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Abstract

Two factors are fostering the development of three-dimensional (3D) dis-
play of medical data. First, the continuing improvement of imaging equipment
for medical scanning provides data with higher spatial resolution and increasing
signal to noise ratio. Such data lend themselves well to image enhancement
and computer-graphic 3D reconstruction algorithms. Secondly, as display tech-
nologies improve, different methods are becoming available for displaying these
three-dimensional medical data for more complete understanding. Various meth-
ods of 3D display are available, such as the varifocal mirror, head-tracked display
workstations, and holographic stereograms.

By combining recently-developed volumetric rendering techniques which pro-
vide an excellent visualization of the scan data, and holographic stereogram
technology, it was hypothesized that the spatial images generated would allow
rapid and accurate comprehension of complex volumetric data. In this work, an
exploration of holographic display of computer-graphically reconstructed medical
data is documented. The implementation of a volumetric rendering algorithm
which generates computer graphic images, and the method of recording these
images holographically is also documented.

Thesis Supervisor: Stephen A. Benton
Title: Professor of Media Technology
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Chapter 1: Introduction

Modern medical imaging methods such as Computed Tomography, Medical Resonance

Imaging, and Positron Emission Tomography produce arrays of images of parallel cross-

sections comprising a volume. The resulting slices provide a visual map of some structural

or functional information inside the volume.

Two factors are fostering the development of three-dimensional (3D) display of such

data. First, the continuing improvement in imaging equipment for medical scanning pro-

vides data with higher spatial resolution and increasing signal to noise ratio. Such data

lend themselves well to image enhancement and computer-graphic 3D reconstruction algo-

rithms. Secondly, as display technologies improve, different methods are becoming avail-

able for displaying these three-dimensional medical data for more complete understanding.

Various methods of 3D display are available, such as the varifocal mirror, head-tracked

3D display workstations, and holographic stereograms.

The goal of this work is to demonstrate that 3D perception of spatial display of medical

images can allow rapid and accurate comprehension of complex volumetric data. However,



because the vast amount of information contained within the data set may overwhelm

even the extended perceptual capacity of a good 3D display system, specialized image

editing and enhancement tools must evolve concurrently to maintain a clear presentation

of important structures within the data.

As a result, many techniques for detecting, rendering and displaying boundaries be-

tween regions of the data volumes as surfaces have been developed, and specialized hard-

ware to minimize image generation time have evolved. These techniques attempt to

successfully convey the 3D nature of the data with the aid of visual cues available in

conventional computer graphic imagery, including light and shadow, texture, perspective,

color and stereopsis.

Recently, a superior algorithm for visualizing three-dimensional surfaces called Vol-

ume Rendering has been developed. Its results supersede those of previously developed

techniques for rendering volumetric data. The algorithm renders tissue boundaries as sur-

faces, but avoids making any binary classification decisions in the process. As a result,

the images it creates provide clear visualization of surfaces, and remain free of the types

of rendering artifacts characteristic of many other 3D reconstruction algorithms. With

volume rendering, a clinician can display enhanced structures of interest while attenuat-

ing tissues of less importance. Such a tool for reconstructing medical data permits the

generation of images in which 3D structures of interest are clearly understandable and

unobscured by less important structural or functional information.



3D editing and rendering combined with spatial display offer clinicians the opportunity

to view complex spatial data in three dimensions. Since holographic stereograms provide

the highest level of image quality among any of the 3D display modalities currently avail-

able to medical imaging, the choice of this method of display for images generated by a

volume rendering system would provide the best spatial display for complex 3D scenes. In

such a format, the entirety of information contained in many rendered perspective views

of the volume is manageable and easily comprehended in one display.

Displays with such extended perceptual capacity that offer immediate and vivid insight

could be advantageous in many clinical applications. For instance, by offering a more

accurate presentation of bone surface orientations in three-dimensional space, holographic

display can be used to plan orthopaedic reconstructive surgery. Osteotomy surgery may

be enhanced if a surgeon is offered better pre-surgical visualization of the reconstruction

that is necessary. Acetabular structure can be displayed optimally in a spatial format

so that fracture and dislocation of the hip are clearly visible. Components of fracture

of the posterior column, the medial wall, and the sacrum can also be vividly depicted.

By viewing volumetric data displayed as three-dimensional surfaces, cardiologists may be

able to better identify congenital defects of the heart and the great vessels. In addition,

the complex vascular structure depicted by coronary and cerebral angiography can be

perceived clearly and unambiguously in one spatial display.

Holographic stereograms of medical data blend the two technologies of computer



graphics and holography. Due to the availability of specialized hardware and software,

computer graphic reconstruction of data is becoming more widely used by clinicians to

visualize areas of interest within a volume of data. In contrast, the use of holographic

stereograms in medicine is far from widespread, although such an idea is not new. It was

hypothesized that the combination of volume rendering and holographic display would

result in a spatial representation of medical data offering high image quality and enough

added information to stimulate interest among the medical community.

In this work, an exploration of holographic display of computer-graphically recon-

structed medical data is documented. The implementation of a volumetric rendering

algorithm that generates computer graphic images, and the method of recording these

images holographically, is also documented. Results are presented for three computer

graphic sequences rendered and two holograms generated.



Chapter 2: Background

A volume of medical data consists of many planes that are usually images of cross sections

through a subject. To make the information contained in this data fully comprehensible,

several stages of evaluation may be necessary. First, there is a need for the ability to

preview the raw image data yielded by the scans. Conventionally, volumetric data is

displayed in two dimensions by a clinician, slice by slice, on a display workstation that

offers interactive windowing and leveling facilities. These contrast enhancements map

each data value to a new data value so that some structural or functional detail becomes

more clearly visible. However, such 2D image processing algorithms by themselves may

not be adequate to depict three-dimensional structure.

Secondly, as a partial remedy for this situation, a clinician may find that the ability

to further interact with the data is useful. It is often desirable to filter out all but some

specific structural or functional region of the anatomical data, and then view the selected

tissues in a volume from a variety of perspectives. Suitable 3D image editing, processing,

and reconstruction algorithms are often provided by a computer-graphic workstation with

hardware tailored to these tasks. It is essential that the interface between clinician and



workstation provides the user with the ability to easily interact with the system. One

would also require that image generation times not exceed a few seconds.

Lastly, there is need for a practical means of hardcopy display of the data. A collection

of slices is usually presented as an array of separate two-dimensionai grayscale images on

a larger piece of film. These pieces of film are clipped to view boxes for small audiences of

clinicians to review. Ideally, hardcopy display would be quickly and inexpensively produced,

could easily be viewed and evaluated, and then filed with other relevant patient data.

Such a display must clearly convey all pertinent information to a viewer so that clinical

assessments can be made rapidly and accurately. A hardcopy spatial image would display

the slices as spatially aligned, and could clearly depict surfaces spanning multiple slices.

2.1 Conventional 2D Display of Medical Data

2.1.1 Black and White Display Issues

When displaying medical data on an electronic display with a grayscale colormap, one could

choose to present a black figure on white ground, or the reverse. Perceptual differences

between white-on-black versus black-on-white displays are not well understood. Since

radiologists are trained to examine radiographic film images in which tissues of the smallest

electron density are imaged as the highest film density, and dense tissue appears more

luminous, this convention may be the most intuitive for all grayscale display. Because



electronic imaging devices can offer either representation, a more clear understanding of

the perceptual differences between images displayed both ways would be helpful.

In absence of those perceptual criteria, other image-dependent factors might be used

to decide which format to favor. When either of these formats is presented on any type of

luminous display, large bright luminous areas in the display may be undesirable. Flooding of

the retinas by light from these areas due to intra-ocular scattering can decrease the ability

to detect subtle changes in contrast in the dense portions of the image. If discrimination

of these subtle changes in density are important to the evaluation of the image, it may be

wise to modify the colormap so that the large luminous areas are displayed as dark areas

instead. Not only does this veiling glare occur in film transparencies clipped to a view

box, but it is also evident in raster displays and holographic stereograms.

Unfortunately, the wide dynamic range offered by radiographic film is unavailable

in many other forms of display. For this reason, the human visual system's ability to

discriminate between levels of brightness is an important consideration in the design of

display equipment.

The number of brightness levels that the eye can perceive is dependent on many

factors; among them are the complexity of a scene and the structure and nature of

the edges within the scene. Sharp edge boundaries between two levels of brightness can

stimulate a perceptual over-emphasis of the edge known as Mach banding. In addition, the

gradient at the edge of an object of given contrast can have an effect on the detectability
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of the object. Furthermore, contrast perceptions can occur even in the absence of either

edges or luminosity changes (Cornsweet, 1970).

It has been determined that the contrast sensitivity of the human visual system peaks

when a spatial frequency of about three to six cycles per degree visual angle is used as

stimulus. This range of relatively low spatial frequencies seems to be most significantly

considered in a person's pattern recognition process. If a display is capable of resolving

more than six to eight cycles per millimeter, the ability to optically magnify portions of a

displayed image may improve comprehension in the diagnostic process.

When deciding how many bits of grayscale to incorporate into an electronic display, a

designer must consider these perceptual issues. Even when eight bits of grayscale are used,

which provides enough brightness levels to exceed discrimination requirements of human

perception, the actual display performance will largely depend on image characteristics.

2.1.2 Color Display Issues

On perceptual grounds, the use of color coding of Computed Tomogram (CT) images

can be justified. While using grayscale to encode this information limits the number of

perceptible brightness levels to approximately 103, the number of distinguishable colors is

estimated at upward of 106. This display range is much better matched to the extensive

information content of a complex CT slice.



However, reactions to the use of color to encode the spatial extent of anatomical

structure have been unfavorable among the radiological community. Radiologists are

carefully trained to comprehend the spatial map of anatomy provided by the attenuation

of x-rays, and feel that the use of color to code spatial extent is superfluous, or even

distracting. Indeed, the additional task of decoding the color assignment in an image, in

the absence of such a standard, might add more confusion to the display in many cases.

In a complex image, sharp boundaries between colors may create disturbing color contours

that are confusing to a viewer. Nevertheless, in an image that contains more smoothly

varying intensity throughout, color may enhance a clinician's ability to detect gradual

changes in signal intensity. Color can also be used effectively and acceptably to set aside

graphic and textual annotations on medical images (McShan and Glickman, 1987).

Unlike CT, which provides structural information, Positron Emission Tomography

(PET) provides a study of metabolic processes by mapping the distribution of positron-

emitting radioactive tracer material throughout the patient to data values. In this case,

color can be used to illustrate functional assessments of metabolic processes. Since it

is often desirable to detect gradual changes of signal intensity in PET, color coding can

provide an effective display.

Magnetic Resonance Imaging (MRI) allows the clinician to deduce chemical compo-

sition as well as structural information. For MRI, as for CT, color is not favored by

radiologists in the coding of structural information. However, color-coded display of MRI



data may be useful in some types of compositional or functional assessment.

Another way that pseudocolor techniques can be applied to MRI is derived from the

processing methods for LANDSAT imagery developed by NASA (Vannier et al., 1987).

Multispectral analysis and classification techniques performed on LANDSAT data can be

extended to operate on MRI data. A set of MRI volumes of the same subject created

by varying some imaging parameters constitutes a multispectral data set. Using this

technique, color composite images of anatomical slices, and theme maps can be generated.

Because MRI data is multidimensional, it may be easier in some cases to analyze with

colorization of component parts. In addition, when classification of tissue is necessary,

the use of multiple volumes generated by varying imaging parameters can greatly decrease

the probability of error in the classification.

2.2 Methods of 3D Editing and Reconstruction of Medical Data

Most of the techniques previously developed for 3D reconstruction of slice data can be

classified as one of two types of algorithms. In the geometric approach, data is segmented

into regions of interest, and geometric primitives that fit to these regions describe a

surface. The other approach considers volume elements (voxels) as luminous points in a

volume, and displays them as such.



2.2.1 Geometric Rendering Approach

In the geometric approach, pattern classification techniques are employed in the segmen-

tation of the data. A general outline that fits many of these 3D reconstruction algorithms

is as follows:

e object identification

* object representation / formation

e rendering of surfaces

* display of computed images

As stated above, the object identification step involves the use of a classification

procedure. First, the entire volume must be segmented into regions. Then, using some a

priori information about the object being detected, the regions that constitute the object

can be identified in each slice. In the absence of a priori information, criteria based on

the distribution of pixel values can be used for discrimination.

A general algorithm for region segmentation is stated as follows: For a volume, V, of

data, comprised of a set of slices, define

Sk = {v 1<x<X, 1 yY, z=k}



as the kth slice of V. The first step is to determine a subset 0 of volume elements (voxels)

in S as an object in V. Usually the data set is processed slice-by-slice, and the algorithm

proceeds by deciding which voxels in each slice belong to the region that defines the

object.

For Sk, for every k, a voxel v, is assigned to the region of interest if a certain condition

P(d(t)) applies. t is a feature vector associated with the voxel, and d(t) is a discriminant

function used to classify the voxel. Selecting an optimal feature vector and an appro-

priate discriminant function are themselves non-trivial tasks. A good feature set may be

determined on the basis of statistical analysis of the image slices. In the case of CT,

for example, a mapping from the set of voxel values to a set of tissue densities, or the

gradient of this mapping may be used as feature vectors.

Next a classification decision is made that matches the voxel to a region. In many

cases, a set of features does not definitively classify a voxel, and statistical decision theories

must be employed.

In CT, the simple case of separating bone from all other tissue, region segmentation

may be achieved by a thresholding operation. Then, the discriminating criterion is given

by

P(d(t)) E R



where t is a CT number representing a density value used as the feature set, and R is a

range of density values. Resulting from the segmentation in each plane is a set of voxels,

Ok,

Ok = {v VE Sk, P(d(t))}

where Ok defines a connected set of voxels to be the object of interest, 0. Once the

regions of connected voxels constituting 0 are known, it remains to develop information

about the contours of these regions. The use of contours to characterize an object in a

scene involves an algorithm that can be broken down into several steps. First, all edge

elements in a scene must be detected. Secondly, the edges must be assembled together

to form contour lines, and finally these contour lines must be grouped to be part of some

structure.

There are many different methods of contour detection and object representation.

In general, descriptions of contours bounding the regions of interest are generated for

every slice in the volume. 8-contours (Herman and Udupa, 1983) store and allow fast

access to information about the borders and the internal structure of an object. This

feature facilitates quick manipulation of the surfaces in three space. The chain-code

representation (Heffernan and Robb, 1985) of a contour can be nicely smoothed, helping

to alleviate jagged surfaces that owe to the cubic structure of the voxels from which they

were defined. And the Fuchs-Kedem-Uselton method (Fuchs et al., 1977) computes a

surface of minimum area by minimizing a path through a graph. This algorithm yields a

20



smoothed surface that is piecewise polygonal. The marching cubes algorithm can produce

superb surface detail, and can be extended to include texture mapping and transparency

(Lorensen and Cline, 1987).

2.2.2 Luminous Voxel Method

In the second category of 3D reconstruction methods, voxels are considered as luminous

points arranged in a volume with degrees of luminance corresponding to their voxel values.

An integration along the line of sight through the volume is usually performed for each

pixel in the image, and yields a final image that looks quite like a radiograph. Voxel

values that correspond to uninteresting tissue types can be ignored by a more intelligent

integration method, so that an image showing only tissues of primary interest can be

created (Kulick et al., 1988).

This type of algorithm considers all voxels in its visibility calculation, as opposed to

the previously mentioned class of algorithms that decides which voxels constitute a sur-

face in its segmentation and classification steps. However, luminous voxels convey little

information about the tissue boundaries. For example, no occlusion cues are available to

the viewer. Ideally, a reconstruction algorithm would convey as much information about

the structure of tissue surfaces as was available in the data set, and would avoid mak-

ing binary classification decisions that may result in unwanted rendering artifacts. Such

artifacts stemming from misclassified tissue may manifest themselves as randomly appear-



ing surfaces or holes in tissue boundaries, and degrade the integrity of the reconstructed

images.

2.2.3 Volume Rendering

Recently, research toward better reconstruction methods has resulted in the volume ren-

dering approach (Drebin et al., 1988, Hohne and Bernstein, 1986, Levoy, 1988). This

volume rendering method bypasses the need for surface detection altogether, and em-

ploys every voxel in its visualization calculations. The strength of this algorithm lies in

its avoidance of classification decisions. The volume rendering algorithm employs the use

of calculated gray level gradients which dual as surface normals allowing the rendering of

surface information with extraordinary detail. Because the method never has to decide

whether or not a surface passes through a particular voxel, it avoids generating spurious

surfaces, or creating holes in places where there should be none. By avoiding both sur-

face detection and surface geometric representation, a more direct volume visualization is

realized. As a result, a reliable representation of the information in the raw scan volume

is available along with the ability to emphasize structures of interest within the volume,

and de-emphasize those of less importance.



2.3 2D Display Shortcomings

Even the superior images generated with the volume rendering technique cannot com-

pletely convey the details about the dimensionality of the data to the viewer. Despite

clever use of monocular cues to depth in the image, the orientation of surfaces and their

location relative to one another in space remain ambiguous. However, depth information

can be conveyed by 2D displays by exploiting the kinetic depth effect. By displaying a

sequence of frames of a rotating scene, motion parallax is provided and a perception of ki-

netic depth is achieved. Studies comparing motion parallax and stereopsis have found that

both mechanisms provide similar comprehension of three dimensional textured surfaces

(Rogers and Graham, 1982). However, whenever the rotation is interrupted to facilitate

a closer inspection of the volume from one perspective, the depth information is again

unavailable to the viewer. The obvious advantage offered by "true" three-dimensional

display are their ability to clearly present spatial data in spatial form.

2.4 Role of Three-Dimensional Display in Medical Imaging

2.4.1 Cues to Depth

A variety of perceptual cues trigger physiological and psychological mechanisms to provide

a viewer with a sense of depth in a scene. Both monocular and binocular kinds of cues



work together for the perception of depth (Okoshi, 1976).

Monocular cues to depth perception hinge on the experience and imagination of the

viewer evaluating a 2D projection of a 3D scene. Some of the cues are: occlusion, light

and shadow, relative size, linear perspective, aerial perspective, texture gradient, color

and monocular motion parallax. Effective two dimensional display of spatial data relies on

the exploitation of these cues for the ability of a viewer to interpret the depth of a scene

with reasonable reliability.

However, the most reliable and compelling impressions of depth arise from the pre-

sentation of different perspectives to the two eyes, and the presentation of perspectives

that vary with viewer location. "True" three-dimensional displays use these techniques

to take full advantage of our perceptual capacity to interpret distances between objects

and orientations of surfaces. The viewer can use both the physiological cues to depth and

the psychological ones. The physiological cues include accommodation, convergence and

binocular parallax. Even in a simple stereo pair display, though motion parallax and pos-

sibly other monocular cues are absent, the binocular cues available can add significantly

to the comprehension of the locations and orientations of objects in the scene.



2.4.2 Slice Stacking

Various techniques for displaying stereo pairs of data have been devised, including wave-

length multiplexed, and temporally multiplexed displays, and stereo slide viewers. Al-

though these devices have been available for a long time, their lack of popularity may be

attributed, at least in part, to the required use of viewing aids such as colored spectacles

or specialized optical viewers.

Autostereoscopic displays do not impose such limitations on the viewer. One such

form of true 3D display that has been discussed in the literature is that of the varifocal

mirror display. This technology displays a stack of optically superimposed slices and is well

suited for operator-interactive visualization of the data in three-dimensions. However, the

varifocal can only display a limited number of voxels. In addition, the resulting 3D image

will not contain any occlusion of tissue from overlapping structures, and thus a powerful

cue to depth is unavailable in this form of spatial display. Furthermore, conventional

two-dimensional recording methods cannot capture in hardcopy form the depth dimension

inherent to the varifocal mirror's display.

2.4.3 Holographic Display of Medical Data

Holographic stereograms afford the useful ability to use computer-graphic images as com-

ponent views. These views can be enhanced to contain many cues to depth. Thus



medical computer-generated holographic stereograms combine the best features of com-

puter graphics and spatial display, and can provide an excellent visualization of a volume

of data.

Holography was first developed by Dennis Gabor in 1947 while he was working to

improve the resolving capabilities of the electron microscope. In 1962, the first practical

off-axis holograms were made by Emmett Leith and Juris Upatneiks. This development of

off-axis holography in combination with R. V. Pole's work in 1967 on synthetic holography

paved the way for high-quality holographic stereography.

The use of holographic stereogram techniques as a means of displaying medical im-

ages taken from multiple viewpoints is not new. The recording of integral holograms

using radiographic information is a well-established idea (Benton, 1973, Hoppenstein,

1973). Sequences of x-ray photographs of different perspectives are generated by moving

the cathode ray source and the camera unit, mounted on a U-arm, that records the x-ray

image of the patient. However, in many cases, the number of perspective images acquired

is minimized to reduce patient exposure and the resulting holograms have a narrow field of

view. Some computer-based x-ray systems employ backprojection algorithms to interpo-

late intermediate frames between the acquired ones, and thus permit the set of images to

include many more perspective views. Although such displays are not considered as being

of clinical value yet, many experimental holograms have been generated using sequences

of x-ray photographs (Lacey, 1987, Tsujiuchi et al., 1985).



Holographic stereograms in many formats have also been created using sequences of

images reconstructed from volumetric data (Benton, 1987, Fujioka et al., 1988). The

success of the holographic image relies heavily on the quality of the component images

used to produce the stereogram, as well as on the limitation of distortion and artifacts

introduced by the holographic process. To date, holographic display of volumetric medical

data has relied upon both geometric methods and luminous voxel methods to reconstruct

a medical scene from multiple viewpoints. With the application of volume rendering to the

holographic pipeline, the resulting spatial image can depict more exactly the information

of interest contained within the acquired volume. The integrity of the surface visualization

can allow clinicians to trust the reconstructed image as an accurate representation of the

acquired data. Furthermore, the increased perceptual potential of the display can manage

these complex dimensional data in an exceptionally intelligible manner.



Chapter 3: Volume Rendering Analysis

A volume renderer makes use of the entire volume of data in its reconstruction of the

surfaces contained within. Several additional volumes of information are computed and

stored during the rendering process.

The slices of data containing tissue electron or proton density values at every voxel

are kept available for the renderer to access during the rendering process. From this data

volume, a volume of density gradient vectors is computed. These gradient vectors are

used to approximate the surface normal at every voxel in the illumination calculation.

In addition, every voxel is assigned a degree of opacity. These opacity values (with

zero opacity corresponding to a completely transparent tissue) are stored in an opacity

volume. The mapping between data density values and the opacity of voxels that is used

to compute the opacity volume is user-specified, and permits interactive emphasis on

tissues of interest.

A volume containing color information for every voxel is also computed. The RGB

color components at a voxel are derived from an illumination calculation which models



the reflection of light from the surface specified at the voxel back to the eyepoint. If

color-coding information for tissue types is not included in the algorithm, the light source

color can be used to determine the color at a voxel location.

A ray tracing process is used to cast rays from every image pixel through the volume

of voxels. The color and coverage (transparency) of each image pixel are determined from

color and opacity contributions of voxels along a viewing ray cast from that pixel.

In the following sections, the acquisition of medical data as well as the calculation of

voxel grayscale gradients, opacities and colors will be outlined in greater detail.

3.1 Medical Data Acquisition

The volume rendering algorithm examined here relies on digital data for computer graphic

3D reconstruction. As a result, only medical imaging techniques that provide an electronic

stream of data (such as computed tomography, and magnetic resonance imaging) have

been considered as sources of medical images.

Computed tomography is the most common computer-based medical imaging tech-

nique. CT employs the use of many projection radiographic images which can be used to

reconstruct the three-dimensional anatomical information. Because various tissue types

possess different electron densities, x-rays from a cathode ray source that pass through

a series of tissues are attenuated according to the density of each. An array of sensors



opposite the source detects radiation corresponding to a distribution of electron densities

along a set of paths. One method for reconstruction, known as back projection, uses

the output of each sensor group to produce a two dimensional image of tissue density

convolved with the point spread function of the sensor. Deconvolution with the known

point spread function yields the set of slices in the form in which they are viewed and

evaluated. These slices also serve as input to the three-dimensional computer graphic

reconstruction algorithm.

CT provides both good spatial resolution (Figure 3.1) and high signal to noise ratio

of the data. Specifications on these parameters were obtained for an typical CT scanner,

and are provided in the figure.

Rather than illustrating the structural nature of the anatomy as CT does, MRI primarily

provides a description of the chemical composition of the subject. The generated images

record the manner in which the chemical constitution of a particular tissue type behaved

during the scan. In the presence of a large static magnetic field, the magnetic moment

of protons within the tissue align with the field. When a field perpendicular to the static

field is introduced as a perturbation, the magnetic moments of the protons precess about

the axis of alignment. This precession oscillation is detected with a radio-frequency (RF)

coil.

The most prominent contributor to the oscillation is the proton, (H+), which facilitates

imaging of soft tissue superior to that of CT. MRI also allows the assessment of the
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magnetic susceptability of a region which can indicate blood pools. In addition, the

availability of phase information in the MRI data permits blood flow evaluation.

After any number of possible MRI experiments that produce frequency data, a two-

or three-dimensional Fourier transformation yields the spatial map of tissue composition.

In this final form, the data can be viewed slice by slice or can be used as input to a 3D

reconstruction algorithm. MRI, like CT, provides good spatial resolution, although the

signal to noise ratio (SNR) is often inferior to that of CT (Figure 3.1).

For our purposes, data having high spatial resolution is of great importance, and for

this reason the imaging modalities considered in this work exclude PET, SPECT, and

many others. MRI and especially CT, however, provide excellent volume data sets for the

3D reconstruction algorithm explored in this thesis.

3.2 Gradients as Surface Normals

The volume rendering method of 3D reconstruction uses every voxel in the volume to

generate a computer graphic medical image. In order to render all points inside a volume,

a method of illumination calculation is necessary. Modeling the manner in which light

behaves on a surface requires knowledge about the surface's orientation. Volume rendering

makes use of the fact that surface normals can be approximated by the grayscale gradients

of the slice data. At interfaces between different tissue types, the gradient magnitude



density gradients / surface normals

Surface of tissue
as defined by density gradients

Voxels of same density

bounding voxels of a
different density

Figure 3.2: Gray-level gradients as surface normals.

indicates the surface priority, and the components of the vector specify the orientation

of the surface at that point in the volume (Figure 3.2).

The gradients are given by

Vd1 (x) = {1/2 [d(x+ 1 ,yj,Zk)-d(x-I_,y 3 ,zk)]

1/2 [d(x,y y+1,zk)-d(xi,y1l,zk)] 'r,

1/2 [d(x,.,yj',zk+1)-d(xi.,yy,zk_1)] kj

where d1(x) is the voxel value at point x = (xi, yj., kk) in the volume, and represents



either tissue density in the case of CT, or the proton density of tissue in MRI.

Since spatial resolution is not infinite, however, interplane sample points in the data

volume may not adequately represent small tissue neighborhoods. With this point in mind,

an approximation to the gradient can be made which may work better on the sampled

data.

,7d1(x) ~2! {[d(x,.+1,y ',zk)-d(x,-,y J,zk)] i

[d(x,,yj+1,zk)-d(x,yizk)] j,

[d(xi,y,,zk+l)-d(x1,y3 ,zk)] k}

This approximation can be used if the data has been processed to reduce any noise

introduced in the acquisition process. Spurious gradient vectors produced by noisy data

may indicate surfaces where none should be found. A simple averaging filter passed over

the slice data can help remove high frequency noise and improve the integrity of the

gradient calculation.

3.3 Grayscale to Opacity Mapping

In order to construct a useful mapping between voxel data values and voxel opacities,

some assumptions must be made. To illustrate these assumptions, it is useful to consider

the histogram plot of the voxel data. An idealized histogram plot of a CT volume is shown
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Figure 3.3: Idealized histogram plot of CT volume.

in Figure 3.3.

Using CT numbers ordered from the smallest to the largest value, assuming that each

tissue touches only the types adjacent to it in the ordering, and in addition requiring that

each tissue type touch at most two other tissue types, we can construct a piecewise linear

mapping from voxel values d(x) to opacity values a(x).

CT data is made up of arrays of voxels whose byte values specify the radio-opaqueness

of tissue at each sample point. The fact that three major tissue types (fat, soft tissue,

and bone) attenuate the source radiation distinctively is a great advantage, facilitating

easy classification of tissue in most cases.



Figure 3.4: Histogram plot of MRI volume.

Because MRI reflects the chemical composition rather than structural extent of the

subject, no satisfactory method has been found to use the voxel values to classify tissue

type unambiguously. The fact that different tissues may have similar composition results

in their representative data values having overlapping distributions. A histogram of an

example MRI head scan (Figure 3.4) illustrates the manner in which MRI data violates

the assumptions mentioned above that govern the grayscale to opacity mapping. As the

histogram shows, successful discrimination can be made between ambient noise and tissue,

and an air tissue interface is also usually obvious. As a result, only MRI experiments that

result in the imaging of few tissue types have successfully been rendered in this work.
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Air Brain
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192 224 2560 32 64 96 128
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3.4 Opacity Calculations

In order to provide a user with the ability to separate a structure of interest from sur-

rounding tissues, less interesting tissues can be assigned a high degree of transparency.

With the ability to interactively assign opacities to selected tissue densities, a user can

look through the volume, viewing opaque structures of interest surrounded by transparent

ones of secondary importance.

In a user-specified grayscale to opacity mapping, a user can assign specific opacity

values to grayscale values. The grayscale value at a particular voxel location is either

numerically bounded between two grayscale values specified in the mapping or is simply

equal to one of the specified values. An opacity at that voxel location is then found

by linearly interpolating between the two opacity values corresponding to two grayscale

values specified in the mapping.

Since, however, the focus of this thesis is on visualizing surfaces that clearly present

the 3D shape of many anatomical features, suppression of interior tissue visibility and

enhancement of tissue boundaries is desired. This visualization is achieved by using the

density gradient as a scale factor in the opacity calculation. The expression used for opac-

ity computation is as shown below.



|) Ivd(x) | {a. -_ } + aV,{ dn+ 1 ~d_ }} if de d(x) de+

0 otherwise

where d(x) is the density at the sample voxel location, dvn and dvn, are the lower

and upper-bound densities, and aVn and Cnr4 are the lower and upper-bound opacities,

specified in the mapping. I Vd1(x) I is the magnitude of the density gradient at the

sample voxel location. It is clear from this formula that when a voxel is surrounded by

voxels of the same tissue density, then its corresponding density gradient will be zero,

yielding a zero-valued opacity as well. This design allows us to visualize the boundaries

between tissues, and to ignore tissue interiors.

3.5 Color Calculations

A number of methods for shading the anatomical surfaces are available (Foley & Van

Dam, 1984). The simplest shading model is the depth-color display. This codes the

voxel brightness as a function of its distance from the viewer. If hidden surface removal

is applied to the data set concurrent with this shading approach, an effective display of

three-dimensional data can be achieved. Alternatively, even more sophisticated lighting



models can be applied in the calculation of voxel color. By modeling the surface as

a Lambertian one, the illumination calculation at a voxel depends both on the surface

orientation and the eye position. Especially in the case of direct volume visualization, it

is useful to also include the intensity of specularly reflected light. This addition to the

illumination model can highlight the more intricate surface modulations.

The Fresnel equation governs the directional behavior of specularly reflected light. For

imperfect reflecting surfaces (those that are not mirrors) the amount of light received by

the eye depends upon the spatial distribution of the specularly reflected light. Smooth

surfaces reflect light with a narrow spatial distribution, while reflected light from rougher

surfaces is more widely spatially distributed.

Phong's empirical model for the characteristics of specularly reflected light provides a

useful model for implementation. Specifically,

Is = llw(9, A)cos"4

gives the intensity of the specularly reflected light, and w(9, A) is the reflectance curve

giving the ratio of the specularly reflected light to the incident light as a function of

incidence angle, 0, and the wavelength, A. I1 is the incident intensity from a point light

source. The value of n is a power used to control the spatial distribution of incident light.



< is the angle that the reflected ray makes with the line of sight.

The complete illumination model which combines ambient, diffuse, and specular light-

ing effects is stated as follows:

I = IAKA + I1/(d+K) {KDcOSO + w(6, A)coSn<$

lA is the ambient light intensity, without which the surface will

space with no scattered light. K is an arbitrary constant and

the object from the viewer. KA, KD and Ks are coefficients

and specularity of the surface, respectively. This illumination

every voxel, using the gradient vector at that voxel location

normal vector.

appear in a non-atmospheric

d represents the distance of

of the ambience, diffuseness

calculation is performed for

as an analog of the surface

The calculation of color contributions to a final pixel color by the sample points along

a viewing ray was extended by Levoy (Levoy, 1988) from work done by Blinn (Blinn 1982).

The volume of data is modeled as a cloud of spherical particles. A single scattering cloud

model is used, in which the proportion of light reflected by a particle is small (less than

0.3).

If there are n particles per unit volume, then n is called the particle number density.

The proportion of the cloud volume occupied by particles of radius p is the particle number



volume multiplied by the particle volume.

D = n (j)irp3

Because the overlapping of particles is not physically possible, the probabilities of particles

situated inside a volume are not strictly statistically independent. The occurrences of

several particles inside a volume can be considered independent events if it is assumed

that D is small owing to low particle number density.

Under this assumption, the probability of K particles in volume V can be expressed as

the Poisson process,

P(K;nV) = EO (nv)r e~"V

where nV is the expected number of particles in V. The probability that zero particles are

contained in V is given as

P(O;nV) = e-nv



and likewise, the probability that the number of particles in volume V is greater than zero

Is

P(> 0; nV) = 1 - e~"v

Levoy develops the model for computing voxel brightness as follows. In a cylindrical

sub-voxel beam of radius p passing through Z voxels, if one or more particles are encoun-

tered in voxels z+1 through Z (closest to eye), then the brightness of the beam is given

by

P(> O;nV,, O;nV.+i, ;nVz) = (1 - e-n.V) z+i e-nvm

The resulting brightness due to contributions along a ray having the same height and

width as a voxel passing through Z voxels of unit volume (V,=1) is as below.

B = J:Z 0 {Bz(1 - e-nz) HI=z+ e-nm}

Substituting a, = 1 - e ", the following can be obtained:



BEz M {B0 H=+1 1-am}

This representation of brightness allows computation of pixel color from color and

opacity samples along a viewing ray using the following:

C(ij) = E'Lo {c(x1,y3,zk) a(x,,y,,zk) H=+1 (1-a(xi,yj,Zm))}

where K is the total number of sample points, c(x)s and a(x)s are colors and opacities

determined through bi-linear interpolation at the sample points, and an initial c(x1,y-,zo)

is the color of the foreground with a(xj,y3,zo) = 0.

Using these models for illumination and transparency, color contributions along rays

tracing from pixels in the image plane through the volume are summed from front to back,

and a final rendered view is created. It should be noted, however, that the transparency

model, while allowing the occlusion or attenuation of particles by one another, does not

take refraction into account.



Chapter 4: Design of Volume Renderer

4.1 Overview of the Rendering Process

The input to the renderer is an array of images (Figure 4.1), created by a CT or MRI

scan. Each 8-bit or 16-bit valued voxel represents a tissue electron or proton density,

respectively. The raw data values do(x) at voxel locations x = (Xio, yJO, zko) may require

interpolation, most likely in the inter-plane direction to create more slices, or may require

contrast enhancement or filtering.

Isotropic data (cubic voxels) will lead to undistorted reconstructed images, though

acquired data is usually anisotropic. Consequently, a number of slices must be interpolated

between each pair of originally acquired slices, depending on the ratio of slice-separation

to in-plane pixel spacing.

# interpolated slices = (slice separation-inplane pixelspacing)
(inplane pixelspacing)
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Both intra- and inter-slice interpolation, contrast enhancement and low pass filtering

to reduce noise comprise a data preprocessing step that yields a volume of prepared values,

di(x), at voxel locations x = (x1, y,, Zk) (Figure 4.2). The d1(x) are used as input to

the mapping procedure which classifies grayscale values to tissue type corresponding to

opacity values a(x). In addition, the d1(x) are used to compute gray-level gradients,

Vdi(x), for all voxels in the volume. As mentioned previously, these gradient vectors will

serve as surface normal vectors in the illumination calculations of the render (Figure 4.3).

The gradient calculation needs to be done only once for the prepared data set.

Each time a user wishes to change the transparency of tissues in a data set, a new

grayscale-to-opacity mapping must be constructed, and a corresponding opacity volume

must be calculated. Both the data volume and the gradient volume are used to find the

opacity volume (Figure 4.4). The gradient magnitude serves as a priority indicator of

surfaces such that the surface boundaries, where gradient magnitudes are substantial, are

enhanced, and tissue interiors are transparent.

Due to limited disk space, only these three volumes, data, gradients and opacities, are

stored during the rendering. Once these volumes are at hand, the rendering can begin.

The entire pipeline is shown in Figure 4.5. For each plane of data, the Vd1(x) are used to

compute colors at every voxel location. These colors, cA(x), are calculated by evaluating

the Phong model at every point. Calculations for color are done as needed, and are not

written to memory for future use.
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Figure 4.2: Data preprocessing step.



Density gradient at every voxel

Figure 4.3: Voxel gray-level gradient calculations.
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Figure 4.4: Voxel opacity calculations.



Figure 4.5: Rendering Pipeline.
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Color contributions are computed for each sample point along a viewing ray by bi-

linearly interpolating colors and opacities in the four voxels closest to the ray intersection

location in the volume. Since one ray is cast per image-plane pixel, final pixel colors are

built up of color contributions from some number of evenly-spaced sample points along

each ray. By casting rays through every image-plane pixel, the 3D reconstruction of the

data is realized.

4.2 Ray Tracing

The ray trace algorithm is extremely parallel in nature. Ideally, it is suited for implementa-

tion on a parallel architecture, where each ray could be evaluated by a separate processor.

Such an implementation would be the most efficient one.

However, the flow of the algorithm had to be reformatted to perform optimally on

a Von Neumann machine, and thus the inherent parallelism has been destroyed in this

implementation. Because the entire data, gradient, and opacity volumes would not fit into

core memory simultaneously, design considerations were made to sequence through the

volumes efficiently. These volumes are examined plane by plane, with each plane being

loaded into memory only when the ray calculation requires it. As a result, the working set

(the data that the algorithm is using at any one time) will be resident in fast memory for

the processor to use. All other data is held on disk until needed.



For every image-plane pixel, one ray is cast. The number of evenly spaced sample

points along the rays can be varied by the user. Usually, two sample locations per voxel

are used to insure that every voxel is adequately represented along the ray from any

viewpoint. An orthographic projection is achieved by casting rays parallel to one another.

Using an orthographic rather than perspective projection greatly increases the speed of

the algorithm.

Before calculating any color contributions along the rays, the ray slope must be deter-

mined. This calculation is achieved by evaluating the slope of a line from the eyepoint to

the center of the data volume, usually point (0.0, 0.0, 0.0). This slope is applicable to all

of the parallel viewing rays. Using the user-specified sample-point spacing, steps Ax and

Ay are determined that represent the distance from one sample point to another along

the x and y axes. (It should be noted that eyepoint movements are limited to horizon-

tal variation in this implementation, a reasonable restriction for animations destined for

holographic horizontal-parallax-only (HPO) display.) Pseudocode for the ray tracing loop

is presented below.

e Initialize all rays in front plane of volume

* Initialize final image to have c(n) = (0,0,0)

for all n = (ui, v.), for 0 < i < image width,



and 0 < j < image height.

* Initialize coverage file to have

a(n) = 0 for all n = (ui, v),

for 0 < i < image and 0 < j < image height.

o Calculate color at every voxel in the front two planes in the volume

o For each sample point increment along the rays

{

o If sample points have moved between two new planes

o Calculate color at every voxel in the two planes

corresponding to data and gradient planes surrounding

the current ray sample points

o Else

o Use two previously calculated color planes

o If image-plane pixel coverage < some MAX OPACITY

o Perform bilinear interpolation at each sample point

to find the color and opacity

o Contribute these sample points to the final image

o Update pixel coverage information in the coverage file

}

* Increment all rays by (Ax, Ay) to next sample points.



Figure 4.6 illustrates this process. In the figure, when the new set of sample points

is incremented to example plane P1, colors for all voxels in plane A and for all voxels in

plane B are calculated. Also, previously calculated opacities for voxels in plane A and B

are read into memory.

A ray structure contains the location of all the new sample points. At each sample

point, the contribution to the corresponding image pixel is computed by bi-linearly inter-

polating color values and opacity values from the four nearest neighbors (Figure 4.7). The

interpolation yielding the color at a sample point s is

c(s) = y ((1 - x)c(ai) + xc(a2)) + (1 - y) ((1 - x)cA(bl) + xcA(b2))

and likewise opacity at s is

a(s) = y ((1 - x)a(a1) + xa(a2)) + (1 - y) ((1 - x)a(bi) + xa(b 2 ))
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Figure 4.7: Bilinear interpolation of color and opacity values.



In addition, the information in a coverage file, which contains the opacity of every pixel

and can be used to composite images together, is updated using the opacity of the new

sample points.

The coverage file can be initialized to indicate zero coverage with the final image

being initialized to have cx(x) = (0, 0, 0). Alternatively, the compositing of images

can be achieved by filling the final image with another previously computed image, and

initializing the coverage file with the corresponding coverage information. This type i

compositing, however, would not accurately combine a rendered image of one tissue with

that of another, if both tissues occupy the same part of the volume. Rather, a rendered

image of a region of tissue entirely in front of another region of tissue can be composited

with the rendering of that region. This technique is useful when disk space is inadequate

for accommodating a large data volume. By splitting up the volume, an image can be

rendered in two passes. In addition the final coverage file can be used to composite the

final rendered image to some other background in a post-processing stage.

Once all sample points in plane P1 have contributed to the final image, each point is

incremented by (Ax, Ay) in plane P 2. Computed colors for voxels in plane C now replace

the ones which were kept for plane A, and previously calculated opacities for plane C are

written over the ones kept also for plane A.

This process repeats until all of the sample points have been considered, at which time

the final image is complete.



4.3 Rendering for Holographic Display

As mentioned previously, the eyepoint in this implementation is free to move only about

the equator of the data. No eyepoint movement along the vertical axis is supported, which

allows interpolation in the calculation of color and opacity of sample points to be done in

only two dimensions, rather than three.

It is possible to specify any viewing distance from the volume center. For single

frames intended for 2D display, any view distance along a projection ray will yield the

same result, since orthographic projection is used. However, since sequences of views

are rendered for recording integral holograms, the view throughout the animation must

imitate the hologram's view zone specifications (Figure 4.8).

The eyepoint moves along a linear track looking toward the volume from a distance

equal to the final hologram viewing distance while recentering on the volume for each

new view (Figure 4.9). Figure 4.9 also shows that resulting views contain no perspective

foreshortening as a result of using orthographic projection. For each successive view, the

eyepoint is moved a distance of the master hologram slit width (3 mm) multiplied by a

horizontal magnification factor. The viewing specifications for a sequence of views for flat

format holographic stereogram display are designed to fit the geometry below, using an

Hi width equal to 300 millimeters, and a transfer hologram (H2) width of 254 millimeters.
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view distance = 50 cm.

(lensing equation (Benton, 197

view zone width = 39 cm.

(39 cm. = 100 views * .3 cm.

field of view = 28.48 degrees

(28.48 = 2*atan ((H2 width)/2
c view distance,)

camera increment- = vew zone u
100 Slitb

each * 1.3 (horizontally magnified))

A sequence of 100 views is rendered using the resulting camera geometry. These views

are color separated into their red, green and blue component images, and recorded on

cine film.



Chapter 5: Holographic Display of Component Images

5.1 Mastering

Once all of the component views are recorded on cine film, the hologram master (H1) can

be created. Because an animation of one hundred views was created, and each was color

separated into its (R,G,B) component images, the H1 will be comprised of three hundred

sub-holograms, each exposed as a 3mm-wide slit on the master plate. The mastering

setup is shown in Figure 5.1.

Light from the laser is divided into two beams, one to reference the hologram, and

the other to contain the object information. The reference beam is diverged and then

collimated to illuminate the holographic plate one slit at a time. Simultaneously, the

object beam is diverged and then condensed to illuminate each of the rendered, color-

separated views that was recorded on 35mm cine film. The projection lens projects each

of the rendered views onto a ground glass screen sequentially so that each exposed slit

sees one of the 2D views.

In this manner, each of the one hundred rendered views is interfered with the reference
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beam and recorded sequentially on abutted vertical strips on the plate. Three recording

passes are made, one for each of the animation color separations, with each sequence

being exposed at a different location on the holographic plate.

In order to determine the locations on the H1 plate where each sequence of color

separated images must be exposed, the following calculations, tailored specifically to the

master, transfer and illumination setups are considered.

First, to achieve overlap, and on-axis alignment of corresponding red, green and blue

color separations, spatial frequencies for wavelengths which mark transitions between blue

and green wavelengths (500 nm), and between green and red wavelengths (590 nm), are

calculated on axis. In the reconstruction, with the illumination source positioned at angle

9 Ua, and with (0t = 0), using the following for each A,

sin6 ;u - sin6Out = Af,

the spatial frequencies f5oonm and f59Onm are found.

Next, in the transfer setup, using the reference beam angle Of, the angles to the

transitions between the blue and green, Ob 5 0 0 nm I and the green and red masters, ObJS9 ofnm,



need to be determined. Using the spatial frequencies found above, and the fact that

sinObi - sznef = Alaserf,

the angles 06b,500nm and 9
obJ5 _nm are found.

From Figure 5.2, where the distance between the master and transfer plates is S, and

the angle between the two planes is a, the distance of the transition points from the H1

center can be determined. Using the fact that

h = dsina

and

D = S - dcosa

and also that



tanO, - h
D

with the angles a and 0,,, the distances d5oonm and d59Onm can be determined.

These distances specify that the green components of the color separated animation are

recorded in the center of the plate, in a section (100 slits * 3mm wide), and (d5oonm +

dS9onm) high (Figure 5.2). Likewise, the red component images are recorded below the

green, and the blue ones are recorded above the green. Thus, the master holographic

stereogram of a full-color sequence of images consists of 300 exposures, recorded in three

separate horizontal bands of 100 vertical slits.

5.2 Transferring

After a hologram master is recorded, a flat-format transmission transfer is made of the H1

using the setup in Figure 5.3. The H1 is illuminated with the conjugate of the reference

beam in the previous setup. The distance between the master and transfer plates is S,

and the angle between the plates is a, both as used in the calculations above. A real

image is projected out into the plane of the H2 such that the image is focused on the

holographic plate. The H2 is referenced with a diverging beam at the angle 0,ef.



transition
points

Figure 5.2: Locations of red, green and blue separations on H1.
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5.3 Reconstruction

The transmission rainbow hologram is viewable in white light, and the image is recon-

structed as shown in Figure 5.4.

The H2 is illuminated at the angle 0m by a point or vertical line source of white

light from the direction opposite to that of the beam used to reference the hologram in

the transfer geometry. When the viewers eyes are positioned along the equator of the

hologram where the images of each color-separated sequence overlap, a full-color three

dimensional image can be seen. With vertical movement through the view zone, the color

shift characteristic of rainbow holography is evident. As the viewer moves his eyes above

the equator, he can begin to see only the blue component of the sequence reconstructing

in the longer wavelengths, and movement below the center of the hologram shows the

red component of the sequence reconstructing in shorter wavelengths. With horizontal

eye movement throughout the viewing zone, where the image of the master hologram is

focused, the viewer's eyes sweep through the side-to-side views, and the perception of the

computer graphic image in three-dimensions is achieved.
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Chapter 6: Results

6.1 Orthopedic CT

The first hologram generated using volumetric rendering and the holographic setups de-

scribed was of the upper portion of a child's skull. Thirteen transverse CT slices with

the resolution shown in Figure 6.1 constituted the initial data set, with each voxel value

represented by 16 bits.

In order to obtain voxels that were a more isotropic representation of the data, addi-

tional slices were interpolated between each pair of originals. The interpolated data set

consisted of 113 planes of voxels (1mm * 0.8mm * 0.8mm) in dimension.

Next, the planes were reoriented, so that new data files would be parallel to the image

plane. In this orientation, a ray traveling in a straight line from an eyepoint looking at

the front of the skull would intersect all data planes. The entire volume was cropped to

eliminate many voxels which did not include data. The final volume size was (70 planes *

180 pixels * 113 pixels). Visual inspection of the individual slices lead to a decision not to

attempt enhancement or filtering of the data. A histogram plot of the data set is shown
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Slice position rows columns voxel voxel

and spacing (# voxels) (# voxels) x res y res

-1 mm 320 320 0.8 mm 0.8 mm

3 mm ] 4mm 320 320 0.8 mm 0.8 mm

8 mm 320 320 0.8 mm 0.8 mm

13 mm 5 mm 320 320 0.8 mm 0.8 mm

18 mm 5 mm 320 320 0.8 mm 0.8 mm

22 mm 4 mm 320 320 0.8 mm 0.8 mm

32 mm 51mm 320 320 0.8 mm 0.8 mm
42 mm 320 320 0.8 mm 0.8 mm

52 mm 10 mm 320 320 0.8 mm 0.8 mm
62 mm 320 320 0.8 mm 0.8 mm

72 mm 010 mm 320 320 0.8 mm 0.8 mm
82 mm 10 mm 320 320 0.8 mm 0.8 mm

92 mm 10 mm 320 320 0.8 mm 0.8 mm

Figure 6.1: CT head scan data set.



Figure 6.2: Histogram plot of CT head data set.

in Figure 6.2. The motivation for this experiment was to produce a three-dimensional

image of the bones in the volume. It was an easy task to locate the bone in the data set,

within a tissue density window of 1300 to 3000.

A grayscale to opacity mapping of

grayscale opacity



0 0.0

1200 0.0

1300 1.0

3000 1.0

4000 0.0

was selected for voxel opacity assignment, and both gradient and opacity volumes were

then calculated. Illumination parameters specifying ambient light, surface diffusivity and

specularity assigned to the bone tissue, and light source color are given below.

KA = 0.0025

KD = 0.15

KS = 0.9

c1= (1.0, 0.95, 0.7)

In addition, the background color was initialized to be Cbckg = (0.78, 0.3, 0.68).

An animation of one hundred views was computed on a Gould PN9000, at an expense

of 55 minutes/frame. Resulting frames were sized (180 pixels wide * 113 pixels high),



so additional background was added on all sides of each frame to extend their dimension

to (320 * 240) pixels. These images were then interpolated to the size of the frame

buffer used, (640 * 480 pixels) (Figure 6.3), color separated, and then recorded onto cine

film. The hologram was mastered, and a white light rainbow transfer was made (8"high

* 10"wide * 8"apparent depth) which provides an excellent visualization of the skull in

three dimensions. Even though the original data slices were five to ten millimeters apart,

the image conveys the structure of the skull very well despite this low resolution (Figure

6.4).

6.2 Cardiac MRI

The donation of MRI data of an in vitro beef heart provided the opportunity to examine

MRI as a source of volumetric data. Two experiments were conducted using this data,

one based on imaging the heart sliced in half as a solid, opaque tissue, and the other

based on investigating its display as partially transparent tissue.

The data volume donated consisted of 108 data files, each (115 pixels wide * 200

pixels high). Since the data set came with no intraplane or interplane spatial resolution

specifications, the final dimensions of the heart had to be estimated. To compensate for

an incorrect aspect ratio, each plane of data was interpolated from 115 to 175 pixels wide.

In addition, one additional plane was interpolated between each two original data planes.

This provided a volume of data sized 216 planes * 200 pixels * 175 pixels.
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Figure 6.3: Computer graphically reconstructed images of child's skull.
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Figure 6.4: Hologram of child's skull.
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Figure 6.5: Histogram plot of MRI heart data set.

Because the data was also very noisy, mostly as a result of shot noise and magnetic

field inhomogeneities, a 2D low pass filter was applied to all files in the volume before

calculating the gradients. These files constituted the set of data from which the final

images were rendered. A histogram plot of the data set is shown below in Figure 6.5.

6.2.1 Opaque Heart

Only data files from the back half of the data volume were used to provide an image of a

long-axis section through the heart. The grayscale to opacity mapping below was chosen

to render the tissue opaquely.



grayscale opacity

0 0.0

80 0.0

90 0.5

100 1.0

255 1.0

This mapping effectively attenuated the ambient noise in the air surrounding the tissue.

Next, using the a portion of the data files sized 99 planes * 200 pixels * 175 pixels,

the gradient and opacity volumes were generated. Surface parameters were assigned to

the heart tissue,

KA = 0.0025

KD = 0.2

KS = 0.95

and three light sources with colors and positions as below,

c11 = (0.75, 0.08, 0.08)



C-2 =(0.6, 0.09, 0.09)

ci, = (0.6, 0.09, 0.09)

pos1 = (-50.0, -100.0, 0.0)

pos12 = (50.0, -100.0, 0.0)

poS13 = (0.0, -100.0, 0.0)

and the final image was initialized to have Cbackg = (0.66, 0.66, 0.66).

Again, an animation of one hundred views was computed on a Gould PN9000 with

each view taking 65 minutes to render. The resulting rendered frames were sized 200 *

175 pixels, so additional background was added on all sides of the images to yield 240

* 320 pixel images. These images were then interpolated to produce the final set of

one hundred 480 * 640 pixel frames (Figure 6.6), which were color separated, and then

recorded on cine film.

A hologram was mastered, and a white light rainbow transfer (8"high * 10"wide *

4"apparent depth) was made. The reconstructed image, which was colored primarily red,

imposed a restriction on the viewer to be at the color focus (about 19 inches from the

plate). Since the amount of information in the green and blue color separations was small,

the image was not very informative to a viewer outside the color focus.

Since this restriction was quite unsatisfactory, the red separation was remastered,

and a full aperture transfer produced an achromatic image which provided a good three-
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Figure 6.6: Computer graphically reconstructed images of opaque heart.
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dimensional visualization of the long-axis section of the beef heart (Figure 6.7).

The next experiment included the rendering of the entire heart data set with a larger

degree of transparency. Since using the entire heart volume represented a considerable

increase in data to be rendered and computation time was already expensive, much time

was spent optimizing the software to render more efficiently. With the new changes in

the software, time required to render from a volume of 99 planes * 200 pixels * 175 pixels

illuminated by three light sources went from 65 minutes/frame to 28 minutes/frame.

6.2.2 Transparent Heart

The same set of interpolated, low pass filtered data was used to render the transparent

heart. The goal of this experiment was to compare still images, animations providing

kinetic depth, and true 3D representations of a partially transparent object with regard to

comprehensibility and information content.

A grayscale to opacity mapping was constructed as below.

grayscale opacity

0 0.0

80 0.0

90 0.0015



Figure 6.7: Hologram of long-axis section of a beef heart.
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0.0015

Gradient and opacity volumes were computed for a data volume comprised of 175 slices

* 200 pixels * 175 pixels. The rendering of an animation of 100 images was computed

using tissue surface parameters,

KA = 0.0025

KD = 0.2

KS = 0.9

and three light sources with colors and positions as below,

c11 = (1.0, 1.0, 1.0)

C12 = (1.0, 1.0, 1.0)

c13 = (1.0, 1.0, 1.0)

posh, = (-50.0, -100.0, 0.0)

pos12 = (50.0, -100.0, 0.0)

pos13 = (0.0, -50.0, 0.0)

255



The resulting images were not as effective as was hoped, and the desired comparisons

between 2D and 3D presentations could not be made. Spurious tissue interiors reflected

light since distinctions between translucent tissue surfaces and tissue interiors were not as

obvious as was anticipated (Figure 6.8). Presumably, noisy gradient vectors within tissue

interiors resulting from data noise, were indicating surfaces where none existed.

A test of this assumption was performed on a noiseless, binary-valued data volume

created as shown in Figure 6.9. The gradient volume was computed as well as an opacity

volume that mapped byte value 255 to transparency value 0.08. A view rendered from

an eyepoint directly on the y-axis, with illumination directly behind the eye, showed that

surfaces A and B reflected light and that the interior of the subvolume V2 was invisible,

as expected.

From these investigations came the conclusion that transparently rendered soft tissues

of secondary importance can aid comprehension of the data when presented with the more

opaque object of interest. However, using the image filtering and rendering techniques

examined in this work, transparent objects of primary interest fail to provide enough

structural information to the viewer.

Best results were obtained with CT data, and images of bone tissue, since it is so

easily identified. More experimentation, however, with methods of smoothing MRI data



Figure 6.8: Computer graphically reconstructed images of transparent heart.
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Figure 6.9: Test volume.
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without degrading surface detail is necessary. In addition, a method of assigning opacities

to tissue types more compatible to MRI is desirable.

6.3 Image Quality

Although the images created from the CT scans of the child's skull provided a good

visualization of bone tissue from the coarsely-scanned data, it is also illustrative of a few

ways in which image quality may be improved. For example, the silhouette edges of the

bone are sharp and abrupt. Levoy mentions that blurring the array of acquired CT values

in the preprocessing step can soften these oversharp surface silhouettes. Indeed, when the

initial CT data of the skull was obtained, the only criterion used to ascertain the need

for filtering was the presence of noise within the data. Since all slices appeared to have

an acceptable level of noise, no smoothing was performed on the set. In addition, such

filtering may have helped blend the interplane slices more gradually, softening the "sliced"

look of the image.

Another way to minimize the "sliced" look of the image is to apply 3D filtering tech-

niques to the gradient volume. A simple averaging filter (Figure 6.10) applied to the

gradients has the effect of smoothing the surfaces [Trousset and Schmitt, 1987). A win-

dow sized three or five voxels on a side can be convolved with the gradient volume in a

preprocessing step to yield a smoothed gradient volume.



n
voxels

Average over the.

volume for the
center voxel

Figure 6.10: 3D averaging filter.



Though the data slices are less obvious in the surfaces rendered using the smoothed

gradients, the surfaces tend to look blurred. Although slightly blurry surfaces are not

necessarily a problem, applying the same filtering techniques to the opacity volume rather

than the gradient volume preserves surface detail, while softening harsh boundaries be-

tween tissues.

A more obvious rendering artifact arose in the sequence of frames generated of the

transparent heart. In these frames, the structure of the original slices, which were oriented

parallel to the image plane, was evident in some of the images as light was reflected to

the eye from their stair-step structure at only some of the eyepoint locations. This effect

proved to be quite kinetic as the eyepoint moved and, as a result represented a major

distraction to the viewer.

If original scans taken with a finer interplane resolution are used, then the resulting

surfaces do not reflect the scan structure as much. In addition, if slices in the volume are

oriented to be orthogonal rather than parallel to the image plane, then the slice structure

will be vertical and thus equally obvious from all viewpoints. This orientation prevents

the annoying "popping in and out" of the differentiation between slices.

Another way of increasing visibility is to supersample along each ray. For each sequence

of images generated in this work, two sample points were considered per voxel. The

improvement in image quality offered by this resolution over tests done with one sample

point per voxel was considerable. Although increasing the sampling rate does improve
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image quality, it also adds to the time required to compute each frame. Sampling each

voxel more than twice marked the point at which image enhancement no longer outweighed

the extra computation time required to evaluate more samples.



Chapter 7: Conclusions and Future Work

Imaging modalities such as CT and MRI generate a volume of diagnostic imaging data that

requires efficient and precise evaluation. It is possible that holography might contribute

to such evaluation in future imaging systems. The coupled use of volumetric editing

and rendering and holographic stereogram technology provided superior visualization of

surfaces in three dimensions.

This work has attempted to demonstrate that spatial display offers a clearly under-

standable representation of the complex structures present in medical data. Holographic

stereograms of volume rendered images incorporate all of the advantages of 3D editing

and reconstruction of tissue as well as the perceptual benefits of spatial display in hard-

copy form. As familiarity with this technology grows among the medical community, it is

expected that more applications to which holography is well-suited will emerge.

The next logical research step should be the recording of holographic images that

combine opaque tissues of interest with more transparent surrounding tissue. In such an

image, none of the data contained in the data volume would be completely suppressed.



The resulting hologram would display all of the information available in the volume, yet

tissues of primary interest would not be overwhelmed by subordinate ones. In addition,

comparisons could be made between monocular and binocular perceptions of transparent

tissue.

Reaction to these holographic images by the medical professionals questioned was

positive, yet cautious. The considerable time involved in generating such an image from

the original scan data does not yet approach the necessarily minimal production time which

might allow a 3D hardcopy to be a useful tool. In addition, the lack of vertical parallax was

noted and found to be a distraction due to the desire to evaluate the three-dimensional

image from many more vantage points than were actually computed. Furthermore, narrow

holographic viewing zones limit the size of viewing audiences. Ideally, many clinicians

should be able to view a holographic stereogram concurrently from different viewpoints.

Overall response to the holographic images, however, remains supportive of further work

in this area.

The issues mentioned above are among those that will need to be addressed as work on

holographic stereograms displaying medical data continues. Improvements in holographic

technology must occur in conjunction with further developments in 3D image processing

and rendering of volumetric data.
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