
  
Returns to Physician Human Capital: 

Evidence from Patients Randomized to Physician Teams 
 
 

Joseph J. Doyle, Jr. 
MIT & NBER 

 
Steven M. Ewer, M.D. 

University of Wisconsin—Madison 
 

Todd H. Wagner 
VA Palo Alto and Stanford 

 
 

July 2010 
 

Abstract 
 
Physicians play a major role in determining the cost and quality of healthcare, yet estimates of 
these effects can be confounded by patient sorting.  This paper considers a natural experiment 
where nearly 30,000 patients were randomly assigned to clinical teams from one of two 
academic institutions.  One institution is among the top medical schools in the U.S., while the 
other institution is ranked lower in the distribution.  Patients treated by the two programs have 
similar observable characteristics and have access to a single set of facilities and ancillary staff.  
Those treated by physicians from the higher-ranked institution have 10-25% less expensive stays 
than patients assigned to the lower-ranked institution.  Health outcomes are not related to the 
physician team assignment.  Cost differences are most pronounced for serious conditions, and 
they largely stem from diagnostic-testing rates:  the lower-ranked program tends to order more 
tests and takes longer to order them.   
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1.  Introduction 
 

A major question in healthcare is the underlying source of geographic variation in 

spending:  high-spending areas in the U.S. incur costs that are 50% higher than low-spending 

ones (Fisher et al., 2003).  These differences are often ascribed to divergent preferences and 

training among physicians (Phelps and Mooney, 1993; Eisenberg, 2002; Sirovich et al., 2008).  

Related evidence suggests that high-spending areas are associated with a greater number of 

specialists and lower-quality care (Baicker and Chandra, 2004; Wennberg et al., 2009).  There 

are also equity concerns that health disparities may result from differences in access to high-

quality care (Institute of Medicine, 2002; Chandra and Skinner, 2003; Almond, Chay, and 

Greenstone, 2008).   

 Estimates of the effects of physicians on cost and quality of care can be confounded by 

omitted-variable concerns and selection issues.  For example, high-risk patients may be referred 

to or self-select the “best” physicians (referral bias), and as a result the highest-quality physicians 

can have the highest mortality rates (Glance et al., 2008).1  Indeed, public report cards that rank 

providers based on risk-adjusted mortality rates have been controversial due to concerns that 

patients differ in unobservable ways, and that the reports create incentives for providers to avoid 

high-risk cases (Marshall et al., 2000; Dranove et al., 2003).  In addition, the environments 

where physicians operate differ, including differences in patient characteristics and 

complementary physical and human capital.   

 This paper considers a unique natural experiment in a large, urban Department of 

Veterans Affairs (VA) hospital, where nearly 30,000 patients (and over 70,000 admissions) were 

randomly assigned to teams comprised of clinicians from one of two academic institutions.  As 

                                                 
1 This non-random assignment of patients also plagues comparisons across hospitals.  Geweke, Gowrisankaran, and 
Town (2003) find that patients with the worst unobservable severity go to high quality hospitals. 
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described in more detail later, most VA hospitals are affiliated with one or more academic 

medical school.  In this paper, we analyze data from a VA that has two academic affiliates.  One 

set of physicians is affiliated with an academic institution that is among the top medical schools 

in the U.S.;  the other set is linked with an institution that is ranked lower in the quality 

distribution. 2  Patient characteristics are similar across the two academic institutions due to the 

randomization.  Meanwhile, the teams have access to the same facilities, the same nursing staff, 

and the same specialists for consultations.  By comparing patient outcomes across these two 

groups, this paper aims to estimate effects of physicians on costs and health outcomes, i.e. 

returns to physician human capital.3  

 We find that patients assigned to physicians affiliated with the higher-ranked program 

have 10% lower costs compared to the lower-ranked program, and up to 25% lower costs for 

more complicated conditions.  The differences largely stem from diagnostic-testing rates:  the 

lower-ranked program tends to order more tests and takes longer to order them.  Meanwhile, 

hospital readmissions and mortality are unrelated to the physician-team assignment.   

 A main caveat is that the results apply directly to one hospital and two residency training 

programs, albeit with thousands of physicians that comprise them.  The “parent hospital” of the 

higher-ranked institution is similar in treatment intensity to other top teaching hospitals, 

however.  This suggests that practice patterns at the top-ranked institution are similar to other 

highly-ranked institutions as well.   

 The paper is organized as follows:  section 2 describes the empirical framework and 

defines the main parameters of interest; section 3 provides background information on the 

                                                 
2 In some ways the top-ranked program’s physicians are “stars”.  Rosen (1981) discusses star physicians, where the 
potential to be a superstar is limited by the extent of the market—in this case the physician’s time to see patients.  
This time constraint inhibits the scalability of the treatment provided by top physicians. 
3 Gross returns are considered here.  The residents studied earn similar wages regardless of their academic institution 
affiliation, and detailed data linking wages to the quality of medical education do not exist. 
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physician teams and patient assignment, as well as a review of the previous literature; section 4 

describes the data; section 5 reports the results; and section 6 concludes. 

 

2.  Empirical Framework 

 Consider a health production function that relates mortality, M, to health care inputs and a 

patient-level severity measure,  : 

 );,()1( KHFM  

where H represents human capital of the hospital staff, and K represents physical capital.   

We focus on the effects of physician human capital, H, on patient outcomes, as well as 

differences in treatment intensity.  In our empirical application, there are two teams that differ 

markedly in the screening of physicians that compose each team, including different residents 

and attending physicians.  Let P be an indicator that the patient was assigned to physicians in the 

lower-ranked program, T be a measure of treatment, and X represent observable characteristics of 

the patients.  The main parameters of interest can then be written as:  
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where  and   are error terms.   
 
 A common problem when estimating 1  or 1  is that patients are not randomly assigned 

to physicians.  Rather, patients choose or are referred to physicians.  A patient’s primary 
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physician, who knows more about the illness severity than can be captured in typical data sets, 

may refer the “toughest” cases to the “best” physicians.  This tends to bias against finding 

survival improvements for physicians with higher levels of human capital.4  Comparisons across 

hospitals have the additional confounding factors of differences in technology and support staff, 

which may have a large impact on patient survival independent of the physician characteristics 

(Unruh, 2003; Evans and Kim, 2006; Bartel, Phibbs, and Stone, 2008). 

 The main innovation in this paper is the study of a large number of patients who were 

randomly assigned to physician teams within the same facility.  This should satisfy the 

identification assumptions that the physician team is mean independent of the error terms:  

0)()(   PEPE . 

 In terms of the standard errors, as in other randomized trials the individual error terms are 

assumed to be independently and identically distributed.  The estimates reported are robust to 

heteroskedasticity and clustered at the patient level to account for dependence across 

observations for the same patients treated over time (similar results are found when we restrict 

the analysis to each patient’s initial episode, as described below).  These errors are conservative 

compared to alternatives considered.5   

 

3.  Background   

                                                 
4 In the case of heterogeneous treatment effects, the patients are likely referred based on the expected gain of the 
assignment:  a correlated random coefficient model that can inflate returns to physician human capital (Bjorklund 
and Moffitt, 1987).  
5 One caveat is that the observations may be correlated within teams that vary over time, although we do not observe 
team composition.  We found that clustering at the month-year level—times when team composition is likely to 
change—resulted in similar, and often smaller, standard errors.  Similarly, when the estimates were jointly estimated 
using a seemingly unrelated regression, estimated standard errors were again similar and often smaller.     Last, we 
considered correlation within each of the two groups.  The outcomes considered here, however, have an intra-class 
correlation of close to zero (e.g. our cost measures have an intra-class correlation of less than 0.005).  As in other 
randomized trials, these intra-class correlation coefficients imply that correcting the standard errors by clustering at 
the group level is unnecessary in this context (Moulton, 1986; Angrist & Pischke, 2008).  
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A.  Previous Literature 

 Much of the previous work on physician human capital finds that previous test scores, 

such as undergraduate grade point average or Medical College Admissions Test (MCAT) scores, 

are positively correlated with later test scores (Case and Swanson, 1993; Glaser et al., 1992; 

Hojat et al., 1997; Silver and Hodgson, 1997).  It is less clear whether physicians with higher 

scores provide higher quality care.  Ferguson et al. (2002) review the literature on predictors of 

medical school success, and note that little has been done on post-medical school performance.    

There is some evidence on outcome differences by board-certification status, but it is mixed.6 

A measure of physician quality directly related to the current study comes from surveys 

of other physicians in the same market.  Hartz et al. (1999) show that surgeons are more likely to 

be regarded as a “best doctor” in these community surveys if they trained at a prestigious 

residency or fellowship program.  They note that treatment by physicians trained at prestigious 

programs is not related to mortality, however.   

Small-area variation in treatment has received considerable attention, with some evidence 

that physician quality measures vary across patient groups and may contribute to health 

disparities (see extensive reviews by van Ryn, (2002) and Bach et al. (2004)).  In particular, 

access to high-quality specialists varies across racial groups, and desegregation has been found to 

significantly improve health outcomes for African American patients (Mukamel et al., 2000; 

Chandra and Skinner, 2003; Almond, Chay, and Greenstone, forthcoming).  Another reason for 

the large literature on small-area variation in treatment is that physicians are important cost 

drivers across areas.  Physician characteristics have been found to explain up to 50% of the 

                                                 
6 Certification has been found to be associated with reductions in mortality following heart attacks (Kelly and 
Hellinger, 1987; Norcini et al., 2000), while other work has found differences in the use of appropriate medications 
but little difference in mortality (Chen et al., 2006).  Licensure examination scores have been found to be related to 
preventive care and more appropriate prescription medicines (Tamblyn et al., 1998; Tamblyn et al., 2002). 
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variation in expenditures, on par with case-mix variables (Pauly, 1978; Burns and Wholey, 1991; 

Burns, Chilingerian, and Wholey, 1994; Meltzer et al., 2002; Grytten and Sorensen, 2003).7   

There is a related literature that estimates the impact of report cards—publicly provided 

information about physician mortality rates, adjusted for case mix (for reviews, see Marshall, et 

al. (2000); Hofer et al., (1999); and discussions between Hannan and Chassin (2005) and Werner 

and Asch (2005)).  Newhouse (1996) and Cutler et al. (2004) note that such report cards suffer 

from patient selection problems in ways that can confound estimates of the returns to physician 

human capital in general.  For example, Dranove (2003) found limited access to surgery for 

high-risk patients following the introduction of report cards:  fewer surgeries, more conducted at 

teaching hospitals, and large increases in adverse health outcomes in the short run.8     

The empirical strategy in the literature to deal with these selection issues is a selection on 

observables approach—controlling for illness severity with indicators of comorbidities and 

patient characteristics such as age.   Nevertheless, unobserved (to the researcher) differences in 

severity may contaminate comparisons.  One randomized trial of 1151 patients assigned to 

resident and staff physicians showed that the staff service had shorter length of stay and costs 

(Simmer, et al., 1991).  Previous research that is most similar to ours is Gillespie et al. (1989) 

that studied 119 patients randomized to two medical school programs in 1984 and 1985.  They 

found little difference in diagnostic testing between the two programs.  The analysis excluded 

patients who received no diagnostic testing, however, which may lead to sample selection bias.  

The current study will consider nearly 30,000 patients over 13 years.  This includes over 72,000 

patient encounters to provide a more comprehensive comparison, greater statistical power to 

                                                 
7 Not all studies find significant effects of physicians on costs, however.  Hayward et al. (1994) find that residents 
and attending physicians in one hospital do not explain much of the variation in length of stay (on the order of 1-
2%). 
8 See also Schneider and Epstein (1996) and Omoigui (1996). 
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detect differences, and a time frame that allows a comparison of long-term outcomes such as 5-

year mortality. 

B.  Training at the VA 
 
 Physician training programs offer a way to accumulate human capital largely through 

learning by doing, and such training can have an effect on patient outcomes (Huckman and 

Barro, 2005).9  One of the most common training grounds for physicians is the VA medical 

system.   

The VA operates the largest integrated health care system in the US, with 155 medical 

centers and over 850 community-based outpatient clinics.  Veterans can receive a range of 

services from general medical care to specialized services.  In 2007, VA treated over 5 million 

unique patients, and some health care reform experts use the VA as a model (Ibrahim, 2007).  

The VA is organized around 21 regions, known as VISNs (Veterans Integrated Service 

Networks).  Operating funds are distributed from Washington DC to each VISN, which then 

distributes the money to its hospitals, community clinics and outreach facilities.  The financing 

system is based on a capitated risk-adjustment model.   

Graduate medical education is part of the VA’s statutory mission, and VA medical 

centers are located near academic medical centers to enhance training.  107 of the 126 medical 

schools in the U.S are affiliated with a VA medical center.  The primary physicians for patients 

at VA hospitals are thus residents, particularly from internal medicine and general surgery 

training programs.  Residents rotate through the VA system and treat many low income and 

disabled veterans—patients who provide valuable variation across a wide range of diseases.  

Each year, 31,000 residents (30% of all residents in the U.S.) and 17,000 medical students train 

in VA facilities (Chang, 2005; VHA, 2005).   
                                                 
9 See Marder and Hough (1983) for an early discussion on supply and demand for such opportunities.   
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 This study considers a VA hospital in a large urban area that has affiliations with two 

medical schools.10  This VA hospital is a full-service teaching hospital that provides over 3,500 

surgical procedures each year.  It has an intensive care unit and what are considered excellent 

laboratory facilities, including the ability to conduct magnetic resonance imaging and 

angiography.  In addition to the main hospital, there are some smaller satellite hospitals 

elsewhere in the city that handle mental health, substance use treatment and long term care.   

C.  The Residency Programs 

 The medical and surgical residency training programs compared vary substantially in 

terms of their ranking:  one is regarded as a top program in the U.S., whereas the other is ranked 

lower in the quality distribution.  In the remainder of the paper, the higher-ranked institution will 

be referred to as Program A, and the lower-ranked institution will be referred to as Program B.   

To establish the difference in credentials, Table 1 reports some summary characteristics 

of the two programs.  First, the residency programs are affiliated with two different medical 

schools where the attending physicians that supervise and train the residents are faculty 

members.  These medical schools differ in their rankings.  Some years, the school affiliated with 

Program A is the top school in the nation when ranked by the incoming students’ MCAT scores, 

and it is always near the top.  In comparison, the lower-ranked program that serves this VA 

hospital is near the median of medical schools.  Similar differences are found in the rankings of 

medical schools with respect to their National Institutes of Health funding levels. 

Second, each training program is affiliated with another teaching hospital in the same 

city, in addition to the VA hospital.  Program A’s “parent hospital” is ranked among the top 10 

hospitals in the country according the U.S. News and World Report Honor Roll rankings of 

                                                 
10 We have chosen to keep the name of the VA hospital confidential out of respect for the patients and medical 
schools.   
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hospitals.  Out of 15 specialties ranked by U.S. News, Program A’s hospital is among the top 10 

hospitals in the country for nearly half of them, and among the top 20 in nearly all of them (U.S. 

News & World Report, 2007).  Meanwhile, Program B’s parent hospital is not a member of this 

Honor Roll overall or ranked among the top hospitals in terms of subspecialties.  The treatment 

intensity across the two parent hospitals is similar to one another, however, as described below.     

Third, the residents themselves can be compared using data from the AMA Masterfile.  

Approximately 30% of residents who were trained in Program A received their M.D. from a 

medical school in the top 10 of the U.S. News and World Report rankings in 2004, compared to 

3% of those trained in Program B.  Approximately half of Program A’s residents graduated from 

a top-25 medical school compared to less than 10% for Program B.  Similar differences are seen 

when the residents’ medical schools are ranked by NIH funding levels.  In addition, twice as 

many of Program B’s physicians earned their medical degree from a medical school outside of 

the U.S.11   

Perhaps the most striking evidence comes from Board scores.  At the end of the residency 

program students will often take board-certification exams, and the major Boards publish the 

pass rate for each residency program among those who were taking the exam for the first time.  

The two most relevant exams are given by the American Board of Internal Medicine and the 

American Board of Surgery.  Table 1 shows that the pass rate for Internal Medicine is close to 

100% for the residents in Program A compared to a pass rate of approximately 85% for Program 

B (a rate that is in the bottom quintile of the 391 programs listed).12  The pass rate for General 

                                                 
11 These data also include primary specialty, and two of the most common are internal medicine and pediatrics.  
Physicians who trained in Program B listed these 20% of the time, compared to 13% for Program A. 
12 American Board of Internal Medicine.  Figures for 2005-2007.   http://www.abim.org/pdf/pass-rates/residency-
program-pass-rates.pdf 
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Surgery is lower, 85% for Program A and 60% for Program B.  These scores place Program A in 

the top quartile, and Program B in the bottom quintile, of residency programs in the U.S.13   

In sum, the physicians in Program A perform substantially better on exams than 

physicians in Program B.  These differences are stable over time, as a survey in the early 1970s 

asking medical school faculty to rank programs included Program A in its top 10, whereas 

Program B was ranked near the median of the rankings (Cole and Lipton, 1977).   

D. The Clinical Teams 

Discussions with physicians familiar with the programs revealed similarities and 

differences across the teams at this VA Medical Center.  The clinical and teaching teams conduct 

independent rounds each day during which they discuss their patients.  The timing of these 

rounds does not differ systematically between the two institutions.  This parallel structure allows 

a comparison of the two groups’ treatment decisions and patient outcomes.14  The patients 

assigned to each team are interspersed throughout the floors and share a common pool of nursing 

and ancillary staff.  In particular, the two teams have access to the same specialists for 

consultations.  There is a single set of clinical laboratories and imaging facilities for use by both 

teams, and our investigation of the programs suggests that neither institution receives favorable 

treatment from these ancillary service providers. We have also found that the overall 

philosophies of care do not differ substantially across the two programs, and the amount of 

resident oversight at the VA is thought to be similar across the two programs.15  This is described 

in more detail below. 

                                                 
13 American Board of Surgery, 5-year pass rate from 2002-2007.   
http://home.absurgery.org/default.jsp?prog_passreport 
14 Other VA Medical Centers that are served by multiple residency training programs generally allow the teams to 
mix, with rounds attended by all of the residents. 
15 Historically, VA hospitals were thought to provide less attending supervision than other teaching hospitals.  In the 
1990s, this was addressed and has continued to increase.  For example, in 2004 the VA required an attending to be 
present for all major elective surgeries (Chang, 2005). 
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Members of the clinical team include attending physicians, interns, senior residents and 

medical students, all of whom are affiliated with the parent teaching hospital.  The intern, also 

known as a first-year resident, is the primary physician assigned to the patient, and this role 

includes evaluating patients, prescribing medicines, ordering diagnostic studies, performing 

bedside procedures, interacting with nursing staff and consultants, and writing the notes that 

make up the bulk of the medical record.  The senior resident directly supervises the work of the 

intern, leads the team on daily rounds during which clinical care and teaching are afforded, and 

serves as a backup for the intern. The attending physician serves as the official provider of 

medical care and oversees the work of all other members of the team.  This person typically does 

not attend the daily rounds of the team, but rather sees patients separately and discusses cases 

with the senior resident, confirming the clinical decision making of the team.  The medical 

students, not yet physicians, are not allowed to write orders or officially contribute to the medical 

record.  They work alongside residents to evaluate patients, and any contribution to decision 

making must go through the residents.  This distribution of work is representative for teams in 

both Program A and Program B. 

The size of the two physician teams is similar, consistent with the equal assignment of 

patients to the two teams.  At a given time, Program A has four medicine teams, each consisting 

of one attending physician, one senior resident and one intern.  Program B likewise has four 

medicine teams composed of one attending and one senior resident, but one difference across the 

two teams is that Program B teams include two interns.    In practice, the implication of this 

difference in team size is that Program B has an advantage in total residents (12 vs. 8).  The 

senior-resident to patient ratios are the same across the groups, however, and we consider the 

effects of different intern-to-patient ratios below.  Last, in terms of senior resident experience, 
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Program B again has an advantage with second and third-year residents at this facility compared 

to exclusively second-years from Program A.     

E.  Patient Assignment 

To ensure an equitable distribution of cases and overall workload, the patients are 

randomly assigned to each institution: patients with social security numbers ending in an odd 

number are assigned to Program A whereas those with even social security numbers are assigned 

to Program B.   This randomization method ensures that there is no crossover-if a patient is 

readmitted, the patient is assigned to the same physician group.  Discussions with physicians at 

the VA hospital suggest that this randomization process was established when the facility was 

constructed in the 1950’s. 

As part of our investigation of this natural experiment, we found three exceptions to the 

randomization.  First, the randomization only occurs at the main teaching facility, not at satellite 

facilities.  Second, not all subspecialties use the randomization.  For example, neurology patients 

are not randomized; rather all of the patients are assigned to one team.  Third, the medical 

intensive care unit is headed by a single attending physician that oversees patients assigned to 

both teams.  We will employ these groups of patients in specification checks below.     

 
4.  Data Description   
 
 We used the VA Patient Treatment Files (PTF) to identify inpatient encounters from 

1993-2006.  We restrict the main analysis to patients admitted to the main hospital facility, and 

patients who did not have a major diagnostic category of “nervous system”—these cases are less 

likely to enter the randomization.  This results in an analysis data set of over 72,000 inpatient 

stays and nearly 30,000 patients.  The main results include the information in all of the episodes 

and the standard errors are clustered by patient to take into account dependence within these 



 13

observations as described above.  Results will be shown for a sample restricted to patients’ first 

episodes in the database as well.   

The PTF includes the patient’s age at admission, race, sex, marital status, and ZIP code of 

residence.16  Data from the 2000 Census of Population were matched to the data to characterize 

the patient ZIP code, including the median household income, population density, and education, 

race, and age composition.  Time and date of admission are also available, and the models 

include day-of-week, month, and year indicators, as well as indicators for 6-hour time-of-day 

blocks. 

The PTF data also include ICD-9 diagnosis and procedure codes.  This allows us to 

compare treatment across primary diagnoses, and 9 secondary diagnoses will be used to 

characterize the co-morbidities of the patient.  It is possible that Programs A and B code 

diagnoses differently.  This is testable in our data, as the sample sizes within diagnoses can be 

compared across the 2 programs.  These diagnosis codes are recorded for the benefit of patient 

histories and ongoing care rather than for billing purposes and, therefore, should not be affected 

by financial incentives to code patients into more profitable diagnoses (Dafny, 2005).  Records 

can be coded by physicians or support staff, which would handle coding for both Programs A 

and B. 

The VA PTF uses a scrambled social security number as the patient identifier.  We linked 

this identifier to the last digit of the patient’s true social security number to compare patients 

assigned to the different teams.  The PTF does not have physician or resident identifiers to verify 

that all even numbered patients were indeed assigned to Program B, for example.  We do not 

                                                 
16 Of these variables, the definition of race changed over time, as did its collection method (from admission-clerk 
assignment to self-report).  This suggests that some caution is warranted with regard to this control.  The non-white 
patients are strongly correlated with the fraction African American in the patient’s ZIP code. 
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expect patients with even-numbered social security numbers to be assigned to Program A apart 

from the exceptions listed in the background section.   

 There are four main measures of treatment provided.  The patient’s length of stay in the 

hospital is observed for all years in our dataset.  Longer stays represent greater time for 

supervision and additional care.  Length of stay can also measure the ability of physicians to 

process administrative tasks such as scheduling a series of treatments.  The VA strove to 

decrease length of stays in the mid-1990s by decentralizing power to geographic regions, 

changing ambulatory care benefits and creating incentives that reward medical center directors 

for shorter lengths of stay (Ashton et al., 2003).  These policy changes would have been 

uniformly applicable to both Programs A and B, although we can test for differences in the 

response to these initiatives. 

In addition to length of stay, two cost measures are available as well.  Accounting cost 

data (using step-down accounting methods) comes from the Decision Support System (DSS) and 

the Health Economics Resource Center databases.  These data are reliable from 2000-2006.  A 

related summary measure is the Health Economics Resource Center Average Cost Data.  These 

data are considered available from 1998 onwards, and uses non-VA (largely Medicare) relative 

value weights to estimate expenditures for VA care (Phibbs et al., 2003; Wagner et al., 2003).  

One limitation of these estimated expenditures is that they are geared toward assigning average 

costs for patients with similar diagnoses and procedures, and are, therefore, less precise than 

DSS and can miss outlier costs (Wagner et al., 2003).  Costs were standardized to 2006 dollars 

using the general urban consumer price index from the Bureau of Labor Statistics. 
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 The fourth treatment measure is the number and timing of procedures, based on ICD-9 

procedure codes and dates.  Physicians’ use of diagnostic tests in particular can shed light on 

practice differences between Programs A and B.     

 There are two health outcomes that we consider.  First, readmissions to the VA hospital 

within 30 days or 1 year of the date of admission are identified.  A limitation of these 

readmissions is that they do not include admissions to non-VA hospitals.  If lower-quality care 

drove patients from the VA system into a non-VA facility, then lower readmission rates could 

signal lower-quality care.  Still, many veterans depend on the free care provided by the VA, and 

we will generally regard readmissions as a negative outcome for patients.  Another limitation is 

that any differences in initial length of stay will change the time at risk for a 30-day readmission, 

for example.  When the measure was 30-days from discharge (as opposed to days from 

admission), nearly identical results were found, however.  Two related readmission measures are 

the costs of these readmissions, and readmissions with the same major diagnosis as the initial 

episode. 

 The second outcome is more straightforward:  mortality.  The main results will focus on 

30-day, 1-year, and 5-year mortality, and these measures were calculated for patients whose 

measures are not right censored.  For example, 5-year morality was calculated for patients 

admitted to the VA hospital at least 5 years earlier than the end of the sample period.  These 

measures are taken from the VA vital status files and cover deaths occurring outside of the 

hospital as well as in-hospital mortality.  These data have been shown to be highly accurate in 

terms of sensitivity and specificity (Arnold, et al., 2006).  Other measures of mortality, such as 

10-hour mortality, will be compared as well. 
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 To describe the data available and compare patients assigned to the two groups, Table 2 

reports summary statistics.  The two columns of means are for patients with odd or even social 

security numbers:  patients assigned to Program A and Program B, respectively.  We do not 

believe that patients are aware of the dichotomy of physician teams and the difference in the 

quality of the residency programs, but to the extent that patients know they will be assigned to 

one of the two programs, sample selection could be an issue.  If selection were a factor, then the 

observable characteristics may differ across the two groups as well as the frequency of 

observations.  

 Table 2 shows that the means are nearly identical across the two teams.  For example, the 

average ages are 63.0 and 62.8.  The most common age is between 55 and 64, with smaller 

fractions of patients over the age of 65 when Medicare provides access to non-VA hospitals.17  

Still, there are many older patients in the sample, and the fraction of patients that no longer visit 

the VA hospital after the age of 65 does not vary systematically across the two physician teams. 

Nearly all of the patients are male, an artifact of the older, veteran population.  47% are 

white, 44% are married, and 43% have a Charlson severity score of 2—an aggregation of the 

secondary diagnoses that is strongly associated with mortality (Quan et al., 2005).  Most patients 

are admitted to the hospital between 12 noon and 6pm (42%), the average patient’s ZIP code has 

a median household income of $34,000 and 63% of its population is white.  The number of 

observations is similar across the two groups, with Program B treating 50.3% of the patients 

(35,932 vs. 36,434).18    It appears that the patients who enter the VA hospital are randomly 

                                                 
17 Demand for VA care appears inelastic with regard costs of visiting a VA hospital.  Mooney, et al. (2000) find that 
patients over the age of 65 are more inelastic with respect to distance to the VA hospital compared to those under the 
age of 65, despite access to Medicare for the older group. 
18 With the large sample size, this difference is marginally significantly different from 0.5 (p-value = 0.06).  When 
first episodes are considered, the fraction assigned to Program B is 0.5002 (p-value = 0.92).   
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assigned to the two programs and that differential selection into the VA is unlikely to drive 

differences in treatment or health outcomes. 

 
5.  Results 

A.  Treatment Differences 

 A first look at how the two programs’ treatment levels differ can be seen in Figures 1A-

1C.  In each figure, the vertical axis reports one of the three summary measures of treatment:  

length of stay, accounting cost, and estimated expenditures.  These data are right skewed and 

each measure was transformed using the natural logarithm.  The means of the three measures are 

1.43 log days (or 4.17 days), 8.63 log costs (or $5600 in 2006 dollars), and 8.71 log estimated 

expenditures (or $6100).  The horizontal axis in each figure is the last digit of the patient’s social 

security number.  We would expect similar measures for each odd (or even) digit if differences 

in the physician team assignment were responsible for any differences as opposed to sampling 

variation.   

 Figures 1A-1C show a pronounced sawtooth pattern, with length of stay and the two cost 

measures 10 log points higher for patients with an even-numbered social security number 

compared to patients with an odd-numbered social security number; patients treated by Program 

B have higher costs.  This difference is seen for each digit, as the means are similar for all even 

(or odd) last digits. 

 To aggregate the data up to the program level and introduce controls in the spirit of 

estimating equation (2b), Table 3 reports results from Ordinary Least Squares regressions for the 

three cost measures.  Similar results were found when the length of stay was estimated as a count 

variable using a negative binomial model.  Each column represents a separate regression.  The 

first model reported includes no controls and the 10-11 log point differences shown in Figure 1 
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have a standard error of close to 1 log point.19  Results were similar, although slightly smaller, 

when the estimates were re-transformed and heteroskedasticity was taken into account (Manning, 

1998).20 

The second model includes 3-digit primary-diagnosis fixed effects to estimate differences 

in treatment within disease classes and offer a first look at potential differences in diagnoses 

across the two groups.  The models reported in Table 3 show that the results are largely 

unchanged when these effects are incorporated, although the estimates are slightly larger for 

accounting costs (12 log points).   

The last column for each dependent variable includes the controls in Table 2, as well as 

year, month, and day-of-week indicators.  The results are nearly identical to the model without 

the additional controls.  This is consistent with the randomization effectively balancing the 

observable characteristics across the two groups, as shown in Table 2.   

Part of the cost difference is due to the longer length of stay, but we find substantial 

differences in costs even when controlling for length of stay.  In models with full controls, the 

main coefficient of interest is 0.068 (s.e.=0.008) for accounting costs and 0.058 (s.e.=0.007) for 

estimated expenditures. 

To place a 10 log-point difference in these treatment measures in context, Appendix 

Table A1 provides estimates for selected covariates.  Such a difference is akin to an increase in 

age category from 45-54 to 65-69.  Treatment levels for patients with a Charlson severity score 

of 2 are 11-13 log points higher compared to patients with a score of 1—a difference in severity 

that leads to substantial health outcome differences as described below.  Admissions during 

                                                 
19 The different samples for the cost measures are due to the different time periods when they are available. 
20 For models with full controls, when interpreting the estimates in terms of percentages rather than log points, a 
smearing factor (the ratio of the average exponentiated residuals in the regressions for each group) is applied and the 
estimated difference in length of stay is 10%; the difference in accounting cost is 9% and the difference in estimated 
expenditure is 8%.   
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business hours also accrue higher costs.  Meanwhile, there is little relationship with day of 

admission, and married patients have 7-9% lower treatment levels compared to single patients.     

Much of the remainder of the paper considers how the different programs differ in terms 

of procedures and across different types of patients to explore the mechanisms that drive the 

difference in the summary treatment measures.  Before the sources of the treatment differences 

are explored, the next section reports tests of differences in health outcomes. 

B.  Health Outcomes 

Given the results in Figure 1, it is possible that Program A discharges patients 

prematurely, and they may have worse long-term health outcomes.  It is also possible that 

Program A provides higher quality care in less time and at lower expense.  Figure 2 reports 

estimates of mean outcomes by the last digit of the social security number, and no differences are 

found across the patients in terms of 30-day readmissions, as well as 1-year and 5-year mortality. 

 Again to introduce controls and place the results in context, Table 4 reports the results of 

OLS regressions of the readmission and mortality indicators on the program assignment and 

controls (equation 3b).  Results are similar when probit and logit models were used instead, 

partly because the dependent variables are sufficiently far from zero:  13% and 43% readmission 

rates at the 30-day and 1-year intervals, respectively, as well as 30-day, 1-year, and 5-year 

mortality rates of 6.4%, 24% and 51%. 

 Table 4 shows that the program assignment is unrelated to readmissions and mortality, 

with coefficients that are not statistically or economically significant.  For example, Program B is 

associated with a 0.6% increase in 1-year readmissions, or 1.4% of the mean.  When 1-year 

readmissions with the same major diagnostic code as the previous major diagnosis are compared, 

Program B is associated with a 0.3% increase or 1.5% of the mean.   
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In terms of mortality, Program B is associated with a 0.1 percentage-point reduction in 

30-day mortality (or 1.1% of the mean), a 0.7 percentage-point reduction in 1-year mortality (or 

2.9% of the mean), and a 0.3 percentage-point reduction in 5-year mortality (or 0.6% of the 

mean).  The results are fairly precise as well.  For 1-year mortality the 95% confidence interval is 

[-0.0155, 0.0016], and 5-year mortality the confidence interval is [-0.0162, 0.0106].  This 

difference is small compared to a 5-year mortality rate of over 50%, and the precision of the 

estimate largely rules out survival benefits from assignment to the highly-ranked program.21  If 

anything, across all of the results the lower-ranked program appears to achieve modestly better 

outcomes.     

To place these small differences in mortality in context, other covariates are associated 

with higher mortality, as shown in Appendix Table A1.  Men have 18% higher mortality rates, a 

Charlson severity score of 2 is associated with a 50% higher mortality compared to a score of 1, 

and mortality is strongly associated with the age of the patient.  Another way to consider the 

difference in mortality is the cost of saving a statistical life year.  While we prefer not to 

associate the only difference between the two groups as the difference in average costs, Program 

B is associated with costs that are on the order of $1000 higher and a 1-year mortality rate that is 

0.7ppt lower.  This would imply a $140,000 cost per life year saved.22  This cost rises with more 

severe conditions, which are explored in the next section. 

C.  Mechanisms 

C.1.  Across Diagnoses  

                                                 
21 Across the 6 measures, the lower limit on the 95% confidence intervals are less than 7% of their respective means, 
and the upper limits are less than 5% of their means. 
22 Average costs are approximately $10,000 and Program B is associated with approximately 10% higher costs.  
$140,000 = $10,000*0.1/0.007. 
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To compare the robustness of the results across diagnoses and investigate whether the 

differences arise in more complex cases, Table 5 reports results from models estimated 

separately across common diagnoses.  First, the top 10 most frequent diagnoses are compared.23    

Two rows are presented for each diagnosis:  estimates from a model for log length of stay—the 

resource measure that is available for the full time period, and 1-year mortality.  Similar results 

were found for the other measures as well.  The means of the dependent variables are listed, and 

they vary widely across the diagnoses.   

 The results show that for some serious conditions with high 1-year mortality rates, such 

as heart failure, chronic obstructive pulmonary disease (COPD), and pneumonia, treatment 

differences are between 20 and 25 log points.  Smaller differences in treatment are found for less 

serious conditions such as chronic ischemic heart disease, with a difference closer to 10%.  

Acute myocardial infarction (AMI) has a 25% 1-year mortality rate, and a difference in log 

length of stay of 9 points.  

To summarize all of the diagnoses, the 3-digit primary diagnosis codes were divided into 

quartiles based on their mortality rates.24  No difference in treatment is found for the lowest 

quartile.  This is a group with a 4% mortality rate and the treatment may be more standardized 

for less serious conditions.  11 and 12 log-point differences in length of stay are found for the 2nd 

and 3rd quartiles, and the most seriously ill patients have a 14 log-point difference in length of 

stay when the two Programs are compared.  These cases are likely more complicated, as they 

have higher costs in addition to the higher mortality rates.  

                                                 
23 The top 10 diagnoses were determined by calculating the frequency of patients in 3-digit ICD-9 diagnosis codes, 
as well as more general definitions of gastrointestinal bleeding (Volpp et al., 2007) and Chronic Obstructive 
Pulmonary Disease.   
24 The mortality-rate quartiles could be affected by differences in the programs’ diagnoses and their effectiveness, 
but when the conditions are scanned, they are similar to severity rankings when an independent dataset, the 
Nationwide Inpatient Sample, is used to characterize diagnoses by their mortality rates. 
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 In terms of outcomes, the estimates are less precisely estimated within particular 

diagnoses given the smaller sample sizes, but the point estimates are unstable in sign and 

generally small in magnitude.  The largest differences are found for AMI and cardiac 

dysrhythmias, with Program B associated with mortality rates that are 12-18% lower than the 

sample mean.  These differences are not statistically significant, however, and no difference in 

30-day readmissions is found for these diagnoses.  In addition, no difference in 5-year mortality 

is found for AMI patients.25  Program A is associated with lower mortality for pneumonia 

patients (5% lower compared to the sample mean); again the difference is not statistically 

significant.  Overall, even at the extremes of our confidence intervals, a hypothesis that Program 

A is associated with lower mortality is not supported by these data. 

 Table 5 also reports the fraction of patients treated by Program B for each diagnosis, 

along with a p-value from a test that the fraction of patients seen within a diagnosis equals 0.5.  

This tests whether the programs differ when recording the primary diagnosis.  Some of the 

principal diagnoses show differences that are statistically significantly different from 0.5, with 

Program A more likely to categorize patients as having Chronic Obstructive Pulmonary Disease, 

and Program B more likely to categorize patients as having Respiratory and Chest Symptoms, as 

well as diabetes.  The rates are close to 0.5 across diagnoses once we aggregate the conditions 

into the four mortality quartiles. 

C.2.  Differences in Types of Care 

 The summary measures of treatment can be disaggregated to better understand the types 

of care that differ across the two sets of physicians.  Table 6 reports the results of 9 such models.  

The first is a simple count of the number of procedures, which averages 1.7.  Patients assigned to 

                                                 
25 For 30-day readmissions, the coefficient for the cardiac dysrhythmia sample is -0.006 compared to a mean of 13% 
and the coefficient for the AMI sample is -0.01 compared to a mean of 16%.  The coefficient for 5-year mortality is 
-0.06 compared to a mean of 52% for cardiac dysrhythmias and -0.006 compared to a mean 49% for AMI. 
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Program B are found to receive 0.25 additional procedures on average.  In terms of the types of 

procedures, column (2) shows that there is little difference in the number of surgeries.  Much of 

the overall difference stems from differences in diagnostic procedures, and these differences will 

be explored further below.   

 The next six columns use the accounting cost segments, which sum to the total 

accounting cost measure described above.  Levels (instead of logs) are used to avoid dropping 

observations with zero costs in a particular segment.  Surgery costs are found to be $123 lower 

for Program B on average, or 9% of the sample mean.  In all of the other categories, Nursing, 

Radiology, Lab, Pharmacy, and “all other” costs, Program B is associated with similarly higher 

costs in comparison to the mean for each segment, ranging from 7% of the mean for nursing care 

to 13% of the mean for laboratory costs. 

 One explanation for the lower costs associated with Program A is that these physicians 

may rely more heavily on outpatient care as a substitute for inpatient care.  Our data describes 

whether an outpatient referral is made, which happens in most cases when a patient was admitted 

to the hospital (79% of the time).  Program B is associated with a 1 percentage-point lower 

outpatient referral rate, which suggests that such substitution does not drive the inpatient cost 

differences.   

C.3.  Differences in Diagnostic Testing   

  Table 6 suggests that the difference in costs stems from differences in diagnostic testing.  

Table 7 explores this question overall and for particular diagnoses.  Columns (1) and (2) report 

the frequency with which each program orders particular tests.  For example, patients assigned to 

physicians from Program B are more likely to undergo diagnostic tests compared to patients 

treated by Program A (73% vs. 68%).  This difference is found among common diagnostic tests 
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including x-rays and stress tests.  Columns (3) and (4) report the number of tests conditional on 

ordering any tests.  Even conditional on ordering some tests, Program B is found to order 8% 

more than Program A (3.25 vs. 2.99).  Within procedures, the frequency of tests is more likely to 

be similar—a cardiac stress test, for example, is only conducted once (on average) in both groups 

if it is conducted at all. 

Another source of variation in treatment is the timing of diagnostic tests.  Table 7 shows 

that Program B is 10% slower, on average, to order the first test conditional on ordering one 

(1.55 days vs. 1.41).  To account for the time at risk for procedures and include all observations, 

Cox proportional hazard models estimates show that for individual procedures, Program B is 

approximately 8% slower to order a test Program A.  These differences are seen for x-rays, 

angiography, and cardiac tests. 

 The differences in Panel A may mask differences within particular diagnoses.  4 common 

diagnoses were chosen that have fairly standard diagnostic tests.  The differences are less likely 

to be statistically significant due to the smaller sample sizes, but large point estimates point to 

patterns, especially the longer duration to the first test.   

Panel B reports results for congestive heart failure, a chronic condition that is a common 

source of hospital admission.  Higher test rates are found for Program B (5% higher overall; 19% 

higher for stress tests).  Program B orders 14% more tests conditional on any (3.33 vs. 2.92).  In 

terms of timing, they take 21% longer to order the first test (1.34 days vs. 1.10 days), 51% longer 

to order an angiography if one is ordered (7.26 days vs. 4.81), 32% longer to order a cardiac 

stress test, and 74% longer to order other cardiac tests (including echocardiograms).  Hazard 

ratios that take into account patients that did not receive the test as well show somewhat smaller 
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but still economically and statistically significant differences:  hazard ratios of 0.75 and 0.77 for 

angiography and cardiac stress tests, for example. 

Panel C reports the results for myocardial infarction.  Program B is associated with 40% 

higher rates of cardiac stress tests (30% vs. 21%) and higher rates of “other cardiac tests 

including echocardiograms.  Stress tests are often used to provide evidence that the patient is safe 

to be discharged, and the difference is consistent with Program B relying on such additional 

information at a much higher rate.  Conditional on ordering the tests, they order 8% more and 

have a 7% longer duration to the first test, including 50% more time before tests such as an 

echocardiogram is taken (3 days vs. 2 days).  The hazard ratios are closer to 0.90 for angiography 

and other cardiac tests. 

Panel D reports the results for another common admission:  chronic obstructive 

pulmonary disease.  Overall, diagnostic-testing rates are similar across the programs, although 

Program B is 17% more likely to order a chest x-ray and 13% more likely to order any x-ray 

compared to Program A.  The main difference within this diagnosis is the time to the first test:  

59% longer for Program B on average (0.94 days vs. 0.59 days), and approximately 25% longer 

for an x-ray (hazard ratios of 0.91 and 0.82).  Panel E reports similar results for gastrointestinal 

bleeding, with 6% higher test rates, 11% more tests conditional on ordering any, and 27% longer 

duration before the first test (0.94 days vs. 0.74 days), with a hazard ratio for endoscopy of 0.85.   

In summary, Program B tends to order more diagnostic tests, and they take longer to order tests.   

D.  Robustness & Specification Checks 

This section offers tests to verify the experimental nature of the setting and offer more 

clues to the sources of the differences in costs.  It also considers heterogeneity in effects across 

patient groups.   
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D.1. Placebo Tests 

Three placebo checks were conducted.  Table 8 shows results for patients with the major 

diagnostic category of “nervous system”—a group that is less likely to enter the randomization—

a much smaller treatment difference is found (coefficient of 0.047), and the difference is not 

statistically significant.  Second, when patients admitted to a satellite facility (where 

randomization does not take place) were compared, again there is no difference in length of stay 

or 1-year mortality.  This is consistent with similar comorbidity levels across the two groups, 

similar outcomes for the two groups of patients, and no difference in the reliance on outpatient 

care across the two physician teams.   

Third, the other area where the randomization has less of an effect is when a patient is 

admitted to the intensive care unit, which is overseen by a single attending from one of the 

programs at any given point in time.  We also did not find a difference in the rate of transfer to 

the ICU across the two groups.  Once in the ICU, the length of stay and mortality rates were 

similar.  For patients who were transferred out of the ICU to another hospital bed, their post-ICU 

length of stay was significantly different (not shown).  Further, when patients who did not use an 

intensive care unit were analyzed, the treatment differences were somewhat larger in magnitude, 

and no outcome differences were found.   

D.2.  Heterogeneity Across Patients 

Part of the interest in estimating the returns to physician human capital is the concern that 

minority patients may lack access to top physicians.  The natural experiment here allows us to 

compare the treatment and outcome differences for white vs. non-white patients.26  Table 8 

                                                 
26 The non-white category includes missing race (Sohn et al., 2006).  Racial composition in the patent’s ZIP code is 
associated with the race listed in the patient treatment file, however, which suggests that the race variable is 
informative:  we divided the sample into quartiles based upon the fraction white in the patient’s ZIP code.  Patients 
in the bottom quartile are recorded as white 9.5% of the time compared to 72% in the top quartile.  When treatment 
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shows that the difference in treatment is larger for non-white patients (14 log point difference in 

length of stay compared to 8 log points for white patients).  1-year mortality is similar across 

whites and non-whites at 24%, and the Program assignment is unrelated to this outcome.  Results 

were also similar for patients over and under the age of 65—the latter group has alternative 

insurance coverage through Medicare.   

D.3.  Alternative Outcome Measures 

Table 8 reports results for additional outcomes, and the results are robust.  This includes 

outcomes such as 30-day readmissions for the same major diagnostic category and readmission 

costs.  In terms of mortality, both in-hospital mortality and 10-hour mortality—measures that 

perhaps have the most direct influence of the resident team, especially those that require faster 

decisions—are similar across the teams.   

An explanation for the shorter stays associated with Program A could be that these 

physicians are more likely to transfer patients to another hospital, potentially to perform a 

surgery that is not conducted at the VA such as a coronary artery bypass.  Table 8 shows that 

Program B is associated with a slightly lower transfer rate:  0.3% compared to a mean transfer 

rate of 4%.  This difference cannot by itself explain the difference in length of stay.27  Further, 

when (the small number of) transferred patients were dropped from the analysis, the results are 

essentially the same as the main results (see Appendix Table A2).   

D.4.  June vs. July:  Heterogeneity in Resident Experience 

One limitation of the analysis of residents is that the practice styles and outcomes may 

converge or diverge as the physicians gain experience later in their careers.  Future analysis will 

                                                                                                                                                             
and outcomes are compared, the bottom quartile shows the largest difference in log length of stay (16 log points), 
and a model without controls suggests that Program B is associated with mortality that is 2 percentage points lower 
compared to a mean of 25% in this quartile. 
27 For this difference in transfer rate to explain the 10% difference in length of stay, those patients more likely to 
remain due to Program B assignment would have to stay for 139 days compared to a mean of 4.4. 
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use Medicare data to track these physicians into their careers.  In the data available here, we can 

compare patients in June versus July—the month when new residents begin training and the pool 

of residents has nearly one less year of experience.  This two-month comparison also controls for 

seasonal differences in the types of conditions encountered.  Given the smaller sample sizes, 

results should be taken with some caution, as the differences between June and July are not 

statistically significant.  That said, we find that the magnitude of the treatment differences is 

smaller in June when the residents are more seasoned (7% difference).  Patients assigned to 

Program B when the residents are relatively inexperienced in July have lengths-of-stay that are 

an additional 5% longer (see Appendix Table A3).  The outcome results are more mixed for 

readmissions and mortality, but the differences continue to be small.   

D.5.  Differences When Workloads Differ 

One difference between the two teams is that Program A’s teams have one intern, 

whereas Program B’s teams have two.  One way to test whether these different intern-to-patient 

ratios are driving the results is to estimate the effect of caseload on treatment intensity across the 

two groups.  Each program sees approximately 50 patients per week on average.  Busier times 

were generally associated shorter lengths of stay and lower mortality rates, which likely reflects 

lower levels of illness severity at these times.  When loads are higher for Program B, they are 

somewhat more treatment intensive compared to busier times for Program A.  The effects of 

patient load on treatment appear too small for the difference in intern-to-patient ratios to explain 

the main results, however.  In particular, when we control for the admission load in the week 

prior to any given admission, the difference between the two groups is largely unchanged.28   

                                                 
28 Models for log costs and log length of stay were re-estimated with the addition of a measure of admission load:  
the number of admissions for each group in the 7 days prior to the observation, as well this load measure interacted 
with the Program B indicator, full controls, and date fixed effects.  The difference in length of stay across the two 
groups, evaluated at the sample mean of the admission count, was 0.10, similar to the main results.  When the 
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D.6.  Additional Robustness Tests 

The results were also similar when the sample is restricted to the initial episode (in our data), 

especially for 5-year mortality.  Other tests were conducted that are not shown in Table 8 include 

similar results when date fixed effects were included29; when probit models were used for 

outcomes and count models were used for length of stay; and when hours in care were compared 

rather than days.  In addition, results were robust to the time period, with large cost differences 

each year.   

E.  Interpretation 

E.1.  Competing Explanations 

Program B is found to have higher costs, yet the health outcomes we measure are similar 

compared to Program A.  One interpretation is that the additional tests and wait times by 

Program B are unnecessary.  If this were the case, it may be possible for the lower-ranked 

physicians to achieve similar outcomes at substantial savings.  For example, Program A may be 

better at administrative tasks that reduce costs, such as test scheduling, but are unrelated to 

patient health.     

An alternative explanation is that the physicians from the lower-ranked program may 

require the additional tests and input from consultants to achieve the same results as the higher-

ranked program.  If this were the case, then the decision-making ability of the physicians in the 

higher-ranked program would not be so easily replicable.  This explanation finds some support 

from the results that the larger differences in treatment appear for more complicated diagnoses.  

                                                                                                                                                             
estimates are evaluated when Program A has half the number of admissions (so that the intern-to-patient ratios are 
the same), the magnitude of the length-of-stay difference increases to -0.11.  For log costs, these estimates are even 
more similar:  0.117 and 0.119, respectively. 
29 See Table A2. 
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In addition, the longer duration before the first test for Program B suggests that these physicians 

may need more time and advice before ordering tests.   

Another set of explanations of the treatment differences may be more bureaucratic 

hurdles faced by Program B and not Program A.  For example, attending physicians in Program 

B could provide more oversight, which takes more time to administer.   If a mechanical rule that 

all tests had to be approved by the attending led to the cost differences, we would expect 

differences in treatment even for less serious cases, but that was not found (Table 5).  Of course, 

the greater supervision may be requested only in more serious cases.  In some ways, additional 

supervision may capture important differences in the two programs if the physicians in the 

lower-ranked program require additional advice.  Importantly, physicians familiar with the 

training at this VA do not believe that the level of attending supervision or other bureaucratic 

differences, such as access to lab results, are substantially different across the two groups.   

The structure of the two groups is somewhat different, with Program B having 2 interns 

per team compared to 1 for Program A.  Another explanation for faster treatment among the 

smaller teams in the higher-ranked program could be lower coordination costs, but teams do not 

coordinate care across the interns for any given patient.30  In addition, senior residents in 

Program A may be more likely to take admissions during busy times compared to Program B, 

which has two interns to handle a higher load.  While we have not found evidence that this is the 

case, it would change the interpretation to combine the effects of a higher-ranked program and a 

more-experienced team leading to substantially lower costs.  That said, the effects of caseload 

itself appear too small to drive the differences in costs, as discussed above.       

                                                 
30 The interns “scatter” during the start of their shifts to provide care to each of their patients.  The interns do round 
together, but the difference in composition is not expected to result in substantially different amounts of time spent 
on rounds. Recently, Program B switched to a 3-team system described in an earlier version of this paper, but the 
change is outside of our sample period. 
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E.2. Limitations 

There are a number of additional limitations in the current study.  First, the randomization 

applies to two residency programs at one teaching hospital, which raises questions of external 

validity.  These programs are comprised of thousands of physicians over the thirteen years 

considered, however, and the results are robust to the particular set of physicians at any given 

time.  One reason to believe that there may be wider applicability is that Program A’s parent 

hospital is fairly similar to other U.S. News and World Report’s Honor Roll Hospitals according 

to the Dartmouth Atlas.  In terms of average number of hospital days and the number of 

physician visits in the last two years of life between 2001 and 2005, the parent hospital is in the 

middle of the distribution of these hospitals.  It appears that other top hospitals provide similar 

levels of treatment intensity as the higher-ranked program.  In comparison, the parent hospital 

affiliated with Program B has similar treatment intensity measures as the parent hospital for 

Program A—both are higher than the national average, but not at the extremes like some Honor 

Roll hospitals.31  Such results may not apply to community hospitals where the goals and 

incentives of physicians may differ. 

Second, variations in delivery of health care can be explained both by differences in the 

selectivity of the programs and clinical training during residency (Weiss, 1995; Semeijn et al., 

2005).  It is difficult to separate the two effects here, but it appears that the training is 

qualitatively similar.  We found that the program curriculum, teaching philosophy, approach to 

clinical care, as well as treatment intensity in the parent hospitals of the two programs, are 

generally similar across the two institutions. 

                                                 
31 We thank Jack Wennberg for this suggestion.  According to the Dartmouth Atlas performance reports for 2001-
2005, the average hospital days per Medicare beneficiary during the last two years of life—a preferred measure of 
utilization that controls for the health of the patient and is not directly affected by price differences—is nearly 
identical for the two parent hospitals.  They also have similar facility capacity in terms of total beds and ICU beds—
measures that have been found to be associated with treatment intensity (Fisher et al., 1994).    



 32

To the extent that the results are driven by different residents, as opposed to different 

attending physicians, a related limitation is that differences could fade (or increase) over time as 

physicians gain experience.  The June vs. July comparisons described above suggest that 

treatment differences may converge somewhat, although the outcome differences were similar 

when the residents were relatively inexperienced.32   

 Fourth, the results apply to a veteran population, and the results may not apply to a wider 

set of patients.  Still, this population is particularly policy relevant given the concerns that 

differing access to high-quality physicians may lead to health disparities among low-income 

groups.  Here, we have just such a group that has an equal chance of being treated by a top 

physician team or one ranked much lower.  Further, medical schools join with VA medical 

centers partly because the patients present with a wide range of illnesses—an advantage here in 

that we can compare the results across these diagnoses as well. 

Fifth, a usual limitation of randomized trials is that they do not incorporate the value of 

matching physicians to patients.  Here, the lack of a health outcome difference suggests that such 

triage is less likely to be necessary.  In addition, if the cost savings would be greater with 

matching, then the magnitude of the cost differences that we find can be viewed as a lower 

bound. 

Last, the difference in costs reported here is in terms of hospital resources devoted to a 

given patient.  It is possible that lower-cost physicians extract part of this through higher wages.  

While the wages for residents do not vary across the residents considered here, they may diverge 

later in the physicians’ careers, and therefore may have different implications in non-teaching 

                                                 
32 One study that compares residents and attending that we are aware of found that their practice patterns to be 
similar: Detsky et al. (1986) examined a strike by residents in 1980 and found that the volume of tests performed did 
not change when the attendings provided the care instead. 
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environments.  Unfortunately, physician-income surveys do not include physicians’ medical 

school or residency training program to test such a relationship.   

 

6.  Conclusions 

Physicians play a major role in determining the cost of health care, and there are concerns 

that limitations on the supply of physicians and disparities in access to high-quality physicians 

and facilities can affect health outcomes.  Comparisons of physicians are often confounded by 

differences in the patients they treat and the environments where they work.  We study a unique 

natural experiment where nearly 30,000 patients were randomized to two sets of residency 

training programs in the same hospital.  One is consistently ranked among the top programs in 

the country, whereas the other is ranked lower in the distribution according to measures such as 

the pass rate for Board exams.   

We find patients randomly assigned to the highly-ranked program incur substantially 

lower costs:  10% overall and up to 25% depending on the condition.  This difference is driven 

largely by variation in diagnostic testing, where Program B orders more tests and takes longer to 

order them.  No difference is found for health outcomes, however.   

The results suggest a number of potential implications.  First, physician effects on costs 

can be substantial, as expected but usually difficult to quantify.  Second, if the results apply more 

broadly, inequality in access to top-ranked physicians may lead to differences in the use of 

specialists and testing but may not lead to health disparities.  This suggests that a relaxation of 

accreditation standards for medical schools, for example, may not adversely affect quality of 
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care, but may raise costs despite a greater supply of physicians.33   Third, the results are 

consistent with previous evidence that high-cost areas are associated with a greater use of 

diagnostic tests and reliance on specialists with little difference in health outcomes.  This 

additional care may be unnecessary—providing a basis for innocuous cost containment. The 

results here suggest an alternative interpretation is possible as well:  that higher-cost areas may 

require greater treatment intensity to achieve similar outcomes.  It remains to be tested whether 

high-cost areas are able to replicate the higher-quality care associated with the low-cost areas.  

                                                 
33 A classic study by Friedman and Kuznets (1945) attributed relatively high salaries among physicians, relative to 
dentists, to more stringent licensing requirements.  This study suggests a countervailing effect of higher resource use 
among marginal entrants. 
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Program Program
A B

Affiliated Medical School Rankings Medical College Admissions Test (MCAT) Ranking Top 5 Top 50
   (out of 126 schools): NIH Funding Ranking Top 5 Top 80

Affiliated Hospital US News Honor Roll (Overall) Top 10 Not Listed

Resident Characteristics % with MD from Top 10 Medical School (US News rankings) 30% 3%
% with MD from Top 25 Medical School (US News rankings) 50% 9%

% with MD from Top 10 Medical School (NIH Funding rankings) 25% 2%
% with MD from Top 25 Medical School (NIH Funding rankings) 40% 8%

% Foreign Medical School 10% 20%

Board Certification: American Board of Internal Medicine 99% (95th percentile) 85% (20th percentile)
Residency Program Pass Rate American Board of Surgery 85% (75th percentile) 60% (20th percentile)

Table 1:  Residency Program Comparisons

Figures are approximate but representative of rankings over the past 20 years.  Sources:  US News & World Report rankings, various years;  American 
Board of Internal Medicine; American Board of Surgery; AMA Masterfile, 1993-2005



Assigned to Assigned to
Program A Program B
(Odd SSN) (Even SSN) p-value

Demographics age 63.0 62.8 0.35
   18-34 0.019 0.022 0.15
   35-44 0.074 0.075 0.80
   45-54 0.186 0.186 0.94
   55-64 0.229 0.229 0.92
   65-69 0.134 0.131 0.50
   70-74 0.149 0.146 0.57
   75-84 0.179 0.184 0.39
   84+ 0.030 0.027 0.24

male 0.976 0.978 0.19
white 0.466 0.472 0.42
married 0.443 0.446 0.65
divorced 0.271 0.269 0.80

Comorbidities Charlson  index = 0 0.294 0.290 0.52
Charlson  index = 1 0.274 0.278 0.37
Charlson  index = 2 0.433 0.432 0.91

Admission Time Midnight-6am 0.096 0.098 0.56
6am-12 noon 0.237 0.233 0.29
12 noon-6pm 0.420 0.425 0.28
6pm - Midnight 0.247 0.245 0.59

Day of the week weekend 0.163 0.162 0.72

ZIP Code median HH Income 33714 33945 0.24
  Characteristics fraction HS dropout 0.249 0.247 0.18

fraction HS only 0.317 0.318 0.34
fraction Some College 0.271 0.272 0.024*
fraction white 0.628 0.633 0.48
fraction black 0.331 0.327 0.52
fraction aged 19-34 0.214 0.213 0.21
fraction aged 35-64 0.368 0.369 0.38
fraction aged 65+ 0.141 0.141 0.22
population per 1000 sq meters 1.102 1.072 0.09

Observations (discharges) 35932 36434
p-values calculated using standard errors clustered by patient.   * significant at 5%; 

Table 2:  Summary Statistics



Dependent Variable:
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Assigned to 0.108 0.114 0.113 0.113 0.123 0.125 0.100 0.102 0.104
  Program B [0.0086]** [0.0075]** [0.0072]** [0.0136]** [0.0116]** [0.0114]** [0.0120]** [0.0104]** [0.0099]**

Diagnosis Fixed Effects No Yes Yes No Yes Yes No Yes Yes
Full Controls No No Yes No No Yes No No Yes

Observations 72366 34098 42518
Mean of Dep. Var. 1.43 8.63 8.71
exp(Mean of Dep. Var.) 4.17 5600 6100
Models estimated using OLS.  Robust standard errors in brackets, clustered by patient.  Full controls include variables listed in Table 1, as well as 
month, year, and day-of-the-week indicators.  Cost measures are in 2006 dollars. ** significant at 1%  

Table 3:  Treatment Differences

log(length of stay) log(accounting cost) log(estimated expenditure)



Dependent Variable:
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Assigned to -0.0019 -0.0019 -0.0021 0.0057 0.0057 0.0055 0.0032 0.0032 0.0033
Lower Ranking Program [0.0032] [0.0031] [0.0030] [0.0058] [0.0053] [0.0051] [0.0045] [0.0039] [0.0039]

Diagnosis Fixed Effects No Yes Yes No Yes Yes No Yes Yes
Full Controls No No Yes No No Yes No No Yes

Observations 71954 66938 66998
Mean of Dep. Var. 0.132 0.429 0.204

Dependent Variable:
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Assigned to -0.0006 -0.0006 -0.0007 -0.0067 -0.0061 -0.0072 -0.0016 0.0001 -0.0028
Lower Ranking Program [0.0020] [0.0019] [0.0019] [0.0051] [0.0045] [0.0044] [0.0085] [0.0072] [0.0068]

Diagnosis Fixed Effects No Yes Yes No Yes Yes No Yes Yes
Full Controls No No Yes No No Yes No No Yes

Observations 71954 66938 47337
Mean of Dep. Var. 0.0642 0.242 0.507
Models estimated using OLS on a sample that includes patients seen 30 days, 1 year, or 4 years from the end of the sample period.  
Robust standard errors in brackets, clustered by patient.  * significant at 5%; ** significant at 1%.  

Table 4A:  Differences in VA Hospital Readmissions

1-year Readmission
Same Major Diagnosis

30-day Mortality 1-year Mortality

30-day Readmission 1-year Readmission

Table 4B:  Differences in Mortality

5-year Mortality



Dependent Coeff. On Assignment Mean of Program B p-value:
Top 10 Most Common Diagnoses Variable to Program B S.E. Dep. Var. Fraction fraction=0.5 Obs.

Heart Failure log(length of stay) 0.252 [0.0272]** 1.53 0.520 0.018 3598
1-year mortality 0.005 [0.0210] 0.349 3249

Chronic Ischemic Heart Disease log(length of stay) 0.083 [0.0299]** 0.85 0.514 0.15 2662
1-year mortality -0.013 [0.0125] 0.0794 2368

Acute Myocardial Infarction log(length of stay) 0.089 [0.0372]* 1.61 0.505 0.62 2187
1-year mortality -0.030 [0.0201] 0.248 2071

Respiratory & Chest Symptoms log(length of stay) 0.175 [0.0302]** 0.77 0.518 0.092 2142
1-year mortality -0.004 [0.0133] 0.0914 1828

Chronic Obstructive Pulmonary Disease log(length of stay) 0.191 [0.0343]** 1.36 0.457 <0.001 2137
1-year mortality 0.001 [0.0256] 0.294 1965

Diabetes log(length of stay) 0.131 [0.0456]** 1.61 0.544 <0.001 2097
1-year mortality -0.025 [0.0198] 0.184 1920

Cardiac dysrhythmias log(length of stay) 0.145 [0.0392]** 1.41 0.494 0.56 2034
1-year mortality -0.039 [0.0205] 0.213 1899

GI Bleed log(length of stay) 0.163 [0.0370]** 1.40 0.493 0.53 1974
1-year mortality -0.015 [0.0221] 0.218 1856

Pneumonia log(length of stay) 0.210 [0.0364]** 1.50 0.516 0.15 1944
1-year mortality 0.015 [0.0232] 0.307 1749

Other acute and subacute forms log(length of stay) 0.129 [0.0372]** 1.33 0.512 0.32 1843
of ischemic heart disease 1-year mortality -0.027 [0.0151] 0.0895 1821

Pr(Mortality|Diagnosis) Bottom Quartile log(length of stay) 0.023 [0.0167] 1.13 0.508 0.16 8767
1-year mortality -0.004 [0.0047] 0.0412 8250

Pr(Mortality|Diagnosis) 2nd Quartile log(length of stay) 0.112 [0.0131]** 1.18 0.510 0.012 17153
1-year mortality -0.008 [0.0056] 0.101 15765

Pr(Mortality|Diagnosis) 3rd Quartile log(length of stay) 0.119 [0.0116]** 1.48 0.493 0.030 26420
1-year mortality -0.009 [0.0068] 0.230 24424

Pr(Mortality|Diagnosis) Top Quartile log(length of stay) 0.142 [0.0141]** 1.72 0.510 0.0035 20026
1-year mortality -0.005 [0.0090] 0.466 18499

Table 5:  Results Across Diagnoses

Top 10 most frequent diagnoses based on 3-digit ICD-9 diagnosis codes, with the exception GI bleed & COPD defined by a group of diagnosis 
codes.  Models estimated using OLS.  All models include full controls and diagnostic fixed effects.  Robust standard errors in brackets, clustered 
by patient. *significant at 5%; ** significant at 1%.



Dependent Variable: Number of Number of Nursing Surgery Radiology Lab Pharmacy All Other Outpatient
Procedures Surgeries Referral

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Assigned to 0.250 -0.002 292 -123 40 53 112 253 -0.009
  Program B [0.0143]** [0.0036] [88.2776]** [30.5502]** [12.1013]** [8.8733]** [48.6039]* [46.0791]** [0.0039]*

Observations 72366 72366 34098 34098 34098 34098 34098 34098 72366
Mean of Dep. Var. 1.68 0.290 4145 1354 483 415 982 2431 0.793
Models estimated using OLS.  All models include full controls and diagnostic fixed effects.  Robust standard errors in brackets, clustered by patient. Cost 
measures are in 2006 dollars. *significant at 5%; ** significant at 1%.

Accounting Cost Segments:

Table 6:  Differences By Types of Care



Comparison:

Progra
m A

Progra
m B

Progra
m A

Progra
m B

Progra
m A

Progra
m B

Hazard Ratio 
(Program B: 
Program A) S.E.

(1) (2) (3) (4) (5) (6) (7) (8)
A.  All Cases

any diagnostic 68.4% 73.1% ** 2.99 3.25 ** 1.41 1.55 ** 0.993 0.0069
xray 22.4% 25.1% ** 1.77 1.77 3.04 3.17 0.948 0.0075 **
chest xray 6.3% 7.5% ** 1.11 1.13 * 4.39 4.69 * 0.930 0.0077 **
endoscopy 5.2% 5.7% ** 1.26 1.30 ** 4.90 4.89 0.921 0.0078 **
angiography 8.1% 8.3% 2.70 2.67 3.16 3.53 ** 0.915 0.0077 **
cardiac stress test 6.4% 7.8% ** 1.02 1.02 3.96 4.39 ** 0.925 0.0078 **
other cardiac test (incl. echo.) 12.7% 15.0% ** 1.12 1.11 1.39 2.21 ** 0.933 0.0079 **

   Observations 35932 36434 72366

B.  Heart Failure
any diagnostic 78.6% 82.7% 2.92 3.33 * 1.10 1.34 ** 0.937 0.025 *
angiography 5.6% 6.3% 2.80 2.75 4.81 7.26 ** 0.747 0.026 **
cardiac stress test 11.4% 13.6% * 1.03 1.03 3.42 4.52 ** 0.771 0.026 **
other cardiac test (incl. echo.) 29.7% 33.2% * 1.09 1.15 0.93 1.62 ** 0.821 0.027 **

   Observations 1728 1870 3598

C. Acute Myocardial Infarction
any diagnostic 90.7% 93.2% * 3.88 4.18 ** 1.26 1.36 0.951 0.031
angiography 46.6% 46.3% 3.01 3.00 3.04 3.36 0.911 0.037 *
cardiac stress test 20.6% 29.6% ** 1.03 1.03 5.43 5.33 1.010 0.042
other cardiac test (incl. echo.) 33.2% 38.0% ** 1.15 1.13 2.01 3.02 ** 0.904 0.037 *

   Observations 1082 1105 2187

D.  Chronic Obstructive 
Pulmonary Disease

any diagnostic 84.3% 87.1% 3.26 3.30 0.59 0.94 ** 0.909 0.028 **
xray 16.0% 18.1% 1.52 1.54 2.93 3.58 0.825 0.033 **
chest xray 9.9% 11.6% 1.09 1.07 2.91 3.66 0.838 0.034 **

   Observations 1160 977 2137

E.  GI Bleed
any diagnostic 75.0% 79.4% * 2.68 2.98 * 0.74 0.94 ** 0.951 0.033
endoscopy 59.0% 62.8% 1.29 1.35 * 2.19 2.28 0.848 0.034 **

   Observations 1001 973 1974
Columns (1) and (2) report the fraction of patients who received the procedure at least once; Columns (3) and (4) report the number 
of procedures conditional on having at least one; Columns (5) and (6) report the mean number of days to the first time the 
procedure is conducted conditional on having the procedure; Column (7) reports hazard ratios of the duration to the first time a 
procedure is conducted:  results are from Cox proportional hazard models with full controls.  Standard errors are clustered at the 
patient level.  * significant at 5%, ** significant at 1%

Table 7:  Use of Diagnostic Tests and Non-Surgical Procedures

Days to Procedure Days to
ProcedureProcedure Rate # | any | ordering



Coeff. On Assignment Mean of
Dependent Variable to Program B S.E. Dep. Var. Obs.

Sample:  nervous system patients log(length of stay) 0.047 0.048 1.34 1353
30-day readmission -0.011 0.022 0.191 1345
1-year mortality -0.040 0.021 0.153 1284

Sample:  outside main facility log(length of stay) -0.012 0.014 1.89 70775
1-year mortality 0.0050 0.004 0.141 63299

Intensive Care Unit Admission to ICU -0.0020 0.0033 0.181 72366
log (length of stay in ICU) -0.0169 0.015 0.806 13110
Died in the ICU -0.0023 0.0037 0.047 13110

White veterans log(length of stay) 0.0759 0.012** 1.48 33923
1-year mortality -0.0060 0.0066 0.239 33923

Non-white veteran (or missing race) log(length of stay) 0.1380 0.011** 1.39 38443
1-year mortality -0.0048 0.0070 0.245 33015

Readmission Outcomes 30-day readmission:
   same major diagnosis -0.0020 0.0021 0.071 71954
30-day readmission costs 20.3 89.4 1653 42106
1-year readmission costs 243 155 4868 37090

Mortality Outcomes 10-hour mortality -0.00042 0.0004 0.0025 72366
died in the hospital 0.0020 0.0014 0.040 72366

Transfers transfer to another hospital -0.0028 0.0016 0.040 72366

Sample:  first episode log(length of stay) 0.096 0.0097** 1.40 29391
30-day readmission -0.010 0.0033** 0.091 29278
1-year mortality -0.0037 0.004 0.173 27581
5-year mortality -0.0040 0.006 0.391 20882

Table 8:  Specification & Robustness Checks

All models include full controls, including 3-digit diagnosis indicators.  Robust standard errors in brackets, clustered by 
patient.  * significant at 5%; ** significant at 1%. 



(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: log(length of stay) log(accounting cost) log(estimated cost) 30-day Readmission 1-year Readmission 30-day mortality 1-year mortality

Assigned to Program B 0.1125 0.1251 0.1039 -0.0021 0.0055 -0.00073 -0.0072
[0.0072]** [0.0114]** [0.0099]** [0.0030] [0.0051] [0.0019] [0.0044]

Midnight-6am 0.0474 0.2142 0.1847 -0.0175 -0.029 -0.0228 -0.0401
[0.0133]** [0.0205]** [0.0177]** [0.0052]** [0.0077]** [0.0037]** [0.0062]**

6am-12 noon 0.1658 0.0808 0.1065 -0.0091 -0.0112 -0.0098 0.0038
[0.0121]** [0.0177]** [0.0153]** [0.0048] [0.0071] [0.0034]** [0.0058]

12 noon-6pm 0.241 0.1297 0.1738 -0.0096 -0.0038 -0.0046 0.0127
[0.0123]** [0.0180]** [0.0156]** [0.0049] [0.0074] [0.0036] [0.0060]*

Wednesday (vs. Saturday) 0.0327 -0.0454 -0.0082 -0.0018 -0.0078 -0.0065 -0.0017
[0.0134]* [0.0226]* [0.0194] [0.0054] [0.0080] [0.0038] [0.0062]

Married -0.0893 -0.0763 -0.07 0.0034 0.0058 -0.0067 -0.0264
[0.0091]** [0.0143]** [0.0125]** [0.0038] [0.0063] [0.0024]** [0.0056]**

Male 0.061 -0.0275 0.0864 0.006 0.0205 0.0111 0.0451
[0.0225]** [0.0315] [0.0296]** [0.0087] [0.0163] [0.0042]** [0.0129]**

White 0.0158 0.0308 0.0115 -0.0062 -0.0004 0.0033 0.0065
[0.0112] [0.0199] [0.0157] [0.0046] [0.0076] [0.0031] [0.0069]

Charlson Index = 1 0.0884 0.0695 0.0974 0.0201 0.066 0.0032 0.0351
[0.0091]** [0.0145]** [0.0129]** [0.0034]** [0.0058]** [0.0019] [0.0040]**

Charlson Index = 2 0.202 0.2054 0.2248 0.0555 0.1422 0.0352 0.1584
[0.0099]** [0.0158]** [0.0140]** [0.0039]** [0.0063]** [0.0025]** [0.0053]**

Age:  35-44 0.181 0.1336 0.092 0.0115 0.0391 0.004 0.0044
[0.0295]** [0.0659]* [0.0500] [0.0117] [0.0212] [0.0038] [0.0137]

         45-54 0.2452 0.1913 0.1134 0.0101 0.0653 0.0104 0.0276
[0.0284]** [0.0616]** [0.0466]* [0.0110] [0.0205]** [0.0037]** [0.0135]*

         55-64 0.3328 0.2839 0.1319 0.0106 0.0666 0.0216 0.0621
[0.0284]** [0.0617]** [0.0468]** [0.0110] [0.0205]** [0.0038]** [0.0138]**

         65-69 0.3598 0.2533 0.0969 0.0061 0.0773 0.0303 0.0998
[0.0292]** [0.0634]** [0.0483]* [0.0113] [0.0208]** [0.0043]** [0.0144]**

         70-74 0.372 0.3103 0.1074 0.0111 0.0819 0.0409 0.1283
[0.0292]** [0.0629]** [0.0480]* [0.0114] [0.0209]** [0.0043]** [0.0145]**

         75-84 0.3894 0.2958 0.0775 0.0281 0.0823 0.0573 0.18
[0.0290]** [0.0622]** [0.0474] [0.0114]* [0.0209]** [0.0043]** [0.0145]**

         84+ 0.3873 0.2803 0.0338 0.0164 0.0562 0.0973 0.3124
[0.0344]** [0.0673]** [0.0533] [0.0136] [0.0243]* [0.0085]** [0.0200]**

Constant 1.3466 8.3545 8.6239 0.0388 0.043 0.0943 0.1759
[0.1792]** [0.2980]** [0.2563]** [0.0730] [0.1199] [0.0484] [0.1107]

Observations 72366 34098 42518 71954 66938 71954 66938
R-squared 0.22 0.25 0.26 0.03 0.07 0.11 0.22
Mean of Dep. Var. 1.43 8.63 8.71 0.1315 0.4287 0.0642 0.2418
Models also included year, month, day-of-week, and divorced indicators, as well as ZIP code characteristics.  Robust standard errors in brackets; * significant at 5%; ** significant 
at 1%

Table A1:  Selected Covariates



Coeff. On Assignment Mean of
Dependent Variable to Program B S.E. Dep. Var. Obs.

Model:  Probit 30-day readmission -0.002 0.0030 0.133 71373
(marginal effects) 1-year mortality -0.008 0.0048 0.244 66230

Model:  OLS w/ Date Fixed Effects log(length of stay) 0.109 0.007** 1.43 72366
30-day readmission -0.003 0.003 0.131 71954
1-year mortality -0.007 0.004 0.242 66938

Sample:  Drop transferred patients. log(length of stay) 0.114 0.007** 1.42 69451
30-day readmission -0.003 0.003 0.129 69047
1-year mortality -0.007 0.004 0.241 64177

Table A2:  Additional Checks

All models include full controls, including 3-digit diagnosis indicators.  Robust standard errors in brackets, clustered by 
patient.  * significant at 5%; ** significant at 1%. 



Dependent Variable: log(length of stay) 30-day readmission 1-year mortality
(1) (2) (3)

Assigned to Program B 0.069 -0.0091 0.0025
[0.0221]** [0.0091] [0.0110]

July -0.0008 -0.0081 -0.0055
[0.0213] [0.0086] [0.0101]

Assigned to Program B * July 0.049 0.017 -0.0010
[0.0302] [0.0122] [0.0143]

Observations 12256 12256 11286
Mean of Dep. Var. 1.39 0.134 0.244
Sample limited to patients admitted in June or July.  Models estimated using OLS with full 
controls.  Robust standard errors in brackets, clustered by patient.   * significant at 5%; ** 
significant at 1%.

Table A3:  Effects of Experience:  June vs. July
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Figure 1A:  Log(Length of Stay) vs. Last Digit of SSN
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Figure 1B:  Log(Accounting Cost) vs. Last Digit of SSN
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Figure 1C:  Log(Est. Expenditure) vs. Last Digit of SSN
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Figure 2A:  30-Day Readmission vs. Last Digit of SSN
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Figure 2B:  1-year Mortality vs. Last Digit of SSN
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Figure 2A:  30-Day Readmission vs. Last Digit of SSN
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Figure 2B:  1-year Mortality vs. Last Digit of SSN
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Figure 2C:  5 Year Mortality vs. Last Digit of SSN 


