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Abstract

We study a problem of dynamic pricing faced by a vendor with limited inventory, uncertain

about demand, aiming to maximize expected discounted revenue over an infinite time horizon.

The vendor learns from purchase data, so his strategy must take into account the impact of

price on both revenue and future observations. We focus on a model in which customers ar-

rive according to a Poisson process of uncertain rate, each with an independent, identically

distributed reservation price. Upon arrival, a customer purchases a unit of inventory if and only

if his reservation price equals or exceeds the vendor’s prevailing price.

We propose a simple heuristic approach to pricing in this context, which we refer to as decay

balancing. Computational results demonstrate that decay balancing offers significant revenue

gains over recently studied certainty equivalent and greedy heuristics. We also establish that

changes in inventory and uncertainty in the arrival rate bear appropriate directional impacts

on decay balancing prices in contrast to these alternatives, and we derive worst-case bounds on

performance loss. We extend the three aforementioned heuristics to address a model involving

multiple customer segments and stores and provide experimental results demonstrating similar

relative merits in this context.

Keywords: dynamic pricing; demand learning; revenue management.

1 Introduction

Consider a vendor of Winter apparel. New items are stocked in the Autumn and sold over several

months. Because of significant manufacturing lead times and fixed costs, items are not restocked

over this period. Evolving fashion trends generate great uncertainty in the number of customers who

will consider purchasing these items. To optimize revenue, the vendor should adjusts prices over
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time. But how should these prices be set as time passes and units are sold? This is representative

of problems faced by many vendors of seasonal, fashion, and perishable goods.

There is a substantial literature on pricing strategies for such a vendor (see Talluri and van

Ryzin (2004) and references therein). Gallego and van Ryzin (1994), in particular, formulated an

elegant model in which the vendor starts with a finite number of identical indivisible units of inven-

tory. Customers arrive according to a Poisson process, with independent, identically distributed

reservation prices. In the case of exponentially distributed reservation prices the optimal pricing

strategy is easily derived. The analysis of Gallego and van Ryzin (1994) can be used to derive

pricing strategies that optimize expected revenue over a finite horizon and is easily extended to the

optimization of discounted expected revenue over an infinite horizon. Resulting strategies provide

insight into how prices should depend on the arrival rate, expected reservation price, and the length

of the horizon or discount rate.

Our focus is on an extension of this model in which the arrival rate is uncertain and the

vendor learns from sales data. Incorporating such uncertainty is undoubtedly important in many

industries that practice revenue management. For instance, in the Winter fashion apparel example,

there may be great uncertainty in how the market will respond to the product at the beginning

of a sales season; the vendor must take into account how price influences both revenue and future

observations from which he can learn.

In this setting, it is important to understand how uncertainty should influence price. However,

uncertainty in the arrival rate makes the analysis challenging. Optimal pricing strategies can be

characterized by a Hamilton-Jacobi-Bellman (HJB) Equation, but this approach is typically not

analytically tractable (at least for the models we consider). Further, for arrival rate distributions of

interest, grid-based numerical methods require discommoding computational resources and generate

strategies that are difficult to interpret. As such researchers have designed and analyzed heuristic

approaches.

Aviv and Pazgal (2005a) studied a certainty equivalent heuristic for exponentially distributed

reservation prices which at each point in time computes the conditional expectation of the arrival

rate, conditioned on observed sales data, and prices as though the arrival rate is equal to this

expectation. Araman and Caldentey (2005) recently proposed a more sophisticated heuristic that

takes arrival rate uncertainty into account when pricing. The idea is to use a strategy that is greedy

with respect to a particular approximate value function. In this paper, we propose and analyze

decay balancing, a new heuristic approach which makes use of the same approximate value function

as the greedy approach of Araman and Caldentey (2005).
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Several idiosyncrasies distinguish the models studied in Aviv and Pazgal (2005a) and Araman

and Caldentey (2005). The former models uncertainty in the arrival rate in terms of a Gamma

distribution, whereas the latter uses a two-point distribution. The former considers maximization

of expected revenue over a finite horizon, whereas the latter considers expected discounted revenue

over an infinite horizon. To elucidate relationships among the three heuristic strategies, we study

them in the context of a common model. In particular, we take the arrival rate to be distributed

according to a finite mixture of Gamma distributions. This is a very general class of priors and can

closely approximate any bounded continuous density. We take the objective to be maximization

of expected discounted revenue over an infinite horizon. It is worth noting that in the case of

exponentially distributed reservation prices such a model is equivalent to one without discounting

but where expected reservation prices diminish exponentially over time. This may make it an

appropriate model for certain seasonal, fashion, or perishable products. Our modeling choices were

made to provide a simple, yet fairly general context for our study. We expect that our results can

be extended to other classes of models such as those with finite time horizons, though this is left

for future work.

The certainty equivalent heuristic is natural and simple to implement. It does not, however,

take uncertainty in the arrival rate into account. While the greedy heuristic does attempt to do

this, we demonstrate through computational experiments that the performance of this approach can

degrade severely at high levels of uncertainty in arrival rate. While being only slightly more complex

to implement than the certainty equivalent heuristic and typically less so than greedy pricing,

we demonstrate that decay balancing offers significant performance gains over these heuristics

especially in scenarios where the seller begins with a high degree of uncertainty in arrival rate.

From a more qualitative perspective, uncertainty in the arrival rate and changes in inventory bear

appropriate directional impacts on decay balancing prices: uncertainty in the arrival rate increases

price, while a decrease in inventory increases price. In contrast, uncertainty in the arrival rate has

no impact on certainty equivalent prices while greedy prices can increase or decrease with inventory.

In addition to our base model, we consider a generalization which involves a vendor with mul-

tiple branches that can offer different prices and tend to attract different classes of customers.

The branches share and learn from each others’ data and price to maximize aggregate expected

discounted revenue. We extend the three heuristics to the context of this model and present com-

putational results demonstrating relative merits analogous to our base case of a single branch and

single customer class.

We establish bounds on performance loss incurred by decay balancing relative to an optimal
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policy. These bounds indicate a certain degree of robustness. For instance, when customer reserva-

tion prices are exponentially distributed and their arrival rate is Gamma distributed we establish

that decay balancing always garners at least one third of the maximum expected discounted rev-

enue. Allowing for a dependence on arrival rate uncertainty and/or restricting attention to specific

classes of reservation price distributions leads to substantially stronger bounds. It is worth noting

that no performance loss bounds (uniform or otherwise) have been established for the certainty

equivalent and greedy heuristics. Further, computational results demonstrate that our bounds are

not satisfied by the greedy heuristic.

Aside from Aviv and Pazgal (2005a) and Araman and Caldentey (2005), there is a significant

literature on dynamic pricing while learning about demand. A recent paper in this regard is Aviv

and Pazgal (2005b) which considers, in a discrete time setting, a partially observable Markov mod-

ulated demand model. As we will discuss further in 6, a special case of the heuristic they develop

is closely related to decay balancing. Lin (2007) considers a model identical to Aviv and Pazgal

(2005a) and develops heuristics which are motivated by the behavior of a seller who knows the

arrival rate and anticipates all arriving customers. Bertsimas and Perakis (2003) develop several

algorithms for a discrete, finite time-horizon problem where demand is an unknown linear function

of price plus Gaussian noise. This allows for least-squares based estimation. Lobo and Boyd (2003)

study a model similar to Bertsimas and Perakis (2003) and propose a “price-dithering” heuristic

that involves the solution of a semi-definite convex program. All of the aforementioned work is

experimental; no performance guarantees are provided for the heuristics proposed. Cope (2006)

studies a Bayesian approach to pricing where inventory levels are unimportant (this is motivated by

sales of on-line services) and there is uncertainty in the distribution of reservation price. His work

uses a very general prior distribution - a Dirichlet mixture - on reservation price. Modeling this

type of uncertainty within a framework where inventory levels do matter represents an interesting

direction for future work. In contrast with the the above work, Burnetas and Smith (1998) and

Kleinberg and Leighton (2004) consider non-parametric approaches to pricing with uncertainty in

demand. However, those models again do not account for inventory levels. Recently, Besbes and

Zeevi (2006) presented a non-parametric algorithm for ‘blind’ pricing of multiple products that

use multiple resources, similar to the model considered in Gallego and van Ryzin (1997). Their

algorithm requires essentially no knowledge of the demand function and is optimal in a certain

asymptotic regime. However, the algorithm requires trying each alternative among a multidimen-

sional grid in the space of price vectors, and therefore, could take a long time to adequately learn

about demand.
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The remainder of this paper is organized as follows: In Section 2, we formulate our model

and cast our pricing problem as one of stochastic optimal control. Section 3 develops the HJB

equation for the optimal pricing problem in the contexts of known and unknown arrival rates.

Section 4 first introduces existing heuristics for the problem and then introduces a new heuristic –

decay balancing – which is the focus of this paper. This section also discusses structural properties

of the decay balancing policy. Section 5 presents a computational study that compares decay

balancing to certainty equivalent and greedy pricing heuristics as well as a clairvoyant algorithm.

Section 6 is devoted to a theoretical performance analysis of the decay balancing heuristic. We

provide worst-case performance guarantees that depend on initial uncertainty in market response.

When the arrival rate is Gamma distributed and reservation prices are exponentially distributed,

we prove a uniform performance guarantee for our heuristic. Section 7 discusses an extension of

our heuristic to a multidimensional version of the problem which involves a vendor with multiple

stores and several customer segments with different demand characteristics. The section presents

computational results that are qualitatively similar to those in Section 5. Section 8 concludes.

2 Problem Formulation

We consider a problem faced by a vendor who begins with x0 identical indivisible units of a product

and dynamically adjusts price pt over time t ∈ [0,∞). Customers arrive according to a Poisson

process with rate λ. As a convention, we will assume that the arrival process is right continuous with

left limits. Each customer’s reservation price is an independent random variable with cumulative

distribution F (·). A customer purchases a unit of the product if it is available at the time of his

arrival at a price no greater than his reservation price; otherwise, the customer permanently leaves

the system.

For convenience, we introduce the notation F (p) = 1− F (p) for the tail probability. We place

the following restrictions on F (·):

Assumption 1.

1. F (·) has a differentiable density f(·) with support R+.

2. F has a non-decreasing hazard rate. That is, ρ(p) = f(p)/F (p) is non-decreasing in p.

Assumption 1 is satisfied by many relevant distributions including the exponential, extreme

value, logistic and Weibull, to name a few. We introduce this assumption to facilitate use of first

order optimality conditions to characterize solutions of various optimization problems that will
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arise in our discussion. It is possible to extend our results to reservation price distributions that

do not satisfy this assumption, though that would require additional technical work.

Let tk denote the time of the kth purchase and nt = |{tk : tk ≤ t}| denote the number

of purchases made by customers arriving at or before time t. The vendor’s expected revenue,

discounted at a rate of α > 0, is given by

E

[∫ ∞

t=0
e−αtptdnt

]
.

Let τ0 = inf{t : xt = 0} be the time at which the final unit of inventory is sold. For t ≤ τ0, nt

follows a Poisson process with intensity λF (pt). Consequently, (see Theorem III.T9 in Bremaud

(1981)), one may show that

E

[∫ ∞

t=0
e−αtptdnt

]
= E

[∫ τ0

t=0
e−αtptλF (pt)dt

]
.

We now describe the vendor’s optimization problem. We first consider the case where the

vendor knows λ and later allow for arrival rate uncertainty. In the case with known arrival rate,

we consider pricing policies π that are measurable real-valued functions of the inventory level. The

price is irrelevant when there is no inventory, and as a convention, we will require that π(0) = ∞.

We denote the set of policies by Πλ. A vendor who employs pricing policy π ∈ Πλ sets price

according to pt = π(xt), where xt = x0 − nt, and receives expected discounted revenue

Jπ
λ (x) = Ex,π

[∫ τ0

t=0
e−αtptλF (pt)dt

]
,

where the subscripts of the expectation indicate that x0 = x and pt = π(xt). The optimal discounted

revenue is given by J∗λ(x) = supπ∈Πλ
Jπ

λ (x), and a policy π is said to be optimal if J∗λ = Jπ
λ .

Suppose now that the arrival rate λ is not known, but rather, the vendor starts with a prior on λ

that is a finite mixture of Gamma distributions. A Kth order mixture of this type is parameterized

by vectors a0, b0 ∈ RK
+ and a vector of K weights w0 ∈ RK

+ that sum to unity. The density, g, for

such a prior is given by:

g(λ) =
∑

k

w0,k
b0,k

a0,kλa0,k−1e−λb0,k

Γ(a0,k)
,

where Γ denotes the Gamma-function: Γ(x) =
∫∞
s=0 sx−1e−sds. The expectation and variance are

E[λ] =
∑

k w0,ka0,k/b0,k ! µ0 and Var[λ] =
∑

k w0,ka0,k(a0,k + 1)/b2
0,k − µ2

0. Any prior on λ with

a continuous, bounded density can be approximated to an arbitrary accuracy within such a family
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(see Dalal and Hall (1983)). Moreover, as we describe below, posteriors on λ continue to remain

within this family rendering such a model parsimonious as well as relatively tractable.

The vendor revises his beliefs about λ as sales are observed. In particular, at time t, the vendor

obtains a posterior that is a kth order mixture of Gamma distributions with parameters

at,k = a0,k + nt and bt,k = b0,k +
∫ t

τ=0
F (pτ )dτ,

and weights that evolve according to:

dwt,k = wt,k

(
at,k/bt,k −

∑
k wt,k(at,k/bt,k)∑

k wt,k(at,k/bt,k)
dnt +

(
at,k/bt,k −

∑

k

wt,k(at,k/bt,k)

)
dt.

)

Note that the vendor does not observe all customer arrivals but only those that result in sales.

Further, lowering price results in more frequent sales and therefore more accurate estimation of the

demand rate.

We consider pricing policies π that are measurable real-valued functions of the inventory level

and arrival rate distribution parameters. As a convention we require that π(0, a, b, w) = ∞ for all

arrival rate distribution parameters a, b and w. We denote the domain by S = N×Rk
+ ×Rk

+ ×Rk
+

and the set of policies by Π. Let zt = (xt, at, bt, wt). A vendor who employs pricing policy π ∈ Π

sets price according to pt = π(zt) and receives expected discounted revenue

Jπ(z) = Ez,π

[∫ τ0

t=0
e−αtptλF (pt)dt

]
,

where the subscripts of the expectation indicate that z0 = z and pt = π(zt). Note that, unlike the

case with known arrival rate, λ is a random variable in this expectation. The optimal discounted

revenue is given by J∗(z) = supπ∈Π Jπ(z), and a policy π is said to be optimal if J∗ = Jπ. We will

use the notation J∗,α for the optimal value function when we wish to emphasize the dependence

on α.

3 Optimal Pricing

An optimal pricing policy can be derived from the value function J∗. The value function in turn

solves the HJB equation. Unfortunately direct solution of the HJB equation, either analytically or

computationally, does not appear to be a feasible task and one must resort to heuristic policies.

With an end to deriving such heuristic policies we characterize optimal solutions to problems with
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known and unknown arrival rates and discuss some of their properties.

3.1 The Case of a Known Arrival Rate

We begin with the case of a known arrival rate. For each λ ≥ 0 and π ∈ Πλ, define an operator

Hπ
λ : Rx0+1 → Rx0+1 by

(Hπ
λ J)(x) = λF (π(x))(π(x) + J(x− 1)− J(x))− αJ(x).

Recall that π(0) =∞. In this case, we interpret F (π(0))π(0) as a limit, and Assumption 1 (which

ensures a finite, unique static revenue maximizing price) implies that (Hπ
λ J)(0) = −αJ(0). Further,

we define the dynamic programming operator

(HλJ)(x) = sup
π∈Πλ

(Hπ
λ J)(x).

It is easy to show that J∗λ is the unique solution to the HJB Equation HλJ = 0. The first order

optimality condition for prices yields an optimal policy of the form

π∗λ(x) = 1/ρ(π∗λ(x)) + J∗λ(x)− J∗λ(x− 1),

for x > 0. By Assumption 1 and the fact that J∗λ(x) ≥ J∗λ(x− 1), the above equation always has a

solution in R+.

Given that J∗ satisfies the HJB equation, we have

(1) αJ∗λ(x) =





supp≥0 λF (p)(p + J∗λ(x− 1)− J∗λ(x)) if x > 0

0 otherwise.

Assumption 1 guarantees that supp≥0 F (p)(p− c) is a decreasing function of c on R+. This allows

one to compute J∗λ(x) given J∗λ(x− 1) via bisection search. This offers an efficient algorithm that

computes J∗λ(0), J∗λ(1), . . . , J∗λ(x) in x iterations. As a specific concrete example, consider the case

where reservation prices are exponentially distributed with mean r > 0. We have

αJ∗λ(x) =





λr exp

(
1
r (J∗λ(x− 1)− J∗λ(x))− 1

)
if x > 0

0 otherwise.
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It follows that

(2) J∗λ(x) = rW
((

e−1λ/α
)
exp(J∗λ(x− 1)/r)

)

for x > 0, where W (·) is the Lambert W-function (the inverse of xex).

We note that a derivation of the optimal policy for the case of a known arrival rate may also

be found in Araman and Caldentey (2005), among other sources.

The value function for the case of a known arrival rate will be used in the design of our heuristic

for the case with arrival rate uncertainty. We establish here properties of this value function J∗λ and

its associated optimal policy π∗λ, which we will later use. We will make the following assumption

to simplify our analysis.

Assumption 2. J∗λ(x) is a differentiable function of λ on R+ for all x ∈ N.

Note that this assumption is satisfied for the case of exponential reservation prices. The following

comparative statics for π∗λ are proved in the appendix:

Lemma 1. π∗λ(x) is decreasing in x (on N) and non-decreasing in λ (on R+).

For a fixed inventory level it is natural to expect decreasing returns to increases in the arrival

rate λ; the following Lemma, proved in the appendix, formalizes this intuition:

Lemma 2. For all x ∈ N, J∗λ(x) is an increasing, concave function of λ on R+.

3.2 The Case of an Unknown Arrival Rate

Let Sx̃,ã,b̃ = {(x, a, b, w) ∈ S : a + x = ã + x̃, b̃ ≤ b, w ≥ 0, 1′w = 1} denote the set of states that

might be visited starting at a state with x0 = x̃, a0 = ã, b0 = b̃. Let J denote the set of functions

J : S (→ R such that supz∈Sx̃,ã,b̃
|J(z)| < ∞ for all x̃ and b̃ > 0 and that have bounded derivatives

with respect to the third and fourth arguments. We define µ(z) to be the expectation for the prior

on arrival rate in state z, so that µ(z) =
∑

k wkak/bk.

For each policy π ∈ Π, we define an operator

(HπJ)(z) = F (π(z))
(
µ(z)

(
π(z) + J(z′)− J(z)

)
+ (DJ)(z)

)
− αJ(z),

where z ∈ Sx̃,ã,b̃, z = (x, a, b, w) and z′ = (x − 1, a + 1, b, w′). Here w′ is defined according to
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w′k = (wkak)/(bkµ(z)), and D is a differential operator given by:

(DJ)(z) =
∑

k

wk (µ(z)− ak/bk)
d

dwk
J(z) +

d

dbk
J(z).

We now define the dynamic programming operator H according to:

(3) (HJ)(z) = sup
π

(HπJ)(z).

Using standard dynamic programming arguments, one can show the value function J∗ solves

the HJB equation:

(4) (HJ)(z) = 0.

Further, a policy π is optimal if and only if HπJ∗ = 0. This equation provides a prescription

for efficient computation of an optimal policy given the value function. Unfortunately, there is no

known analytical solution to the HJB Equation when the arrival rate is unknown, even for special

cases such as a Gamma or two-point prior with exponential reservation prices. Further, grid-based

numerical solution methods require discommoding computational resources and generate strategies

that are difficult to interpret. As such, simple effective heuristics are desirable.

4 Heuristics

This section presents three heuristic pricing policies. The first two have been considered in prior

literature and the third is one we propose and analyze in this paper.

4.1 Certainty Equivalent

Aviv and Pazgal (2005a) studied a certainty equivalent heuristic which at each point in time com-

putes the conditional expectation of the arrival rate, conditioned on observed sales data, and prices

as though the arrival rate is equal to this expectation. In our context, the price function for such

a heuristic uniquely solves

πce(z) =
1

ρ(πce(z))
+ J∗µ(z)(x)− J∗µ(z)(x− 1),
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for x > 0. The existence of a unique solution to this equation is guaranteed by Assumption 1.

As derived in the preceding section, this is an optimal policy for the case where the arrival rate

is known and equal to µ(z), which is the expectation of the arrival rate given a prior distribution

with parameters a, b and w. The certainty equivalent policy is computationally attractive since J∗λ

is easily computed numerically (and in some cases, even analytically) as discussed in the previous

section. As one would expect, prices generated by this heuristic increase as the inventory x de-

creases. However, arrival rate uncertainty bears no influence on price – the price only depends on

the arrival rate distribution through its expectation µ(z). Hence, this pricing policy is unlikely to

appropriately address information acquisition.

4.2 Greedy Pricing

We now present another heuristic which was recently proposed by Araman and Caldentey (2005)

and does account for arrival rate uncertainty. To do so, we first introduce the notion of a greedy

policy. A policy π is said to be greedy with respect to a function J if HπJ = HJ . The first-order

necessary condition for optimality and Assumption 1 imply that the greedy price is given by the

solution to

π(z) =
(

1
ρ(π(z))

+ J(z)− J(z′)− 1
µ(z)

(DJ)(z)
)+

,

for z = (x, a, b, w) with x > 0 and z′ = (x− 1, a + 1, b, w′) with w′k = (wkak)/(bkµ).

Perhaps the simplest approximation one might consider to J∗(z) is J∗µ(z)(x), the value for a

problem with known arrival rate µ(z). One troubling aspect of this approximation is that it ignores

the variance (as also higher moments) of the arrival rate. The alternative approximation proposed

by Araman and Caldentey takes variance into account. In particular their heuristic employs a

greedy policy with respect to the approximate value function J̃ which takes the form

J̃(z) = E[J∗λ(x)],

where the expectation is taken over the random variable λ, which is drawn from a Gamma mixture

with parameters a, b and w. J̃(z) can be thought of as the expected optimal value if λ is to be

observed at the next time instant. It is interesting to note that this approximation is in the same

spirit as the ‘full information’ approximation considered in Aviv and Pazgal (2005b). The greedy

price, however, is distinct from the full information price considered there.

Since it can only help to know the value of λ, J∗λ(x) ≥ E[J∗(z)|λ]. Taking expectations of both
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sides of this inequality, we see that J̃ is an upper bound on J∗. The approximation J∗µ(z)(x) is a

looser upper bound on J∗(z) (which follows from concavity of J∗λ in λ). Consequently, we have the

following result whose proof may be found in the appendix.

Lemma 3. For all z ∈ S, α > 0

J∗(z) ≤ J̃(z) ≤ J∗µ(z)(x) ≤ F (p∗)p∗µ(z)
α

.

where p∗ is the static revenue maximizing price.

The greedy price in state z is thus the solution to

πgp(z) =
(

1
ρ(πgp(z))

+ J̃(z)− J̃(z′)− 1
µ(z)

(DJ̃)(z)
)+

,

for z = (x, a, b, w) with x > 0 and z′ = (x− 1, a + 1, b, w′) with w′k = (wkak)/(bkµ(z)).

We have observed through computational experiments (see Section 6) that when reservation

prices are exponentially distributed and the vendor begins with a Gamma prior with scalar param-

eters a and b, greedy prices can increase or decrease with the inventory level x, keeping a and b

fixed. This is clearly not optimal behavior.

4.3 Decay Balancing

We now describe decay balancing, a new heuristic which will be the primary subject of the remainder

of the paper. To motivate the heuristic, we start by deriving an alternative characterization of the

optimal pricing policy. The HJB Equation (4) yields

max
p≥0

F (p)
(
µ(z)

(
p + J∗(z′)− J∗(z)

)
+ (DJ∗)(z)

)
= αJ∗(z),

for all z = (x, a, b, w) and z′ = (x − 1, a + 1, b, w′), with x > 0 and w′k = (wkak)/(bkµ(z)).

This equation can be viewed as a balance condition. The right hand side represents the rate at

which value decays over time; if the price were set to infinity so that no sales could take place

for a time increment dt but an optimal policy is used thereafter, the current value would become

J∗(z)−αJ∗(z)dt. The left hand side represents the rate at which value is generated from both sales

and learning. The equation requires these two rates to balance so that the net value is conserved.

Note that the first order optimality condition implies that if J(z′) − J(z) + 1
µ(z)(DJ)(z) < 0
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(which must necessarily hold for J = J∗),

F (p∗)
ρ(p∗)

µ(z) = max
p≥0

F (p)
(
µ(z)

(
p + J(z′)− J(z)

)
+ (DJ)(z)

)
,

if p∗ attains the maximum in the right hand side. Interestingly, the maximum depends on J only

through p∗. Hence, the balance equation can alternatively be written in the following simpler form:

F (π∗(z))
ρ(π∗(z))

µ(z) = αJ∗(z).

which implicitly characterizes π∗.

This alternative characterization of π∗ makes obvious two properties of optimal prices. Note

that F (p)/ρ(p) is decreasing in p. Consequently, holding a, b and w fixed, as x decreases, J∗(z)

decreases and therefore π∗(z) increases. Further, since J∗(z) ≤ J∗µ(z)(x), we see that for a fixed

inventory level x and expected arrival rate µ(z), the optimal price in the presence of uncertainty is

higher than in the case where the arrival rate is known exactly.

Like greedy pricing, the decay balancing heuristic relies on an approximate value function. We

will use the same approximation J̃ . But instead of following a greedy policy with respect to J̃ , the

decay balancing approach chooses a policy πdb that satisfies the balance condition:

(5)
F (πdb(z))
ρ(πdb(z))

µ(z) = αJ̃(z),

with the decay rate approximated using J̃(z). The following Lemma guarantees that the above

balance equation always has a unique solution so that our heuristic is well defined. The result is

a straightforward consequence of Assumption 1 and the fact that F (p∗)
αρ(p∗)µ(z) ≥ J̃(z) ≥ J∗(z) =

F (π∗(z))
αρ(π∗(z))µ(z) where p∗ is the static revenue maximizing price.

Lemma 4. For all z ∈ S, there is a unique p ≥ 0 such that F (p)
ρ(p) µ(z) = αJ̃(z).

Unlike certainty equivalent and greedy pricing, uncertainty in the arrival rate and changes in

inventory level have the correct directional impact on decay balancing prices. Holding a, b and w

fixed, as x decreases, J̃(z) decreases and therefore πdb(z) increases. Holding x and the expected

arrival rate µ(z) fixed, J̃(z) ≤ J∗µ(z)(x), so that the decay balance price with uncertainty in arrival

rate is higher than when the arrival rate is known with certainty.
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Table 1: Performance vs. a Clairvoyant algorithm

Inventory Level x0 = 1 x0 = 2 x0 = 5 x0 = 10 x0 = 20 x0 = 40

Performance Gain (Gamma) −13% −10% −6% −3.7% −2% −0.5%

Performance Gain (Gamma Mixture) −14.9% −12.3% −6.7% −4.3% −2.7% −2.4%

5 Computational Study

This section will present computational results that highlight the performance of the decay balanc-

ing heuristic. We consider both Gamma as well as Gamma mixture priors and restrict attention

to exponentially distributed reservation prices. Further, we will only consider problem instances

where α = e−1 and r = 1; as we will discuss in Section 6, this is not restrictive (see Lemmas 5 and

10).

Performance relative to a Clairvoyant Algorithm: Consider a ‘clairvoyant’ algorithm

that has access to the realization of λ at t = 0 and subsequently uses the pricing policy π∗λ. The

expected revenue garnered by such a pricing policy upon starting in state z is simply E[J∗λ(x)] =

J̃(z) which, by Lemma 3, is an upper bound on J∗(z). Our first experiment measures the average

revenue earned using decay balancing with that earned using such a clairvoyant algorithm. The

results are summarized in Table 1. We consider two cases: In the first, λ is drawn from a gamma

distribution with shape parameter a = 0.04 and scale parameter b = 0.001 which corresponds

to a mean of 40 and a coefficient of variation of 5. In the second, λ is drawn from a two point

gamma mixture with parameters a = [0.01023 0.07161]′, b = [0.00102 0.00102]′, w = [0.5 0.5]′

which correspond to a mean of 40 and a coefficient of variation of 5. These parameter values are

representative of a high level of uncertainty in λ. As is seen in Table 2, the performance of the

decay balancing heuristic is surprisingly close to that of the clairvoyant algorithm for both prior

distributions.

Performance relative to Certainty Equivalent and Greedy Pricing Heuristics: We

finally turn to studying the performance gains offered by decay balancing relative to the certainty

equivalent and greedy policies.

1. Dependence on initial inventory: The gains offered by decay balancing relative to the cer-

tainty equivalent and greedy heuristic are pronounced at lower initial inventory levels i.e. in regimes

where judiciously managing inventory is crucial. We consider relative performance gains for inven-

tory levels between 1 and 10. We consider two initial priors for all heuristics: a gamma prior with

14
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Figure 1: Performance gain over the Certainty Equivalent and Greedy Pricing heuristics at various
inventory levels for Gamma prior

a = 0.04 and b = 0.001 (corresponding to a mean of 40 and a coefficient of variation of 5) and a

gamma mixture prior with parameters a = [0.01033 0.09297]′, b = [0.00103 0.00103]′, w = [0.5 0.5]′

(corresponding to a mean of 50 and a coefficient of variation of 4.47). Figures 1 and 2 indicate that

we offer a substantial gain in performance over the certainty equivalent and greedy pricing heuris-

tics, especially at lower initial inventory levels. The greedy policy performs particularly poorly. In

addition, as discussed earlier, that policy exhibits qualitative behavior that is clearly suboptimal:

for a problem with a gamma prior, mean reservation price 1 and discount factor e−1, we compute

πgp(1, 0.1, 0.1)(= 1.26) < πgp(4, 0.1, 0.1)(= 1.61) > πgp(10, 0.1, 0.1)(= 1.25) so that, all other fac-

tors remaining the same, prices may increase or decrease with an increase in inventory level. Our

gain in performance falls at higher initial inventory levels. This is not surprising; intuitively, the

control problem at hand is simpler there since we are essentially allowed to sacrifice a few units of

inventory early on so as to learn quickly without incurring much of a penalty.

2. Dependence on initial uncertainty: The performance gains offered by the decay balancing

heuristic are higher at higher initial levels of uncertainty. We present a lower bound on the maximal

performance gain over the greedy and certainty equivalent heuristics for various coefficients of

variation of an initial gamma prior on λ. See Figure 3 wherein the data point for each coefficient

of variation c, corresponds to an experiment with a = 1/c2, b = 0.001 (which corresponds to

a mean of 1000/c2), and an inventory level of 1 and 2 for the certainty equivalent and greedy

15
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Figure 2: Performance gain over the Certainty Equivalent and Greedy Pricing heuristics at various
inventory levels for Gamma mixture prior (right)

pricing heuristics respectively. These experiments indicate that the potential gain from using

decay balancing increases with increasing uncertainty in λ, and that in fact the gain over certainty

equivalence can be as much as a factor of 1.3, and that over the greedy policy can be as much as a

factor of 4.

3. Value of ‘active’ learning: We examine the ‘learning gains’ offered by decay balancing

relative to the certainty equivalent and greedy heuristics. In particular we do this by comparing

the gains offered by all three pricing heuristics relative to a naive no-learning heuristic which, at

every point in time, prices assuming that the arrival rate λ is equal to the initial prior mean. We

observe that these gains are higher at lower initial levels of uncertainty. As before, we consider a

gamma prior with mean 40 and co-efficient of variation 5 and measure performance for a range on

starting inventory levels for each of the three heuristics as also the no learning heuristic. We define

the learning gain relative to the certainty equivalent heuristic as 100 × Jπdb−Jπnl

(Jπce−Jπnl )+ − 100% and

that relative to the greedy pricing heuristic is defined similarly. Table 3 summarizes these relative

learning gains. Since the greedy pricing policy consistently underperforms the no-learning policy,

we only report learning gains relative to the certainty equivalent heuristic. In addition to noting

that the decay balancing heuristic offers consistent gains relative to the no learning heuristic, the

data reported suggests that the decay balancing heuristic likely captures a substantial portion of

the gains to be had from using a learning scheme relative to a naive heuristic that does not learn.
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Figure 3: Lower bound on maximal performance gain over the Certainty Equivalent Heuristic (left)
and Greedy Heuristic (right) for various coefficients of variation

Table 2: Relative Learning Gains Offered By Decay Balancing

Inventory x0 = 1 x0 = 2 x0 = 3 x0 = 4 x0 = 5 x0 = 6 x0 = 7 x0 = 8 x0 = 9 x0 = 10

vs. πce ∞ ∞ 109% 26.2% 27.7% 16.8% 13.1% 10.0% 5.7% 4.4%

To summarize our computational experience with Gamma and Gamma mixture priors, we

observe that even at high levels of uncertainty in market response, the decay balancing heuristic

offers a level of performance not far from that of a clairvoyant algorithm. Moreover, in all of our

computational experiments, the decay balancing heuristic dominates both the certainty equivalent

and the greedy pricing heuristics; this is especially so at high levels of uncertainty in the initial prior,

and at high ‘load factors’, i.e. scenarios where judicious inventory management is important. One

final issue is robustness - in its quest to intelligently leverage uncertainty in market response, the

greedy heuristic experiences a drastic loss in performance. With this issue in mind, the following

section provides a performance analysis that rules out the drastic performance decay experienced

with greedy pricing and sheds some light on the critical determinants of performance for our pricing

problem.

6 Bounds on Performance Loss

For the decay balancing price to be a good approximation to the optimal price at a particular state,

one requires only a good approximation to the value function at that state (and not its derivatives).
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This section characterizes the quality of our approximation to J∗ and uses such a characterization

to ultimately bound the performance loss incurred by decay balancing relative to optimal pric-

ing. Our analysis will focus primarily on the case of a Gamma prior and exponential reservation

prices (although we will also provide performance guarantees for other types of reservation price

distributions). A rigorous proof of the existence and uniqueness of a solution to the HJB equa-

tion for this case may be found in the appendix. We will show that in this case, decay balancing

captures at least 33.3% of the expected revenue earned by the optimal algorithm for all choices

of x0 > 1, a0 > 0, b0 > 0, α > 0 and r > 0 when reservation prices are exponentially distributed

with mean r > 0. Such a bound is an indicator of robustness across all parameter regimes. Decay

balancing is the first heuristic for problems of this type for which a uniform performance guarantee

is available.

Before we launch into the proof of our performance bound, we present an overview of the

analysis. Since our analysis will focus on a gamma prior we will suppress the state variable w in

our notation, and a and b will be understood to be scalars. Without loss of generality, we will

restrict attention to problems with α = e−1; in particular, the value function exhibits the following

invariance where the notation Jπ,α makes the dependence of the value function on α explicit:

Lemma 5. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to

π′(x, a, b) = π(x, a, b/α). Then, for all z ∈ S, α > 0, Jπ,α(z) = Jπ′,1(x, a, αb), and, in particular,

J∗,α(z) = J∗,1(x, a, αb).

Via the above Lemma, we see that any performance bound established for a heuristic assuming

a discount factor e−1 applies to other discount factors α > 0 as well. In particular, given a heuristic

policy π̃ designed for discount factor e−1 and satisfying J π̃,e−1(z) ≤ βJ∗,e
−1(z) for some z ∈ S, the

above lemma tells us that the policy π̃′ defined according to π̃′(x, a, b) = π̃(x, a, αb/e−1) satisfies

J π̃′,α(x, a, e−1b/α) ≤ βJ∗,α(x, a, e−1b/α).

As a natural first step, we attempt to find upper and lower bounds on πdb(z)/π∗(z), the ratio

of the decay balancing price in a particular state to the optimal price in that state. We are

able to show that 1 ≥ J∗(z)/J̃(z) ≥ 1/κ(a) where κ(·) is a certain decreasing function. By

then specializing attention to specific reservation price distributions, this suffices to establish that

1/f(κ(a)) ≤ πdb(z)/π∗(z) ≤ 1 where f is some increasing, non-negative function dependent upon

the reservation price distribution under consideration.1

By considering a certain system under which revenue is higher than the optimal revenue, we
1For instance, in the case of exponential reservation price distributions, f(x) = 1 + log x.
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then use the bound above and a dynamic programming argument to show that 1/f(κ(a)) ≤

Jπdb(z)/J∗(z) ≤ 1 where Jπdb(z) denotes the expected revenue earned by the decay balancing

heuristic starting in state z. If z is a state reached after i sales then a = a0 + i > i, so that the

above bound guarantees that the decay balancing heuristic will demonstrate performance that is

within a factor of f(κ(i)) of optimal moving forward after i sales.

Our general performance bound can be strengthened to a uniform bound in the special case

of exponential reservation prices. In particular, a coupling argument that uses a refinement of the

general bound above along with an analysis of the maximal loss in revenue up to the first sale for

exponential reservation prices, establishes the uniform bound 1/3 ≤ Jπdb(z)/J∗(z) ≤ 1.

We begin our proof with a simple dynamic programming result that we will have several oppor-

tunities to use. The proof is a consequence of Dynkin’s formula and can be found in the appendix.

Lemma 6. Let J ∈ J satisfy J(0, a, b) = 0. Let τ = inf{t : J(zt) = 0}. Let z0 ∈ Sx̃,ã,b̃. Then,

E

[∫ τ

0
e−αtHπJ(zt)dt

]
= Jπ(z0)− J(z0)

Let J : N → R be bounded and satisfy J(0) = 0. Let τ = inf{t : J(xt) = 0}. Let x0 ∈ N. Then,

E

[∫ τ

0
e−αtHπ

λ J(xt)dt

]
= Jπ

λ (x0)− J(x0)

6.1 Decay Balancing Versus Optimal Prices

As discussed in the preceding outline, we will establish a lower bound on J∗(z)/J̃(z) in order

to establish a lower bound on πdb(z)/π∗(z). Let Jnl(z) be the expected revenue garnered by a

pricing scheme that does not learn, upon starting in state z. Delaying a precise description of

this scheme for just a moment, we will have Jnl(z) ≤ J∗(z) ≤ J̃(z) ≤ J∗a/b(x). It follows that

Jnl(z)/J∗a/b(x) ≤ J∗(z)/J̃(z), so that a lower bound on Jnl(z)/J∗a/b(x) is also a lower bound on

J∗(z)/J̃(z). We will focus on developing a lower bound on Jnl(z)/J∗a/b(x).

Upon starting in state z, the ‘no-learning’ scheme assumes that λ = a/b = µ and does not

update this estimate over time. Assuming we begin with a prior of mean µ, such a scheme would

use a pricing policy given implicitly by:

(6) πnl(z) = π∗µ(x) = 1/ρ(π∗µ(x)) + J∗µ(x)− J∗µ(x− 1).

19



Using the definition of Hπnl

λ and the fact that HµJ∗µ = 0, some simplification yields

Hπnl

λ J∗µ(x) = (λ/µ− 1)αJ∗µ(x).

The following two results are then essentially immediate consequences of Lemma 6; proofs can be

found in the appendix.

Lemma 7. If λ <µ , Jπnl

λ (x) ≥ (λ/µ)J∗µ(x) for all x ∈ N.

Lemma 8. If λ ≥ µ, Jπnl

λ (x) ≥ J∗µ(x) for all x ∈ N.

Armed with these two results we can establish a lower bound on Jnl(z)/J∗a/b(x):

Theorem 1. For all z ∈ S,

Jnl(z)
J∗a/b(x)

≥ Γ(a + 1)− Γ(a + 1, a) + aΓ(a, a)
aΓ(a)

≡ 1/κ(a)

Proof: Setting µ = a/b, we have:

Jnl(z) = Eλ

[
Jπnl

λ (x)
]

≥ Eλ

[
1λ<µλ/µJ∗µ(x) + 1λ≥µJ∗µ(x)

]

=
Γ(a + 1)− Γ(a + 1, a) + aΓ(a, a)

aΓ(a)
J∗µ(x)

where the inequality follows from the two preceding Lemmas and the equality by direct integration

of the Gamma(a, b) density. Γ(·, ·) is the incomplete Gamma function and is given by Γ(x, y) =
∫∞
y sx−1e−sds. !

The decay balance equation allows one to use the above bound on the quality of our approx-

imation J̃ to compute bounds on the decay balance price relative to the optimal price at a given

state. In particular, Corollary 1 establishes such bounds for exponential and logit reservation price

distributions; see the appendix for bounds one may establish for general classes of reservation price

distributions.

Corollary 1. For all z ∈ S, and exponential reservation price distributions with parameter r:

1
1 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1
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For all z ∈ S, and logit reservation price distributions with parameter r:

1.27
1.27 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1

6.2 An Upper Bound on Performance Loss

We next establish a lower bound on Jπdb(z)/J∗(z) that will depend on the coefficient of variation

of the prior on λ, 1/
√

a.

Let

Rdb(z) =
∑

k:tk≤τ

e−e−1tkπdb(zt−k
)

be the revenue under the decay balancing policy for a particular sample path of the sales process,

starting in state z and define

Rub(z) =
∑

k:tk≤τ

e−e−1tkπ∗(zt−k
).

This describes a system whose state evolution is identical to that under the decay balancing policy

but whose revenues on a sale correspond to those that would be earned if the price set prior to the

sale was that of the optimal pricing algorithm.

Of course, Jπdb(z) = Ez[Rdb(z)]. Define Jub(z) = Ez[Rub(z)], where the expectation is over {tk}

and assumes that an arriving consumer at time tk makes a purchase with probability F (πdb(ztk)).

That is, the expectation is understood to be according to the dynamics of the system controlled by

πdb. The following result should be intuitive given our construction of the upper-bounding system

and the fact that since πdb(z) ≤ π∗(z), the probability that a customer arriving in state z chooses

to purchase is higher in the system controlled by the decay balancing policy. The proof uses a

dynamic programming argument and may be found in the appendix.

Lemma 9. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 2,

Jub(z) ≥ J∗(z)

Now observe that since κ(a) is decreasing in a, we have from Corollary 1 that

1
f(κ(a))

≤ Rdb(z)
Rub(z)

≤ 1

where f(x) = 1 + log(x) for exponential reservation price distributions and f(x) = 1 + log(x)/1.27

for Logit distributions. Taking expectations, and employing Lemma 9, we then immediately have:
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Theorem 2. For all z ∈ S, and exponential reservation price distributions with parameter r

1
1 + log κ(a)

≤ Jπdb(z)
J∗(z)

≤ 1,

while for logit reservation price distributions with parameter r

1.27
1.27 + log κ(a)

≤ Jπdb(z)
J∗(z)

≤ 1.

See Figure 4 for an illustration of these bounds.
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Figure 4: Lower bound on Decay Balancing performance

It is worth pausing to reflect on the bound we have just established. Our performance bound

does not depend on x, b, α or the parameters of the reservation price distribution. Since the

coefficient of variation of a Gamma prior with parameters a and b is given by 1/
√

a, the bound

illustrates how decay balancing performance approaches optimal performance as the coefficient

of variation of the initial prior is decreased; below co-efficients of variation of 0.5, the bound

guarantees performance levels that are at least within 80% of optimal. Nonetheless, the bound can

be arbitrarily poor at high co-efficients of variation. Next, we further specialize our attention to

exponential reservation price distributions and present a uniform performance guarantee for that

case.

22



6.3 A Uniform Performance Bound for Exponential Reservation Prices

We now consider the case of exponentially distributed prices. In particular, we have F (p) =

exp(−p/r) where r > 0. In light of the following Lemma (where the notation Jπ,α,r makes the

dependence of the value function on α and r explicit), we can assume without loss that the mean

reservation price, r, is 1:

Lemma 10. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to

π′(z) = (1/r)π(z). Then, for all z ∈ S, α > 0, r > 0, Jπ,α,r(z) = rJπ′,α,1(z) and, in particular,

J∗,α,r(z) = rJ∗,α,1(z).

Our proof of a uniform performance bound will use Theorem 2 along with a coupling argument to

bound performance loss up to the time of the first sale. Begin by considering the following coupling

(A superscript ‘db’ on a variable indicates that the variable is relevant to a system controlled by

the πdb policy): For an arbitrary policy π(·) ∈ Π, the sales processes ndb
t and nπ

t are coupled in

the following sense: Denote by {tk} the points of the Poisson process corresponding to customer

arrivals (not sales) to both systems. Assume πdbt−k
≤ πt−k

. Then a jump in nπ at time tk can occur

if and only if a jump occurs in ndb at time tk. Further, conditioned on a jump in ndb at tk, the

jump in nπ occurs with probability exp(−(πt−k
− πdbt−k

)). The situation is reversed if πdbt−k
> πt−k

.

Let τ denote the time of the first sale for the πdb system i.e. τ = inf{t : ndb
t = 1}. In the context

of this coupling consider the optimal (i.e. π∗) and πdb controlled systems. Denoting

J∗(z|τ) = E

[∫ ∞

t=0
e−αtπ∗(zt)λF (π∗(zt))dt

∣∣∣τ, z0 = z

]
,

we then have:

Lemma 11. For all z ∈ S,

J∗(z|τ) ≤ e−e−1τ
(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a + 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a + 1, bdb
τ )

)

where π∗ = π∗(x, a, b∗τ ) and πdb = πdb(x, a, bdb
τ ).

The result above is essentially a consequence of the fact that it is never the case that the π∗

controlled system sells it’s first item before the πdb system, and moreover, that conditioning on τ ,

and the information available in both systems up to τ− yields a posterior with shape parameter

a + 1 and scale parameter bdb
τ . We will also find the following technical Lemma useful:
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Lemma 12. For x > 1, a > 1, b > 0, J∗(x, a, b) ≤ 2.05J∗(x− 1, a, b).

The result above is intuitive; it would follow, for example, from decreasing returns to an addi-

tional unit of inventory. Unfortunately, we aren’t able to show such a ‘decreasing returns’ property

directly and a certain coupling argument is used to prove the Lemma (see the appendix). We are

now poised to prove a uniform (over x > 1) performance bound for our pricing scheme:

Theorem 3. For all z ∈ S with x > 1,

Jπdb(z)
J∗(z)

≥ 1/3.

Proof: In Lemma 11 we showed:

J∗(z) ≤ E
[
e−e−1τ

(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a + 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a + 1, bdb
τ )

)]

Now,

e−e−1τ
(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a + 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a + 1, bdb
τ )

)

≤ e−e−1τ
(
e−(π∗−πdb)π∗ + J∗(x, a + 1, bdb

τ )
)

≤ e−e−1τ
(
e−(π∗−πdb)π∗ + 2.05 J∗(x− 1, a + 1, bdb

τ )
)

≤ e−e−1τ
(
πdb + 2.05(1 + log κ(a + 1))Jπdb(x− 1, a + 1, bdb

τ )
)

≤ e−e−1τ2.05(1 + log κ(a + 1))
(
πdb + Jπdb(x− 1, a + 1, bdb

τ )
)

where the first inequality is because J∗ is non-decreasing in x. The second inequality follows from

Lemma 12. The third inequality follows from the fact that π∗ ≥ πdb ≥ 1 so that π∗e−π∗ ≤ πdbe−πdb

and from Theorem 2. Finally, taking expectations of both sides we get:

E
[
e−e−1τ

(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a + 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a + 1, bdb
τ )

)]

≤ 2.05(1 + log κ(a + 1))E
[
e−e−1τ

(
πdb + Jπdb(x− 1, a + 1, bdb

τ )
)]

≤ 2.05(1 + log κ(1))Jπdb(z)

Thus,
Jπdb(z)
J∗(z)

≥ 1
2.05(1 + log κ(1))

≥ 1/3.

!
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Perhaps the most crucial point borne out in the performance analysis we have just presented

is that the decay balancing heuristic is robust ; our analysis precludes the drastic performance

breakdown observed for the greedy pricing heuristic in our computational experiments.

7 Multiple Stores and Consumer Segments

We now explore extensions of decay balancing to a model with multiple stores and consumer

segments. We do not attempt to extend our performance analysis to this more general model but

instead present numerical experiments, the goal being to show that decay balancing demonstrates

the same qualitative behavior as in the one store, one customer segment case we have studied to

this point.

More formally, we consider a model with N stores and M consumer segments. Each store is

endowed with an initial inventory x0,i for i ∈ {1, . . . , N}. Customers from class j, for j ∈ {1, . . . ,M}

arrive according to a Poisson process of rate λj where λj is a Gamma distributed random variable

with shape parameter a0,j and scale parameter b0,j . An arriving segment j customer considers

visiting a single store and will consider store i with probability αij . Consequently, each store i

sees a Poisson stream of customers having rate
∑

j αijλj . We assume without loss of generality

that
∑

i αij = 1. We assume that customers in each segment have exponential reservation price

distributions with mean r and moreover that upon a purchase the store has a mechanism in place

to identify what segment the purchasing customer belongs to.

Let pt ∈ RN , t ∈ [0,∞) represent the process of prices charged at the stores over time. Let nj
t,i

represent the total number of type j customers served at store i up to time t and let nj
t =

∑
i n

j
t,i.

The parameter vectors a and b are then updated according to:

at,j = a0,j + nt,j and bt,j = b0,j +
∫ t

τ=0

∑

i

e−pτ,i/rdτ

Our state at time t is now zt = (xt, at, bt). As before, we will consider prices generated by policies

π that are measurable, non-negative vector-valued functions of state, so that pt = π(zt) ≥ 0. Letting

Π denote the set of all such policies, our objective will be to identify a policy π∗ ∈ Π that maximizes

Ĵπ(z) = Ez,π

[
∑

i

∫ τ i

0
ρ̂t,ie

−pt,i/rdt

]
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where τ i = inf{t :
∑

j nj
t,i = x0,i} and ρ̂i =

∑
j αi,j(aj/bj). We define the operator

(H̃πJ)(z) =

∑

i

[
ρ̂ie

−π(z)i/r



π(z)i +
∑

j

αi,j(aj/bj)
ρ̂i

J(x− ei, a + ej , b)− J(z)



 +
∑

j

e−π(z)i/r d

dbj
J(z)

]
− αJ(z).

where ek is the vector that is 1 in the kth coordinate and 0 in other coordinates. One may show

that Ĵ∗ = Ĵπ∗ is the unique solution to

sup
π∈Π

(H̃πJ)(z) = 0 ∀z

satisfying Ĵ∗(0, a, b) = 0, and that the corresponding optimal policy for xi > 0 is given by

(π∗(z))i = r + Ĵ∗(z)−
∑

j

αi,j(aj/bj)
ρ̂i

Ĵ∗(x− ei, a + ej , b)−
1
ρ̂i

∑

j

d

dbj
Ĵ∗(z).(7)

Now, assuming that the λj ’s are known perfectly a-priori, it is easy to see that the control

problem decomposes across stores. In particular, the optimal strategy simply involves store i using

as it’s pricing policy pt,i = π∗ρi
(xt,i), where ρi =

∑
j αi,jλj . Consequently, a certainty equivalent

policy would use the pricing policy (πCE(z))i = π∗ρ̂i
(xi).

We can also consider as an approximation to Ĵ∗, the following upper bound (which is in the

spirit of the upper bound we derived in Section 4):

J(z) = E

[
∑

i

J∗ρi
(xi)

]
.

The analogous greedy pricing policy πgp is then given by (7) upon substituting J(·) for Ĵ∗(·) in

that expression.

Motivated by the decay balancing policy derived for the single store case we consider using the

following pricing policy at each store:

(πdb(z))i = r log
(

rρ̂i

αE[J∗ρi
(xi)]

)
.

The above pricing equation assumes that moving forward each store will operate as a separate

entity. Nonetheless, the heuristic incorporates joint learning across stores and continues to account

for the level of uncertainty in market size in the pricing process. Further, the structural properties
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Figure 5: Performance relative to a clairvoyant algorithm

discussed in the single store case are retained. The joint learning under this heuristic does not

however account for inventory levels across stores.

We now present computational results for the three heuristics. Our experiments will use the

following model parameters. We take N = 2, M = 2 and assume αi,j = 1/2 for all i, j, and further

that we begin with prior parameters a1 = a2 = 0.04, and b1 = b2 = 0.001 (which corresponds to a

mean of 40 and a coefficient of variation of 5). As usual, α = e−1, r = 1. Our first set of results

(Figure 5) compares the decay balancing heuristic’s performance against that of a clairvoyant

algorithm which as in Section 5 has perfect a-priori knowledge of λ. As in the N = 1, M = 1

case, our performance is quite close to that of the clairvoyant algorithm. Figure 6 compares decay

balancing performance to the certainty equivalent heuristic and the greedy heuristic. Figure 6 is

indicative of performance that is qualitatively similar to that observed for the N = 1, M = 1 case;

there is a significant gain over certainty equivalence at lower inventory levels, but this gain shrinks

as inventory level increases. The performance of the greedy heuristic is particularly dismal, one

explanation for which is that
∑

j
d

dbj
J(z) is a potentially poor approximation to

∑
j

d
dbj

J̃∗(z).

8 Discussion and Conclusions

The dynamic pricing model proposed by Gallego and van Ryzin (1994) is central to a large body of

the revenue management literature. This work considered an important extension to that model. In

particular, we considered incorporating uncertainty in the customer arrival rate or ‘market response’

which is without doubt important in many industries that practice revenue management.
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Figure 6: Performance relative to the Certainty Equivalent (left) heuristic and Greedy Pricing
heuristic (right)

We proposed and analyzed a simple new heuristic for this problem: decay balancing. Decay

balancing is computationally efficient and leverages the solution to problems with no uncertainty

in market response. Our computational experiments (which focused on gamma priors and expo-

nentially distributed reservation prices) suggest that decay balancing achieves near-optimal per-

formance even on problems with high levels of uncertainty in market response. Pricing policies

generated by decay balancing have the appealing structural property that, all other factors re-

maining the same, the price in the presence of uncertainty in market response is higher than the

corresponding price with no uncertainty . This is reasonable from an operational perspective and

is in fact a property possessed by the optimal policy. Our analysis also demonstrated a uniform

performance guarantee for decay balancing when reservation prices are exponentially distributed,

which is an indicator of robustness.

Two heuristics proposed for problems of this nature prior to our work were the certainty equiv-

alent heuristic (by Aviv and Pazgal (2005a)) and the greedy pricing heuristic (by Araman and

Caldentey (2005)). Our computational results suggest that decay balancing offers significant per-

formance advantages over these heuristics. These advantages are especially clear at high levels of

uncertainty in market response which is arguably the regime of greatest interest. Decay balancing

relies only on a good approximation to the value of an optimal policy at a given state. This is in

contrast with greedy pricing that requires not only a good approximation to value but further to

derivatives of value with respect to the scale parameter. At the same time, uncertainty in arrival

rate and changes in inventory levels bear the appropriate directional impact on decay balancing
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prices: uncertainty in the arrival rate calls for higher prices than in corresponding situations with

no uncertainty, while a decrease in inventory calls for an increase in prices. In contrast, uncertainty

in the arrival rate has no impact on certainty equivalent prices while greedy prices can increase or

decrease with decreasing inventory.

Our computational study and performance analysis were focused on exponentially distributed

reservation prices and gamma priors, but we expect favorable performance for other distributions

as well. In particular, the analysis of Theorem 1 can be extended to Gamma mixture priors

yielding encouraging estimates on the quality of approximation provided by J̃ . Since the decay

balancing price at state z is likely to be a good approximation to the optimal price at z if J̃(z)

is a good approximation to J∗(z), this suggests that decay balancing is likely to do a good job of

approximating the optimal price for general reservation price distributions and priors on arrival

rate, which in turn should lead to superior performance.

There is ample room for further work in the general area of pricing with uncertainty in market

response and other factors that impact demand. One direction is considering more complex mod-

els. We considered applying the decay balancing heuristic to a problem with multiple stores and

consumer segments; our computational results there are promising. There are other models one

might hope to consider. For example, the multi product model proposed by Gallego and van Ryzin

(1997). Another potential direction is exploring new approximations to the value function beyond

the approximation considered here and applying such approximations with either the greedy pric-

ing or decay balancing heuristics. Finally, it would be interesting to extend the approaches in this

paper to problems with uncertainty in other factors that impact demand such as price elasticity.
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Appendix

Results in this appendix are numbered consistently with those in the main paper. Results that
do not appear in the paper (auxiliary Lemmas or additional theorems omitted from the exposition
in the main paper) are numbered using the convention ‘SectionLetter.Number’ (eg. Theorem E.1).

We recall the following assumptions in several proofs that follow and so find it convenient to
repeat them here.

Assumption 1.

1. F (·) has a differentiable density f(·) with support R+.

2. F has a non-decreasing hazard rate. That is, ρ(p) = f(p)
F (p)

is non-decreasing in p.

Assumption 2. J∗λ(x) is a differentiable function of λ on R+ for all x ∈ N.

A Proofs for Section 3

Lemma 1. π∗λ(x) is decreasing in x (on N) and non-decreasing in λ (on R+).

Proof: We find it convenient to prove the following sub-homogeneity property for J∗λ(x) viewed
as function of λ: For λ2 ≥ λ1 > 0, J∗λ2

(x) ≤ λ2
λ1

J∗λ1
(x). To see this, consider a system beginning with

x units of inventory facing arrivals at rate λ2. Every arrival to the system is marked as either ‘real’
or ‘fictitious’ with probability λ1

λ2
and 1− λ1

λ2
respectively, independent of all other arrivals. Consider

using the pricing policy π∗λ2
(·), and denote by J∗,fλ2

(x) and J∗,rλ2
(x) the expected revenues earned

under this policy from sales to arrivals marked as fictitious and real respectively. By construction,
we have J∗λ2

(x) = J∗,fλ2
(x) + J∗,rλ2

(x) and further, J∗,rλ2
(x) = λ1

λ2
J∗λ2

(x). But J∗,rλ2
(x) is the expected

revenue earned under a randomized non-anticipatory policy for a system beginning with x units
of inventory and arrival rate λ1, so that J∗,rλ2

(x) ≤ J∗λ1
(x). Thus λ1

λ2
J∗λ2

(x) ≤ J∗λ1
(x) which is the

inequality we require.
We now turn to the proof of the Lemma. We have from the HJB equation for the case of a

known arrival rate and x > 0:

αJ∗λ(x)
λ

= sup
p

F̄ (p)(p + J∗λ(x− 1)− J∗λ(x))

Now αJ∗λ(x)
λ is trivially increasing in x. αJ∗λ(x)

λ is non-increasing in λ by the inequality we have just
shown (i.e. since J∗λ(x) is a sub-homogenous function of λ). Further, observe that supp F̄ (p)(p− c)
is decreasing in c. It follows that J∗λ(x)−J∗λ(x−1) is decreasing in x and non-decreasing in λ. But,
π∗λ(x)− 1

ρ(π∗λ(x)) = J∗λ(x)− J∗λ(x− 1) and p− 1/ρ(p) is an increasing function of p by Assumption
1. The claim follows. !

Lemma 2. For all x ∈ N, J∗λ(x) is an increasing, concave function of λ on R+.

Proof: Consider two systems with λ1 < λ2. We will show that d
dλJ∗λ(x)|λ=λ1 ≥ d

dλJ∗λ(x)|λ=λ2 .
Delaying a proof until later in our argument, we have:
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(1)
d

dλ
J∗λ(x)

∣∣∣∣
λ=λ

= E
[
Tαπ∗

λ
(xTα)F̄

(
π∗

λ
(xTα)

)]

where Tα is exponentially distributed with mean 1/α. Now, the instantaneous rate at which a sale
occurs in a system with arrival rate λ and x units of inventory on hand is given by λF̄ (π∗λ(x)) =
λ

αJ∗λ(x)ρ(π∗λ(x))
λ = αJ∗λ(x)ρ(π∗λ(x)), which is an increasing function of λ, since π∗λ(x) and J∗λ(x) are

increasing functions of λ (see Lemma 1) and ρ(·) is a non-decreasing function by Assumption 1.
Thus, letting xλi

Tα
be the inventory on hand at time Tα in the ith system (for i = 1, 2), we must

have that xλ1
Tα

stochastically dominates xλ2
Tα

. We consequently have:

d

dλ
J∗λ(x)

∣∣∣∣
λ=λ2

= E
[
Tαπ∗λ2

(xλ2
Tα

)F̄
(
π∗λ2

(xλ2
Tα

)
)]

≤ E
[
Tαπ∗λ2

(xλ1
Tα

)F̄
(
π∗λ2

(xλ1
Tα

)
)]

≤ E
[
Tαπ∗λ1

(xλ1
Tα

)F̄
(
π∗λ1

(xλ1
Tα

)
)]

=
d

dλ
J∗λ(x)

∣∣∣∣
λ=λ1

The first inequality follows from the fact that π∗λ(x) is decreasing in x by Lemma 1 and since pF̄ (p)
is decreasing in p for p ≥ p∗ (the static revenue maximizing price). The second inequality follows
from the fact that π∗λ(x) is increasing in λ by Lemma 1 and since pF̄ (p) is decreasing in p for p ≥ p∗.
That pF̄ (p) is decreasing in p for p ≥ p∗ follows from the fact that d

dppF̄ (p) = f(p)(1/ρ(p) − p)
which by Assumption 1 is negative for p > p∗ and 0 at p = p∗.

That J∗λ(x) is increasing in λ follows from the positivity of the right hand side in (1).
We now establish the equality (1). Consider a system with arrival rate λ. The expected

revenue from this system is equal to the expected revenue from an un-discounted system, where
after a random time Tα ∼ exp(1/α), no revenues are recorded. This can be seen by simply noting
that the HJB equations for the respective problems are identical and given by

(2) αJ∗λ(x) =

{
supp≥0 λF (p)(p + J∗λ(x− 1)− J∗λ(x)) if x > 0
0 otherwise.

In particular,

(3) J∗λ(x) = E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

]

Next, we observe that increasing λ to λ + δ is equivalent to decreasing α to α( λ
λ+δ ). That is,

J∗,αλ+δ(x) = J
∗,α( λ

λ+δ )

λ (x)

which is immediate from the HJB equation for a known arrival rate. This in turn is equivalent to
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increasing Tα on each sample path to Tα(1 + δ/λ). In particular, we have:

J∗,αλ+δ(x) = E

[∫ ∞

0
π∗λ+δ(xt)F̄ (π∗λ+δ(xt))(λ + δ) exp(−αt)dt

∣∣∣x0 = x

]

= E

[∫ ∞

0
π∗λ+δ(xt)F̄ (π∗λ+δ(xt))λ exp

(
−α

λ

λ + δ
t

)
dt

∣∣∣x0 = x

]

= E

[∫ Tα(1+δ/λ)

0
π∗λ+δ(xt)F̄ (π∗λ+δ(xt))λdt

∣∣∣x0 = x

]
(4)

where the second equality follows by noting that the optimal policy for the system with arrival
rate λ + δ and discount factor α is identical to that for the system with arrival rate λ and discount
factor α λ

λ+δ which in turn follows from the fact that the HJB equations for the two systems are
identical. The third equality follows as in (3).

Now π∗λ(x) is a differentiable function of λ for all x ∈ N. To see this we note that π∗λ(x) is given
implicitly by

π∗λ(x) = 1/ρ(π∗λ(x)) + J∗λ(x)− 1x>0J
∗
λ(x− 1).

Since p − 1/ρ(p) is increasing on p ≥ 0 with R+ in its range (and therefore invertible on R+)
and differentiable in p (all of which follows from Assumptions 1) and since J∗λ(x) was assumed
differentiable in λ (Assumption 2) we may invoke the Inverse Function Theorem to conclude that
π∗λ(x) is a differentiable function of λ on R+.

Let x′t denote the inventory on hand at time t in an optimally controlled system with arrival
rate λ+ δ. Let us couple the sales processes in the systems with arrival rate λ and λ+ δ as follows:
assume the prevailing prices in the two systems are p and p′ respectively. If λF̄ (p) ≤ (λ + δ)F̄ (p′)
then the system with arrival rate λ will witness its next sale no sooner than the system with arrival
rate λ + δ; the next sale to the system with arrival rate λ + δ will arrive at rate (λ + δ)F̄ (p′) and
will constitute a sale in the system with arrival rate λ with probability λF̄ (p)/(λ + δ)F̄ (p′). The
situation is reversed if (λ + δ)F̄ (p′) < λF̄ (p). By the continuity of π∗λ in λ, we have x′Tα

→ xTα in
probability under this coupling. Then, by the Cauchy-Schwarz inequality,

|E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]−E[Tαπ∗λ+δ(x
′
Tα

)F̄ (π∗λ+δ(x
′
Tα

))]| ≤ 2 sup
p

pF̄ (p)
√

Pr(x′Tα
'= xTα)E[T 2

α],

where Pr(·) is the joint measure induced by our coupling. Since supp pF̄ (p) <∞ by Assumption 1,
we thus have:

E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]− E[Tαπ∗λ+δ(x
′
Tα

)F̄ (π∗λ+δ(x
′
Tα

))]→0

Again, via the continuity of π∗λ in λ, the dominated convergence theorem yields

E[Tαπ∗λ(xTα)F̄ (π∗λ(xTα))]− E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]→0

by considering the dominating random variable 2Tα supp pF̄ (p). Together, the preceding two limits
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let us conclude that

E[Tαπ∗λ(xTα)F̄ (π∗λ(xTα))]− E[Tαπ∗λ+δ(x
′
Tα

)F̄ (π∗λ+δ(x
′
Tα

))]→0

Together with (3) and (4) this yields:

d

dλ
J∗λ(x)

∣∣∣∣
λ=λ

= lim
δ→0

(
E

[∫ Tα(1+δ/λ)

0
π∗

λ+δ
(xt)F̄ (π∗

λ+δ
(xt))λdt

∣∣∣x0 = x

]
− E

[∫ Tα

0
π∗

λ
(xt)F̄ (π∗

λ
(xt))λ̄dt

∣∣∣x0 = x

])
/δ

=
d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

+ lim
δ→0

(
E

[
Tαπ∗

λ+δ
(x′Tα

)F̄
(
π∗

λ+δ
(x′Tα

)
)]

+ O(δ)
)

=
d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

+ E
[
Tαπ∗

λ
(xTα)F̄

(
π∗

λ
(xTα)

)]

(5)

We note that

E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

]

is differentiable with respect to πλ(·). This follows from the differentiability of E[exp(−ατ)]
with respect to η when τ is distributed as an exponential random variable with parameter η, and
since F̄ is differentiable by Assumption 1.

Now,

d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

=
x∑

X=0

(
d

dλ
π∗λ(X)

) (
d

dπλ(X)
E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
πλ(X)=π∗λ(X)

)∣∣∣∣
λ=λ

= 0

where we use fact that since π∗
λ

attains maximum revenue for an arrival rate λ = λ,

d

dπλ(X)
E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
πλ(X)=π∗

λ
(X)

= 0

With (5), this yields equality (1) and the proof. !

B Proofs for Section 4

Lemma 3. For all z ∈ S, α > 0

J∗(z) ≤ J̃(z) ≤ J∗µ(z)(x) ≤ F (p∗)p∗µ(z)
α

.

where p∗ is the static revenue maximizing price.
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Proof: Since J∗λ(x) is concave in λ by Lemma 2, Jensen’s inequality gives us that J∗a/b(x) =
J∗E[λ](x) ≥ E[J∗λ(x)] = J̃(z). Note that J∗λ(x) is bounded above by the value of a system with
customer arrival rate λ but without a finite capacity constraint. The optimal policy in such a
system is simply to charge the static revenue maximizing price, p∗, garnering a value of F (p∗)p∗λ

α

yielding J∗λ(x) ≤ F (p∗)p∗λ
α . !

Lemma 4. For all z ∈ S, there is a unique p ≥ 0 such that F (p)
ρ(p) µ(z) = αJ̃(z).

Proof: Note that F (p)pµ(z)
α is a continuous, monotone decreasing function of p for p ≥ p∗ under

Assumption 1. But since F (π∗(z))π∗(z)µ(z)
α = J∗(z), the result is immediate from Lemma 3; in fact

the unique solution to F (p)
ρ(p) µ(z) = αJ̃(z) must be in [p∗, π∗(z)]. !

C Proofs for Section 6

Lemma 5. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to
π′(x, a, b) = π(x, a, b/α). Then, for all z ∈ S, α > 0, Jπ,α(z) = Jπ′,1(x, a, αb), and, in particular,
J∗,α(z) = J∗,1(x, a, αb).

Proof: Let ẑ ≡ (x̂, â, b̂) ∈ S be arbitrary. Restricting attention to the pricing policy π, we have
that Jπ,α is given by the unique solution to the HJB equation HπJ = 0. That is, Jπ,α uniquely
satisfies

(6) F (π(x, a, b))
(

a

b
(π(x, a, b) + J(x− a, a + 1, b)− J(x, a, b)) +

d

db
J(x, a, b)

)
− αJ(x, a, b) = 0,

for all z ∈ Sx̂,â,b̂ and similarly for Jπ′,1. In particular,

F (π(x, a, b))
(

a

b
(π(x, a, b) + Jπ,α(x− a, a + 1, b)− Jπ,α(x, a, b)) +

d

db
Jπ,α(x, a, b)

)
− αJπ,α(x, a, b)

= 0,

for all z ∈ Sx̂,â,b̂ and

F (π′(x, a, b))
(

a

b

(
π′(x, a, b) + Jπ′,1(x− a, a + 1, b)− Jπ′,1(x, a, b)

)
+

d

db
Jπ′,1(x, a, b)

)
− Jπ′,1(x, a, b)

= 0

for all z ∈ Sx̂,â,αb̂.
Now, in order to prove our claim it will suffice to show that J̄(z) defined according to J̄(x, a, b) =
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Jπ′,1(x, a, αb) satisfies (6). But, identifying the change of variables b′ = αb, we have:

F (π(x, a, b))
(

a

b

(
π(x, a, b) + Jπ′,1(x− a, a + 1, αb)− Jπ′,1(x, a, αb)

)
+

d

db
Jπ′,1(x, a, αb)

)

− αJπ′,1(x, a, αb)

= F (π(x, a, b′/α))
(

aα

b′

(
π(x, a, b′/α) + Jπ′,1(x− a, a + 1, b′)− Jπ′,1(x, a, b′)

)
+

d

db
Jπ′,1(x, a, b′)

)

− αJπ′,1(x, a, b′)

= α

(
F (π′(x, a, b′))

(
a

b′

(
π′(x, a, b′) + Jπ′,1(x− a, a + 1, b′)− Jπ′,1(x, a, αb)

)
+

d

db′
Jπ′,1(x, a, b′)

))

− αJπ′,1(x, a, b′)

= 0.

This suffices for the proof. !

Lemma 6. Let J ∈ J satisfy J(0, a, b) = 0. Let τ = inf{t : J(zt) = 0}. Let z0 ∈ Sx̃,ã,b̃. Then,

E

[∫ τ

0
e−αtHπJ(zt)dt

]
= Jπ(z0)− J(z0)

Let J : N → R be bounded and satisfy J(0) = 0. Let τ = inf{t : J(xt) = 0}. Let x0 ∈ N. Then,

E

[∫ τ

0
e−αtHπ

λ J(xt)dt

]
= Jπ

λ (x0)− J(x0)

Proof: Define for J ∈ J , and π ∈ Π,

Aπ,zJ(z) = lim
t>0,t→0

e−αtEz,π[J(z(t))]− J(z)
t

.

Further, define
HπJ(z) = F (π(z))

a

b
π(z) + Aπ,zJ(z)

Lemma E.5 verifies that this definition is in agreement with our previous definition provided J ∈ J .
Let τ be a stopping time of the filtration σ(zt) (where zt = {zt′ : 0 ≤ t′ ≤ t}). We then have:

E

[∫ τ

0
e−αtHπJ(zt)dt

]
= E

[∫ τ

0
e−αt

(
F (π(zt))

at

bt
π(zt) + Aπ,zJ(zt)

)
dt

]

= Jπ(z0) + Ez0

[
e−ατJ(zτ )

]
− J(z0)

= Jπ(z0)− J(z0)

The second equality follows from the fact that

E

[∫ τ

0
e−αtAπ,zJ(zt)dt

]
= Ez0

[
e−ατJ(zτ )

]
− J(z0)

which is Dynkin’s formula for Markov processes (see III.10 in Rogers and Williams (2000)). The
third equality follows by the definition of τ and the assumption that J(0, a, b) = 0. The proof of
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the second assertion is identical. !

Lemma 7. If λ <µ , Jπnl

λ (x) ≥ (λ/µ)J∗µ(x) for all x ∈ N.

Proof: Letting τ = inf{t : nt = x0} as usual, we have

−E

[∫ τ

0
e−αtHπnl

λ J∗µ(xt)dt

]
= E

[∫ τ

0
e−αt(1− λ/µ)αJ∗µ(xt)dt

]

≤ E

[∫ τ

0
e−αt(1− λ/µ)αJ∗µ(x0)dt

]

≤ (1− λ/µ)J∗µ(x0)

where the inequality follows from the fact that J∗µ(x) is decreasing in x and since λ <µ here. So,
from Lemma 6, we immediately have:

J∗µ(x0)− Jπnl

λ (x0) ≤ (1− λ/µ)J∗µ(x0)

which is the result. !

Lemma 8. If λ ≥ µ, Jπnl

λ (x) ≥ J∗µ(x) for all x ∈ N.

Proof: Here,

−E

[∫ τ

0
e−αtHπnl

λ J∗µ(x(t))dt

]
≤ 0

so the result follows immediately from Lemma 6. !

Corollary 1. For all z ∈ S, and exponential reservation price distributions with parameter r:

1
1 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1

For all z ∈ S, and logit reservation price distributions with parameter r:

1.27
1.27 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1

Proof: The decay balancing equation for exponential reservation prices yields:

πdb(z)
π∗(z)

=
r log ra

be−1J̃(z)

r log ra
be−1J∗(z)

≥
log ra

be−1J̃(z)

log raκ(a)

be−1J̃(z)

=
log ra

be−1J̃(z)

log ra
be−1J̃(z)

+ log κ(a)

≥ 1
1 + log κ(a)

where the first inequality follows from Theorem 1 and the second inequality follows from the fact
that by Lemma 3, J̃(z) ≤ a

b r. That πdb(z) ≤ π∗(z) is immediate from the decay balance equation
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and the fact that J̃(z) ≥ J∗(z). The proof of the bound for logit reservation prices is identical; we
employ the fact that for logit reservation prices, F̄ (p∗)p∗ = e−1.27r, so that J̃(z) ≤ a

b re−0.27. !

Lemma 9. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 2,

Jub(z) ≥ J∗(z)

Proof: Define the operator:

(HubJ)(z) = F (πdb(z))
(

a

b

(
π∗(z) + J(z′)− J(z)

)
+

d

db
J(z)

)
− e−1J(z).

Analogous to the proof of Theorem E.1, one may verify that Jub is the unique bounded solution to
(HubJ)(z) = 0 for all z ∈ Sx̃,ã,b̃ satisfying Jub(0, a, b) = 0. Identically to the proof of Lemma 6, we
can then show for J ∈ J satisfying J(0, a, b) = 0, and z0 ∈ Sx̃,ã,b̃ that

(7) E

[∫ τ

0
e−αtHubJ(zt)dt

]
= Jub(z0)− J(z0)

Now, observe that for x > 0,

(HubJ∗)(z)

= F (πdb(z))
(

a

b

(
π∗(z) + J∗(z′)− J∗(z)

)
+

d

db
J∗(z)

)
− e−1J∗(z)

≥ F (π∗(z))
(

a

b

(
π∗(z) + J∗(z′)− J∗(z)

)
+

d

db
J∗(z)

)
− e−1J∗(z)

= 0

where for the inequality, we use the fact that

π∗(z) + J∗(z′)− J∗(z) +
b

a

d

db
J∗(z) = 1/ρ(π∗(z)) ≥ 0

and that πdb(z) ≤ π∗(z) from Corollary 1. The equality is simply the HJB equation. We conse-
quently have

HubJ∗(z) ≥ 0 ∀z ∈ Sx̃,ã,b̃

so that (7) applied to J∗ immediately gives:

Jub(x, a, b) ≥ J∗(x, a, b)

!

Lemma 10. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to
π′(z) = (1/r)π(z). Then, for all z ∈ S, α > 0, r > 0, Jπ,α,r(z) = rJπ′,α,1(z) and, in particular,
J∗,α,r(z) = rJ∗,α,1(z).

Proof: Consider the following coupling of the r system starting at state z = (x, a, b), and of the 1
system starting at state z. The first system is controlled by the price function π(·) while the second
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is controlled by the price function π′(·) = (1/r)π(·). Consider the evolution of both systems under
a sample path with arrivals at {tk} and a corresponding binary valued sequence {ψk} indicating
whether or not the consumer chose to make a purchase. Let E[·] be a joint expectation over
{tk, ψk; k ≤ x} assuming {tk} are the points of a Poisson(λ) process where λ ∼ Γ(a, b), and ψk is a
Bernoulli random variable with parameter exp(−π(t−k )/r) = exp(−π′(t−k )). We then have:

Jπ,α,r(z) = E

[
x∑

k=1

ψkπ(t−k ) exp(−α(tk))

]

= rE

[
x∑

k=1

ψkπ
′(t−k ) exp(−α(tk))

]

= rJπ′,α,1(z)

The result follows. !

Lemma 11. For all z ∈ S,

J∗(z|τ) ≤ e−e−1τ
(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a + 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a + 1, bdb
τ )

)

where π∗ = π∗(x, a, b∗τ ) and πdb = πdb(x, a, bdb
τ ).

Proof: Since π∗(·) ≥ πdb(·), and further since πdb(·) is decreasing in b 1, we must have that
π∗t ≥ πdbt on t < τ . Thus, by our coupling we must have that n∗t ≤ ndb

t on t ≤ τ ; n∗τ = 1 with
probability e−(π∗−πdb) and n∗τ = 0 with the remaining probability. Moreover, conditioned on τ and
n∗τ , λ is distributed as a Gamma random variable with shape parameter a + 1 and scale parameter
bdb
τ .

We thus have

J∗(z|τ)

= E

[∫ ∞

t=0
e−e−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, z∗0 = z

]

= e−e−1τe−(π∗−πdb)π∗ + e−(π∗−πdb)E

[∫ ∞

t=τ
e−e−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]

+ (1− e−(π∗−πdb))E
[∫ ∞

t=τ
e−e−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x, z∗0 = z

]

But by our observation on the posterior statistics of λ given τ and n∗τ ,

E

[∫ ∞

t=τ
e−e−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]

≤ sup
πt:t≥τ

E

[∫ ∞

t=τ
e−e−1tπtλF (πt)dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]

= e−e−1τJ∗(x− 1, a + 1, bdb
τ )

1This follows easily from the fact that for any positive constant k, X/k is distributed as a Gamma random variable
with parameters (a, bk) if X is distributed as a Gamma random variable with parameters (a, b).
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and similarly

E

[∫ ∞

t=τ
e−e−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x, z∗0 = z

]

≤ sup
πt:t≥τ

E

[∫ ∞

t=τ
e−e−1tπtλF (πt)dt

∣∣∣τ, x∗τ = x, z∗0 = z

]

= e−e−1τJ∗(x, a + 1, bdb
τ )

This yields the result. !

Lemma 12. For x > 1, a > 1, b > 0, J∗(x, a, b) ≤ 2.05J∗(x− 1, a, b).

Proof: We establish this result for the case where α = e−1. This is without loss since by Lemma 5
we know that for all x > 1, a > 1, b > 0, J∗,α(x, a, b) ≤ 2.05J∗,α(x−1, a, b)⇔ J∗,e

−1(x, a, αb/e−1) ≤
2.05J∗,e

−1(x− 1, a, αb/e−1).
Let τ1 = inf{t : n∗(t) = x− 1}, and define

J∗,τ1(z) = Ez,π∗

[
x−1∑

k=1

e−e−1tkπt−k

]
.

Now,

J∗(z) = J∗,τ1(z) + E
[
e−e−1τ1J∗(1, a + x− 1, bτ1)

]
(8)

We will show that E
[
e−e−1τ1J∗(1, a + x− 1, bτ1)

]
≤ 1.05J∗(x−1, a, b). Since we know by definition

that J∗(x− 1, a, b) ≥ J∗,τ1(z), the result will then follow immediately from (8).
To show E

[
e−e−1τ1J∗(1, a + x− 1, bτ1)

]
≤ 1.05J∗(x − 1, a, b), we will first establish a lower

bound on
π∗(2, a + x− 2, bτ1)/J∗(1, a + x− 1, bτ1).

Let a + x− 2 ≡ k, a + x− 1 ≡ k′. Certainly, k′ ≤ 2k since a > 1. Now,

π∗(2, k, b) = 1 + log k/b− log J∗(2, k, b) ≥ 1 + log k/b− log J∗k/b(2)

and J∗(1, k′, b) ≤ J∗(1, 2k, b) ≤ J∗2k/b(1) so that

π∗(2, k, b)
J∗(1, k′, b)

≥
1 + log k/b− log J∗k/b(2)

J∗2k/b(1)

But,

inf
y∈(0,∞)

1 + log y − log J∗y (2)
J∗2y(1)

= inf
y∈(0,∞)

1 + log y − log W (yeW (y))
W (2y)

≥ 0.96

recalling the expression for J∗y (x) from Section 3.1.
so that

π∗(2, a + x− 2, bτ1)
J∗(1, a + x− 1, bτ1)

≥ 0.96
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It follows that

J∗(x− 1, a, b) ≥ J∗,τ1(z)

≥ E[e−e−1τ1π∗(2, a + x− 2, bτ1)]

≥ 0.96 E[e−e−1τ1J∗(1, a + x− 1, bτ1)]

Substituting in (8), we have the result. !

A Remark on the Proof of Lemma 12.

The infimum in Lemma 12 is computed as follows. We first observe that

1 + log y − log W (yeW (y))
W (2y)

≥ 1 + log y − log 2W (y)
W (2y)

.

Some simple algebra establishes that

1 + log y − log 2W (y)
W (2y)

=
1− log 2 + W (y)

W (2y)
≥ 1− log 2 + W (y)

2W (y)
≥ 1

for y < 0.1 using the fact that W (·) is concave increasing and W (0.1) < 0.092. In addition, using
the fact that W (x)/W (2x) is increasing in x and by evaluating W (2 × 108)/W (4 × 108) > 0.961,
we can conclude that

1− log 2 + W (y)
W (2y)

≥ 1− log 2 + W (y)
1.041W (y)

≥ 0.961

for y > 2 × 108. It is then straightforward to numerically minimize 1+log y−log W (yeW (y))
W (2y) over the

compact interval [0.1, 2× 108] to any finite precision since it is Lipschitz over that interval.

D Auxiliary Results for Section 6

In what follows we derive an approximation bound for decay balancing prices when reservation
prices satisfy the following assumption in addition to Assumption 1:

Assumption 3.

1. ρ(p)
F (p)

is a differentiable, convex function of p with support R+.

2. There exists a unique static revenue maximizing price p∗ > 0 with d
dp

ρ(p)
F (p)

∣∣∣
p=p∗

≥ 1/F (p∗)p∗2.

Corollary D.1. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 3

1
κ(a)

≤ πdb(z)
π∗(z)

≤ 1

Proof: Recall that the decay balance equation implies that F (p∗)p∗ρ(π∗(z))
F (π∗(z))

= F (p∗)p∗a
J∗(z)bα ≡ r∗. Let

r̃ = F (p∗)p∗a

J̃(z)bα
. Lemma 3 implies that r∗ ≥ r̃ ≥ 1.
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Define a function g : [p∗, π∗(z)] → [1, r∗] according to g(p) = F (p∗)p∗ρ(p)
F (p)

. Observe that g(p∗) =
1, g(π∗(z)) = r∗ and further by Assumptions 1 and 3, g(·) is an increasing convex function of p

on [p∗, π∗(z)] with range [1, r∗]. It follows that the inverse function g−1 is a concave increasing
function on [1, r∗] with range [p∗, π∗(z)].

Now we have that πdb(z) = g−1(r̃) = p∗+ πdb(z)−p∗

r̃−1 (r̃−1) and by the concavity of g−1, we have

π∗(z) = g−1(r∗) ≤ g−1(r̃) + g−1(r̃)−g−1(1)
r̃−1 (r∗ − r̃) = p∗ + πdb(z)−p∗

r̃−1 (r∗ − 1).
Consequently,

πdb(z)
π∗(z)

≥
p∗ + πdb(z)−p∗

r̃−1 (r̃ − 1)

p∗ + πdb(z)−p∗

r̃−1 (r∗ − 1)

≥
p∗ + πdb(z)−p∗

r̃−1 (r̃ − 1)

p∗ + πdb(z)−p∗

r̃−1 (κ(a)r̃ − 1)

≥
p∗ + (r̃ − 1)/(F (p∗)p∗ d

dp
ρ(p)
F (p)

∣∣
p=p∗

)

p∗ + (κ(a)r̃ − 1)/(F (p∗)p∗ d
dp

ρ(p)
F (p)

∣∣
p=p∗

)

≥ 1
κ(a)

where the second inequality follows from Theorem 1. The third inequality follows from the fact
that by Assumption 3, r̃−1

πdb(z)−p∗ ≥ g′(p)|p=p∗ = F (p∗)p∗ d
dp

ρ(p)
F (p)

∣∣
p=p∗

. The final inequality follows

from part 2 of Assumption 3: F (p∗)p∗ d
dp

ρ(p)
F (p)

∣∣
p=p∗

≥ 1/p∗. That πdb(z)
π∗(z) ≤ 1 is immediate from the

fact that J∗(z) ≤ J̃(z). !

Armed with this result, we can derive a performance bound analogous to Theorem 2, but for
general reservation price distributions:

Theorem D.1. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 3,

1
κ(a)

≤ Jπdb(z)
J∗(z)

≤ 1.

E Existence and Uniqueness of solutions to the HJB equation

Our analysis thus far has been predicated on using the HJB equation to characterize the optimal
value function J∗. This section makes this argument rigorous for the case of a Gamma prior (which
is the focus of our analysis). In particular, we establish the following theorems for this special case:

Theorem E.1. The value function J∗ is the unique solution in J to HJ = 0.

Theorem E.2. A policy π ∈ Π is optimal if and only if HπJ∗ = 0.

Our proofs to both Theorems E.1 and E.2 will rely on showing the existence of a bounded
solution to the HJB Equation (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃. We restrict attention to exponential
reservation prices (which are the primary focus of our analysis). All of the arguments that follow
are easily extended to the case of general reservation prices satisfying Assumption 1 , but doing so
is notationally quite cumbersome.
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E.1 Existence of Solutions to the HJB Equation

We will demonstrate the existence of a solution to the HJB Equation wherein price is restricted to
some bounded interval. We will later show that the solution obtained is in fact a solution to the
original HJB Equation. Throughout, this section, we will let r denote the mean of the reservation
price.

Define B = r + r
b̃

(
1 + e−1(ã+x̃)

ãα + e−1(ã+x̃)
α

)
. Let ΠB be the set of admissible price functions

bounded by B, and define the Dynamic programming operator

(HBJ)(z) = sup
π∈ΠB

(HπJ)(z)

We will first illustrate the existence of a bounded solution to the HJB Equation:

(9) (HBJ)(z) = 0

for z ∈ Sx̃,ã,b̃.
For some arbitrary N > b̃ we first obtain a solution on the compact set SN

x̃,ã,b̃
≡ {(x, a, b) ∈ S :

x + a = x̃ + ã; b̃ ≤ b ≤ N} with the boundary conditions J(x, a,N) = 0 and J(0, a, b) = 0:

Lemma E.1. (9) has a unique bounded solution on SN
x̃,ã,b̃

satisfying J(x, a,N) = 0 and J(0, a, b) =
0.

The proof is analogous to that of Theorem VII.T3 in Bremaud (1981); upon setting J(0, a, b) =
0, (9) can be interpreted as an initial value problem of the form J̇ = f(J, b) with J(N) = 0, in the
space Rx̃−1 equipped with the max-norm.

The following two Lemma’s construct a solution to (9) on Sx̃,ã,b̃ using solutions constructed on
SN

x̃,ã,b̃
.

Lemma E.2. Let JN be the unique solution to (9) on SN
x̃,ã,b̃

with J(x, a,N) = 0 and J(0, a, b) = 0.

Moreover, let JN ′ be the unique solution to (9) on SN ′

x̃,ã,b̃
for some N ′ > N with J(x, a,N ′) = 0 and

J(0, a, b) = 0. Then, for (x, a, b) ∈ SN
x̃,ã,b̃

,

|JN (x, a, b)− JN ′
(x, a, b)| ≤ r

ã + x̃

b̃
exp(−α(N − b))

Moreover, JN (x, a, b) ≤ re−1(ã+x̃)

αb̃

Proof: Define τN = inf{t : nt = x} ∧ inf{t : bt = N}. Similarly, define τN ′ . Let π∗,N (·),
defined on SN

x̃,ã,b̃
, be the greedy price with respect to JN . Finally, define the ‘revenue’ function

r∗,Nt = ate
−π

∗,N
t /rπ∗,N

t
bt

. We then have, via an application of Lemma 6,

JN (x, a, b) = Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
+ Ez,π∗,N

[
e−ατN JN (xτN , aτN , bτN )

]

= Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
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Note that this immediately yields:

JN (x, a, b) ≤ J∗(x, a, b) ≤ J∗a/b(x) ≤ re−1(ã + x̃)
αb̃

.

Now, for an arbitrary π ∈ ΠB, and the corresponding revenue function r, we have (again, via
Lemma 6)

JN ′
(x, a, b) ≥ Ez,π

[∫ τN′

0
e−αtrtdt

]
+ Ez,π

[
e−ατN′JN ′

(xτN′ , aτN′ , bτN′ )
]

= Ez,π

[∫ τN′

0
e−αtrtdt

]

In particular, using the price function π = π∗,N for b ≤ N and 0 otherwise, yields,

(10) JN ′
(x, a, b) ≥ Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
= JN (x, a, b)

The same argument, applied to JN , with the price function π∗,N
′ , yields

Ez,π∗,N′

[∫ τN

0
e−αtr∗,N

′

t dt

]
≤ JN (x, a, b)

Finally, noting that on {τN ′ > τN}, τN ≥ N − b, we have

Ez,π∗,N′

[∫ τN′

τN

e−αtr∗,N
′

t dt

]
≤ r

ã + x̃

b̃
exp(−α(N − b))

Adding the two preceding inequalities, yields

JN ′
(x, a, b)− r

ã + x̃

b̃
exp(−α(N − b)) ≤ JN (x, a, b).

Since JN ′(x, a, b) ≥ JN (x, a, b) by (10), the result follows.
!

This yields as a corollary the following result:

Lemma E.3. limN→∞ JN exists on Sx̃,ã,b̃, is bounded, and solves system (9)

Proof: From Lemma E.2, we have limN→∞ JN (x, a, b) exists and is bounded for all (x, a, b) ∈ S.
We posit that this limit is a solution to system (9). First note that by the continuity of

f(x, a, J, b) ≡ inf
p∈[0,B]

[
eγpαJ(x, a)− a

b
p +

a

b
(J(x− 1, a + 1)− J(x, a))

]

in J , we have:
lim

N→∞
f(x, a, JN , b) = f(x, a, lim

N→∞
JN , b)
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for each x, a, b. It remains for us to show that

lim
δ→0

lim
N→∞

JN (x, a, b + δ)− JN (x, a, b)
δ

exists and equals limN→∞ dJN (x, a, b)/db. Note however by the Mean Value Theorem that

JN (x, a, b + δ)− JN (x, a, b)/δ = dJN (x, a, b)/db + RN

where

|RN | ≤ sup
b′∈[b,b+δ]

dJN (x, a, y)/dy|y=b′ − inf
b′∈[b,b+δ]

dJN (x, a, y)/dy|y=b′

= sup
b′∈[b,b+δ]

f(x, a, JN (x, a, b′), b′)− inf
b′∈[b,b+δ]

f(x, a, JN (x, a, b′), b′)

But JN (x, a, b) converges uniformly to its limit on [b, b + δ] by Lemma E.2, and f is uniformly
continuous on [b, b + δ] being a continuous function restricted to a compact set, so that

lim sup
N

|RN | ≤ sup
b′∈[b,b+δ]

f(x, a, J∗(x, a, b′), b′)− inf
b′∈[b,b+δ]

f(x, a, J∗(x, a, b′), b′)

Finally, by the continuity of J∗ in b,

lim
δ→0

lim sup
N

|RN | = 0

Similarly,
lim
δ→0

lim inf
N

|RN | = 0

This completes the proof. !

The previous Lemma constructs a bounded solution to (9). We now show that this solution is
in fact a solution to the original HJB Equation (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃.

Lemma E.4. Let J̃ be a bounded solution to (9). Then, J̃ is a solution to (HJ)(z) = 0 for
z ∈ Sx̃,ã,b̃.

Proof: We show the claim by demonstrating that the greedy price (in ΠB) with respect to J̃ is
in fact attained in [0, B). We begin by proving a bound on such a greedy price. Let πb ∈ ΠB be

the greedy price with respect to J̃ , and τ = inf{t : Nt = x0}. Letting r̃t = ate−πb
t /rπb

t
bt

, we have, via
Lemma 6,

J̃(z) = Ez,πb

[∫ τ

0
e−αtr̃tdt

]
+ Ez,πb

[
e−ατ J̃(zτ )

]

= Ez,πb

[∫ τ

0
e−αtr̃tdt

]

≤ J∗(z)

≤ re−1(ã + x̃)
αb̃

.
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Now let J̃δ be the solution to (9) when the discount factor is α(1+δ/b). Let πb,δ be the corresponding

greedy price and r̃δ
t = ate

−π
b,δ
t /rπb,δ

t
bt

. We then have from Lemma 6 and using the fact that J̃(x, a, b+
δ) = J̃δ(x, a, b),

J̃(x, a, b + δ) = Ez,πb,δ

[∫ τδ

0
e−α(1+δ/b)tr̃δ

t dt

]

≥ Ez,πb

[∫ τ

0
e−α(1+δ/b)tr̃tdt

]

It follows that

J̃(z)− J̃(x, a, b + δ) ≤ Ez,πb

[∫ τ

0
(e−αt − e−α(1+δ/b)t)r̃tdt

]

≤
∫ ∞

0
(e−αt − e−α(1+δ/b)t)

re−1(a + x)
b

dt

so that
d

db
J̃(z) ≥ −rα

b

e−1(a + x)
bα2

Putting the two bounds together yields

(11) J̃(x− 1, a + 1, b)− J̃(z) +
b

a

d

db
J̃(z) ≥ −re−1(ã + x̃)

αb̃
− re−1(ã + x̃)

ãb̃α

Now observe that the greedy price πb ∈ Π with respect to J̃ is given by

p =
(

r − J̃(x− 1, a + 1, b) + J̃(z)− b

a

d

db
J̃(z)

)+

which by (11) is in [0, B), so that we have that J̃ is, in fact, a solution to (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃.
!

E.2 Proofs for Theorems E.1 and E.2

Lemma E.5. For J ∈ J , and π ∈ Π, let

Aπ,zJ(z) = lim
t>0,t→0

e−αtEz,π[J(z(t))]− J(z)
t

.

We have:
Aπ,zJ(z) = e−π(z)/r a

b

(
J(z′)− J(z) +

b

a

d

db
J(z)

)
− αJ(z)

Proof: As in Theorem T1 in Section VII.2 of Bremaud (1981), one may show for J ∈ J , and an
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arbitrary z0 ∈ Sx̃,ã,b̃,

J(zt) =J(z0) +
∫ t

0

[
bs

as

d

dbs
J(zs) + J(xs − 1, as + 1, bs)− J(zs)

]
as

bs
e−ps/rds

+
∫ t

0
[J(xs− − 1, as− + 1, bs−)− J(zs−)] (dNs −

as

bs
e−ps/rds)

It is not hard to show that that Ns − as
bs

e−ps/r is a zero-mean σ(zs, ps) martingale, so that we may
conclude

e−αtE[J(zt)]− J(z0) =

e−αtE

[∫ t

0

[
bs

as

d

dbs
J(zs) + J(xs − 1, as + 1, bs)− J(zs)

]
as

bs
e−ps/rds

]
+ (e−αt − 1)J(z0)

Dividing by t and taking a limit as t→0 yields, via bounded convergence, the result. !

Lemma E.6. (Verification Lemma) If there exists a solution, J̃ ∈ J to

(HJ)(z) = 0

for all z ∈ Sx̃,ã,b̃, we have:

1. J̃(·) = J∗(·)

2. Let π∗(·) be the greedy policy with respect to J̃ . Then π∗(·) is an optimal policy.

Proof:
Let π ∈ Π be arbitrary. By Lemma 6,

Jπ(z0)− J̃(z0) =E

[∫ τ

0
e−αsHπJ̃(zs)ds

]

≤0
(12)

with equality for π∗(·), since Hπ∗ J̃(z) = (HJ̃)(z) = 0 for all z ∈ Sx̃,ã,b̃. !

Now we have shown the existence of a bounded solution, J̃ to (HJ)(z) = 0 on Sx̃,ã,b̃ in the
previous section, so that the first conclusion of the Verification Lemma gives

Theorem D.1. The value function J∗ is the unique solution in J to HJ = 0.

The second conclusion and (12) in the Verification Lemma give

Theorem D.2. A policy π ∈ Π is optimal if and only if HπJ∗ = 0.
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