensing system as possible. So as to add a minimal

number of hardware components to the small board mounted on the bow, the two square

wave signals were generated by the PIC 1 6LF877 manufactured by Microchip Technology,

Inc. of Chandler, AZ. A 100KHz signal was produced using the PIC's Timer2 module

in PWM mode, and a 50KHz signal was produced using the built-in Timer1 oscillator.

(These frequencies were the same as those used in the first implementation of this elec-

tromagnetic field sensing method for the Hypercello and were chosen so as to maintain

compatibility with existing hardware.)

The design of the electrode antenna remained almost identical to the original, except for

the replacement of the original source-follower circuit with an operational amplifier circuit

(see Fig. 3.3). The gain of this amplifier was determined as follows:

A = out (3.3)

Vin =in 1K + (3.4)

Vout = out 22KQ + (1KQ + (3.5)
jwC)

Iin =- Iout (3.6)

23KQ +
Vo, +jwC)/t 1 (3.7)
V 1KQ +I)

jwC

Since C = O.1pF and w = 27r - 100KHz, the 1 term was neglected and

A, ~ 23 (3.8)

Some slight cosmetic changes were also made in the design to provide the option of includ-

ing LEDs to indicate power and the varying strengths of each of the two signals, but the

appearance of the electrode antenna remained mostly unchanged from earlier implementa-

tions (see Fig. 3.4).1

'The schematics for the bridge antenna and position receive board appear in Appendix A.



The board that received the signal from the antenna consisted of two bandpass filters,

composed using two LTC 1562-2 chips (manufactured by Linear Technologies of Milpitas,

CA) that were designed to separate the two different signals of different frequency from

each other, peak detectors that converted the signals to analog DC voltages equal to the

signal amplitudes, and a PIC16F877 (powered with 5 Volts rather than the 3 Volts supply

used to power the PIC16LF877 on the bow board) microprocessor with a built-in 10-bit

A/D converter that received these voltages and sent them to a PC workstation in the form

of a serial data message (see Fig. 3.5 and Fig. 3.6).2

3.1.2 Acceleration Sensing Subsystem

In order to sense the changes in acceleration of the bow, ADXL202 accelerometers from

Analog Devices, Inc. of Norwood, MA, were employed. This accelerometer is capable of

measuring accelerations with a full-scale range of ±2g. Because the ADXL202 is a 2-axis

accelerometer, two of these devices, one mounted orthogonal to the plane of the electronics

board containing the other, were used in the design in order to attain acceleration data

along all three axes. This accelerometer has a digital output for each of its two axes of

sensitivity that has a maximum resolution of around 14 bits. The acceleration measured by

the accelerometers is encoded in the digital output signal by modulating the duty cycle-the

ratio of pulsewidth to the period-linearly with the acceleration. The acceleration was thus

retrieved by simply counting the duty cycle in a software loop.

One difficulty in developing the firmware for the microprocessor was seen in counting

the width of the pulsewidths efficiently enough to attain adequate measurement resolution.

The low-voltage PIC 1 6LF877 used in this board uses an external clock of 4MHz, thus each

instruction takes 1psec (4-1/4MHz). Most of the firmware code for this project was written

in the C programming language, but an exception was made for the code that counted the

duty cycle of the outputs of the accelerometers due to the execution timing requirements.

Inspection of the machine code generated by the C compiler used by MPLAB indicated an

2See Fig. A.3 of Appendix A.



inability to achieve the count of a duty cycle in a number of instructions small enough to

yield at least 8 bits of resolution. The period of the digital signal output of each channel

of the accelerometers had a period of 1msec (set by one external resistor of 125KQ). In

order to attain a resolution of 8 bits, the duty cycle had to be sampled 256 times per period.

Therefore, each sampling of the duty cycle value had to be executed in no more than four

instructions from the PIC (lmsec/(4 . lpsec) = 250), yielding a resolution of 7.97 ~ 8

bits. The requirement was met by developing this module in low-level Assembly code

rather than high-level C code.

Initially, the ADXL202JQ ceramic package of the device was used, but the revised bow

board included two ADXL202E accelerometers. The two types differ only in size, as the

length and width dimensions of the ADXL202E are 5.0mm and 4.5mm, each less than half

of the corresponding value for the ADXL202JQ. Additionally, the ADXL202E is much

lighter.

3.1.3 Strain Sensing Subsystem

Because of its direct effect on the violin string and its close relationship to the experience

of a violinist while playing, the measurement of the downward force on the bow stick was

pursued.

After this initial consideration, the possibilities of measuring other forces applied to the

bow stick, such as shear, or torsion, force and lateral force (along the axis of the violin

strings), were pursued. In researching the methods of measuring these forces on the bow

that correlate so strongly to the forces of the bow hair on the strings of a violin, several

options for sensors were considered. The first type considered was the force sensitive

resistor, which was used in the original Hypercello and the Digital Stradivarius project

to indicate the pressure of the right hand index finger on the bow stick. Fiber optic bend

sensors were also considered. Finally, strain gauges were isolated as a promising sensor to

measure the different strains in the bow stick.



Figure 3.7: This uniaxial strain gauge (EK-06-250BF-1OC) has a nominal resistance of
1000Q and is designed to measure strain in the direction of its grid lines. Its grid is com-
posed of modified Karma, or K-alloy (nickel-chromium), an alloy characterized by good
stability and fatigue life and a relatively flat thermal output curve. (The gauge grid is
6.35mm long and 3.18mm wide, and the dimensions of the entire object are 13.2mm long
and 5.6mm wide.)

Strain Gauge Operation

The sensors used in this project were commercial foil strain gauges from Vishay Measure-

ments Group, Inc. of Raleigh, NC. The gauges are two-terminal devices that behave as

variable resistors. They are each composed of a special metal alloy wound into a given

geometrical pattern and encapsulated in kapton film. The metal alloy has a fixed sheet

resistivity (i.e., resistance per square) so when the lines of the resistor are stretched along

one axis, the length of the resistor increases and thus the overall resistance increases. Con-

versely, when the gauge is compressed, its resistance decreases. Therefore, the proper

operation of the gauges demands that they be securely and permanently affixed to the ma-

terial that is under strain such that the stretching of the gauge is identical to the stretching

of the material. The strain gauges used in this project were of two different geometries.

The first was a uniaxial pattern (see Fig. 3.7) designed to measure strain along one axis

(in the direction of the grid lines) as in a bending beam, and the second was a shear pat-

tern (see Fig. 3.8), which actually contains two strain gauges in one package.This device

is designed to measure torsional, or twisting, strains. In adhering the strain gauges to the

surface, special care had to be taken because of the requirement to conform to a cylindrical

surface rather than a flat surface (see Fig. 3.9). The high-precision foil strain gauges pre-

sented many implementation issues and constraints. Because the strain gauge measurement

could easily degrade when operating at high temperatures (due to expansion in the alloy),



Figure 3.8: This is a two-element pattern (CEA-13-062UV-350) in which there are two
gauges oriented such that they may measure shear, or torque strains. The devices are com-
posed of A-alloy, or constantan, a nickel-copper alloy, the oldest and most common of
strain gauge alloys. (The dimensions of the gauge grids are 1.57mm long and 1.60 wide
each, and the dimensions of the entire object are 10.7mm long and 5.8mm wide.)

Figure 3.9: The process of installing strain gauges on a test object whose surface area was
small and curved, i.e. the carbon fiber violin bow, was quite difficult. Various steps had to
be taken in preparation of the test surface and in the positioning of the devices. Because
four gauges were used in each strain sensor and were installed within very close proximity
to each other, there were further complications in applying the adhesive for a given gauge
so as not to tamper with other gauges. These two uniaxial strain gauges (EK-06-250BF-
10C) each had nominal resistances of approximately 1000Q and were 6.35mm long and
3.18mm wide each. The winding of the metal alloy wire that composes the gauge can be
seen running back and forth in the direction parallel to the bow. The terminals of this wire
are connected to solder tabs.

special care had to be taken when choosing appropriate operating current levels to avoid

generating large amounts of power dissipation in the form of heat. Also, a foil strain gauge

relies on the material on which it is mounted to assist in heat conduction away from the

gauge body itself. The gauges are temperature-matched to either steel or aluminum due

to their high heat conductivity. Because this work was done on a carbon fiber bow, whose

heat dissipating capabilities were not nearly as good as those of metals, the supply volt-

age for the sensor circuits was set much lower than that suggested for typical applications.

The electronics that comprised these sensors used a 3 Volt power supply, in the form of a

lithium battery, which was capable of operating both the PIC 16LF877 microprocessor and

the Linx TXM-900-HP-II transmitter, the crucial components of the bow board.
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Figure 3.10: The value of the strain sensor was determined by taking a differential mea-
surement. All four resistors in the Wheatsone Bridge configuration had nominal resistances
that were approximately equal. Therefore, the voltage difference between the midpoints of
each leg of the bridge-at the point between resistors A and B and the point between resis-
tors C and D-was approximately zero at rest. When the values of the individual resistors
changed, the voltage difference was altered in accordance.

Wheatstone Bridge Configuration

The strain gauges were arranged in a Wheatstone Bridge configuration with the midpoints

of each "leg" of the bridge connected to a differential operational amplifier (see Fig. 3.10).

So as to allow for the best measurement possible, a full bridge configuration, i.e., two

strain gauges in each of the two legs of the bridge, was implemented. The sensor measured

the strain at the point located approximately halfway between the two sets of gauges (see

Fig. 3.11). At rest, the resistances of all of the gauges were approximately equal, and so

the corresponding voltage values between the midpoints of the bridge and ground were

also approximately equal, resulting in a voltage difference of zero at the output of the

differential amplifier. So, as the bow was laterally strained in one direction, the gauges on

one side of the stick were compressed and decreased in resistance, while the gauges on the

opposite side of the stick expanded and increased in resistance. Thus, the left "leg" of the

Wheatstone bridge experienced an increase in the upper resistance value and a decrease in

the lower, while the right "leg" experienced the opposite. The voltages at the midpoints of

the bridge were shifted in opposite directions. The voltage difference between these two

points was then taken as the sensor value.

A principle advantage of the full Wheatstone Bridge configuration was that it rendered



A C
.- I I I I.

bow stick

"" I I I

B D

Figure 3.11: The arrangement of the strain gauges that comprised the Wheatstone Bridge
circuit on the bow stick was designed so that the sensor measured the strain roughly halfway
between the two legs of the bridge (A/B and C/D). In the case that a lateral (parallel to the
strings) force was applied to the bow, gauges A and C were compressed and therefore de-
creased in resistance, while gauges B and D expanded and therefore increased in resistance.
Therefore the voltage drop over B increased while the drop over C decreased, resulting in
a nonzero differential voltage between the two midpoints of the legs of the bridge. If a
force was applied to the bow in the opposite direction, the opposite changes occurred in the
resistances of the gauges causing a differential voltage measurement of opposite sign.

the strain sensors unaffected by temperature changes in the bow. If a half-bridge configura-

tion had been used, for example, such that resistors A and C were strain gauges, while B and

D were fixed precision resistors (see Fig. 3.11), the gauges would have experienced temper-

ature changes affecting their values while the fixed resistors would have been unaffected. In

this case, the Wheatstone Bridge might have been quite unbalanced. Therefore, the gauges

were arranged on the bow such that two of the gauges are placed directly above the other

gauges in opposite legs of the Wheatstone Bridge circuit. Therefore all four gauges in each

bridge experienced approximately the same changes in temperature and expansion of the

bow, as heat was dissipated through the carbon fiber bow.

After adhering the gauges on the bow stick in the full-bridge configuration and pow-

ering the circuit with a 3 Volt supply, the temperature effects on the strain gauges were

assessed. In the case of the 1000Q uniaxial gauges (EK-06-250BF-1OC), the temperature



of the bow was measured using a thermistor probe and found to be approximately 26.5 C,

while the temperature of the gauges was found to be approximately 27.1 C. (Each of these

measurements was made over the time period of about 30 minutes.) This small difference

of 0.5'C indicated that the performance of the strain gauges was unimpaired by thermal

effects.

The gauge factor temperature coefficient for each strain gauge was equal to (-1.0 i

0.2)%/100'C. Therefore, given the observed temperature change of 0.5'C, the effective

gauge factor variation with temperature was

-1.0 ± 0.2%
0.50C =000_ - -0.005 ± 0.001%. (3.9)

100oC

The device strain limits are ±1.5% at room temperature. Thus, the maximum resolution

for each gauge is
1.5%

resolution ~ = 300 (3.10)
0.005%

i.e., the sensor can distinguish or resolve 300 distinct values at most, or ~~8 bits. This

figure is a measure of the accuracy of the sensor, but not of the precision per se. With

respect to the strain data, the desired goal was not to attain an accurate measurement, but

rather a precise, relative measurement. In other words, the strain values were never used

to quantify absolute strain, but rather were employed to register subtle, relative, variations.

Therefore, the limit imposed by the calculation above was not of great concern, nor did it

negate the benefit of the 10-bit A/D converter used to sample the strain values.

Amplification

The voltage difference between the two midpoints of the Wheatstone Bridge was amplified

using a differential amplifier to yield a voltage value within the range of 0-3 Volts, as this

was the range of the A/D convertor in the PIC 16LF877. The goal was to ensure that when

the bow was idle the voltage value would be stable at approximately the midpoint of this

range, and when the bow was in use the voltage value would exhibit significant deviation

without risk of saturation. This amplification was achieved by adjusting the external re-



sistors of the differential amplifer appropriately. The differential amplifer was constructed

using an INA2321 instrumentation amplifier manufactured by Burr-Brown Corp. of Tuc-

son, AZ, which has a maximum gain of 1000. In most cases, the strain sensor voltages

were amplified by 500 or 750.)

Power Consumption

One of the greatest concerns of the strain sensing hardware was that of power consumption.

In each "leg" of each Wheatstone Bridge, the current drawn was equal to I = V/(2 -Rrest),

where V was the power supply voltage. In the first complete prototype of the bow system,

the nominal resistance of each strain gauge used was 350Q, and there were 6 strain sensors.

So, the current through each Wheatstone Bridge was I = 2(3V/(700Q)) ~ 8mA for

a 3 Volt supply. Therefore, the total amount of current drawn through both legs of the

Wheatstone bridge was 8mA, and the total amount of current drawn by the strain sensors

was 48mA. Because of this, a battery capable of sourcing a large amount of current (more

than 68mA) was used (Panasonic CR-2PA/1B). This battery had a capacity of 750mAH,

a standard current drain of 20mA, and weighed approximately 11g. This considerable

contribution to the weight of the bow was unavoidable, as it was the lightest battery found

capable of sourcing enough current to power the bow board.

In order to reduce the power consumption of the system so as to extend the lifetime of

the battery, strain gauges with a nominal resistance of 1000Q were used in the second and

third incarnations of the bow. This reduced the current through each leg of each Wheatstone

bridge to

I = 2(3V/(2. 1000Q)) = 3mA. (3.11)

So, the current drawn by each Wheatstone bridge was 3mA, a 5mA improvement. To fur-

ther improve this figure, a power cycling scheme was implemented by powering each bridge

and its accompanying instrumentation amplifier with a pin from the PIC (see Fig. 3.12).

The scheme utilized the shutdown mode of the INA2321 instrumentation amplifier. The

power cycling was accomplished as follows: the electronics for a given strain sensor were
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Figure 3.12: In order to save power, the strain sensor Wheatstone Bridges were power-
cycled so that only one was on at any given time. This was accomplished by powering each
one by an assigned pin from the PIC 1 6F877 that was connected to the base of a transistor.
When the pin was held high, the transistor turned on and current flowed through the bridge.
When the pin was low, the transistor was off, current stopped flowing and no power was
consumed by the circuit. This shutdown pin was also connected to the shutdown pin of the
INA2321 instrumentation amplifier that served as the differential amplifier, so this device
also consumed power only when the pin was high.

powered, the associated strain data channel was read, the sensor was powered down, and

then the electronics for the next sensor were powered. This power cycling scheme allowed

only one strain sensor to be powered at any given time, reducing the current drawn by the

strain sensors, essentially dividing it by the number of strain sensors present in the design.

The power consumption of the bow board electronics was improved in the second and

third prototypes of the Hyperbow by reductions in the number of strain sensors and in-

creases in the nominal resistances of the gauges. Ultimately, the amount of current drawn

by the bow board was so small that the power cycling sheme was no longer necessary.

Application and Alignment

There were some major difficulties that arose in the process of adhering strain gauges to the

surface of the bow. The first was in simply achieving a solid bond between the strain gauge



(by carefully preparing the surface of the bow, abrading it, applying fast-curing adhesive

and catalyst between the gauge and bow surface, and then applying pressure until set) and

the bow surface and the second was found in the task of properly aligning the devices (see

Fig. 3.11).

The accuracy of a strain gauge measurement is highly sensitive to the relative align-

ment of the group of strain gauges along the bow surface. Any difference of the angle

made between individual strain gauges and the axis of the test object alters the effective

lengths of the strain gauges along the strain axis and therefore affects their relative rest and

strained resistances. Discrepancies between the orientations of the individual gauges and

how they conform to the surface of the bow contribute to the difference between their nom-

inal resistance values, and this in turn creates problems in the performance of the bridge.

Since the measurement taken is really the voltage difference between the two voltages at

the midpoints of each leg of the bridge, when the gauges are not closely matched this value

at rest is nonzero and the dynamic range of the measurement is impaired.

Therefore, though considerable pains were taken to ensure that the devices were well

matched from the onset, there were seemingly unavoidable deficiencies in the balancing

of the bridge in its rest position due to differences in the nominal resistances of the strain

gauges after installation as in the third Hyperbow prototype (see Table 3.1). It should be

noted, however, that the accuracy of strain gauge resistance measurements was difficult to

assess, as the mere act of probing the gauges caused their values to change.

3.2 Hyperbow Prototypes

In the development of the bow sensing system, four commercially available carbon fiber

bows of professional quality were used for experimentation. The first, a Durro bow, was

used as the original test object for the application of strain gauges. The integral parts of the

strain gauge circuitry were tested on a breadboard with this bow.

After the initial tests and the manufacture of the bow boards, three bows, which will



Original Value (Q) I Value after Installation (Q)
A (downward) 999.9 999.8
B (downward) 999.9 999.8
C (downward) 999.8 1000.2
D (downward) 1000.0 1000.9

A (lateral) 1001.1 1001.3
B (lateral) 1001.1 1001.3
C (lateral) 1000.9 1001.0
D (lateral) 1001.1 1001.4

Table 3.1: In the process of applying the strain gauges to the third stick of the third Hy-
perbow prototype, the nominal resistance values of each gauge were altered. This result
was caused mostly by the changes in the shapes of the devices from flat to curved, as they
were forced to fit the contour of the stick. Differences such as these may greatly affect the
performance of a sensor, as the bridge may become unbalanced. Also, due to differences
in shape and alignment of the gauges with respect to each other, they are not likely to not
experience the same effects of different strains on the bow stick.

be referred to as the first, second, and third prototypes of the Hyperbow, were outfitted

with the bow board and evaluated. The first version was a Colours bow from CodaBow

International, Ltd. of Winona MN, and the second and third versions were CodaBow Con-

servatory bows. The most distinguishing characteristic of the Colours bow is its finish (see

Fig. 3.13). Reminiscent of the traditional pernambuco style, this bow appears at first glance

to be reddish-brown in color. However, due to the presence of a special paint applied to the

surface of the graphite, the bow appears to change color as the angle of incident light that

strikes its surface is varied. The Conservatory bow is identical in structure to the Colours

bow (in size, weight, balance, flexibility, material) but simply lacks the addition of any

paint to its surface.

The first bow was instrumented with the original design of the bow board containing

two ADXL202JQ accelerometers and inputs for six strain sensors. 3 All inputs were utilized

for two downward force, two lateral force, and two torsion force sensors. The lateral force

sensors were placed on either side of the midpoint of the bow, the torsion sensors were

placed at the extreme ends, and the downward force sensors were placed roughly between

the other two types. All of the strain gauges used for this bow were nominally valued at



Figure 3.13: The CodaBow Colours bow stick is finished with a special paint that is highly
reflective and causes it to appear to change color in the presence of different light sources.
This cosmetic feature renders it unsuitable for strain gauge installation.

Figure 3.14: The second prototype of the Hyperbow included 6 strain sensors and 2 ac-
celerometers. The printed circuit board used to collect and transmit the data from these
sensors was mounted near the tip of the bow. Though the board was 1.94in long and
0.875in wide. It was designed to fit closer to the frog, its location was altered so as to avoid
contact with the strings during play (while in use the bow stick is forced extremely close to
the strings near the frog). The position of the board and the large number of strain sensors
necessitated installation of many wires along the length of the stick. There were 21 in total:
3 for each of 6 gauge bridges, I to run power to all of the bridges, and 1 cable to run power
and ground signals from the battery near the frog to the board.

350Q. The bow board was placed at the tip of the bow and secured with two brass brackets.

The second experimental bow followed the same design as the first in the placement

and mounting of the board (see Fig. 3.14, Fig. 3.15, and Fig. 3.16), but it utilized only four

of the six strain sensor inputs.4 This reduction in the number of strain sensors was made

after it was determined that a user could not purposefully alter more than one downward

and one lateral strain sensor with any degree of fine precision. One downward strain sensor

and one lateral strain sensor were placed around the middle of the bow stick, the former

at the tip-end and the latter at the frog-end. The torsion sensors were again placed at the

extreme ends of the bow stick. The uniaxial strain gauges used in the downward and lateral

force sensors in this model were nominally valued at 10000 and were slightly longer than

the first type used in this project. The torsion devices were identical to the original ones

used, valued at 350Q.

The third and final bow (see Fig. 3.17) was equipped with the revised version of the
3See Fig. A. 1 in Appendix A for a full schematic.
4 See Fig. A. I in Appendix A for a full schematic.



Figure 3.15: The printed circuit board for the second prototype was secured using brass
brackets. The inputs from the strain sensors are pictured on the left, and the two accelerom-
eters may be seen on the right. The first ADXL202JQ (large package) was placed next to
the PIC16F877, while the second was included on the underside of the "daughter" board
that was mounted at a right angle to the main board.

Figure 3.16: The back of the bow board shows the Linx TXM-900-HP-II transmitter that
carried the accelerometer and strain data to a remote receive board.
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Figure 3.17: The third and final prototype of the Hyperbow included accelerometers,
mounted at the frog of the bow, to give acceleration data for all three axes of bow move-
ment, two strain sensors, mounted around the middle of the stick, for downward (normal
to the strings) and lateral (parallel to the strings) strains, and the outputs for the two signals
necessary for position sensing (parallel to the bridge), located on the stick at the extreme
ends of the bow hair.



Figure 3.18: The third prototype of the Hyperbow contained 2 strain sensors, 2 accelerom-
eters, and the part of the position sensor that generated the two square wave signals of
50KHz and 100KHz. The printed circuit board on this bow was designed to fit around
the frog. Because of these changes, the number of small wires along the bow stick was
reduced to 7: 3 for the bottom and midpoints of each gauge bridge and 1 bus that was used
to supply power to the bridges. As the battery was still housed behind the frog, as in the
first prototype, it was connected easily to the board in its new location. The position sensor
added 1 coaxial cable and one resistive strip of plastic along the length of the bow stick as
well. These two components may be removed if the position sensing subsystem is inactive.

Figure 3.19: The printed circuit board for the third Hyperbow prototype was reduced in
size and weight from its predecessor due mainly to the reduction in the number of strain
sensors. The inputs for the 2 remaining strain sensors can be seen on the right. The coaxial
cable outputs for the 2 signals used for the position sensor are visible on the upper left. The
added crystal oscillator necessary for the generation of the 50KHz signal was positioned
over the PIC16LF877. The large green wire is the antenna that was used for the wireless
transmission of the accelerometer and strain data. The board is 2.35in long and 0.80in
wide. (Note: The 8 green wires depicted on the board were added in order to correct an
error in the implementation of one of the ADXL202E accelerometers.)



Figure 3.20: The rear view of the board for the third prototype shows the Linx TXM-900-
HP-fl transmitter on the left, positioned at a right angle to the main board such that it lies
flat against the underside of the bow frog. The "daughter" board on which the second
ADXL2020E accelerometer was mounted was positioned on the same plane as the trans-
mitter. So that a player could easily handle the bow without interfering with the electronics,
there was nothing added to the other side of the frog except copper tape used for ground-
ing purposes in the position sensing subsystem. The battery, not shown here, occupied the
space defined by the main board, the "daughter" board, and the end screw.



bow board, which included outputs for the two signals required for the position sensor,

two ADXL202E (smaller package) accelerometers and only two strain sensor inputs (see

Fig. 3.18). The torsion strain sensors were abandoned, as they proved difficult to control.

The single downward strain sensor and the single lateral strain sensor were each placed

around the middle of the bow in the same manner as for the second bow. The type of uni-

axial strain gauges used (EK-06-250BF- 1 OC) remained unchanged. In this implementation

of the system, the bow board was moved from the stick of the bow to the frog (see Fig. 3.19

and Fig. 3.20, and Fig. A.2 of Appendix A for a full schematic).

3.3 The RAAD Violin

Because the strain and acceleration sensing subsystems required no alterations to the violin

played, an acoustic or electric violin could be used in these measurements. Because of de-

pendence of the position sensing subsystem on the tailpiece-mounted electrode antenna, an

electric violin was better suited for applications involving position sensing, as the addition

of a mechanical structure on the tailpiece of an acoustic instrument would have provided

unfavorable stress. Therefore, though acoustic violins were used to test the general feel,

weight, and balance of the Hyperbow, an electric violin was used to test the sensing system

itself.

The RAAD violin (see Fig. 3.21) was the played with the Hyperbow by all of the test

subjects for this project. This violin, designed and built by instrument maker Richard

Armin of Toronto, Ontario, belongs to the same family of instruments as the original Hy-

percello. Though it has no resonant cavity, it is composed of wood and has a "floating" top

plate, i.e. the plate is not affixed to the rest of the instrument with glue, but is simply held

in place by the pressure of the assembly. This plate vibrates as the strings oscillate, so that

even though the sounds of the RAAD strings are detected by pickups mounted under the

bridge and then amplified electrically, the overall sound of the instrument retains some of

the characteristics of an acoustic violin.



Figure 3.21: The RAAD violin, designed by instrument maker Richard Armin, is made
of wood and contains pickups underneath the bridge of the instrument. It receives power
from a 9V battery and has a quarter inch output connector for the amplified audio sound.
(Note: In this picture, the fingerboard is covered with a thin film of steel (0.005in) that
was previously installed as part of the left hand finger position sensing for the Digital
Stradivarius project.)



Figure 3.22: The relative accelerations of the bow along the x, y, and z axes, as well as the
downward and lateral force strain measurements were displayed by Turnkey.

(For the development of the musical applications involving only the acceleration and

strain subsystems the RAAD violin was the principle instrument used, because of the con-

venience of its audio output. However, an acoustic violin may also be used with a commer-

cial pickup affixed to its bridge.)

3.4 Data Visualization

The sensor data for the bow was displayed using a generic program called Turnkey,

written by Egon Pasztor, a research assistant in the Hyperinstruments Group at the MIT

Media Lab. The primary function of this program was to receive serial data and display

each channel of data on an individual strip chart, or overlay streams of data as appropriate.

Turnkey also had the ability to record a stream of data and save it to a file.

Two copies of this program were employed-one to display the position data and one to

show the accelerometer values for each of the three axes as well as the downward and lateral

strains on the bow. (Two separate applications were necessary, as the serial data stream for

the bow position was separate from that of the accelerometer and strain sensors.) In order

to render the program suitable for these applications, the structure of the serial protocol

used was specified within Turnkey, the data channels were assigned to appropriate strip



charts, and the appearance of the graphical user interface was customized (see Fig. 3.22).

The Turnkey display of the position data used three strip charts for the strength of the

signal from the tip of the bow, the strength of the signal from the frog of the bow, and the

normalized signal denoting the position of the bow.

Before the data could be shown in a helpful way, minor changes had to be made to the

raw data received by the Dell Inspiron 3800 laptop (Intel Pentium III 750MHz with 256MB

RAM) used for this project. Because the accelerometer values sent by the microprocessor

on the bow board were proportional to acceleration (rather than calibrated acceleration

values) these numbers were converted via the relation

Acceleration = (Duty Cycle - Duty Cycle at Zero g)/Duty Cycle per g. (3.12)

As specified in the ADXL202E data sheet, the nominal duty cycle output is 50% at Og and

12.5% duty cycle change per g. So acceleration may be calculated as

Acceleration (in g) = ((T1/T 2) - 50%)/12.5% (3.13)

where T2 is the period set by an external resistor (125KQ) to be Ims.

In addition to this manipulation of the acceleration data, the data from the strain sen-

sors was offset for visual purposes and scaled to obtain similar dynamic ranges. These

kinds of calibrations are necessary despite all efforts to construct strain sensors with iden-

tical behaviors because of the irregularities in the individual strain gauge values previously

discussed.

Also, the assembly of the third Hyperbow left the Wheatstone Bridge circuit designated

for the downward force measurement distinctly misaligned with the center axis of the bow.

As a result, the downward force sensor was sensitive to the effects of the lateral force on

the bow as well. The downward and lateral force sensors were intended to measure two

orthogonal forces applied to the bow. However, because of the deficiency in the installa-

tion of the gauges as described above, some crosstalk between the two signal paths was

inevitable. And in fact, this bow was shown to contain minor coupling between the two

force measurements as it was not possible for a player to apply a force on the bow normal



to the strings of the bow without simultaneously affecting the value of the lateral strain

force.

As a means of decoupling the sensor data, the zero force output for each sensor was

measured in order to determine the bias of each sensor. Then the interference in each sensor

resulting from an applied force intended for the other was measured. The "true" sensor data

could then be computed via a linear transformation constructed from the biased data points

through a simple matrix inversion. For given data elements containing the measured values

for the downward force d, and the lateral force 1, the sensor output vector

s = [d8, ls]T, (3.14)

the offset vector c containing the zero-force readings

c = [Cd, C1], (3.15)

the unbiased sensor data may be constructed as a linear combination of the biased outputs

as

t = M(s - c) (3.16)

for a given output data vector. The "true" data values may be found by solving the following

linear equations:

dt = moo(ds - Cd) + moi(l - c =)t = mio(ds - Cd) + mii(l - cl) (3.17)

To compute the coefficient matrix M, we require two data points (dso, 180) and (dsi, ls1)

to correspond to (dto, lto) and (dti, lI), respectively. So (dto, leo) = (1, 0) and (di, li)

(0, 1). So, we have

S =dio dt1 3.8

Ito i1

T =(dso - cd) (ds1 - cd) (.9

(,so - cO) (1s1 - CO)



dio d1 =M (dso- cd) (ds1 - Cd) (3.20)
Ito lt1 (1'o - ci ) (1, 1 - ci )

Therefore Ml is found as

M = S\T (3.21)

where the \ operator denotes the left matrix division via Gaussian elimination.

3.5 Results

The first bow (CodaBow Colours) showed a great decrease in the sensitivity of the strain

gauges, which was noticeable even within a period of three days. Ultimately, the resistance

values of several of the strain gauges failed to change with the flexion of the bow stick.

Because of this, it was determined that the foil gauges were no longer properly adhered to

the surface of the bow stick. Though considerable care was taken to abrade the surface of

the bow before proceeding with the installation of the strain gauges, and the same appli-

cation techniques were used for this bow as for the preliminary test bow, the weakness of

the bonds between the devices and the bow were most probably caused by the properties of

the paint applied by the manufacturer. It was decided that any special finish applied to the

carbon fiber bow stick renders the bow unsuitable for strain gauge installation. Therefore,

all plans to work with the CodaBow Colours bow, or indeed any bow lacking a raw graphite

surface, were abandoned at this point in this research project.

Like the original test bow used to confirm the operation of the strain gauges, the last two

bows altered to carry the Hyperbow electronics were made of composite graphite without

any chemical applications. None of the strain gauges installed on either of the CodaBow

Conservatory bows utilized exhibited any problems similar to those on the Colours bow.

That is, there was no signal degradation over the period of this thesis project. Though data

from only the last iteration of the Hyperbow is shown in this document, both of these bows

were capable of producing reliable and responsive data.



3.5.1 Computation of Sampling Frequencies

The position data was sent to a PC workstation at a baud rate of 19200 bps. In the serial

protocol used to package the data, each sensor value was sent in a 5 byte packet. Including

start and stop bits, there were 50 bits per sensor packet, therefore 2 x 50 = 100 bits were

necessary to transmit each of the two sensor values corresponding to the strengths of the

signals from the tip and the frog once.

The time required to transmit the two position sensor values once was

lO0bits = 0.005208sec 5msec.
19200bits/sec

There was a 1 msec delay written into the firmware code for the PIC16F877 on the

position receive board between the time at which the A/D converter was set and the time

at which it was read. Therefore, 2 msec must be added onto the total computed time,

resulting in a figure of approximately 7 msec for the time it took to send each of the two

position sensor values once. So, the sampling rate of the position sensing subsystem was

1/7msec/sample a 142.86samples/sec.

The baud rate for the acceleration and strain data was also 19200 bps. As in the case of

the position data, the serial protocol used to package this data sent each sensor value within

a 5 byte packet. Therefore, including start and stop bits, there were 50 bits per sensor

packet. So, 5 x 50 = 250 bits were necessary to transmit each of the five sensor values

once.

The time required to transmit all five sensor values once was

250bits = 0.01302sec 13msec.
19200bits/sec

In the firmware code, there was a 1 msec delay between the time at which the A/D

converter was set and the time at which it was read, so, for two strain gauges, 2 msec must

be added onto the total computed time. In addition, each of the three digital accelerometer

signals had a period of I msec, resulting in an increase of 3 msec.

Finally, there was a 6 msec delay after sending each one of the sensor values once.

Therefore, the total time spent to sample each sensor once is approximately 13 + 2 + 3 + 6 =



Component Current Drawn

Linx 900MHz transmitter 15mA
strain gauge bridges 6mA (3mA each)

PIC 0.6mA
accelerometers 1.2mA (0.6mA each)

remaining components 3.2mA

TOTAL 26mA

Table 3.2: The itemized power budget for acceleration and strain subsystems. The power
for this prototype containing 2 strain sensors composed of 1000Q gauges has been greatly
reduced from that of the first prototype that contained 6 strain sensors using 350Q gauges.

24msec. Thus, the sampling frequency for the acceleration and strain subsystems was

1/24msec/sample ~ 41.67samples/sec. This value, as well as that corresponding to the

position sensing subsystem, could easily be improved by increasing the baud rate.

3.5.2 Power Budget

The total power drawn by the bow board on the third Hyperbow prototype was measured to

be 26mA. Below in Table 3.2 appears an itemized list of the power consumption, including

the Linx transmitter, the PIC microprocessor, the strain gauge bridges and accelerometers,

and the remaining components that comprise the electronics system, i.e., the differential

amplifiers (2), NPN transistors (2), and discrete components.

Because the power consumption of the third and final Hyperbow prototype was much

lower than that of the first, the Panasonic CR-2PA/IB battery used was much larger than

necessary in this case, yielding a battery life of approximately 28.85 hours. A smaller,

lighter battery may be used in future, as the 26mA demanded by the final version of the

Hyperbow is well within the capabilities of many batteries.

3.5.3 Dynamic Range and System Noise

The firmware read the accelerometer sensor values as 8-bit numbers. During normal play,

the accelerometer sensor values were observed to be constrained within a range possible to

describe with 7 bits of data. That is, though the output was a number within the range of



0-255, its value never varied by more than 128. Similarly, the strain sensor values, though

reported as 10-bit numbers within a range of 0-1023, also were ultimately represented by 7

bits without losing information.

The noise in the acceleration signals was observed to be negligible compared to the

signal strength. However, the measurements of the lateral strain gauge signal yielded a

noise variance of 0.89%, while the downward strain exhibited 1.4%. These measurements

were taken from the bow while it was vertically suspended and free of all applied forces.

3.5.4 Weight and Balance Point

The overall weight of the Hyperbow was improved by more than 8.235g in the third ver-

sion (see Table 3.3). The difference between the balance points of the second and third

Hyperbow prototypes was of great importance. In the former, the balance point shifted

from approximately 25.5cm from the frog end of the bow stick to 30.3cm, and in the latter

the addition of the sensing electronics moved the balance point to 21.7cm. (Both of these

measurements were taken without the position sensing components.) The shifts in the bal-

ance points of the third prototype in both configurations are both much more favorable than

that of the second prototype, as a shift toward the tip of the bow results in a great burden

on the right hand. Thus, the playability of the third prototype was improved Hyperbow

considerably. As mentioned above, the position of the balance point may be improved in

future by the adoption of a lighter battery.



Component(s) Weight (grams)
3V Lithium Battery (750mAH) 11.212

Unmodified Conservatory CodaBow 60.930
First Bow Board (+ABS mounting strip) 12.342
2nd Hyperbow (without position sensor) 97.986

Revised Bow Board 8.986
3rd Hyperbow (without position sensor) 85.114

3rd Hyperbow (with position sensor) 89.751

Table 3.3: The largest single contribution to the weight of the Hyperbow was the lithium
battery. Because the The reduction in the size of the bow board used for the third prototype
was a considerable improvement, as the third prototype's weight, even with the position
sensing hardware, was more than 8g less than the that of the second.



Chapter 4

Evaluation of Sensor System

4.1 Users

In addition to the author of this thesis, five other violinists, including Joshua Bell, tested the

Hyperbow at various stages of its development. The data exhibited in the following section

of the document is that given by two experienced players, both with strong backgrounds

and committed training in classical music technique.

4.2 Examination of Bowstrokes

The initial evaluation of the sensing system for the Hyperbow in its final incarnation before

the completion of this thesis, the third prototype, began by recording gesture data, from two

experienced violinists as they played a series of repeated bowstrokes. The Turnkey pro-

gram recorded the gesture data for the three acceleration and the two strain measurements

corresponding to the assigned bowings.

The set of bowstrokes included legato, detache, martele, spiccato, ricochet, and stac-

cato strokes (see Table 4.1). Recordings of each of these were made at four different dy-

namic levels, as the players were instructed to play at p, mf, f, and ff dynamic levels.' Of

course, the executions of these dynamics indications were subjective, based on the indi-



Bowstroke | Description
Legato Multiple notes slurred on one bowstroke; smooth

transitions between notes, evenness of tone, "on-the-
string."

Detache Steady notes played with separate bowstrokes,
smooth changes in bow direction, even strokes with
constant pressure applied to the bow, "on-the-string."

Martele Percussive notes played "on-the string" with separate
bowstrokes; accent at the beginning of each note, rest
between notes; requires definite preliminary pressure
before each note, release of pressure after each note.

Spiccato Notes played "off-the string", bow leaves the string
after completion of each note and drops onto the
string for the next, motion of the bow describes an
arc so that the bow hair contacts the string at or near
the lowest point in the arc.

Ricochet Succession of notes played on one bowstroke, but
only one gesture of force is made as the first note
is sounded; the following notes are sounded by the
independent bouncing of the bow on the string.

Staccato Succession of short, accented notes played on one
bowstroke while the hair of the bow remains in con-
stant contact with the string; quick release of pressure
on the bow after the completion of each note.

Table 4.1: For the purposes of evaluating the sensing system of the Hyperbow, sensor data
was recorded as 6 of the most common bowstrokes were executed by 4 accomplished vio-
linists. Four recordings were made of each bowstroke at constant dynamic levels described
as p, mff, andff. The bowstrokes were all performed on the same two repeated notes with
no vibrato.

vidual player's interpretation. All of the bowstrokes were performed with the repetition of

notes G and A (440Hz) on the D string (fingered by the first and second fingers in third

position).

After inspecting the data using MATLAB, it was clear that the sensor data was repeat-

able, in that violinists were able to reproduce the same data for identical bowing. Data

corresponding to a given bowstroke was markedly different from that of another, as ex-

pected.

For example, below, data is shown for two players playing a detache stroke (see Fig. 4.1)

'In standard music notation, the dynamic references piano (p), mezzoforte (mf),forte (f), andfortissimo
(ff) indicate "quiet", "moderately loud", "loud", and "very loud", respectively.



followed by a legato stroke (see Fig. 4.2). The lateral force plots for both players of the

datache stroke show the same visual characteristics: a rapid oscillation in force that grows

slightly throughout the stroke's duration. In contrast, the force plots for the legato strokes

have a markedly different appearance, consisting of wide slow peaks and valleys corre-

sponding to greater and lesser force applied throughout the stroke.

Further, note that the ranges of the sensors were adequate, for no bowing was executed

that was not visible in the data (i.e. the sensors did not saturate). Most interestingly, data

taken from different violinists playing the same bowstroke was remarkably similar for all

five sensors, as had been hoped.

In addition to the data collected of individual bowstrokes, recordings were taken of

short fragments of solo music, for the simple purpose of observing the natural range of

data for each sensor as played by individual violinists.

In each of the sensor recordings an easily recognizable spike was present in the down-

ward force values, as well as in several of the other data streams. This spike was creating

by the act of quickly tapping the bow hair on the string just before the commencement of

the repeated bowstrokes. This was done in order to provide a means of synchronizing the

sensor data with audio data later. For, in addition to the Turnkey recordings of the gesture

data, recordings of the audio were also attained using MATLAB.

Of course, there was an obvious complication introduced by recording the data by two

separate programs. Because the two recordings were initiated individually, one after the

other, the data streams were not synchronized with each other. To solve this problem, the

players were instructed to bounce the bow onto the string once before beginning the exe-

cution of the bowstrokes. Although analysis of the audio data and the sensor data together

has not yet been performed, by inspecting the two separate sets of data and compensating

for the differences in their sampling rates, it will later possible to align the data plots with

respect to each other using the spikes in the audio and the strain and acceleration values

corresponding to the bounced bow event as indicators. Such a study of the sensor data

and the audio data will provide an interesting account of the degree to which each sensor
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Figure 4.1: The detache bowstroke is performed by drawing a separate stroke for each
note. Here, the bowstroke is repeated in alternating pattern with notes G and A on the D
string (third position) with two notes per beat at a rate of 72 beats per minute. The start
of the detache repetition is preceded by the sharp spike seen most easily in the downward
force measurement before sample 200. The behaviors of all five sensors are similar for
both players. The change in bow direction is most easily observed from the x acceleration
graphs.
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Figure 4.2: The legato bowstroke is performed by drawing the bow to sound a succession
of notes. Here, the bowstroke is repeated in alternating pattern with notes G and A on the
D string (third position) with two notes per beat (and per stroke) at a rate of 72 beats per
minute. The start of the legato repetition is preceded by the sharp spike seen most easily in
the downward force measurement before sample 200. The behaviors of all five sensors are
similar for both players. As expected, the changes in acceleration for the legato are much
more subtle than for the detache.



measurement is extractable from the audio, but this exercise must be accomplished in the

future.

4.3 User Feedback

Because of the rapid deterioration of the strain sensors in the first experimental bow, very

little testing was performed on it. The author as well as Joshua Bell tested the second

version of the Hyperbow. The performance of the acceleration and strain sensors was

determined to be sufficient, both in terms of range and sensitivity, but the physical feel of

the interface itself called for improvement.

Though the increase in weight of the bow was considerable, the bow was determined

to be manageable, though of course quite different in feel to a traditional bow. After a

period of bowing while growing accustomed to the addition of the various wires, it was

determined that the attempt to maintain the balance point of the bow, by placing the bow

board toward the tip of the bow, rather than on the frog end, as had been done before

(Digital Stradivarius project), yielded no measurable advantage. The balance point was

moved from approximately 25.5cm from the frog end of the bow stick to around 30.3cm

after the addition of the bow board, battery, and wires. Because the right hand acts as a

kind of lever, with the thumb as the fulcrum, balancing between the forefinger and fourth

finger, all of the tasks of control are made more arduous by the addition of weight to the

left of the forefinger. Given the choice to add weight at the precise location of the balance

point or to the frog end of the bow, under the right hand, it is better to choose the latter so

as to reduce excess strain on the right hand.

In the third version of the Hyperbow, the bow board was relocated and re-fashioned

to fit the frog of the bow. Six players, including the author, tested the third version of

the Hyperbow and evaluated the comfort of the interface for the left hand. The addition of

weight to this bow was reduced from that of the earlier versions of the Hyperbow, due to the

reduction in the number strain gauge channels and the incorporation of the smaller ceramic



package ADXL202E accelerometers, but the weight increase is still marked. However,

because of the placement of the board on the frog, the bow was determined to be much

less tiring over longer periods of play than the previous version. In this case, the balance

point of the bow moved from 10.004 cm from the frog end of the bow stick to 19.8cm.

Unfortunately, there was no alternative found to the largest contributor to the weight of the

bow, the battery. The sensors on this bow showed no appreciable loss in sensitivity and

were deemed quite satisfactory in their response to physical gesture.

The presence of the bow board on the frog was easily tolerated, as the fingers of the right

hand have no cause to come into contact with the side of the frog closest to the player. It

was noted that special care had to be taken in order to avoid contact between the wires that

join the strain gauges in their Wheatstone Bridge configuration and the strings of the violin

while bowing. In general this was not a detriment, as the only danger is that the connections

of the wires will be broken through direct scraping against the strings, an action that is only

likely to occur with extreme pressure on the bow coupled with a larger angle of the right

hand wrist than is present under regular bowing conditions. Still, the presence of wires

on the bow is one of the greatest disadvantages to this sensing system, as they represent

possible points of vulnerability of the system as well discomfort for the player.

4.4 Next Steps

The data from the Hyperbow has been shown to be repeatable and reliable. The differ-

ent types of data also span a fairly large range of description of the bowing gestures of

a violinist. Together, the rather macroscopic view of bowing described by the position

measurements, the illustration of the acceleration forces, and the subtle strain measure-

ments detailing the underlying immediate, physical experiences of the bow stick created by

the careful bowing articulations of a violinist, provide several different perspectives from

which to view right hand violin technique.

Additionally, it is critical to note that not all of the data produced by the Hyperbow can



be extracted from the audio, as the lateral force measurement is not generally considered

when inspecting oscillations of violin strings. This measurement has also never been in-

corporated in a violin controller before. The angle of the player's wrist corresponds quite

strongly to the value of the lateral force on the bow, and indeed is an important element of

any violinist's right hand technique. It is an assertion of this work that this measurement

may prove an extremely valuable method of control when designing custom music appli-

cations, as a violinist has ready command over it at all times and may also mindfully alter

the volume of sound emitted from the violin while independently controlling wrist angle.



Chapter 5

Extended Example/Applications

5.1 Toy Symphony

The original performance goal for the Hyperbow was its inclusion in the Toy Symphony

program, as the physical interface of the Hyperviolin for soloist Joshua Bell. As such, it

was designed to maintain the sophistication of an acoustic violin while exploiting aspects of

physical performance made possible only with technological embellishments on the classic

design of the violin.

As its name would suggest, the performance of Toy Symphony will feature the playing

of toy interfaces. The primary goal of this project is to establish a paradigm in which chil-

dren can make music with interfaces better suited to them than standard traditional instru-

ments, contributing to the sophisticated performance in a meaningful way, while playing

new music toys created specifically for their use.

Because Toy Symphony also aims to introduce children to the world of new music, the

inclusion of the Hyperbow is furthers this goal. The sensing system might even enable a

virtuoso to share or guide the music created by the children, as it could be used to transmit

aspects of the violin's music to the toys as starting material. This possibility might allow

for new ways of sharing music and mentoring inexperienced players.

Because the position sensing subsystem is a revision of an earlier project, new music



applications for this feature were not explored in this project. Instead, emphasis was placed

on the creation of new scenarios in which to present the new musical possibilities enabled

by the addition of strain and acceleration measurements.

5.2 Nord Modular Demo

The initial music application developed for the demonstration of this project utilized the

Nord Modular synthesizer, manufactured by Clavia DMI of Stockholm, Sweden. As this

device is equipped with MIDI input and output ports, an audio input port, and the ability to

download patches from a computer with either a Windows or Macintosh platform, it was

ideally suited for the development of simple, portable demonstrations and experimentation.

The audio signal from the RAAD violin was connected directly to the audio input port

of the Nord Modular so that the direct sound produced by the instrument while bowed with

the Hyperbow could be altered with the gesture data extracted from the player's bowing.

Communication between the Nord Modular and a Dell Inspiron 3800 laptop for the purpose

of creating custom patches was established by means of a USB to MIDI converter, the USB

MIDISport 2x2 from Midiman, Inc. of Arcadia, CA (see Fig. 5.1). Creating the interface

between the Hyperbow and the Nord Modular so that the gesture data could be assigned to

MIDI controllers within the patch was more complicated.

The data from the bow was transmitted at a baud rate of 19200bps with a resolution

of 10 bits for the strain data and 8 bits for the accelerometer data (see §3.1.2). Because

MIDI data must be transferred at a baud rate of 31250bps and may have a resolution of

only 7 bits, the bow data had to be translated accordingly (see Fig. 5.2). The level of the

signal from the serial cable carrying the bow data was reduced by means of a MAX232

chip (manufactured by Maxim Integrated Products, Inc., of Sunnyvale, CA.) from the 0-9

Volt range to 0-5 Volt range. The task of translation was accomplished by a PIC 16F877-the

high-voltage version of the PIC on the bow board. The firmware for this microprocessor

was written to receive the data from the strain and acceleration sensors, truncate it, and
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Figure 5.1: The Nord Modular demo system was constructed by connected the audio output
of the RAAD violin to the audio input of the Nord Modular. The patch was designed on a
PC workstation that communicates with the Nord Modular via a USB MIDISport Midiman
MIDIIUSB interface. The serial data from the Hyperbow was converted to MIDI data by a
simple breadboarded circuit and then sent to the MIDI input port of the Nord Modular. The
Hyperbow was therefore able to manipulate the sound of the audio of the RAAD violin in
real-time using 5 MIDI controllers that were mapped to its 5 channels of acceleration and
strain data.
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Figure 5.2: The serial to MIDI converter used in the Nord Modular demo setup was con-
structed with a MAX232 RS-232 level converter (to bring the serial signal down to the
0-5V range); a PIC 16F877 microprocessor that read the serial data, truncated it to the 7-bit
MIDI range, and sent it out in MIDI format; and a DM74LSOO NAND gate chip used to
buffer the signal before sending it through the MIDI port.

scale it down so that it fell within the range of 0-127. The data was then sent out at the rate

of 31250bps through a MIDI cable to the MIDI input port of the Nord Modular.

It is important to note that the truncation and scaling of this data was possible without

diminishing the range of the sensors, as they were each only active within a 7-bit range.

However, it was still an advantage to have the high resolution of the 8-bit digital accelerom-

eter data and the 10-bit strain data (given by the A/D converter in the PIC 16LF877), as the

7 bits used to describe each sensor value in the MIDI protocol represented a value at higher

resolution.

This music demonstration incorporated very simple transformations of the original vi-

olin sound, such as delays, reverberation, filters, and equalization. As it was a very pre-

liminary experiment, focus was first placed on functionality. There remains much to do to

develop this music application.

5.3 Deeper Exploration/New Modes of Expression

Though it was designed to be an interface for a virtuoso violinist with a traditional classical

music background, the Hyperbow is meant to be an alternative for any violinist, or indeed,

for any player of a bowed string instrument. By offering possibilities for the real-time

alteration of acoustic or electric sound though gestures familiar and learned by the player,



the Hyperbow offers an endless supply of new sounds and musical options. The Hyperbow

enables players to view, inspect, and exploit the subtlety of their bowing.

The acceleration measurements allow the possibility to affect the sound of the violin

while the bow is not in contact with an open string. For instance, a player might use the

bow in air to perturb the music.

The new sensing system described in this thesis offers many new performance scenarios

to a violinist. For instance, a traditional acoustic violin may be played with the use of the

enhanced bow to control parameters in a sound synthesis engine. This may produce the

sound of a different instrument by altering the raw material of the audio signal generated

by the resonance of the violin and amplifying the transformed signal in real-time. As the

player makes the changes in the acceleration and the pressure of the bow on the strings that

result in the differences in the amplitude and attack of the violin's sound, she may not only

affect the same elements of the new synthesized sound (amplified above the vibration of

the actual string sound), but may also use the bow as a means of switching between sounds

and adding additional effects (i.e. reverberation). So, one may play a transcription of a

violin piece, such as an unaccompanied Bach sonata, that is composed for more than one

"voice".

Similarly, one may also imagine an opportunity to articulate selected components of

the harmonic content of the violin's sound by use of this enhanced bow. For instance, one

may use the strokes of the bow to amplify, individually or in small groups, the harmonics

sounded above any pitch played so as to subtly shape the timbre of the music. In fact,

one may amplify certain harmonics to such a degree that they are perceived as additional

pitches, so that with great care a player may induce with her bow melodies above that which

she is fingering on the strings.

The greatest hope for this bow lies in the value of the strain measurements, as they

provide a much different perspective of bowing technique than has been incorporated into

any similar music controller in the past. Though other types of data, such as position mea-

surement are interesting to employ in music applications, and indeed incredibly useful for



analysis, they may present obstacles for the creation of new and unique music applications.

For instance, position data, which allows one to inspect the movement of the bow across

the strings between the tip and the frog, can often encourage one to consider the bow as

a slider on a mixing board. This analogy works brilliantly, for a player can immediately

understand the aural consequence of the physical gestures of the movement back and forth

of the bow. Also, this movement is very controllable and readily separable from the pri-

mary functions of bowing to determine volume of sound, rhythm, etc. However, it often

becomes difficult to create new kinds of sound manipulation when the technique used to

generate the changes remains so linear.

As the Hyperbow is a new instrument, with different capabilities than a tradition bow, it

is hoped that future experimentation with the Hyperbow may lead to altogether new bowing

techniques.



Chapter 6

Future Work

There is much that remains to be done in the progress of the interface described in this

thesis and in the expansion of this work into related projects.

Some of the simplest tasks that could be completed in order to extend the work docu-

mented in this thesis include merging the position sensing subsystem with the acceleration

and strain subsystems, as well as adding bow-bridge distance measurements (essentially

the second component of position sensing). Also, the sensing system of the Hyperbow

could be adapted to be used with the viola, cello, or double bass.

More can be done to analyze the data collected by the Hyperbow in order to better

describe and classify given bowstrokes and differences in playing styles between violinists.

Such knowledge may even be used to enhance teaching tools and techniques.

There is much exciting progress to be made in improving the interface of the Hyperbow

in order to make it more comfortable to play, to reduce the vulnerability of the sensing

system, and to better accommodate the technological enhancements within the form of the

bow. The construction of a custom designed bow that better houses the sensing system may

also necessitate the design of custom devices, such as strain sensors, whose form factor and

material properties are better suited to this application.

Research may be done to exploit the sensing techniques to help create models of bow

gestures. The two strain sensors currently present can be consciously controlled by the



player somewhat independently of those actions essential for producing sound on the violin.

Therefore, these sensors are extremely valuable as music controllers. However, from a

scientific viewpoint, there is value in investigating the manner in which the bow flexes and

strains along its length during play. Additional strain sensors may be added to the bow stick

in order to measure these behaviors.

Also, the possibility of using the Hyperbow to play already existing models of bowed

strings, or indeed models of altogether different sounds, may be pursued. This might enable

a person who has particular skill playing a violin to play other instruments in a style that is

somewhat violinistic.

Just as the Hyperbow project centered on the desire to capture the smallest articulations

of the violin bow to develop new avenues of expression for a player, the concept of accom-

plishing the same task for the articulations of the left hand fingers on the violin fingerboard

is clear. By building a fingerboard that may be incorporated into the design of an acoustic

or electric violin (most likely an electric violin, due the fragility of the wood in an acoustic

instrument) that measures multi-point position and pressure, one might begin to see the cor-

responding details of musical expression found in the study of the bow gestures. Perhaps

this would enable the development of new left hand violin technique and new fingerboard

interfaces separable from the violin itself.

One might also hope that the design and construction of new bows would inspire the

development of new stringed instruments. New instruments that perhaps require less profi-

ciency of the left hand, or even no left hand technique whatsoever, may be built to compli-

ment the complexity of new bowing techniques.

The future of the violin is wide open. The possibilities to make new music in ways

that are idiomatic to this classic instrument, its technique, and its sound are seemingly

endless. One of the most important features of violin performances to maintain though, is

the emphasis on the performer and her mastery of the instrument.



Chapter 7

Conclusion

The work outlined in this thesis endeavored to reveal the sophistication of physical gestures

necessary to play a bowed string instrument, capture descriptions of these gestures through

measurement, and show the possibilities for exploiting these individual degrees of control

in order to manipulate the sound of a violin in new ways.

The Hyperbow project successfully incorporated the three sensing subsystems for bow

position, acceleration, and strain. However, special focus was given to the acceleration and

strain sensors throughout the development of this work. Improvements were made in the

implementation of the overall system as only the most controllable strain measurements

were maintained, downward and lateral strain, reducing the total number of strain sensors

from the initial number of six. This change, in addition to various changes in chip size,

board design, and mounting techniques, improved the physical interface of the Hyperbow.

Examinations of data taken for six different bowstrokes indicated that the acceleration

and strain measurements were reliable. That is, they were consistent and repeatable and

different for each bowstroke. In studying the data, it was also observed that the two types

of strain data exhibit behaviors that are not easily inferred by the audio sound of the strings.

Especially in the case of the lateral strain sensor, these force measurements were extremely

interesting as they offered two degrees of control that are easily separable from the minimal

action necessary to produce sound on the violin.



The sensing system of the Hyperbow illuminated the tactile nature of playing with the

violin bow and the physical interactions between a player and an instrument. These physi-

cal interactions are fundamental to music, for music cannot be understood simply through

audio analysis. As proven by the continued interest in hearing and seeing live music per-

formances in person despite the proliferation of music media, the remaining admiration

for noisy recordings of the past and present day, and the desire of many to make music

themselves, there is an essential physicality to music. This important aspect of physicality,

of forces applied to an instrument that are naturally musical, was an ideal embraced by the

creation of the Hyperbow.

One of the most important beliefs motivating this work was that fine instrument-making

should continue to evolve. The goal was not to in any way replace beloved traditional

instruments, but rather to try to further exploit the features that make them so compelling,

with respect to the quality of the sounds they produce and the physical interfaces they

provide. The Hyperbow was designed to be a new type of bow, offering possibilities not

available from a traditional violin bow, while of course losing some of the traits of the

classical model as well. Throughout its progress however, the Hyperbow maintained the

features of the natural violin sound and how it is produced and the intricacy of right hand

bowing technique.

The Hyperbow project signals the beginning of a new level of expressive measurement

in violin controllers that may help to better describe the musicality inherent in violinistic

gestures. The creation of such new musical instruments that may begin to approach the

sophistication in sound production and physical technique essential to the violin may not

only lead to the creation of new music, but also to new ways for performers and audience

members to share in it.



Appendix A

Protel PCB Schematics

This appendix is devoted to the full printed circuit board (PCB) schematics for the elec-

tronics for the Hyperbow project described in this thesis.
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Figure A. 1: The first bow board design includes 2 accelerometers and 6 strain sensors. The
design for the receive board is also.
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Figure A.2: The second bow board design includes 2 accelerometers, 2 strain sensors, and
minimal additions to generate the 50KHz signal for the position sensor. The design for the
receive board is included.
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Figure A.3: The design for the position data receive board includes 2 bandpass filters (using
LTC1562-2 quad universal filters) for the 50KHz signal and the 100KHz signals, and 2 peak
detectors (using OPA2350 op-amps).
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